Added M500, M501, M503 to save certain values to a config-override file that gets...
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include <string>
11using std::string;
4cff3ded
AW
12#include <math.h>
13#include "Planner.h"
3fceb8eb 14#include "Conveyor.h"
4cff3ded
AW
15#include "Robot.h"
16#include "libs/nuts_bolts.h"
feb204be 17#include "libs/Pin.h"
670fa10b 18#include "libs/StepperMotor.h"
4cff3ded 19#include "../communication/utils/Gcode.h"
5647f709 20#include "PublicDataRequest.h"
4cff3ded
AW
21#include "arm_solutions/BaseSolution.h"
22#include "arm_solutions/CartesianSolution.h"
c41d6d95 23#include "arm_solutions/RotatableCartesianSolution.h"
4e04bcd3 24#include "arm_solutions/RostockSolution.h"
2c7ab192 25#include "arm_solutions/JohannKosselSolution.h"
bdaaa75d 26#include "arm_solutions/HBotSolution.h"
4cff3ded 27
43424972
JM
28#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
29#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
30#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
31#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
32#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
33#define arc_correction_checksum CHECKSUM("arc_correction")
34#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
35#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
36#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
37
38// arm solutions
39#define arm_solution_checksum CHECKSUM("arm_solution")
40#define cartesian_checksum CHECKSUM("cartesian")
41#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
42#define rostock_checksum CHECKSUM("rostock")
43#define delta_checksum CHECKSUM("delta")
44#define hbot_checksum CHECKSUM("hbot")
45#define corexy_checksum CHECKSUM("corexy")
46#define kossel_checksum CHECKSUM("kossel")
47
edac9072
AW
48// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
49// It takes care of cutting arcs into segments, same thing for line that are too long
41fd89e0 50#define max(a,b) (((a) > (b)) ? (a) : (b))
edac9072 51
4cff3ded 52Robot::Robot(){
a1b7e9f0 53 this->inch_mode = false;
0e8b102e 54 this->absolute_mode = true;
df27a6a3 55 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded
AW
56 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
57 clear_vector(this->current_position);
df27a6a3 58 clear_vector(this->last_milestone);
0b804a41 59 this->arm_solution = NULL;
7369629d 60 seconds_per_minute = 60.0;
4cff3ded
AW
61}
62
63//Called when the module has just been loaded
64void Robot::on_module_loaded() {
476dcb96 65 register_for_event(ON_CONFIG_RELOAD);
4cff3ded 66 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
67 this->register_for_event(ON_GET_PUBLIC_DATA);
68 this->register_for_event(ON_SET_PUBLIC_DATA);
4cff3ded
AW
69
70 // Configuration
da24d6ae 71 this->on_config_reload(this);
feb204be
AW
72
73 // Make our 3 StepperMotors
e4fe5194
MM
74 this->alpha_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&alpha_step_pin,&alpha_dir_pin,&alpha_en_pin) );
75 this->beta_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&beta_step_pin, &beta_dir_pin, &beta_en_pin ) );
76 this->gamma_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&gamma_step_pin,&gamma_dir_pin,&gamma_en_pin) );
feb204be 77
da24d6ae
AW
78}
79
80void Robot::on_config_reload(void* argument){
5984acdf 81
edac9072
AW
82 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
83 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
84 // To make adding those solution easier, they have their own, separate object.
5984acdf 85 // Here we read the config to find out which arm solution to use
0b804a41 86 if (this->arm_solution) delete this->arm_solution;
4e04bcd3 87 int solution_checksum = get_checksum(this->kernel->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 88 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 89 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
bdaaa75d
L
90 this->arm_solution = new HBotSolution(this->kernel->config);
91
92 }else if(solution_checksum == rostock_checksum) {
4a0c8e14 93 this->arm_solution = new RostockSolution(this->kernel->config);
73a4e3c0 94
2c7ab192
JM
95 }else if(solution_checksum == kossel_checksum) {
96 this->arm_solution = new JohannKosselSolution(this->kernel->config);
97
d149c730 98 }else if(solution_checksum == delta_checksum) {
4a0c8e14
JM
99 // place holder for now
100 this->arm_solution = new RostockSolution(this->kernel->config);
73a4e3c0 101
b73a756d
L
102 }else if(solution_checksum == rotatable_cartesian_checksum) {
103 this->arm_solution = new RotatableCartesianSolution(this->kernel->config);
104
d149c730 105 }else if(solution_checksum == cartesian_checksum) {
4a0c8e14 106 this->arm_solution = new CartesianSolution(this->kernel->config);
73a4e3c0 107
d149c730 108 }else{
4a0c8e14 109 this->arm_solution = new CartesianSolution(this->kernel->config);
d149c730 110 }
73a4e3c0 111
0b804a41
MM
112
113 this->feed_rate = this->kernel->config->value(default_feed_rate_checksum )->by_default(100 )->as_number() / 60;
114 this->seek_rate = this->kernel->config->value(default_seek_rate_checksum )->by_default(100 )->as_number() / 60;
4a0c8e14
JM
115 this->mm_per_line_segment = this->kernel->config->value(mm_per_line_segment_checksum )->by_default(0.0 )->as_number();
116 this->delta_segments_per_second = this->kernel->config->value(delta_segments_per_second_checksum )->by_default(0.0 )->as_number();
0b804a41
MM
117 this->mm_per_arc_segment = this->kernel->config->value(mm_per_arc_segment_checksum )->by_default(0.5 )->as_number();
118 this->arc_correction = this->kernel->config->value(arc_correction_checksum )->by_default(5 )->as_number();
119 this->max_speeds[X_AXIS] = this->kernel->config->value(x_axis_max_speed_checksum )->by_default(60000 )->as_number();
120 this->max_speeds[Y_AXIS] = this->kernel->config->value(y_axis_max_speed_checksum )->by_default(60000 )->as_number();
121 this->max_speeds[Z_AXIS] = this->kernel->config->value(z_axis_max_speed_checksum )->by_default(300 )->as_number();
e4fe5194
MM
122 this->alpha_step_pin.from_string( this->kernel->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
123 this->alpha_dir_pin.from_string( this->kernel->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
5984acdf 124 this->alpha_en_pin.from_string( this->kernel->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
e4fe5194
MM
125 this->beta_step_pin.from_string( this->kernel->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
126 this->gamma_step_pin.from_string( this->kernel->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
127 this->gamma_dir_pin.from_string( this->kernel->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
5984acdf 128 this->gamma_en_pin.from_string( this->kernel->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
e4fe5194 129 this->beta_dir_pin.from_string( this->kernel->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
5984acdf 130 this->beta_en_pin.from_string( this->kernel->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
feb204be 131
4cff3ded
AW
132}
133
5647f709 134void Robot::on_get_public_data(void* argument){
b55cfff1
JM
135 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
136
137 if(!pdr->starts_with(robot_checksum)) return;
138
139 if(pdr->second_element_is(speed_override_percent_checksum)) {
58d6d841
JM
140 static double return_data;
141 return_data= 100*this->seconds_per_minute/60;
b55cfff1
JM
142 pdr->set_data_ptr(&return_data);
143 pdr->set_taken();
98761c28 144
b55cfff1
JM
145 }else if(pdr->second_element_is(current_position_checksum)) {
146 static double return_data[3];
147 return_data[0]= from_millimeters(this->current_position[0]);
148 return_data[1]= from_millimeters(this->current_position[1]);
149 return_data[2]= from_millimeters(this->current_position[2]);
150
151 pdr->set_data_ptr(&return_data);
98761c28 152 pdr->set_taken();
b55cfff1 153 }
5647f709
JM
154}
155
156void Robot::on_set_public_data(void* argument){
b55cfff1 157 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
5647f709 158
b55cfff1 159 if(!pdr->starts_with(robot_checksum)) return;
5647f709 160
b55cfff1 161 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 162 // NOTE do not use this while printing!
b55cfff1 163 double t= *static_cast<double*>(pdr->get_data_ptr());
98761c28
JM
164 // enforce minimum 10% speed
165 if (t < 10.0) t= 10.0;
166
35089dc7 167 this->seconds_per_minute= t * 0.6;
b55cfff1
JM
168 pdr->set_taken();
169 }
5647f709
JM
170}
171
4cff3ded 172//A GCode has been received
edac9072 173//See if the current Gcode line has some orders for us
4cff3ded
AW
174void Robot::on_gcode_received(void * argument){
175 Gcode* gcode = static_cast<Gcode*>(argument);
6bc4a00a 176
4cff3ded
AW
177 //Temp variables, constant properties are stored in the object
178 uint8_t next_action = NEXT_ACTION_DEFAULT;
23c90ba6 179 this->motion_mode = -1;
4cff3ded
AW
180
181 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
3c4f2dd8
AW
182 if( gcode->has_g){
183 switch( gcode->g ){
74b6303c
DD
184 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
185 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
186 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
187 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
188 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
189 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
190 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
191 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
192 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
193 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
194 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 195 case 92: {
6bc4a00a 196 if(gcode->get_num_args() == 0){
8a23b271 197 clear_vector(this->last_milestone);
6bc4a00a 198 }else{
eaf8a8a8
BG
199 for (char letter = 'X'; letter <= 'Z'; letter++){
200 if ( gcode->has_letter(letter) )
6bc4a00a 201 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
eaf8a8a8 202 }
6bc4a00a
MM
203 }
204 memcpy(this->current_position, this->last_milestone, sizeof(double)*3); // current_position[] = last_milestone[];
205 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
74b6303c 206 gcode->mark_as_taken();
6bc4a00a
MM
207 return; // TODO: Wait until queue empty
208 }
209 }
3c4f2dd8 210 }else if( gcode->has_m){
33e4cc02
JM
211 double steps[3];
212 switch( gcode->m ){
0fb5b438 213 case 92: // M92 - set steps per mm
0fb5b438
MM
214 this->arm_solution->get_steps_per_millimeter(steps);
215 if (gcode->has_letter('X'))
216 steps[0] = this->to_millimeters(gcode->get_value('X'));
217 if (gcode->has_letter('Y'))
218 steps[1] = this->to_millimeters(gcode->get_value('Y'));
219 if (gcode->has_letter('Z'))
220 steps[2] = this->to_millimeters(gcode->get_value('Z'));
7369629d
MM
221 if (gcode->has_letter('F'))
222 seconds_per_minute = gcode->get_value('F');
0fb5b438
MM
223 this->arm_solution->set_steps_per_millimeter(steps);
224 // update current position in steps
225 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
7369629d 226 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", steps[0], steps[1], steps[2], seconds_per_minute);
0fb5b438 227 gcode->add_nl = true;
74b6303c 228 gcode->mark_as_taken();
0fb5b438 229 return;
58d6d841 230 case 114: gcode->stream->printf("C: X:%1.3f Y:%1.3f Z:%1.3f ",
bce9410e
MM
231 from_millimeters(this->current_position[0]),
232 from_millimeters(this->current_position[1]),
233 from_millimeters(this->current_position[2]));
6989211c 234 gcode->add_nl = true;
74b6303c 235 gcode->mark_as_taken();
6989211c 236 return;
33e4cc02 237
494dc541 238 // TODO I'm not sure if the following is safe to do here, or should it go on the block queue?
db25216d
JM
239 // case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
240 // gcode->mark_as_taken();
241 // if (gcode->has_letter('S'))
242 // {
2fdabb48 243 // double acc= gcode->get_value('S') * 60 * 60; // mm/min^2
db25216d
JM
244 // // enforce minimum
245 // if (acc < 1.0)
246 // acc = 1.0;
247 // this->kernel->planner->acceleration= acc;
248 // }
249 // break;
98761c28 250
7369629d 251 case 220: // M220 - speed override percentage
74b6303c 252 gcode->mark_as_taken();
7369629d
MM
253 if (gcode->has_letter('S'))
254 {
255 double factor = gcode->get_value('S');
98761c28
JM
256 // enforce minimum 10% speed
257 if (factor < 10.0)
258 factor = 10.0;
7369629d
MM
259 seconds_per_minute = factor * 0.6;
260 }
b4f56013 261 break;
ec4773e5 262
494dc541
JM
263 case 400: // wait until all moves are done up to this point
264 gcode->mark_as_taken();
265 this->kernel->conveyor->wait_for_empty_queue();
266 break;
267
33e4cc02
JM
268 case 500: // M500 saves some volatile settings to config override file
269 case 503: // M503 just prints the settings
270 this->arm_solution->get_steps_per_millimeter(steps);
271 gcode->stream->printf(";Steps per unit:\nM92 X%1.4f Y%1.4f Z%1.4f\n", steps[0], steps[1], steps[2]);
272 gcode->mark_as_taken();
273 break;
274
ec4773e5
JM
275 case 665: // M665 set optional arm solution variables based on arm solution
276 gcode->mark_as_taken();
277 // the parameter args could be any letter so try each one
278 for(char c='A';c<='Z';c++) {
279 double v;
280 bool supported= arm_solution->get_optional(c, &v); // retrieve current value if supported
281
282 if(supported && gcode->has_letter(c)) { // set new value if supported
283 v= gcode->get_value(c);
284 arm_solution->set_optional(c, v);
285 }
286 if(supported) { // print all current values of supported options
5523c05d
JM
287 gcode->stream->printf("%c %8.3f ", c, v);
288 gcode->add_nl = true;
ec4773e5
JM
289 }
290 }
291 break;
292
6989211c 293 }
494dc541
JM
294 }
295
c83887ea
MM
296 if( this->motion_mode < 0)
297 return;
6bc4a00a 298
4cff3ded
AW
299 //Get parameters
300 double target[3], offset[3];
df27a6a3 301 clear_vector(target); clear_vector(offset);
6bc4a00a 302
4cff3ded 303 memcpy(target, this->current_position, sizeof(target)); //default to last target
6bc4a00a 304
df27a6a3 305 for(char letter = 'I'; letter <= 'K'; letter++){ if( gcode->has_letter(letter) ){ offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter)); } }
a63da33c 306 for(char letter = 'X'; letter <= 'Z'; letter++){ if( gcode->has_letter(letter) ){ target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']); } }
6bc4a00a 307
7369629d
MM
308 if( gcode->has_letter('F') )
309 {
310 if( this->motion_mode == MOTION_MODE_SEEK )
311 this->seek_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
312 else
313 this->feed_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
314 }
6bc4a00a 315
4cff3ded
AW
316 //Perform any physical actions
317 switch( next_action ){
318 case NEXT_ACTION_DEFAULT:
319 switch(this->motion_mode){
320 case MOTION_MODE_CANCEL: break;
436a2cd1
AW
321 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate ); break;
322 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate ); break;
df27a6a3 323 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded
AW
324 }
325 break;
326 }
13e4a3f9 327
4cff3ded
AW
328 // As far as the parser is concerned, the position is now == target. In reality the
329 // motion control system might still be processing the action and the real tool position
330 // in any intermediate location.
df27a6a3 331 memcpy(this->current_position, target, sizeof(double)*3); // this->position[] = target[];
4cff3ded 332
edac9072
AW
333}
334
5984acdf 335// We received a new gcode, and one of the functions
edac9072
AW
336// determined the distance for that given gcode. So now we can attach this gcode to the right block
337// and continue
338void Robot::distance_in_gcode_is_known(Gcode* gcode){
339
340 //If the queue is empty, execute immediatly, otherwise attach to the last added block
341 if( this->kernel->conveyor->queue.size() == 0 ){
342 this->kernel->call_event(ON_GCODE_EXECUTE, gcode );
343 }else{
344 Block* block = this->kernel->conveyor->queue.get_ref( this->kernel->conveyor->queue.size() - 1 );
345 block->append_gcode(gcode);
346 }
347
348}
349
350// Reset the position for all axes ( used in homing and G92 stuff )
351void Robot::reset_axis_position(double position, int axis) {
352 this->last_milestone[axis] = this->current_position[axis] = position;
353 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
4cff3ded
AW
354}
355
edac9072 356
4cff3ded
AW
357// Convert target from millimeters to steps, and append this to the planner
358void Robot::append_milestone( double target[], double rate ){
359 int steps[3]; //Holds the result of the conversion
6bc4a00a 360
edac9072 361 // We use an arm solution object so exotic arm solutions can be used and neatly abstracted
4cff3ded 362 this->arm_solution->millimeters_to_steps( target, steps );
6bc4a00a 363
aab6cbba
AW
364 double deltas[3];
365 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){deltas[axis]=target[axis]-this->last_milestone[axis];}
366
edac9072 367 // Compute how long this move moves, so we can attach it to the block for later use
df27a6a3 368 double millimeters_of_travel = sqrt( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
7b470506 369
edac9072 370 // Do not move faster than the configured limits
7b470506 371 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){
df27a6a3 372 if( this->max_speeds[axis] > 0 ){
7369629d 373 double axis_speed = ( fabs(deltas[axis]) / ( millimeters_of_travel / rate )) * seconds_per_minute;
df27a6a3
MM
374 if( axis_speed > this->max_speeds[axis] ){
375 rate = rate * ( this->max_speeds[axis] / axis_speed );
436a2cd1 376 }
7b470506
AW
377 }
378 }
4cff3ded 379
edac9072 380 // Append the block to the planner
7369629d 381 this->kernel->planner->append_block( steps, rate * seconds_per_minute, millimeters_of_travel, deltas );
4cff3ded 382
edac9072 383 // Update the last_milestone to the current target for the next time we use last_milestone
df27a6a3 384 memcpy(this->last_milestone, target, sizeof(double)*3); // this->last_milestone[] = target[];
4cff3ded
AW
385
386}
387
edac9072 388// Append a move to the queue ( cutting it into segments if needed )
436a2cd1 389void Robot::append_line(Gcode* gcode, double target[], double rate ){
4cff3ded 390
edac9072 391 // Find out the distance for this gcode
df27a6a3 392 gcode->millimeters_of_travel = sqrt( pow( target[X_AXIS]-this->current_position[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->current_position[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->current_position[Z_AXIS], 2 ) );
4cff3ded 393
edac9072 394 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
5dcb2ff3 395 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
436a2cd1 396
edac9072 397 // Mark the gcode as having a known distance
5dcb2ff3 398 this->distance_in_gcode_is_known( gcode );
436a2cd1 399
4a0c8e14
JM
400 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
401 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
402 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 403 uint16_t segments;
5984acdf 404
4a0c8e14
JM
405 if(this->delta_segments_per_second > 1.0) {
406 // enabled if set to something > 1, it is set to 0.0 by default
407 // segment based on current speed and requested segments per second
408 // the faster the travel speed the fewer segments needed
409 // NOTE rate is mm/sec and we take into account any speed override
410 float seconds = 60.0/seconds_per_minute * gcode->millimeters_of_travel / rate;
411 segments= max(1, ceil(this->delta_segments_per_second * seconds));
412 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 413
4a0c8e14
JM
414 }else{
415 if(this->mm_per_line_segment == 0.0){
416 segments= 1; // don't split it up
417 }else{
418 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
419 }
420 }
5984acdf 421
4cff3ded
AW
422 // A vector to keep track of the endpoint of each segment
423 double temp_target[3];
424 //Initialize axes
df27a6a3 425 memcpy( temp_target, this->current_position, sizeof(double)*3); // temp_target[] = this->current_position[];
4cff3ded
AW
426
427 //For each segment
428 for( int i=0; i<segments-1; i++ ){
df27a6a3 429 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ ){ temp_target[axis] += ( target[axis]-this->current_position[axis] )/segments; }
5984acdf 430 // Append the end of this segment to the queue
df27a6a3 431 this->append_milestone(temp_target, rate);
4cff3ded 432 }
5984acdf
MM
433
434 // Append the end of this full move to the queue
4cff3ded
AW
435 this->append_milestone(target, rate);
436}
437
4cff3ded 438
edac9072 439// Append an arc to the queue ( cutting it into segments as needed )
436a2cd1 440void Robot::append_arc(Gcode* gcode, double target[], double offset[], double radius, bool is_clockwise ){
aab6cbba 441
edac9072 442 // Scary math
aab6cbba
AW
443 double center_axis0 = this->current_position[this->plane_axis_0] + offset[this->plane_axis_0];
444 double center_axis1 = this->current_position[this->plane_axis_1] + offset[this->plane_axis_1];
445 double linear_travel = target[this->plane_axis_2] - this->current_position[this->plane_axis_2];
446 double r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
447 double r_axis1 = -offset[this->plane_axis_1];
448 double rt_axis0 = target[this->plane_axis_0] - center_axis0;
449 double rt_axis1 = target[this->plane_axis_1] - center_axis1;
450
451 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
452 double angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
453 if (angular_travel < 0) { angular_travel += 2*M_PI; }
454 if (is_clockwise) { angular_travel -= 2*M_PI; }
455
edac9072 456 // Find the distance for this gcode
436a2cd1
AW
457 gcode->millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
458
edac9072 459 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
5dcb2ff3
AW
460 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
461
edac9072 462 // Mark the gcode as having a known distance
d149c730 463 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
464
465 // Figure out how many segments for this gcode
436a2cd1 466 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
aab6cbba
AW
467
468 double theta_per_segment = angular_travel/segments;
469 double linear_per_segment = linear_travel/segments;
470
471 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
472 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
473 r_T = [cos(phi) -sin(phi);
474 sin(phi) cos(phi] * r ;
475 For arc generation, the center of the circle is the axis of rotation and the radius vector is
476 defined from the circle center to the initial position. Each line segment is formed by successive
477 vector rotations. This requires only two cos() and sin() computations to form the rotation
478 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
479 all double numbers are single precision on the Arduino. (True double precision will not have
480 round off issues for CNC applications.) Single precision error can accumulate to be greater than
481 tool precision in some cases. Therefore, arc path correction is implemented.
482
483 Small angle approximation may be used to reduce computation overhead further. This approximation
484 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
485 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
486 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
487 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
488 issue for CNC machines with the single precision Arduino calculations.
489 This approximation also allows mc_arc to immediately insert a line segment into the planner
490 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
491 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
492 This is important when there are successive arc motions.
493 */
494 // Vector rotation matrix values
495 double cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
496 double sin_T = theta_per_segment;
497
498 double arc_target[3];
499 double sin_Ti;
500 double cos_Ti;
501 double r_axisi;
502 uint16_t i;
503 int8_t count = 0;
504
505 // Initialize the linear axis
506 arc_target[this->plane_axis_2] = this->current_position[this->plane_axis_2];
507
508 for (i = 1; i<segments; i++) { // Increment (segments-1)
509
b66fb830 510 if (count < this->arc_correction ) {
aab6cbba
AW
511 // Apply vector rotation matrix
512 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
513 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
514 r_axis1 = r_axisi;
515 count++;
516 } else {
517 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
518 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
519 cos_Ti = cos(i*theta_per_segment);
520 sin_Ti = sin(i*theta_per_segment);
521 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
522 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
523 count = 0;
524 }
525
526 // Update arc_target location
527 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
528 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
529 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
530
531 // Append this segment to the queue
aab6cbba
AW
532 this->append_milestone(arc_target, this->feed_rate);
533
534 }
edac9072 535
aab6cbba
AW
536 // Ensure last segment arrives at target location.
537 this->append_milestone(target, this->feed_rate);
538}
539
edac9072 540// Do the math for an arc and add it to the queue
436a2cd1 541void Robot::compute_arc(Gcode* gcode, double offset[], double target[]){
aab6cbba
AW
542
543 // Find the radius
544 double radius = hypot(offset[this->plane_axis_0], offset[this->plane_axis_1]);
545
546 // Set clockwise/counter-clockwise sign for mc_arc computations
547 bool is_clockwise = false;
df27a6a3 548 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
aab6cbba
AW
549
550 // Append arc
436a2cd1 551 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
552
553}
554
555
4cff3ded
AW
556double Robot::theta(double x, double y){
557 double t = atan(x/fabs(y));
558 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
559}
560
561void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
562 this->plane_axis_0 = axis_0;
563 this->plane_axis_1 = axis_1;
564 this->plane_axis_2 = axis_2;
565}
566
567