Merge pull request #525 from RepRapMorgan/scara_updates
[clinton/Smoothieware.git] / src / modules / robot / arm_solutions / MorganSCARASolution.cpp
CommitLineData
1217e470
QH
1#include "MorganSCARASolution.h"
2#include <fastmath.h>
3#include "checksumm.h"
4#include "ConfigValue.h"
5#include "libs/Kernel.h"
6//#include "StreamOutputPool.h"
7//#include "Gcode.h"
8//#include "SerialMessage.h"
9//#include "Conveyor.h"
10//#include "Robot.h"
11//#include "StepperMotor.h"
12
13#include "libs/nuts_bolts.h"
14
15#include "libs/Config.h"
16
17#define arm1_length_checksum CHECKSUM("arm1_length")
18#define arm2_length_checksum CHECKSUM("arm2_length")
19#define morgan_offset_x_checksum CHECKSUM("morgan_offset_x")
20#define morgan_offset_y_checksum CHECKSUM("morgan_offset_y")
21#define axis_scaling_x_checksum CHECKSUM("axis_scaling_x")
22#define axis_scaling_y_checksum CHECKSUM("axis_scaling_y")
3e1f5b74 23#define morgan_homing_checksum CHECKSUM("morgan_homing")
1217e470
QH
24
25#define SQ(x) powf(x, 2)
26#define ROUND(x, y) (roundf(x * 1e ## y) / 1e ## y)
27
28MorganSCARASolution::MorganSCARASolution(Config* config)
29{
30 // arm1_length is the length of the inner main arm from hinge to hinge
31 arm1_length = config->value(arm1_length_checksum)->by_default(150.0f)->as_number();
32 // arm2_length is the length of the inner main arm from hinge to hinge
33 arm2_length = config->value(arm2_length_checksum)->by_default(150.0f)->as_number();
34 // morgan_offset_x is the x offset of bed zero position towards the SCARA tower center
35 morgan_offset_x = config->value(morgan_offset_x_checksum)->by_default(100.0f)->as_number();
36 // morgan_offset_y is the y offset of bed zero position towards the SCARA tower center
37 morgan_offset_y = config->value(morgan_offset_y_checksum)->by_default(-65.0f)->as_number();
38
39 init();
40}
41
42void MorganSCARASolution::init() {
43
44}
45
46float MorganSCARASolution::to_degrees(float radians) {
47 return radians*(180.0F/3.14159265359f);
48}
49
50void MorganSCARASolution::cartesian_to_actuator( float cartesian_mm[], float actuator_mm[] )
51{
52
53 float SCARA_pos[2],
54 SCARA_C2,
55 SCARA_S2,
56 SCARA_K1,
57 SCARA_K2,
58 SCARA_theta,
59 SCARA_psi;
60
61 SCARA_pos[X_AXIS] = cartesian_mm[X_AXIS] - this->morgan_offset_x; //Translate cartesian to tower centric SCARA X Y
62 SCARA_pos[Y_AXIS] = cartesian_mm[Y_AXIS] - this->morgan_offset_y; // morgan_offset not to be confused with home offset. Makes the SCARA math work.
63
64 if (this->arm1_length == this->arm2_length)
65 SCARA_C2 = (SQ(SCARA_pos[X_AXIS])+SQ(SCARA_pos[Y_AXIS])-2.0f*SQ(this->arm1_length)) / (2.0f * SQ(this->arm1_length));
66 else
900601b5
QH
67 SCARA_C2 = (SQ(SCARA_pos[X_AXIS])+SQ(SCARA_pos[Y_AXIS])-SQ(this->arm1_length)-SQ(this->arm2_length)) / (2.0f * SQ(this->arm1_length));
68
69 // SCARA position is undefined if abs(SCARA_C2) >=1
70 // In reality abs(SCARA_C2) >0.95 is problematic.
71
72 if (SCARA_C2 > 0.95f)
73 SCARA_C2 = 0.95f;
74 else if (SCARA_C2 < -0.95f)
75 SCARA_C2 = -0.95f;
76
1217e470
QH
77
78 SCARA_S2 = sqrtf(1.0f-SQ(SCARA_C2));
79
80 SCARA_K1 = this->arm1_length+this->arm2_length*SCARA_C2;
81 SCARA_K2 = this->arm2_length*SCARA_S2;
82
83 SCARA_theta = (atan2f(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2f(SCARA_K1, SCARA_K2))*-1.0f; // Morgan Thomas turns Theta in oposite direction
84 SCARA_psi = atan2f(SCARA_S2,SCARA_C2);
85
86
87 actuator_mm[ALPHA_STEPPER] = to_degrees(SCARA_theta); // Multiply by 180/Pi - theta is support arm angle
88 actuator_mm[BETA_STEPPER ] = to_degrees(SCARA_theta + SCARA_psi); // Morgan kinematics (dual arm)
89 //actuator_mm[BETA_STEPPER ] = to_degrees(SCARA_psi); // real scara
90 actuator_mm[GAMMA_STEPPER] = cartesian_mm[Z_AXIS]; // No inverse kinematics on Z - Position to add bed offset?
91
92}
93
94void MorganSCARASolution::actuator_to_cartesian( float actuator_mm[], float cartesian_mm[] ) {
95 // Perform forward kinematics, and place results in cartesian_mm[]
96
97 float y1, y2,
98 actuator_rad[2];
99
100 actuator_rad[X_AXIS] = actuator_mm[X_AXIS]/(180.0F/3.14159265359f);
101 actuator_rad[Y_AXIS] = actuator_mm[Y_AXIS]/(180.0F/3.14159265359f);
102
103 y1 = sinf(actuator_rad[X_AXIS])*this->arm1_length;
104 y2 = sinf(actuator_rad[Y_AXIS])*this->arm2_length + y1;
105
106 cartesian_mm[X_AXIS] = cosf(actuator_rad[X_AXIS])*this->arm1_length + cosf(actuator_rad[Y_AXIS])*this->arm2_length + this->morgan_offset_x;
107 cartesian_mm[Y_AXIS] = y2 + this->morgan_offset_y;
108 cartesian_mm[Z_AXIS] = actuator_mm[Z_AXIS];
109
110 cartesian_mm[0] = ROUND(cartesian_mm[0], 4);
111 cartesian_mm[1] = ROUND(cartesian_mm[1], 4);
112 cartesian_mm[2] = ROUND(cartesian_mm[2], 4);
113}
114
115bool MorganSCARASolution::set_optional(const arm_options_t& options) {
116
117 arm_options_t::const_iterator i;
118
119 i= options.find('T'); // Theta arm1 length
120 if(i != options.end()) {
121 arm1_length= i->second;
122
123 }
124 i= options.find('P'); // Psi arm2 length
125 if(i != options.end()) {
126 arm2_length= i->second;
127 }
128 i= options.find('X'); // Home initial position X
129 if(i != options.end()) {
130 morgan_offset_x= i->second;
131 }
132 i= options.find('Y'); // Home initial position Y
133 if(i != options.end()) {
134 morgan_offset_y= i->second;
135 }
136
137 init();
138 return true;
139}
140
141bool MorganSCARASolution::get_optional(arm_options_t& options) {
142 options['T']= this->arm1_length;
143 options['P']= this->arm2_length;
144 options['X']= this->morgan_offset_x;
145 options['Y']= this->morgan_offset_y;
146 return true;
147};