*** empty log message ***
[bpt/guile.git] / ice-9 / boot-9.scm
CommitLineData
0f2d19dd
JB
1;;; installed-scm-file
2
3;;;; Copyright (C) 1995, 1996 Free Software Foundation, Inc.
4;;;;
5;;;; This program is free software; you can redistribute it and/or modify
6;;;; it under the terms of the GNU General Public License as published by
7;;;; the Free Software Foundation; either version 2, or (at your option)
8;;;; any later version.
9;;;;
10;;;; This program is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13;;;; GNU General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU General Public License
16;;;; along with this software; see the file COPYING. If not, write to
17;;;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
18;;;;
19\f
20
21;;; This file is the first thing loaded into Guile. It adds many mundane
22;;; definitions and a few that are interesting.
23;;;
24;;; The module system (hence the hierarchical namespace) are defined in this
25;;; file.
26;;;
27
28\f
21ed9efe
MD
29;;; During Guile development, we want to use debugging evaluator and record
30;;; positions of source expressions in boot-9.scm by default.
31
32(debug-options-interface (cons 'debug (debug-options-interface)))
33(read-options-interface (cons 'positions (read-options-interface)))
34
35\f
36;;; {Features}
37;;
38
39(define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43\f
79451588
JB
44;;; {R4RS compliance}
45
46(primitive-load-path "ice-9/r4rs.scm")
47
48\f
44cf1f0f 49;;; {Simple Debugging Tools}
0f2d19dd
JB
50;;
51
52
53;; peek takes any number of arguments, writes them to the
54;; current ouput port, and returns the last argument.
55;; It is handy to wrap around an expression to look at
56;; a value each time is evaluated, e.g.:
57;;
58;; (+ 10 (troublesome-fn))
59;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
60;;
61
62(define (peek . stuff)
63 (newline)
64 (display ";;; ")
65 (write stuff)
66 (newline)
67 (car (last-pair stuff)))
68
69(define pk peek)
70
71(define (warn . stuff)
72 (with-output-to-port (current-error-port)
73 (lambda ()
74 (newline)
75 (display ";;; WARNING ")
6355358a 76 (display stuff)
0f2d19dd
JB
77 (newline)
78 (car (last-pair stuff)))))
79
80\f
81;;; {apply and call-with-current-continuation}
82;;;
83;;; These turn syntax, @apply and @call-with-current-continuation,
84;;; into procedures.
85;;;
86
87(set! apply (lambda (fun . args) (@apply fun (apply:nconc2last args))))
44cf1f0f
JB
88(define (call-with-current-continuation proc)
89 (@call-with-current-continuation proc))
0f2d19dd
JB
90
91
92\f
79451588 93;;; {Trivial Functions}
0f2d19dd 94;;;
79451588
JB
95
96(define (id x) x)
97(define (1+ n) (+ n 1))
98(define (-1+ n) (+ n -1))
99(define 1- -1+)
100(define return-it noop)
132e5fac 101(define (and=> value procedure) (and value (procedure value)))
79451588
JB
102(define (make-hash-table k) (make-vector k '()))
103
0f2d19dd
JB
104;;; apply-to-args is functionally redunant with apply and, worse,
105;;; is less general than apply since it only takes two arguments.
106;;;
107;;; On the other hand, apply-to-args is a syntacticly convenient way to
108;;; perform binding in many circumstances when the "let" family of
109;;; of forms don't cut it. E.g.:
110;;;
111;;; (apply-to-args (return-3d-mouse-coords)
112;;; (lambda (x y z)
113;;; ...))
114;;;
115
116(define (apply-to-args args fn) (apply fn args))
117
118\f
0f2d19dd
JB
119;;; {Integer Math}
120;;;
121
0f2d19dd
JB
122(define (ipow-by-squaring x k acc proc)
123 (cond ((zero? k) acc)
124 ((= 1 k) (proc acc x))
125 (else (logical:ipow-by-squaring (proc x x)
126 (quotient k 2)
127 (if (even? k) acc (proc acc x))
128 proc))))
129
130(define string-character-length string-length)
131
132
133
134;; A convenience function for combining flag bits. Like logior, but
135;; handles the cases of 0 and 1 arguments.
136;;
137(define (flags . args)
138 (cond
139 ((null? args) 0)
140 ((null? (cdr args)) (car args))
141 (else (apply logior args))))
142
143\f
0f2d19dd
JB
144;;; {Symbol Properties}
145;;;
146
147(define (symbol-property sym prop)
148 (let ((pair (assoc prop (symbol-pref sym))))
149 (and pair (cdr pair))))
150
151(define (set-symbol-property! sym prop val)
152 (let ((pair (assoc prop (symbol-pref sym))))
153 (if pair
154 (set-cdr! pair val)
155 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
156
157(define (symbol-property-remove! sym prop)
158 (let ((pair (assoc prop (symbol-pref sym))))
159 (if pair
160 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
161
162\f
163;;; {Arrays}
164;;;
165
166(begin
167 (define uniform-vector? array?)
168 (define make-uniform-vector dimensions->uniform-array)
169 ; (define uniform-vector-ref array-ref)
170 (define (uniform-vector-set! u i o)
171 (uniform-vector-set1! u o i))
172 (define uniform-vector-fill! array-fill!)
173 (define uniform-vector-read! uniform-array-read!)
174 (define uniform-vector-write uniform-array-write)
175
176 (define (make-array fill . args)
177 (dimensions->uniform-array args () fill))
178 (define (make-uniform-array prot . args)
179 (dimensions->uniform-array args prot))
180 (define (list->array ndim lst)
181 (list->uniform-array ndim '() lst))
182 (define (list->uniform-vector prot lst)
183 (list->uniform-array 1 prot lst))
184 (define (array-shape a)
185 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
186 (array-dimensions a))))
187
188\f
189;;; {Keywords}
190;;;
191
192(define (symbol->keyword symbol)
193 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
194
195(define (keyword->symbol kw)
196 (let ((sym (keyword-dash-symbol kw)))
197 (string->symbol (substring sym 1 (length sym)))))
198
199(define (kw-arg-ref args kw)
200 (let ((rem (member kw args)))
201 (and rem (pair? (cdr rem)) (cadr rem))))
202
203\f
0f2d19dd 204;;; {Print}
6355358a
MD
205;;; MDJ 960919 <djurfeldt@nada.kth.se>: This code will probably be
206;;; removed before the first release of Guile. Later releases may
207;;; contain more fancy printing code.
0f2d19dd
JB
208
209(define (print obj . args)
210 (let ((default-args (list (current-output-port) 0 0 default-print-style #f)))
211 (apply-to-args (append args (list-cdr-ref default-args (length args)))
212 (lambda (port depth length style table)
213 (cond
c7c03b9f
JB
214 ((and table (print-table-ref table obj))
215 ((print-style-tag-hook style 'eq-val)
216 obj port depth length style table))
0f2d19dd
JB
217 (else
218 (and table (print-table-add! table obj))
219 (cond
c7c03b9f
JB
220 ((print-style-max-depth? style depth)
221 ((print-style-excess-depth-hook style)))
222 ((print-style-max-length? style length)
223 ((print-style-excess-length-hook style)))
224 (else
225 ((print-style-hook style obj)
226 obj port depth length style table)))))))))
0f2d19dd 227
95b6af86 228(define (make-print-style) (make-vector 59 '()))
0f2d19dd 229
c7c03b9f
JB
230(define (extend-print-style! style utag printer)
231 (hashq-set! style utag printer))
0f2d19dd
JB
232
233(define (print-style-hook style obj)
234 (let ((type-tag (tag obj)))
235 (or (hashq-ref style type-tag)
236 (hashq-ref style (logand type-tag 255))
237 print-obj)))
238
239(define (print-style-tag-hook style type-tag)
240 (or (hashq-ref style type-tag)
241 print-obj))
242
243(define (print-style-max-depth? style d) #f)
244(define (print-style-max-length? style l) #f)
c7c03b9f
JB
245(define (print-style-excess-length-hook style)
246 (hashq-ref style 'excess-length-hook))
247(define (print-style-excess-depth-hook style)
248 (hashq-ref style 'excess-depth-hook))
0f2d19dd 249
95b6af86 250(define (make-print-table) (make-vector 59 '()))
0f2d19dd
JB
251(define (print-table-ref table obj) (hashq-ref table obj))
252(define (print-table-add! table obj) (hashq-set! table obj (gensym 'ref)))
253
254(define (print-obj obj port depth length style table) (write obj port))
255
256(define (print-pair pair port depth length style table)
257 (if (= 0 length)
258 (display #\( port))
259
260 (print (car pair) port (+ 1 depth) 0 style table)
261
262 (cond
263 ((and (pair? (cdr pair))
264 (or (not table)
265 (not (print-table-ref table (cdr pair)))))
266
267 (display #\space port)
268 (print (cdr pair) port depth (+ 1 length) style table))
269
270 ((null? (cdr pair)) (display #\) port))
271
272 (else (display " . " port)
c7c03b9f
JB
273 (print (cdr pair) port (+ 1 depth) 0
274 style table)
0f2d19dd
JB
275 (display #\) port))))
276
277(define (print-vector obj port depth length style table)
278 (if (= 0 length)
279 (cond
074fa9cf 280 ((weak-key-hash-table? obj) (display "#wh(" port))
0f2d19dd
JB
281 ((weak-value-hash-table? obj) (display "#whv(" port))
282 ((doubly-weak-hash-table? obj) (display "#whd(" port))
283 (else (display "#(" port))))
284
285 (if (< length (vector-length obj))
286 (print (vector-ref obj length) port (+ 1 depth) 0 style table))
287
288 (cond
289 ((>= (+ 1 length) (vector-length obj)) (display #\) port))
290 (else (display #\space port)
c7c03b9f
JB
291 (print obj port depth
292 (+ 1 length)
293 style table))))
0f2d19dd
JB
294
295(define default-print-style (make-print-style))
296
297(extend-print-style! default-print-style utag_vector print-vector)
298(extend-print-style! default-print-style utag_wvect print-vector)
299(extend-print-style! default-print-style utag_pair print-pair)
300(extend-print-style! default-print-style 'eq-val
301 (lambda (obj port depth length style table)
302 (if (symbol? obj)
303 (display obj)
304 (begin
305 (display "##" port)
306 (display (print-table-ref table obj))))))
307
308\f
309;;; {Records}
310;;;
311
312(define record-type-vtable (make-vtable-vtable "prpr" 0))
313
314(define (record-type? obj)
315 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
316
317(define (make-record-type type-name fields . opt)
8e693424 318 (let ((printer-fn (and (pair? opt) (car opt))))
0f2d19dd 319 (let ((struct (make-struct record-type-vtable 0
c7c03b9f
JB
320 (make-struct-layout
321 (apply symbol-append
322 (map (lambda (f) "pw") fields)))
0f2d19dd
JB
323 type-name
324 (copy-tree fields))))
325 ;; !!! leaks printer functions
6355358a
MD
326 ;; MDJ 960919 <djurfeldt@nada.kth.se>: *fixme* need to make it
327 ;; possible to print records nicely.
328 ;(if printer-fn
329; (extend-print-style! default-print-style
330; (logior utag_struct_base (ash (struct-vtable-tag struct) 8))
331; printer-fn))
0f2d19dd
JB
332 struct)))
333
334(define (record-type-name obj)
335 (if (record-type? obj)
336 (struct-ref obj struct-vtable-offset)
337 (error 'not-a-record-type obj)))
338
339(define (record-type-fields obj)
340 (if (record-type? obj)
341 (struct-ref obj (+ 1 struct-vtable-offset))
342 (error 'not-a-record-type obj)))
343
344(define (record-constructor rtd . opt)
8e693424 345 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
0f2d19dd
JB
346 (eval `(lambda ,field-names
347 (make-struct ',rtd 0 ,@(map (lambda (f)
348 (if (memq f field-names)
349 f
350 #f))
351 (record-type-fields rtd)))))))
352
353(define (record-predicate rtd)
354 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
355
356(define (record-accessor rtd field-name)
357 (let* ((pos (list-index (record-type-fields rtd) field-name)))
358 (if (not pos)
359 (error 'no-such-field field-name))
360 (eval `(lambda (obj)
361 (and (eq? ',rtd (record-type-descriptor obj))
362 (struct-ref obj ,pos))))))
363
364(define (record-modifier rtd field-name)
365 (let* ((pos (list-index (record-type-fields rtd) field-name)))
366 (if (not pos)
367 (error 'no-such-field field-name))
368 (eval `(lambda (obj val)
369 (and (eq? ',rtd (record-type-descriptor obj))
370 (struct-set! obj ,pos val))))))
371
372
373(define (record? obj)
374 (and (struct? obj) (record-type? (struct-vtable obj))))
375
376(define (record-type-descriptor obj)
377 (if (struct? obj)
378 (struct-vtable obj)
379 (error 'not-a-record obj)))
380
21ed9efe
MD
381(provide 'record)
382
0f2d19dd
JB
383\f
384;;; {Booleans}
385;;;
386
387(define (->bool x) (not (not x)))
388
389\f
390;;; {Symbols}
391;;;
392
393(define (symbol-append . args)
394 (string->symbol (apply string-append args)))
395
396(define (list->symbol . args)
397 (string->symbol (apply list->string args)))
398
399(define (symbol . args)
400 (string->symbol (apply string args)))
401
402(define (obarray-symbol-append ob . args)
403 (string->obarray-symbol (apply string-append ob args)))
404
405(define obarray-gensym
406 (let ((n -1))
407 (lambda (obarray . opt)
408 (if (null? opt)
409 (set! opt '(%%gensym)))
410 (let loop ((proposed-name (apply string-append opt)))
411 (if (string->obarray-symbol obarray proposed-name #t)
412 (loop (apply string-append (append opt (begin (set! n (1+ n)) (list (number->string n))))))
413 (string->obarray-symbol obarray proposed-name))))))
414
415(define (gensym . args) (apply obarray-gensym #f args))
416
417\f
418;;; {Lists}
419;;;
420
421(define (list-index l k)
422 (let loop ((n 0)
423 (l l))
424 (and (not (null? l))
425 (if (eq? (car l) k)
426 n
427 (loop (+ n 1) (cdr l))))))
428
429(define (make-list n init)
430 (let loop ((answer '())
431 (n n))
432 (if (<= n 0)
433 answer
434 (loop (cons init answer) (- n 1)))))
435
436
437\f
438;;; {and-map, or-map, and map-in-order}
439;;;
440;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
441;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
442;;; (map-in-order fn lst) is like (map fn lst) but definately in order of lst.
443;;;
444
445;; and-map f l
446;;
447;; Apply f to successive elements of l until exhaustion or f returns #f.
448;; If returning early, return #f. Otherwise, return the last value returned
449;; by f. If f has never been called because l is empty, return #t.
450;;
451(define (and-map f lst)
452 (let loop ((result #t)
453 (l lst))
454 (and result
455 (or (and (null? l)
456 result)
457 (loop (f (car l)) (cdr l))))))
458
459;; or-map f l
460;;
461;; Apply f to successive elements of l until exhaustion or while f returns #f.
462;; If returning early, return the return value of f.
463;;
464(define (or-map f lst)
465 (let loop ((result #f)
466 (l lst))
467 (or result
468 (and (not (null? l))
469 (loop (f (car l)) (cdr l))))))
470
471;; map-in-order
472;;
473;; Like map, but guaranteed to process the list in order.
474;;
475(define (map-in-order fn l)
476 (if (null? l)
477 '()
478 (cons (fn (car l))
479 (map-in-order fn (cdr l)))))
480
481\f
482;;; {Files}
483;;; !!!! these should be implemented using Tcl commands, not fports.
484;;;
485
6fa8995c
GH
486(define (feature? feature)
487 (and (memq feature *features*) #t))
488
3afb28ce
GH
489;; Using the vector returned by stat directly is probably not a good
490;; idea (it could just as well be a record). Hence some accessors.
491(define (stat:dev f) (vector-ref f 0))
492(define (stat:ino f) (vector-ref f 1))
493(define (stat:mode f) (vector-ref f 2))
494(define (stat:nlink f) (vector-ref f 3))
495(define (stat:uid f) (vector-ref f 4))
496(define (stat:gid f) (vector-ref f 5))
497(define (stat:rdev f) (vector-ref f 6))
498(define (stat:size f) (vector-ref f 7))
499(define (stat:atime f) (vector-ref f 8))
500(define (stat:mtime f) (vector-ref f 9))
501(define (stat:ctime f) (vector-ref f 10))
502(define (stat:blksize f) (vector-ref f 11))
503(define (stat:blocks f) (vector-ref f 12))
504
505;; derived from stat mode.
506(define (stat:type f) (vector-ref f 13))
507(define (stat:perms f) (vector-ref f 14))
508
6fa8995c
GH
509(define file-exists?
510 (if (feature? 'posix)
511 (lambda (str)
512 (access? str F_OK))
513 (lambda (str)
514 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
515 (lambda args #f))))
516 (if port (begin (close-port port) #t)
517 #f)))))
518
519(define file-is-directory?
520 (if (feature? 'i/o-extensions)
521 (lambda (str)
3afb28ce 522 (eq? (stat:type (stat str)) 'directory))
6fa8995c
GH
523 (lambda (str)
524 (display str)
525 (newline)
526 (let ((port (catch 'system-error
527 (lambda () (open-file (string-append str "/.")
528 OPEN_READ))
529 (lambda args #f))))
530 (if port (begin (close-port port) #t)
531 #f)))))
0f2d19dd
JB
532
533(define (has-suffix? str suffix)
534 (let ((sufl (string-length suffix))
535 (sl (string-length str)))
536 (and (> sl sufl)
537 (string=? (substring str (- sl sufl) sl) suffix))))
538
0f2d19dd
JB
539\f
540;;; {Error Handling}
541;;;
542
0f2d19dd 543(define (error . args)
21ed9efe 544 (save-stack)
2194b6f0 545 (if (null? args)
5552355a 546 (scm-error 'misc-error #f "?" #f #f)
2194b6f0
GH
547 (let loop ((msg "%s")
548 (rest (cdr args)))
549 (if (not (null? rest))
550 (loop (string-append msg " %S")
551 (cdr rest))
5552355a 552 (scm-error 'misc-error #f msg args #f)))))
be2d2c70
GH
553
554(define (scm-error key subr message args rest)
555 (throw key subr message args rest))
0f2d19dd 556
1349bd53 557;; bad-throw is the hook that is called upon a throw to a an unhandled
9a0d70e2
GH
558;; key (unless the throw has four arguments, in which case
559;; it's usually interpreted as an error throw.)
560;; If the key has a default handler (a throw-handler-default property),
0f2d19dd
JB
561;; it is applied to the throw.
562;;
1349bd53 563(define (bad-throw key . args)
0f2d19dd
JB
564 (let ((default (symbol-property key 'throw-handler-default)))
565 (or (and default (apply default key args))
2194b6f0 566 (apply error "unhandled-exception:" key args))))
0f2d19dd 567
2194b6f0
GH
568;; mostly obsolete.
569;; A number of internally defined error types were represented
0f2d19dd
JB
570;; as integers. Here is the mapping to symbolic names
571;; and error messages.
572;;
2194b6f0
GH
573;(define %%system-errors
574; '((-1 UNKNOWN "Unknown error")
575; (0 ARGn "Wrong type argument to ")
576; (1 ARG1 "Wrong type argument in position 1 to ")
577; (2 ARG2 "Wrong type argument in position 2 to ")
578; (3 ARG3 "Wrong type argument in position 3 to ")
579; (4 ARG4 "Wrong type argument in position 4 to ")
580; (5 ARG5 "Wrong type argument in position 5 to ")
581; (6 ARG5 "Wrong type argument in position 5 to ")
582; (7 ARG5 "Wrong type argument in position 5 to ")
583; (8 WNA "Wrong number of arguments to ")
584; (9 OVFLOW "Numerical overflow to ")
585; (10 OUTOFRANGE "Argument out of range to ")
586; (11 NALLOC "Could not allocate to ")
587; (12 STACK_OVFLOW "Stack overflow")
588; (13 EXIT "Exit (internal error?).")
589; (14 HUP_SIGNAL "hang-up")
590; (15 INT_SIGNAL "user interrupt")
591; (16 FPE_SIGNAL "arithmetic error")
592; (17 BUS_SIGNAL "bus error")
593; (18 SEGV_SIGNAL "segmentation violation")
594; (19 ALRM_SIGNAL "alarm")
595; (20 GC_SIGNAL "gc")
596; (21 TICK_SIGNAL "tick")))
0f2d19dd
JB
597
598
599(define (timer-thunk) #t)
600(define (gc-thunk) #t)
601(define (alarm-thunk) #t)
602
603(define (signal-handler n)
2194b6f0
GH
604 (let* (
605 ;; these numbers are set in libguile, not the same as those
be2d2c70 606 ;; interned in posix.c for SIGSEGV etc.
2194b6f0
GH
607 ;;
608 (signal-messages `((14 . "hang-up")
609 (15 . "user interrupt")
610 (16 . "arithmetic error")
611 (17 . "bus error")
612 (18 . "segmentation violation"))))
613 (cond
614 ((= n 21) (unmask-signals) (timer-thunk))
615 ((= n 20) (unmask-signals) (gc-thunk))
616 ((= n 19) (unmask-signals) (alarm-thunk))
1c6cd8e8
MD
617 (else (set! the-last-stack
618 (make-stack #t
619 (list-ref (list %hup-thunk
620 %int-thunk
621 %fpe-thunk
622 %bus-thunk
623 %segv-thunk)
624 (- n 14))
625 1))
21ed9efe
MD
626 (set! stack-saved? #t)
627 (if (not (and (memq 'debug (debug-options-interface))
628 (eq? (stack-id the-last-stack) 'repl-stack)))
5f771ab1
MD
629 (set! the-last-stack #f))
630 (unmask-signals)
2194b6f0 631 (let ((sig-pair (assoc n signal-messages)))
5552355a
GH
632 (scm-error 'error-signal #f
633 (cdr (or sig-pair
6fa8995c 634 (cons n "Unknown signal: %s")))
5552355a
GH
635 (if sig-pair
636 #f
637 (list n))
638 (list n)))))))
2194b6f0 639
0f2d19dd 640\f
44cf1f0f
JB
641;;; {Non-polymorphic versions of POSIX functions}
642
02b754d3
GH
643(define (getgrnam name) (getgr name))
644(define (getgrgid id) (getgr id))
645(define (gethostbyaddr addr) (gethost addr))
646(define (gethostbyname name) (gethost name))
647(define (getnetbyaddr addr) (getnet addr))
648(define (getnetbyname name) (getnet name))
649(define (getprotobyname name) (getproto name))
650(define (getprotobynumber addr) (getproto addr))
651(define (getpwnam name) (getpw name))
652(define (getpwuid uid) (getpw uid))
920235cc
GH
653(define (getservbyname name proto) (getserv name proto))
654(define (getservbyport port proto) (getserv port proto))
0f2d19dd
JB
655(define (endgrent) (setgr))
656(define (endhostent) (sethost))
657(define (endnetent) (setnet))
658(define (endprotoent) (setproto))
659(define (endpwent) (setpw))
660(define (endservent) (setserv))
661(define (file-position . args) (apply ftell args))
662(define (file-set-position . args) (apply fseek args))
02b754d3
GH
663(define (getgrent) (getgr))
664(define (gethostent) (gethost))
665(define (getnetent) (getnet))
666(define (getprotoent) (getproto))
667(define (getpwent) (getpw))
668(define (getservent) (getserv))
0f2d19dd
JB
669(define (reopen-file . args) (apply freopen args))
670(define (setgrent arg) (setgr arg))
671(define (sethostent arg) (sethost arg))
672(define (setnetent arg) (setnet arg))
673(define (setprotoent arg) (setproto arg))
674(define (setpwent arg) (setpw arg))
675(define (setservent arg) (setserv arg))
8b13c6b3 676
02b754d3 677(define (move->fdes port fd)
8b13c6b3
GH
678 (primitive-move->fdes port fd)
679 (set-port-revealed! port 1)
680 port)
681
682(define (release-port-handle port)
683 (let ((revealed (port-revealed port)))
684 (if (> revealed 0)
685 (set-port-revealed! port (- revealed 1)))))
0f2d19dd
JB
686
687\f
688;;; {Load Paths}
689;;;
690
0f2d19dd
JB
691;;; Here for backward compatability
692;;
693(define scheme-file-suffix (lambda () ".scm"))
694
3cab8392
JB
695(define (in-vicinity vicinity file)
696 (let ((tail (let ((len (string-length vicinity)))
697 (if (zero? len) #f
698 (string-ref vicinity (- len 1))))))
699 (string-append vicinity
700 (if (eq? tail #\/) "" "/")
701 file)))
02ceadb8 702
0f2d19dd 703\f
a06181a2
JB
704;;; {Loading by paths}
705
706;;; Load a Scheme source file named NAME, searching for it in the
707;;; directories listed in %load-path, and applying each of the file
708;;; name extensions listed in %load-extensions.
709(define (load-from-path name)
710 (start-stack 'load-stack
711 (primitive-load-path name #t read-sharp)))
0f2d19dd 712
5552355a 713
0f2d19dd 714\f
0f2d19dd
JB
715;;; {Transcendental Functions}
716;;;
717;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
718;;; Copyright (C) 1992, 1993 Jerry D. Hedden.
719;;; See the file `COPYING' for terms applying to this program.
720;;;
721
722(define (exp z)
723 (if (real? z) ($exp z)
724 (make-polar ($exp (real-part z)) (imag-part z))))
725
726(define (log z)
727 (if (and (real? z) (>= z 0))
728 ($log z)
729 (make-rectangular ($log (magnitude z)) (angle z))))
730
731(define (sqrt z)
732 (if (real? z)
733 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
734 ($sqrt z))
735 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
736
737(define expt
738 (let ((integer-expt integer-expt))
739 (lambda (z1 z2)
740 (cond ((exact? z2)
741 (integer-expt z1 z2))
742 ((and (real? z2) (real? z1) (>= z1 0))
743 ($expt z1 z2))
744 (else
745 (exp (* z2 (log z1))))))))
746
747(define (sinh z)
748 (if (real? z) ($sinh z)
749 (let ((x (real-part z)) (y (imag-part z)))
750 (make-rectangular (* ($sinh x) ($cos y))
751 (* ($cosh x) ($sin y))))))
752(define (cosh z)
753 (if (real? z) ($cosh z)
754 (let ((x (real-part z)) (y (imag-part z)))
755 (make-rectangular (* ($cosh x) ($cos y))
756 (* ($sinh x) ($sin y))))))
757(define (tanh z)
758 (if (real? z) ($tanh z)
759 (let* ((x (* 2 (real-part z)))
760 (y (* 2 (imag-part z)))
761 (w (+ ($cosh x) ($cos y))))
762 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
763
764(define (asinh z)
765 (if (real? z) ($asinh z)
766 (log (+ z (sqrt (+ (* z z) 1))))))
767
768(define (acosh z)
769 (if (and (real? z) (>= z 1))
770 ($acosh z)
771 (log (+ z (sqrt (- (* z z) 1))))))
772
773(define (atanh z)
774 (if (and (real? z) (> z -1) (< z 1))
775 ($atanh z)
776 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
777
778(define (sin z)
779 (if (real? z) ($sin z)
780 (let ((x (real-part z)) (y (imag-part z)))
781 (make-rectangular (* ($sin x) ($cosh y))
782 (* ($cos x) ($sinh y))))))
783(define (cos z)
784 (if (real? z) ($cos z)
785 (let ((x (real-part z)) (y (imag-part z)))
786 (make-rectangular (* ($cos x) ($cosh y))
787 (- (* ($sin x) ($sinh y)))))))
788(define (tan z)
789 (if (real? z) ($tan z)
790 (let* ((x (* 2 (real-part z)))
791 (y (* 2 (imag-part z)))
792 (w (+ ($cos x) ($cosh y))))
793 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
794
795(define (asin z)
796 (if (and (real? z) (>= z -1) (<= z 1))
797 ($asin z)
798 (* -i (asinh (* +i z)))))
799
800(define (acos z)
801 (if (and (real? z) (>= z -1) (<= z 1))
802 ($acos z)
803 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
804
805(define (atan z . y)
806 (if (null? y)
807 (if (real? z) ($atan z)
808 (/ (log (/ (- +i z) (+ +i z))) +2i))
809 ($atan2 z (car y))))
810
811(set! abs magnitude)
812
813\f
814;;; {User Settable Hooks}
815;;;
816;;; Parts of the C code check the bindings of these variables.
817;;;
818
819(define ticks-interrupt #f)
820(define user-interrupt #f)
821(define alarm-interrupt #f)
822(define out-of-storage #f)
823(define could-not-open #f)
824(define end-of-program #f)
825(define hang-up #f)
826(define arithmetic-error #f)
827(define read-sharp #f)
828
829\f
830
831;;; {Reader Extensions}
832;;;
833
834;;; Reader code for various "#c" forms.
835;;;
836
837(define (parse-path-symbol s)
21ed9efe 838 (define (separate-fields-discarding-char ch str ret)
0f2d19dd
JB
839 (let loop ((fields '())
840 (str str))
841 (cond
842 ((string-rindex str ch)
843 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 pos)) fields)
844 (make-shared-substring str 0 pos))))
845 (else (ret (cons str fields))))))
21ed9efe 846 (separate-fields-discarding-char #\/
0f2d19dd
JB
847 s
848 (lambda (fields)
849 (map string->symbol fields))))
850
851
852(define (%read-sharp c port)
853 (define (barf)
854 (error "unknown # object" c))
855
856 (case c
857 ((#\/) (let ((look (peek-char port)))
858 (if (or (eof-object? look)
859 (and (char? look)
860 (or (char-whitespace? look)
861 (string-index ")" look))))
862 '()
863 (parse-path-symbol (read port #t read-sharp)))))
864 ((#\') (read port #t read-sharp))
865 ((#\.) (eval (read port #t read-sharp)))
866 ((#\b) (read:uniform-vector #t port))
867 ((#\a) (read:uniform-vector #\a port))
868 ((#\u) (read:uniform-vector 1 port))
869 ((#\e) (read:uniform-vector -1 port))
870 ((#\s) (read:uniform-vector 1.0 port))
871 ((#\i) (read:uniform-vector 1/3 port))
872 ((#\c) (read:uniform-vector 0+i port))
873 ((#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)
874 (read:array c port))
0f2d19dd
JB
875 (else (barf))))
876
877(define (read:array digit port)
878 (define chr0 (char->integer #\0))
879 (let ((rank (let readnum ((val (- (char->integer digit) chr0)))
880 (if (char-numeric? (peek-char port))
881 (readnum (+ (* 10 val)
882 (- (char->integer (read-char port)) chr0)))
883 val)))
884 (prot (if (eq? #\( (peek-char port))
885 '()
886 (let ((c (read-char port)))
887 (case c ((#\b) #t)
888 ((#\a) #\a)
889 ((#\u) 1)
890 ((#\e) -1)
891 ((#\s) 1.0)
892 ((#\i) 1/3)
893 ((#\c) 0+i)
894 (else (error "read:array unknown option " c)))))))
895 (if (eq? (peek-char port) #\()
896 (list->uniform-array rank prot (read port #t read-sharp))
897 (error "read:array list not found"))))
898
899(define (read:uniform-vector proto port)
900 (if (eq? #\( (peek-char port))
901 (list->uniform-array 1 proto (read port #t read-sharp))
902 (error "read:uniform-vector list not found")))
903
904
905(define read-sharp (lambda a (apply %read-sharp a)))
906
907
908\f
909;;; {Dynamic Roots}
910;;;
911
912; mystery integers passed dynamic root error handlers
913(define repl-quit -1)
914(define repl-abort -2)
915
916
917\f
918;;; {Command Line Options}
919;;;
920
921(define (get-option argv kw-opts kw-args return)
922 (cond
923 ((null? argv)
924 (return #f #f argv))
925
926 ((or (not (eq? #\- (string-ref (car argv) 0)))
927 (eq? (string-length (car argv)) 1))
928 (return 'normal-arg (car argv) (cdr argv)))
929
930 ((eq? #\- (string-ref (car argv) 1))
931 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
932 (string-length (car argv))))
933 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
934 (kw-opt? (member kw kw-opts))
935 (kw-arg? (member kw kw-args))
936 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
937 (substring (car argv)
938 (+ kw-arg-pos 1)
939 (string-length (car argv))))
940 (and kw-arg?
941 (begin (set! argv (cdr argv)) (car argv))))))
942 (if (or kw-opt? kw-arg?)
943 (return kw arg (cdr argv))
944 (return 'usage-error kw (cdr argv)))))
945
946 (else
947 (let* ((char (substring (car argv) 1 2))
948 (kw (symbol->keyword char)))
949 (cond
950
951 ((member kw kw-opts)
952 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
953 (new-argv (if (= 0 (string-length rest-car))
954 (cdr argv)
955 (cons (string-append "-" rest-car) (cdr argv)))))
956 (return kw #f new-argv)))
957
958 ((member kw kw-args)
959 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
960 (arg (if (= 0 (string-length rest-car))
961 (cadr argv)
962 rest-car))
963 (new-argv (if (= 0 (string-length rest-car))
964 (cddr argv)
965 (cdr argv))))
966 (return kw arg new-argv)))
967
968 (else (return 'usage-error kw argv)))))))
969
970(define (for-next-option proc argv kw-opts kw-args)
971 (let loop ((argv argv))
972 (get-option argv kw-opts kw-args
973 (lambda (opt opt-arg argv)
974 (and opt (proc opt opt-arg argv loop))))))
975
976(define (display-usage-report kw-desc)
977 (for-each
978 (lambda (kw)
979 (or (eq? (car kw) #t)
980 (eq? (car kw) 'else)
981 (let* ((opt-desc kw)
982 (help (cadr opt-desc))
983 (opts (car opt-desc))
984 (opts-proper (if (string? (car opts)) (cdr opts) opts))
985 (arg-name (if (string? (car opts))
986 (string-append "<" (car opts) ">")
987 ""))
988 (left-part (string-append
989 (with-output-to-string
990 (lambda ()
991 (map (lambda (x) (display (keyword-symbol x)) (display " "))
992 opts-proper)))
993 arg-name))
994 (middle-part (if (and (< (length left-part) 30)
995 (< (length help) 40))
996 (make-string (- 30 (length left-part)) #\ )
997 "\n\t")))
998 (display left-part)
999 (display middle-part)
1000 (display help)
1001 (newline))))
1002 kw-desc))
1003
1004
1005
0f2d19dd
JB
1006(define (transform-usage-lambda cases)
1007 (let* ((raw-usage (delq! 'else (map car cases)))
1008 (usage-sans-specials (map (lambda (x)
1009 (or (and (not (list? x)) x)
1010 (and (symbol? (car x)) #t)
1011 (and (boolean? (car x)) #t)
1012 x))
1013 raw-usage))
ed440df5 1014 (usage-desc (delq! #t usage-sans-specials))
0f2d19dd
JB
1015 (kw-desc (map car usage-desc))
1016 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1017 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1018 (transmogrified-cases (map (lambda (case)
1019 (cons (let ((opts (car case)))
1020 (if (or (boolean? opts) (eq? 'else opts))
1021 opts
1022 (cond
1023 ((symbol? (car opts)) opts)
1024 ((boolean? (car opts)) opts)
1025 ((string? (caar opts)) (cdar opts))
1026 (else (car opts)))))
1027 (cdr case)))
1028 cases)))
1029 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1030 (lambda (%argv)
1031 (let %next-arg ((%argv %argv))
1032 (get-option %argv
1033 ',kw-opts
1034 ',kw-args
1035 (lambda (%opt %arg %new-argv)
1036 (case %opt
1037 ,@ transmogrified-cases))))))))
1038
1039
1040\f
1041
1042;;; {Low Level Modules}
1043;;;
1044;;; These are the low level data structures for modules.
1045;;;
1046;;; !!! warning: The interface to lazy binder procedures is going
1047;;; to be changed in an incompatible way to permit all the basic
1048;;; module ops to be virtualized.
1049;;;
1050;;; (make-module size use-list lazy-binding-proc) => module
1051;;; module-{obarray,uses,binder}[|-set!]
1052;;; (module? obj) => [#t|#f]
1053;;; (module-locally-bound? module symbol) => [#t|#f]
1054;;; (module-bound? module symbol) => [#t|#f]
1055;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1056;;; (module-symbol-interned? module symbol) => [#t|#f]
1057;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1058;;; (module-variable module symbol) => [#<variable ...> | #f]
1059;;; (module-symbol-binding module symbol opt-value)
1060;;; => [ <obj> | opt-value | an error occurs ]
1061;;; (module-make-local-var! module symbol) => #<variable...>
1062;;; (module-add! module symbol var) => unspecified
1063;;; (module-remove! module symbol) => unspecified
1064;;; (module-for-each proc module) => unspecified
1065;;; (make-scm-module) => module ; a lazy copy of the symhash module
1066;;; (set-current-module module) => unspecified
1067;;; (current-module) => #<module...>
1068;;;
1069;;;
1070
1071\f
44cf1f0f
JB
1072;;; {Printing Modules}
1073;; This is how modules are printed. You can re-define it.
0f2d19dd
JB
1074;;
1075(define (%print-module mod port depth length style table)
1076 (display "#<" port)
1077 (display (or (module-kind mod) "module") port)
1078 (let ((name (module-name mod)))
1079 (if name
1080 (begin
1081 (display " " port)
1082 (display name port))))
1083 (display " " port)
1084 (display (number->string (object-address mod) 16) port)
1085 (display ">" port))
1086
1087;; module-type
1088;;
1089;; A module is characterized by an obarray in which local symbols
1090;; are interned, a list of modules, "uses", from which non-local
1091;; bindings can be inherited, and an optional lazy-binder which
31d50456 1092;; is a (CLOSURE module symbol) which, as a last resort, can provide
0f2d19dd
JB
1093;; bindings that would otherwise not be found locally in the module.
1094;;
1095(define module-type
31d50456 1096 (make-record-type 'module '(obarray uses binder eval-closure name kind)
8b718458 1097 %print-module))
0f2d19dd 1098
8b718458 1099;; make-module &opt size uses binder
0f2d19dd 1100;;
8b718458
JB
1101;; Create a new module, perhaps with a particular size of obarray,
1102;; initial uses list, or binding procedure.
0f2d19dd 1103;;
0f2d19dd
JB
1104(define make-module
1105 (lambda args
0f2d19dd 1106
8b718458
JB
1107 (define (parse-arg index default)
1108 (if (> (length args) index)
1109 (list-ref args index)
1110 default))
1111
1112 (if (> (length args) 3)
1113 (error "Too many args to make-module." args))
0f2d19dd 1114
8b718458
JB
1115 (let ((size (parse-arg 0 1021))
1116 (uses (parse-arg 1 '()))
1117 (binder (parse-arg 2 #f)))
0f2d19dd 1118
8b718458
JB
1119 (if (not (integer? size))
1120 (error "Illegal size to make-module." size))
1121 (if (not (and (list? uses)
1122 (and-map module? uses)))
1123 (error "Incorrect use list." uses))
0f2d19dd
JB
1124 (if (and binder (not (procedure? binder)))
1125 (error
1126 "Lazy-binder expected to be a procedure or #f." binder))
1127
8b718458
JB
1128 (let ((module (module-constructor (make-vector size '())
1129 uses binder #f #f #f)))
1130
1131 ;; We can't pass this as an argument to module-constructor,
1132 ;; because we need it to close over a pointer to the module
1133 ;; itself.
31d50456 1134 (set-module-eval-closure! module
8b718458
JB
1135 (lambda (symbol define?)
1136 (if define?
1137 (module-make-local-var! module symbol)
1138 (module-variable module symbol))))
1139
1140 module))))
0f2d19dd 1141
8b718458 1142(define module-constructor (record-constructor module-type))
0f2d19dd
JB
1143(define module-obarray (record-accessor module-type 'obarray))
1144(define set-module-obarray! (record-modifier module-type 'obarray))
1145(define module-uses (record-accessor module-type 'uses))
1146(define set-module-uses! (record-modifier module-type 'uses))
1147(define module-binder (record-accessor module-type 'binder))
1148(define set-module-binder! (record-modifier module-type 'binder))
31d50456
JB
1149(define module-eval-closure (record-accessor module-type 'eval-closure))
1150(define set-module-eval-closure! (record-modifier module-type 'eval-closure))
0f2d19dd
JB
1151(define module-name (record-accessor module-type 'name))
1152(define set-module-name! (record-modifier module-type 'name))
1153(define module-kind (record-accessor module-type 'kind))
1154(define set-module-kind! (record-modifier module-type 'kind))
1155(define module? (record-predicate module-type))
1156
8b718458 1157
0f2d19dd 1158(define (eval-in-module exp module)
31d50456 1159 (eval2 exp (module-eval-closure module)))
0f2d19dd
JB
1160
1161\f
1162;;; {Module Searching in General}
1163;;;
1164;;; We sometimes want to look for properties of a symbol
1165;;; just within the obarray of one module. If the property
1166;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1167;;; DISPLAY is locally rebound in the module `safe-guile'.''
1168;;;
1169;;;
1170;;; Other times, we want to test for a symbol property in the obarray
1171;;; of M and, if it is not found there, try each of the modules in the
1172;;; uses list of M. This is the normal way of testing for some
1173;;; property, so we state these properties without qualification as
1174;;; in: ``The symbol 'fnord is interned in module M because it is
1175;;; interned locally in module M2 which is a member of the uses list
1176;;; of M.''
1177;;;
1178
1179;; module-search fn m
1180;;
1181;; return the first non-#f result of FN applied to M and then to
1182;; the modules in the uses of m, and so on recursively. If all applications
1183;; return #f, then so does this function.
1184;;
1185(define (module-search fn m v)
1186 (define (loop pos)
1187 (and (pair? pos)
1188 (or (module-search fn (car pos) v)
1189 (loop (cdr pos)))))
1190 (or (fn m v)
1191 (loop (module-uses m))))
1192
1193
1194;;; {Is a symbol bound in a module?}
1195;;;
1196;;; Symbol S in Module M is bound if S is interned in M and if the binding
1197;;; of S in M has been set to some well-defined value.
1198;;;
1199
1200;; module-locally-bound? module symbol
1201;;
1202;; Is a symbol bound (interned and defined) locally in a given module?
1203;;
1204(define (module-locally-bound? m v)
1205 (let ((var (module-local-variable m v)))
1206 (and var
1207 (variable-bound? var))))
1208
1209;; module-bound? module symbol
1210;;
1211;; Is a symbol bound (interned and defined) anywhere in a given module
1212;; or its uses?
1213;;
1214(define (module-bound? m v)
1215 (module-search module-locally-bound? m v))
1216
1217;;; {Is a symbol interned in a module?}
1218;;;
1219;;; Symbol S in Module M is interned if S occurs in
1220;;; of S in M has been set to some well-defined value.
1221;;;
1222;;; It is possible to intern a symbol in a module without providing
1223;;; an initial binding for the corresponding variable. This is done
1224;;; with:
1225;;; (module-add! module symbol (make-undefined-variable))
1226;;;
1227;;; In that case, the symbol is interned in the module, but not
1228;;; bound there. The unbound symbol shadows any binding for that
1229;;; symbol that might otherwise be inherited from a member of the uses list.
1230;;;
1231
1232(define (module-obarray-get-handle ob key)
1233 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1234
1235(define (module-obarray-ref ob key)
1236 ((if (symbol? key) hashq-ref hash-ref) ob key))
1237
1238(define (module-obarray-set! ob key val)
1239 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1240
1241(define (module-obarray-remove! ob key)
1242 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1243
1244;; module-symbol-locally-interned? module symbol
1245;;
1246;; is a symbol interned (not neccessarily defined) locally in a given module
1247;; or its uses? Interned symbols shadow inherited bindings even if
1248;; they are not themselves bound to a defined value.
1249;;
1250(define (module-symbol-locally-interned? m v)
1251 (not (not (module-obarray-get-handle (module-obarray m) v))))
1252
1253;; module-symbol-interned? module symbol
1254;;
1255;; is a symbol interned (not neccessarily defined) anywhere in a given module
1256;; or its uses? Interned symbols shadow inherited bindings even if
1257;; they are not themselves bound to a defined value.
1258;;
1259(define (module-symbol-interned? m v)
1260 (module-search module-symbol-locally-interned? m v))
1261
1262
1263;;; {Mapping modules x symbols --> variables}
1264;;;
1265
1266;; module-local-variable module symbol
1267;; return the local variable associated with a MODULE and SYMBOL.
1268;;
1269;;; This function is very important. It is the only function that can
1270;;; return a variable from a module other than the mutators that store
1271;;; new variables in modules. Therefore, this function is the location
1272;;; of the "lazy binder" hack.
1273;;;
1274;;; If symbol is defined in MODULE, and if the definition binds symbol
1275;;; to a variable, return that variable object.
1276;;;
1277;;; If the symbols is not found at first, but the module has a lazy binder,
1278;;; then try the binder.
1279;;;
1280;;; If the symbol is not found at all, return #f.
1281;;;
1282(define (module-local-variable m v)
6fa8995c
GH
1283; (caddr
1284; (list m v
0f2d19dd
JB
1285 (let ((b (module-obarray-ref (module-obarray m) v)))
1286 (or (and (variable? b) b)
1287 (and (module-binder m)
6fa8995c
GH
1288 ((module-binder m) m v #f)))))
1289;))
0f2d19dd
JB
1290
1291;; module-variable module symbol
1292;;
1293;; like module-local-variable, except search the uses in the
1294;; case V is not found in M.
1295;;
1296(define (module-variable m v)
1297 (module-search module-local-variable m v))
1298
1299
1300;;; {Mapping modules x symbols --> bindings}
1301;;;
1302;;; These are similar to the mapping to variables, except that the
1303;;; variable is dereferenced.
1304;;;
1305
1306;; module-symbol-binding module symbol opt-value
1307;;
1308;; return the binding of a variable specified by name within
1309;; a given module, signalling an error if the variable is unbound.
1310;; If the OPT-VALUE is passed, then instead of signalling an error,
1311;; return OPT-VALUE.
1312;;
1313(define (module-symbol-local-binding m v . opt-val)
1314 (let ((var (module-local-variable m v)))
1315 (if var
1316 (variable-ref var)
1317 (if (not (null? opt-val))
1318 (car opt-val)
1319 (error "Locally unbound variable." v)))))
1320
1321;; module-symbol-binding module symbol opt-value
1322;;
1323;; return the binding of a variable specified by name within
1324;; a given module, signalling an error if the variable is unbound.
1325;; If the OPT-VALUE is passed, then instead of signalling an error,
1326;; return OPT-VALUE.
1327;;
1328(define (module-symbol-binding m v . opt-val)
1329 (let ((var (module-variable m v)))
1330 (if var
1331 (variable-ref var)
1332 (if (not (null? opt-val))
1333 (car opt-val)
1334 (error "Unbound variable." v)))))
1335
1336
1337\f
1338;;; {Adding Variables to Modules}
1339;;;
1340;;;
1341
1342
1343;; module-make-local-var! module symbol
1344;;
1345;; ensure a variable for V in the local namespace of M.
1346;; If no variable was already there, then create a new and uninitialzied
1347;; variable.
1348;;
1349(define (module-make-local-var! m v)
1350 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1351 (and (variable? b) b))
1352 (and (module-binder m)
1353 ((module-binder m) m v #t))
1354 (begin
1355 (let ((answer (make-undefined-variable v)))
1356 (module-obarray-set! (module-obarray m) v answer)
1357 answer))))
1358
1359;; module-add! module symbol var
1360;;
1361;; ensure a particular variable for V in the local namespace of M.
1362;;
1363(define (module-add! m v var)
1364 (if (not (variable? var))
1365 (error "Bad variable to module-add!" var))
1366 (module-obarray-set! (module-obarray m) v var))
1367
1368;; module-remove!
1369;;
1370;; make sure that a symbol is undefined in the local namespace of M.
1371;;
1372(define (module-remove! m v)
1373 (module-obarray-remove! (module-obarray m) v))
1374
1375(define (module-clear! m)
1376 (vector-fill! (module-obarray m) '()))
1377
1378;; MODULE-FOR-EACH -- exported
1379;;
1380;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1381;;
1382(define (module-for-each proc module)
1383 (let ((obarray (module-obarray module)))
1384 (do ((index 0 (+ index 1))
1385 (end (vector-length obarray)))
1386 ((= index end))
1387 (for-each
1388 (lambda (bucket)
1389 (proc (car bucket) (cdr bucket)))
1390 (vector-ref obarray index)))))
1391
1392
1393(define (module-map proc module)
1394 (let* ((obarray (module-obarray module))
1395 (end (vector-length obarray)))
1396
1397 (let loop ((i 0)
1398 (answer '()))
1399 (if (= i end)
1400 answer
1401 (loop (+ 1 i)
1402 (append!
1403 (map (lambda (bucket)
1404 (proc (car bucket) (cdr bucket)))
1405 (vector-ref obarray i))
1406 answer))))))
1407\f
1408
1409;;; {Low Level Bootstrapping}
1410;;;
1411
1412;; make-root-module
1413
21ed9efe 1414;; A root module uses the symhash table (the system's privileged
0f2d19dd
JB
1415;; obarray). Being inside a root module is like using SCM without
1416;; any module system.
1417;;
1418
1419
31d50456 1420(define (root-module-closure m s define?)
0f2d19dd
JB
1421 (let ((bi (and (symbol-interned? #f s)
1422 (builtin-variable s))))
1423 (and bi
1424 (or define? (variable-bound? bi))
1425 (begin
1426 (module-add! m s bi)
1427 bi))))
1428
1429(define (make-root-module)
31d50456 1430 (make-module 1019 '() root-module-closure))
0f2d19dd
JB
1431
1432
1433;; make-scm-module
1434
1435;; An scm module is a module into which the lazy binder copies
1436;; variable bindings from the system symhash table. The mapping is
1437;; one way only; newly introduced bindings in an scm module are not
1438;; copied back into the system symhash table (and can be used to override
1439;; bindings from the symhash table).
1440;;
1441
1442(define (make-scm-module)
8b718458 1443 (make-module 1019 '()
0f2d19dd
JB
1444 (lambda (m s define?)
1445 (let ((bi (and (symbol-interned? #f s)
1446 (builtin-variable s))))
1447 (and bi
1448 (variable-bound? bi)
1449 (begin
1450 (module-add! m s bi)
1451 bi))))))
1452
1453
1454
1455
1456;; the-module
1457;;
1458(define the-module #f)
1459
1460;; set-current-module module
1461;;
1462;; set the current module as viewed by the normalizer.
1463;;
1464(define (set-current-module m)
1465 (set! the-module m)
1466 (if m
31d50456
JB
1467 (set! *top-level-lookup-closure* (module-eval-closure the-module))
1468 (set! *top-level-lookup-closure* #f)))
0f2d19dd
JB
1469
1470
1471;; current-module
1472;;
1473;; return the current module as viewed by the normalizer.
1474;;
1475(define (current-module) the-module)
1476\f
1477;;; {Module-based Loading}
1478;;;
1479
1480(define (save-module-excursion thunk)
1481 (let ((inner-module (current-module))
1482 (outer-module #f))
1483 (dynamic-wind (lambda ()
1484 (set! outer-module (current-module))
1485 (set-current-module inner-module)
1486 (set! inner-module #f))
1487 thunk
1488 (lambda ()
1489 (set! inner-module (current-module))
1490 (set-current-module outer-module)
1491 (set! outer-module #f)))))
1492
0f2d19dd
JB
1493(define basic-load load)
1494
0f2d19dd
JB
1495(define (load-module . args)
1496 (save-module-excursion (lambda () (apply basic-load args))))
1497
1498
1499\f
44cf1f0f 1500;;; {MODULE-REF -- exported}
0f2d19dd
JB
1501;;
1502;; Returns the value of a variable called NAME in MODULE or any of its
1503;; used modules. If there is no such variable, then if the optional third
1504;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1505;;
1506(define (module-ref module name . rest)
1507 (let ((variable (module-variable module name)))
1508 (if (and variable (variable-bound? variable))
1509 (variable-ref variable)
1510 (if (null? rest)
1511 (error "No variable named" name 'in module)
1512 (car rest) ; default value
1513 ))))
1514
1515;; MODULE-SET! -- exported
1516;;
1517;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1518;; to VALUE; if there is no such variable, an error is signaled.
1519;;
1520(define (module-set! module name value)
1521 (let ((variable (module-variable module name)))
1522 (if variable
1523 (variable-set! variable value)
1524 (error "No variable named" name 'in module))))
1525
1526;; MODULE-DEFINE! -- exported
1527;;
1528;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1529;; variable, it is added first.
1530;;
1531(define (module-define! module name value)
1532 (let ((variable (module-local-variable module name)))
1533 (if variable
1534 (variable-set! variable value)
1535 (module-add! module name (make-variable value name)))))
1536
1537;; MODULE-USE! module interface
1538;;
1539;; Add INTERFACE to the list of interfaces used by MODULE.
1540;;
1541(define (module-use! module interface)
1542 (set-module-uses! module
1543 (cons interface (delq! interface (module-uses module)))))
1544
1545\f
0f2d19dd
JB
1546;;; {Recursive Namespaces}
1547;;;
1548;;;
1549;;; A hierarchical namespace emerges if we consider some module to be
1550;;; root, and variables bound to modules as nested namespaces.
1551;;;
1552;;; The routines in this file manage variable names in hierarchical namespace.
1553;;; Each variable name is a list of elements, looked up in successively nested
1554;;; modules.
1555;;;
0dd5491c 1556;;; (nested-ref some-root-module '(foo bar baz))
0f2d19dd
JB
1557;;; => <value of a variable named baz in the module bound to bar in
1558;;; the module bound to foo in some-root-module>
1559;;;
1560;;;
1561;;; There are:
1562;;;
1563;;; ;; a-root is a module
1564;;; ;; name is a list of symbols
1565;;;
0dd5491c
MD
1566;;; nested-ref a-root name
1567;;; nested-set! a-root name val
1568;;; nested-define! a-root name val
1569;;; nested-remove! a-root name
0f2d19dd
JB
1570;;;
1571;;;
1572;;; (current-module) is a natural choice for a-root so for convenience there are
1573;;; also:
1574;;;
0dd5491c
MD
1575;;; local-ref name == nested-ref (current-module) name
1576;;; local-set! name val == nested-set! (current-module) name val
1577;;; local-define! name val == nested-define! (current-module) name val
1578;;; local-remove! name == nested-remove! (current-module) name
0f2d19dd
JB
1579;;;
1580
1581
0dd5491c 1582(define (nested-ref root names)
0f2d19dd
JB
1583 (let loop ((cur root)
1584 (elts names))
1585 (cond
1586 ((null? elts) cur)
1587 ((not (module? cur)) #f)
1588 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1589
0dd5491c 1590(define (nested-set! root names val)
0f2d19dd
JB
1591 (let loop ((cur root)
1592 (elts names))
1593 (if (null? (cdr elts))
1594 (module-set! cur (car elts) val)
1595 (loop (module-ref cur (car elts)) (cdr elts)))))
1596
0dd5491c 1597(define (nested-define! root names val)
0f2d19dd
JB
1598 (let loop ((cur root)
1599 (elts names))
1600 (if (null? (cdr elts))
1601 (module-define! cur (car elts) val)
1602 (loop (module-ref cur (car elts)) (cdr elts)))))
1603
0dd5491c 1604(define (nested-remove! root names)
0f2d19dd
JB
1605 (let loop ((cur root)
1606 (elts names))
1607 (if (null? (cdr elts))
1608 (module-remove! cur (car elts))
1609 (loop (module-ref cur (car elts)) (cdr elts)))))
1610
0dd5491c
MD
1611(define (local-ref names) (nested-ref (current-module) names))
1612(define (local-set! names val) (nested-set! (current-module) names val))
1613(define (local-define names val) (nested-define! (current-module) names val))
1614(define (local-remove names) (nested-remove! (current-module) names))
0f2d19dd
JB
1615
1616
1617\f
44cf1f0f 1618;;; {#/app}
0f2d19dd
JB
1619;;;
1620;;; The root of conventionally named objects not directly in the top level.
1621;;;
1622;;; #/app/modules
1623;;; #/app/modules/guile
1624;;;
1625;;; The directory of all modules and the standard root module.
1626;;;
1627
1628(define (module-public-interface m) (module-ref m '%module-public-interface #f))
1629(define (set-module-public-interface! m i) (module-define! m '%module-public-interface i))
1630(define the-root-module (make-root-module))
1631(define the-scm-module (make-scm-module))
1632(set-module-public-interface! the-root-module the-scm-module)
1633(set-module-name! the-root-module 'the-root-module)
1634(set-module-name! the-scm-module 'the-scm-module)
1635
1636(set-current-module the-root-module)
1637
1638(define app (make-module 31))
0dd5491c
MD
1639(local-define '(app modules) (make-module 31))
1640(local-define '(app modules guile) the-root-module)
0f2d19dd
JB
1641
1642;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1643
0209ca9a 1644(define (resolve-module name . maybe-autoload)
0f2d19dd 1645 (let ((full-name (append '(app modules) name)))
0dd5491c 1646 (let ((already (local-ref full-name)))
0f2d19dd
JB
1647 (or already
1648 (begin
0209ca9a
MV
1649 (if (or (null? maybe-autoload) (car maybe-autoload))
1650 (try-module-autoload name))
0f2d19dd
JB
1651 (make-modules-in (current-module) full-name))))))
1652
1653(define (beautify-user-module! module)
1654 (if (not (module-public-interface module))
1655 (let ((interface (make-module 31)))
1656 (set-module-name! interface (module-name module))
1657 (set-module-kind! interface 'interface)
1658 (set-module-public-interface! module interface)))
1659 (if (not (memq the-scm-module (module-uses module)))
1660 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1661
1662(define (make-modules-in module name)
1663 (if (null? name)
1664 module
1665 (cond
1666 ((module-ref module (car name) #f) => (lambda (m) (make-modules-in m (cdr name))))
1667 (else (let ((m (make-module 31)))
1668 (set-module-kind! m 'directory)
1669 (set-module-name! m (car name))
1670 (module-define! module (car name) m)
1671 (make-modules-in m (cdr name)))))))
1672
1673(define (resolve-interface name)
1674 (let ((module (resolve-module name)))
1675 (and module (module-public-interface module))))
1676
1677
1678(define %autoloader-developer-mode #t)
1679
1680(define (process-define-module args)
1681 (let* ((module-id (car args))
0209ca9a 1682 (module (resolve-module module-id #f))
0f2d19dd
JB
1683 (kws (cdr args)))
1684 (beautify-user-module! module)
0209ca9a
MV
1685 (let loop ((kws kws)
1686 (reversed-interfaces '()))
1687 (if (null? kws)
1688 (for-each (lambda (interface)
1689 (module-use! module interface))
1690 reversed-interfaces)
1691 (case (car kws)
1692 ((:use-module)
1693 (if (not (pair? (cdr kws)))
1694 (error "unrecognized defmodule argument" kws))
1695 (let* ((used-name (cadr kws))
1696 (used-module (resolve-module used-name)))
1697 (if (not (module-ref used-module '%module-public-interface #f))
1698 (begin
1699 ((if %autoloader-developer-mode warn error)
1700 "no code for module" (module-name used-module))
1701 (beautify-user-module! used-module)))
1702 (let ((interface (module-public-interface used-module)))
1703 (if (not interface)
1704 (error "missing interface for use-module" used-module))
1705 (loop (cddr kws) (cons interface reversed-interfaces)))))
1706 (else
1707 (error "unrecognized defmodule argument" kws)))))
0f2d19dd
JB
1708 module))
1709\f
44cf1f0f 1710;;; {Autoloading modules}
0f2d19dd
JB
1711
1712(define autoloads-in-progress '())
1713
1714(define (try-module-autoload module-name)
6fa8995c 1715
0f2d19dd
JB
1716 (define (sfx name) (string-append name (scheme-file-suffix)))
1717 (let* ((reverse-name (reverse module-name))
1718 (name (car reverse-name))
1719 (dir-hint-module-name (reverse (cdr reverse-name)))
1720 (dir-hint (apply symbol-append (map (lambda (elt) (symbol-append elt "/")) dir-hint-module-name))))
0209ca9a 1721 (resolve-module dir-hint-module-name #f)
0f2d19dd
JB
1722 (and (not (autoload-done-or-in-progress? dir-hint name))
1723 (let ((didit #f))
1724 (dynamic-wind
1725 (lambda () (autoload-in-progress! dir-hint name))
1726 (lambda ()
1727 (let loop ((dirs %load-path))
1728 (and (not (null? dirs))
1729 (or
1730 (let ((d (car dirs))
1731 (trys (list
1732 dir-hint
1733 (sfx dir-hint)
1734 (in-vicinity dir-hint name)
1735 (in-vicinity dir-hint (sfx name)))))
1736 (and (or-map (lambda (f)
1737 (let ((full (in-vicinity d f)))
1738 full
6fa8995c
GH
1739 (and (file-exists? full)
1740 (not (file-is-directory? full))
0f2d19dd
JB
1741 (begin
1742 (save-module-excursion
1743 (lambda ()
5552355a
GH
1744 (load (string-append
1745 d "/" f))))
0f2d19dd
JB
1746 #t))))
1747 trys)
1748 (begin
1749 (set! didit #t)
1750 #t)))
1751 (loop (cdr dirs))))))
1752 (lambda () (set-autoloaded! dir-hint name didit)))
1753 didit))))
1754
1755(define autoloads-done '((guile . guile)))
1756
1757(define (autoload-done-or-in-progress? p m)
1758 (let ((n (cons p m)))
1759 (->bool (or (member n autoloads-done)
1760 (member n autoloads-in-progress)))))
1761
1762(define (autoload-done! p m)
1763 (let ((n (cons p m)))
1764 (set! autoloads-in-progress
1765 (delete! n autoloads-in-progress))
1766 (or (member n autoloads-done)
1767 (set! autoloads-done (cons n autoloads-done)))))
1768
1769(define (autoload-in-progress! p m)
1770 (let ((n (cons p m)))
1771 (set! autoloads-done
1772 (delete! n autoloads-done))
1773 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1774
1775(define (set-autoloaded! p m done?)
1776 (if done?
1777 (autoload-done! p m)
1778 (let ((n (cons p m)))
1779 (set! autoloads-done (delete! n autoloads-done))
1780 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1781
1782
1783
1784
1785\f
1786;;; {Macros}
1787;;;
1788
9591db87
MD
1789(define macro-table (make-weak-key-hash-table 523))
1790(define xformer-table (make-weak-key-hash-table 523))
0f2d19dd
JB
1791
1792(define (defmacro? m) (hashq-ref macro-table m))
1793(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1794(define (defmacro-transformer m) (hashq-ref xformer-table m))
1795(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
1796
1797(define defmacro:transformer
1798 (lambda (f)
1799 (let* ((xform (lambda (exp env)
1800 (copy-tree (apply f (cdr exp)))))
1801 (a (procedure->memoizing-macro xform)))
1802 (assert-defmacro?! a)
1803 (set-defmacro-transformer! a f)
1804 a)))
1805
1806
1807(define defmacro
1808 (let ((defmacro-transformer
1809 (lambda (name parms . body)
1810 (let ((transformer `(lambda ,parms ,@body)))
1811 `(define ,name
1812 (,(lambda (transformer)
1813 (defmacro:transformer transformer))
1814 ,transformer))))))
1815 (defmacro:transformer defmacro-transformer)))
1816
1817(define defmacro:syntax-transformer
1818 (lambda (f)
1819 (procedure->syntax
1820 (lambda (exp env)
1821 (copy-tree (apply f (cdr exp)))))))
1822
1823(define (macroexpand-1 e)
1824 (cond
1825 ((pair? e) (let* ((a (car e))
b1818df3 1826 (val (and (symbol? a) (defined? a) (eval a))))
0f2d19dd
JB
1827 (if (defmacro? val)
1828 (apply (defmacro-transformer val) (cdr e))
1829 e)))
1830 (#t e)))
1831
1832(define (macroexpand e)
1833 (cond
1834 ((pair? e) (let* ((a (car e))
b1818df3 1835 (val (and (symbol? a) (defined? a) (eval a))))
0f2d19dd
JB
1836 (if (defmacro? val)
1837 (macroexpand (apply (defmacro-transformer val) (cdr e)))
1838 e)))
1839 (#t e)))
1840
1841(define gentemp
1842 (let ((*gensym-counter* -1))
1843 (lambda ()
1844 (set! *gensym-counter* (+ *gensym-counter* 1))
1845 (string->symbol
1846 (string-append "scm:G" (number->string *gensym-counter*))))))
1847
1848
1849\f
1850
1851;;; {Running Repls}
1852;;;
1853
1854(define (repl read evaler print)
1855 (let loop ((source (read (current-input-port) #t read-sharp)))
1856 (print (evaler source))
1857 (loop (read (current-input-port) #t read-sharp))))
1858
1859;; A provisional repl that acts like the SCM repl:
1860;;
1861(define scm-repl-silent #f)
1862(define (assert-repl-silence v) (set! scm-repl-silent v))
1863
21ed9efe
MD
1864(define *unspecified* (if #f #f))
1865(define (unspecified? v) (eq? v *unspecified*))
1866
1867(define scm-repl-print-unspecified #f)
1868(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
1869
79451588 1870(define scm-repl-verbose #f)
0f2d19dd
JB
1871(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
1872
1873(define scm-repl-prompt #t)
1874(define (assert-repl-prompt v) (set! scm-repl-prompt v))
1875
1876(define the-prompt-string "guile> ")
1877
1878(define (error-catching-loop thunk)
1879 (define (loop first)
1880 (let ((next
1881 (catch #t
9b7def66
MD
1882 (lambda ()
1883 (lazy-catch #t
1884 (lambda ()
1885 (dynamic-wind
1886 (lambda () (unmask-signals))
1887 (lambda ()
1888 (first)
1889
1890 ;; This line is needed because mark doesn't do closures quite right.
1891 ;; Unreferenced locals should be collected.
1892 ;;
1893 (set! first #f)
1894 (let loop ((v (thunk)))
1895 (loop (thunk)))
1896 #f)
1897 (lambda () (mask-signals))))
1898
21ed9efe
MD
1899 (lambda args
1900 (save-stack 1)
1901 (apply throw args))))
1c6cd8e8 1902
9b7def66
MD
1903 (lambda (key . args)
1904 (case key
1905 ((quit)
1906 (force-output)
9b7def66
MD
1907 #f)
1908
1909 ((switch-repl)
1910 (apply throw 'switch-repl args))
1911
1912 ((abort)
1913 ;; This is one of the closures that require
1914 ;; (set! first #f) above
1915 ;;
0f2d19dd 1916 (lambda ()
9b7def66 1917 (force-output)
21ed9efe 1918 (display "ABORT: " (current-error-port))
9b7def66 1919 (write args (current-error-port))
21ed9efe
MD
1920 (newline (current-error-port))
1921 (if (and (not has-shown-debugger-hint?)
1922 (not (memq 'backtrace (debug-options-interface)))
1923 (stack? the-last-stack))
1924 (begin
1925 (newline (current-error-port))
16050117 1926 (display "Type \"(backtrace)\" to get more information.\n" (current-error-port))
21ed9efe
MD
1927 (set! has-shown-debugger-hint? #t)))
1928 (set! stack-saved? #f)))
9a0d70e2 1929
9b7def66
MD
1930 (else
1931 ;; This is the other cons-leak closure...
1932 (lambda ()
9a0d70e2 1933 (cond ((= (length args) 4)
35c5db87 1934 (apply handle-system-error key args))
9a0d70e2
GH
1935 (else
1936 (apply bad-throw key args))))))))))
0f2d19dd
JB
1937 (and next (loop next))))
1938 (loop (lambda () #t)))
1939
1c6cd8e8 1940(define the-last-stack #f)
21ed9efe
MD
1941(define stack-saved? #f)
1942
1943(define (save-stack . narrowing)
1944 (cond (stack-saved?)
1945 ((not (memq 'debug (debug-options-interface)))
1946 (set! the-last-stack #f)
1947 (set! stack-saved? #t))
1948 (else
1949 (set! the-last-stack
1950 (case (stack-id #t)
1951 ((repl-stack)
1952 (apply make-stack #t save-stack eval narrowing))
1953 ((load-stack)
1954 (apply make-stack #t save-stack gsubr-apply narrowing))
1955 ((tk-stack)
1956 (apply make-stack #t save-stack tk-stack-mark narrowing))
1957 ((#t)
1958 (apply make-stack #t save-stack narrowing))
1959 (else (let ((id (stack-id #t)))
1960 (and (procedure? id)
1961 (apply make-stack #t save-stack id narrowing))))))
1962 (set! stack-saved? #t))))
1c6cd8e8
MD
1963
1964(define before-error-hook #f)
1965(define after-error-hook #f)
1966(define before-backtrace-hook #f)
1967(define after-backtrace-hook #f)
1968
21ed9efe
MD
1969(define has-shown-debugger-hint? #f)
1970
35c5db87
GH
1971(define (handle-system-error key . args)
1972 (let ((cep (current-error-port)))
21ed9efe
MD
1973 (cond ((not (stack? the-last-stack)))
1974 ((memq 'backtrace (debug-options-interface))
1975 (and before-backtrace-hook (before-backtrace-hook))
1976 (newline cep)
1977 (display-backtrace the-last-stack cep)
1978 (newline cep)
1979 (and after-backtrace-hook (after-backtrace-hook))))
1c6cd8e8 1980 (and before-error-hook (before-error-hook))
c27659c8 1981 (apply display-error the-last-stack cep args)
1c6cd8e8 1982 (and after-error-hook (after-error-hook))
35c5db87
GH
1983 (force-output cep)
1984 (throw 'abort key)))
21ed9efe 1985
0f2d19dd
JB
1986(define (quit . args)
1987 (apply throw 'quit args))
1988
21ed9efe
MD
1989(define has-shown-backtrace-hint? #f)
1990
1991(define (backtrace)
1992 (if the-last-stack
1993 (begin
1994 (newline)
1995 (display-backtrace the-last-stack (current-output-port))
1996 (newline)
1997 (if (and (not has-shown-backtrace-hint?)
1998 (not (memq 'backtrace (debug-options-interface))))
1999 (begin
2000 (display
2001"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2002automatically if an error occurs in the future.\n")
2003 (set! has-shown-backtrace-hint? #t))))
2004 (display "No backtrace available.\n")))
2005
0f2d19dd
JB
2006(define (error-catching-repl r e p)
2007 (error-catching-loop (lambda () (p (e (r))))))
2008
2009(define (gc-run-time)
2010 (cdr (assq 'gc-time-taken (gc-stats))))
2011
21ed9efe 2012(define before-read-hook #f)
1c6cd8e8
MD
2013(define after-read-hook #f)
2014
0f2d19dd
JB
2015(define (scm-style-repl)
2016 (letrec (
2017 (start-gc-rt #f)
2018 (start-rt #f)
2019 (repl-report-reset (lambda () #f))
2020 (repl-report-start-timing (lambda ()
2021 (set! start-gc-rt (gc-run-time))
2022 (set! start-rt (get-internal-run-time))))
2023 (repl-report (lambda ()
2024 (display ";;; ")
2025 (display (inexact->exact
2026 (* 1000 (/ (- (get-internal-run-time) start-rt)
2027 internal-time-units-per-second))))
2028 (display " msec (")
2029 (display (inexact->exact
2030 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2031 internal-time-units-per-second))))
2032 (display " msec in gc)\n")))
2033 (-read (lambda ()
2034 (if scm-repl-prompt
2035 (begin
2036 (display the-prompt-string)
2037 (force-output)
2038 (repl-report-reset)))
21ed9efe 2039 (and before-read-hook (before-read-hook))
0f2d19dd 2040 (let ((val (read (current-input-port) #t read-sharp)))
1c6cd8e8 2041 (and after-read-hook (after-read-hook))
0f2d19dd
JB
2042 (if (eof-object? val)
2043 (begin
2044 (if scm-repl-verbose
2045 (begin
2046 (newline)
2047 (display ";;; EOF -- quitting")
2048 (newline)))
2049 (quit 0)))
2050 val)))
2051
2052 (-eval (lambda (sourc)
2053 (repl-report-start-timing)
4cdee789 2054 (start-stack 'repl-stack (eval sourc))))
0f2d19dd
JB
2055
2056 (-print (lambda (result)
2057 (if (not scm-repl-silent)
2058 (begin
21ed9efe
MD
2059 (if (or scm-repl-print-unspecified
2060 (not (unspecified? result)))
2061 (begin
2062 (write result)
2063 (newline)))
0f2d19dd
JB
2064 (if scm-repl-verbose
2065 (repl-report))
2066 (force-output)))))
2067
2068 (-quit (lambda ()
2069 (if scm-repl-verbose
2070 (begin
2071 (display ";;; QUIT executed, repl exitting")
2072 (newline)
2073 (repl-report)))
2074 #t))
2075
2076 (-abort (lambda ()
2077 (if scm-repl-verbose
2078 (begin
2079 (display ";;; ABORT executed.")
2080 (newline)
2081 (repl-report)))
2082 (repl -read -eval -print))))
2083
2084 (error-catching-repl -read
2085 -eval
2086 -print)))
2087
2088(define (stand-alone-repl)
2089 (let ((oport (current-input-port)))
2090 (set-current-input-port *stdin*)
2091 (scm-style-repl)
2092 (set-current-input-port oport)))
2093
2094
2095\f
44cf1f0f 2096;;; {IOTA functions: generating lists of numbers}
0f2d19dd
JB
2097
2098(define (reverse-iota n) (if (> n 0) (cons (1- n) (reverse-iota (1- n))) '()))
2099(define (iota n) (list-reverse! (reverse-iota n)))
2100
2101\f
2102;;; {While}
2103;;;
2104;;; with `continue' and `break'.
2105;;;
2106
2107(defmacro while (cond . body)
2108 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2109 (break (lambda val (apply throw 'break val))))
2110 (catch 'break
2111 (lambda () (continue))
2112 (lambda v (cadr v)))))
2113
2114
2115\f
2116
2117;;; {Macros}
2118;;;
2119
2120;; actually....hobbit might be able to hack these with a little
2121;; coaxing
2122;;
2123
2124(defmacro define-macro (first . rest)
2125 (let ((name (if (symbol? first) first (car first)))
2126 (transformer
2127 (if (symbol? first)
2128 (car rest)
2129 `(lambda ,(cdr first) ,@rest))))
2130 `(define ,name (defmacro:transformer ,transformer))))
2131
2132
2133(defmacro define-syntax-macro (first . rest)
2134 (let ((name (if (symbol? first) first (car first)))
2135 (transformer
2136 (if (symbol? first)
2137 (car rest)
2138 `(lambda ,(cdr first) ,@rest))))
2139 `(define ,name (defmacro:syntax-transformer ,transformer))))
2140\f
2141;;; {Module System Macros}
2142;;;
2143
2144(defmacro define-module args
2145 `(let* ((process-define-module process-define-module)
2146 (set-current-module set-current-module)
2147 (module (process-define-module ',args)))
2148 (set-current-module module)
2149 module))
2150
33cf699f
MD
2151(defmacro use-modules modules
2152 `(for-each (lambda (module)
2153 (module-use! (current-module)
2154 (resolve-interface module)))
2155 (reverse ',modules)))
2156
0f2d19dd
JB
2157(define define-private define)
2158
2159(defmacro define-public args
2160 (define (syntax)
2161 (error "bad syntax" (list 'define-public args)))
2162 (define (defined-name n)
2163 (cond
2164 ((symbol? n) n)
2165 ((pair? n) (defined-name (car n)))
2166 (else (syntax))))
2167 (cond
2168 ((null? args) (syntax))
2169
2170 (#t (let ((name (defined-name (car args))))
2171 `(begin
2172 (let ((public-i (module-public-interface (current-module))))
2173 ;; Make sure there is a local variable:
2174 ;;
2175 (module-define! (current-module)
2176 ',name
2177 (module-ref (current-module) ',name #f))
2178
2179 ;; Make sure that local is exported:
2180 ;;
2181 (module-add! public-i ',name (module-variable (current-module) ',name)))
2182
2183 ;; Now (re)define the var normally.
2184 ;;
2185 (define-private ,@ args))))))
2186
2187
2188
2189(defmacro defmacro-public args
2190 (define (syntax)
2191 (error "bad syntax" (list 'defmacro-public args)))
2192 (define (defined-name n)
2193 (cond
2194 ((symbol? n) n)
2195 (else (syntax))))
2196 (cond
2197 ((null? args) (syntax))
2198
2199 (#t (let ((name (defined-name (car args))))
2200 `(begin
2201 (let ((public-i (module-public-interface (current-module))))
2202 ;; Make sure there is a local variable:
2203 ;;
2204 (module-define! (current-module)
2205 ',name
2206 (module-ref (current-module) ',name #f))
2207
2208 ;; Make sure that local is exported:
2209 ;;
2210 (module-add! public-i ',name (module-variable (current-module) ',name)))
2211
2212 ;; Now (re)define the var normally.
2213 ;;
2214 (defmacro ,@ args))))))
2215
2216
2217
2218
0f2d19dd 2219(define load load-module)
1c6cd8e8
MD
2220;(define (load . args)
2221; (start-stack 'load-stack (apply load-module args)))
0f2d19dd
JB
2222
2223
2224\f
44cf1f0f 2225;;; {I/O functions for Tcl channels (disabled)}
0f2d19dd
JB
2226
2227;; (define in-ch (get-standard-channel TCL_STDIN))
2228;; (define out-ch (get-standard-channel TCL_STDOUT))
2229;; (define err-ch (get-standard-channel TCL_STDERR))
2230;;
2231;; (define inp (%make-channel-port in-ch "r"))
2232;; (define outp (%make-channel-port out-ch "w"))
2233;; (define errp (%make-channel-port err-ch "w"))
2234;;
2235;; (define %system-char-ready? char-ready?)
2236;;
2237;; (define (char-ready? p)
2238;; (if (not (channel-port? p))
2239;; (%system-char-ready? p)
2240;; (let* ((channel (%channel-port-channel p))
2241;; (old-blocking (channel-option-ref channel :blocking)))
2242;; (dynamic-wind
2243;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking "0"))
2244;; (lambda () (not (eof-object? (peek-char p))))
2245;; (lambda () (set-channel-option the-root-tcl-interpreter channel :blocking old-blocking))))))
2246;;
2247;; (define (top-repl)
2248;; (with-input-from-port inp
2249;; (lambda ()
2250;; (with-output-to-port outp
2251;; (lambda ()
2252;; (with-error-to-port errp
2253;; (lambda ()
2254;; (scm-style-repl))))))))
2255;;
2256;; (set-current-input-port inp)
2257;; (set-current-output-port outp)
2258;; (set-current-error-port errp)
2259
2260(define (top-repl) (scm-style-repl))
2261
02b754d3
GH
2262(defmacro false-if-exception (expr)
2263 `(catch #t (lambda () ,expr)
2264 (lambda args #f)))
2265
0f2d19dd 2266\f
44cf1f0f 2267;;; {Calling Conventions}
0f2d19dd
JB
2268(define-module (ice-9 calling))
2269
2270;;;;
0f2d19dd
JB
2271;;;
2272;;; This file contains a number of macros that support
2273;;; common calling conventions.
2274
2275;;;
2276;;; with-excursion-function <vars> proc
2277;;; <vars> is an unevaluated list of names that are bound in the caller.
2278;;; proc is a procedure, called:
2279;;; (proc excursion)
2280;;;
2281;;; excursion is a procedure isolates all changes to <vars>
2282;;; in the dynamic scope of the call to proc. In other words,
2283;;; the values of <vars> are saved when proc is entered, and when
2284;;; proc returns, those values are restored. Values are also restored
2285;;; entering and leaving the call to proc non-locally, such as using
2286;;; call-with-current-continuation, error, or throw.
2287;;;
2288(defmacro-public with-excursion-function (vars proc)
2289 `(,proc ,(excursion-function-syntax vars)))
2290
2291
2292
2293;;; with-getter-and-setter <vars> proc
2294;;; <vars> is an unevaluated list of names that are bound in the caller.
2295;;; proc is a procedure, called:
2296;;; (proc getter setter)
2297;;;
2298;;; getter and setter are procedures used to access
2299;;; or modify <vars>.
2300;;;
2301;;; setter, called with keywords arguments, modifies the named
2302;;; values. If "foo" and "bar" are among <vars>, then:
2303;;;
2304;;; (setter :foo 1 :bar 2)
2305;;; == (set! foo 1 bar 2)
2306;;;
2307;;; getter, called with just keywords, returns
2308;;; a list of the corresponding values. For example,
2309;;; if "foo" and "bar" are among the <vars>, then
2310;;;
2311;;; (getter :foo :bar)
2312;;; => (<value-of-foo> <value-of-bar>)
2313;;;
2314;;; getter, called with no arguments, returns a list of all accepted
2315;;; keywords and the corresponding values. If "foo" and "bar" are
2316;;; the *only* <vars>, then:
2317;;;
2318;;; (getter)
2319;;; => (:foo <value-of-bar> :bar <value-of-foo>)
2320;;;
2321;;; The unusual calling sequence of a getter supports too handy
2322;;; idioms:
2323;;;
2324;;; (apply setter (getter)) ;; save and restore
2325;;;
2326;;; (apply-to-args (getter :foo :bar) ;; fetch and bind
2327;;; (lambda (foo bar) ....))
2328;;;
2329;;; ;; [ "apply-to-args" is just like two-argument "apply" except that it
2330;;; ;; takes its arguments in a different order.
2331;;;
2332;;;
2333(defmacro-public with-getter-and-setter (vars proc)
2334 `(,proc ,@ (getter-and-setter-syntax vars)))
2335
2336;;; with-getter vars proc
2337;;; A short-hand for a call to with-getter-and-setter.
2338;;; The procedure is called:
2339;;; (proc getter)
2340;;;
2341(defmacro-public with-getter (vars proc)
2342 `(,proc ,(car (getter-and-setter-syntax vars))))
2343
2344
2345;;; with-delegating-getter-and-setter <vars> get-delegate set-delegate proc
2346;;; Compose getters and setters.
2347;;;
2348;;; <vars> is an unevaluated list of names that are bound in the caller.
2349;;;
2350;;; get-delegate is called by the new getter to extend the set of
2351;;; gettable variables beyond just <vars>
2352;;; set-delegate is called by the new setter to extend the set of
2353;;; gettable variables beyond just <vars>
2354;;;
2355;;; proc is a procedure that is called
2356;;; (proc getter setter)
2357;;;
2358(defmacro-public with-delegating-getter-and-setter (vars get-delegate set-delegate proc)
2359 `(,proc ,@ (delegating-getter-and-setter-syntax vars get-delegate set-delegate)))
2360
2361
2362;;; with-delegating-getter-and-setter <vars> get-delegate set-delegate proc
2363;;; <vars> is an unevaluated list of names that are bound in the caller.
2364;;; proc is called:
2365;;;
2366;;; (proc excursion getter setter)
2367;;;
2368;;; See also:
2369;;; with-getter-and-setter
2370;;; with-excursion-function
2371;;;
2372(defmacro-public with-excursion-getter-and-setter (vars proc)
2373 `(,proc ,(excursion-function-syntax vars)
2374 ,@ (getter-and-setter-syntax vars)))
2375
2376
2377(define (excursion-function-syntax vars)
2378 (let ((saved-value-names (map gensym vars))
2379 (tmp-var-name (gensym 'temp))
2380 (swap-fn-name (gensym 'swap))
2381 (thunk-name (gensym 'thunk)))
2382 `(lambda (,thunk-name)
2383 (letrec ((,tmp-var-name #f)
2384 (,swap-fn-name
2385 (lambda () ,@ (map (lambda (n sn) `(set! ,tmp-var-name ,n ,n ,sn ,sn ,tmp-var-name))
2386 vars saved-value-names)))
2387 ,@ (map (lambda (sn n) `(,sn ,n)) saved-value-names vars))
2388 (dynamic-wind
2389 ,swap-fn-name
2390 ,thunk-name
2391 ,swap-fn-name)))))
2392
2393
2394(define (getter-and-setter-syntax vars)
2395 (let ((args-name (gensym 'args))
2396 (an-arg-name (gensym 'an-arg))
2397 (new-val-name (gensym 'new-value))
2398 (loop-name (gensym 'loop))
2399 (kws (map symbol->keyword vars)))
2400 (list `(lambda ,args-name
2401 (let ,loop-name ((,args-name ,args-name))
2402 (if (null? ,args-name)
2403 ,(if (null? kws)
2404 ''()
2405 `(let ((all-vals (,loop-name ',kws)))
2406 (let ,loop-name ((vals all-vals)
2407 (kws ',kws))
2408 (if (null? vals)
2409 '()
2410 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2411 (map (lambda (,an-arg-name)
2412 (case ,an-arg-name
2413 ,@ (append
2414 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2415 `((else (throw 'bad-get-option ,an-arg-name))))))
2416 ,args-name))))
2417
2418 `(lambda ,args-name
2419 (let ,loop-name ((,args-name ,args-name))
2420 (or (null? ,args-name)
2421 (null? (cdr ,args-name))
2422 (let ((,an-arg-name (car ,args-name))
2423 (,new-val-name (cadr ,args-name)))
2424 (case ,an-arg-name
2425 ,@ (append
2426 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2427 `((else (throw 'bad-set-option ,an-arg-name)))))
2428 (,loop-name (cddr ,args-name)))))))))
2429
2430(define (delegating-getter-and-setter-syntax vars get-delegate set-delegate)
2431 (let ((args-name (gensym 'args))
2432 (an-arg-name (gensym 'an-arg))
2433 (new-val-name (gensym 'new-value))
2434 (loop-name (gensym 'loop))
2435 (kws (map symbol->keyword vars)))
2436 (list `(lambda ,args-name
2437 (let ,loop-name ((,args-name ,args-name))
2438 (if (null? ,args-name)
2439 (append!
2440 ,(if (null? kws)
2441 ''()
2442 `(let ((all-vals (,loop-name ',kws)))
2443 (let ,loop-name ((vals all-vals)
2444 (kws ',kws))
2445 (if (null? vals)
2446 '()
2447 `(,(car kws) ,(car vals) ,@(,loop-name (cdr vals) (cdr kws)))))))
2448 (,get-delegate))
2449 (map (lambda (,an-arg-name)
2450 (case ,an-arg-name
2451 ,@ (append
2452 (map (lambda (kw v) `((,kw) ,v)) kws vars)
2453 `((else (car (,get-delegate ,an-arg-name)))))))
2454 ,args-name))))
2455
2456 `(lambda ,args-name
2457 (let ,loop-name ((,args-name ,args-name))
2458 (or (null? ,args-name)
2459 (null? (cdr ,args-name))
2460 (let ((,an-arg-name (car ,args-name))
2461 (,new-val-name (cadr ,args-name)))
2462 (case ,an-arg-name
2463 ,@ (append
2464 (map (lambda (kw v) `((,kw) (set! ,v ,new-val-name))) kws vars)
2465 `((else (,set-delegate ,an-arg-name ,new-val-name)))))
2466 (,loop-name (cddr ,args-name)))))))))
2467
2468
2469
2470
2471;;; with-configuration-getter-and-setter <vars-etc> proc
2472;;;
2473;;; Create a getter and setter that can trigger arbitrary computation.
2474;;;
2475;;; <vars-etc> is a list of variable specifiers, explained below.
2476;;; proc is called:
2477;;;
2478;;; (proc getter setter)
2479;;;
2480;;; Each element of the <vars-etc> list is of the form:
2481;;;
2482;;; (<var> getter-hook setter-hook)
2483;;;
2484;;; Both hook elements are evaluated; the variable name is not.
2485;;; Either hook may be #f or procedure.
2486;;;
2487;;; A getter hook is a thunk that returns a value for the corresponding
2488;;; variable. If omitted (#f is passed), the binding of <var> is
2489;;; returned.
2490;;;
2491;;; A setter hook is a procedure of one argument that accepts a new value
2492;;; for the corresponding variable. If omitted, the binding of <var>
2493;;; is simply set using set!.
2494;;;
2495(defmacro-public with-configuration-getter-and-setter (vars-etc proc)
2496 `((lambda (simpler-get simpler-set body-proc)
2497 (with-delegating-getter-and-setter ()
2498 simpler-get simpler-set body-proc))
2499
2500 (lambda (kw)
2501 (case kw
2502 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2503 ,(cond
2504 ((cadr v) => list)
2505 (else `(list ,(car v))))))
2506 vars-etc)))
2507
2508 (lambda (kw new-val)
2509 (case kw
2510 ,@(map (lambda (v) `((,(symbol->keyword (car v)))
2511 ,(cond
2512 ((caddr v) => (lambda (proc) `(,proc new-val)))
2513 (else `(set! ,(car v) new-val)))))
2514 vars-etc)))
2515
2516 ,proc))
2517
2518(defmacro-public with-delegating-configuration-getter-and-setter (vars-etc delegate-get delegate-set proc)
2519 `((lambda (simpler-get simpler-set body-proc)
2520 (with-delegating-getter-and-setter ()
2521 simpler-get simpler-set body-proc))
2522
2523 (lambda (kw)
2524 (case kw
2525 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2526 ,(cond
2527 ((cadr v) => list)
2528 (else `(list ,(car v))))))
2529 vars-etc)
2530 `((else (,delegate-get kw))))))
2531
2532 (lambda (kw new-val)
2533 (case kw
2534 ,@(append! (map (lambda (v) `((,(symbol->keyword (car v)))
2535 ,(cond
2536 ((caddr v) => (lambda (proc) `(,proc new-val)))
2537 (else `(set! ,(car v) new-val)))))
2538 vars-etc)
2539 `((else (,delegate-set kw new-val))))))
2540
2541 ,proc))
2542
2543
2544;;; let-configuration-getter-and-setter <vars-etc> proc
2545;;;
2546;;; This procedure is like with-configuration-getter-and-setter (q.v.)
2547;;; except that each element of <vars-etc> is:
2548;;;
2549;;; (<var> initial-value getter-hook setter-hook)
2550;;;
2551;;; Unlike with-configuration-getter-and-setter, let-configuration-getter-and-setter
2552;;; introduces bindings for the variables named in <vars-etc>.
2553;;; It is short-hand for:
2554;;;
2555;;; (let ((<var1> initial-value-1)
2556;;; (<var2> initial-value-2)
2557;;; ...)
2558;;; (with-configuration-getter-and-setter ((<var1> v1-get v1-set) ...) proc))
2559;;;
2560(defmacro-public let-with-configuration-getter-and-setter (vars-etc proc)
2561 `(let ,(map (lambda (v) `(,(car v) ,(cadr v))) vars-etc)
2562 (with-configuration-getter-and-setter ,(map (lambda (v) `(,(car v) ,(caddr v) ,(cadddr v))) vars-etc)
2563 ,proc)))
2564
2565
2566
2567\f
44cf1f0f
JB
2568;;; {Implementation of COMMON LISP list functions for Scheme}
2569
0f2d19dd
JB
2570(define-module (ice-9 common-list))
2571
2572;;"comlist.scm" Implementation of COMMON LISP list functions for Scheme
2573; Copyright (C) 1991, 1993, 1995 Aubrey Jaffer.
2574;
2575;Permission to copy this software, to redistribute it, and to use it
2576;for any purpose is granted, subject to the following restrictions and
2577;understandings.
2578;
2579;1. Any copy made of this software must include this copyright notice
2580;in full.
2581;
2582;2. I have made no warrantee or representation that the operation of
2583;this software will be error-free, and I am under no obligation to
2584;provide any services, by way of maintenance, update, or otherwise.
2585;
2586;3. In conjunction with products arising from the use of this
2587;material, there shall be no use of my name in any advertising,
2588;promotional, or sales literature without prior written consent in
2589;each case.
2590
0f2d19dd
JB
2591;;;From: hugh@ear.mit.edu (Hugh Secker-Walker)
2592(define-public (make-list k . init)
2593 (set! init (if (pair? init) (car init)))
2594 (do ((k k (+ -1 k))
2595 (result '() (cons init result)))
2596 ((<= k 0) result)))
2597
2598(define-public (adjoin e l) (if (memq e l) l (cons e l)))
2599
2600(define-public (union l1 l2)
2601 (cond ((null? l1) l2)
2602 ((null? l2) l1)
2603 (else (union (cdr l1) (adjoin (car l1) l2)))))
2604
2605(define-public (intersection l1 l2)
2606 (cond ((null? l1) l1)
2607 ((null? l2) l2)
2608 ((memv (car l1) l2) (cons (car l1) (intersection (cdr l1) l2)))
2609 (else (intersection (cdr l1) l2))))
2610
2611(define-public (set-difference l1 l2)
2612 (cond ((null? l1) l1)
2613 ((memv (car l1) l2) (set-difference (cdr l1) l2))
2614 (else (cons (car l1) (set-difference (cdr l1) l2)))))
2615
2616(define-public (reduce-init p init l)
2617 (if (null? l)
2618 init
2619 (reduce-init p (p init (car l)) (cdr l))))
2620
2621(define-public (reduce p l)
2622 (cond ((null? l) l)
2623 ((null? (cdr l)) (car l))
2624 (else (reduce-init p (car l) (cdr l)))))
2625
2626(define-public (some pred l . rest)
2627 (cond ((null? rest)
2628 (let mapf ((l l))
2629 (and (not (null? l))
2630 (or (pred (car l)) (mapf (cdr l))))))
2631 (else (let mapf ((l l) (rest rest))
2632 (and (not (null? l))
2633 (or (apply pred (car l) (map car rest))
2634 (mapf (cdr l) (map cdr rest))))))))
2635
2636(define-public (every pred l . rest)
2637 (cond ((null? rest)
2638 (let mapf ((l l))
2639 (or (null? l)
2640 (and (pred (car l)) (mapf (cdr l))))))
2641 (else (let mapf ((l l) (rest rest))
2642 (or (null? l)
2643 (and (apply pred (car l) (map car rest))
2644 (mapf (cdr l) (map cdr rest))))))))
2645
2646(define-public (notany pred . ls) (not (apply some pred ls)))
2647
2648(define-public (notevery pred . ls) (not (apply every pred ls)))
2649
2650(define-public (find-if t l)
2651 (cond ((null? l) #f)
2652 ((t (car l)) (car l))
2653 (else (find-if t (cdr l)))))
2654
2655(define-public (member-if t l)
2656 (cond ((null? l) #f)
2657 ((t (car l)) l)
2658 (else (member-if t (cdr l)))))
2659
2660(define-public (remove-if p l)
2661 (cond ((null? l) '())
2662 ((p (car l)) (remove-if p (cdr l)))
2663 (else (cons (car l) (remove-if p (cdr l))))))
2664
2665(define-public (delete-if! pred list)
2666 (let delete-if ((list list))
2667 (cond ((null? list) '())
2668 ((pred (car list)) (delete-if (cdr list)))
2669 (else
2670 (set-cdr! list (delete-if (cdr list)))
2671 list))))
2672
2673(define-public (delete-if-not! pred list)
2674 (let delete-if ((list list))
2675 (cond ((null? list) '())
2676 ((not (pred (car list))) (delete-if (cdr list)))
2677 (else
2678 (set-cdr! list (delete-if (cdr list)))
2679 list))))
2680
2681(define-public (butlast lst n)
2682 (letrec ((l (- (length lst) n))
2683 (bl (lambda (lst n)
2684 (cond ((null? lst) lst)
2685 ((positive? n)
2686 (cons (car lst) (bl (cdr lst) (+ -1 n))))
2687 (else '())))))
2688 (bl lst (if (negative? n)
2689 (slib:error "negative argument to butlast" n)
2690 l))))
2691
2692(define-public (and? . args)
2693 (cond ((null? args) #t)
2694 ((car args) (apply and? (cdr args)))
2695 (else #f)))
2696
2697(define-public (or? . args)
2698 (cond ((null? args) #f)
2699 ((car args) #t)
2700 (else (apply or? (cdr args)))))
2701
2702(define-public (has-duplicates? lst)
2703 (cond ((null? lst) #f)
2704 ((member (car lst) (cdr lst)) #t)
2705 (else (has-duplicates? (cdr lst)))))
2706
2707(define-public (list* x . y)
2708 (define (list*1 x)
2709 (if (null? (cdr x))
2710 (car x)
2711 (cons (car x) (list*1 (cdr x)))))
2712 (if (null? y)
2713 x
2714 (cons x (list*1 y))))
2715
2716;; pick p l
2717;; Apply P to each element of L, returning a list of elts
2718;; for which P returns a non-#f value.
2719;;
2720(define-public (pick p l)
2721 (let loop ((s '())
2722 (l l))
2723 (cond
2724 ((null? l) s)
2725 ((p (car l)) (loop (cons (car l) s) (cdr l)))
2726 (else (loop s (cdr l))))))
2727
2728;; pick p l
2729;; Apply P to each element of L, returning a list of the
2730;; non-#f return values of P.
2731;;
2732(define-public (pick-mappings p l)
2733 (let loop ((s '())
2734 (l l))
2735 (cond
2736 ((null? l) s)
2737 ((p (car l)) => (lambda (mapping) (loop (cons mapping s) (cdr l))))
2738 (else (loop s (cdr l))))))
2739
2740(define-public (uniq l)
2741 (if (null? l)
2742 '()
2743 (let ((u (uniq (cdr l))))
2744 (if (memq (car l) u)
2745 u
2746 (cons (car l) u)))))
2747
2748\f
44cf1f0f
JB
2749;;; {Functions for browsing modules}
2750
0f2d19dd
JB
2751(define-module (ice-9 ls)
2752 :use-module (ice-9 common-list))
2753
0f2d19dd
JB
2754;;;;
2755;;; local-definitions-in root name
8b718458
JB
2756;;; Returns a list of names defined locally in the named
2757;;; subdirectory of root.
0f2d19dd 2758;;; definitions-in root name
8b718458
JB
2759;;; Returns a list of all names defined in the named
2760;;; subdirectory of root. The list includes alll locally
2761;;; defined names as well as all names inherited from a
2762;;; member of a use-list.
0f2d19dd
JB
2763;;;
2764;;; A convenient interface for examining the nature of things:
2765;;;
2766;;; ls . various-names
2767;;;
8b718458
JB
2768;;; With just one argument, interpret that argument as the
2769;;; name of a subdirectory of the current module and
2770;;; return a list of names defined there.
0f2d19dd 2771;;;
8b718458
JB
2772;;; With more than one argument, still compute
2773;;; subdirectory lists, but return a list:
0f2d19dd
JB
2774;;; ((<subdir-name> . <names-defined-there>)
2775;;; (<subdir-name> . <names-defined-there>)
2776;;; ...)
2777;;;
2778
2779(define-public (local-definitions-in root names)
0dd5491c 2780 (let ((m (nested-ref root names))
0f2d19dd
JB
2781 (answer '()))
2782 (if (not (module? m))
2783 (set! answer m)
2784 (module-for-each (lambda (k v) (set! answer (cons k answer))) m))
2785 answer))
2786
2787(define-public (definitions-in root names)
0dd5491c 2788 (let ((m (nested-ref root names)))
0f2d19dd
JB
2789 (if (not (module? m))
2790 m
2791 (reduce union
2792 (cons (local-definitions-in m '())
8b718458
JB
2793 (map (lambda (m2) (definitions-in m2 '()))
2794 (module-uses m)))))))
0f2d19dd
JB
2795
2796(define-public (ls . various-refs)
2797 (and various-refs
2798 (if (cdr various-refs)
2799 (map (lambda (ref)
2800 (cons ref (definitions-in (current-module) ref)))
2801 various-refs)
2802 (definitions-in (current-module) (car various-refs)))))
2803
2804(define-public (lls . various-refs)
2805 (and various-refs
2806 (if (cdr various-refs)
2807 (map (lambda (ref)
2808 (cons ref (local-definitions-in (current-module) ref)))
2809 various-refs)
2810 (local-definitions-in (current-module) (car various-refs)))))
2811
0dd5491c 2812(define-public (recursive-local-define name value)
0f2d19dd
JB
2813 (let ((parent (reverse! (cdr (reverse name)))))
2814 (and parent (make-modules-in (current-module) parent))
0dd5491c 2815 (local-define name value)))
0f2d19dd 2816\f
44cf1f0f
JB
2817;;; {Queues}
2818
0f2d19dd
JB
2819(define-module (ice-9 q))
2820
2821;;;; Copyright (C) 1995 Free Software Foundation, Inc.
2822;;;;
2823;;;; This program is free software; you can redistribute it and/or modify
2824;;;; it under the terms of the GNU General Public License as published by
2825;;;; the Free Software Foundation; either version 2, or (at your option)
2826;;;; any later version.
2827;;;;
2828;;;; This program is distributed in the hope that it will be useful,
2829;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
2830;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2831;;;; GNU General Public License for more details.
2832;;;;
2833;;;; You should have received a copy of the GNU General Public License
2834;;;; along with this software; see the file COPYING. If not, write to
2835;;;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
2836;;;;
2837
0f2d19dd
JB
2838;;;;
2839;;; Q: Based on the interface to
2840;;;
2841;;; "queue.scm" Queues/Stacks for Scheme
2842;;; Written by Andrew Wilcox (awilcox@astro.psu.edu) on April 1, 1992.
2843;;;
2844
0f2d19dd
JB
2845;;;;
2846;;; {Q}
2847;;;
2848;;; A list is just a bunch of cons pairs that follows some constrains, right?
2849;;; Association lists are the same. Hash tables are just vectors and association
2850;;; lists. You can print them, read them, write them as constants, pun them off as other data
2851;;; structures etc. This is good. This is lisp. These structures are fast and compact
2852;;; and easy to manipulate arbitrarily because of their simple, regular structure and
2853;;; non-disjointedness (associations being lists and so forth).
2854;;;
2855;;; So I figured, queues should be the same -- just a "subtype" of cons-pair
2856;;; structures in general.
2857;;;
2858;;; A queue is a cons pair:
2859;;; ( <the-q> . <last-pair> )
2860;;;
2861;;; <the-q> is a list of things in the q. New elements go at the end of that list.
2862;;;
2863;;; <last-pair> is #f if the q is empty, and otherwise is the last pair of <the-q>.
2864;;;
2865;;; q's print nicely, but alas, they do not read well because the eq?-ness of
2866;;; <last-pair> and (last-pair <the-q>) is lost by read. The procedure
2867;;;
2868;;; (sync-q! q)
2869;;;
2870;;; recomputes and resets the <last-pair> component of a queue.
2871;;;
2872
2873(define-public (sync-q! obj) (set-cdr! obj (and (car obj) (last-pair (car obj)))))
2874
2875;;; make-q
2876;;; return a new q.
2877;;;
2878(define-public (make-q) (cons '() '()))
2879
2880;;; q? obj
2881;;; Return true if obj is a Q.
2882;;; An object is a queue if it is equal? to '(#f . #f) or
2883;;; if it is a pair P with (list? (car P)) and (eq? (cdr P) (last-pair P)).
2884;;;
2885(define-public (q? obj) (and (pair? obj)
2886 (or (and (null? (car obj))
2887 (null? (cdr obj)))
2888 (and
2889 (list? (car obj))
2890 (eq? (cdr obj) (last-pair (car obj)))))))
2891
2892;;; q-empty? obj
2893;;;
2894(define-public (q-empty? obj) (null? (car obj)))
2895
2896;;; q-empty-check q
2897;;; Throw a q-empty exception if Q is empty.
2898(define-public (q-empty-check q) (if (q-empty? q) (throw 'q-empty q)))
2899
2900
2901;;; q-front q
2902;;; Return the first element of Q.
2903(define-public (q-front q) (q-empty-check q) (caar q))
2904
2905;;; q-front q
2906;;; Return the last element of Q.
2907(define-public (q-rear q) (q-empty-check q) (cadr q))
2908
2909;;; q-remove! q obj
2910;;; Remove all occurences of obj from Q.
2911(define-public (q-remove! q obj)
2912 (while (memq obj (car q))
2913 (set-car! q (delq! obj (car q))))
2914 (set-cdr! q (last-pair (car q))))
2915
2916;;; q-push! q obj
2917;;; Add obj to the front of Q
2918(define-public (q-push! q d)
2919 (let ((h (cons d (car q))))
2920 (set-car! q h)
2921 (if (null? (cdr q))
2922 (set-cdr! q h))))
2923
2924;;; enq! q obj
2925;;; Add obj to the rear of Q
2926(define-public (enq! q d)
2927 (let ((h (cons d '())))
2928 (if (not (null? (cdr q)))
2929 (set-cdr! (cdr q) h)
2930 (set-car! q h))
2931 (set-cdr! q h)))
2932
2933;;; q-pop! q
2934;;; Take the front of Q and return it.
2935(define-public (q-pop! q)
2936 (q-empty-check q)
2937 (let ((it (caar q))
2938 (next (cdar q)))
2939 (if (not next)
2940 (set-cdr! q #f))
2941 (set-car! q next)
2942 it))
2943
2944;;; deq! q
2945;;; Take the front of Q and return it.
2946(define-public deq! q-pop!)
2947
2948;;; q-length q
2949;;; Return the number of enqueued elements.
2950;;;
2951(define-public (q-length q) (length (car q)))
2952
2953
2954
2955\f
44cf1f0f
JB
2956;;; {The runq data structure}
2957
0f2d19dd
JB
2958(define-module (ice-9 runq)
2959 :use-module (ice-9 q))
2960
0f2d19dd
JB
2961;;;; Copyright (C) 1996 Free Software Foundation, Inc.
2962;;;;
2963;;;; This program is free software; you can redistribute it and/or modify
2964;;;; it under the terms of the GNU General Public License as published by
2965;;;; the Free Software Foundation; either version 2, or (at your option)
2966;;;; any later version.
2967;;;;
2968;;;; This program is distributed in the hope that it will be useful,
2969;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
2970;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2971;;;; GNU General Public License for more details.
2972;;;;
2973;;;; You should have received a copy of the GNU General Public License
2974;;;; along with this software; see the file COPYING. If not, write to
2975;;;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
2976;;;;
2977
0f2d19dd 2978;;;;
0f2d19dd
JB
2979;;;
2980;;; One way to schedule parallel computations in a serial environment is
2981;;; to explicitly divide each task up into small, finite execution time,
2982;;; strips. Then you interleave the execution of strips from various
2983;;; tasks to achieve a kind of parallelism. Runqs are a handy data
2984;;; structure for this style of programming.
2985;;;
2986;;; We use thunks (nullary procedures) and lists of thunks to represent
2987;;; strips. By convention, the return value of a strip-thunk must either
2988;;; be another strip or the value #f.
2989;;;
2990;;; A runq is a procedure that manages a queue of strips. Called with no
2991;;; arguments, it processes one strip from the queue. Called with
2992;;; arguments, the arguments form a control message for the queue. The
2993;;; first argument is a symbol which is the message selector.
2994;;;
2995;;; A strip is processed this way: If the strip is a thunk, the thunk is
2996;;; called -- if it returns a strip, that strip is added back to the
2997;;; queue. To process a strip which is a list of thunks, the CAR of that
2998;;; list is called. After a call to that CAR, there are 0, 1, or 2 strips
2999;;; -- perhaps one returned by the thunk, and perhaps the CDR of the
3000;;; original strip if that CDR is not nil. The runq puts whichever of
3001;;; these strips exist back on the queue. (The exact order in which
3002;;; strips are put back on the queue determines the scheduling behavior of
3003;;; a particular queue -- it's a parameter.)
3004;;;
3005;;;
3006
3007
3008
3009;;;;
3010;;; (runq-control q msg . args)
3011;;;
3012;;; processes in the default way the control messages that
3013;;; can be sent to a runq. Q should be an ordinary
3014;;; Q (see utils/q.scm).
3015;;;
3016;;; The standard runq messages are:
3017;;;
3018;;; 'add! strip0 strip1... ;; to enqueue one or more strips
3019;;; 'enqueue! strip0 strip1... ;; to enqueue one or more strips
3020;;; 'push! strip0 ... ;; add strips to the front of the queue
3021;;; 'empty? ;; true if it is
3022;;; 'length ;; how many strips in the queue?
3023;;; 'kill! ;; empty the queue
3024;;; else ;; throw 'not-understood
3025;;;
3026(define-public (runq-control q msg . args)
3027 (case msg
3028 ((add!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3029 ((enque!) (for-each (lambda (t) (enq! q t)) args) '*unspecified*)
3030 ((push!) (for-each (lambda (t) (q-push! q t)) args) '*unspecified*)
3031 ((empty?) (q-empty? q))
3032 ((length) (q-length q))
3033 ((kill!) (set! q (make-q)))
3034 (else (throw 'not-understood msg args))))
3035
3036(define (run-strip thunk) (catch #t thunk (lambda ign (warn 'runq-strip thunk ign) #f)))
3037
3038;;;;
3039;;; make-void-runq
3040;;;
3041;;; Make a runq that discards all messages except "length", for which
3042;;; it returns 0.
3043;;;
3044(define-public (make-void-runq)
3045 (lambda opts
3046 (and opts
3047 (apply-to-args opts
3048 (lambda (msg . args)
3049 (case msg
3050 ((length) 0)
3051 (else #f)))))))
3052
3053;;;;
3054;;; (make-fair-runq)
3055;;;
3056;;; Returns a runq procedure.
3057;;; Called with no arguments, the procedure processes one strip from the queue.
3058;;; Called with arguments, it uses runq-control.
3059;;;
3060;;; In a fair runq, if a strip returns a new strip X, X is added
3061;;; to the end of the queue, meaning it will be the last to execute
3062;;; of all the remaining procedures.
3063;;;
3064(define-public (make-fair-runq)
3065 (letrec ((q (make-q))
3066 (self
3067 (lambda ctl
3068 (if ctl
3069 (apply runq-control q ctl)
3070 (and (not (q-empty? q))
3071 (let ((next-strip (deq! q)))
3072 (cond
3073 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3074 (and k (enq! q k))))
3075 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3076 (and k (enq! q k)))
3077 (if (not (null? (cdr next-strip)))
3078 (enq! q (cdr next-strip)))))
3079 self))))))
3080 self))
3081
3082
3083;;;;
3084;;; (make-exclusive-runq)
3085;;;
3086;;; Returns a runq procedure.
3087;;; Called with no arguments, the procedure processes one strip from the queue.
3088;;; Called with arguments, it uses runq-control.
3089;;;
3090;;; In an exclusive runq, if a strip W returns a new strip X, X is added
3091;;; to the front of the queue, meaning it will be the next to execute
3092;;; of all the remaining procedures.
3093;;;
3094;;; An exception to this occurs if W was the CAR of a list of strips.
3095;;; In that case, after the return value of W is pushed onto the front
3096;;; of the queue, the CDR of the list of strips is pushed in front
3097;;; of that (if the CDR is not nil). This way, the rest of the thunks
3098;;; in the list that contained W have priority over the return value of W.
3099;;;
3100(define-public (make-exclusive-runq)
3101 (letrec ((q (make-q))
3102 (self
3103 (lambda ctl
3104 (if ctl
3105 (apply runq-control q ctl)
3106 (and (not (q-empty? q))
3107 (let ((next-strip (deq! q)))
3108 (cond
3109 ((procedure? next-strip) (let ((k (run-strip next-strip)))
3110 (and k (q-push! q k))))
3111 ((pair? next-strip) (let ((k (run-strip (car next-strip))))
3112 (and k (q-push! q k)))
3113 (if (not (null? (cdr next-strip)))
3114 (q-push! q (cdr next-strip)))))
3115 self))))))
3116 self))
3117
3118
3119;;;;
3120;;; (make-subordinate-runq-to superior basic-inferior)
3121;;;
3122;;; Returns a runq proxy for the runq basic-inferior.
3123;;;
3124;;; The proxy watches for operations on the basic-inferior that cause
3125;;; a transition from a queue length of 0 to a non-zero length and
3126;;; vice versa. While the basic-inferior queue is not empty,
3127;;; the proxy installs a task on the superior runq. Each strip
3128;;; of that task processes N strips from the basic-inferior where
3129;;; N is the length of the basic-inferior queue when the proxy
3130;;; strip is entered. [Countless scheduling variations are possible.]
3131;;;
3132(define-public (make-subordinate-runq-to superior-runq basic-runq)
3133 (let ((runq-task (cons #f #f)))
3134 (set-car! runq-task
3135 (lambda ()
3136 (if (basic-runq 'empty?)
3137 (set-cdr! runq-task #f)
3138 (do ((n (basic-runq 'length) (1- n)))
3139 ((<= n 0) #f)
3140 (basic-runq)))))
3141 (letrec ((self
3142 (lambda ctl
3143 (if (not ctl)
3144 (let ((answer (basic-runq)))
3145 (self 'empty?)
3146 answer)
3147 (begin
3148 (case (car ctl)
3149 ((suspend) (set-cdr! runq-task #f))
3150 (else (let ((answer (apply basic-runq ctl)))
3151 (if (and (not (cdr runq-task)) (not (basic-runq 'empty?)))
3152 (begin
3153 (set-cdr! runq-task runq-task)
3154 (superior-runq 'add! runq-task)))
3155 answer))))))))
3156 self)))
3157
3158;;;;
3159;;; (define fork-strips (lambda args args))
3160;;; Return a strip that starts several strips in
3161;;; parallel. If this strip is enqueued on a fair
3162;;; runq, strips of the parallel subtasks will run
3163;;; round-robin style.
3164;;;
3165(define fork-strips (lambda args args))
3166
3167
3168;;;;
3169;;; (strip-sequence . strips)
3170;;;
3171;;; Returns a new strip which is the concatenation of the argument strips.
3172;;;
3173(define-public ((strip-sequence . strips))
3174 (let loop ((st (let ((a strips)) (set! strips #f) a)))
3175 (and (not (null? st))
3176 (let ((then ((car st))))
3177 (if then
3178 (lambda () (loop (cons then (cdr st))))
3179 (lambda () (loop (cdr st))))))))
3180
3181
3182;;;;
3183;;; (fair-strip-subtask . initial-strips)
3184;;;
3185;;; Returns a new strip which is the synchronos, fair,
3186;;; parallel execution of the argument strips.
3187;;;
3188;;;
3189;;;
3190(define-public (fair-strip-subtask . initial-strips)
3191 (let ((st (make-fair-runq)))
3192 (apply st 'add! initial-strips)
3193 st))
3194
3195\f
44cf1f0f 3196;;; {String Fun}
0f2d19dd 3197
0f2d19dd
JB
3198(define-module (ice-9 string-fun))
3199
0f2d19dd 3200;;;;
0f2d19dd
JB
3201;;;
3202;;; Various string funcitons, particularly those that take
3203;;; advantage of the "shared substring" capability.
3204;;;
3205\f
44cf1f0f 3206;;; {String Fun: Dividing Strings Into Fields}
0f2d19dd
JB
3207;;;
3208;;; The names of these functions are very regular.
3209;;; Here is a grammar of a call to one of these:
3210;;;
3211;;; <string-function-invocation>
3212;;; := (<action>-<seperator-disposition>-<seperator-determination> <seperator-param> <str> <ret>)
3213;;;
3214;;; <str> = the string
3215;;;
3216;;; <ret> = The continuation. String functions generally return
3217;;; multiple values by passing them to this procedure.
3218;;;
3219;;; <action> = split
3220;;; | separate-fields
3221;;;
3222;;; "split" means to divide a string into two parts.
3223;;; <ret> will be called with two arguments.
3224;;;
3225;;; "separate-fields" means to divide a string into as many
3226;;; parts as possible. <ret> will be called with
3227;;; however many fields are found.
3228;;;
3229;;; <seperator-disposition> = before
3230;;; | after
3231;;; | discarding
3232;;;
3233;;; "before" means to leave the seperator attached to
3234;;; the beginning of the field to its right.
3235;;; "after" means to leave the seperator attached to
3236;;; the end of the field to its left.
3237;;; "discarding" means to discard seperators.
3238;;;
3239;;; Other dispositions might be handy. For example, "isolate"
3240;;; could mean to treat the separator as a field unto itself.
3241;;;
3242;;; <seperator-determination> = char
3243;;; | predicate
3244;;;
3245;;; "char" means to use a particular character as field seperator.
3246;;; "predicate" means to check each character using a particular predicate.
3247;;;
3248;;; Other determinations might be handy. For example, "character-set-member".
3249;;;
3250;;; <seperator-param> = A parameter that completes the meaning of the determinations.
3251;;; For example, if the determination is "char", then this parameter
3252;;; says which character. If it is "predicate", the parameter is the
3253;;; predicate.
3254;;;
3255;;;
3256;;; For example:
3257;;;
3258;;; (separate-fields-discarding-char #\, "foo, bar, baz, , bat" list)
3259;;; => ("foo" " bar" " baz" " " " bat")
3260;;;
3261;;; (split-after-char #\- 'an-example-of-split list)
3262;;; => ("an-" "example-of-split")
3263;;;
3264;;; As an alternative to using a determination "predicate", or to trying to do anything
3265;;; complicated with these functions, consider using regular expressions.
3266;;;
3267
3268(define-public (split-after-char char str ret)
3269 (let ((end (cond
3270 ((string-index str char) => 1+)
3271 (else (string-length str)))))
3272 (ret (make-shared-substring str 0 end)
3273 (make-shared-substring str end))))
3274
3275(define-public (split-before-char char str ret)
3276 (let ((end (or (string-index str char)
3277 (string-length str))))
3278 (ret (make-shared-substring str 0 end)
3279 (make-shared-substring str end))))
3280
3281(define-public (split-discarding-char char str ret)
3282 (let ((end (string-index str char)))
3283 (if (not end)
3284 (ret str "")
3285 (ret (make-shared-substring str 0 end)
3286 (make-shared-substring str (1+ end))))))
3287
3288(define-public (split-after-char-last char str ret)
3289 (let ((end (cond
3290 ((string-rindex str char) => 1+)
3291 (else 0))))
3292 (ret (make-shared-substring str 0 end)
3293 (make-shared-substring str end))))
3294
3295(define-public (split-before-char-last char str ret)
3296 (let ((end (or (string-rindex str char) 0)))
3297 (ret (make-shared-substring str 0 end)
3298 (make-shared-substring str end))))
3299
3300(define-public (split-discarding-char-last char str ret)
3301 (let ((end (string-rindex str char)))
3302 (if (not end)
3303 (ret str "")
3304 (ret (make-shared-substring str 0 end)
3305 (make-shared-substring str (1+ end))))))
3306
3307(define (split-before-predicate pred str ret)
3308 (let loop ((n 0))
3309 (cond
3310 ((= n (length str)) (ret str ""))
3311 ((not (pred (string-ref str n))) (loop (1+ n)))
3312 (else (ret (make-shared-substring str 0 n)
3313 (make-shared-substring str n))))))
3314(define (split-after-predicate pred str ret)
3315 (let loop ((n 0))
3316 (cond
3317 ((= n (length str)) (ret str ""))
3318 ((not (pred (string-ref str n))) (loop (1+ n)))
3319 (else (ret (make-shared-substring str 0 (1+ n))
3320 (make-shared-substring str (1+ n)))))))
3321
3322(define (split-discarding-predicate pred str ret)
3323 (let loop ((n 0))
3324 (cond
3325 ((= n (length str)) (ret str ""))
3326 ((not (pred (string-ref str n))) (loop (1+ n)))
3327 (else (ret (make-shared-substring str 0 n)
3328 (make-shared-substring str (1+ n)))))))
3329
21ed9efe 3330(define-public (separate-fields-discarding-char ch str ret)
0f2d19dd
JB
3331 (let loop ((fields '())
3332 (str str))
3333 (cond
3334 ((string-rindex str ch)
3335 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3336 (make-shared-substring str 0 w))))
3337 (else (ret (cons str fields))))))
3338
21ed9efe 3339(define-public (separate-fields-after-char ch str ret)
0f2d19dd
JB
3340 (let loop ((fields '())
3341 (str str))
3342 (cond
3343 ((string-rindex str ch)
3344 => (lambda (pos) (loop (cons (make-shared-substring str (+ 1 w)) fields)
3345 (make-shared-substring str 0 (+ 1 w)))))
3346 (else (ret (cons str fields))))))
3347
21ed9efe 3348(define-public (separate-fields-before-char ch str ret)
0f2d19dd
JB
3349 (let loop ((fields '())
3350 (str str))
3351 (cond
3352 ((string-rindex str ch)
3353 => (lambda (pos) (loop (cons (make-shared-substring str w) fields)
3354 (make-shared-substring str 0 w))))
3355 (else (ret (cons str fields))))))
3356
3357\f
44cf1f0f 3358;;; {String Fun: String Prefix Predicates}
0f2d19dd
JB
3359;;;
3360;;; Very simple:
3361;;;
21ed9efe 3362;;; (define-public ((string-prefix-predicate pred?) prefix str)
0f2d19dd
JB
3363;;; (and (<= (length prefix) (length str))
3364;;; (pred? prefix (make-shared-substring str 0 (length prefix)))))
3365;;;
3366;;; (define-public string-prefix=? (string-prefix-predicate string=?))
3367;;;
3368
3369(define-public ((string-prefix-predicate pred?) prefix str)
3370 (and (<= (length prefix) (length str))
3371 (pred? prefix (make-shared-substring str 0 (length prefix)))))
3372
3373(define-public string-prefix=? (string-prefix-predicate string=?))
3374
3375\f
44cf1f0f 3376;;; {String Fun: Strippers}
0f2d19dd
JB
3377;;;
3378;;; <stripper> = sans-<removable-part>
3379;;;
3380;;; <removable-part> = surrounding-whitespace
3381;;; | trailing-whitespace
3382;;; | leading-whitespace
3383;;; | final-newline
3384;;;
3385
3386(define-public (sans-surrounding-whitespace s)
3387 (let ((st 0)
3388 (end (string-length s)))
3389 (while (and (< st (string-length s))
3390 (char-whitespace? (string-ref s st)))
3391 (set! st (1+ st)))
3392 (while (and (< 0 end)
3393 (char-whitespace? (string-ref s (1- end))))
3394 (set! end (1- end)))
3395 (if (< end st)
3396 ""
3397 (make-shared-substring s st end))))
3398
3399(define-public (sans-trailing-whitespace s)
3400 (let ((st 0)
3401 (end (string-length s)))
3402 (while (and (< 0 end)
3403 (char-whitespace? (string-ref s (1- end))))
3404 (set! end (1- end)))
3405 (if (< end st)
3406 ""
3407 (make-shared-substring s st end))))
3408
3409(define-public (sans-leading-whitespace s)
3410 (let ((st 0)
3411 (end (string-length s)))
3412 (while (and (< st (string-length s))
3413 (char-whitespace? (string-ref s st)))
3414 (set! st (1+ st)))
3415 (if (< end st)
3416 ""
3417 (make-shared-substring s st end))))
3418
3419(define-public (sans-final-newline str)
3420 (cond
3421 ((= 0 (string-length str))
3422 str)
3423
3424 ((char=? #\nl (string-ref str (1- (string-length str))))
3425 (make-shared-substring str 0 (1- (string-length str))))
3426
3427 (else str)))
3428\f
44cf1f0f 3429;;; {String Fun: has-trailing-newline?}
0f2d19dd
JB
3430;;;
3431
3432(define-public (has-trailing-newline? str)
3433 (and (< 0 (string-length str))
3434 (char=? #\nl (string-ref str (1- (string-length str))))))
3435
3436
3437\f
44cf1f0f 3438;;; {String Fun: with-regexp-parts}
0f2d19dd
JB
3439
3440(define-public (with-regexp-parts regexp fields str return fail)
3441 (let ((parts (regexec regexp str fields)))
3442 (if (number? parts)
3443 (fail parts)
3444 (apply return parts))))
3445
3446\f
c56634ba
MD
3447;;; {Load debug extension code if debug extensions present.}
3448;;;
3449;;; *fixme* This is a temporary solution.
3450;;;
0f2d19dd 3451
c56634ba 3452(if (memq 'debug-extensions *features*)
90895e5c
MD
3453 (define-module (guile) :use-module (ice-9 debug)))
3454
3455\f
90895e5c
MD
3456;;; {Load thread code if threads are present.}
3457;;;
3458;;; *fixme* This is a temporary solution.
3459;;;
3460
3461(if (memq 'threads *features*)
3462 (define-module (guile) :use-module (ice-9 threads)))
3463
21ed9efe
MD
3464\f
3465;;; {Load emacs interface support if emacs option is given.}
3466;;;
3467;;; *fixme* This is a temporary solution.
3468;;;
3469
3470(if (or (member "-e" (cdr (program-arguments)))
3471 (member "--emacs" (cdr (program-arguments))))
3472 (define-module (guile) :use-module (ice-9 emacs)))
3473
3474\f
3475
90895e5c 3476(define-module (guile))
6fa8995c
GH
3477
3478(append! %load-path (cons "." ()))