*** empty log message ***
[bpt/guile.git] / libguile / numbers.c
... / ...
CommitLineData
1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22\f
23/* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
28 * All objects satisfying SCM_FRACTIONP are never an integer.
29 */
30
31/* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
42
43/* tell glibc (2.3) to give prototype for C99 trunc() */
44#define _GNU_SOURCE
45
46#if HAVE_CONFIG_H
47# include <config.h>
48#endif
49
50#include <math.h>
51#include <ctype.h>
52#include <string.h>
53#include <gmp.h>
54
55#include "libguile/_scm.h"
56#include "libguile/feature.h"
57#include "libguile/ports.h"
58#include "libguile/root.h"
59#include "libguile/smob.h"
60#include "libguile/strings.h"
61
62#include "libguile/validate.h"
63#include "libguile/numbers.h"
64#include "libguile/deprecation.h"
65
66#include "libguile/eq.h"
67
68\f
69
70/*
71 Wonder if this might be faster for some of our code? A switch on
72 the numtag would jump directly to the right case, and the
73 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
74
75 #define SCM_I_NUMTAG_NOTNUM 0
76 #define SCM_I_NUMTAG_INUM 1
77 #define SCM_I_NUMTAG_BIG scm_tc16_big
78 #define SCM_I_NUMTAG_REAL scm_tc16_real
79 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
80 #define SCM_I_NUMTAG(x) \
81 (SCM_INUMP(x) ? SCM_I_NUMTAG_INUM \
82 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
83 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
84 : SCM_I_NUMTAG_NOTNUM)))
85*/
86/* the macro above will not work as is with fractions */
87
88
89#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
90
91/* FLOBUFLEN is the maximum number of characters neccessary for the
92 * printed or scm_string representation of an inexact number.
93 */
94#define FLOBUFLEN (10+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
95
96#if defined (SCO)
97#if ! defined (HAVE_ISNAN)
98#define HAVE_ISNAN
99static int
100isnan (double x)
101{
102 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
103}
104#endif
105#if ! defined (HAVE_ISINF)
106#define HAVE_ISINF
107static int
108isinf (double x)
109{
110 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
111}
112
113#endif
114#endif
115
116
117/* mpz_cmp_d only recognises infinities in gmp 4.2 and up.
118 For prior versions use an explicit check here. */
119#if __GNU_MP_VERSION < 4 \
120 || (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
121#define xmpz_cmp_d(z, d) \
122 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
123#else
124#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
125#endif
126
127/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
128 isinf. It does have finite and isnan though, hence the use of those.
129 fpclass would be a possibility on that system too. */
130static int
131xisinf (double x)
132{
133#if defined (HAVE_ISINF)
134 return isinf (x);
135#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
136 return (! (finite (x) || isnan (x)));
137#else
138 return 0;
139#endif
140}
141
142static int
143xisnan (double x)
144{
145#if defined (HAVE_ISNAN)
146 return isnan (x);
147#else
148 return 0;
149#endif
150}
151
152\f
153
154static mpz_t z_negative_one;
155
156\f
157
158SCM_C_INLINE_KEYWORD SCM
159scm_i_mkbig ()
160{
161 /* Return a newly created bignum. */
162 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
163 mpz_init (SCM_I_BIG_MPZ (z));
164 return z;
165}
166
167SCM_C_INLINE_KEYWORD static SCM
168scm_i_clonebig (SCM src_big, int same_sign_p)
169{
170 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
171 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
172 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
173 if (!same_sign_p)
174 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
175 return z;
176}
177
178SCM_C_INLINE_KEYWORD int
179scm_i_bigcmp (SCM x, SCM y)
180{
181 /* Return neg if x < y, pos if x > y, and 0 if x == y */
182 /* presume we already know x and y are bignums */
183 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
184 scm_remember_upto_here_2 (x, y);
185 return result;
186}
187
188SCM_C_INLINE_KEYWORD SCM
189scm_i_dbl2big (double d)
190{
191 /* results are only defined if d is an integer */
192 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
193 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
194 return z;
195}
196
197/* Convert a integer in double representation to a SCM number. */
198
199SCM_C_INLINE_KEYWORD SCM
200scm_i_dbl2num (double u)
201{
202 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
203 powers of 2, so there's no rounding when making "double" values
204 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
205 get rounded on a 64-bit machine, hence the "+1".
206
207 The use of floor() to force to an integer value ensures we get a
208 "numerically closest" value without depending on how a
209 double->long cast or how mpz_set_d will round. For reference,
210 double->long probably follows the hardware rounding mode,
211 mpz_set_d truncates towards zero. */
212
213 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
214 representable as a double? */
215
216 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
217 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
218 return SCM_MAKINUM ((long) u);
219 else
220 return scm_i_dbl2big (u);
221}
222
223/* scm_i_big2dbl() rounds to the closest representable double, in accordance
224 with R5RS exact->inexact.
225
226 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
227 (ie. it truncates towards zero), then adjust to get the closest double by
228 examining the next lower bit and adding 1 if necessary.
229
230 Note that bignums exactly half way between representable doubles are
231 rounded to the next higher absolute value (ie. away from zero). This
232 seems like an adequate interpretation of R5RS "numerically closest", and
233 it's easier and faster than a full "nearest-even" style.
234
235 The bit test is done on the absolute value of the mpz_t, which means we
236 must use mpz_getlimbn. mpz_tstbit is not right, it treats negatives as
237 twos complement.
238
239 Prior to GMP 4.2, the rounding done by mpz_get_d was unspecified. It
240 happened to follow the hardware rounding mode, but on the absolute value
241 of its operand. This is not what we want, so we put the high
242 DBL_MANT_DIG bits into a temporary. This extra init/clear is a slowdown,
243 but doesn't matter too much since it's only for older GMP. */
244
245double
246scm_i_big2dbl (SCM b)
247{
248 double result;
249 size_t bits;
250
251 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
252
253#if __GNU_MP_VERSION < 4 \
254 || (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
255 {
256 /* GMP prior to 4.2, force truncate towards zero */
257 mpz_t tmp;
258 if (bits > DBL_MANT_DIG)
259 {
260 size_t shift = bits - DBL_MANT_DIG;
261 mpz_init2 (tmp, DBL_MANT_DIG);
262 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
263 result = ldexp (mpz_get_d (tmp), shift);
264 mpz_clear (tmp);
265 }
266 else
267 {
268 result = mpz_get_d (SCM_I_BIG_MPZ (b));
269 }
270 }
271#else
272 /* GMP 4.2 and up */
273 result = mpz_get_d (SCM_I_BIG_MPZ (b));
274#endif
275
276 if (bits > DBL_MANT_DIG)
277 {
278 unsigned long pos = bits - DBL_MANT_DIG - 1;
279 /* test bit number "pos" in absolute value */
280 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
281 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
282 {
283 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
284 }
285 }
286
287 scm_remember_upto_here_1 (b);
288 return result;
289}
290
291SCM_C_INLINE_KEYWORD SCM
292scm_i_normbig (SCM b)
293{
294 /* convert a big back to a fixnum if it'll fit */
295 /* presume b is a bignum */
296 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
297 {
298 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
299 if (SCM_FIXABLE (val))
300 b = SCM_MAKINUM (val);
301 }
302 return b;
303}
304
305static SCM_C_INLINE_KEYWORD SCM
306scm_i_mpz2num (mpz_t b)
307{
308 /* convert a mpz number to a SCM number. */
309 if (mpz_fits_slong_p (b))
310 {
311 long val = mpz_get_si (b);
312 if (SCM_FIXABLE (val))
313 return SCM_MAKINUM (val);
314 }
315
316 {
317 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
318 mpz_init_set (SCM_I_BIG_MPZ (z), b);
319 return z;
320 }
321}
322
323/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
324static SCM scm_divide2real (SCM x, SCM y);
325
326SCM
327scm_make_ratio (SCM numerator, SCM denominator)
328#define FUNC_NAME "make-ratio"
329{
330 /* First make sure the arguments are proper.
331 */
332 if (SCM_INUMP (denominator))
333 {
334 if (SCM_EQ_P (denominator, SCM_INUM0))
335 scm_num_overflow ("make-ratio");
336 if (SCM_EQ_P (denominator, SCM_MAKINUM(1)))
337 return numerator;
338 }
339 else
340 {
341 if (!(SCM_BIGP(denominator)))
342 SCM_WRONG_TYPE_ARG (2, denominator);
343 }
344 if (!SCM_INUMP (numerator) && !SCM_BIGP (numerator))
345 SCM_WRONG_TYPE_ARG (1, numerator);
346
347 /* Then flip signs so that the denominator is positive.
348 */
349 if (SCM_NFALSEP (scm_negative_p (denominator)))
350 {
351 numerator = scm_difference (numerator, SCM_UNDEFINED);
352 denominator = scm_difference (denominator, SCM_UNDEFINED);
353 }
354
355 /* Now consider for each of the four fixnum/bignum combinations
356 whether the rational number is really an integer.
357 */
358 if (SCM_INUMP (numerator))
359 {
360 long x = SCM_INUM (numerator);
361 if (SCM_EQ_P (numerator, SCM_INUM0))
362 return SCM_INUM0;
363 if (SCM_INUMP (denominator))
364 {
365 long y;
366 y = SCM_INUM (denominator);
367 if (x == y)
368 return SCM_MAKINUM(1);
369 if ((x % y) == 0)
370 return SCM_MAKINUM (x / y);
371 }
372 else
373 {
374 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
375 of that value for the denominator, as a bignum. Apart from
376 that case, abs(bignum) > abs(inum) so inum/bignum is not an
377 integer. */
378 if (x == SCM_MOST_NEGATIVE_FIXNUM
379 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
380 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
381 return SCM_MAKINUM(-1);
382 }
383 }
384 else if (SCM_BIGP (numerator))
385 {
386 if (SCM_INUMP (denominator))
387 {
388 long yy = SCM_INUM (denominator);
389 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
390 return scm_divide (numerator, denominator);
391 }
392 else
393 {
394 if (SCM_EQ_P (numerator, denominator))
395 return SCM_MAKINUM(1);
396 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
397 SCM_I_BIG_MPZ (denominator)))
398 return scm_divide(numerator, denominator);
399 }
400 }
401
402 /* No, it's a proper fraction.
403 */
404 return scm_double_cell (scm_tc16_fraction,
405 SCM_UNPACK (numerator),
406 SCM_UNPACK (denominator), 0);
407}
408#undef FUNC_NAME
409
410static void scm_i_fraction_reduce (SCM z)
411{
412 if (!(SCM_FRACTION_REDUCED (z)))
413 {
414 SCM divisor;
415 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
416 if (!(SCM_EQ_P (divisor, SCM_MAKINUM(1))))
417 {
418 /* is this safe? */
419 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
420 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
421 }
422 SCM_FRACTION_REDUCED_SET (z);
423 }
424}
425
426double
427scm_i_fraction2double (SCM z)
428{
429 return scm_num2dbl (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
430 SCM_FRACTION_DENOMINATOR (z)),
431 "fraction2real");
432}
433
434SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
435 (SCM x),
436 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
437 "otherwise.")
438#define FUNC_NAME s_scm_exact_p
439{
440 if (SCM_INUMP (x))
441 return SCM_BOOL_T;
442 if (SCM_BIGP (x))
443 return SCM_BOOL_T;
444 if (SCM_FRACTIONP (x))
445 return SCM_BOOL_T;
446 if (SCM_NUMBERP (x))
447 return SCM_BOOL_F;
448 SCM_WRONG_TYPE_ARG (1, x);
449}
450#undef FUNC_NAME
451
452
453SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
454 (SCM n),
455 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
456 "otherwise.")
457#define FUNC_NAME s_scm_odd_p
458{
459 if (SCM_INUMP (n))
460 {
461 long val = SCM_INUM (n);
462 return SCM_BOOL ((val & 1L) != 0);
463 }
464 else if (SCM_BIGP (n))
465 {
466 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
467 scm_remember_upto_here_1 (n);
468 return SCM_BOOL (odd_p);
469 }
470 else if (!SCM_FALSEP (scm_inf_p (n)))
471 return SCM_BOOL_T;
472 else if (SCM_REALP (n))
473 {
474 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
475 if (rem == 1.0)
476 return SCM_BOOL_T;
477 else if (rem == 0.0)
478 return SCM_BOOL_F;
479 else
480 SCM_WRONG_TYPE_ARG (1, n);
481 }
482 else
483 SCM_WRONG_TYPE_ARG (1, n);
484}
485#undef FUNC_NAME
486
487
488SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
489 (SCM n),
490 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
491 "otherwise.")
492#define FUNC_NAME s_scm_even_p
493{
494 if (SCM_INUMP (n))
495 {
496 long val = SCM_INUM (n);
497 return SCM_BOOL ((val & 1L) == 0);
498 }
499 else if (SCM_BIGP (n))
500 {
501 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
502 scm_remember_upto_here_1 (n);
503 return SCM_BOOL (even_p);
504 }
505 else if (!SCM_FALSEP (scm_inf_p (n)))
506 return SCM_BOOL_T;
507 else if (SCM_REALP (n))
508 {
509 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
510 if (rem == 1.0)
511 return SCM_BOOL_F;
512 else if (rem == 0.0)
513 return SCM_BOOL_T;
514 else
515 SCM_WRONG_TYPE_ARG (1, n);
516 }
517 else
518 SCM_WRONG_TYPE_ARG (1, n);
519}
520#undef FUNC_NAME
521
522SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
523 (SCM n),
524 "Return @code{#t} if @var{n} is infinite, @code{#f}\n"
525 "otherwise.")
526#define FUNC_NAME s_scm_inf_p
527{
528 if (SCM_REALP (n))
529 return SCM_BOOL (xisinf (SCM_REAL_VALUE (n)));
530 else if (SCM_COMPLEXP (n))
531 return SCM_BOOL (xisinf (SCM_COMPLEX_REAL (n))
532 || xisinf (SCM_COMPLEX_IMAG (n)));
533 else
534 return SCM_BOOL_F;
535}
536#undef FUNC_NAME
537
538SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
539 (SCM n),
540 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
541 "otherwise.")
542#define FUNC_NAME s_scm_nan_p
543{
544 if (SCM_REALP (n))
545 return SCM_BOOL (xisnan (SCM_REAL_VALUE (n)));
546 else if (SCM_COMPLEXP (n))
547 return SCM_BOOL (xisnan (SCM_COMPLEX_REAL (n))
548 || xisnan (SCM_COMPLEX_IMAG (n)));
549 else
550 return SCM_BOOL_F;
551}
552#undef FUNC_NAME
553
554/* Guile's idea of infinity. */
555static double guile_Inf;
556
557/* Guile's idea of not a number. */
558static double guile_NaN;
559
560static void
561guile_ieee_init (void)
562{
563#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
564
565/* Some version of gcc on some old version of Linux used to crash when
566 trying to make Inf and NaN. */
567
568#ifdef INFINITY
569 /* C99 INFINITY, when available.
570 FIXME: The standard allows for INFINITY to be something that overflows
571 at compile time. We ought to have a configure test to check for that
572 before trying to use it. (But in practice we believe this is not a
573 problem on any system guile is likely to target.) */
574 guile_Inf = INFINITY;
575#elif HAVE_DINFINITY
576 /* OSF */
577 extern unsigned int DINFINITY[2];
578 guile_Inf = (*(X_CAST(double *, DINFINITY)));
579#else
580 double tmp = 1e+10;
581 guile_Inf = tmp;
582 for (;;)
583 {
584 guile_Inf *= 1e+10;
585 if (guile_Inf == tmp)
586 break;
587 tmp = guile_Inf;
588 }
589#endif
590
591#endif
592
593#if defined (HAVE_ISNAN)
594
595#ifdef NAN
596 /* C99 NAN, when available */
597 guile_NaN = NAN;
598#elif HAVE_DQNAN
599 /* OSF */
600 extern unsigned int DQNAN[2];
601 guile_NaN = (*(X_CAST(double *, DQNAN)));
602#else
603 guile_NaN = guile_Inf / guile_Inf;
604#endif
605
606#endif
607}
608
609SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
610 (void),
611 "Return Inf.")
612#define FUNC_NAME s_scm_inf
613{
614 static int initialized = 0;
615 if (! initialized)
616 {
617 guile_ieee_init ();
618 initialized = 1;
619 }
620 return scm_make_real (guile_Inf);
621}
622#undef FUNC_NAME
623
624SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
625 (void),
626 "Return NaN.")
627#define FUNC_NAME s_scm_nan
628{
629 static int initialized = 0;
630 if (!initialized)
631 {
632 guile_ieee_init ();
633 initialized = 1;
634 }
635 return scm_make_real (guile_NaN);
636}
637#undef FUNC_NAME
638
639
640SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
641 (SCM x),
642 "Return the absolute value of @var{x}.")
643#define FUNC_NAME
644{
645 if (SCM_INUMP (x))
646 {
647 long int xx = SCM_INUM (x);
648 if (xx >= 0)
649 return x;
650 else if (SCM_POSFIXABLE (-xx))
651 return SCM_MAKINUM (-xx);
652 else
653 return scm_i_long2big (-xx);
654 }
655 else if (SCM_BIGP (x))
656 {
657 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
658 if (sgn < 0)
659 return scm_i_clonebig (x, 0);
660 else
661 return x;
662 }
663 else if (SCM_REALP (x))
664 {
665 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
666 double xx = SCM_REAL_VALUE (x);
667 if (xx < 0.0)
668 return scm_make_real (-xx);
669 else
670 return x;
671 }
672 else if (SCM_FRACTIONP (x))
673 {
674 if (SCM_FALSEP (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
675 return x;
676 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
677 SCM_FRACTION_DENOMINATOR (x));
678 }
679 else
680 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
681}
682#undef FUNC_NAME
683
684
685SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
686/* "Return the quotient of the numbers @var{x} and @var{y}."
687 */
688SCM
689scm_quotient (SCM x, SCM y)
690{
691 if (SCM_INUMP (x))
692 {
693 long xx = SCM_INUM (x);
694 if (SCM_INUMP (y))
695 {
696 long yy = SCM_INUM (y);
697 if (yy == 0)
698 scm_num_overflow (s_quotient);
699 else
700 {
701 long z = xx / yy;
702 if (SCM_FIXABLE (z))
703 return SCM_MAKINUM (z);
704 else
705 return scm_i_long2big (z);
706 }
707 }
708 else if (SCM_BIGP (y))
709 {
710 if ((SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
711 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
712 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
713 {
714 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
715 scm_remember_upto_here_1 (y);
716 return SCM_MAKINUM (-1);
717 }
718 else
719 return SCM_MAKINUM (0);
720 }
721 else
722 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
723 }
724 else if (SCM_BIGP (x))
725 {
726 if (SCM_INUMP (y))
727 {
728 long yy = SCM_INUM (y);
729 if (yy == 0)
730 scm_num_overflow (s_quotient);
731 else if (yy == 1)
732 return x;
733 else
734 {
735 SCM result = scm_i_mkbig ();
736 if (yy < 0)
737 {
738 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
739 SCM_I_BIG_MPZ (x),
740 - yy);
741 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
742 }
743 else
744 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
745 scm_remember_upto_here_1 (x);
746 return scm_i_normbig (result);
747 }
748 }
749 else if (SCM_BIGP (y))
750 {
751 SCM result = scm_i_mkbig ();
752 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
753 SCM_I_BIG_MPZ (x),
754 SCM_I_BIG_MPZ (y));
755 scm_remember_upto_here_2 (x, y);
756 return scm_i_normbig (result);
757 }
758 else
759 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
760 }
761 else
762 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
763}
764
765SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
766/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
767 * "@lisp\n"
768 * "(remainder 13 4) @result{} 1\n"
769 * "(remainder -13 4) @result{} -1\n"
770 * "@end lisp"
771 */
772SCM
773scm_remainder (SCM x, SCM y)
774{
775 if (SCM_INUMP (x))
776 {
777 if (SCM_INUMP (y))
778 {
779 long yy = SCM_INUM (y);
780 if (yy == 0)
781 scm_num_overflow (s_remainder);
782 else
783 {
784 long z = SCM_INUM (x) % yy;
785 return SCM_MAKINUM (z);
786 }
787 }
788 else if (SCM_BIGP (y))
789 {
790 if ((SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
791 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
792 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
793 {
794 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
795 scm_remember_upto_here_1 (y);
796 return SCM_MAKINUM (0);
797 }
798 else
799 return x;
800 }
801 else
802 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
803 }
804 else if (SCM_BIGP (x))
805 {
806 if (SCM_INUMP (y))
807 {
808 long yy = SCM_INUM (y);
809 if (yy == 0)
810 scm_num_overflow (s_remainder);
811 else
812 {
813 SCM result = scm_i_mkbig ();
814 if (yy < 0)
815 yy = - yy;
816 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
817 scm_remember_upto_here_1 (x);
818 return scm_i_normbig (result);
819 }
820 }
821 else if (SCM_BIGP (y))
822 {
823 SCM result = scm_i_mkbig ();
824 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
825 SCM_I_BIG_MPZ (x),
826 SCM_I_BIG_MPZ (y));
827 scm_remember_upto_here_2 (x, y);
828 return scm_i_normbig (result);
829 }
830 else
831 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
832 }
833 else
834 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
835}
836
837
838SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
839/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
840 * "@lisp\n"
841 * "(modulo 13 4) @result{} 1\n"
842 * "(modulo -13 4) @result{} 3\n"
843 * "@end lisp"
844 */
845SCM
846scm_modulo (SCM x, SCM y)
847{
848 if (SCM_INUMP (x))
849 {
850 long xx = SCM_INUM (x);
851 if (SCM_INUMP (y))
852 {
853 long yy = SCM_INUM (y);
854 if (yy == 0)
855 scm_num_overflow (s_modulo);
856 else
857 {
858 /* FIXME: I think this may be a bug on some arches -- results
859 of % with negative second arg are undefined... */
860 long z = xx % yy;
861 long result;
862
863 if (yy < 0)
864 {
865 if (z > 0)
866 result = z + yy;
867 else
868 result = z;
869 }
870 else
871 {
872 if (z < 0)
873 result = z + yy;
874 else
875 result = z;
876 }
877 return SCM_MAKINUM (result);
878 }
879 }
880 else if (SCM_BIGP (y))
881 {
882 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
883 {
884 mpz_t z_x;
885 SCM result;
886
887 if (sgn_y < 0)
888 {
889 SCM pos_y = scm_i_clonebig (y, 0);
890 /* do this after the last scm_op */
891 mpz_init_set_si (z_x, xx);
892 result = pos_y; /* re-use this bignum */
893 mpz_mod (SCM_I_BIG_MPZ (result),
894 z_x,
895 SCM_I_BIG_MPZ (pos_y));
896 scm_remember_upto_here_1 (pos_y);
897 }
898 else
899 {
900 result = scm_i_mkbig ();
901 /* do this after the last scm_op */
902 mpz_init_set_si (z_x, xx);
903 mpz_mod (SCM_I_BIG_MPZ (result),
904 z_x,
905 SCM_I_BIG_MPZ (y));
906 scm_remember_upto_here_1 (y);
907 }
908
909 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
910 mpz_add (SCM_I_BIG_MPZ (result),
911 SCM_I_BIG_MPZ (y),
912 SCM_I_BIG_MPZ (result));
913 scm_remember_upto_here_1 (y);
914 /* and do this before the next one */
915 mpz_clear (z_x);
916 return scm_i_normbig (result);
917 }
918 }
919 else
920 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
921 }
922 else if (SCM_BIGP (x))
923 {
924 if (SCM_INUMP (y))
925 {
926 long yy = SCM_INUM (y);
927 if (yy == 0)
928 scm_num_overflow (s_modulo);
929 else
930 {
931 SCM result = scm_i_mkbig ();
932 mpz_mod_ui (SCM_I_BIG_MPZ (result),
933 SCM_I_BIG_MPZ (x),
934 (yy < 0) ? - yy : yy);
935 scm_remember_upto_here_1 (x);
936 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
937 mpz_sub_ui (SCM_I_BIG_MPZ (result),
938 SCM_I_BIG_MPZ (result),
939 - yy);
940 return scm_i_normbig (result);
941 }
942 }
943 else if (SCM_BIGP (y))
944 {
945 {
946 SCM result = scm_i_mkbig ();
947 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
948 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
949 mpz_mod (SCM_I_BIG_MPZ (result),
950 SCM_I_BIG_MPZ (x),
951 SCM_I_BIG_MPZ (pos_y));
952
953 scm_remember_upto_here_1 (x);
954 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
955 mpz_add (SCM_I_BIG_MPZ (result),
956 SCM_I_BIG_MPZ (y),
957 SCM_I_BIG_MPZ (result));
958 scm_remember_upto_here_2 (y, pos_y);
959 return scm_i_normbig (result);
960 }
961 }
962 else
963 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
964 }
965 else
966 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
967}
968
969SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
970/* "Return the greatest common divisor of all arguments.\n"
971 * "If called without arguments, 0 is returned."
972 */
973SCM
974scm_gcd (SCM x, SCM y)
975{
976 if (SCM_UNBNDP (y))
977 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
978
979 if (SCM_INUMP (x))
980 {
981 if (SCM_INUMP (y))
982 {
983 long xx = SCM_INUM (x);
984 long yy = SCM_INUM (y);
985 long u = xx < 0 ? -xx : xx;
986 long v = yy < 0 ? -yy : yy;
987 long result;
988 if (xx == 0)
989 result = v;
990 else if (yy == 0)
991 result = u;
992 else
993 {
994 long k = 1;
995 long t;
996 /* Determine a common factor 2^k */
997 while (!(1 & (u | v)))
998 {
999 k <<= 1;
1000 u >>= 1;
1001 v >>= 1;
1002 }
1003 /* Now, any factor 2^n can be eliminated */
1004 if (u & 1)
1005 t = -v;
1006 else
1007 {
1008 t = u;
1009 b3:
1010 t = SCM_SRS (t, 1);
1011 }
1012 if (!(1 & t))
1013 goto b3;
1014 if (t > 0)
1015 u = t;
1016 else
1017 v = -t;
1018 t = u - v;
1019 if (t != 0)
1020 goto b3;
1021 result = u * k;
1022 }
1023 return (SCM_POSFIXABLE (result)
1024 ? SCM_MAKINUM (result)
1025 : scm_i_long2big (result));
1026 }
1027 else if (SCM_BIGP (y))
1028 {
1029 SCM_SWAP (x, y);
1030 goto big_inum;
1031 }
1032 else
1033 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1034 }
1035 else if (SCM_BIGP (x))
1036 {
1037 if (SCM_INUMP (y))
1038 {
1039 unsigned long result;
1040 long yy;
1041 big_inum:
1042 yy = SCM_INUM (y);
1043 if (yy == 0)
1044 return scm_abs (x);
1045 if (yy < 0)
1046 yy = -yy;
1047 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1048 scm_remember_upto_here_1 (x);
1049 return (SCM_POSFIXABLE (result)
1050 ? SCM_MAKINUM (result)
1051 : scm_ulong2num (result));
1052 }
1053 else if (SCM_BIGP (y))
1054 {
1055 SCM result = scm_i_mkbig ();
1056 mpz_gcd (SCM_I_BIG_MPZ (result),
1057 SCM_I_BIG_MPZ (x),
1058 SCM_I_BIG_MPZ (y));
1059 scm_remember_upto_here_2 (x, y);
1060 return scm_i_normbig (result);
1061 }
1062 else
1063 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1064 }
1065 else
1066 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1067}
1068
1069SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1070/* "Return the least common multiple of the arguments.\n"
1071 * "If called without arguments, 1 is returned."
1072 */
1073SCM
1074scm_lcm (SCM n1, SCM n2)
1075{
1076 if (SCM_UNBNDP (n2))
1077 {
1078 if (SCM_UNBNDP (n1))
1079 return SCM_MAKINUM (1L);
1080 n2 = SCM_MAKINUM (1L);
1081 }
1082
1083 SCM_GASSERT2 (SCM_INUMP (n1) || SCM_BIGP (n1),
1084 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1085 SCM_GASSERT2 (SCM_INUMP (n2) || SCM_BIGP (n2),
1086 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1087
1088 if (SCM_INUMP (n1))
1089 {
1090 if (SCM_INUMP (n2))
1091 {
1092 SCM d = scm_gcd (n1, n2);
1093 if (SCM_EQ_P (d, SCM_INUM0))
1094 return d;
1095 else
1096 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1097 }
1098 else
1099 {
1100 /* inum n1, big n2 */
1101 inumbig:
1102 {
1103 SCM result = scm_i_mkbig ();
1104 long nn1 = SCM_INUM (n1);
1105 if (nn1 == 0) return SCM_INUM0;
1106 if (nn1 < 0) nn1 = - nn1;
1107 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1108 scm_remember_upto_here_1 (n2);
1109 return result;
1110 }
1111 }
1112 }
1113 else
1114 {
1115 /* big n1 */
1116 if (SCM_INUMP (n2))
1117 {
1118 SCM_SWAP (n1, n2);
1119 goto inumbig;
1120 }
1121 else
1122 {
1123 SCM result = scm_i_mkbig ();
1124 mpz_lcm(SCM_I_BIG_MPZ (result),
1125 SCM_I_BIG_MPZ (n1),
1126 SCM_I_BIG_MPZ (n2));
1127 scm_remember_upto_here_2(n1, n2);
1128 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1129 return result;
1130 }
1131 }
1132}
1133
1134#ifndef scm_long2num
1135#define SCM_LOGOP_RETURN(x) scm_ulong2num(x)
1136#else
1137#define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x)
1138#endif
1139
1140/* Emulating 2's complement bignums with sign magnitude arithmetic:
1141
1142 Logand:
1143 X Y Result Method:
1144 (len)
1145 + + + x (map digit:logand X Y)
1146 + - + x (map digit:logand X (lognot (+ -1 Y)))
1147 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1148 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1149
1150 Logior:
1151 X Y Result Method:
1152
1153 + + + (map digit:logior X Y)
1154 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1155 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1156 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1157
1158 Logxor:
1159 X Y Result Method:
1160
1161 + + + (map digit:logxor X Y)
1162 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1163 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1164 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1165
1166 Logtest:
1167 X Y Result
1168
1169 + + (any digit:logand X Y)
1170 + - (any digit:logand X (lognot (+ -1 Y)))
1171 - + (any digit:logand (lognot (+ -1 X)) Y)
1172 - - #t
1173
1174*/
1175
1176SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1177 (SCM n1, SCM n2),
1178 "Return the bitwise AND of the integer arguments.\n\n"
1179 "@lisp\n"
1180 "(logand) @result{} -1\n"
1181 "(logand 7) @result{} 7\n"
1182 "(logand #b111 #b011 #b001) @result{} 1\n"
1183 "@end lisp")
1184#define FUNC_NAME s_scm_logand
1185{
1186 long int nn1;
1187
1188 if (SCM_UNBNDP (n2))
1189 {
1190 if (SCM_UNBNDP (n1))
1191 return SCM_MAKINUM (-1);
1192 else if (!SCM_NUMBERP (n1))
1193 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1194 else if (SCM_NUMBERP (n1))
1195 return n1;
1196 else
1197 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1198 }
1199
1200 if (SCM_INUMP (n1))
1201 {
1202 nn1 = SCM_INUM (n1);
1203 if (SCM_INUMP (n2))
1204 {
1205 long nn2 = SCM_INUM (n2);
1206 return SCM_MAKINUM (nn1 & nn2);
1207 }
1208 else if SCM_BIGP (n2)
1209 {
1210 intbig:
1211 if (n1 == 0)
1212 return SCM_INUM0;
1213 {
1214 SCM result_z = scm_i_mkbig ();
1215 mpz_t nn1_z;
1216 mpz_init_set_si (nn1_z, nn1);
1217 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1218 scm_remember_upto_here_1 (n2);
1219 mpz_clear (nn1_z);
1220 return scm_i_normbig (result_z);
1221 }
1222 }
1223 else
1224 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1225 }
1226 else if (SCM_BIGP (n1))
1227 {
1228 if (SCM_INUMP (n2))
1229 {
1230 SCM_SWAP (n1, n2);
1231 nn1 = SCM_INUM (n1);
1232 goto intbig;
1233 }
1234 else if (SCM_BIGP (n2))
1235 {
1236 SCM result_z = scm_i_mkbig ();
1237 mpz_and (SCM_I_BIG_MPZ (result_z),
1238 SCM_I_BIG_MPZ (n1),
1239 SCM_I_BIG_MPZ (n2));
1240 scm_remember_upto_here_2 (n1, n2);
1241 return scm_i_normbig (result_z);
1242 }
1243 else
1244 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1245 }
1246 else
1247 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1248}
1249#undef FUNC_NAME
1250
1251
1252SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1253 (SCM n1, SCM n2),
1254 "Return the bitwise OR of the integer arguments.\n\n"
1255 "@lisp\n"
1256 "(logior) @result{} 0\n"
1257 "(logior 7) @result{} 7\n"
1258 "(logior #b000 #b001 #b011) @result{} 3\n"
1259 "@end lisp")
1260#define FUNC_NAME s_scm_logior
1261{
1262 long int nn1;
1263
1264 if (SCM_UNBNDP (n2))
1265 {
1266 if (SCM_UNBNDP (n1))
1267 return SCM_INUM0;
1268 else if (SCM_NUMBERP (n1))
1269 return n1;
1270 else
1271 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1272 }
1273
1274 if (SCM_INUMP (n1))
1275 {
1276 nn1 = SCM_INUM (n1);
1277 if (SCM_INUMP (n2))
1278 {
1279 long nn2 = SCM_INUM (n2);
1280 return SCM_MAKINUM (nn1 | nn2);
1281 }
1282 else if (SCM_BIGP (n2))
1283 {
1284 intbig:
1285 if (nn1 == 0)
1286 return n2;
1287 {
1288 SCM result_z = scm_i_mkbig ();
1289 mpz_t nn1_z;
1290 mpz_init_set_si (nn1_z, nn1);
1291 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1292 scm_remember_upto_here_1 (n2);
1293 mpz_clear (nn1_z);
1294 return result_z;
1295 }
1296 }
1297 else
1298 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1299 }
1300 else if (SCM_BIGP (n1))
1301 {
1302 if (SCM_INUMP (n2))
1303 {
1304 SCM_SWAP (n1, n2);
1305 nn1 = SCM_INUM (n1);
1306 goto intbig;
1307 }
1308 else if (SCM_BIGP (n2))
1309 {
1310 SCM result_z = scm_i_mkbig ();
1311 mpz_ior (SCM_I_BIG_MPZ (result_z),
1312 SCM_I_BIG_MPZ (n1),
1313 SCM_I_BIG_MPZ (n2));
1314 scm_remember_upto_here_2 (n1, n2);
1315 return result_z;
1316 }
1317 else
1318 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1319 }
1320 else
1321 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1322}
1323#undef FUNC_NAME
1324
1325
1326SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1327 (SCM n1, SCM n2),
1328 "Return the bitwise XOR of the integer arguments. A bit is\n"
1329 "set in the result if it is set in an odd number of arguments.\n"
1330 "@lisp\n"
1331 "(logxor) @result{} 0\n"
1332 "(logxor 7) @result{} 7\n"
1333 "(logxor #b000 #b001 #b011) @result{} 2\n"
1334 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1335 "@end lisp")
1336#define FUNC_NAME s_scm_logxor
1337{
1338 long int nn1;
1339
1340 if (SCM_UNBNDP (n2))
1341 {
1342 if (SCM_UNBNDP (n1))
1343 return SCM_INUM0;
1344 else if (SCM_NUMBERP (n1))
1345 return n1;
1346 else
1347 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1348 }
1349
1350 if (SCM_INUMP (n1))
1351 {
1352 nn1 = SCM_INUM (n1);
1353 if (SCM_INUMP (n2))
1354 {
1355 long nn2 = SCM_INUM (n2);
1356 return SCM_MAKINUM (nn1 ^ nn2);
1357 }
1358 else if (SCM_BIGP (n2))
1359 {
1360 intbig:
1361 {
1362 SCM result_z = scm_i_mkbig ();
1363 mpz_t nn1_z;
1364 mpz_init_set_si (nn1_z, nn1);
1365 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1366 scm_remember_upto_here_1 (n2);
1367 mpz_clear (nn1_z);
1368 return scm_i_normbig (result_z);
1369 }
1370 }
1371 else
1372 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1373 }
1374 else if (SCM_BIGP (n1))
1375 {
1376 if (SCM_INUMP (n2))
1377 {
1378 SCM_SWAP (n1, n2);
1379 nn1 = SCM_INUM (n1);
1380 goto intbig;
1381 }
1382 else if (SCM_BIGP (n2))
1383 {
1384 SCM result_z = scm_i_mkbig ();
1385 mpz_xor (SCM_I_BIG_MPZ (result_z),
1386 SCM_I_BIG_MPZ (n1),
1387 SCM_I_BIG_MPZ (n2));
1388 scm_remember_upto_here_2 (n1, n2);
1389 return scm_i_normbig (result_z);
1390 }
1391 else
1392 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1393 }
1394 else
1395 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1396}
1397#undef FUNC_NAME
1398
1399
1400SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1401 (SCM j, SCM k),
1402 "@lisp\n"
1403 "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
1404 "(logtest #b0100 #b1011) @result{} #f\n"
1405 "(logtest #b0100 #b0111) @result{} #t\n"
1406 "@end lisp")
1407#define FUNC_NAME s_scm_logtest
1408{
1409 long int nj;
1410
1411 if (SCM_INUMP (j))
1412 {
1413 nj = SCM_INUM (j);
1414 if (SCM_INUMP (k))
1415 {
1416 long nk = SCM_INUM (k);
1417 return SCM_BOOL (nj & nk);
1418 }
1419 else if (SCM_BIGP (k))
1420 {
1421 intbig:
1422 if (nj == 0)
1423 return SCM_BOOL_F;
1424 {
1425 SCM result;
1426 mpz_t nj_z;
1427 mpz_init_set_si (nj_z, nj);
1428 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1429 scm_remember_upto_here_1 (k);
1430 result = SCM_BOOL (mpz_sgn (nj_z) != 0);
1431 mpz_clear (nj_z);
1432 return result;
1433 }
1434 }
1435 else
1436 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1437 }
1438 else if (SCM_BIGP (j))
1439 {
1440 if (SCM_INUMP (k))
1441 {
1442 SCM_SWAP (j, k);
1443 nj = SCM_INUM (j);
1444 goto intbig;
1445 }
1446 else if (SCM_BIGP (k))
1447 {
1448 SCM result;
1449 mpz_t result_z;
1450 mpz_init (result_z);
1451 mpz_and (result_z,
1452 SCM_I_BIG_MPZ (j),
1453 SCM_I_BIG_MPZ (k));
1454 scm_remember_upto_here_2 (j, k);
1455 result = SCM_BOOL (mpz_sgn (result_z) != 0);
1456 mpz_clear (result_z);
1457 return result;
1458 }
1459 else
1460 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1461 }
1462 else
1463 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1464}
1465#undef FUNC_NAME
1466
1467
1468SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1469 (SCM index, SCM j),
1470 "@lisp\n"
1471 "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
1472 "(logbit? 0 #b1101) @result{} #t\n"
1473 "(logbit? 1 #b1101) @result{} #f\n"
1474 "(logbit? 2 #b1101) @result{} #t\n"
1475 "(logbit? 3 #b1101) @result{} #t\n"
1476 "(logbit? 4 #b1101) @result{} #f\n"
1477 "@end lisp")
1478#define FUNC_NAME s_scm_logbit_p
1479{
1480 unsigned long int iindex;
1481
1482 SCM_VALIDATE_INUM_MIN (SCM_ARG1, index, 0);
1483 iindex = (unsigned long int) SCM_INUM (index);
1484
1485 if (SCM_INUMP (j))
1486 return SCM_BOOL ((1L << iindex) & SCM_INUM (j));
1487 else if (SCM_BIGP (j))
1488 {
1489 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1490 scm_remember_upto_here_1 (j);
1491 return SCM_BOOL (val);
1492 }
1493 else
1494 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1495}
1496#undef FUNC_NAME
1497
1498
1499SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1500 (SCM n),
1501 "Return the integer which is the ones-complement of the integer\n"
1502 "argument.\n"
1503 "\n"
1504 "@lisp\n"
1505 "(number->string (lognot #b10000000) 2)\n"
1506 " @result{} \"-10000001\"\n"
1507 "(number->string (lognot #b0) 2)\n"
1508 " @result{} \"-1\"\n"
1509 "@end lisp")
1510#define FUNC_NAME s_scm_lognot
1511{
1512 if (SCM_INUMP (n)) {
1513 /* No overflow here, just need to toggle all the bits making up the inum.
1514 Enhancement: No need to strip the tag and add it back, could just xor
1515 a block of 1 bits, if that worked with the various debug versions of
1516 the SCM typedef. */
1517 return SCM_MAKINUM (~ SCM_INUM (n));
1518
1519 } else if (SCM_BIGP (n)) {
1520 SCM result = scm_i_mkbig ();
1521 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1522 scm_remember_upto_here_1 (n);
1523 return result;
1524
1525 } else {
1526 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1527 }
1528}
1529#undef FUNC_NAME
1530
1531/* returns 0 if IN is not an integer. OUT must already be
1532 initialized. */
1533static int
1534coerce_to_big (SCM in, mpz_t out)
1535{
1536 if (SCM_BIGP (in))
1537 mpz_set (out, SCM_I_BIG_MPZ (in));
1538 else if (SCM_INUMP (in))
1539 mpz_set_si (out, SCM_INUM (in));
1540 else
1541 return 0;
1542
1543 return 1;
1544}
1545
1546SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1547 (SCM n, SCM k, SCM m),
1548 "Return @var{n} raised to the integer exponent\n"
1549 "@var{k}, modulo @var{m}.\n"
1550 "\n"
1551 "@lisp\n"
1552 "(modulo-expt 2 3 5)\n"
1553 " @result{} 3\n"
1554 "@end lisp")
1555#define FUNC_NAME s_scm_modulo_expt
1556{
1557 mpz_t n_tmp;
1558 mpz_t k_tmp;
1559 mpz_t m_tmp;
1560
1561 /* There are two classes of error we might encounter --
1562 1) Math errors, which we'll report by calling scm_num_overflow,
1563 and
1564 2) wrong-type errors, which of course we'll report by calling
1565 SCM_WRONG_TYPE_ARG.
1566 We don't report those errors immediately, however; instead we do
1567 some cleanup first. These variables tell us which error (if
1568 any) we should report after cleaning up.
1569 */
1570 int report_overflow = 0;
1571
1572 int position_of_wrong_type = 0;
1573 SCM value_of_wrong_type = SCM_INUM0;
1574
1575 SCM result = SCM_UNDEFINED;
1576
1577 mpz_init (n_tmp);
1578 mpz_init (k_tmp);
1579 mpz_init (m_tmp);
1580
1581 if (SCM_EQ_P (m, SCM_INUM0))
1582 {
1583 report_overflow = 1;
1584 goto cleanup;
1585 }
1586
1587 if (!coerce_to_big (n, n_tmp))
1588 {
1589 value_of_wrong_type = n;
1590 position_of_wrong_type = 1;
1591 goto cleanup;
1592 }
1593
1594 if (!coerce_to_big (k, k_tmp))
1595 {
1596 value_of_wrong_type = k;
1597 position_of_wrong_type = 2;
1598 goto cleanup;
1599 }
1600
1601 if (!coerce_to_big (m, m_tmp))
1602 {
1603 value_of_wrong_type = m;
1604 position_of_wrong_type = 3;
1605 goto cleanup;
1606 }
1607
1608 /* if the exponent K is negative, and we simply call mpz_powm, we
1609 will get a divide-by-zero exception when an inverse 1/n mod m
1610 doesn't exist (or is not unique). Since exceptions are hard to
1611 handle, we'll attempt the inversion "by hand" -- that way, we get
1612 a simple failure code, which is easy to handle. */
1613
1614 if (-1 == mpz_sgn (k_tmp))
1615 {
1616 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1617 {
1618 report_overflow = 1;
1619 goto cleanup;
1620 }
1621 mpz_neg (k_tmp, k_tmp);
1622 }
1623
1624 result = scm_i_mkbig ();
1625 mpz_powm (SCM_I_BIG_MPZ (result),
1626 n_tmp,
1627 k_tmp,
1628 m_tmp);
1629
1630 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1631 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1632
1633 cleanup:
1634 mpz_clear (m_tmp);
1635 mpz_clear (k_tmp);
1636 mpz_clear (n_tmp);
1637
1638 if (report_overflow)
1639 scm_num_overflow (FUNC_NAME);
1640
1641 if (position_of_wrong_type)
1642 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1643 value_of_wrong_type);
1644
1645 return scm_i_normbig (result);
1646}
1647#undef FUNC_NAME
1648
1649SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1650 (SCM n, SCM k),
1651 "Return @var{n} raised to the non-negative integer exponent\n"
1652 "@var{k}.\n"
1653 "\n"
1654 "@lisp\n"
1655 "(integer-expt 2 5)\n"
1656 " @result{} 32\n"
1657 "(integer-expt -3 3)\n"
1658 " @result{} -27\n"
1659 "@end lisp")
1660#define FUNC_NAME s_scm_integer_expt
1661{
1662 long i2 = 0;
1663 SCM z_i2 = SCM_BOOL_F;
1664 int i2_is_big = 0;
1665 SCM acc = SCM_MAKINUM (1L);
1666
1667 /* 0^0 == 1 according to R5RS */
1668 if (SCM_EQ_P (n, SCM_INUM0) || SCM_EQ_P (n, acc))
1669 return SCM_FALSEP (scm_zero_p(k)) ? n : acc;
1670 else if (SCM_EQ_P (n, SCM_MAKINUM (-1L)))
1671 return SCM_FALSEP (scm_even_p (k)) ? n : acc;
1672
1673 if (SCM_INUMP (k))
1674 i2 = SCM_INUM (k);
1675 else if (SCM_BIGP (k))
1676 {
1677 z_i2 = scm_i_clonebig (k, 1);
1678 scm_remember_upto_here_1 (k);
1679 i2_is_big = 1;
1680 }
1681 else if (SCM_REALP (k))
1682 {
1683 double r = SCM_REAL_VALUE (k);
1684 if (floor (r) != r)
1685 SCM_WRONG_TYPE_ARG (2, k);
1686 if ((r > SCM_MOST_POSITIVE_FIXNUM) || (r < SCM_MOST_NEGATIVE_FIXNUM))
1687 {
1688 z_i2 = scm_i_mkbig ();
1689 mpz_set_d (SCM_I_BIG_MPZ (z_i2), r);
1690 i2_is_big = 1;
1691 }
1692 else
1693 {
1694 i2 = r;
1695 }
1696 }
1697 else
1698 SCM_WRONG_TYPE_ARG (2, k);
1699
1700 if (i2_is_big)
1701 {
1702 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1703 {
1704 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1705 n = scm_divide (n, SCM_UNDEFINED);
1706 }
1707 while (1)
1708 {
1709 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1710 {
1711 return acc;
1712 }
1713 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1714 {
1715 return scm_product (acc, n);
1716 }
1717 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1718 acc = scm_product (acc, n);
1719 n = scm_product (n, n);
1720 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1721 }
1722 }
1723 else
1724 {
1725 if (i2 < 0)
1726 {
1727 i2 = -i2;
1728 n = scm_divide (n, SCM_UNDEFINED);
1729 }
1730 while (1)
1731 {
1732 if (0 == i2)
1733 return acc;
1734 if (1 == i2)
1735 return scm_product (acc, n);
1736 if (i2 & 1)
1737 acc = scm_product (acc, n);
1738 n = scm_product (n, n);
1739 i2 >>= 1;
1740 }
1741 }
1742}
1743#undef FUNC_NAME
1744
1745SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1746 (SCM n, SCM cnt),
1747 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1748 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1749 "\n"
1750 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1751 "@var{cnt} is negative it's a division, rounded towards negative\n"
1752 "infinity. (Note that this is not the same rounding as\n"
1753 "@code{quotient} does.)\n"
1754 "\n"
1755 "With @var{n} viewed as an infinite precision twos complement,\n"
1756 "@code{ash} means a left shift introducing zero bits, or a right\n"
1757 "shift dropping bits.\n"
1758 "\n"
1759 "@lisp\n"
1760 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1761 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1762 "\n"
1763 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1764 "(ash -23 -2) @result{} -6\n"
1765 "@end lisp")
1766#define FUNC_NAME s_scm_ash
1767{
1768 long bits_to_shift;
1769
1770 SCM_VALIDATE_INUM (2, cnt);
1771
1772 bits_to_shift = SCM_INUM (cnt);
1773
1774 if (bits_to_shift < 0)
1775 {
1776 /* Shift right by abs(cnt) bits. This is realized as a division
1777 by div:=2^abs(cnt). However, to guarantee the floor
1778 rounding, negative values require some special treatment.
1779 */
1780 SCM div = scm_integer_expt (SCM_MAKINUM (2),
1781 SCM_MAKINUM (-bits_to_shift));
1782
1783 /* scm_quotient assumes its arguments are integers, but it's legal to (ash 1/2 -1) */
1784 if (SCM_FALSEP (scm_negative_p (n)))
1785 return scm_quotient (n, div);
1786 else
1787 return scm_sum (SCM_MAKINUM (-1L),
1788 scm_quotient (scm_sum (SCM_MAKINUM (1L), n), div));
1789 }
1790 else
1791 /* Shift left is done by multiplication with 2^CNT */
1792 return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt));
1793}
1794#undef FUNC_NAME
1795
1796
1797SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1798 (SCM n, SCM start, SCM end),
1799 "Return the integer composed of the @var{start} (inclusive)\n"
1800 "through @var{end} (exclusive) bits of @var{n}. The\n"
1801 "@var{start}th bit becomes the 0-th bit in the result.\n"
1802 "\n"
1803 "@lisp\n"
1804 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1805 " @result{} \"1010\"\n"
1806 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1807 " @result{} \"10110\"\n"
1808 "@end lisp")
1809#define FUNC_NAME s_scm_bit_extract
1810{
1811 unsigned long int istart, iend, bits;
1812 SCM_VALIDATE_INUM_MIN_COPY (2, start,0, istart);
1813 SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend);
1814 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1815
1816 /* how many bits to keep */
1817 bits = iend - istart;
1818
1819 if (SCM_INUMP (n))
1820 {
1821 long int in = SCM_INUM (n);
1822
1823 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1824 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1825 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1826
1827 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1828 {
1829 /* Since we emulate two's complement encoded numbers, this
1830 * special case requires us to produce a result that has
1831 * more bits than can be stored in a fixnum.
1832 */
1833 SCM result = scm_i_long2big (in);
1834 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1835 bits);
1836 return result;
1837 }
1838
1839 /* mask down to requisite bits */
1840 bits = min (bits, SCM_I_FIXNUM_BIT);
1841 return SCM_MAKINUM (in & ((1L << bits) - 1));
1842 }
1843 else if (SCM_BIGP (n))
1844 {
1845 SCM result;
1846 if (bits == 1)
1847 {
1848 result = SCM_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1849 }
1850 else
1851 {
1852 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1853 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1854 such bits into a ulong. */
1855 result = scm_i_mkbig ();
1856 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1857 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1858 result = scm_i_normbig (result);
1859 }
1860 scm_remember_upto_here_1 (n);
1861 return result;
1862 }
1863 else
1864 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1865}
1866#undef FUNC_NAME
1867
1868
1869static const char scm_logtab[] = {
1870 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1871};
1872
1873SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1874 (SCM n),
1875 "Return the number of bits in integer @var{n}. If integer is\n"
1876 "positive, the 1-bits in its binary representation are counted.\n"
1877 "If negative, the 0-bits in its two's-complement binary\n"
1878 "representation are counted. If 0, 0 is returned.\n"
1879 "\n"
1880 "@lisp\n"
1881 "(logcount #b10101010)\n"
1882 " @result{} 4\n"
1883 "(logcount 0)\n"
1884 " @result{} 0\n"
1885 "(logcount -2)\n"
1886 " @result{} 1\n"
1887 "@end lisp")
1888#define FUNC_NAME s_scm_logcount
1889{
1890 if (SCM_INUMP (n))
1891 {
1892 unsigned long int c = 0;
1893 long int nn = SCM_INUM (n);
1894 if (nn < 0)
1895 nn = -1 - nn;
1896 while (nn)
1897 {
1898 c += scm_logtab[15 & nn];
1899 nn >>= 4;
1900 }
1901 return SCM_MAKINUM (c);
1902 }
1903 else if (SCM_BIGP (n))
1904 {
1905 unsigned long count;
1906 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1907 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1908 else
1909 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1910 scm_remember_upto_here_1 (n);
1911 return SCM_MAKINUM (count);
1912 }
1913 else
1914 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1915}
1916#undef FUNC_NAME
1917
1918
1919static const char scm_ilentab[] = {
1920 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1921};
1922
1923
1924SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1925 (SCM n),
1926 "Return the number of bits necessary to represent @var{n}.\n"
1927 "\n"
1928 "@lisp\n"
1929 "(integer-length #b10101010)\n"
1930 " @result{} 8\n"
1931 "(integer-length 0)\n"
1932 " @result{} 0\n"
1933 "(integer-length #b1111)\n"
1934 " @result{} 4\n"
1935 "@end lisp")
1936#define FUNC_NAME s_scm_integer_length
1937{
1938 if (SCM_INUMP (n))
1939 {
1940 unsigned long int c = 0;
1941 unsigned int l = 4;
1942 long int nn = SCM_INUM (n);
1943 if (nn < 0)
1944 nn = -1 - nn;
1945 while (nn)
1946 {
1947 c += 4;
1948 l = scm_ilentab [15 & nn];
1949 nn >>= 4;
1950 }
1951 return SCM_MAKINUM (c - 4 + l);
1952 }
1953 else if (SCM_BIGP (n))
1954 {
1955 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
1956 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
1957 1 too big, so check for that and adjust. */
1958 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
1959 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
1960 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
1961 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
1962 size--;
1963 scm_remember_upto_here_1 (n);
1964 return SCM_MAKINUM (size);
1965 }
1966 else
1967 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1968}
1969#undef FUNC_NAME
1970
1971/*** NUMBERS -> STRINGS ***/
1972int scm_dblprec;
1973static const double fx[] =
1974{ 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5,
1975 5e-6, 5e-7, 5e-8, 5e-9, 5e-10,
1976 5e-11, 5e-12, 5e-13, 5e-14, 5e-15,
1977 5e-16, 5e-17, 5e-18, 5e-19, 5e-20};
1978
1979static size_t
1980idbl2str (double f, char *a)
1981{
1982 int efmt, dpt, d, i, wp = scm_dblprec;
1983 size_t ch = 0;
1984 int exp = 0;
1985
1986 if (f == 0.0)
1987 {
1988#ifdef HAVE_COPYSIGN
1989 double sgn = copysign (1.0, f);
1990
1991 if (sgn < 0.0)
1992 a[ch++] = '-';
1993#endif
1994
1995 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
1996 }
1997
1998 if (xisinf (f))
1999 {
2000 if (f < 0)
2001 strcpy (a, "-inf.0");
2002 else
2003 strcpy (a, "+inf.0");
2004 return ch+6;
2005 }
2006 else if (xisnan (f))
2007 {
2008 strcpy (a, "+nan.0");
2009 return ch+6;
2010 }
2011
2012 if (f < 0.0)
2013 {
2014 f = -f;
2015 a[ch++] = '-';
2016 }
2017
2018#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2019 make-uniform-vector, from causing infinite loops. */
2020 while (f < 1.0)
2021 {
2022 f *= 10.0;
2023 if (exp-- < DBL_MIN_10_EXP)
2024 {
2025 a[ch++] = '#';
2026 a[ch++] = '.';
2027 a[ch++] = '#';
2028 return ch;
2029 }
2030 }
2031 while (f > 10.0)
2032 {
2033 f *= 0.10;
2034 if (exp++ > DBL_MAX_10_EXP)
2035 {
2036 a[ch++] = '#';
2037 a[ch++] = '.';
2038 a[ch++] = '#';
2039 return ch;
2040 }
2041 }
2042#else
2043 while (f < 1.0)
2044 {
2045 f *= 10.0;
2046 exp--;
2047 }
2048 while (f > 10.0)
2049 {
2050 f /= 10.0;
2051 exp++;
2052 }
2053#endif
2054 if (f + fx[wp] >= 10.0)
2055 {
2056 f = 1.0;
2057 exp++;
2058 }
2059 zero:
2060#ifdef ENGNOT
2061 dpt = (exp + 9999) % 3;
2062 exp -= dpt++;
2063 efmt = 1;
2064#else
2065 efmt = (exp < -3) || (exp > wp + 2);
2066 if (!efmt)
2067 {
2068 if (exp < 0)
2069 {
2070 a[ch++] = '0';
2071 a[ch++] = '.';
2072 dpt = exp;
2073 while (++dpt)
2074 a[ch++] = '0';
2075 }
2076 else
2077 dpt = exp + 1;
2078 }
2079 else
2080 dpt = 1;
2081#endif
2082
2083 do
2084 {
2085 d = f;
2086 f -= d;
2087 a[ch++] = d + '0';
2088 if (f < fx[wp])
2089 break;
2090 if (f + fx[wp] >= 1.0)
2091 {
2092 a[ch - 1]++;
2093 break;
2094 }
2095 f *= 10.0;
2096 if (!(--dpt))
2097 a[ch++] = '.';
2098 }
2099 while (wp--);
2100
2101 if (dpt > 0)
2102 {
2103#ifndef ENGNOT
2104 if ((dpt > 4) && (exp > 6))
2105 {
2106 d = (a[0] == '-' ? 2 : 1);
2107 for (i = ch++; i > d; i--)
2108 a[i] = a[i - 1];
2109 a[d] = '.';
2110 efmt = 1;
2111 }
2112 else
2113#endif
2114 {
2115 while (--dpt)
2116 a[ch++] = '0';
2117 a[ch++] = '.';
2118 }
2119 }
2120 if (a[ch - 1] == '.')
2121 a[ch++] = '0'; /* trailing zero */
2122 if (efmt && exp)
2123 {
2124 a[ch++] = 'e';
2125 if (exp < 0)
2126 {
2127 exp = -exp;
2128 a[ch++] = '-';
2129 }
2130 for (i = 10; i <= exp; i *= 10);
2131 for (i /= 10; i; i /= 10)
2132 {
2133 a[ch++] = exp / i + '0';
2134 exp %= i;
2135 }
2136 }
2137 return ch;
2138}
2139
2140
2141static size_t
2142iflo2str (SCM flt, char *str)
2143{
2144 size_t i;
2145 if (SCM_REALP (flt))
2146 i = idbl2str (SCM_REAL_VALUE (flt), str);
2147 else
2148 {
2149 i = idbl2str (SCM_COMPLEX_REAL (flt), str);
2150 if (SCM_COMPLEX_IMAG (flt) != 0.0)
2151 {
2152 double imag = SCM_COMPLEX_IMAG (flt);
2153 /* Don't output a '+' for negative numbers or for Inf and
2154 NaN. They will provide their own sign. */
2155 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2156 str[i++] = '+';
2157 i += idbl2str (imag, &str[i]);
2158 str[i++] = 'i';
2159 }
2160 }
2161 return i;
2162}
2163
2164/* convert a long to a string (unterminated). returns the number of
2165 characters in the result.
2166 rad is output base
2167 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2168size_t
2169scm_iint2str (long num, int rad, char *p)
2170{
2171 size_t j = 1;
2172 size_t i;
2173 unsigned long n = (num < 0) ? -num : num;
2174
2175 for (n /= rad; n > 0; n /= rad)
2176 j++;
2177
2178 i = j;
2179 if (num < 0)
2180 {
2181 *p++ = '-';
2182 j++;
2183 n = -num;
2184 }
2185 else
2186 n = num;
2187 while (i--)
2188 {
2189 int d = n % rad;
2190
2191 n /= rad;
2192 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2193 }
2194 return j;
2195}
2196
2197SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2198 (SCM n, SCM radix),
2199 "Return a string holding the external representation of the\n"
2200 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2201 "inexact, a radix of 10 will be used.")
2202#define FUNC_NAME s_scm_number_to_string
2203{
2204 int base;
2205
2206 if (SCM_UNBNDP (radix))
2207 base = 10;
2208 else
2209 {
2210 SCM_VALIDATE_INUM (2, radix);
2211 base = SCM_INUM (radix);
2212 /* FIXME: ask if range limit was OK, and if so, document */
2213 SCM_ASSERT_RANGE (2, radix, (base >= 2) && (base <= 36));
2214 }
2215
2216 if (SCM_INUMP (n))
2217 {
2218 char num_buf [SCM_INTBUFLEN];
2219 size_t length = scm_iint2str (SCM_INUM (n), base, num_buf);
2220 return scm_mem2string (num_buf, length);
2221 }
2222 else if (SCM_BIGP (n))
2223 {
2224 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2225 scm_remember_upto_here_1 (n);
2226 return scm_take0str (str);
2227 }
2228 else if (SCM_FRACTIONP (n))
2229 {
2230 scm_i_fraction_reduce (n);
2231 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2232 scm_mem2string ("/", 1),
2233 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2234 }
2235 else if (SCM_INEXACTP (n))
2236 {
2237 char num_buf [FLOBUFLEN];
2238 return scm_mem2string (num_buf, iflo2str (n, num_buf));
2239 }
2240 else
2241 SCM_WRONG_TYPE_ARG (1, n);
2242}
2243#undef FUNC_NAME
2244
2245
2246/* These print routines used to be stubbed here so that scm_repl.c
2247 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2248
2249int
2250scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2251{
2252 char num_buf[FLOBUFLEN];
2253 scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
2254 return !0;
2255}
2256
2257int
2258scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2259
2260{
2261 char num_buf[FLOBUFLEN];
2262 scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
2263 return !0;
2264}
2265
2266int
2267scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2268{
2269 SCM str;
2270 scm_i_fraction_reduce (sexp);
2271 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2272 scm_lfwrite (SCM_STRING_CHARS (str), SCM_STRING_LENGTH (str), port);
2273 scm_remember_upto_here_1 (str);
2274 return !0;
2275}
2276
2277int
2278scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2279{
2280 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2281 scm_remember_upto_here_1 (exp);
2282 scm_lfwrite (str, (size_t) strlen (str), port);
2283 free (str);
2284 return !0;
2285}
2286/*** END nums->strs ***/
2287
2288
2289/*** STRINGS -> NUMBERS ***/
2290
2291/* The following functions implement the conversion from strings to numbers.
2292 * The implementation somehow follows the grammar for numbers as it is given
2293 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2294 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2295 * points should be noted about the implementation:
2296 * * Each function keeps a local index variable 'idx' that points at the
2297 * current position within the parsed string. The global index is only
2298 * updated if the function could parse the corresponding syntactic unit
2299 * successfully.
2300 * * Similarly, the functions keep track of indicators of inexactness ('#',
2301 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2302 * global exactness information is only updated after each part has been
2303 * successfully parsed.
2304 * * Sequences of digits are parsed into temporary variables holding fixnums.
2305 * Only if these fixnums would overflow, the result variables are updated
2306 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2307 * the temporary variables holding the fixnums are cleared, and the process
2308 * starts over again. If for example fixnums were able to store five decimal
2309 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2310 * and the result was computed as 12345 * 100000 + 67890. In other words,
2311 * only every five digits two bignum operations were performed.
2312 */
2313
2314enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2315
2316/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2317
2318/* In non ASCII-style encodings the following macro might not work. */
2319#define XDIGIT2UINT(d) \
2320 (isdigit ((int) (unsigned char) d) \
2321 ? (d) - '0' \
2322 : tolower ((int) (unsigned char) d) - 'a' + 10)
2323
2324static SCM
2325mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2326 unsigned int radix, enum t_exactness *p_exactness)
2327{
2328 unsigned int idx = *p_idx;
2329 unsigned int hash_seen = 0;
2330 scm_t_bits shift = 1;
2331 scm_t_bits add = 0;
2332 unsigned int digit_value;
2333 SCM result;
2334 char c;
2335
2336 if (idx == len)
2337 return SCM_BOOL_F;
2338
2339 c = mem[idx];
2340 if (!isxdigit ((int) (unsigned char) c))
2341 return SCM_BOOL_F;
2342 digit_value = XDIGIT2UINT (c);
2343 if (digit_value >= radix)
2344 return SCM_BOOL_F;
2345
2346 idx++;
2347 result = SCM_MAKINUM (digit_value);
2348 while (idx != len)
2349 {
2350 char c = mem[idx];
2351 if (isxdigit ((int) (unsigned char) c))
2352 {
2353 if (hash_seen)
2354 break;
2355 digit_value = XDIGIT2UINT (c);
2356 if (digit_value >= radix)
2357 break;
2358 }
2359 else if (c == '#')
2360 {
2361 hash_seen = 1;
2362 digit_value = 0;
2363 }
2364 else
2365 break;
2366
2367 idx++;
2368 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2369 {
2370 result = scm_product (result, SCM_MAKINUM (shift));
2371 if (add > 0)
2372 result = scm_sum (result, SCM_MAKINUM (add));
2373
2374 shift = radix;
2375 add = digit_value;
2376 }
2377 else
2378 {
2379 shift = shift * radix;
2380 add = add * radix + digit_value;
2381 }
2382 };
2383
2384 if (shift > 1)
2385 result = scm_product (result, SCM_MAKINUM (shift));
2386 if (add > 0)
2387 result = scm_sum (result, SCM_MAKINUM (add));
2388
2389 *p_idx = idx;
2390 if (hash_seen)
2391 *p_exactness = INEXACT;
2392
2393 return result;
2394}
2395
2396
2397/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2398 * covers the parts of the rules that start at a potential point. The value
2399 * of the digits up to the point have been parsed by the caller and are given
2400 * in variable result. The content of *p_exactness indicates, whether a hash
2401 * has already been seen in the digits before the point.
2402 */
2403
2404/* In non ASCII-style encodings the following macro might not work. */
2405#define DIGIT2UINT(d) ((d) - '0')
2406
2407static SCM
2408mem2decimal_from_point (SCM result, const char* mem, size_t len,
2409 unsigned int *p_idx, enum t_exactness *p_exactness)
2410{
2411 unsigned int idx = *p_idx;
2412 enum t_exactness x = *p_exactness;
2413
2414 if (idx == len)
2415 return result;
2416
2417 if (mem[idx] == '.')
2418 {
2419 scm_t_bits shift = 1;
2420 scm_t_bits add = 0;
2421 unsigned int digit_value;
2422 SCM big_shift = SCM_MAKINUM (1);
2423
2424 idx++;
2425 while (idx != len)
2426 {
2427 char c = mem[idx];
2428 if (isdigit ((int) (unsigned char) c))
2429 {
2430 if (x == INEXACT)
2431 return SCM_BOOL_F;
2432 else
2433 digit_value = DIGIT2UINT (c);
2434 }
2435 else if (c == '#')
2436 {
2437 x = INEXACT;
2438 digit_value = 0;
2439 }
2440 else
2441 break;
2442
2443 idx++;
2444 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2445 {
2446 big_shift = scm_product (big_shift, SCM_MAKINUM (shift));
2447 result = scm_product (result, SCM_MAKINUM (shift));
2448 if (add > 0)
2449 result = scm_sum (result, SCM_MAKINUM (add));
2450
2451 shift = 10;
2452 add = digit_value;
2453 }
2454 else
2455 {
2456 shift = shift * 10;
2457 add = add * 10 + digit_value;
2458 }
2459 };
2460
2461 if (add > 0)
2462 {
2463 big_shift = scm_product (big_shift, SCM_MAKINUM (shift));
2464 result = scm_product (result, SCM_MAKINUM (shift));
2465 result = scm_sum (result, SCM_MAKINUM (add));
2466 }
2467
2468 result = scm_divide (result, big_shift);
2469
2470 /* We've seen a decimal point, thus the value is implicitly inexact. */
2471 x = INEXACT;
2472 }
2473
2474 if (idx != len)
2475 {
2476 int sign = 1;
2477 unsigned int start;
2478 char c;
2479 int exponent;
2480 SCM e;
2481
2482 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2483
2484 switch (mem[idx])
2485 {
2486 case 'd': case 'D':
2487 case 'e': case 'E':
2488 case 'f': case 'F':
2489 case 'l': case 'L':
2490 case 's': case 'S':
2491 idx++;
2492 start = idx;
2493 c = mem[idx];
2494 if (c == '-')
2495 {
2496 idx++;
2497 sign = -1;
2498 c = mem[idx];
2499 }
2500 else if (c == '+')
2501 {
2502 idx++;
2503 sign = 1;
2504 c = mem[idx];
2505 }
2506 else
2507 sign = 1;
2508
2509 if (!isdigit ((int) (unsigned char) c))
2510 return SCM_BOOL_F;
2511
2512 idx++;
2513 exponent = DIGIT2UINT (c);
2514 while (idx != len)
2515 {
2516 char c = mem[idx];
2517 if (isdigit ((int) (unsigned char) c))
2518 {
2519 idx++;
2520 if (exponent <= SCM_MAXEXP)
2521 exponent = exponent * 10 + DIGIT2UINT (c);
2522 }
2523 else
2524 break;
2525 }
2526
2527 if (exponent > SCM_MAXEXP)
2528 {
2529 size_t exp_len = idx - start;
2530 SCM exp_string = scm_mem2string (&mem[start], exp_len);
2531 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2532 scm_out_of_range ("string->number", exp_num);
2533 }
2534
2535 e = scm_integer_expt (SCM_MAKINUM (10), SCM_MAKINUM (exponent));
2536 if (sign == 1)
2537 result = scm_product (result, e);
2538 else
2539 result = scm_divide2real (result, e);
2540
2541 /* We've seen an exponent, thus the value is implicitly inexact. */
2542 x = INEXACT;
2543
2544 break;
2545
2546 default:
2547 break;
2548 }
2549 }
2550
2551 *p_idx = idx;
2552 if (x == INEXACT)
2553 *p_exactness = x;
2554
2555 return result;
2556}
2557
2558
2559/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2560
2561static SCM
2562mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2563 unsigned int radix, enum t_exactness *p_exactness)
2564{
2565 unsigned int idx = *p_idx;
2566 SCM result;
2567
2568 if (idx == len)
2569 return SCM_BOOL_F;
2570
2571 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2572 {
2573 *p_idx = idx+5;
2574 return scm_inf ();
2575 }
2576
2577 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2578 {
2579 enum t_exactness x = EXACT;
2580
2581 /* Cobble up the fractional part. We might want to set the
2582 NaN's mantissa from it. */
2583 idx += 4;
2584 mem2uinteger (mem, len, &idx, 10, &x);
2585 *p_idx = idx;
2586 return scm_nan ();
2587 }
2588
2589 if (mem[idx] == '.')
2590 {
2591 if (radix != 10)
2592 return SCM_BOOL_F;
2593 else if (idx + 1 == len)
2594 return SCM_BOOL_F;
2595 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2596 return SCM_BOOL_F;
2597 else
2598 result = mem2decimal_from_point (SCM_MAKINUM (0), mem, len,
2599 p_idx, p_exactness);
2600 }
2601 else
2602 {
2603 enum t_exactness x = EXACT;
2604 SCM uinteger;
2605
2606 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2607 if (SCM_FALSEP (uinteger))
2608 return SCM_BOOL_F;
2609
2610 if (idx == len)
2611 result = uinteger;
2612 else if (mem[idx] == '/')
2613 {
2614 SCM divisor;
2615
2616 idx++;
2617
2618 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2619 if (SCM_FALSEP (divisor))
2620 return SCM_BOOL_F;
2621
2622 /* both are int/big here, I assume */
2623 result = scm_make_ratio (uinteger, divisor);
2624 }
2625 else if (radix == 10)
2626 {
2627 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2628 if (SCM_FALSEP (result))
2629 return SCM_BOOL_F;
2630 }
2631 else
2632 result = uinteger;
2633
2634 *p_idx = idx;
2635 if (x == INEXACT)
2636 *p_exactness = x;
2637 }
2638
2639 /* When returning an inexact zero, make sure it is represented as a
2640 floating point value so that we can change its sign.
2641 */
2642 if (SCM_EQ_P (result, SCM_MAKINUM(0)) && *p_exactness == INEXACT)
2643 result = scm_make_real (0.0);
2644
2645 return result;
2646}
2647
2648
2649/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2650
2651static SCM
2652mem2complex (const char* mem, size_t len, unsigned int idx,
2653 unsigned int radix, enum t_exactness *p_exactness)
2654{
2655 char c;
2656 int sign = 0;
2657 SCM ureal;
2658
2659 if (idx == len)
2660 return SCM_BOOL_F;
2661
2662 c = mem[idx];
2663 if (c == '+')
2664 {
2665 idx++;
2666 sign = 1;
2667 }
2668 else if (c == '-')
2669 {
2670 idx++;
2671 sign = -1;
2672 }
2673
2674 if (idx == len)
2675 return SCM_BOOL_F;
2676
2677 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2678 if (SCM_FALSEP (ureal))
2679 {
2680 /* input must be either +i or -i */
2681
2682 if (sign == 0)
2683 return SCM_BOOL_F;
2684
2685 if (mem[idx] == 'i' || mem[idx] == 'I')
2686 {
2687 idx++;
2688 if (idx != len)
2689 return SCM_BOOL_F;
2690
2691 return scm_make_rectangular (SCM_MAKINUM (0), SCM_MAKINUM (sign));
2692 }
2693 else
2694 return SCM_BOOL_F;
2695 }
2696 else
2697 {
2698 if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
2699 ureal = scm_difference (ureal, SCM_UNDEFINED);
2700
2701 if (idx == len)
2702 return ureal;
2703
2704 c = mem[idx];
2705 switch (c)
2706 {
2707 case 'i': case 'I':
2708 /* either +<ureal>i or -<ureal>i */
2709
2710 idx++;
2711 if (sign == 0)
2712 return SCM_BOOL_F;
2713 if (idx != len)
2714 return SCM_BOOL_F;
2715 return scm_make_rectangular (SCM_MAKINUM (0), ureal);
2716
2717 case '@':
2718 /* polar input: <real>@<real>. */
2719
2720 idx++;
2721 if (idx == len)
2722 return SCM_BOOL_F;
2723 else
2724 {
2725 int sign;
2726 SCM angle;
2727 SCM result;
2728
2729 c = mem[idx];
2730 if (c == '+')
2731 {
2732 idx++;
2733 sign = 1;
2734 }
2735 else if (c == '-')
2736 {
2737 idx++;
2738 sign = -1;
2739 }
2740 else
2741 sign = 1;
2742
2743 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2744 if (SCM_FALSEP (angle))
2745 return SCM_BOOL_F;
2746 if (idx != len)
2747 return SCM_BOOL_F;
2748
2749 if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
2750 angle = scm_difference (angle, SCM_UNDEFINED);
2751
2752 result = scm_make_polar (ureal, angle);
2753 return result;
2754 }
2755 case '+':
2756 case '-':
2757 /* expecting input matching <real>[+-]<ureal>?i */
2758
2759 idx++;
2760 if (idx == len)
2761 return SCM_BOOL_F;
2762 else
2763 {
2764 int sign = (c == '+') ? 1 : -1;
2765 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2766
2767 if (SCM_FALSEP (imag))
2768 imag = SCM_MAKINUM (sign);
2769 else if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
2770 imag = scm_difference (imag, SCM_UNDEFINED);
2771
2772 if (idx == len)
2773 return SCM_BOOL_F;
2774 if (mem[idx] != 'i' && mem[idx] != 'I')
2775 return SCM_BOOL_F;
2776
2777 idx++;
2778 if (idx != len)
2779 return SCM_BOOL_F;
2780
2781 return scm_make_rectangular (ureal, imag);
2782 }
2783 default:
2784 return SCM_BOOL_F;
2785 }
2786 }
2787}
2788
2789
2790/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2791
2792enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2793
2794SCM
2795scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
2796{
2797 unsigned int idx = 0;
2798 unsigned int radix = NO_RADIX;
2799 enum t_exactness forced_x = NO_EXACTNESS;
2800 enum t_exactness implicit_x = EXACT;
2801 SCM result;
2802
2803 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2804 while (idx + 2 < len && mem[idx] == '#')
2805 {
2806 switch (mem[idx + 1])
2807 {
2808 case 'b': case 'B':
2809 if (radix != NO_RADIX)
2810 return SCM_BOOL_F;
2811 radix = DUAL;
2812 break;
2813 case 'd': case 'D':
2814 if (radix != NO_RADIX)
2815 return SCM_BOOL_F;
2816 radix = DEC;
2817 break;
2818 case 'i': case 'I':
2819 if (forced_x != NO_EXACTNESS)
2820 return SCM_BOOL_F;
2821 forced_x = INEXACT;
2822 break;
2823 case 'e': case 'E':
2824 if (forced_x != NO_EXACTNESS)
2825 return SCM_BOOL_F;
2826 forced_x = EXACT;
2827 break;
2828 case 'o': case 'O':
2829 if (radix != NO_RADIX)
2830 return SCM_BOOL_F;
2831 radix = OCT;
2832 break;
2833 case 'x': case 'X':
2834 if (radix != NO_RADIX)
2835 return SCM_BOOL_F;
2836 radix = HEX;
2837 break;
2838 default:
2839 return SCM_BOOL_F;
2840 }
2841 idx += 2;
2842 }
2843
2844 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2845 if (radix == NO_RADIX)
2846 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2847 else
2848 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2849
2850 if (SCM_FALSEP (result))
2851 return SCM_BOOL_F;
2852
2853 switch (forced_x)
2854 {
2855 case EXACT:
2856 if (SCM_INEXACTP (result))
2857 return scm_inexact_to_exact (result);
2858 else
2859 return result;
2860 case INEXACT:
2861 if (SCM_INEXACTP (result))
2862 return result;
2863 else
2864 return scm_exact_to_inexact (result);
2865 case NO_EXACTNESS:
2866 default:
2867 if (implicit_x == INEXACT)
2868 {
2869 if (SCM_INEXACTP (result))
2870 return result;
2871 else
2872 return scm_exact_to_inexact (result);
2873 }
2874 else
2875 return result;
2876 }
2877}
2878
2879
2880SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
2881 (SCM string, SCM radix),
2882 "Return a number of the maximally precise representation\n"
2883 "expressed by the given @var{string}. @var{radix} must be an\n"
2884 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
2885 "is a default radix that may be overridden by an explicit radix\n"
2886 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
2887 "supplied, then the default radix is 10. If string is not a\n"
2888 "syntactically valid notation for a number, then\n"
2889 "@code{string->number} returns @code{#f}.")
2890#define FUNC_NAME s_scm_string_to_number
2891{
2892 SCM answer;
2893 int base;
2894 SCM_VALIDATE_STRING (1, string);
2895 SCM_VALIDATE_INUM_MIN_DEF_COPY (2, radix,2,10, base);
2896 answer = scm_i_mem2number (SCM_STRING_CHARS (string),
2897 SCM_STRING_LENGTH (string),
2898 base);
2899 return scm_return_first (answer, string);
2900}
2901#undef FUNC_NAME
2902
2903
2904/*** END strs->nums ***/
2905
2906
2907SCM
2908scm_make_real (double x)
2909{
2910 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
2911
2912 SCM_REAL_VALUE (z) = x;
2913 return z;
2914}
2915
2916
2917SCM
2918scm_make_complex (double x, double y)
2919{
2920 if (y == 0.0)
2921 return scm_make_real (x);
2922 else
2923 {
2924 SCM z;
2925 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
2926 "complex"));
2927 SCM_COMPLEX_REAL (z) = x;
2928 SCM_COMPLEX_IMAG (z) = y;
2929 return z;
2930 }
2931}
2932
2933
2934SCM
2935scm_bigequal (SCM x, SCM y)
2936{
2937 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2938 scm_remember_upto_here_2 (x, y);
2939 return SCM_BOOL (0 == result);
2940}
2941
2942SCM
2943scm_real_equalp (SCM x, SCM y)
2944{
2945 return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
2946}
2947
2948SCM
2949scm_complex_equalp (SCM x, SCM y)
2950{
2951 return SCM_BOOL (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
2952 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
2953}
2954
2955SCM
2956scm_i_fraction_equalp (SCM x, SCM y)
2957{
2958 scm_i_fraction_reduce (x);
2959 scm_i_fraction_reduce (y);
2960 if (SCM_FALSEP (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
2961 SCM_FRACTION_NUMERATOR (y)))
2962 || SCM_FALSEP (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
2963 SCM_FRACTION_DENOMINATOR (y))))
2964 return SCM_BOOL_F;
2965 else
2966 return SCM_BOOL_T;
2967}
2968
2969
2970SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p);
2971/* "Return @code{#t} if @var{x} is a number, @code{#f}\n"
2972 * "else. Note that the sets of complex, real, rational and\n"
2973 * "integer values form subsets of the set of numbers, i. e. the\n"
2974 * "predicate will be fulfilled for any number."
2975 */
2976SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0,
2977 (SCM x),
2978 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
2979 "otherwise. Note that the sets of real, rational and integer\n"
2980 "values form subsets of the set of complex numbers, i. e. the\n"
2981 "predicate will also be fulfilled if @var{x} is a real,\n"
2982 "rational or integer number.")
2983#define FUNC_NAME s_scm_number_p
2984{
2985 return SCM_BOOL (SCM_NUMBERP (x));
2986}
2987#undef FUNC_NAME
2988
2989
2990SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
2991 (SCM x),
2992 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
2993 "otherwise. Note that the set of integer values forms a subset of\n"
2994 "the set of real numbers, i. e. the predicate will also be\n"
2995 "fulfilled if @var{x} is an integer number.")
2996#define FUNC_NAME s_scm_real_p
2997{
2998 /* we can't represent irrational numbers. */
2999 return scm_rational_p (x);
3000}
3001#undef FUNC_NAME
3002
3003SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3004 (SCM x),
3005 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3006 "otherwise. Note that the set of integer values forms a subset of\n"
3007 "the set of rational numbers, i. e. the predicate will also be\n"
3008 "fulfilled if @var{x} is an integer number.")
3009#define FUNC_NAME s_scm_rational_p
3010{
3011 if (SCM_INUMP (x))
3012 return SCM_BOOL_T;
3013 else if (SCM_IMP (x))
3014 return SCM_BOOL_F;
3015 else if (SCM_BIGP (x))
3016 return SCM_BOOL_T;
3017 else if (SCM_FRACTIONP (x))
3018 return SCM_BOOL_T;
3019 else if (SCM_REALP (x))
3020 /* due to their limited precision, all floating point numbers are
3021 rational as well. */
3022 return SCM_BOOL_T;
3023 else
3024 return SCM_BOOL_F;
3025}
3026#undef FUNC_NAME
3027
3028
3029SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3030 (SCM x),
3031 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3032 "else.")
3033#define FUNC_NAME s_scm_integer_p
3034{
3035 double r;
3036 if (SCM_INUMP (x))
3037 return SCM_BOOL_T;
3038 if (SCM_IMP (x))
3039 return SCM_BOOL_F;
3040 if (SCM_BIGP (x))
3041 return SCM_BOOL_T;
3042 if (!SCM_INEXACTP (x))
3043 return SCM_BOOL_F;
3044 if (SCM_COMPLEXP (x))
3045 return SCM_BOOL_F;
3046 r = SCM_REAL_VALUE (x);
3047 if (r == floor (r))
3048 return SCM_BOOL_T;
3049 return SCM_BOOL_F;
3050}
3051#undef FUNC_NAME
3052
3053
3054SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3055 (SCM x),
3056 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3057 "else.")
3058#define FUNC_NAME s_scm_inexact_p
3059{
3060 if (SCM_INEXACTP (x))
3061 return SCM_BOOL_T;
3062 if (SCM_NUMBERP (x))
3063 return SCM_BOOL_F;
3064 SCM_WRONG_TYPE_ARG (1, x);
3065}
3066#undef FUNC_NAME
3067
3068
3069SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3070/* "Return @code{#t} if all parameters are numerically equal." */
3071SCM
3072scm_num_eq_p (SCM x, SCM y)
3073{
3074 again:
3075 if (SCM_INUMP (x))
3076 {
3077 long xx = SCM_INUM (x);
3078 if (SCM_INUMP (y))
3079 {
3080 long yy = SCM_INUM (y);
3081 return SCM_BOOL (xx == yy);
3082 }
3083 else if (SCM_BIGP (y))
3084 return SCM_BOOL_F;
3085 else if (SCM_REALP (y))
3086 return SCM_BOOL ((double) xx == SCM_REAL_VALUE (y));
3087 else if (SCM_COMPLEXP (y))
3088 return SCM_BOOL (((double) xx == SCM_COMPLEX_REAL (y))
3089 && (0.0 == SCM_COMPLEX_IMAG (y)));
3090 else if (SCM_FRACTIONP (y))
3091 return SCM_BOOL_F;
3092 else
3093 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3094 }
3095 else if (SCM_BIGP (x))
3096 {
3097 if (SCM_INUMP (y))
3098 return SCM_BOOL_F;
3099 else if (SCM_BIGP (y))
3100 {
3101 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3102 scm_remember_upto_here_2 (x, y);
3103 return SCM_BOOL (0 == cmp);
3104 }
3105 else if (SCM_REALP (y))
3106 {
3107 int cmp;
3108 if (xisnan (SCM_REAL_VALUE (y)))
3109 return SCM_BOOL_F;
3110 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3111 scm_remember_upto_here_1 (x);
3112 return SCM_BOOL (0 == cmp);
3113 }
3114 else if (SCM_COMPLEXP (y))
3115 {
3116 int cmp;
3117 if (0.0 != SCM_COMPLEX_IMAG (y))
3118 return SCM_BOOL_F;
3119 if (xisnan (SCM_COMPLEX_REAL (y)))
3120 return SCM_BOOL_F;
3121 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3122 scm_remember_upto_here_1 (x);
3123 return SCM_BOOL (0 == cmp);
3124 }
3125 else if (SCM_FRACTIONP (y))
3126 return SCM_BOOL_F;
3127 else
3128 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3129 }
3130 else if (SCM_REALP (x))
3131 {
3132 if (SCM_INUMP (y))
3133 return SCM_BOOL (SCM_REAL_VALUE (x) == (double) SCM_INUM (y));
3134 else if (SCM_BIGP (y))
3135 {
3136 int cmp;
3137 if (xisnan (SCM_REAL_VALUE (x)))
3138 return SCM_BOOL_F;
3139 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3140 scm_remember_upto_here_1 (y);
3141 return SCM_BOOL (0 == cmp);
3142 }
3143 else if (SCM_REALP (y))
3144 return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3145 else if (SCM_COMPLEXP (y))
3146 return SCM_BOOL ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3147 && (0.0 == SCM_COMPLEX_IMAG (y)));
3148 else if (SCM_FRACTIONP (y))
3149 {
3150 double xx = SCM_REAL_VALUE (x);
3151 if (xisnan (xx))
3152 return SCM_BOOL_F;
3153 if (xisinf (xx))
3154 return SCM_BOOL (xx < 0.0);
3155 x = scm_inexact_to_exact (x); /* with x as frac or int */
3156 goto again;
3157 }
3158 else
3159 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3160 }
3161 else if (SCM_COMPLEXP (x))
3162 {
3163 if (SCM_INUMP (y))
3164 return SCM_BOOL ((SCM_COMPLEX_REAL (x) == (double) SCM_INUM (y))
3165 && (SCM_COMPLEX_IMAG (x) == 0.0));
3166 else if (SCM_BIGP (y))
3167 {
3168 int cmp;
3169 if (0.0 != SCM_COMPLEX_IMAG (x))
3170 return SCM_BOOL_F;
3171 if (xisnan (SCM_COMPLEX_REAL (x)))
3172 return SCM_BOOL_F;
3173 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3174 scm_remember_upto_here_1 (y);
3175 return SCM_BOOL (0 == cmp);
3176 }
3177 else if (SCM_REALP (y))
3178 return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3179 && (SCM_COMPLEX_IMAG (x) == 0.0));
3180 else if (SCM_COMPLEXP (y))
3181 return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3182 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3183 else if (SCM_FRACTIONP (y))
3184 {
3185 double xx;
3186 if (SCM_COMPLEX_IMAG (x) != 0.0)
3187 return SCM_BOOL_F;
3188 xx = SCM_COMPLEX_REAL (x);
3189 if (xisnan (xx))
3190 return SCM_BOOL_F;
3191 if (xisinf (xx))
3192 return SCM_BOOL (xx < 0.0);
3193 x = scm_inexact_to_exact (x); /* with x as frac or int */
3194 goto again;
3195 }
3196 else
3197 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3198 }
3199 else if (SCM_FRACTIONP (x))
3200 {
3201 if (SCM_INUMP (y))
3202 return SCM_BOOL_F;
3203 else if (SCM_BIGP (y))
3204 return SCM_BOOL_F;
3205 else if (SCM_REALP (y))
3206 {
3207 double yy = SCM_REAL_VALUE (y);
3208 if (xisnan (yy))
3209 return SCM_BOOL_F;
3210 if (xisinf (yy))
3211 return SCM_BOOL (0.0 < yy);
3212 y = scm_inexact_to_exact (y); /* with y as frac or int */
3213 goto again;
3214 }
3215 else if (SCM_COMPLEXP (y))
3216 {
3217 double yy;
3218 if (SCM_COMPLEX_IMAG (y) != 0.0)
3219 return SCM_BOOL_F;
3220 yy = SCM_COMPLEX_REAL (y);
3221 if (xisnan (yy))
3222 return SCM_BOOL_F;
3223 if (xisinf (yy))
3224 return SCM_BOOL (0.0 < yy);
3225 y = scm_inexact_to_exact (y); /* with y as frac or int */
3226 goto again;
3227 }
3228 else if (SCM_FRACTIONP (y))
3229 return scm_i_fraction_equalp (x, y);
3230 else
3231 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3232 }
3233 else
3234 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3235}
3236
3237
3238/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3239 done are good for inums, but for bignums an answer can almost always be
3240 had by just examining a few high bits of the operands, as done by GMP in
3241 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3242 of the float exponent to take into account. */
3243
3244SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3245/* "Return @code{#t} if the list of parameters is monotonically\n"
3246 * "increasing."
3247 */
3248SCM
3249scm_less_p (SCM x, SCM y)
3250{
3251 again:
3252 if (SCM_INUMP (x))
3253 {
3254 long xx = SCM_INUM (x);
3255 if (SCM_INUMP (y))
3256 {
3257 long yy = SCM_INUM (y);
3258 return SCM_BOOL (xx < yy);
3259 }
3260 else if (SCM_BIGP (y))
3261 {
3262 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3263 scm_remember_upto_here_1 (y);
3264 return SCM_BOOL (sgn > 0);
3265 }
3266 else if (SCM_REALP (y))
3267 return SCM_BOOL ((double) xx < SCM_REAL_VALUE (y));
3268 else if (SCM_FRACTIONP (y))
3269 {
3270 /* "x < a/b" becomes "x*b < a" */
3271 int_frac:
3272 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3273 y = SCM_FRACTION_NUMERATOR (y);
3274 goto again;
3275 }
3276 else
3277 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3278 }
3279 else if (SCM_BIGP (x))
3280 {
3281 if (SCM_INUMP (y))
3282 {
3283 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3284 scm_remember_upto_here_1 (x);
3285 return SCM_BOOL (sgn < 0);
3286 }
3287 else if (SCM_BIGP (y))
3288 {
3289 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3290 scm_remember_upto_here_2 (x, y);
3291 return SCM_BOOL (cmp < 0);
3292 }
3293 else if (SCM_REALP (y))
3294 {
3295 int cmp;
3296 if (xisnan (SCM_REAL_VALUE (y)))
3297 return SCM_BOOL_F;
3298 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3299 scm_remember_upto_here_1 (x);
3300 return SCM_BOOL (cmp < 0);
3301 }
3302 else if (SCM_FRACTIONP (y))
3303 goto int_frac;
3304 else
3305 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3306 }
3307 else if (SCM_REALP (x))
3308 {
3309 if (SCM_INUMP (y))
3310 return SCM_BOOL (SCM_REAL_VALUE (x) < (double) SCM_INUM (y));
3311 else if (SCM_BIGP (y))
3312 {
3313 int cmp;
3314 if (xisnan (SCM_REAL_VALUE (x)))
3315 return SCM_BOOL_F;
3316 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3317 scm_remember_upto_here_1 (y);
3318 return SCM_BOOL (cmp > 0);
3319 }
3320 else if (SCM_REALP (y))
3321 return SCM_BOOL (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3322 else if (SCM_FRACTIONP (y))
3323 {
3324 double xx = SCM_REAL_VALUE (x);
3325 if (xisnan (xx))
3326 return SCM_BOOL_F;
3327 if (xisinf (xx))
3328 return SCM_BOOL (xx < 0.0);
3329 x = scm_inexact_to_exact (x); /* with x as frac or int */
3330 goto again;
3331 }
3332 else
3333 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3334 }
3335 else if (SCM_FRACTIONP (x))
3336 {
3337 if (SCM_INUMP (y) || SCM_BIGP (y))
3338 {
3339 /* "a/b < y" becomes "a < y*b" */
3340 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3341 x = SCM_FRACTION_NUMERATOR (x);
3342 goto again;
3343 }
3344 else if (SCM_REALP (y))
3345 {
3346 double yy = SCM_REAL_VALUE (y);
3347 if (xisnan (yy))
3348 return SCM_BOOL_F;
3349 if (xisinf (yy))
3350 return SCM_BOOL (0.0 < yy);
3351 y = scm_inexact_to_exact (y); /* with y as frac or int */
3352 goto again;
3353 }
3354 else if (SCM_FRACTIONP (y))
3355 {
3356 /* "a/b < c/d" becomes "a*d < c*b" */
3357 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3358 SCM_FRACTION_DENOMINATOR (y));
3359 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3360 SCM_FRACTION_DENOMINATOR (x));
3361 x = new_x;
3362 y = new_y;
3363 goto again;
3364 }
3365 else
3366 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3367 }
3368 else
3369 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3370}
3371
3372
3373SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3374/* "Return @code{#t} if the list of parameters is monotonically\n"
3375 * "decreasing."
3376 */
3377#define FUNC_NAME s_scm_gr_p
3378SCM
3379scm_gr_p (SCM x, SCM y)
3380{
3381 if (!SCM_NUMBERP (x))
3382 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3383 else if (!SCM_NUMBERP (y))
3384 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3385 else
3386 return scm_less_p (y, x);
3387}
3388#undef FUNC_NAME
3389
3390
3391SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3392/* "Return @code{#t} if the list of parameters is monotonically\n"
3393 * "non-decreasing."
3394 */
3395#define FUNC_NAME s_scm_leq_p
3396SCM
3397scm_leq_p (SCM x, SCM y)
3398{
3399 if (!SCM_NUMBERP (x))
3400 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3401 else if (!SCM_NUMBERP (y))
3402 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3403 else if (SCM_NFALSEP (scm_nan_p (x)) || SCM_NFALSEP (scm_nan_p (y)))
3404 return SCM_BOOL_F;
3405 else
3406 return SCM_BOOL_NOT (scm_less_p (y, x));
3407}
3408#undef FUNC_NAME
3409
3410
3411SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3412/* "Return @code{#t} if the list of parameters is monotonically\n"
3413 * "non-increasing."
3414 */
3415#define FUNC_NAME s_scm_geq_p
3416SCM
3417scm_geq_p (SCM x, SCM y)
3418{
3419 if (!SCM_NUMBERP (x))
3420 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3421 else if (!SCM_NUMBERP (y))
3422 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3423 else if (SCM_NFALSEP (scm_nan_p (x)) || SCM_NFALSEP (scm_nan_p (y)))
3424 return SCM_BOOL_F;
3425 else
3426 return SCM_BOOL_NOT (scm_less_p (x, y));
3427}
3428#undef FUNC_NAME
3429
3430
3431SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3432/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3433 * "zero."
3434 */
3435SCM
3436scm_zero_p (SCM z)
3437{
3438 if (SCM_INUMP (z))
3439 return SCM_BOOL (SCM_EQ_P (z, SCM_INUM0));
3440 else if (SCM_BIGP (z))
3441 return SCM_BOOL_F;
3442 else if (SCM_REALP (z))
3443 return SCM_BOOL (SCM_REAL_VALUE (z) == 0.0);
3444 else if (SCM_COMPLEXP (z))
3445 return SCM_BOOL (SCM_COMPLEX_REAL (z) == 0.0
3446 && SCM_COMPLEX_IMAG (z) == 0.0);
3447 else if (SCM_FRACTIONP (z))
3448 return SCM_BOOL_F;
3449 else
3450 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3451}
3452
3453
3454SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3455/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3456 * "zero."
3457 */
3458SCM
3459scm_positive_p (SCM x)
3460{
3461 if (SCM_INUMP (x))
3462 return SCM_BOOL (SCM_INUM (x) > 0);
3463 else if (SCM_BIGP (x))
3464 {
3465 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3466 scm_remember_upto_here_1 (x);
3467 return SCM_BOOL (sgn > 0);
3468 }
3469 else if (SCM_REALP (x))
3470 return SCM_BOOL(SCM_REAL_VALUE (x) > 0.0);
3471 else if (SCM_FRACTIONP (x))
3472 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3473 else
3474 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3475}
3476
3477
3478SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3479/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3480 * "zero."
3481 */
3482SCM
3483scm_negative_p (SCM x)
3484{
3485 if (SCM_INUMP (x))
3486 return SCM_BOOL (SCM_INUM (x) < 0);
3487 else if (SCM_BIGP (x))
3488 {
3489 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3490 scm_remember_upto_here_1 (x);
3491 return SCM_BOOL (sgn < 0);
3492 }
3493 else if (SCM_REALP (x))
3494 return SCM_BOOL(SCM_REAL_VALUE (x) < 0.0);
3495 else if (SCM_FRACTIONP (x))
3496 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3497 else
3498 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3499}
3500
3501
3502/* scm_min and scm_max return an inexact when either argument is inexact, as
3503 required by r5rs. On that basis, for exact/inexact combinations the
3504 exact is converted to inexact to compare and possibly return. This is
3505 unlike scm_less_p above which takes some trouble to preserve all bits in
3506 its test, such trouble is not required for min and max. */
3507
3508SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3509/* "Return the maximum of all parameter values."
3510 */
3511SCM
3512scm_max (SCM x, SCM y)
3513{
3514 if (SCM_UNBNDP (y))
3515 {
3516 if (SCM_UNBNDP (x))
3517 SCM_WTA_DISPATCH_0 (g_max, s_max);
3518 else if (SCM_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3519 return x;
3520 else
3521 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3522 }
3523
3524 if (SCM_INUMP (x))
3525 {
3526 long xx = SCM_INUM (x);
3527 if (SCM_INUMP (y))
3528 {
3529 long yy = SCM_INUM (y);
3530 return (xx < yy) ? y : x;
3531 }
3532 else if (SCM_BIGP (y))
3533 {
3534 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3535 scm_remember_upto_here_1 (y);
3536 return (sgn < 0) ? x : y;
3537 }
3538 else if (SCM_REALP (y))
3539 {
3540 double z = xx;
3541 /* if y==NaN then ">" is false and we return NaN */
3542 return (z > SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
3543 }
3544 else if (SCM_FRACTIONP (y))
3545 {
3546 use_less:
3547 return (SCM_FALSEP (scm_less_p (x, y)) ? x : y);
3548 }
3549 else
3550 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3551 }
3552 else if (SCM_BIGP (x))
3553 {
3554 if (SCM_INUMP (y))
3555 {
3556 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3557 scm_remember_upto_here_1 (x);
3558 return (sgn < 0) ? y : x;
3559 }
3560 else if (SCM_BIGP (y))
3561 {
3562 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3563 scm_remember_upto_here_2 (x, y);
3564 return (cmp > 0) ? x : y;
3565 }
3566 else if (SCM_REALP (y))
3567 {
3568 /* if y==NaN then xx>yy is false, so we return the NaN y */
3569 double xx, yy;
3570 big_real:
3571 xx = scm_i_big2dbl (x);
3572 yy = SCM_REAL_VALUE (y);
3573 return (xx > yy ? scm_make_real (xx) : y);
3574 }
3575 else if (SCM_FRACTIONP (y))
3576 {
3577 goto use_less;
3578 }
3579 else
3580 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3581 }
3582 else if (SCM_REALP (x))
3583 {
3584 if (SCM_INUMP (y))
3585 {
3586 double z = SCM_INUM (y);
3587 /* if x==NaN then "<" is false and we return NaN */
3588 return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
3589 }
3590 else if (SCM_BIGP (y))
3591 {
3592 SCM_SWAP (x, y);
3593 goto big_real;
3594 }
3595 else if (SCM_REALP (y))
3596 {
3597 /* if x==NaN then our explicit check means we return NaN
3598 if y==NaN then ">" is false and we return NaN
3599 calling isnan is unavoidable, since it's the only way to know
3600 which of x or y causes any compares to be false */
3601 double xx = SCM_REAL_VALUE (x);
3602 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3603 }
3604 else if (SCM_FRACTIONP (y))
3605 {
3606 double yy = scm_i_fraction2double (y);
3607 double xx = SCM_REAL_VALUE (x);
3608 return (xx < yy) ? scm_make_real (yy) : x;
3609 }
3610 else
3611 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3612 }
3613 else if (SCM_FRACTIONP (x))
3614 {
3615 if (SCM_INUMP (y))
3616 {
3617 goto use_less;
3618 }
3619 else if (SCM_BIGP (y))
3620 {
3621 goto use_less;
3622 }
3623 else if (SCM_REALP (y))
3624 {
3625 double xx = scm_i_fraction2double (x);
3626 return (xx < SCM_REAL_VALUE (y)) ? y : scm_make_real (xx);
3627 }
3628 else if (SCM_FRACTIONP (y))
3629 {
3630 goto use_less;
3631 }
3632 else
3633 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3634 }
3635 else
3636 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3637}
3638
3639
3640SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3641/* "Return the minium of all parameter values."
3642 */
3643SCM
3644scm_min (SCM x, SCM y)
3645{
3646 if (SCM_UNBNDP (y))
3647 {
3648 if (SCM_UNBNDP (x))
3649 SCM_WTA_DISPATCH_0 (g_min, s_min);
3650 else if (SCM_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3651 return x;
3652 else
3653 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3654 }
3655
3656 if (SCM_INUMP (x))
3657 {
3658 long xx = SCM_INUM (x);
3659 if (SCM_INUMP (y))
3660 {
3661 long yy = SCM_INUM (y);
3662 return (xx < yy) ? x : y;
3663 }
3664 else if (SCM_BIGP (y))
3665 {
3666 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3667 scm_remember_upto_here_1 (y);
3668 return (sgn < 0) ? y : x;
3669 }
3670 else if (SCM_REALP (y))
3671 {
3672 double z = xx;
3673 /* if y==NaN then "<" is false and we return NaN */
3674 return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
3675 }
3676 else if (SCM_FRACTIONP (y))
3677 {
3678 use_less:
3679 return (SCM_FALSEP (scm_less_p (x, y)) ? y : x);
3680 }
3681 else
3682 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3683 }
3684 else if (SCM_BIGP (x))
3685 {
3686 if (SCM_INUMP (y))
3687 {
3688 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3689 scm_remember_upto_here_1 (x);
3690 return (sgn < 0) ? x : y;
3691 }
3692 else if (SCM_BIGP (y))
3693 {
3694 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3695 scm_remember_upto_here_2 (x, y);
3696 return (cmp > 0) ? y : x;
3697 }
3698 else if (SCM_REALP (y))
3699 {
3700 /* if y==NaN then xx<yy is false, so we return the NaN y */
3701 double xx, yy;
3702 big_real:
3703 xx = scm_i_big2dbl (x);
3704 yy = SCM_REAL_VALUE (y);
3705 return (xx < yy ? scm_make_real (xx) : y);
3706 }
3707 else if (SCM_FRACTIONP (y))
3708 {
3709 goto use_less;
3710 }
3711 else
3712 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3713 }
3714 else if (SCM_REALP (x))
3715 {
3716 if (SCM_INUMP (y))
3717 {
3718 double z = SCM_INUM (y);
3719 /* if x==NaN then "<" is false and we return NaN */
3720 return (z < SCM_REAL_VALUE (x)) ? scm_make_real (z) : x;
3721 }
3722 else if (SCM_BIGP (y))
3723 {
3724 SCM_SWAP (x, y);
3725 goto big_real;
3726 }
3727 else if (SCM_REALP (y))
3728 {
3729 /* if x==NaN then our explicit check means we return NaN
3730 if y==NaN then "<" is false and we return NaN
3731 calling isnan is unavoidable, since it's the only way to know
3732 which of x or y causes any compares to be false */
3733 double xx = SCM_REAL_VALUE (x);
3734 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3735 }
3736 else if (SCM_FRACTIONP (y))
3737 {
3738 double yy = scm_i_fraction2double (y);
3739 double xx = SCM_REAL_VALUE (x);
3740 return (yy < xx) ? scm_make_real (yy) : x;
3741 }
3742 else
3743 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3744 }
3745 else if (SCM_FRACTIONP (x))
3746 {
3747 if (SCM_INUMP (y))
3748 {
3749 goto use_less;
3750 }
3751 else if (SCM_BIGP (y))
3752 {
3753 goto use_less;
3754 }
3755 else if (SCM_REALP (y))
3756 {
3757 double xx = scm_i_fraction2double (x);
3758 return (SCM_REAL_VALUE (y) < xx) ? y : scm_make_real (xx);
3759 }
3760 else if (SCM_FRACTIONP (y))
3761 {
3762 goto use_less;
3763 }
3764 else
3765 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3766 }
3767 else
3768 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3769}
3770
3771
3772SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3773/* "Return the sum of all parameter values. Return 0 if called without\n"
3774 * "any parameters."
3775 */
3776SCM
3777scm_sum (SCM x, SCM y)
3778{
3779 if (SCM_UNBNDP (y))
3780 {
3781 if (SCM_NUMBERP (x)) return x;
3782 if (SCM_UNBNDP (x)) return SCM_INUM0;
3783 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3784 }
3785
3786 if (SCM_INUMP (x))
3787 {
3788 if (SCM_INUMP (y))
3789 {
3790 long xx = SCM_INUM (x);
3791 long yy = SCM_INUM (y);
3792 long int z = xx + yy;
3793 return SCM_FIXABLE (z) ? SCM_MAKINUM (z) : scm_i_long2big (z);
3794 }
3795 else if (SCM_BIGP (y))
3796 {
3797 SCM_SWAP (x, y);
3798 goto add_big_inum;
3799 }
3800 else if (SCM_REALP (y))
3801 {
3802 long int xx = SCM_INUM (x);
3803 return scm_make_real (xx + SCM_REAL_VALUE (y));
3804 }
3805 else if (SCM_COMPLEXP (y))
3806 {
3807 long int xx = SCM_INUM (x);
3808 return scm_make_complex (xx + SCM_COMPLEX_REAL (y),
3809 SCM_COMPLEX_IMAG (y));
3810 }
3811 else if (SCM_FRACTIONP (y))
3812 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3813 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3814 SCM_FRACTION_DENOMINATOR (y));
3815 else
3816 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3817 } else if (SCM_BIGP (x))
3818 {
3819 if (SCM_INUMP (y))
3820 {
3821 long int inum;
3822 int bigsgn;
3823 add_big_inum:
3824 inum = SCM_INUM (y);
3825 if (inum == 0)
3826 return x;
3827 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3828 if (inum < 0)
3829 {
3830 SCM result = scm_i_mkbig ();
3831 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3832 scm_remember_upto_here_1 (x);
3833 /* we know the result will have to be a bignum */
3834 if (bigsgn == -1)
3835 return result;
3836 return scm_i_normbig (result);
3837 }
3838 else
3839 {
3840 SCM result = scm_i_mkbig ();
3841 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3842 scm_remember_upto_here_1 (x);
3843 /* we know the result will have to be a bignum */
3844 if (bigsgn == 1)
3845 return result;
3846 return scm_i_normbig (result);
3847 }
3848 }
3849 else if (SCM_BIGP (y))
3850 {
3851 SCM result = scm_i_mkbig ();
3852 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3853 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3854 mpz_add (SCM_I_BIG_MPZ (result),
3855 SCM_I_BIG_MPZ (x),
3856 SCM_I_BIG_MPZ (y));
3857 scm_remember_upto_here_2 (x, y);
3858 /* we know the result will have to be a bignum */
3859 if (sgn_x == sgn_y)
3860 return result;
3861 return scm_i_normbig (result);
3862 }
3863 else if (SCM_REALP (y))
3864 {
3865 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3866 scm_remember_upto_here_1 (x);
3867 return scm_make_real (result);
3868 }
3869 else if (SCM_COMPLEXP (y))
3870 {
3871 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
3872 + SCM_COMPLEX_REAL (y));
3873 scm_remember_upto_here_1 (x);
3874 return scm_make_complex (real_part, SCM_COMPLEX_IMAG (y));
3875 }
3876 else if (SCM_FRACTIONP (y))
3877 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3878 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3879 SCM_FRACTION_DENOMINATOR (y));
3880 else
3881 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3882 }
3883 else if (SCM_REALP (x))
3884 {
3885 if (SCM_INUMP (y))
3886 return scm_make_real (SCM_REAL_VALUE (x) + SCM_INUM (y));
3887 else if (SCM_BIGP (y))
3888 {
3889 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
3890 scm_remember_upto_here_1 (y);
3891 return scm_make_real (result);
3892 }
3893 else if (SCM_REALP (y))
3894 return scm_make_real (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
3895 else if (SCM_COMPLEXP (y))
3896 return scm_make_complex (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
3897 SCM_COMPLEX_IMAG (y));
3898 else if (SCM_FRACTIONP (y))
3899 return scm_make_real (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
3900 else
3901 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3902 }
3903 else if (SCM_COMPLEXP (x))
3904 {
3905 if (SCM_INUMP (y))
3906 return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_INUM (y),
3907 SCM_COMPLEX_IMAG (x));
3908 else if (SCM_BIGP (y))
3909 {
3910 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
3911 + SCM_COMPLEX_REAL (x));
3912 scm_remember_upto_here_1 (y);
3913 return scm_make_complex (real_part, SCM_COMPLEX_IMAG (x));
3914 }
3915 else if (SCM_REALP (y))
3916 return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
3917 SCM_COMPLEX_IMAG (x));
3918 else if (SCM_COMPLEXP (y))
3919 return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
3920 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
3921 else if (SCM_FRACTIONP (y))
3922 return scm_make_complex (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
3923 SCM_COMPLEX_IMAG (x));
3924 else
3925 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3926 }
3927 else if (SCM_FRACTIONP (x))
3928 {
3929 if (SCM_INUMP (y))
3930 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3931 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3932 SCM_FRACTION_DENOMINATOR (x));
3933 else if (SCM_BIGP (y))
3934 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3935 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3936 SCM_FRACTION_DENOMINATOR (x));
3937 else if (SCM_REALP (y))
3938 return scm_make_real (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
3939 else if (SCM_COMPLEXP (y))
3940 return scm_make_complex (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
3941 SCM_COMPLEX_IMAG (y));
3942 else if (SCM_FRACTIONP (y))
3943 /* a/b + c/d = (ad + bc) / bd */
3944 return scm_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
3945 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
3946 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
3947 else
3948 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3949 }
3950 else
3951 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
3952}
3953
3954
3955SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
3956/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
3957 * the sum of all but the first argument are subtracted from the first
3958 * argument. */
3959#define FUNC_NAME s_difference
3960SCM
3961scm_difference (SCM x, SCM y)
3962{
3963 if (SCM_UNBNDP (y))
3964 {
3965 if (SCM_UNBNDP (x))
3966 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
3967 else
3968 if (SCM_INUMP (x))
3969 {
3970 long xx = -SCM_INUM (x);
3971 if (SCM_FIXABLE (xx))
3972 return SCM_MAKINUM (xx);
3973 else
3974 return scm_i_long2big (xx);
3975 }
3976 else if (SCM_BIGP (x))
3977 /* FIXME: do we really need to normalize here? */
3978 return scm_i_normbig (scm_i_clonebig (x, 0));
3979 else if (SCM_REALP (x))
3980 return scm_make_real (-SCM_REAL_VALUE (x));
3981 else if (SCM_COMPLEXP (x))
3982 return scm_make_complex (-SCM_COMPLEX_REAL (x),
3983 -SCM_COMPLEX_IMAG (x));
3984 else if (SCM_FRACTIONP (x))
3985 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
3986 SCM_FRACTION_DENOMINATOR (x));
3987 else
3988 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
3989 }
3990
3991 if (SCM_INUMP (x))
3992 {
3993 if (SCM_INUMP (y))
3994 {
3995 long int xx = SCM_INUM (x);
3996 long int yy = SCM_INUM (y);
3997 long int z = xx - yy;
3998 if (SCM_FIXABLE (z))
3999 return SCM_MAKINUM (z);
4000 else
4001 return scm_i_long2big (z);
4002 }
4003 else if (SCM_BIGP (y))
4004 {
4005 /* inum-x - big-y */
4006 long xx = SCM_INUM (x);
4007
4008 if (xx == 0)
4009 return scm_i_clonebig (y, 0);
4010 else
4011 {
4012 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4013 SCM result = scm_i_mkbig ();
4014
4015 if (xx >= 0)
4016 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4017 else
4018 {
4019 /* x - y == -(y + -x) */
4020 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4021 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4022 }
4023 scm_remember_upto_here_1 (y);
4024
4025 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4026 /* we know the result will have to be a bignum */
4027 return result;
4028 else
4029 return scm_i_normbig (result);
4030 }
4031 }
4032 else if (SCM_REALP (y))
4033 {
4034 long int xx = SCM_INUM (x);
4035 return scm_make_real (xx - SCM_REAL_VALUE (y));
4036 }
4037 else if (SCM_COMPLEXP (y))
4038 {
4039 long int xx = SCM_INUM (x);
4040 return scm_make_complex (xx - SCM_COMPLEX_REAL (y),
4041 - SCM_COMPLEX_IMAG (y));
4042 }
4043 else if (SCM_FRACTIONP (y))
4044 /* a - b/c = (ac - b) / c */
4045 return scm_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4046 SCM_FRACTION_NUMERATOR (y)),
4047 SCM_FRACTION_DENOMINATOR (y));
4048 else
4049 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4050 }
4051 else if (SCM_BIGP (x))
4052 {
4053 if (SCM_INUMP (y))
4054 {
4055 /* big-x - inum-y */
4056 long yy = SCM_INUM (y);
4057 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4058
4059 scm_remember_upto_here_1 (x);
4060 if (sgn_x == 0)
4061 return SCM_FIXABLE (-yy) ? SCM_MAKINUM (-yy) : scm_long2num (-yy);
4062 else
4063 {
4064 SCM result = scm_i_mkbig ();
4065
4066 if (yy >= 0)
4067 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4068 else
4069 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4070 scm_remember_upto_here_1 (x);
4071
4072 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4073 /* we know the result will have to be a bignum */
4074 return result;
4075 else
4076 return scm_i_normbig (result);
4077 }
4078 }
4079 else if (SCM_BIGP (y))
4080 {
4081 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4082 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4083 SCM result = scm_i_mkbig ();
4084 mpz_sub (SCM_I_BIG_MPZ (result),
4085 SCM_I_BIG_MPZ (x),
4086 SCM_I_BIG_MPZ (y));
4087 scm_remember_upto_here_2 (x, y);
4088 /* we know the result will have to be a bignum */
4089 if ((sgn_x == 1) && (sgn_y == -1))
4090 return result;
4091 if ((sgn_x == -1) && (sgn_y == 1))
4092 return result;
4093 return scm_i_normbig (result);
4094 }
4095 else if (SCM_REALP (y))
4096 {
4097 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4098 scm_remember_upto_here_1 (x);
4099 return scm_make_real (result);
4100 }
4101 else if (SCM_COMPLEXP (y))
4102 {
4103 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4104 - SCM_COMPLEX_REAL (y));
4105 scm_remember_upto_here_1 (x);
4106 return scm_make_complex (real_part, - SCM_COMPLEX_IMAG (y));
4107 }
4108 else if (SCM_FRACTIONP (y))
4109 return scm_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4110 SCM_FRACTION_NUMERATOR (y)),
4111 SCM_FRACTION_DENOMINATOR (y));
4112 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4113 }
4114 else if (SCM_REALP (x))
4115 {
4116 if (SCM_INUMP (y))
4117 return scm_make_real (SCM_REAL_VALUE (x) - SCM_INUM (y));
4118 else if (SCM_BIGP (y))
4119 {
4120 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4121 scm_remember_upto_here_1 (x);
4122 return scm_make_real (result);
4123 }
4124 else if (SCM_REALP (y))
4125 return scm_make_real (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4126 else if (SCM_COMPLEXP (y))
4127 return scm_make_complex (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4128 -SCM_COMPLEX_IMAG (y));
4129 else if (SCM_FRACTIONP (y))
4130 return scm_make_real (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4131 else
4132 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4133 }
4134 else if (SCM_COMPLEXP (x))
4135 {
4136 if (SCM_INUMP (y))
4137 return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_INUM (y),
4138 SCM_COMPLEX_IMAG (x));
4139 else if (SCM_BIGP (y))
4140 {
4141 double real_part = (SCM_COMPLEX_REAL (x)
4142 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4143 scm_remember_upto_here_1 (x);
4144 return scm_make_complex (real_part, SCM_COMPLEX_IMAG (y));
4145 }
4146 else if (SCM_REALP (y))
4147 return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4148 SCM_COMPLEX_IMAG (x));
4149 else if (SCM_COMPLEXP (y))
4150 return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4151 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4152 else if (SCM_FRACTIONP (y))
4153 return scm_make_complex (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4154 SCM_COMPLEX_IMAG (x));
4155 else
4156 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4157 }
4158 else if (SCM_FRACTIONP (x))
4159 {
4160 if (SCM_INUMP (y))
4161 /* a/b - c = (a - cb) / b */
4162 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4163 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4164 SCM_FRACTION_DENOMINATOR (x));
4165 else if (SCM_BIGP (y))
4166 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4167 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4168 SCM_FRACTION_DENOMINATOR (x));
4169 else if (SCM_REALP (y))
4170 return scm_make_real (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4171 else if (SCM_COMPLEXP (y))
4172 return scm_make_complex (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4173 -SCM_COMPLEX_IMAG (y));
4174 else if (SCM_FRACTIONP (y))
4175 /* a/b - c/d = (ad - bc) / bd */
4176 return scm_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4177 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4178 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4179 else
4180 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4181 }
4182 else
4183 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4184}
4185#undef FUNC_NAME
4186
4187
4188SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4189/* "Return the product of all arguments. If called without arguments,\n"
4190 * "1 is returned."
4191 */
4192SCM
4193scm_product (SCM x, SCM y)
4194{
4195 if (SCM_UNBNDP (y))
4196 {
4197 if (SCM_UNBNDP (x))
4198 return SCM_MAKINUM (1L);
4199 else if (SCM_NUMBERP (x))
4200 return x;
4201 else
4202 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4203 }
4204
4205 if (SCM_INUMP (x))
4206 {
4207 long xx;
4208
4209 intbig:
4210 xx = SCM_INUM (x);
4211
4212 switch (xx)
4213 {
4214 case 0: return x; break;
4215 case 1: return y; break;
4216 }
4217
4218 if (SCM_INUMP (y))
4219 {
4220 long yy = SCM_INUM (y);
4221 long kk = xx * yy;
4222 SCM k = SCM_MAKINUM (kk);
4223 if ((kk == SCM_INUM (k)) && (kk / xx == yy))
4224 return k;
4225 else
4226 {
4227 SCM result = scm_i_long2big (xx);
4228 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4229 return scm_i_normbig (result);
4230 }
4231 }
4232 else if (SCM_BIGP (y))
4233 {
4234 SCM result = scm_i_mkbig ();
4235 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4236 scm_remember_upto_here_1 (y);
4237 return result;
4238 }
4239 else if (SCM_REALP (y))
4240 return scm_make_real (xx * SCM_REAL_VALUE (y));
4241 else if (SCM_COMPLEXP (y))
4242 return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
4243 xx * SCM_COMPLEX_IMAG (y));
4244 else if (SCM_FRACTIONP (y))
4245 return scm_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4246 SCM_FRACTION_DENOMINATOR (y));
4247 else
4248 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4249 }
4250 else if (SCM_BIGP (x))
4251 {
4252 if (SCM_INUMP (y))
4253 {
4254 SCM_SWAP (x, y);
4255 goto intbig;
4256 }
4257 else if (SCM_BIGP (y))
4258 {
4259 SCM result = scm_i_mkbig ();
4260 mpz_mul (SCM_I_BIG_MPZ (result),
4261 SCM_I_BIG_MPZ (x),
4262 SCM_I_BIG_MPZ (y));
4263 scm_remember_upto_here_2 (x, y);
4264 return result;
4265 }
4266 else if (SCM_REALP (y))
4267 {
4268 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4269 scm_remember_upto_here_1 (x);
4270 return scm_make_real (result);
4271 }
4272 else if (SCM_COMPLEXP (y))
4273 {
4274 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4275 scm_remember_upto_here_1 (x);
4276 return scm_make_complex (z * SCM_COMPLEX_REAL (y),
4277 z * SCM_COMPLEX_IMAG (y));
4278 }
4279 else if (SCM_FRACTIONP (y))
4280 return scm_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4281 SCM_FRACTION_DENOMINATOR (y));
4282 else
4283 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4284 }
4285 else if (SCM_REALP (x))
4286 {
4287 if (SCM_INUMP (y))
4288 return scm_make_real (SCM_INUM (y) * SCM_REAL_VALUE (x));
4289 else if (SCM_BIGP (y))
4290 {
4291 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4292 scm_remember_upto_here_1 (y);
4293 return scm_make_real (result);
4294 }
4295 else if (SCM_REALP (y))
4296 return scm_make_real (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4297 else if (SCM_COMPLEXP (y))
4298 return scm_make_complex (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4299 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4300 else if (SCM_FRACTIONP (y))
4301 return scm_make_real (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4302 else
4303 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4304 }
4305 else if (SCM_COMPLEXP (x))
4306 {
4307 if (SCM_INUMP (y))
4308 return scm_make_complex (SCM_INUM (y) * SCM_COMPLEX_REAL (x),
4309 SCM_INUM (y) * SCM_COMPLEX_IMAG (x));
4310 else if (SCM_BIGP (y))
4311 {
4312 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4313 scm_remember_upto_here_1 (y);
4314 return scm_make_complex (z * SCM_COMPLEX_REAL (x),
4315 z * SCM_COMPLEX_IMAG (x));
4316 }
4317 else if (SCM_REALP (y))
4318 return scm_make_complex (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4319 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4320 else if (SCM_COMPLEXP (y))
4321 {
4322 return scm_make_complex (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4323 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4324 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4325 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4326 }
4327 else if (SCM_FRACTIONP (y))
4328 {
4329 double yy = scm_i_fraction2double (y);
4330 return scm_make_complex (yy * SCM_COMPLEX_REAL (x),
4331 yy * SCM_COMPLEX_IMAG (x));
4332 }
4333 else
4334 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4335 }
4336 else if (SCM_FRACTIONP (x))
4337 {
4338 if (SCM_INUMP (y))
4339 return scm_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4340 SCM_FRACTION_DENOMINATOR (x));
4341 else if (SCM_BIGP (y))
4342 return scm_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4343 SCM_FRACTION_DENOMINATOR (x));
4344 else if (SCM_REALP (y))
4345 return scm_make_real (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4346 else if (SCM_COMPLEXP (y))
4347 {
4348 double xx = scm_i_fraction2double (x);
4349 return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
4350 xx * SCM_COMPLEX_IMAG (y));
4351 }
4352 else if (SCM_FRACTIONP (y))
4353 /* a/b * c/d = ac / bd */
4354 return scm_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4355 SCM_FRACTION_NUMERATOR (y)),
4356 scm_product (SCM_FRACTION_DENOMINATOR (x),
4357 SCM_FRACTION_DENOMINATOR (y)));
4358 else
4359 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4360 }
4361 else
4362 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4363}
4364
4365double
4366scm_num2dbl (SCM a, const char *why)
4367#define FUNC_NAME why
4368{
4369 if (SCM_INUMP (a))
4370 return (double) SCM_INUM (a);
4371 else if (SCM_BIGP (a))
4372 {
4373 double result = mpz_get_d (SCM_I_BIG_MPZ (a));
4374 scm_remember_upto_here_1 (a);
4375 return result;
4376 }
4377 else if (SCM_REALP (a))
4378 return (SCM_REAL_VALUE (a));
4379 else if (SCM_FRACTIONP (a))
4380 return scm_i_fraction2double (a);
4381 else
4382 SCM_WRONG_TYPE_ARG (SCM_ARGn, a);
4383}
4384#undef FUNC_NAME
4385
4386#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4387 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4388#define ALLOW_DIVIDE_BY_ZERO
4389/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4390#endif
4391
4392/* The code below for complex division is adapted from the GNU
4393 libstdc++, which adapted it from f2c's libF77, and is subject to
4394 this copyright: */
4395
4396/****************************************************************
4397Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4398
4399Permission to use, copy, modify, and distribute this software
4400and its documentation for any purpose and without fee is hereby
4401granted, provided that the above copyright notice appear in all
4402copies and that both that the copyright notice and this
4403permission notice and warranty disclaimer appear in supporting
4404documentation, and that the names of AT&T Bell Laboratories or
4405Bellcore or any of their entities not be used in advertising or
4406publicity pertaining to distribution of the software without
4407specific, written prior permission.
4408
4409AT&T and Bellcore disclaim all warranties with regard to this
4410software, including all implied warranties of merchantability
4411and fitness. In no event shall AT&T or Bellcore be liable for
4412any special, indirect or consequential damages or any damages
4413whatsoever resulting from loss of use, data or profits, whether
4414in an action of contract, negligence or other tortious action,
4415arising out of or in connection with the use or performance of
4416this software.
4417****************************************************************/
4418
4419SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4420/* Divide the first argument by the product of the remaining
4421 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4422 returned. */
4423#define FUNC_NAME s_divide
4424static SCM
4425scm_i_divide (SCM x, SCM y, int inexact)
4426{
4427 double a;
4428
4429 if (SCM_UNBNDP (y))
4430 {
4431 if (SCM_UNBNDP (x))
4432 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4433 else if (SCM_INUMP (x))
4434 {
4435 long xx = SCM_INUM (x);
4436 if (xx == 1 || xx == -1)
4437 return x;
4438#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4439 else if (xx == 0)
4440 scm_num_overflow (s_divide);
4441#endif
4442 else
4443 {
4444 if (inexact)
4445 return scm_make_real (1.0 / (double) xx);
4446 else return scm_make_ratio (SCM_MAKINUM(1), x);
4447 }
4448 }
4449 else if (SCM_BIGP (x))
4450 {
4451 if (inexact)
4452 return scm_make_real (1.0 / scm_i_big2dbl (x));
4453 else return scm_make_ratio (SCM_MAKINUM(1), x);
4454 }
4455 else if (SCM_REALP (x))
4456 {
4457 double xx = SCM_REAL_VALUE (x);
4458#ifndef ALLOW_DIVIDE_BY_ZERO
4459 if (xx == 0.0)
4460 scm_num_overflow (s_divide);
4461 else
4462#endif
4463 return scm_make_real (1.0 / xx);
4464 }
4465 else if (SCM_COMPLEXP (x))
4466 {
4467 double r = SCM_COMPLEX_REAL (x);
4468 double i = SCM_COMPLEX_IMAG (x);
4469 if (r <= i)
4470 {
4471 double t = r / i;
4472 double d = i * (1.0 + t * t);
4473 return scm_make_complex (t / d, -1.0 / d);
4474 }
4475 else
4476 {
4477 double t = i / r;
4478 double d = r * (1.0 + t * t);
4479 return scm_make_complex (1.0 / d, -t / d);
4480 }
4481 }
4482 else if (SCM_FRACTIONP (x))
4483 return scm_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4484 SCM_FRACTION_NUMERATOR (x));
4485 else
4486 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4487 }
4488
4489 if (SCM_INUMP (x))
4490 {
4491 long xx = SCM_INUM (x);
4492 if (SCM_INUMP (y))
4493 {
4494 long yy = SCM_INUM (y);
4495 if (yy == 0)
4496 {
4497#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4498 scm_num_overflow (s_divide);
4499#else
4500 return scm_make_real ((double) xx / (double) yy);
4501#endif
4502 }
4503 else if (xx % yy != 0)
4504 {
4505 if (inexact)
4506 return scm_make_real ((double) xx / (double) yy);
4507 else return scm_make_ratio (x, y);
4508 }
4509 else
4510 {
4511 long z = xx / yy;
4512 if (SCM_FIXABLE (z))
4513 return SCM_MAKINUM (z);
4514 else
4515 return scm_i_long2big (z);
4516 }
4517 }
4518 else if (SCM_BIGP (y))
4519 {
4520 if (inexact)
4521 return scm_make_real ((double) xx / scm_i_big2dbl (y));
4522 else return scm_make_ratio (x, y);
4523 }
4524 else if (SCM_REALP (y))
4525 {
4526 double yy = SCM_REAL_VALUE (y);
4527#ifndef ALLOW_DIVIDE_BY_ZERO
4528 if (yy == 0.0)
4529 scm_num_overflow (s_divide);
4530 else
4531#endif
4532 return scm_make_real ((double) xx / yy);
4533 }
4534 else if (SCM_COMPLEXP (y))
4535 {
4536 a = xx;
4537 complex_div: /* y _must_ be a complex number */
4538 {
4539 double r = SCM_COMPLEX_REAL (y);
4540 double i = SCM_COMPLEX_IMAG (y);
4541 if (r <= i)
4542 {
4543 double t = r / i;
4544 double d = i * (1.0 + t * t);
4545 return scm_make_complex ((a * t) / d, -a / d);
4546 }
4547 else
4548 {
4549 double t = i / r;
4550 double d = r * (1.0 + t * t);
4551 return scm_make_complex (a / d, -(a * t) / d);
4552 }
4553 }
4554 }
4555 else if (SCM_FRACTIONP (y))
4556 /* a / b/c = ac / b */
4557 return scm_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4558 SCM_FRACTION_NUMERATOR (y));
4559 else
4560 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4561 }
4562 else if (SCM_BIGP (x))
4563 {
4564 if (SCM_INUMP (y))
4565 {
4566 long int yy = SCM_INUM (y);
4567 if (yy == 0)
4568 {
4569#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4570 scm_num_overflow (s_divide);
4571#else
4572 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4573 scm_remember_upto_here_1 (x);
4574 return (sgn == 0) ? scm_nan () : scm_inf ();
4575#endif
4576 }
4577 else if (yy == 1)
4578 return x;
4579 else
4580 {
4581 /* FIXME: HMM, what are the relative performance issues here?
4582 We need to test. Is it faster on average to test
4583 divisible_p, then perform whichever operation, or is it
4584 faster to perform the integer div opportunistically and
4585 switch to real if there's a remainder? For now we take the
4586 middle ground: test, then if divisible, use the faster div
4587 func. */
4588
4589 long abs_yy = yy < 0 ? -yy : yy;
4590 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4591
4592 if (divisible_p)
4593 {
4594 SCM result = scm_i_mkbig ();
4595 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4596 scm_remember_upto_here_1 (x);
4597 if (yy < 0)
4598 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4599 return scm_i_normbig (result);
4600 }
4601 else
4602 {
4603 if (inexact)
4604 return scm_make_real (scm_i_big2dbl (x) / (double) yy);
4605 else return scm_make_ratio (x, y);
4606 }
4607 }
4608 }
4609 else if (SCM_BIGP (y))
4610 {
4611 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4612 if (y_is_zero)
4613 {
4614#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4615 scm_num_overflow (s_divide);
4616#else
4617 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4618 scm_remember_upto_here_1 (x);
4619 return (sgn == 0) ? scm_nan () : scm_inf ();
4620#endif
4621 }
4622 else
4623 {
4624 /* big_x / big_y */
4625 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4626 SCM_I_BIG_MPZ (y));
4627 if (divisible_p)
4628 {
4629 SCM result = scm_i_mkbig ();
4630 mpz_divexact (SCM_I_BIG_MPZ (result),
4631 SCM_I_BIG_MPZ (x),
4632 SCM_I_BIG_MPZ (y));
4633 scm_remember_upto_here_2 (x, y);
4634 return scm_i_normbig (result);
4635 }
4636 else
4637 {
4638 if (inexact)
4639 {
4640 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4641 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4642 scm_remember_upto_here_2 (x, y);
4643 return scm_make_real (dbx / dby);
4644 }
4645 else return scm_make_ratio (x, y);
4646 }
4647 }
4648 }
4649 else if (SCM_REALP (y))
4650 {
4651 double yy = SCM_REAL_VALUE (y);
4652#ifndef ALLOW_DIVIDE_BY_ZERO
4653 if (yy == 0.0)
4654 scm_num_overflow (s_divide);
4655 else
4656#endif
4657 return scm_make_real (scm_i_big2dbl (x) / yy);
4658 }
4659 else if (SCM_COMPLEXP (y))
4660 {
4661 a = scm_i_big2dbl (x);
4662 goto complex_div;
4663 }
4664 else if (SCM_FRACTIONP (y))
4665 return scm_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4666 SCM_FRACTION_NUMERATOR (y));
4667 else
4668 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4669 }
4670 else if (SCM_REALP (x))
4671 {
4672 double rx = SCM_REAL_VALUE (x);
4673 if (SCM_INUMP (y))
4674 {
4675 long int yy = SCM_INUM (y);
4676#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4677 if (yy == 0)
4678 scm_num_overflow (s_divide);
4679 else
4680#endif
4681 return scm_make_real (rx / (double) yy);
4682 }
4683 else if (SCM_BIGP (y))
4684 {
4685 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4686 scm_remember_upto_here_1 (y);
4687 return scm_make_real (rx / dby);
4688 }
4689 else if (SCM_REALP (y))
4690 {
4691 double yy = SCM_REAL_VALUE (y);
4692#ifndef ALLOW_DIVIDE_BY_ZERO
4693 if (yy == 0.0)
4694 scm_num_overflow (s_divide);
4695 else
4696#endif
4697 return scm_make_real (rx / yy);
4698 }
4699 else if (SCM_COMPLEXP (y))
4700 {
4701 a = rx;
4702 goto complex_div;
4703 }
4704 else if (SCM_FRACTIONP (y))
4705 return scm_make_real (rx / scm_i_fraction2double (y));
4706 else
4707 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4708 }
4709 else if (SCM_COMPLEXP (x))
4710 {
4711 double rx = SCM_COMPLEX_REAL (x);
4712 double ix = SCM_COMPLEX_IMAG (x);
4713 if (SCM_INUMP (y))
4714 {
4715 long int yy = SCM_INUM (y);
4716#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4717 if (yy == 0)
4718 scm_num_overflow (s_divide);
4719 else
4720#endif
4721 {
4722 double d = yy;
4723 return scm_make_complex (rx / d, ix / d);
4724 }
4725 }
4726 else if (SCM_BIGP (y))
4727 {
4728 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4729 scm_remember_upto_here_1 (y);
4730 return scm_make_complex (rx / dby, ix / dby);
4731 }
4732 else if (SCM_REALP (y))
4733 {
4734 double yy = SCM_REAL_VALUE (y);
4735#ifndef ALLOW_DIVIDE_BY_ZERO
4736 if (yy == 0.0)
4737 scm_num_overflow (s_divide);
4738 else
4739#endif
4740 return scm_make_complex (rx / yy, ix / yy);
4741 }
4742 else if (SCM_COMPLEXP (y))
4743 {
4744 double ry = SCM_COMPLEX_REAL (y);
4745 double iy = SCM_COMPLEX_IMAG (y);
4746 if (ry <= iy)
4747 {
4748 double t = ry / iy;
4749 double d = iy * (1.0 + t * t);
4750 return scm_make_complex ((rx * t + ix) / d, (ix * t - rx) / d);
4751 }
4752 else
4753 {
4754 double t = iy / ry;
4755 double d = ry * (1.0 + t * t);
4756 return scm_make_complex ((rx + ix * t) / d, (ix - rx * t) / d);
4757 }
4758 }
4759 else if (SCM_FRACTIONP (y))
4760 {
4761 double yy = scm_i_fraction2double (y);
4762 return scm_make_complex (rx / yy, ix / yy);
4763 }
4764 else
4765 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4766 }
4767 else if (SCM_FRACTIONP (x))
4768 {
4769 if (SCM_INUMP (y))
4770 {
4771 long int yy = SCM_INUM (y);
4772#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4773 if (yy == 0)
4774 scm_num_overflow (s_divide);
4775 else
4776#endif
4777 return scm_make_ratio (SCM_FRACTION_NUMERATOR (x),
4778 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4779 }
4780 else if (SCM_BIGP (y))
4781 {
4782 return scm_make_ratio (SCM_FRACTION_NUMERATOR (x),
4783 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4784 }
4785 else if (SCM_REALP (y))
4786 {
4787 double yy = SCM_REAL_VALUE (y);
4788#ifndef ALLOW_DIVIDE_BY_ZERO
4789 if (yy == 0.0)
4790 scm_num_overflow (s_divide);
4791 else
4792#endif
4793 return scm_make_real (scm_i_fraction2double (x) / yy);
4794 }
4795 else if (SCM_COMPLEXP (y))
4796 {
4797 a = scm_i_fraction2double (x);
4798 goto complex_div;
4799 }
4800 else if (SCM_FRACTIONP (y))
4801 return scm_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4802 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4803 else
4804 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4805 }
4806 else
4807 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
4808}
4809
4810SCM
4811scm_divide (SCM x, SCM y)
4812{
4813 return scm_i_divide (x, y, 0);
4814}
4815
4816static SCM scm_divide2real (SCM x, SCM y)
4817{
4818 return scm_i_divide (x, y, 1);
4819}
4820#undef FUNC_NAME
4821
4822
4823double
4824scm_asinh (double x)
4825{
4826#if HAVE_ASINH
4827 return asinh (x);
4828#else
4829#define asinh scm_asinh
4830 return log (x + sqrt (x * x + 1));
4831#endif
4832}
4833SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4834/* "Return the inverse hyperbolic sine of @var{x}."
4835 */
4836
4837
4838double
4839scm_acosh (double x)
4840{
4841#if HAVE_ACOSH
4842 return acosh (x);
4843#else
4844#define acosh scm_acosh
4845 return log (x + sqrt (x * x - 1));
4846#endif
4847}
4848SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4849/* "Return the inverse hyperbolic cosine of @var{x}."
4850 */
4851
4852
4853double
4854scm_atanh (double x)
4855{
4856#if HAVE_ATANH
4857 return atanh (x);
4858#else
4859#define atanh scm_atanh
4860 return 0.5 * log ((1 + x) / (1 - x));
4861#endif
4862}
4863SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4864/* "Return the inverse hyperbolic tangent of @var{x}."
4865 */
4866
4867
4868/* XXX - eventually, we should remove this definition of scm_round and
4869 rename scm_round_number to scm_round. Likewise for scm_truncate
4870 and scm_truncate_number.
4871 */
4872
4873double
4874scm_truncate (double x)
4875{
4876#if HAVE_TRUNC
4877 return trunc (x);
4878#else
4879#define trunc scm_truncate
4880 if (x < 0.0)
4881 return -floor (-x);
4882 return floor (x);
4883#endif
4884}
4885
4886/* scm_round is done using floor(x+0.5) to round to nearest and with
4887 half-way case (ie. when x is an integer plus 0.5) going upwards. Then
4888 half-way cases are identified and adjusted down if the round-upwards
4889 didn't give the desired even integer.
4890
4891 "plus_half == result" identifies a half-way case. If plus_half, which is
4892 x + 0.5, is an integer then x must be an integer plus 0.5.
4893
4894 An odd "result" value is identified with result/2 != floor(result/2).
4895 This is done with plus_half, since that value is ready for use sooner in
4896 a pipelined cpu, and we're already requiring plus_half == result.
4897
4898 Note however that we need to be careful when x is big and already an
4899 integer. In that case "x+0.5" may round to an adjacent integer, causing
4900 us to return such a value, incorrectly. For instance if the hardware is
4901 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
4902 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
4903 returned. Or if the hardware is in round-upwards mode, then other bigger
4904 values like say x == 2^128 will see x+0.5 rounding up to the next higher
4905 representable value, 2^128+2^76 (or whatever), again incorrect.
4906
4907 These bad roundings of x+0.5 are avoided by testing at the start whether
4908 x is already an integer. If it is then clearly that's the desired result
4909 already. And if it's not then the exponent must be small enough to allow
4910 an 0.5 to be represented, and hence added without a bad rounding. */
4911
4912double
4913scm_round (double x)
4914{
4915 double plus_half, result;
4916
4917 if (x == floor (x))
4918 return x;
4919
4920 plus_half = x + 0.5;
4921 result = floor (plus_half);
4922 /* Adjust so that the scm_round is towards even. */
4923 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
4924 ? result - 1
4925 : result);
4926}
4927
4928SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
4929 (SCM x),
4930 "Round the number @var{x} towards zero.")
4931#define FUNC_NAME s_scm_truncate_number
4932{
4933 if (SCM_FALSEP (scm_negative_p (x)))
4934 return scm_floor (x);
4935 else
4936 return scm_ceiling (x);
4937}
4938#undef FUNC_NAME
4939
4940static SCM exactly_one_half;
4941
4942SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
4943 (SCM x),
4944 "Round the number @var{x} towards the nearest integer. "
4945 "When it is exactly halfway between two integers, "
4946 "round towards the even one.")
4947#define FUNC_NAME s_scm_round_number
4948{
4949 SCM plus_half = scm_sum (x, exactly_one_half);
4950 SCM result = scm_floor (plus_half);
4951 /* Adjust so that the scm_round is towards even. */
4952 if (!SCM_FALSEP (scm_num_eq_p (plus_half, result))
4953 && !SCM_FALSEP (scm_odd_p (result)))
4954 return scm_difference (result, SCM_MAKINUM (1));
4955 else
4956 return result;
4957}
4958#undef FUNC_NAME
4959
4960SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
4961 (SCM x),
4962 "Round the number @var{x} towards minus infinity.")
4963#define FUNC_NAME s_scm_floor
4964{
4965 if (SCM_INUMP (x) || SCM_BIGP (x))
4966 return x;
4967 else if (SCM_REALP (x))
4968 return scm_make_real (floor (SCM_REAL_VALUE (x)));
4969 else if (SCM_FRACTIONP (x))
4970 {
4971 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
4972 SCM_FRACTION_DENOMINATOR (x));
4973 if (SCM_FALSEP (scm_negative_p (x)))
4974 {
4975 /* For positive x, rounding towards zero is correct. */
4976 return q;
4977 }
4978 else
4979 {
4980 /* For negative x, we need to return q-1 unless x is an
4981 integer. But fractions are never integer, per our
4982 assumptions. */
4983 return scm_difference (q, SCM_MAKINUM (1));
4984 }
4985 }
4986 else
4987 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
4988}
4989#undef FUNC_NAME
4990
4991SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
4992 (SCM x),
4993 "Round the number @var{x} towards infinity.")
4994#define FUNC_NAME s_scm_ceiling
4995{
4996 if (SCM_INUMP (x) || SCM_BIGP (x))
4997 return x;
4998 else if (SCM_REALP (x))
4999 return scm_make_real (ceil (SCM_REAL_VALUE (x)));
5000 else if (SCM_FRACTIONP (x))
5001 {
5002 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5003 SCM_FRACTION_DENOMINATOR (x));
5004 if (SCM_FALSEP (scm_positive_p (x)))
5005 {
5006 /* For negative x, rounding towards zero is correct. */
5007 return q;
5008 }
5009 else
5010 {
5011 /* For positive x, we need to return q+1 unless x is an
5012 integer. But fractions are never integer, per our
5013 assumptions. */
5014 return scm_sum (q, SCM_MAKINUM (1));
5015 }
5016 }
5017 else
5018 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5019}
5020#undef FUNC_NAME
5021
5022SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5023/* "Return the square root of the real number @var{x}."
5024 */
5025SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5026/* "Return the absolute value of the real number @var{x}."
5027 */
5028SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5029/* "Return the @var{x}th power of e."
5030 */
5031SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5032/* "Return the natural logarithm of the real number @var{x}."
5033 */
5034SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5035/* "Return the sine of the real number @var{x}."
5036 */
5037SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5038/* "Return the cosine of the real number @var{x}."
5039 */
5040SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5041/* "Return the tangent of the real number @var{x}."
5042 */
5043SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5044/* "Return the arc sine of the real number @var{x}."
5045 */
5046SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5047/* "Return the arc cosine of the real number @var{x}."
5048 */
5049SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5050/* "Return the arc tangent of the real number @var{x}."
5051 */
5052SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5053/* "Return the hyperbolic sine of the real number @var{x}."
5054 */
5055SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5056/* "Return the hyperbolic cosine of the real number @var{x}."
5057 */
5058SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5059/* "Return the hyperbolic tangent of the real number @var{x}."
5060 */
5061
5062struct dpair
5063{
5064 double x, y;
5065};
5066
5067static void scm_two_doubles (SCM x,
5068 SCM y,
5069 const char *sstring,
5070 struct dpair * xy);
5071
5072static void
5073scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5074{
5075 if (SCM_INUMP (x))
5076 xy->x = SCM_INUM (x);
5077 else if (SCM_BIGP (x))
5078 xy->x = scm_i_big2dbl (x);
5079 else if (SCM_REALP (x))
5080 xy->x = SCM_REAL_VALUE (x);
5081 else if (SCM_FRACTIONP (x))
5082 xy->x = scm_i_fraction2double (x);
5083 else
5084 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5085
5086 if (SCM_INUMP (y))
5087 xy->y = SCM_INUM (y);
5088 else if (SCM_BIGP (y))
5089 xy->y = scm_i_big2dbl (y);
5090 else if (SCM_REALP (y))
5091 xy->y = SCM_REAL_VALUE (y);
5092 else if (SCM_FRACTIONP (y))
5093 xy->y = scm_i_fraction2double (y);
5094 else
5095 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5096}
5097
5098
5099SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5100 (SCM x, SCM y),
5101 "Return @var{x} raised to the power of @var{y}. This\n"
5102 "procedure does not accept complex arguments.")
5103#define FUNC_NAME s_scm_sys_expt
5104{
5105 struct dpair xy;
5106 scm_two_doubles (x, y, FUNC_NAME, &xy);
5107 return scm_make_real (pow (xy.x, xy.y));
5108}
5109#undef FUNC_NAME
5110
5111
5112SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5113 (SCM x, SCM y),
5114 "Return the arc tangent of the two arguments @var{x} and\n"
5115 "@var{y}. This is similar to calculating the arc tangent of\n"
5116 "@var{x} / @var{y}, except that the signs of both arguments\n"
5117 "are used to determine the quadrant of the result. This\n"
5118 "procedure does not accept complex arguments.")
5119#define FUNC_NAME s_scm_sys_atan2
5120{
5121 struct dpair xy;
5122 scm_two_doubles (x, y, FUNC_NAME, &xy);
5123 return scm_make_real (atan2 (xy.x, xy.y));
5124}
5125#undef FUNC_NAME
5126
5127
5128SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5129 (SCM real, SCM imaginary),
5130 "Return a complex number constructed of the given @var{real} and\n"
5131 "@var{imaginary} parts.")
5132#define FUNC_NAME s_scm_make_rectangular
5133{
5134 struct dpair xy;
5135 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
5136 return scm_make_complex (xy.x, xy.y);
5137}
5138#undef FUNC_NAME
5139
5140
5141
5142SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5143 (SCM x, SCM y),
5144 "Return the complex number @var{x} * e^(i * @var{y}).")
5145#define FUNC_NAME s_scm_make_polar
5146{
5147 struct dpair xy;
5148 double s, c;
5149 scm_two_doubles (x, y, FUNC_NAME, &xy);
5150#if HAVE_SINCOS
5151 sincos (xy.y, &s, &c);
5152#else
5153 s = sin (xy.y);
5154 c = cos (xy.y);
5155#endif
5156 return scm_make_complex (xy.x * c, xy.x * s);
5157}
5158#undef FUNC_NAME
5159
5160
5161SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5162/* "Return the real part of the number @var{z}."
5163 */
5164SCM
5165scm_real_part (SCM z)
5166{
5167 if (SCM_INUMP (z))
5168 return z;
5169 else if (SCM_BIGP (z))
5170 return z;
5171 else if (SCM_REALP (z))
5172 return z;
5173 else if (SCM_COMPLEXP (z))
5174 return scm_make_real (SCM_COMPLEX_REAL (z));
5175 else if (SCM_FRACTIONP (z))
5176 return z;
5177 else
5178 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5179}
5180
5181
5182SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5183/* "Return the imaginary part of the number @var{z}."
5184 */
5185SCM
5186scm_imag_part (SCM z)
5187{
5188 if (SCM_INUMP (z))
5189 return SCM_INUM0;
5190 else if (SCM_BIGP (z))
5191 return SCM_INUM0;
5192 else if (SCM_REALP (z))
5193 return scm_flo0;
5194 else if (SCM_COMPLEXP (z))
5195 return scm_make_real (SCM_COMPLEX_IMAG (z));
5196 else if (SCM_FRACTIONP (z))
5197 return SCM_INUM0;
5198 else
5199 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5200}
5201
5202SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5203/* "Return the numerator of the number @var{z}."
5204 */
5205SCM
5206scm_numerator (SCM z)
5207{
5208 if (SCM_INUMP (z))
5209 return z;
5210 else if (SCM_BIGP (z))
5211 return z;
5212 else if (SCM_FRACTIONP (z))
5213 {
5214 scm_i_fraction_reduce (z);
5215 return SCM_FRACTION_NUMERATOR (z);
5216 }
5217 else if (SCM_REALP (z))
5218 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5219 else
5220 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5221}
5222
5223
5224SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5225/* "Return the denominator of the number @var{z}."
5226 */
5227SCM
5228scm_denominator (SCM z)
5229{
5230 if (SCM_INUMP (z))
5231 return SCM_MAKINUM (1);
5232 else if (SCM_BIGP (z))
5233 return SCM_MAKINUM (1);
5234 else if (SCM_FRACTIONP (z))
5235 {
5236 scm_i_fraction_reduce (z);
5237 return SCM_FRACTION_DENOMINATOR (z);
5238 }
5239 else if (SCM_REALP (z))
5240 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5241 else
5242 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5243}
5244
5245SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5246/* "Return the magnitude of the number @var{z}. This is the same as\n"
5247 * "@code{abs} for real arguments, but also allows complex numbers."
5248 */
5249SCM
5250scm_magnitude (SCM z)
5251{
5252 if (SCM_INUMP (z))
5253 {
5254 long int zz = SCM_INUM (z);
5255 if (zz >= 0)
5256 return z;
5257 else if (SCM_POSFIXABLE (-zz))
5258 return SCM_MAKINUM (-zz);
5259 else
5260 return scm_i_long2big (-zz);
5261 }
5262 else if (SCM_BIGP (z))
5263 {
5264 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5265 scm_remember_upto_here_1 (z);
5266 if (sgn < 0)
5267 return scm_i_clonebig (z, 0);
5268 else
5269 return z;
5270 }
5271 else if (SCM_REALP (z))
5272 return scm_make_real (fabs (SCM_REAL_VALUE (z)));
5273 else if (SCM_COMPLEXP (z))
5274 return scm_make_real (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5275 else if (SCM_FRACTIONP (z))
5276 {
5277 if (SCM_FALSEP (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5278 return z;
5279 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5280 SCM_FRACTION_DENOMINATOR (z));
5281 }
5282 else
5283 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5284}
5285
5286
5287SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5288/* "Return the angle of the complex number @var{z}."
5289 */
5290SCM
5291scm_angle (SCM z)
5292{
5293 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5294 scm_flo0 to save allocating a new flonum with scm_make_real each time.
5295 But if atan2 follows the floating point rounding mode, then the value
5296 is not a constant. Maybe it'd be close enough though. */
5297 if (SCM_INUMP (z))
5298 {
5299 if (SCM_INUM (z) >= 0)
5300 return scm_flo0;
5301 else
5302 return scm_make_real (atan2 (0.0, -1.0));
5303 }
5304 else if (SCM_BIGP (z))
5305 {
5306 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5307 scm_remember_upto_here_1 (z);
5308 if (sgn < 0)
5309 return scm_make_real (atan2 (0.0, -1.0));
5310 else
5311 return scm_flo0;
5312 }
5313 else if (SCM_REALP (z))
5314 {
5315 if (SCM_REAL_VALUE (z) >= 0)
5316 return scm_flo0;
5317 else
5318 return scm_make_real (atan2 (0.0, -1.0));
5319 }
5320 else if (SCM_COMPLEXP (z))
5321 return scm_make_real (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5322 else if (SCM_FRACTIONP (z))
5323 {
5324 if (SCM_FALSEP (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5325 return scm_flo0;
5326 else return scm_make_real (atan2 (0.0, -1.0));
5327 }
5328 else
5329 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5330}
5331
5332
5333SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5334/* Convert the number @var{x} to its inexact representation.\n"
5335 */
5336SCM
5337scm_exact_to_inexact (SCM z)
5338{
5339 if (SCM_INUMP (z))
5340 return scm_make_real ((double) SCM_INUM (z));
5341 else if (SCM_BIGP (z))
5342 return scm_make_real (scm_i_big2dbl (z));
5343 else if (SCM_FRACTIONP (z))
5344 return scm_make_real (scm_i_fraction2double (z));
5345 else if (SCM_INEXACTP (z))
5346 return z;
5347 else
5348 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5349}
5350
5351
5352SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5353 (SCM z),
5354 "Return an exact number that is numerically closest to @var{z}.")
5355#define FUNC_NAME s_scm_inexact_to_exact
5356{
5357 if (SCM_INUMP (z))
5358 return z;
5359 else if (SCM_BIGP (z))
5360 return z;
5361 else if (SCM_REALP (z))
5362 {
5363 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5364 SCM_OUT_OF_RANGE (1, z);
5365 else
5366 {
5367 mpq_t frac;
5368 SCM q;
5369
5370 mpq_init (frac);
5371 mpq_set_d (frac, SCM_REAL_VALUE (z));
5372 q = scm_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5373 scm_i_mpz2num (mpq_denref (frac)));
5374
5375 /* When scm_make_ratio throws, we leak the memory allocated
5376 for frac...
5377 */
5378 mpq_clear (frac);
5379 return q;
5380 }
5381 }
5382 else if (SCM_FRACTIONP (z))
5383 return z;
5384 else
5385 SCM_WRONG_TYPE_ARG (1, z);
5386}
5387#undef FUNC_NAME
5388
5389SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5390 (SCM x, SCM err),
5391 "Return an exact number that is within @var{err} of @var{x}.")
5392#define FUNC_NAME s_scm_rationalize
5393{
5394 if (SCM_INUMP (x))
5395 return x;
5396 else if (SCM_BIGP (x))
5397 return x;
5398 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5399 {
5400 /* Use continued fractions to find closest ratio. All
5401 arithmetic is done with exact numbers.
5402 */
5403
5404 SCM ex = scm_inexact_to_exact (x);
5405 SCM int_part = scm_floor (ex);
5406 SCM tt = SCM_MAKINUM (1);
5407 SCM a1 = SCM_MAKINUM (0), a2 = SCM_MAKINUM (1), a = SCM_MAKINUM (0);
5408 SCM b1 = SCM_MAKINUM (1), b2 = SCM_MAKINUM (0), b = SCM_MAKINUM (0);
5409 SCM rx;
5410 int i = 0;
5411
5412 if (!SCM_FALSEP (scm_num_eq_p (ex, int_part)))
5413 return ex;
5414
5415 ex = scm_difference (ex, int_part); /* x = x-int_part */
5416 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5417
5418 /* We stop after a million iterations just to be absolutely sure
5419 that we don't go into an infinite loop. The process normally
5420 converges after less than a dozen iterations.
5421 */
5422
5423 err = scm_abs (err);
5424 while (++i < 1000000)
5425 {
5426 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5427 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5428 if (SCM_FALSEP (scm_zero_p (b)) && /* b != 0 */
5429 SCM_FALSEP
5430 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5431 err))) /* abs(x-a/b) <= err */
5432 {
5433 SCM res = scm_sum (int_part, scm_divide (a, b));
5434 if (SCM_FALSEP (scm_exact_p (x))
5435 || SCM_FALSEP (scm_exact_p (err)))
5436 return scm_exact_to_inexact (res);
5437 else
5438 return res;
5439 }
5440 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5441 SCM_UNDEFINED);
5442 tt = scm_floor (rx); /* tt = floor (rx) */
5443 a2 = a1;
5444 b2 = b1;
5445 a1 = a;
5446 b1 = b;
5447 }
5448 scm_num_overflow (s_scm_rationalize);
5449 }
5450 else
5451 SCM_WRONG_TYPE_ARG (1, x);
5452}
5453#undef FUNC_NAME
5454
5455/* if you need to change this, change test-num2integral.c as well */
5456#if SCM_SIZEOF_LONG_LONG != 0
5457# ifndef LLONG_MAX
5458# define ULLONG_MAX ((unsigned long long) (-1))
5459# define LLONG_MAX ((long long) (ULLONG_MAX >> 1))
5460# define LLONG_MIN (~LLONG_MAX)
5461# endif
5462#endif
5463
5464/* Parameters for creating integer conversion routines.
5465
5466 Define the following preprocessor macros before including
5467 "libguile/num2integral.i.c":
5468
5469 NUM2INTEGRAL - the name of the function for converting from a
5470 Scheme object to the integral type. This function will be
5471 defined when including "num2integral.i.c".
5472
5473 INTEGRAL2NUM - the name of the function for converting from the
5474 integral type to a Scheme object. This function will be defined.
5475
5476 INTEGRAL2BIG - the name of an internal function that createas a
5477 bignum from the integral type. This function will be defined.
5478 The name should start with "scm_i_".
5479
5480 ITYPE - the name of the integral type.
5481
5482 UNSIGNED - Define this to 1 when ITYPE is an unsigned type. Define
5483 it to 0 otherwise.
5484
5485 UNSIGNED_ITYPE - the name of the the unsigned variant of the
5486 integral type. If you don't define this, it defaults to
5487 "unsigned ITYPE" for signed types and simply "ITYPE" for unsigned
5488 ones.
5489
5490 SIZEOF_ITYPE - an expression giving the size of the integral type
5491 in bytes. This expression must be computable by the
5492 preprocessor. (SIZEOF_FOO values are calculated by configure.in
5493 for common types).
5494
5495*/
5496
5497#define NUM2INTEGRAL scm_num2short
5498#define INTEGRAL2NUM scm_short2num
5499#define INTEGRAL2BIG scm_i_short2big
5500#define UNSIGNED 0
5501#define ITYPE short
5502#define SIZEOF_ITYPE SIZEOF_SHORT
5503#include "libguile/num2integral.i.c"
5504
5505#define NUM2INTEGRAL scm_num2ushort
5506#define INTEGRAL2NUM scm_ushort2num
5507#define INTEGRAL2BIG scm_i_ushort2big
5508#define UNSIGNED 1
5509#define ITYPE unsigned short
5510#define SIZEOF_ITYPE SIZEOF_UNSIGNED_SHORT
5511#include "libguile/num2integral.i.c"
5512
5513#define NUM2INTEGRAL scm_num2int
5514#define INTEGRAL2NUM scm_int2num
5515#define INTEGRAL2BIG scm_i_int2big
5516#define UNSIGNED 0
5517#define ITYPE int
5518#define SIZEOF_ITYPE SIZEOF_INT
5519#include "libguile/num2integral.i.c"
5520
5521#define NUM2INTEGRAL scm_num2uint
5522#define INTEGRAL2NUM scm_uint2num
5523#define INTEGRAL2BIG scm_i_uint2big
5524#define UNSIGNED 1
5525#define ITYPE unsigned int
5526#define SIZEOF_ITYPE SIZEOF_UNSIGNED_INT
5527#include "libguile/num2integral.i.c"
5528
5529#define NUM2INTEGRAL scm_num2long
5530#define INTEGRAL2NUM scm_long2num
5531#define INTEGRAL2BIG scm_i_long2big
5532#define UNSIGNED 0
5533#define ITYPE long
5534#define SIZEOF_ITYPE SIZEOF_LONG
5535#include "libguile/num2integral.i.c"
5536
5537#define NUM2INTEGRAL scm_num2ulong
5538#define INTEGRAL2NUM scm_ulong2num
5539#define INTEGRAL2BIG scm_i_ulong2big
5540#define UNSIGNED 1
5541#define ITYPE unsigned long
5542#define SIZEOF_ITYPE SIZEOF_UNSIGNED_LONG
5543#include "libguile/num2integral.i.c"
5544
5545#define NUM2INTEGRAL scm_num2ptrdiff
5546#define INTEGRAL2NUM scm_ptrdiff2num
5547#define INTEGRAL2BIG scm_i_ptrdiff2big
5548#define UNSIGNED 0
5549#define ITYPE scm_t_ptrdiff
5550#define UNSIGNED_ITYPE size_t
5551#define SIZEOF_ITYPE SCM_SIZEOF_SCM_T_PTRDIFF
5552#include "libguile/num2integral.i.c"
5553
5554#define NUM2INTEGRAL scm_num2size
5555#define INTEGRAL2NUM scm_size2num
5556#define INTEGRAL2BIG scm_i_size2big
5557#define UNSIGNED 1
5558#define ITYPE size_t
5559#define SIZEOF_ITYPE SIZEOF_SIZE_T
5560#include "libguile/num2integral.i.c"
5561
5562#if SCM_SIZEOF_LONG_LONG != 0
5563
5564#ifndef ULONG_LONG_MAX
5565#define ULONG_LONG_MAX (~0ULL)
5566#endif
5567
5568#define NUM2INTEGRAL scm_num2long_long
5569#define INTEGRAL2NUM scm_long_long2num
5570#define INTEGRAL2BIG scm_i_long_long2big
5571#define UNSIGNED 0
5572#define ITYPE long long
5573#define SIZEOF_ITYPE SIZEOF_LONG_LONG
5574#include "libguile/num2integral.i.c"
5575
5576#define NUM2INTEGRAL scm_num2ulong_long
5577#define INTEGRAL2NUM scm_ulong_long2num
5578#define INTEGRAL2BIG scm_i_ulong_long2big
5579#define UNSIGNED 1
5580#define ITYPE unsigned long long
5581#define SIZEOF_ITYPE SIZEOF_UNSIGNED_LONG_LONG
5582#include "libguile/num2integral.i.c"
5583
5584#endif /* SCM_SIZEOF_LONG_LONG != 0 */
5585
5586#define NUM2FLOAT scm_num2float
5587#define FLOAT2NUM scm_float2num
5588#define FTYPE float
5589#include "libguile/num2float.i.c"
5590
5591#define NUM2FLOAT scm_num2double
5592#define FLOAT2NUM scm_double2num
5593#define FTYPE double
5594#include "libguile/num2float.i.c"
5595
5596#ifdef GUILE_DEBUG
5597
5598#ifndef SIZE_MAX
5599#define SIZE_MAX ((size_t) (-1))
5600#endif
5601#ifndef PTRDIFF_MIN
5602#define PTRDIFF_MIN \
5603 ((scm_t_ptrdiff) ((scm_t_ptrdiff) 1 \
5604 << ((sizeof (scm_t_ptrdiff) * SCM_CHAR_BIT) - 1)))
5605#endif
5606#ifndef PTRDIFF_MAX
5607#define PTRDIFF_MAX (~ PTRDIFF_MIN)
5608#endif
5609
5610#define CHECK(type, v) \
5611 do \
5612 { \
5613 if ((v) != scm_num2##type (scm_##type##2num (v), 1, "check_sanity")) \
5614 abort (); \
5615 } \
5616 while (0)
5617
5618static void
5619check_sanity ()
5620{
5621 CHECK (short, 0);
5622 CHECK (ushort, 0U);
5623 CHECK (int, 0);
5624 CHECK (uint, 0U);
5625 CHECK (long, 0L);
5626 CHECK (ulong, 0UL);
5627 CHECK (size, 0);
5628 CHECK (ptrdiff, 0);
5629
5630 CHECK (short, -1);
5631 CHECK (int, -1);
5632 CHECK (long, -1L);
5633 CHECK (ptrdiff, -1);
5634
5635 CHECK (short, SHRT_MAX);
5636 CHECK (short, SHRT_MIN);
5637 CHECK (ushort, USHRT_MAX);
5638 CHECK (int, INT_MAX);
5639 CHECK (int, INT_MIN);
5640 CHECK (uint, UINT_MAX);
5641 CHECK (long, LONG_MAX);
5642 CHECK (long, LONG_MIN);
5643 CHECK (ulong, ULONG_MAX);
5644 CHECK (size, SIZE_MAX);
5645 CHECK (ptrdiff, PTRDIFF_MAX);
5646 CHECK (ptrdiff, PTRDIFF_MIN);
5647
5648#if SCM_SIZEOF_LONG_LONG != 0
5649 CHECK (long_long, 0LL);
5650 CHECK (ulong_long, 0ULL);
5651 CHECK (long_long, -1LL);
5652 CHECK (long_long, LLONG_MAX);
5653 CHECK (long_long, LLONG_MIN);
5654 CHECK (ulong_long, ULLONG_MAX);
5655#endif
5656}
5657
5658#undef CHECK
5659
5660#define CHECK \
5661 scm_internal_catch (SCM_BOOL_T, check_body, &data, check_handler, &data); \
5662 if (!SCM_FALSEP (data)) abort();
5663
5664static SCM
5665check_body (void *data)
5666{
5667 SCM num = *(SCM *) data;
5668 scm_num2ulong (num, 1, NULL);
5669
5670 return SCM_UNSPECIFIED;
5671}
5672
5673static SCM
5674check_handler (void *data, SCM tag, SCM throw_args)
5675{
5676 SCM *num = (SCM *) data;
5677 *num = SCM_BOOL_F;
5678
5679 return SCM_UNSPECIFIED;
5680}
5681
5682SCM_DEFINE (scm_sys_check_number_conversions, "%check-number-conversions", 0, 0, 0,
5683 (void),
5684 "Number conversion sanity checking.")
5685#define FUNC_NAME s_scm_sys_check_number_conversions
5686{
5687 SCM data = SCM_MAKINUM (-1);
5688 CHECK;
5689 data = scm_int2num (INT_MIN);
5690 CHECK;
5691 data = scm_ulong2num (ULONG_MAX);
5692 data = scm_difference (SCM_INUM0, data);
5693 CHECK;
5694 data = scm_ulong2num (ULONG_MAX);
5695 data = scm_sum (SCM_MAKINUM (1), data); data = scm_difference (SCM_INUM0, data);
5696 CHECK;
5697 data = scm_int2num (-10000); data = scm_product (data, data); data = scm_product (data, data);
5698 CHECK;
5699
5700 return SCM_UNSPECIFIED;
5701}
5702#undef FUNC_NAME
5703
5704#endif
5705
5706void
5707scm_init_numbers ()
5708{
5709 mpz_init_set_si (z_negative_one, -1);
5710
5711 /* It may be possible to tune the performance of some algorithms by using
5712 * the following constants to avoid the creation of bignums. Please, before
5713 * using these values, remember the two rules of program optimization:
5714 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
5715 scm_c_define ("most-positive-fixnum",
5716 SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
5717 scm_c_define ("most-negative-fixnum",
5718 SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
5719
5720 scm_add_feature ("complex");
5721 scm_add_feature ("inexact");
5722 scm_flo0 = scm_make_real (0.0);
5723#ifdef DBL_DIG
5724 scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG;
5725#else
5726 { /* determine floating point precision */
5727 double f = 0.1;
5728 double fsum = 1.0 + f;
5729 while (fsum != 1.0)
5730 {
5731 if (++scm_dblprec > 20)
5732 fsum = 1.0;
5733 else
5734 {
5735 f /= 10.0;
5736 fsum = f + 1.0;
5737 }
5738 }
5739 scm_dblprec = scm_dblprec - 1;
5740 }
5741#endif /* DBL_DIG */
5742
5743#ifdef GUILE_DEBUG
5744 check_sanity ();
5745#endif
5746
5747 exactly_one_half = scm_permanent_object (scm_divide (SCM_MAKINUM (1),
5748 SCM_MAKINUM (2)));
5749#include "libguile/numbers.x"
5750}
5751
5752/*
5753 Local Variables:
5754 c-file-style: "gnu"
5755 End:
5756*/