biggish Block queue reshuffle, Planner::recalculate() still has off-by-one errors
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
CommitLineData
df27a6a3 1/*
5886a464 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8using namespace std;
9#include <vector>
4dc5513d
MM
10
11#include "mri.h"
12#include "nuts_bolts.h"
13#include "RingBuffer.h"
14#include "Gcode.h"
15#include "Module.h"
16#include "Kernel.h"
4cff3ded
AW
17#include "Block.h"
18#include "Planner.h"
3fceb8eb 19#include "Conveyor.h"
b66fb830 20
8b69c90d
JM
21#define acceleration_checksum CHECKSUM("acceleration")
22#define max_jerk_checksum CHECKSUM("max_jerk")
23#define junction_deviation_checksum CHECKSUM("junction_deviation")
24#define minimum_planner_speed_checksum CHECKSUM("minimum_planner_speed")
25
edac9072
AW
26// The Planner does the acceleration math for the queue of Blocks ( movements ).
27// It makes sure the speed stays within the configured constraints ( acceleration, junction_deviation, etc )
28// It goes over the list in both direction, every time a block is added, re-doing the math to make sure everything is optimal
4cff3ded
AW
29
30Planner::Planner(){
aab6cbba 31 clear_vector(this->position);
1cf31736 32 clear_vector_float(this->previous_unit_vec);
aab6cbba 33 this->previous_nominal_speed = 0.0;
4cff3ded
AW
34 this->has_deleted_block = false;
35}
36
37void Planner::on_module_loaded(){
476dcb96 38 register_for_event(ON_CONFIG_RELOAD);
da24d6ae
AW
39 this->on_config_reload(this);
40}
41
edac9072 42// Configure acceleration
da24d6ae 43void Planner::on_config_reload(void* argument){
1ad23cd3
MM
44 this->acceleration = THEKERNEL->config->value(acceleration_checksum )->by_default(100 )->as_number() * 60 * 60; // Acceleration is in mm/minute^2, see https://github.com/grbl/grbl/commit/9141ad282540eaa50a41283685f901f29c24ddbd#planner.c
45 this->junction_deviation = THEKERNEL->config->value(junction_deviation_checksum )->by_default(0.05f)->as_number();
8b69c90d 46 this->minimum_planner_speed = THEKERNEL->config->value(minimum_planner_speed_checksum )->by_default(0.0f)->as_number();
4cff3ded
AW
47}
48
da24d6ae 49
4cff3ded 50// Append a block to the queue, compute it's speed factors
1ad23cd3 51void Planner::append_block( int target[], float feed_rate, float distance, float deltas[] ){
3add9a23 52
aab6cbba 53 // Stall here if the queue is ful
314ab8f7 54 THEKERNEL->conveyor->wait_for_queue(2);
a2cd92c0 55
edac9072 56 // Create ( recycle ) a new block
2134bcf2 57 Block* block = THEKERNEL->conveyor->queue.head_ref();
aab6cbba
AW
58
59 // Direction bits
df27a6a3
MM
60 block->direction_bits = 0;
61 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
62 if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<stepper); }
aab6cbba 63 }
1cf31736 64
4cff3ded 65 // Number of steps for each stepper
df27a6a3 66 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
1cf31736 67
4cff3ded
AW
68 // Max number of steps, for all axes
69 block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
70
4cff3ded 71 block->millimeters = distance;
1cf31736 72 float inverse_millimeters = 0.0F;
95b4885b 73 if( distance > 0 ){ inverse_millimeters = 1.0F/distance; }
aab6cbba
AW
74
75 // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
76 // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
1ad23cd3 77 float inverse_minute = feed_rate * inverse_millimeters;
df27a6a3 78 if( distance > 0 ){
436a2cd1
AW
79 block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
80 block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
81 }else{
82 block->nominal_speed = 0;
83 block->nominal_rate = 0;
84 }
aab6cbba 85
4cff3ded
AW
86 // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
87 // average travel per step event changes. For a line along one axis the travel per step event
88 // is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
89 // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
90 // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
91 // specifically for each line to compensate for this phenomenon:
aab6cbba 92 // Convert universal acceleration for direction-dependent stepper rate change parameter
314ab8f7 93 block->rate_delta = (float)( ( block->steps_event_count*inverse_millimeters * this->acceleration ) / ( THEKERNEL->stepper->acceleration_ticks_per_second * 60 ) ); // (step/min/acceleration_tick)
4464301d 94
aab6cbba 95 // Compute path unit vector
1ad23cd3 96 float unit_vec[3];
aab6cbba
AW
97 unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
98 unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
99 unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
1cf31736 100
aab6cbba
AW
101 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
102 // Let a circle be tangent to both previous and current path line segments, where the junction
103 // deviation is defined as the distance from the junction to the closest edge of the circle,
104 // colinear with the circle center. The circular segment joining the two paths represents the
105 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
106 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
107 // path width or max_jerk in the previous grbl version. This approach does not actually deviate
108 // from path, but used as a robust way to compute cornering speeds, as it takes into account the
109 // nonlinearities of both the junction angle and junction velocity.
8b69c90d 110 float vmax_junction = minimum_planner_speed; // Set default max junction speed
aab6cbba 111
c501670b 112 if ((THEKERNEL->conveyor->queue.is_empty() == false) && (this->previous_nominal_speed > 0.0F)) {
aab6cbba
AW
113 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
114 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
1ad23cd3 115 float cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
aab6cbba
AW
116 - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
117 - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
1cf31736 118
aab6cbba 119 // Skip and use default max junction speed for 0 degree acute junction.
95b4885b 120 if (cos_theta < 0.95F) {
aab6cbba
AW
121 vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
122 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
95b4885b 123 if (cos_theta > -0.95F) {
aab6cbba 124 // Compute maximum junction velocity based on maximum acceleration and junction deviation
95b4885b 125 float sin_theta_d2 = sqrtf(0.5F*(1.0F-cos_theta)); // Trig half angle identity. Always positive.
aab6cbba 126 vmax_junction = min(vmax_junction,
95b4885b 127 sqrtf(this->acceleration * this->junction_deviation * sin_theta_d2/(1.0F-sin_theta_d2)) );
aab6cbba
AW
128 }
129 }
4cff3ded 130 }
aab6cbba 131 block->max_entry_speed = vmax_junction;
1cf31736 132
8b69c90d
JM
133 // Initialize block entry speed. Compute based on deceleration to user-defined minimum_planner_speed.
134 float v_allowable = this->max_allowable_speed(-this->acceleration,minimum_planner_speed,block->millimeters); //TODO: Get from config
aab6cbba
AW
135 block->entry_speed = min(vmax_junction, v_allowable);
136
137 // Initialize planner efficiency flags
138 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
139 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
140 // the current block and next block junction speeds are guaranteed to always be at their maximum
141 // junction speeds in deceleration and acceleration, respectively. This is due to how the current
142 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
143 // the reverse and forward planners, the corresponding block junction speed will always be at the
144 // the maximum junction speed and may always be ignored for any speed reduction checks.
145 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
146 else { block->nominal_length_flag = false; }
2134bcf2
MM
147
148 // Always calculate trapezoid for new block
149 block->recalculate_flag = true;
1cf31736 150
aab6cbba
AW
151 // Update previous path unit_vector and nominal speed
152 memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
153 this->previous_nominal_speed = block->nominal_speed;
1cf31736 154
2bb8b390 155 // Update current position
4cff3ded 156 memcpy(this->position, target, sizeof(int)*3);
2bb8b390 157
df27a6a3 158 // Math-heavy re-computing of the whole queue to take the new
4cff3ded 159 this->recalculate();
1cf31736 160
df27a6a3 161 // The block can now be used
3a4fa0c1 162 block->ready();
2134bcf2
MM
163
164 THEKERNEL->conveyor->queue_head_block();
4cff3ded
AW
165}
166
167
168// Recalculates the motion plan according to the following algorithm:
169//
170// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
171// so that:
172// a. The junction jerk is within the set limit
173// b. No speed reduction within one block requires faster deceleration than the one, true constant
174// acceleration.
175// 2. Go over every block in chronological order and dial down junction speed reduction values if
176// a. The speed increase within one block would require faster accelleration than the one, true
177// constant acceleration.
178//
179// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
180// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
181// the set limit. Finally it will:
182//
183// 3. Recalculate trapezoids for all blocks.
184//
185void Planner::recalculate() {
c501670b 186 Conveyor::Queue_t *queue = &THEKERNEL->conveyor->queue;
4dc5513d 187
2134bcf2 188 unsigned int newest = queue->head_i; // head has been previously prepared in append_block above
c501670b 189 unsigned int oldest = queue->tail_i;
4dc5513d 190
c501670b 191 unsigned int block_index = newest;
4cff3ded 192
391bc610
MM
193 Block* previous;
194 Block* current;
195 Block* next;
ded56b35 196
c501670b 197 current = queue->item_ref(block_index);
4dc5513d
MM
198
199 // if there's only one block in the queue, we fall through both while loops and this ends up in current
200 // so we must set it here, or perform conditionals further down. this is easier
e2afb7d9 201 next = current;
4cff3ded 202
4dc5513d 203 while ((block_index != oldest) && (current->recalculate_flag))
391bc610 204 {
391bc610 205 next = current;
2134bcf2 206 block_index = queue->prev(block_index);
c501670b 207 current = queue->item_ref(block_index);
391bc610 208
4eb5fce1 209 current->reverse_pass(next);
391bc610
MM
210 }
211
2cad47fa 212 previous = current;
2134bcf2
MM
213 block_index = queue->next(block_index);
214 current = queue->item_ref(block_index);
391bc610 215
2134bcf2
MM
216 previous->calculate_trapezoid( previous->entry_speed/previous->nominal_speed, current->entry_speed/previous->nominal_speed );
217
391bc610
MM
218 // Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
219 // entry_speed for each junction and the entry_speed of the next junction. Must be called by
220 // planner_recalculate() after updating the blocks. Any recalulate flagged junction will
221 // compute the two adjacent trapezoids to the junction, since the junction speed corresponds
222 // to exit speed and entry speed of one another.
2134bcf2 223 do
391bc610 224 {
4eb5fce1 225 current->forward_pass(previous);
391bc610 226
2134bcf2 227 if (block_index != newest)
391bc610 228 {
2134bcf2 229 current->calculate_trapezoid( previous->entry_speed/previous->nominal_speed, current->entry_speed/previous->nominal_speed );
391bc610 230
2134bcf2
MM
231 previous = current;
232 block_index = queue->next(block_index);
233 current = queue->item_ref(block_index);
234 }
235 } while (block_index != newest);
13e4a3f9 236
8b69c90d
JM
237 // Last/newest block in buffer. Exit speed is set with minimum_planner_speed. Always recalculated.
238 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, minimum_planner_speed/current->nominal_speed );
2134bcf2
MM
239
240 THEKERNEL->serial->printf("Queue: (head:%u tail:%u)\n", queue->head_i, queue->tail_i);
241 dump_queue();
13e4a3f9 242}
4cff3ded
AW
243
244// Debug function
c501670b
MM
245void Planner::dump_queue()
246{
2134bcf2 247 for (unsigned int index = THEKERNEL->conveyor->queue.tail_i, i = 0; true; index = THEKERNEL->conveyor->queue.next(index), i++ )
c501670b 248 {
c501670b
MM
249 THEKERNEL->streams->printf("block %03d > ", i);
250 THEKERNEL->conveyor->queue.item_ref(index)->debug();
2134bcf2
MM
251
252 if (index == THEKERNEL->conveyor->queue.head_i)
253 break;
4cff3ded
AW
254 }
255}
aab6cbba 256
aab6cbba
AW
257// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
258// acceleration within the allotted distance.
1ad23cd3 259float Planner::max_allowable_speed(float acceleration, float target_velocity, float distance) {
aab6cbba 260 return(
95b4885b 261 sqrtf(target_velocity*target_velocity-2.0F*acceleration*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
aab6cbba
AW
262 );
263}
264
265