Big Planner::recalculate rewrite
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
4cff3ded
AW
16using std::string;
17#include <vector>
18#include "../communication/utils/Gcode.h"
19
edac9072
AW
20// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
21// It's stacked on a queue, and that queue is then executed in order, to move the motors.
22// Most of the accel math is also done in this class
23// And GCode objects for use in on_gcode_execute are also help in here
24
1cf31736
JM
25Block::Block()
26{
27 clear();
28}
29
30void Block::clear()
31{
32 //commands.clear();
33 //travel_distances.clear();
34 gcodes.clear();
4cff3ded 35 clear_vector(this->steps);
1cf31736
JM
36
37 steps_event_count= 0;
38 nominal_rate= 0;
39 nominal_speed= 0.0F;
40 millimeters= 0.0F;
41 entry_speed= 0.0F;
42 rate_delta= 0.0F;
43 initial_rate= -1;
44 final_rate= -1;
45 accelerate_until= 0;
46 decelerate_after= 0;
47 direction_bits= 0;
48 recalculate_flag= false;
49 nominal_length_flag= false;
50 max_entry_speed= 0.0F;
51 is_ready= false;
52 times_taken= 0;
4cff3ded
AW
53}
54
1cf31736
JM
55void Block::debug()
56{
a617ac35 57 THEKERNEL->serial->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
2134bcf2
MM
58 this,
59 this->steps[0],
60 this->steps[1],
61 this->steps[2],
62 this->steps_event_count,
63 this->nominal_rate,
64 this->nominal_speed,
65 this->millimeters,
66 this->rate_delta,
67 this->accelerate_until,
68 this->decelerate_after,
69 this->initial_rate,
70 this->final_rate,
71 this->entry_speed,
72 this->max_entry_speed,
73 this->times_taken,
74 this->is_ready,
a617ac35
MM
75 recalculate_flag?1:0,
76 nominal_length_flag?1:0
2134bcf2 77 );
4cff3ded
AW
78}
79
80
69735c09 81/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
82// The factors represent a factor of braking and must be in the range 0.0-1.0.
83// +--------+ <- nominal_rate
84// / \
85// nominal_rate*entry_factor -> + \
86// | + <- nominal_rate*exit_factor
87// +-------------+
88// time -->
edac9072 89*/
a617ac35 90void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 91{
2bb8b390 92
edac9072 93 // The planner passes us factors, we need to transform them in rates
a617ac35
MM
94 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/min)
95 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/min)
813727fb 96
edac9072 97 // How many steps to accelerate and decelerate
1ad23cd3 98 float acceleration_per_minute = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
4cff3ded 99 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
813727fb 100 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
4cff3ded 101
edac9072 102 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
1cf31736
JM
103 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
104
105 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
106 // have to use intersection_distance() to calculate when to abort acceleration and start braking
107 // in order to reach the final_rate exactly at the end of this block.
108 if (plateau_steps < 0) {
109 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
110 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
111 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
112 plateau_steps = 0;
113 }
114 this->accelerate_until = accelerate_steps;
115 this->decelerate_after = accelerate_steps + plateau_steps;
4cff3ded
AW
116
117}
118
119// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
120// given acceleration:
1cf31736
JM
121float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
122{
123 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
4cff3ded
AW
124}
125
126// This function gives you the point at which you must start braking (at the rate of -acceleration) if
127// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
128// a total travel of distance. This can be used to compute the intersection point between acceleration and
129// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
130//
131/* + <- some maximum rate we don't care about
132 /|\
133 / | \
134 / | + <- final_rate
135 / | |
136 initial_rate -> +----+--+
137 ^ ^
138 | |
139 intersection_distance distance */
1cf31736
JM
140float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
141{
142 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
4cff3ded
AW
143}
144
4cff3ded
AW
145// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
146// acceleration within the allotted distance.
1cf31736
JM
147inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
148{
a617ac35 149 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
150}
151
152
153// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 154float Block::reverse_pass(float exit_speed)
1cf31736 155{
a617ac35
MM
156 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
157 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
158 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
159 if (this->entry_speed != this->max_entry_speed)
160 {
161 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
162 // for max allowable speed if block is decelerating and nominal length is false.
163 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
164 {
165 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->acceleration, exit_speed, this->millimeters);
166
167 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
168
169 return this->entry_speed;
aab6cbba 170 }
a617ac35
MM
171 else
172 this->entry_speed = this->max_entry_speed;
173 }
4cff3ded 174
a617ac35 175 return this->entry_speed;
aab6cbba 176}
4cff3ded
AW
177
178
179// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
180// returns maximum exit speed of this block
181float Block::forward_pass(float prev_max_exit_speed)
1cf31736 182{
aab6cbba
AW
183 // If the previous block is an acceleration block, but it is not long enough to complete the
184 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
185 // speeds have already been reset, maximized, and reverse planned by reverse planner.
186 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
187
188 // TODO: find out if both of these checks are necessary
189 if (prev_max_exit_speed > nominal_speed)
190 prev_max_exit_speed = nominal_speed;
191 if (prev_max_exit_speed > max_entry_speed)
192 prev_max_exit_speed = max_entry_speed;
193
194 if (prev_max_exit_speed <= entry_speed)
195 {
196 // accel limited
197 entry_speed = prev_max_exit_speed;
198 // since we're now acceleration or cruise limited
199 // we don't need to recalculate our entry speed anymore
200 recalculate_flag = false;
aab6cbba 201 }
a617ac35
MM
202 // else
203 // // decel limited, do nothing
7b49793d 204
a617ac35
MM
205 return max_exit_speed();
206}
207
208float Block::max_exit_speed()
209{
210 // if nominal_length_flag is asserted
211 // we are guaranteed to reach nominal speed regardless of entry speed
212 // thus, max exit will always be nominal
213 if (nominal_length_flag)
214 return nominal_speed;
215
216 // otherwise, we have to work out max exit speed based on entry and acceleration
217 float max = max_allowable_speed(-THEKERNEL->planner->acceleration, this->entry_speed, this->millimeters);
218
219 return min(max, nominal_speed);
4cff3ded
AW
220}
221
4cff3ded 222// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
2134bcf2 223void Block::append_gcode(Gcode* gcode)
1cf31736 224{
1cf31736 225 Gcode new_gcode = *gcode;
2134bcf2 226 gcodes.push_back(new_gcode);
4cff3ded
AW
227}
228
2134bcf2 229void Block::begin()
1cf31736 230{
2134bcf2 231 recalculate_flag = false;
a617ac35 232
2134bcf2
MM
233 // execute all the gcodes related to this block
234 for(unsigned int index = 0; index < gcodes.size(); index++)
235 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
236
237 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
4cff3ded
AW
238}
239
3fceb8eb 240// Signal the conveyor that this block is ready to be injected into the system
1cf31736
JM
241void Block::ready()
242{
13e4a3f9 243 this->is_ready = true;
3a4fa0c1
AW
244}
245
246// Mark the block as taken by one more module
1cf31736
JM
247void Block::take()
248{
3a4fa0c1
AW
249 this->times_taken++;
250}
4cff3ded 251
3a4fa0c1 252// Mark the block as no longer taken by one module, go to next block if this free's it
1cf31736
JM
253void Block::release()
254{
2134bcf2 255 if (--this->times_taken <= 0)
347854ff 256 THEKERNEL->call_event(ON_BLOCK_END, this);
06a96473
MM
257
258 // ensure conveyor gets called last
259 THEKERNEL->conveyor->on_block_end(this);
3a4fa0c1 260}