Partial continuations are RTL stubs
[bpt/guile.git] / libguile / vm-engine.c
CommitLineData
27c7c630 1/* Copyright (C) 2001, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
a98cef7e 2 *
560b9c25 3 * This library is free software; you can redistribute it and/or
53befeb7
NJ
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
a98cef7e 7 *
53befeb7
NJ
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
560b9c25
AW
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
a98cef7e 12 *
560b9c25
AW
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
53befeb7
NJ
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
560b9c25 17 */
a98cef7e 18
510ca126
AW
19/* This file is included in vm.c multiple times. */
20
21
22/* Virtual Machine
23
24 This file contains two virtual machines. First, the old one -- the
25 one that is currently used, and corresponds to Guile 2.0. It's a
26 stack machine, meaning that most instructions pop their operands from
27 the top of the stack, and push results there too.
28
29 Following it is the new virtual machine. It's a register machine,
30 meaning that intructions address their operands by index, and store
31 results in indexed slots as well. Those slots are on the stack.
32 It's somewhat confusing to call it a register machine, given that the
33 values are on the stack. Perhaps it needs a new name.
34
35 Anyway, things are in a transitional state. We're going to try to
36 avoid munging the old VM very much while we flesh out the new one.
37 We're also going to try to make them interoperable, as much as
38 possible -- to have the old VM be able to call procedures for the new
39 VM, and vice versa. This should ease the bootstrapping process. */
40
41
42/* The old VM. */
43static SCM VM_NAME (SCM, SCM, SCM*, int);
44/* The new VM. */
45static SCM RTL_VM_NAME (SCM, SCM, SCM*, size_t);
46
6d14383e
AW
47
48#if (VM_ENGINE == SCM_VM_REGULAR_ENGINE)
ff3968c2 49# define VM_USE_HOOKS 0 /* Various hooks */
6d14383e 50#elif (VM_ENGINE == SCM_VM_DEBUG_ENGINE)
ff3968c2 51# define VM_USE_HOOKS 1
6d14383e 52#else
ff3968c2 53# error unknown debug engine VM_ENGINE
6d14383e 54#endif
a98cef7e 55
8dd6bfa7
AW
56/* Assign some registers by hand. There used to be a bigger list here,
57 but it was never tested, and in the case of x86-32, was a source of
58 compilation failures. It can be revived if it's useful, but my naive
59 hope is that simply annotating the locals with "register" will be a
60 sufficient hint to the compiler. */
eac12024 61#ifdef __GNUC__
8dd6bfa7 62# if defined __x86_64__
eac12024
AW
63/* GCC 4.6 chooses %rbp for IP_REG and %rbx for SP_REG, which works
64 well. Tell it to keep the jump table in a r12, which is
65 callee-saved. */
8dd6bfa7
AW
66# define JT_REG asm ("r12")
67# endif
eac12024
AW
68#endif
69
70#ifndef IP_REG
8dd6bfa7 71# define IP_REG
eac12024
AW
72#endif
73#ifndef SP_REG
8dd6bfa7 74# define SP_REG
eac12024
AW
75#endif
76#ifndef FP_REG
8dd6bfa7 77# define FP_REG
eac12024
AW
78#endif
79#ifndef JT_REG
8dd6bfa7 80# define JT_REG
eac12024
AW
81#endif
82
27c7c630
AW
83#define VM_ASSERT(condition, handler) \
84 do { \
85 if (SCM_UNLIKELY (!(condition))) \
86 { \
87 SYNC_ALL(); \
88 handler; \
89 } \
90 } while (0)
eac12024
AW
91
92#ifdef VM_ENABLE_ASSERTIONS
93# define ASSERT(condition) VM_ASSERT (condition, abort())
94#else
95# define ASSERT(condition)
96#endif
97
c850a0ff
AW
98#if VM_USE_HOOKS
99#define RUN_HOOK(h, args, n) \
100 do { \
101 if (SCM_UNLIKELY (vp->trace_level > 0)) \
102 { \
103 SYNC_REGISTER (); \
104 vm_dispatch_hook (vm, h, args, n); \
105 } \
106 } while (0)
107#else
108#define RUN_HOOK(h, args, n)
109#endif
110#define RUN_HOOK0(h) RUN_HOOK(h, NULL, 0)
111
112#define APPLY_HOOK() \
113 RUN_HOOK0 (SCM_VM_APPLY_HOOK)
114#define PUSH_CONTINUATION_HOOK() \
115 RUN_HOOK0 (SCM_VM_PUSH_CONTINUATION_HOOK)
116#define POP_CONTINUATION_HOOK(vals, n) \
117 RUN_HOOK (SCM_VM_POP_CONTINUATION_HOOK, vals, n)
118#define NEXT_HOOK() \
119 RUN_HOOK0 (SCM_VM_NEXT_HOOK)
120#define ABORT_CONTINUATION_HOOK(vals, n) \
121 RUN_HOOK (SCM_VM_ABORT_CONTINUATION_HOOK, vals, n)
122#define RESTORE_CONTINUATION_HOOK() \
123 RUN_HOOK0 (SCM_VM_RESTORE_CONTINUATION_HOOK)
124
125#define VM_HANDLE_INTERRUPTS \
126 SCM_ASYNC_TICK_WITH_CODE (current_thread, SYNC_REGISTER ())
127
128
129\f
eac12024
AW
130
131/* Cache the VM's instruction, stack, and frame pointer in local variables. */
132#define CACHE_REGISTER() \
133{ \
134 ip = vp->ip; \
135 sp = vp->sp; \
136 fp = vp->fp; \
137}
138
139/* Update the registers in VP, a pointer to the current VM. This must be done
140 at least before any GC invocation so that `vp->sp' is up-to-date and the
141 whole stack gets marked. */
142#define SYNC_REGISTER() \
143{ \
144 vp->ip = ip; \
145 vp->sp = sp; \
146 vp->fp = fp; \
147}
148
149/* FIXME */
150#define ASSERT_VARIABLE(x) \
27c7c630 151 VM_ASSERT (SCM_VARIABLEP (x), abort())
eac12024 152#define ASSERT_BOUND_VARIABLE(x) \
27c7c630
AW
153 VM_ASSERT (SCM_VARIABLEP (x) \
154 && !scm_is_eq (SCM_VARIABLE_REF (x), SCM_UNDEFINED), \
155 abort())
eac12024
AW
156
157#ifdef VM_ENABLE_PARANOID_ASSERTIONS
158#define CHECK_IP() \
159 do { if (ip < bp->base || ip - bp->base > bp->len) abort (); } while (0)
160#define ASSERT_ALIGNED_PROCEDURE() \
161 do { if ((scm_t_bits)bp % 8) abort (); } while (0)
162#define ASSERT_BOUND(x) \
27c7c630 163 VM_ASSERT (!scm_is_eq ((x), SCM_UNDEFINED), abort())
eac12024
AW
164#else
165#define CHECK_IP()
166#define ASSERT_ALIGNED_PROCEDURE()
167#define ASSERT_BOUND(x)
168#endif
169
eac12024
AW
170/* Cache the object table and free variables. */
171#define CACHE_PROGRAM() \
172{ \
173 if (bp != SCM_PROGRAM_DATA (program)) { \
174 bp = SCM_PROGRAM_DATA (program); \
175 ASSERT_ALIGNED_PROCEDURE (); \
176 if (SCM_I_IS_VECTOR (SCM_PROGRAM_OBJTABLE (program))) { \
177 objects = SCM_I_VECTOR_WELTS (SCM_PROGRAM_OBJTABLE (program)); \
eac12024
AW
178 } else { \
179 objects = NULL; \
eac12024
AW
180 } \
181 } \
182}
183
184#define SYNC_BEFORE_GC() \
185{ \
186 SYNC_REGISTER (); \
187}
188
189#define SYNC_ALL() \
190{ \
191 SYNC_REGISTER (); \
192}
193
194\f
195/*
196 * Error check
197 */
198
199/* Accesses to a program's object table. */
eac12024 200#define CHECK_OBJECT(_num)
eac12024 201#define CHECK_FREE_VARIABLE(_num)
eac12024
AW
202
203\f
eac12024
AW
204/*
205 * Stack operation
206 */
207
208#ifdef VM_ENABLE_STACK_NULLING
209# define CHECK_STACK_LEAKN(_n) ASSERT (!sp[_n]);
210# define CHECK_STACK_LEAK() CHECK_STACK_LEAKN(1)
211# define NULLSTACK(_n) { int __x = _n; CHECK_STACK_LEAKN (_n+1); while (__x > 0) sp[__x--] = NULL; }
212/* If you have a nonlocal exit in a pre-wind proc while invoking a continuation
213 inside a dynwind (phew!), the stack is fully rewound but vm_reset_stack for
214 that continuation doesn't have a chance to run. It's not important on a
215 semantic level, but it does mess up our stack nulling -- so this macro is to
216 fix that. */
217# define NULLSTACK_FOR_NONLOCAL_EXIT() if (vp->sp > sp) NULLSTACK (vp->sp - sp);
218#else
219# define CHECK_STACK_LEAKN(_n)
220# define CHECK_STACK_LEAK()
221# define NULLSTACK(_n)
222# define NULLSTACK_FOR_NONLOCAL_EXIT()
223#endif
224
225/* For this check, we don't use VM_ASSERT, because that leads to a
226 per-site SYNC_ALL, which is too much code growth. The real problem
227 of course is having to check for overflow all the time... */
228#define CHECK_OVERFLOW() \
229 do { if (SCM_UNLIKELY (sp >= stack_limit)) goto handle_overflow; } while (0)
230
231#ifdef VM_CHECK_UNDERFLOW
232#define PRE_CHECK_UNDERFLOW(N) \
233 VM_ASSERT (sp - (N) > SCM_FRAME_UPPER_ADDRESS (fp), vm_error_stack_underflow ())
234#define CHECK_UNDERFLOW() PRE_CHECK_UNDERFLOW (0)
235#else
236#define PRE_CHECK_UNDERFLOW(N) /* nop */
237#define CHECK_UNDERFLOW() /* nop */
238#endif
239
240
241#define PUSH(x) do { sp++; CHECK_OVERFLOW (); *sp = x; } while (0)
242#define DROP() do { sp--; CHECK_UNDERFLOW (); NULLSTACK (1); } while (0)
243#define DROPN(_n) do { sp -= (_n); CHECK_UNDERFLOW (); NULLSTACK (_n); } while (0)
244#define POP(x) do { PRE_CHECK_UNDERFLOW (1); x = *sp--; NULLSTACK (1); } while (0)
245#define POP2(x,y) do { PRE_CHECK_UNDERFLOW (2); x = *sp--; y = *sp--; NULLSTACK (2); } while (0)
246#define POP3(x,y,z) do { PRE_CHECK_UNDERFLOW (3); x = *sp--; y = *sp--; z = *sp--; NULLSTACK (3); } while (0)
247
eac12024
AW
248/* Pop the N objects on top of the stack and push a list that contains
249 them. */
250#define POP_LIST(n) \
251do \
252{ \
253 int i; \
254 SCM l = SCM_EOL, x; \
52182d52 255 SYNC_BEFORE_GC (); \
eac12024
AW
256 for (i = n; i; i--) \
257 { \
258 POP (x); \
52182d52 259 l = scm_cons (x, l); \
eac12024
AW
260 } \
261 PUSH (l); \
262} while (0)
263
264/* The opposite: push all of the elements in L onto the list. */
265#define PUSH_LIST(l, NILP) \
266do \
267{ \
268 for (; scm_is_pair (l); l = SCM_CDR (l)) \
269 PUSH (SCM_CAR (l)); \
270 VM_ASSERT (NILP (l), vm_error_improper_list (l)); \
271} while (0)
272
273\f
eac12024
AW
274/*
275 * Instruction operation
276 */
277
278#define FETCH() (*ip++)
279#define FETCH_LENGTH(len) do { len=*ip++; len<<=8; len+=*ip++; len<<=8; len+=*ip++; } while (0)
280
281#undef NEXT_JUMP
282#ifdef HAVE_LABELS_AS_VALUES
27c7c630 283# define NEXT_JUMP() goto *jump_table[FETCH () & SCM_VM_INSTRUCTION_MASK]
eac12024 284#else
27c7c630 285# define NEXT_JUMP() goto vm_start
eac12024
AW
286#endif
287
288#define NEXT \
289{ \
290 NEXT_HOOK (); \
291 CHECK_STACK_LEAK (); \
292 NEXT_JUMP (); \
293}
294
295\f
296/* See frames.h for the layout of stack frames */
297/* When this is called, bp points to the new program data,
298 and the arguments are already on the stack */
299#define DROP_FRAME() \
300 { \
301 sp -= 3; \
302 NULLSTACK (3); \
303 CHECK_UNDERFLOW (); \
304 }
305
238e7a11 306
a98cef7e 307static SCM
7656f194 308VM_NAME (SCM vm, SCM program, SCM *argv, int nargs)
a98cef7e 309{
17e90c5e 310 /* VM registers */
2fb924f6 311 register scm_t_uint8 *ip IP_REG; /* instruction pointer */
17e90c5e
KN
312 register SCM *sp SP_REG; /* stack pointer */
313 register SCM *fp FP_REG; /* frame pointer */
7656f194 314 struct scm_vm *vp = SCM_VM_DATA (vm);
a98cef7e 315
d608d68d 316 /* Cache variables */
53e28ed9 317 struct scm_objcode *bp = NULL; /* program base pointer */
17e90c5e 318 SCM *objects = NULL; /* constant objects */
3d5ee0cd 319 SCM *stack_limit = vp->stack_limit; /* stack limit address */
2d026f04 320
a2a6c0e3 321 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
a98cef7e 322
d608d68d 323 /* Internal variables */
ef24c01b 324 int nvalues = 0;
9d381ba4
AW
325 scm_i_jmp_buf registers; /* used for prompts */
326
53e28ed9 327#ifdef HAVE_LABELS_AS_VALUES
37a5970c 328 static const void **jump_table_pointer = NULL;
e06e857c 329#endif
37a5970c 330
e06e857c 331#ifdef HAVE_LABELS_AS_VALUES
37a5970c
LC
332 register const void **jump_table JT_REG;
333
334 if (SCM_UNLIKELY (!jump_table_pointer))
53e28ed9
AW
335 {
336 int i;
37a5970c 337 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
53e28ed9 338 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
37a5970c 339 jump_table_pointer[i] = &&vm_error_bad_instruction;
53e28ed9 340#define VM_INSTRUCTION_TO_LABEL 1
37a5970c 341#define jump_table jump_table_pointer
aeeff258
AW
342#include <libguile/vm-expand.h>
343#include <libguile/vm-i-system.i>
344#include <libguile/vm-i-scheme.i>
345#include <libguile/vm-i-loader.i>
37a5970c 346#undef jump_table
53e28ed9
AW
347#undef VM_INSTRUCTION_TO_LABEL
348 }
37a5970c
LC
349
350 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
351 load instruction at each instruction dispatch. */
352 jump_table = jump_table_pointer;
53e28ed9 353#endif
9d381ba4
AW
354
355 if (SCM_I_SETJMP (registers))
356 {
357 /* Non-local return. Cache the VM registers back from the vp, and
358 go to the handler.
359
360 Note, at this point, we must assume that any variable local to
361 vm_engine that can be assigned *has* been assigned. So we need to pull
362 all our state back from the ip/fp/sp.
363 */
364 CACHE_REGISTER ();
365 program = SCM_FRAME_PROGRAM (fp);
366 CACHE_PROGRAM ();
367 /* The stack contains the values returned to this continuation,
368 along with a number-of-values marker -- like an MV return. */
c850a0ff 369 ABORT_CONTINUATION_HOOK (sp - SCM_I_INUM (*sp), SCM_I_INUM (*sp));
9d381ba4
AW
370 NEXT;
371 }
53e28ed9 372
67b699cc 373 CACHE_REGISTER ();
27319ffa
AW
374
375 /* Since it's possible to receive the arguments on the stack itself,
376 and indeed the RTL VM invokes us that way, shuffle up the
377 arguments first. */
378 VM_ASSERT (sp + 8 + nargs < stack_limit, vm_error_too_many_args (nargs));
379 {
380 int i;
381 for (i = nargs - 1; i >= 0; i--)
382 sp[9 + i] = argv[i];
383 }
384
385 /* Initial frame */
67b699cc
AW
386 PUSH (SCM_PACK (fp)); /* dynamic link */
387 PUSH (SCM_PACK (0)); /* mvra */
388 PUSH (SCM_PACK (ip)); /* ra */
389 PUSH (boot_continuation);
390 fp = sp + 1;
391 ip = SCM_C_OBJCODE_BASE (SCM_PROGRAM_DATA (boot_continuation));
392
393 /* MV-call frame, function & arguments */
394 PUSH (SCM_PACK (fp)); /* dynamic link */
395 PUSH (SCM_PACK (ip + 1)); /* mvra */
396 PUSH (SCM_PACK (ip)); /* ra */
397 PUSH (program);
398 fp = sp + 1;
27319ffa 399 sp += nargs;
67b699cc
AW
400
401 PUSH_CONTINUATION_HOOK ();
402
403 apply:
404 program = fp[-1];
405 if (!SCM_PROGRAM_P (program))
406 {
407 if (SCM_STRUCTP (program) && SCM_STRUCT_APPLICABLE_P (program))
408 fp[-1] = SCM_STRUCT_PROCEDURE (program);
510ca126
AW
409 else if (SCM_HAS_TYP7 (program, scm_tc7_rtl_program))
410 {
411 SCM ret;
412 SYNC_ALL ();
413
414 ret = RTL_VM_NAME (vm, program, fp, sp - fp + 1);
415
416 NULLSTACK_FOR_NONLOCAL_EXIT ();
417
418 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
419 {
420 /* multiple values returned to continuation */
421 ret = scm_struct_ref (ret, SCM_INUM0);
422 nvalues = scm_ilength (ret);
423 PUSH_LIST (ret, scm_is_null);
424 goto vm_return_values;
425 }
426 else
427 {
428 PUSH (ret);
429 goto vm_return;
430 }
431 }
968a9add 432 else if (SCM_HAS_TYP7 (program, scm_tc7_smob)
67b699cc
AW
433 && SCM_SMOB_APPLICABLE_P (program))
434 {
435 /* (smob arg0 ... argN) => (apply-smob smob arg0 ... argN) */
436 int i;
437 PUSH (SCM_BOOL_F);
438 for (i = sp - fp; i >= 0; i--)
439 fp[i] = fp[i - 1];
968a9add 440 fp[-1] = SCM_SMOB_DESCRIPTOR (program).apply_trampoline;
67b699cc
AW
441 }
442 else
443 {
444 SYNC_ALL();
445 vm_error_wrong_type_apply (program);
446 }
447 goto apply;
448 }
449
450 CACHE_PROGRAM ();
451 ip = SCM_C_OBJCODE_BASE (bp);
452
453 APPLY_HOOK ();
a98cef7e
KN
454
455 /* Let's go! */
53e28ed9 456 NEXT;
a98cef7e
KN
457
458#ifndef HAVE_LABELS_AS_VALUES
17e90c5e 459 vm_start:
53e28ed9 460 switch ((*ip++) & SCM_VM_INSTRUCTION_MASK) {
a98cef7e
KN
461#endif
462
83495480
AW
463#include "vm-expand.h"
464#include "vm-i-system.c"
465#include "vm-i-scheme.c"
466#include "vm-i-loader.c"
a98cef7e
KN
467
468#ifndef HAVE_LABELS_AS_VALUES
53e28ed9
AW
469 default:
470 goto vm_error_bad_instruction;
a98cef7e
KN
471 }
472#endif
473
53bdfcf0 474 abort (); /* never reached */
a52b2d3d 475
53bdfcf0
AW
476 vm_error_bad_instruction:
477 vm_error_bad_instruction (ip[-1]);
478 abort (); /* never reached */
17e90c5e 479
53bdfcf0
AW
480 handle_overflow:
481 SYNC_ALL ();
482 vm_error_stack_overflow (vp);
a98cef7e
KN
483 abort (); /* never reached */
484}
6d14383e 485
a0ec1ca1
AW
486#undef ALIGNED_P
487#undef CACHE_REGISTER
488#undef CHECK_OVERFLOW
a0ec1ca1
AW
489#undef FUNC2
490#undef INIT
491#undef INUM_MAX
492#undef INUM_MIN
d2295ba5 493#undef INUM_STEP
a0ec1ca1
AW
494#undef jump_table
495#undef LOCAL_REF
496#undef LOCAL_SET
497#undef NEXT
498#undef NEXT_JUMP
499#undef REL
500#undef RETURN
501#undef RETURN_ONE_VALUE
502#undef RETURN_VALUE_LIST
a0ec1ca1
AW
503#undef SYNC_ALL
504#undef SYNC_BEFORE_GC
505#undef SYNC_IP
506#undef SYNC_REGISTER
507#undef VARIABLE_BOUNDP
508#undef VARIABLE_REF
509#undef VARIABLE_SET
510#undef VM_DEFINE_OP
511#undef VM_INSTRUCTION_TO_LABEL
17e90c5e 512
510ca126
AW
513
514\f
515
516/* Virtual Machine
517
518 This is Guile's new virtual machine. When I say "new", I mean
519 relative to the current virtual machine. At some point it will
520 become "the" virtual machine, and we'll delete this paragraph. As
521 such, the rest of the comments speak as if there's only one VM.
7396d216
AW
522 In difference from the old VM, local 0 is the procedure, and the
523 first argument is local 1. At some point in the future we should
524 change the fp to point to the procedure and not to local 1.
510ca126
AW
525
526 <more overview here>
527 */
528
529
530/* The VM has three state bits: the instruction pointer (IP), the frame
531 pointer (FP), and the top-of-stack pointer (SP). We cache the first
532 two of these in machine registers, local to the VM, because they are
533 used extensively by the VM. As the SP is used more by code outside
534 the VM than by the VM itself, we don't bother caching it locally.
535
536 Since the FP changes infrequently, relative to the IP, we keep vp->fp
537 in sync with the local FP. This would be a big lose for the IP,
538 though, so instead of updating vp->ip all the time, we call SYNC_IP
539 whenever we would need to know the IP of the top frame. In practice,
540 we need to SYNC_IP whenever we call out of the VM to a function that
541 would like to walk the stack, perhaps as the result of an
542 exception. */
543
544#define SYNC_IP() \
545 vp->ip = (scm_t_uint8 *) (ip)
546
547#define SYNC_REGISTER() \
548 SYNC_IP()
549#define SYNC_BEFORE_GC() /* Only SP and FP needed to trace GC */
550#define SYNC_ALL() /* FP already saved */ \
551 SYNC_IP()
552
553#define CHECK_OVERFLOW(sp) \
554 do { \
555 if (SCM_UNLIKELY ((sp) >= stack_limit)) \
556 vm_error_stack_overflow (vp); \
557 } while (0)
558
559/* Reserve stack space for a frame. Will check that there is sufficient
7396d216
AW
560 stack space for N locals, including the procedure, in addition to
561 3 words to set up the next frame. Invoke after preparing the new
510ca126
AW
562 frame and setting the fp and ip. */
563#define ALLOC_FRAME(n) \
564 do { \
7396d216 565 SCM *new_sp = vp->sp = fp - 1 + n - 1; \
510ca126
AW
566 CHECK_OVERFLOW (new_sp + 4); \
567 } while (0)
568
569/* Reset the current frame to hold N locals. Used when we know that no
570 stack expansion is needed. */
571#define RESET_FRAME(n) \
572 do { \
7396d216 573 vp->sp = fp - 2 + n; \
510ca126
AW
574 } while (0)
575
576/* Compute the number of locals in the frame. This is equal to the
7396d216
AW
577 number of actual arguments when a function is first called, plus
578 one for the function. */
510ca126 579#define FRAME_LOCALS_COUNT() \
7396d216 580 (vp->sp + 1 - (fp - 1))
510ca126
AW
581
582/* Restore registers after returning from a frame. */
583#define RESTORE_FRAME() \
584 do { \
585 } while (0)
586
587
588#define CACHE_REGISTER() \
589 do { \
590 ip = (scm_t_uint32 *) vp->ip; \
591 fp = vp->fp; \
592 } while (0)
593
594#ifdef HAVE_LABELS_AS_VALUES
595# define BEGIN_DISPATCH_SWITCH /* */
596# define END_DISPATCH_SWITCH /* */
597# define NEXT(n) \
598 do \
599 { \
600 ip += n; \
601 NEXT_HOOK (); \
602 op = *ip; \
603 goto *jump_table[op & 0xff]; \
604 } \
605 while (0)
606# define VM_DEFINE_OP(opcode, tag, name, meta) \
607 op_##tag:
608#else
609# define BEGIN_DISPATCH_SWITCH \
610 vm_start: \
611 NEXT_HOOK (); \
612 op = *ip; \
613 switch (op & 0xff) \
614 {
615# define END_DISPATCH_SWITCH \
616 default: \
617 goto vm_error_bad_instruction; \
618 }
619# define NEXT(n) \
620 do \
621 { \
622 ip += n; \
623 goto vm_start; \
624 } \
625 while (0)
626# define VM_DEFINE_OP(opcode, tag, name, meta) \
627 op_##tag: \
628 case opcode:
629#endif
630
8cff7f54
AW
631#define LOCAL_REF(i) SCM_FRAME_VARIABLE ((fp - 1), i)
632#define LOCAL_SET(i,o) SCM_FRAME_VARIABLE ((fp - 1), i) = o
510ca126
AW
633
634#define VARIABLE_REF(v) SCM_VARIABLE_REF (v)
635#define VARIABLE_SET(v,o) SCM_VARIABLE_SET (v, o)
636#define VARIABLE_BOUNDP(v) (!scm_is_eq (VARIABLE_REF (v), SCM_UNDEFINED))
510ca126
AW
637
638#define RETURN_ONE_VALUE(ret) \
639 do { \
640 SCM val = ret; \
641 SCM *sp = SCM_FRAME_LOWER_ADDRESS (fp); \
642 VM_HANDLE_INTERRUPTS; \
643 ip = SCM_FRAME_RTL_RETURN_ADDRESS (fp); \
510ca126 644 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp); \
af95414f
AW
645 /* Clear frame. */ \
646 sp[0] = SCM_BOOL_F; \
647 sp[1] = SCM_BOOL_F; \
648 sp[2] = SCM_BOOL_F; \
649 /* Leave proc. */ \
650 sp[4] = val; \
651 vp->sp = sp + 4; \
510ca126
AW
652 POP_CONTINUATION_HOOK (sp, 1); \
653 NEXT (0); \
654 } while (0)
655
656/* While we could generate the list-unrolling code here, it's fine for
657 now to just tail-call (apply values vals). */
658#define RETURN_VALUE_LIST(vals_) \
659 do { \
660 SCM vals = vals_; \
661 VM_HANDLE_INTERRUPTS; \
662 fp[-1] = rtl_apply; \
663 fp[0] = rtl_values; \
664 fp[1] = vals; \
7396d216 665 RESET_FRAME (3); \
510ca126 666 ip = (scm_t_uint32 *) rtl_apply_code; \
adb8d905 667 goto op_tail_apply; \
510ca126
AW
668 } while (0)
669
670#define BR_NARGS(rel) \
671 scm_t_uint16 expected; \
672 SCM_UNPACK_RTL_24 (op, expected); \
673 if (FRAME_LOCALS_COUNT() rel expected) \
674 { \
675 scm_t_int32 offset = ip[1]; \
676 offset >>= 8; /* Sign-extending shift. */ \
677 NEXT (offset); \
678 } \
679 NEXT (2)
680
681#define BR_UNARY(x, exp) \
682 scm_t_uint32 test; \
683 SCM x; \
684 SCM_UNPACK_RTL_24 (op, test); \
685 x = LOCAL_REF (test); \
686 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
687 { \
688 scm_t_int32 offset = ip[1]; \
689 offset >>= 8; /* Sign-extending shift. */ \
690 if (offset < 0) \
691 VM_HANDLE_INTERRUPTS; \
692 NEXT (offset); \
693 } \
694 NEXT (2)
695
696#define BR_BINARY(x, y, exp) \
697 scm_t_uint16 a, b; \
698 SCM x, y; \
699 SCM_UNPACK_RTL_12_12 (op, a, b); \
700 x = LOCAL_REF (a); \
701 y = LOCAL_REF (b); \
702 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
703 { \
704 scm_t_int32 offset = ip[1]; \
705 offset >>= 8; /* Sign-extending shift. */ \
706 if (offset < 0) \
707 VM_HANDLE_INTERRUPTS; \
708 NEXT (offset); \
709 } \
710 NEXT (2)
711
712#define BR_ARITHMETIC(crel,srel) \
713 { \
714 scm_t_uint16 a, b; \
715 SCM x, y; \
716 SCM_UNPACK_RTL_12_12 (op, a, b); \
717 x = LOCAL_REF (a); \
718 y = LOCAL_REF (b); \
719 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
720 { \
721 scm_t_signed_bits x_bits = SCM_UNPACK (x); \
722 scm_t_signed_bits y_bits = SCM_UNPACK (y); \
af95414f 723 if ((ip[1] & 0x1) ? !(x_bits crel y_bits) : (x_bits crel y_bits)) \
510ca126
AW
724 { \
725 scm_t_int32 offset = ip[1]; \
726 offset >>= 8; /* Sign-extending shift. */ \
727 if (offset < 0) \
728 VM_HANDLE_INTERRUPTS; \
729 NEXT (offset); \
730 } \
731 NEXT (2); \
732 } \
733 else \
734 { \
af95414f 735 SCM res; \
510ca126 736 SYNC_IP (); \
af95414f
AW
737 res = srel (x, y); \
738 if ((ip[1] & 0x1) ? scm_is_false (res) : scm_is_true (res)) \
510ca126
AW
739 { \
740 scm_t_int32 offset = ip[1]; \
741 offset >>= 8; /* Sign-extending shift. */ \
742 if (offset < 0) \
743 VM_HANDLE_INTERRUPTS; \
744 NEXT (offset); \
745 } \
746 NEXT (2); \
747 } \
748 }
749
750#define ARGS1(a1) \
751 scm_t_uint16 dst, src; \
752 SCM a1; \
753 SCM_UNPACK_RTL_12_12 (op, dst, src); \
754 a1 = LOCAL_REF (src)
755#define ARGS2(a1, a2) \
756 scm_t_uint8 dst, src1, src2; \
757 SCM a1, a2; \
758 SCM_UNPACK_RTL_8_8_8 (op, dst, src1, src2); \
759 a1 = LOCAL_REF (src1); \
760 a2 = LOCAL_REF (src2)
761#define RETURN(x) \
762 do { LOCAL_SET (dst, x); NEXT (1); } while (0)
763
764/* The maximum/minimum tagged integers. */
d2295ba5
MW
765#define INUM_MAX \
766 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM)))
767#define INUM_MIN \
768 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM)))
769#define INUM_STEP \
770 ((scm_t_signed_bits) SCM_UNPACK (SCM_INUM1) \
771 - (scm_t_signed_bits) SCM_UNPACK (SCM_INUM0))
510ca126
AW
772
773#define BINARY_INTEGER_OP(CFUNC,SFUNC) \
774 { \
775 ARGS2 (x, y); \
776 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
777 { \
778 scm_t_int64 n = SCM_I_INUM (x) CFUNC SCM_I_INUM (y); \
779 if (SCM_FIXABLE (n)) \
780 RETURN (SCM_I_MAKINUM (n)); \
781 } \
782 SYNC_IP (); \
783 RETURN (SFUNC (x, y)); \
784 }
785
786#define VM_VALIDATE_PAIR(x, proc) \
787 VM_ASSERT (scm_is_pair (x), vm_error_not_a_pair (proc, x))
788
789#define VM_VALIDATE_STRUCT(obj, proc) \
790 VM_ASSERT (SCM_STRUCTP (obj), vm_error_not_a_pair (proc, obj))
791
792#define VM_VALIDATE_BYTEVECTOR(x, proc) \
793 VM_ASSERT (SCM_BYTEVECTOR_P (x), vm_error_not_a_bytevector (proc, x))
794
795/* Return true (non-zero) if PTR has suitable alignment for TYPE. */
796#define ALIGNED_P(ptr, type) \
797 ((scm_t_uintptr) (ptr) % alignof_type (type) == 0)
798
799static SCM
800RTL_VM_NAME (SCM vm, SCM program, SCM *argv, size_t nargs_)
801{
802 /* Instruction pointer: A pointer to the opcode that is currently
803 running. */
804 register scm_t_uint32 *ip IP_REG;
805
806 /* Frame pointer: A pointer into the stack, off of which we index
807 arguments and local variables. Pushed at function calls, popped on
808 returns. */
809 register SCM *fp FP_REG;
810
811 /* Current opcode: A cache of *ip. */
812 register scm_t_uint32 op;
813
814 /* Cached variables. */
815 struct scm_vm *vp = SCM_VM_DATA (vm);
816 SCM *stack_limit = vp->stack_limit; /* stack limit address */
817 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
818 scm_i_jmp_buf registers; /* used for prompts */
819
820#ifdef HAVE_LABELS_AS_VALUES
821 static const void **jump_table_pointer = NULL;
822 register const void **jump_table JT_REG;
823
824 if (SCM_UNLIKELY (!jump_table_pointer))
825 {
826 int i;
827 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
828 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
829 jump_table_pointer[i] = &&vm_error_bad_instruction;
830#define INIT(opcode, tag, name, meta) jump_table_pointer[opcode] = &&op_##tag;
831 FOR_EACH_VM_OPERATION(INIT);
832#undef INIT
833 }
834
835 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
836 load instruction at each instruction dispatch. */
837 jump_table = jump_table_pointer;
838#endif
839
840 if (SCM_I_SETJMP (registers))
841 {
842 /* Non-local return. The values are on the stack, on a new frame
843 set up to call `values' to return the values to the handler.
844 Cache the VM registers back from the vp, and dispatch to the
845 body of `values'.
846
847 Note, at this point, we must assume that any variable local to
848 vm_engine that can be assigned *has* been assigned. So we need
849 to pull all our state back from the ip/fp/sp.
850 */
851 CACHE_REGISTER ();
d691ac20 852 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT () - 1);
510ca126
AW
853 NEXT (0);
854 }
855
856 /* Load previous VM registers. */
857 CACHE_REGISTER ();
858
859 VM_HANDLE_INTERRUPTS;
860
861 /* Initialization */
862 {
863 SCM *base;
864
865 /* Check that we have enough space: 4 words for the boot
866 continuation, 4 + nargs for the procedure application, and 4 for
867 setting up a new frame. */
868 base = vp->sp + 1;
869 CHECK_OVERFLOW (vp->sp + 4 + 4 + nargs_ + 4);
870
871 /* Since it's possible to receive the arguments on the stack itself,
872 and indeed the regular VM invokes us that way, shuffle up the
873 arguments first. */
874 {
875 int i;
876 for (i = nargs_ - 1; i >= 0; i--)
877 base[8 + i] = argv[i];
878 }
879
880 /* Initial frame, saving previous fp and ip, with the boot
881 continuation. */
882 base[0] = SCM_PACK (fp); /* dynamic link */
883 base[1] = SCM_PACK (0); /* the boot continuation does not return to scheme */
884 base[2] = SCM_PACK (ip); /* ra */
885 base[3] = rtl_boot_continuation;
886 fp = &base[4];
af95414f 887 ip = (scm_t_uint32 *) rtl_boot_continuation_code;
510ca126
AW
888
889 /* MV-call frame, function & arguments */
890 base[4] = SCM_PACK (fp); /* dynamic link */
af95414f 891 base[5] = SCM_PACK (ip); /* in RTL programs, MVRA same as RA */
510ca126
AW
892 base[6] = SCM_PACK (ip); /* ra */
893 base[7] = program;
894 fp = vp->fp = &base[8];
7396d216 895 RESET_FRAME (nargs_ + 1);
510ca126
AW
896 }
897
898 apply:
899 while (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp)))
900 {
510ca126
AW
901 SCM proc = SCM_FRAME_PROGRAM (fp);
902
903 if (SCM_STRUCTP (proc) && SCM_STRUCT_APPLICABLE_P (proc))
904 {
905 fp[-1] = SCM_STRUCT_PROCEDURE (proc);
906 continue;
907 }
908 if (SCM_HAS_TYP7 (proc, scm_tc7_smob) && SCM_SMOB_APPLICABLE_P (proc))
909 {
910 scm_t_uint32 n = FRAME_LOCALS_COUNT();
911
9d87158f
AW
912 /* Shuffle args up. */
913 RESET_FRAME (n + 1);
510ca126
AW
914 while (n--)
915 LOCAL_SET (n + 1, LOCAL_REF (n));
510ca126 916
9d87158f 917 LOCAL_SET (0, SCM_SMOB_DESCRIPTOR (proc).apply_trampoline);
510ca126
AW
918 continue;
919 }
920
9d87158f 921#if 0
510ca126
AW
922 SYNC_IP();
923 vm_error_wrong_type_apply (proc);
924#else
9d87158f
AW
925 {
926 SCM ret;
927 SYNC_ALL ();
510ca126 928
9d87158f 929 ret = VM_NAME (vm, fp[-1], fp, FRAME_LOCALS_COUNT () - 1);
510ca126 930
9d87158f
AW
931 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
932 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
933 else
934 RETURN_ONE_VALUE (ret);
935 }
510ca126
AW
936#endif
937 }
938
939 /* Let's go! */
940 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
941 NEXT (0);
942
943 BEGIN_DISPATCH_SWITCH;
944
945
946 \f
947
948 /*
949 * Call and return
950 */
951
952 /* halt _:24
953 *
af95414f 954 * Bring the VM to a halt, returning all the values from the stack.
510ca126
AW
955 */
956 VM_DEFINE_OP (0, halt, "halt", OP1 (U8_X24))
957 {
af95414f
AW
958 scm_t_uint32 nvals = FRAME_LOCALS_COUNT() - 5;
959 SCM ret;
510ca126 960
af95414f 961 /* Boot closure in r0, empty frame in r1/r2/r3, proc in r4, values from r5. */
510ca126 962
af95414f
AW
963 if (nvals == 1)
964 ret = LOCAL_REF (5);
965 else
966 {
967 scm_t_uint32 n;
968 ret = SCM_EOL;
969 SYNC_BEFORE_GC();
970 for (n = nvals; n > 0; n--)
e79ed6b1 971 ret = scm_cons (LOCAL_REF (5 + n - 1), ret);
af95414f
AW
972 ret = scm_values (ret);
973 }
510ca126
AW
974
975 vp->ip = SCM_FRAME_RETURN_ADDRESS (fp);
976 vp->sp = SCM_FRAME_LOWER_ADDRESS (fp) - 1;
977 vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
978
af95414f 979 return ret;
286a0fb3
AW
980 }
981
af95414f 982 /* call proc:24 _:8 nlocals:24
286a0fb3 983 *
af95414f
AW
984 * Call a procedure. PROC is the local corresponding to a procedure.
985 * The three values below PROC will be overwritten by the saved call
986 * frame data. The new frame will have space for NLOCALS locals: one
987 * for the procedure, and the rest for the arguments which should
988 * already have been pushed on.
510ca126 989 *
af95414f
AW
990 * When the call returns, execution proceeds with the next
991 * instruction. There may be any number of values on the return
992 * stack; the precise number can be had by subtracting the address of
993 * PROC from the post-call SP.
510ca126 994 */
af95414f 995 VM_DEFINE_OP (1, call, "call", OP2 (U8_U24, X8_U24))
510ca126 996 {
af95414f 997 scm_t_uint32 proc, nlocals;
510ca126
AW
998 SCM *old_fp = fp;
999
af95414f
AW
1000 SCM_UNPACK_RTL_24 (op, proc);
1001 SCM_UNPACK_RTL_24 (ip[1], nlocals);
510ca126
AW
1002
1003 VM_HANDLE_INTERRUPTS;
1004
af95414f 1005 fp = vp->fp = old_fp + proc;
510ca126 1006 SCM_FRAME_SET_DYNAMIC_LINK (fp, old_fp);
af95414f 1007 SCM_FRAME_SET_RTL_MV_RETURN_ADDRESS (fp, ip + 2);
286a0fb3 1008 SCM_FRAME_SET_RTL_RETURN_ADDRESS (fp, ip + 2);
510ca126 1009
af95414f
AW
1010 RESET_FRAME (nlocals);
1011
510ca126
AW
1012 PUSH_CONTINUATION_HOOK ();
1013 APPLY_HOOK ();
1014
1015 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1016 goto apply;
1017
1018 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1019 NEXT (0);
1020 }
1021
af95414f 1022 /* tail-call nlocals:24
510ca126 1023 *
af95414f
AW
1024 * Tail-call a procedure. Requires that the procedure and all of the
1025 * arguments have already been shuffled into position.
510ca126 1026 */
af95414f 1027 VM_DEFINE_OP (2, tail_call, "tail-call", OP1 (U8_U24))
510ca126 1028 {
af95414f
AW
1029 scm_t_uint32 nlocals;
1030
1031 SCM_UNPACK_RTL_24 (op, nlocals);
510ca126
AW
1032
1033 VM_HANDLE_INTERRUPTS;
1034
af95414f 1035 RESET_FRAME (nlocals);
510ca126
AW
1036 APPLY_HOOK ();
1037
1038 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1039 goto apply;
1040
1041 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1042 NEXT (0);
1043 }
1044
af95414f 1045 /* receive dst:12 proc:12 _:8 nlocals:24
510ca126 1046 *
af95414f
AW
1047 * Receive a single return value from a call whose procedure was in
1048 * PROC, asserting that the call actually returned at least one
1049 * value. Afterwards, resets the frame to NLOCALS locals.
510ca126 1050 */
af95414f 1051 VM_DEFINE_OP (3, receive, "receive", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1052 {
af95414f
AW
1053 scm_t_uint16 dst, proc;
1054 scm_t_uint32 nlocals;
1055 SCM_UNPACK_RTL_12_12 (op, dst, proc);
1056 SCM_UNPACK_RTL_24 (ip[1], nlocals);
1057 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + 1, vm_error_no_values ());
1058 LOCAL_SET (dst, LOCAL_REF (proc + 1));
1059 RESET_FRAME (nlocals);
1060 NEXT (2);
1061 }
510ca126 1062
82f4bac4 1063 /* receive-values proc:24 allow-extra?:1 _:7 nvalues:24
af95414f
AW
1064 *
1065 * Receive a return of multiple values from a call whose procedure was
1066 * in PROC. If fewer than NVALUES values were returned, signal an
82f4bac4
AW
1067 * error. Unless ALLOW-EXTRA? is true, require that the number of
1068 * return values equals NVALUES exactly. After receive-values has
1069 * run, the values can be copied down via `mov'.
af95414f 1070 */
82f4bac4 1071 VM_DEFINE_OP (4, receive_values, "receive-values", OP2 (U8_U24, B1_X7_U24))
af95414f
AW
1072 {
1073 scm_t_uint32 proc, nvalues;
1074 SCM_UNPACK_RTL_24 (op, proc);
1075 SCM_UNPACK_RTL_24 (ip[1], nvalues);
82f4bac4
AW
1076 if (ip[1] & 0x1)
1077 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + nvalues,
1078 vm_error_not_enough_values ());
1079 else
1080 VM_ASSERT (FRAME_LOCALS_COUNT () == proc + nvalues,
1081 vm_error_wrong_number_of_values (nvalues));
af95414f 1082 NEXT (2);
510ca126
AW
1083 }
1084
1085 /* return src:24
1086 *
1087 * Return a value.
1088 */
af95414f 1089 VM_DEFINE_OP (5, return, "return", OP1 (U8_U24))
510ca126
AW
1090 {
1091 scm_t_uint32 src;
1092 SCM_UNPACK_RTL_24 (op, src);
1093 RETURN_ONE_VALUE (LOCAL_REF (src));
1094 }
1095
84cc4127 1096 /* return-values _:24
510ca126
AW
1097 *
1098 * Return a number of values from a call frame. This opcode
1099 * corresponds to an application of `values' in tail position. As
af95414f
AW
1100 * with tail calls, we expect that the values have already been
1101 * shuffled down to a contiguous array starting at slot 1.
84cc4127 1102 * We also expect the frame has already been reset.
510ca126 1103 */
84cc4127 1104 VM_DEFINE_OP (6, return_values, "return-values", OP1 (U8_X24))
510ca126 1105 {
84cc4127 1106 scm_t_uint32 nvalues _GL_UNUSED = FRAME_LOCALS_COUNT();
af95414f
AW
1107 SCM *base = fp;
1108
af95414f
AW
1109 VM_HANDLE_INTERRUPTS;
1110 ip = SCM_FRAME_RTL_MV_RETURN_ADDRESS (fp);
1111 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
1112
1113 /* Clear stack frame. */
1114 base[-2] = SCM_BOOL_F;
1115 base[-3] = SCM_BOOL_F;
1116 base[-4] = SCM_BOOL_F;
1117
1118 POP_CONTINUATION_HOOK (base, nvalues);
1119
1120 NEXT (0);
510ca126
AW
1121 }
1122
1123
1124 \f
1125
1126 /*
1127 * Specialized call stubs
1128 */
1129
1130 /* subr-call ptr-idx:24
1131 *
1132 * Call a subr, passing all locals in this frame as arguments. Fetch
1133 * the foreign pointer from PTR-IDX, a free variable. Return from the
1134 * calling frame. This instruction is part of the trampolines
1135 * created in gsubr.c, and is not generated by the compiler.
1136 */
af95414f 1137 VM_DEFINE_OP (7, subr_call, "subr-call", OP1 (U8_U24))
510ca126
AW
1138 {
1139 scm_t_uint32 ptr_idx;
1140 SCM pointer, ret;
1141 SCM (*subr)();
1142
1143 SCM_UNPACK_RTL_24 (op, ptr_idx);
1144
7396d216 1145 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), ptr_idx);
510ca126
AW
1146 subr = SCM_POINTER_VALUE (pointer);
1147
1148 VM_HANDLE_INTERRUPTS;
1149 SYNC_IP ();
1150
8d23c436 1151 switch (FRAME_LOCALS_COUNT () - 1)
510ca126
AW
1152 {
1153 case 0:
1154 ret = subr ();
1155 break;
1156 case 1:
1157 ret = subr (fp[0]);
1158 break;
1159 case 2:
1160 ret = subr (fp[0], fp[1]);
1161 break;
1162 case 3:
1163 ret = subr (fp[0], fp[1], fp[2]);
1164 break;
1165 case 4:
1166 ret = subr (fp[0], fp[1], fp[2], fp[3]);
1167 break;
1168 case 5:
1169 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4]);
1170 break;
1171 case 6:
1172 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5]);
1173 break;
1174 case 7:
1175 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6]);
1176 break;
1177 case 8:
1178 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7]);
1179 break;
1180 case 9:
1181 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8]);
1182 break;
1183 case 10:
1184 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8], fp[9]);
1185 break;
1186 default:
1187 abort ();
1188 }
1189
1190 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1191
1192 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1193 /* multiple values returned to continuation */
1194 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1195 else
1196 RETURN_ONE_VALUE (ret);
1197 }
1198
1199 /* foreign-call cif-idx:12 ptr-idx:12
1200 *
1201 * Call a foreign function. Fetch the CIF and foreign pointer from
1202 * CIF-IDX and PTR-IDX, both free variables. Return from the calling
1203 * frame. Arguments are taken from the stack. This instruction is
1204 * part of the trampolines created by the FFI, and is not generated by
1205 * the compiler.
1206 */
af95414f 1207 VM_DEFINE_OP (8, foreign_call, "foreign-call", OP1 (U8_U12_U12))
510ca126
AW
1208 {
1209 scm_t_uint16 cif_idx, ptr_idx;
7396d216 1210 SCM closure, cif, pointer, ret;
510ca126
AW
1211
1212 SCM_UNPACK_RTL_12_12 (op, cif_idx, ptr_idx);
1213
7396d216
AW
1214 closure = LOCAL_REF (0);
1215 cif = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, cif_idx);
1216 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, ptr_idx);
510ca126
AW
1217
1218 SYNC_IP ();
1219 VM_HANDLE_INTERRUPTS;
1220
1221 // FIXME: separate args
1222 ret = scm_i_foreign_call (scm_cons (cif, pointer), fp);
1223
1224 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1225
1226 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1227 /* multiple values returned to continuation */
1228 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1229 else
1230 RETURN_ONE_VALUE (ret);
1231 }
1232
1233 /* continuation-call contregs:24
1234 *
1235 * Return to a continuation, nonlocally. The arguments to the
1236 * continuation are taken from the stack. CONTREGS is a free variable
1237 * containing the reified continuation. This instruction is part of
1238 * the implementation of undelimited continuations, and is not
1239 * generated by the compiler.
1240 */
af95414f 1241 VM_DEFINE_OP (9, continuation_call, "continuation-call", OP1 (U8_U24))
510ca126
AW
1242 {
1243 SCM contregs;
1244 scm_t_uint32 contregs_idx;
1245
1246 SCM_UNPACK_RTL_24 (op, contregs_idx);
1247
7396d216
AW
1248 contregs =
1249 SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), contregs_idx);
510ca126
AW
1250
1251 SYNC_IP ();
1252 scm_i_check_continuation (contregs);
1253 vm_return_to_continuation (scm_i_contregs_vm (contregs),
1254 scm_i_contregs_vm_cont (contregs),
d691ac20 1255 FRAME_LOCALS_COUNT () - 1, fp);
510ca126
AW
1256 scm_i_reinstate_continuation (contregs);
1257
1258 /* no NEXT */
1259 abort ();
1260 }
1261
1262 /* compose-continuation cont:24
1263 *
1264 * Compose a partial continution with the current continuation. The
1265 * arguments to the continuation are taken from the stack. CONT is a
1266 * free variable containing the reified continuation. This
1267 * instruction is part of the implementation of partial continuations,
1268 * and is not generated by the compiler.
1269 */
af95414f 1270 VM_DEFINE_OP (10, compose_continuation, "compose-continuation", OP1 (U8_U24))
510ca126
AW
1271 {
1272 SCM vmcont;
1273 scm_t_uint32 cont_idx;
1274
1275 SCM_UNPACK_RTL_24 (op, cont_idx);
d76de871 1276 vmcont = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), cont_idx);
510ca126
AW
1277
1278 SYNC_IP ();
1279 VM_ASSERT (SCM_VM_CONT_REWINDABLE_P (vmcont),
1280 vm_error_continuation_not_rewindable (vmcont));
d691ac20 1281 vm_reinstate_partial_continuation (vm, vmcont, FRAME_LOCALS_COUNT () - 1, fp,
510ca126
AW
1282 &current_thread->dynstack,
1283 &registers);
1284 CACHE_REGISTER ();
1285 NEXT (0);
1286 }
1287
adb8d905 1288 /* tail-apply _:24
510ca126
AW
1289 *
1290 * Tail-apply the procedure in local slot 0 to the rest of the
1291 * arguments. This instruction is part of the implementation of
1292 * `apply', and is not generated by the compiler.
1293 */
adb8d905 1294 VM_DEFINE_OP (11, tail_apply, "tail-apply", OP1 (U8_X24))
510ca126 1295 {
e93c0430 1296 int i, list_idx, list_len, nlocals;
510ca126
AW
1297 SCM list;
1298
1299 VM_HANDLE_INTERRUPTS;
1300
e93c0430
AW
1301 nlocals = FRAME_LOCALS_COUNT ();
1302 // At a minimum, there should be apply, f, and the list.
1303 VM_ASSERT (nlocals >= 3, abort ());
1304 list_idx = nlocals - 1;
510ca126
AW
1305 list = LOCAL_REF (list_idx);
1306 list_len = scm_ilength (list);
1307
1308 VM_ASSERT (list_len >= 0, vm_error_apply_to_non_list (list));
1309
e93c0430
AW
1310 nlocals = nlocals - 2 + list_len;
1311 ALLOC_FRAME (nlocals);
510ca126 1312
e93c0430
AW
1313 for (i = 1; i < list_idx; i++)
1314 LOCAL_SET (i - 1, LOCAL_REF (i));
510ca126
AW
1315
1316 /* Null out these slots, just in case there are less than 2 elements
1317 in the list. */
7396d216
AW
1318 LOCAL_SET (list_idx - 1, SCM_UNDEFINED);
1319 LOCAL_SET (list_idx, SCM_UNDEFINED);
510ca126
AW
1320
1321 for (i = 0; i < list_len; i++, list = SCM_CDR (list))
7396d216 1322 LOCAL_SET (list_idx - 1 + i, SCM_CAR (list));
510ca126
AW
1323
1324 APPLY_HOOK ();
1325
1326 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1327 goto apply;
1328
1329 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1330 NEXT (0);
1331 }
1332
1333 /* call/cc _:24
1334 *
1335 * Capture the current continuation, and tail-apply the procedure in
d691ac20 1336 * local slot 1 to it. This instruction is part of the implementation
510ca126
AW
1337 * of `call/cc', and is not generated by the compiler.
1338 */
af95414f 1339 VM_DEFINE_OP (12, call_cc, "call/cc", OP1 (U8_X24))
510ca126
AW
1340 {
1341 SCM vm_cont, cont;
1342 scm_t_dynstack *dynstack;
d691ac20 1343 int first;
510ca126
AW
1344
1345 VM_HANDLE_INTERRUPTS;
1346
1347 SYNC_IP ();
1348 dynstack = scm_dynstack_capture_all (&current_thread->dynstack);
1349 vm_cont = scm_i_vm_capture_stack (vp->stack_base,
1350 SCM_FRAME_DYNAMIC_LINK (fp),
1351 SCM_FRAME_LOWER_ADDRESS (fp) - 1,
1352 SCM_FRAME_RETURN_ADDRESS (fp),
1353 SCM_FRAME_MV_RETURN_ADDRESS (fp),
1354 dynstack,
1355 0);
d691ac20
AW
1356 /* FIXME: Seems silly to capture the registers here, when they are
1357 already captured in the registers local, which here we are
1358 copying out to the heap; and likewise, the setjmp(&registers)
1359 code already has the non-local return handler. But oh
1360 well! */
1361 cont = scm_i_make_continuation (&first, vm, vm_cont);
1362
1363 if (first)
1364 {
1365 LOCAL_SET (0, LOCAL_REF (1));
1366 LOCAL_SET (1, cont);
1367 RESET_FRAME (2);
510ca126 1368
d691ac20 1369 APPLY_HOOK ();
510ca126 1370
d691ac20
AW
1371 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1372 goto apply;
510ca126 1373
d691ac20
AW
1374 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1375 NEXT (0);
1376 }
1377 else
1378 {
1379 CACHE_REGISTER ();
1380 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT () - 1);
1381 NEXT (0);
1382 }
510ca126 1383 }
510ca126 1384
510ca126
AW
1385
1386 \f
1387
1388 /*
1389 * Function prologues
1390 */
1391
1392 /* br-if-nargs-ne expected:24 _:8 offset:24
1393 * br-if-nargs-lt expected:24 _:8 offset:24
1394 * br-if-nargs-gt expected:24 _:8 offset:24
1395 *
1396 * If the number of actual arguments is not equal, less than, or greater
1397 * than EXPECTED, respectively, add OFFSET, a signed 24-bit number, to
1398 * the current instruction pointer.
1399 */
af95414f 1400 VM_DEFINE_OP (13, br_if_nargs_ne, "br-if-nargs-ne", OP2 (U8_U24, X8_L24))
510ca126
AW
1401 {
1402 BR_NARGS (!=);
1403 }
af95414f 1404 VM_DEFINE_OP (14, br_if_nargs_lt, "br-if-nargs-lt", OP2 (U8_U24, X8_L24))
510ca126
AW
1405 {
1406 BR_NARGS (<);
1407 }
af95414f 1408 VM_DEFINE_OP (15, br_if_nargs_gt, "br-if-nargs-gt", OP2 (U8_U24, X8_L24))
510ca126
AW
1409 {
1410 BR_NARGS (>);
1411 }
1412
1413 /* assert-nargs-ee expected:24
1414 * assert-nargs-ge expected:24
1415 * assert-nargs-le expected:24
1416 *
1417 * If the number of actual arguments is not ==, >=, or <= EXPECTED,
1418 * respectively, signal an error.
1419 */
af95414f 1420 VM_DEFINE_OP (16, assert_nargs_ee, "assert-nargs-ee", OP1 (U8_U24))
510ca126
AW
1421 {
1422 scm_t_uint32 expected;
1423 SCM_UNPACK_RTL_24 (op, expected);
1424 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1425 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1426 NEXT (1);
1427 }
af95414f 1428 VM_DEFINE_OP (17, assert_nargs_ge, "assert-nargs-ge", OP1 (U8_U24))
510ca126
AW
1429 {
1430 scm_t_uint32 expected;
1431 SCM_UNPACK_RTL_24 (op, expected);
1432 VM_ASSERT (FRAME_LOCALS_COUNT () >= expected,
1433 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1434 NEXT (1);
1435 }
af95414f 1436 VM_DEFINE_OP (18, assert_nargs_le, "assert-nargs-le", OP1 (U8_U24))
510ca126
AW
1437 {
1438 scm_t_uint32 expected;
1439 SCM_UNPACK_RTL_24 (op, expected);
1440 VM_ASSERT (FRAME_LOCALS_COUNT () <= expected,
1441 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1442 NEXT (1);
1443 }
1444
af95414f 1445 /* alloc-frame nlocals:24
510ca126
AW
1446 *
1447 * Ensure that there is space on the stack for NLOCALS local variables,
1448 * setting them all to SCM_UNDEFINED, except those nargs values that
7396d216 1449 * were passed as arguments and procedure.
510ca126 1450 */
af95414f 1451 VM_DEFINE_OP (19, alloc_frame, "alloc-frame", OP1 (U8_U24))
510ca126
AW
1452 {
1453 scm_t_uint32 nlocals, nargs;
1454 SCM_UNPACK_RTL_24 (op, nlocals);
1455
1456 nargs = FRAME_LOCALS_COUNT ();
1457 ALLOC_FRAME (nlocals);
1458 while (nlocals-- > nargs)
1459 LOCAL_SET (nlocals, SCM_UNDEFINED);
1460
1461 NEXT (1);
1462 }
1463
af95414f
AW
1464 /* reset-frame nlocals:24
1465 *
1466 * Like alloc-frame, but doesn't check that the stack is big enough.
1467 * Used to reset the frame size to something less than the size that
1468 * was previously set via alloc-frame.
1469 */
1470 VM_DEFINE_OP (20, reset_frame, "reset-frame", OP1 (U8_U24))
1471 {
1472 scm_t_uint32 nlocals;
1473 SCM_UNPACK_RTL_24 (op, nlocals);
1474 RESET_FRAME (nlocals);
1475 NEXT (1);
1476 }
1477
510ca126
AW
1478 /* assert-nargs-ee/locals expected:12 nlocals:12
1479 *
1480 * Equivalent to a sequence of assert-nargs-ee and reserve-locals. The
1481 * number of locals reserved is EXPECTED + NLOCALS.
1482 */
af95414f 1483 VM_DEFINE_OP (21, assert_nargs_ee_locals, "assert-nargs-ee/locals", OP1 (U8_U12_U12))
510ca126
AW
1484 {
1485 scm_t_uint16 expected, nlocals;
1486 SCM_UNPACK_RTL_12_12 (op, expected, nlocals);
1487 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1488 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1489 ALLOC_FRAME (expected + nlocals);
1490 while (nlocals--)
1491 LOCAL_SET (expected + nlocals, SCM_UNDEFINED);
1492
1493 NEXT (1);
1494 }
1495
1496 /* bind-kwargs nreq:24 allow-other-keys:1 has-rest:1 _:6 nreq-and-opt:24
1497 * _:8 ntotal:24 kw-offset:32
1498 *
1499 * Find the last positional argument, and shuffle all the rest above
1500 * NTOTAL. Initialize the intervening locals to SCM_UNDEFINED. Then
1501 * load the constant at KW-OFFSET words from the current IP, and use it
1502 * to bind keyword arguments. If HAS-REST, collect all shuffled
1503 * arguments into a list, and store it in NREQ-AND-OPT. Finally, clear
1504 * the arguments that we shuffled up.
1505 *
1506 * A macro-mega-instruction.
1507 */
af95414f 1508 VM_DEFINE_OP (22, bind_kwargs, "bind-kwargs", OP4 (U8_U24, U8_U24, X8_U24, N32))
510ca126
AW
1509 {
1510 scm_t_uint32 nreq, nreq_and_opt, ntotal, npositional, nkw, n, nargs;
1511 scm_t_int32 kw_offset;
1512 scm_t_bits kw_bits;
1513 SCM kw;
1514 char allow_other_keys, has_rest;
1515
1516 SCM_UNPACK_RTL_24 (op, nreq);
1517 allow_other_keys = ip[1] & 0x1;
1518 has_rest = ip[1] & 0x2;
1519 SCM_UNPACK_RTL_24 (ip[1], nreq_and_opt);
1520 SCM_UNPACK_RTL_24 (ip[2], ntotal);
1521 kw_offset = ip[3];
1522 kw_bits = (scm_t_bits) (ip + kw_offset);
1523 VM_ASSERT (!(kw_bits & 0x7), abort());
1524 kw = SCM_PACK (kw_bits);
1525
1526 nargs = FRAME_LOCALS_COUNT ();
1527
1528 /* look in optionals for first keyword or last positional */
1529 /* starting after the last required positional arg */
1530 npositional = nreq;
1531 while (/* while we have args */
1532 npositional < nargs
1533 /* and we still have positionals to fill */
1534 && npositional < nreq_and_opt
1535 /* and we haven't reached a keyword yet */
1536 && !scm_is_keyword (LOCAL_REF (npositional)))
1537 /* bind this optional arg (by leaving it in place) */
1538 npositional++;
1539 nkw = nargs - npositional;
1540 /* shuffle non-positional arguments above ntotal */
1541 ALLOC_FRAME (ntotal + nkw);
1542 n = nkw;
1543 while (n--)
1544 LOCAL_SET (ntotal + n, LOCAL_REF (npositional + n));
1545 /* and fill optionals & keyword args with SCM_UNDEFINED */
1546 n = npositional;
1547 while (n < ntotal)
1548 LOCAL_SET (n++, SCM_UNDEFINED);
1549
1550 VM_ASSERT (has_rest || (nkw % 2) == 0,
1551 vm_error_kwargs_length_not_even (SCM_FRAME_PROGRAM (fp)));
1552
1553 /* Now bind keywords, in the order given. */
1554 for (n = 0; n < nkw; n++)
1555 if (scm_is_keyword (LOCAL_REF (ntotal + n)))
1556 {
1557 SCM walk;
1558 for (walk = kw; scm_is_pair (walk); walk = SCM_CDR (walk))
1559 if (scm_is_eq (SCM_CAAR (walk), LOCAL_REF (ntotal + n)))
1560 {
1561 SCM si = SCM_CDAR (walk);
1562 LOCAL_SET (SCM_I_INUMP (si) ? SCM_I_INUM (si) : scm_to_uint32 (si),
1563 LOCAL_REF (ntotal + n + 1));
1564 break;
1565 }
1566 VM_ASSERT (scm_is_pair (walk) || allow_other_keys,
28d5d253
MW
1567 vm_error_kwargs_unrecognized_keyword (SCM_FRAME_PROGRAM (fp),
1568 LOCAL_REF (ntotal + n)));
510ca126
AW
1569 n++;
1570 }
1571 else
28d5d253
MW
1572 VM_ASSERT (has_rest, vm_error_kwargs_invalid_keyword (SCM_FRAME_PROGRAM (fp),
1573 LOCAL_REF (ntotal + n)));
510ca126
AW
1574
1575 if (has_rest)
1576 {
1577 SCM rest = SCM_EOL;
1578 n = nkw;
1579 while (n--)
1580 rest = scm_cons (LOCAL_REF (ntotal + n), rest);
1581 LOCAL_SET (nreq_and_opt, rest);
1582 }
1583
1584 RESET_FRAME (ntotal);
1585
1586 NEXT (4);
1587 }
1588
1589 /* bind-rest dst:24
1590 *
1591 * Collect any arguments at or above DST into a list, and store that
1592 * list at DST.
1593 */
af95414f 1594 VM_DEFINE_OP (23, bind_rest, "bind-rest", OP1 (U8_U24) | OP_DST)
510ca126
AW
1595 {
1596 scm_t_uint32 dst, nargs;
1597 SCM rest = SCM_EOL;
1598
1599 SCM_UNPACK_RTL_24 (op, dst);
1600 nargs = FRAME_LOCALS_COUNT ();
1601
234155e3 1602 if (nargs <= dst)
510ca126 1603 {
234155e3
AW
1604 ALLOC_FRAME (dst + 1);
1605 while (nargs < dst)
1606 LOCAL_SET (nargs++, SCM_UNDEFINED);
510ca126 1607 }
234155e3
AW
1608 else
1609 {
1610 while (nargs-- > dst)
1611 {
1612 rest = scm_cons (LOCAL_REF (nargs), rest);
1613 LOCAL_SET (nargs, SCM_UNDEFINED);
1614 }
510ca126 1615
234155e3
AW
1616 RESET_FRAME (dst + 1);
1617 }
510ca126 1618
234155e3 1619 LOCAL_SET (dst, rest);
510ca126
AW
1620
1621 NEXT (1);
1622 }
1623
510ca126
AW
1624
1625 \f
1626
1627 /*
1628 * Branching instructions
1629 */
1630
1631 /* br offset:24
1632 *
1633 * Add OFFSET, a signed 24-bit number, to the current instruction
1634 * pointer.
1635 */
af95414f 1636 VM_DEFINE_OP (24, br, "br", OP1 (U8_L24))
510ca126
AW
1637 {
1638 scm_t_int32 offset = op;
1639 offset >>= 8; /* Sign-extending shift. */
1640 NEXT (offset);
1641 }
1642
1643 /* br-if-true test:24 invert:1 _:7 offset:24
1644 *
1645 * If the value in TEST is true for the purposes of Scheme, add
1646 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1647 */
af95414f 1648 VM_DEFINE_OP (25, br_if_true, "br-if-true", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1649 {
1650 BR_UNARY (x, scm_is_true (x));
1651 }
1652
1653 /* br-if-null test:24 invert:1 _:7 offset:24
1654 *
1655 * If the value in TEST is the end-of-list or Lisp nil, add OFFSET, a
1656 * signed 24-bit number, to the current instruction pointer.
1657 */
af95414f 1658 VM_DEFINE_OP (26, br_if_null, "br-if-null", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1659 {
1660 BR_UNARY (x, scm_is_null (x));
1661 }
1662
1663 /* br-if-nil test:24 invert:1 _:7 offset:24
1664 *
1665 * If the value in TEST is false to Lisp, add OFFSET, a signed 24-bit
1666 * number, to the current instruction pointer.
1667 */
af95414f 1668 VM_DEFINE_OP (27, br_if_nil, "br-if-nil", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1669 {
1670 BR_UNARY (x, scm_is_lisp_false (x));
1671 }
1672
1673 /* br-if-pair test:24 invert:1 _:7 offset:24
1674 *
1675 * If the value in TEST is a pair, add OFFSET, a signed 24-bit number,
1676 * to the current instruction pointer.
1677 */
af95414f 1678 VM_DEFINE_OP (28, br_if_pair, "br-if-pair", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1679 {
1680 BR_UNARY (x, scm_is_pair (x));
1681 }
1682
1683 /* br-if-struct test:24 invert:1 _:7 offset:24
1684 *
1685 * If the value in TEST is a struct, add OFFSET, a signed 24-bit
1686 * number, to the current instruction pointer.
1687 */
af95414f 1688 VM_DEFINE_OP (29, br_if_struct, "br-if-struct", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1689 {
1690 BR_UNARY (x, SCM_STRUCTP (x));
1691 }
1692
1693 /* br-if-char test:24 invert:1 _:7 offset:24
1694 *
1695 * If the value in TEST is a char, add OFFSET, a signed 24-bit number,
1696 * to the current instruction pointer.
1697 */
af95414f 1698 VM_DEFINE_OP (30, br_if_char, "br-if-char", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1699 {
1700 BR_UNARY (x, SCM_CHARP (x));
1701 }
1702
1703 /* br-if-tc7 test:24 invert:1 tc7:7 offset:24
1704 *
1705 * If the value in TEST has the TC7 given in the second word, add
1706 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1707 */
af95414f 1708 VM_DEFINE_OP (31, br_if_tc7, "br-if-tc7", OP2 (U8_U24, B1_U7_L24))
510ca126
AW
1709 {
1710 BR_UNARY (x, SCM_HAS_TYP7 (x, (ip[1] >> 1) & 0x7f));
1711 }
1712
1713 /* br-if-eq a:12 b:12 invert:1 _:7 offset:24
1714 *
1715 * If the value in A is eq? to the value in B, add OFFSET, a signed
1716 * 24-bit number, to the current instruction pointer.
1717 */
af95414f 1718 VM_DEFINE_OP (32, br_if_eq, "br-if-eq", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1719 {
1720 BR_BINARY (x, y, scm_is_eq (x, y));
1721 }
1722
1723 /* br-if-eqv a:12 b:12 invert:1 _:7 offset:24
1724 *
1725 * If the value in A is eqv? to the value in B, add OFFSET, a signed
1726 * 24-bit number, to the current instruction pointer.
1727 */
af95414f 1728 VM_DEFINE_OP (33, br_if_eqv, "br-if-eqv", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1729 {
1730 BR_BINARY (x, y,
1731 scm_is_eq (x, y)
1732 || (SCM_NIMP (x) && SCM_NIMP (y)
1733 && scm_is_true (scm_eqv_p (x, y))));
1734 }
1735
af95414f 1736 // FIXME: remove, have compiler inline eqv test instead
510ca126
AW
1737 /* br-if-equal a:12 b:12 invert:1 _:7 offset:24
1738 *
1739 * If the value in A is equal? to the value in B, add OFFSET, a signed
1740 * 24-bit number, to the current instruction pointer.
1741 */
1742 // FIXME: should sync_ip before calling out?
af95414f 1743 VM_DEFINE_OP (34, br_if_equal, "br-if-equal", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1744 {
1745 BR_BINARY (x, y,
1746 scm_is_eq (x, y)
1747 || (SCM_NIMP (x) && SCM_NIMP (y)
1748 && scm_is_true (scm_equal_p (x, y))));
1749 }
1750
af95414f 1751 /* br-if-= a:12 b:12 invert:1 _:7 offset:24
510ca126
AW
1752 *
1753 * If the value in A is = to the value in B, add OFFSET, a signed
1754 * 24-bit number, to the current instruction pointer.
1755 */
af95414f 1756 VM_DEFINE_OP (35, br_if_ee, "br-if-=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1757 {
1758 BR_ARITHMETIC (==, scm_num_eq_p);
1759 }
1760
1761 /* br-if-< a:12 b:12 _:8 offset:24
1762 *
1763 * If the value in A is < to the value in B, add OFFSET, a signed
1764 * 24-bit number, to the current instruction pointer.
1765 */
af95414f 1766 VM_DEFINE_OP (36, br_if_lt, "br-if-<", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1767 {
1768 BR_ARITHMETIC (<, scm_less_p);
1769 }
1770
1771 /* br-if-<= a:12 b:12 _:8 offset:24
1772 *
1773 * If the value in A is <= to the value in B, add OFFSET, a signed
1774 * 24-bit number, to the current instruction pointer.
1775 */
af95414f 1776 VM_DEFINE_OP (37, br_if_le, "br-if-<=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1777 {
1778 BR_ARITHMETIC (<=, scm_leq_p);
1779 }
1780
510ca126
AW
1781
1782 \f
1783
1784 /*
1785 * Lexical binding instructions
1786 */
1787
1788 /* mov dst:12 src:12
1789 *
1790 * Copy a value from one local slot to another.
1791 */
af95414f 1792 VM_DEFINE_OP (38, mov, "mov", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1793 {
1794 scm_t_uint16 dst;
1795 scm_t_uint16 src;
1796
1797 SCM_UNPACK_RTL_12_12 (op, dst, src);
1798 LOCAL_SET (dst, LOCAL_REF (src));
1799
1800 NEXT (1);
1801 }
1802
1803 /* long-mov dst:24 _:8 src:24
1804 *
1805 * Copy a value from one local slot to another.
1806 */
af95414f 1807 VM_DEFINE_OP (39, long_mov, "long-mov", OP2 (U8_U24, X8_U24) | OP_DST)
510ca126
AW
1808 {
1809 scm_t_uint32 dst;
1810 scm_t_uint32 src;
1811
1812 SCM_UNPACK_RTL_24 (op, dst);
1813 SCM_UNPACK_RTL_24 (ip[1], src);
1814 LOCAL_SET (dst, LOCAL_REF (src));
1815
1816 NEXT (2);
1817 }
1818
1819 /* box dst:12 src:12
1820 *
1821 * Create a new variable holding SRC, and place it in DST.
1822 */
af95414f 1823 VM_DEFINE_OP (40, box, "box", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1824 {
1825 scm_t_uint16 dst, src;
1826 SCM_UNPACK_RTL_12_12 (op, dst, src);
1827 LOCAL_SET (dst, scm_cell (scm_tc7_variable, SCM_UNPACK (LOCAL_REF (src))));
1828 NEXT (1);
1829 }
1830
510ca126
AW
1831 /* box-ref dst:12 src:12
1832 *
1833 * Unpack the variable at SRC into DST, asserting that the variable is
1834 * actually bound.
1835 */
af95414f 1836 VM_DEFINE_OP (41, box_ref, "box-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1837 {
1838 scm_t_uint16 dst, src;
1839 SCM var;
1840 SCM_UNPACK_RTL_12_12 (op, dst, src);
1841 var = LOCAL_REF (src);
4f406fea
AW
1842 VM_ASSERT (SCM_VARIABLEP (var),
1843 vm_error_not_a_variable ("variable-ref", var));
af95414f
AW
1844 VM_ASSERT (VARIABLE_BOUNDP (var),
1845 vm_error_unbound (SCM_FRAME_PROGRAM (fp), var));
510ca126
AW
1846 LOCAL_SET (dst, VARIABLE_REF (var));
1847 NEXT (1);
1848 }
1849
1850 /* box-set! dst:12 src:12
1851 *
1852 * Set the contents of the variable at DST to SET.
1853 */
e063995d 1854 VM_DEFINE_OP (42, box_set, "box-set!", OP1 (U8_U12_U12))
510ca126
AW
1855 {
1856 scm_t_uint16 dst, src;
1857 SCM var;
1858 SCM_UNPACK_RTL_12_12 (op, dst, src);
1859 var = LOCAL_REF (dst);
4f406fea
AW
1860 VM_ASSERT (SCM_VARIABLEP (var),
1861 vm_error_not_a_variable ("variable-set!", var));
510ca126
AW
1862 VARIABLE_SET (var, LOCAL_REF (src));
1863 NEXT (1);
1864 }
1865
7396d216 1866 /* make-closure dst:24 offset:32 _:8 nfree:24
510ca126
AW
1867 *
1868 * Make a new closure, and write it to DST. The code for the closure
1869 * will be found at OFFSET words from the current IP. OFFSET is a
7396d216
AW
1870 * signed 32-bit integer. Space for NFREE free variables will be
1871 * allocated.
510ca126 1872 */
af95414f 1873 VM_DEFINE_OP (43, make_closure, "make-closure", OP3 (U8_U24, L32, X8_U24) | OP_DST)
510ca126
AW
1874 {
1875 scm_t_uint32 dst, nfree, n;
1876 scm_t_int32 offset;
1877 SCM closure;
1878
1879 SCM_UNPACK_RTL_24 (op, dst);
1880 offset = ip[1];
1881 SCM_UNPACK_RTL_24 (ip[2], nfree);
1882
1883 // FIXME: Assert range of nfree?
1884 closure = scm_words (scm_tc7_rtl_program | (nfree << 16), nfree + 2);
1885 SCM_SET_CELL_WORD_1 (closure, ip + offset);
7396d216 1886 // FIXME: Elide these initializations?
510ca126 1887 for (n = 0; n < nfree; n++)
7396d216 1888 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (closure, n, SCM_BOOL_F);
510ca126 1889 LOCAL_SET (dst, closure);
7396d216 1890 NEXT (3);
510ca126
AW
1891 }
1892
7396d216 1893 /* free-ref dst:12 src:12 _:8 idx:24
510ca126 1894 *
7396d216 1895 * Load free variable IDX from the closure SRC into local slot DST.
510ca126 1896 */
af95414f 1897 VM_DEFINE_OP (44, free_ref, "free-ref", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1898 {
7396d216
AW
1899 scm_t_uint16 dst, src;
1900 scm_t_uint32 idx;
1901 SCM_UNPACK_RTL_12_12 (op, dst, src);
1902 SCM_UNPACK_RTL_24 (ip[1], idx);
1903 /* CHECK_FREE_VARIABLE (src); */
1904 LOCAL_SET (dst, SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (src), idx));
1905 NEXT (2);
1906 }
510ca126 1907
7396d216
AW
1908 /* free-set! dst:12 src:12 _8 idx:24
1909 *
1910 * Set free variable IDX from the closure DST to SRC.
1911 */
af95414f 1912 VM_DEFINE_OP (45, free_set, "free-set!", OP2 (U8_U12_U12, X8_U24))
7396d216
AW
1913 {
1914 scm_t_uint16 dst, src;
1915 scm_t_uint32 idx;
1916 SCM_UNPACK_RTL_12_12 (op, dst, src);
1917 SCM_UNPACK_RTL_24 (ip[1], idx);
1918 /* CHECK_FREE_VARIABLE (src); */
1919 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (LOCAL_REF (dst), idx, LOCAL_REF (src));
1920 NEXT (2);
510ca126
AW
1921 }
1922
1923
1924 \f
1925
1926 /*
1927 * Immediates and statically allocated non-immediates
1928 */
1929
1930 /* make-short-immediate dst:8 low-bits:16
1931 *
1932 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1933 * 0.
1934 */
af95414f 1935 VM_DEFINE_OP (46, make_short_immediate, "make-short-immediate", OP1 (U8_U8_I16) | OP_DST)
510ca126
AW
1936 {
1937 scm_t_uint8 dst;
1938 scm_t_bits val;
1939
1940 SCM_UNPACK_RTL_8_16 (op, dst, val);
1941 LOCAL_SET (dst, SCM_PACK (val));
1942 NEXT (1);
1943 }
1944
1945 /* make-long-immediate dst:24 low-bits:32
1946 *
1947 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1948 * 0.
1949 */
af95414f 1950 VM_DEFINE_OP (47, make_long_immediate, "make-long-immediate", OP2 (U8_U24, I32))
510ca126
AW
1951 {
1952 scm_t_uint8 dst;
1953 scm_t_bits val;
1954
1955 SCM_UNPACK_RTL_24 (op, dst);
1956 val = ip[1];
1957 LOCAL_SET (dst, SCM_PACK (val));
1958 NEXT (2);
1959 }
1960
1961 /* make-long-long-immediate dst:24 high-bits:32 low-bits:32
1962 *
1963 * Make an immediate with HIGH-BITS and LOW-BITS.
1964 */
af95414f 1965 VM_DEFINE_OP (48, make_long_long_immediate, "make-long-long-immediate", OP3 (U8_U24, A32, B32) | OP_DST)
510ca126
AW
1966 {
1967 scm_t_uint8 dst;
1968 scm_t_bits val;
1969
1970 SCM_UNPACK_RTL_24 (op, dst);
1971#if SIZEOF_SCM_T_BITS > 4
1972 val = ip[1];
1973 val <<= 32;
1974 val |= ip[2];
1975#else
1976 ASSERT (ip[1] == 0);
1977 val = ip[2];
1978#endif
1979 LOCAL_SET (dst, SCM_PACK (val));
1980 NEXT (3);
1981 }
1982
1983 /* make-non-immediate dst:24 offset:32
1984 *
1985 * Load a pointer to statically allocated memory into DST. The
1986 * object's memory is will be found OFFSET 32-bit words away from the
1987 * current instruction pointer. OFFSET is a signed value. The
1988 * intention here is that the compiler would produce an object file
1989 * containing the words of a non-immediate object, and this
1990 * instruction creates a pointer to that memory, effectively
1991 * resurrecting that object.
1992 *
1993 * Whether the object is mutable or immutable depends on where it was
1994 * allocated by the compiler, and loaded by the loader.
1995 */
af95414f 1996 VM_DEFINE_OP (49, make_non_immediate, "make-non-immediate", OP2 (U8_U24, N32) | OP_DST)
510ca126
AW
1997 {
1998 scm_t_uint32 dst;
1999 scm_t_int32 offset;
2000 scm_t_uint32* loc;
2001 scm_t_bits unpacked;
2002
2003 SCM_UNPACK_RTL_24 (op, dst);
2004 offset = ip[1];
2005 loc = ip + offset;
2006 unpacked = (scm_t_bits) loc;
2007
2008 VM_ASSERT (!(unpacked & 0x7), abort());
2009
2010 LOCAL_SET (dst, SCM_PACK (unpacked));
2011
2012 NEXT (2);
2013 }
2014
2015 /* static-ref dst:24 offset:32
2016 *
2017 * Load a SCM value into DST. The SCM value will be fetched from
2018 * memory, OFFSET 32-bit words away from the current instruction
2019 * pointer. OFFSET is a signed value.
2020 *
2021 * The intention is for this instruction to be used to load constants
2022 * that the compiler is unable to statically allocate, like symbols.
2023 * These values would be initialized when the object file loads.
2024 */
af95414f 2025 VM_DEFINE_OP (50, static_ref, "static-ref", OP2 (U8_U24, S32))
510ca126
AW
2026 {
2027 scm_t_uint32 dst;
2028 scm_t_int32 offset;
2029 scm_t_uint32* loc;
2030 scm_t_uintptr loc_bits;
2031
2032 SCM_UNPACK_RTL_24 (op, dst);
2033 offset = ip[1];
2034 loc = ip + offset;
2035 loc_bits = (scm_t_uintptr) loc;
2036 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2037
2038 LOCAL_SET (dst, *((SCM *) loc_bits));
2039
2040 NEXT (2);
2041 }
2042
2043 /* static-set! src:24 offset:32
2044 *
2045 * Store a SCM value into memory, OFFSET 32-bit words away from the
2046 * current instruction pointer. OFFSET is a signed value.
2047 */
af95414f 2048 VM_DEFINE_OP (51, static_set, "static-set!", OP2 (U8_U24, LO32))
510ca126
AW
2049 {
2050 scm_t_uint32 src;
2051 scm_t_int32 offset;
2052 scm_t_uint32* loc;
2053
2054 SCM_UNPACK_RTL_24 (op, src);
2055 offset = ip[1];
2056 loc = ip + offset;
2057 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2058
2059 *((SCM *) loc) = LOCAL_REF (src);
2060
2061 NEXT (2);
2062 }
2063
2064 /* link-procedure! src:24 offset:32
2065 *
2066 * Set the code pointer of the procedure in SRC to point OFFSET 32-bit
2067 * words away from the current instruction pointer. OFFSET is a
2068 * signed value.
2069 */
af95414f 2070 VM_DEFINE_OP (52, link_procedure, "link-procedure!", OP2 (U8_U24, L32))
510ca126
AW
2071 {
2072 scm_t_uint32 src;
2073 scm_t_int32 offset;
2074 scm_t_uint32* loc;
2075
2076 SCM_UNPACK_RTL_24 (op, src);
2077 offset = ip[1];
2078 loc = ip + offset;
2079
2080 SCM_SET_CELL_WORD_1 (LOCAL_REF (src), (scm_t_bits) loc);
2081
2082 NEXT (2);
2083 }
2084
2085 \f
2086
2087 /*
2088 * Mutable top-level bindings
2089 */
2090
2091 /* There are three slightly different ways to resolve toplevel
2092 variables.
2093
2094 1. A toplevel reference outside of a function. These need to be
2095 looked up when the expression is evaluated -- no later, and no
2096 before. They are looked up relative to the module that is
2097 current when the expression is evaluated. For example:
2098
2099 (if (foo) a b)
2100
2101 The "resolve" instruction resolves the variable (box), and then
2102 access is via box-ref or box-set!.
2103
2104 2. A toplevel reference inside a function. These are looked up
2105 relative to the module that was current when the function was
2106 defined. Unlike code at the toplevel, which is usually run only
2107 once, these bindings benefit from memoized lookup, in which the
2108 variable resulting from the lookup is cached in the function.
2109
2110 (lambda () (if (foo) a b))
2111
af95414f
AW
2112 The toplevel-box instruction is equivalent to "resolve", but
2113 caches the resulting variable in statically allocated memory.
510ca126
AW
2114
2115 3. A reference to an identifier with respect to a particular
2116 module. This can happen for primitive references, and
af95414f
AW
2117 references residualized by macro expansions. These can always
2118 be cached. Use module-box for these.
510ca126
AW
2119 */
2120
2121 /* current-module dst:24
2122 *
2123 * Store the current module in DST.
2124 */
af95414f 2125 VM_DEFINE_OP (53, current_module, "current-module", OP1 (U8_U24) | OP_DST)
510ca126
AW
2126 {
2127 scm_t_uint32 dst;
2128
2129 SCM_UNPACK_RTL_24 (op, dst);
2130
2131 SYNC_IP ();
2132 LOCAL_SET (dst, scm_current_module ());
2133
2134 NEXT (1);
2135 }
2136
af95414f 2137 /* resolve dst:24 bound?:1 _:7 sym:24
510ca126 2138 *
af95414f
AW
2139 * Resolve SYM in the current module, and place the resulting variable
2140 * in DST.
510ca126 2141 */
af95414f 2142 VM_DEFINE_OP (54, resolve, "resolve", OP2 (U8_U24, B1_X7_U24) | OP_DST)
510ca126 2143 {
af95414f
AW
2144 scm_t_uint32 dst;
2145 scm_t_uint32 sym;
2146 SCM var;
510ca126 2147
af95414f
AW
2148 SCM_UNPACK_RTL_24 (op, dst);
2149 SCM_UNPACK_RTL_24 (ip[1], sym);
510ca126
AW
2150
2151 SYNC_IP ();
af95414f
AW
2152 var = scm_lookup (LOCAL_REF (sym));
2153 if (ip[1] & 0x1)
2154 VM_ASSERT (VARIABLE_BOUNDP (var),
2155 vm_error_unbound (fp[-1], LOCAL_REF (sym)));
2156 LOCAL_SET (dst, var);
510ca126 2157
af95414f 2158 NEXT (2);
510ca126
AW
2159 }
2160
2161 /* define sym:12 val:12
2162 *
2163 * Look up a binding for SYM in the current module, creating it if
2164 * necessary. Set its value to VAL.
2165 */
af95414f 2166 VM_DEFINE_OP (55, define, "define", OP1 (U8_U12_U12))
510ca126
AW
2167 {
2168 scm_t_uint16 sym, val;
2169 SCM_UNPACK_RTL_12_12 (op, sym, val);
2170 SYNC_IP ();
2171 scm_define (LOCAL_REF (sym), LOCAL_REF (val));
2172 NEXT (1);
2173 }
2174
af95414f 2175 /* toplevel-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126
AW
2176 *
2177 * Load a SCM value. The SCM value will be fetched from memory,
2178 * VAR-OFFSET 32-bit words away from the current instruction pointer.
af95414f 2179 * VAR-OFFSET is a signed value. Up to here, toplevel-box is like
510ca126
AW
2180 * static-ref.
2181 *
af95414f
AW
2182 * Then, if the loaded value is a variable, it is placed in DST, and control
2183 * flow continues.
510ca126
AW
2184 *
2185 * Otherwise, we have to resolve the variable. In that case we load
2186 * the module from MOD-OFFSET, just as we loaded the variable.
2187 * Usually the module gets set when the closure is created. The name
2188 * is an offset to a symbol.
2189 *
af95414f
AW
2190 * We use the module and the symbol to resolve the variable, placing it in
2191 * DST, and caching the resolved variable so that we will hit the cache next
2192 * time.
510ca126 2193 */
af95414f 2194 VM_DEFINE_OP (56, toplevel_box, "toplevel-box", OP5 (U8_U24, S32, S32, N32, B1_X31) | OP_DST)
510ca126
AW
2195 {
2196 scm_t_uint32 dst;
2197 scm_t_int32 var_offset;
2198 scm_t_uint32* var_loc_u32;
2199 SCM *var_loc;
2200 SCM var;
2201
2202 SCM_UNPACK_RTL_24 (op, dst);
2203 var_offset = ip[1];
2204 var_loc_u32 = ip + var_offset;
2205 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2206 var_loc = (SCM *) var_loc_u32;
2207 var = *var_loc;
2208
2209 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2210 {
2211 SCM mod, sym;
2212 scm_t_int32 mod_offset = ip[2]; /* signed */
2213 scm_t_int32 sym_offset = ip[3]; /* signed */
2214 scm_t_uint32 *mod_loc = ip + mod_offset;
2215 scm_t_uint32 *sym_loc = ip + sym_offset;
2216
2217 SYNC_IP ();
2218
2219 VM_ASSERT (ALIGNED_P (mod_loc, SCM), abort());
2220 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2221
2222 mod = *((SCM *) mod_loc);
2223 sym = *((SCM *) sym_loc);
2224
e23f9e44
AW
2225 /* If the toplevel scope was captured before modules were
2226 booted, use the root module. */
2227 if (scm_is_false (mod))
2228 mod = scm_the_root_module ();
2229
510ca126 2230 var = scm_module_lookup (mod, sym);
af95414f
AW
2231 if (ip[4] & 0x1)
2232 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2233
2234 *var_loc = var;
2235 }
2236
af95414f
AW
2237 LOCAL_SET (dst, var);
2238 NEXT (5);
510ca126
AW
2239 }
2240
af95414f 2241 /* module-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126 2242 *
af95414f 2243 * Like toplevel-box, except MOD-OFFSET points at the name of a module
510ca126
AW
2244 * instead of the module itself.
2245 */
af95414f 2246 VM_DEFINE_OP (57, module_box, "module-box", OP5 (U8_U24, S32, N32, N32, B1_X31) | OP_DST)
510ca126
AW
2247 {
2248 scm_t_uint32 dst;
2249 scm_t_int32 var_offset;
2250 scm_t_uint32* var_loc_u32;
2251 SCM *var_loc;
2252 SCM var;
2253
2254 SCM_UNPACK_RTL_24 (op, dst);
2255 var_offset = ip[1];
2256 var_loc_u32 = ip + var_offset;
2257 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2258 var_loc = (SCM *) var_loc_u32;
2259 var = *var_loc;
2260
2261 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2262 {
2263 SCM modname, sym;
2264 scm_t_int32 modname_offset = ip[2]; /* signed */
2265 scm_t_int32 sym_offset = ip[3]; /* signed */
2266 scm_t_uint32 *modname_words = ip + modname_offset;
2267 scm_t_uint32 *sym_loc = ip + sym_offset;
2268
2269 SYNC_IP ();
2270
2271 VM_ASSERT (!(((scm_t_uintptr) modname_words) & 0x7), abort());
2272 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2273
2274 modname = SCM_PACK ((scm_t_bits) modname_words);
2275 sym = *((SCM *) sym_loc);
2276
e23f9e44
AW
2277 if (!scm_module_system_booted_p)
2278 {
2279#ifdef VM_ENABLE_PARANOID_ASSERTIONS
2280 ASSERT
2281 (scm_is_true
2282 scm_equal_p (modname,
2283 scm_list_2 (SCM_BOOL_T,
2284 scm_from_utf8_symbol ("guile"))));
2285#endif
2286 var = scm_lookup (sym);
2287 }
2288 else if (scm_is_true (SCM_CAR (modname)))
510ca126
AW
2289 var = scm_public_lookup (SCM_CDR (modname), sym);
2290 else
2291 var = scm_private_lookup (SCM_CDR (modname), sym);
2292
af95414f
AW
2293 if (ip[4] & 0x1)
2294 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2295
2296 *var_loc = var;
2297 }
2298
af95414f
AW
2299 LOCAL_SET (dst, var);
2300 NEXT (5);
510ca126
AW
2301 }
2302
2303 \f
2304
2305 /*
2306 * The dynamic environment
2307 */
2308
8d59d55e 2309 /* prompt tag:24 escape-only?:1 _:7 proc-slot:24 _:8 handler-offset:24
510ca126
AW
2310 *
2311 * Push a new prompt on the dynamic stack, with a tag from TAG and a
2312 * handler at HANDLER-OFFSET words from the current IP. The handler
8d59d55e
AW
2313 * will expect a multiple-value return as if from a call with the
2314 * procedure at PROC-SLOT.
510ca126 2315 */
8d59d55e 2316 VM_DEFINE_OP (58, prompt, "prompt", OP3 (U8_U24, B1_X7_U24, X8_L24))
510ca126 2317 {
8d59d55e 2318 scm_t_uint32 tag, proc_slot;
510ca126
AW
2319 scm_t_int32 offset;
2320 scm_t_uint8 escape_only_p;
2321 scm_t_dynstack_prompt_flags flags;
2322
2323 SCM_UNPACK_RTL_24 (op, tag);
8d59d55e
AW
2324 escape_only_p = ip[1] & 0x1;
2325 SCM_UNPACK_RTL_24 (ip[1], proc_slot);
2326 offset = ip[2];
510ca126
AW
2327 offset >>= 8; /* Sign extension */
2328
2329 /* Push the prompt onto the dynamic stack. */
2330 flags = escape_only_p ? SCM_F_DYNSTACK_PROMPT_ESCAPE_ONLY : 0;
2331 scm_dynstack_push_prompt (&current_thread->dynstack, flags,
2332 LOCAL_REF (tag),
8d59d55e
AW
2333 fp,
2334 &LOCAL_REF (proc_slot),
2335 (scm_t_uint8 *)(ip + offset),
2336 &registers);
2337 NEXT (3);
510ca126 2338 }
510ca126
AW
2339
2340 /* wind winder:12 unwinder:12
2341 *
2342 * Push wind and unwind procedures onto the dynamic stack. Note that
2343 * neither are actually called; the compiler should emit calls to wind
2344 * and unwind for the normal dynamic-wind control flow. Also note that
2345 * the compiler should have inserted checks that they wind and unwind
2346 * procs are thunks, if it could not prove that to be the case.
2347 */
af95414f 2348 VM_DEFINE_OP (59, wind, "wind", OP1 (U8_U12_U12))
510ca126
AW
2349 {
2350 scm_t_uint16 winder, unwinder;
2351 SCM_UNPACK_RTL_12_12 (op, winder, unwinder);
2352 scm_dynstack_push_dynwind (&current_thread->dynstack,
2353 LOCAL_REF (winder), LOCAL_REF (unwinder));
2354 NEXT (1);
2355 }
2356
af95414f 2357 /* abort tag:24 _:8 proc:24
510ca126 2358 *
b2171312 2359 * Return a number of values to a prompt handler. The values are
af95414f 2360 * expected in a frame pushed on at PROC.
510ca126 2361 */
af95414f 2362 VM_DEFINE_OP (60, abort, "abort", OP2 (U8_U24, X8_U24))
510ca126
AW
2363#if 0
2364 {
b2171312
AW
2365 scm_t_uint32 tag, from, nvalues;
2366 SCM *base;
510ca126
AW
2367
2368 SCM_UNPACK_RTL_24 (op, tag);
b2171312
AW
2369 SCM_UNPACK_RTL_24 (ip[1], from);
2370 base = (fp - 1) + from + 3;
2371 nvalues = FRAME_LOCALS_COUNT () - from - 3;
510ca126
AW
2372
2373 SYNC_IP ();
b2171312 2374 vm_abort (vm, LOCAL_REF (tag), base, nvalues, &registers);
510ca126
AW
2375
2376 /* vm_abort should not return */
2377 abort ();
2378 }
2379#else
2380 abort();
2381#endif
2382
2383 /* unwind _:24
2384 *
2385 * A normal exit from the dynamic extent of an expression. Pop the top
2386 * entry off of the dynamic stack.
2387 */
af95414f 2388 VM_DEFINE_OP (61, unwind, "unwind", OP1 (U8_X24))
510ca126
AW
2389 {
2390 scm_dynstack_pop (&current_thread->dynstack);
2391 NEXT (1);
2392 }
2393
98eaef1b 2394 /* push-fluid fluid:12 value:12
510ca126
AW
2395 *
2396 * Dynamically bind N fluids to values. The fluids are expected to be
2397 * allocated in a continguous range on the stack, starting from
2398 * FLUID-BASE. The values do not have this restriction.
2399 */
af95414f 2400 VM_DEFINE_OP (62, push_fluid, "push-fluid", OP1 (U8_U12_U12))
510ca126 2401 {
98eaef1b 2402 scm_t_uint32 fluid, value;
510ca126 2403
98eaef1b 2404 SCM_UNPACK_RTL_12_12 (op, fluid, value);
510ca126 2405
98eaef1b 2406 scm_dynstack_push_fluid (&current_thread->dynstack,
2a4ee2ac 2407 LOCAL_REF (fluid), LOCAL_REF (value),
98eaef1b
AW
2408 current_thread->dynamic_state);
2409 NEXT (1);
510ca126 2410 }
510ca126 2411
98eaef1b 2412 /* pop-fluid _:24
510ca126
AW
2413 *
2414 * Leave the dynamic extent of a with-fluids expression, restoring the
2415 * fluids to their previous values.
2416 */
af95414f 2417 VM_DEFINE_OP (63, pop_fluid, "pop-fluid", OP1 (U8_X24))
510ca126
AW
2418 {
2419 /* This function must not allocate. */
98eaef1b
AW
2420 scm_dynstack_unwind_fluid (&current_thread->dynstack,
2421 current_thread->dynamic_state);
510ca126
AW
2422 NEXT (1);
2423 }
2424
2425 /* fluid-ref dst:12 src:12
2426 *
2427 * Reference the fluid in SRC, and place the value in DST.
2428 */
af95414f 2429 VM_DEFINE_OP (64, fluid_ref, "fluid-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2430 {
2431 scm_t_uint16 dst, src;
2432 size_t num;
2433 SCM fluid, fluids;
2434
2435 SCM_UNPACK_RTL_12_12 (op, dst, src);
2436 fluid = LOCAL_REF (src);
2437 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2438 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2439 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2440 {
2441 /* Punt dynstate expansion and error handling to the C proc. */
2442 SYNC_IP ();
2443 LOCAL_SET (dst, scm_fluid_ref (fluid));
2444 }
2445 else
2446 {
2447 SCM val = SCM_SIMPLE_VECTOR_REF (fluids, num);
2448 if (scm_is_eq (val, SCM_UNDEFINED))
2449 val = SCM_I_FLUID_DEFAULT (fluid);
2450 VM_ASSERT (!scm_is_eq (val, SCM_UNDEFINED),
2451 vm_error_unbound_fluid (program, fluid));
2452 LOCAL_SET (dst, val);
2453 }
2454
2455 NEXT (1);
2456 }
2457
2458 /* fluid-set fluid:12 val:12
2459 *
2460 * Set the value of the fluid in DST to the value in SRC.
2461 */
af95414f 2462 VM_DEFINE_OP (65, fluid_set, "fluid-set", OP1 (U8_U12_U12))
510ca126
AW
2463 {
2464 scm_t_uint16 a, b;
2465 size_t num;
2466 SCM fluid, fluids;
2467
2468 SCM_UNPACK_RTL_12_12 (op, a, b);
2469 fluid = LOCAL_REF (a);
2470 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2471 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2472 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2473 {
2474 /* Punt dynstate expansion and error handling to the C proc. */
2475 SYNC_IP ();
2476 scm_fluid_set_x (fluid, LOCAL_REF (b));
2477 }
2478 else
2479 SCM_SIMPLE_VECTOR_SET (fluids, num, LOCAL_REF (b));
2480
2481 NEXT (1);
2482 }
2483
2484
2485 \f
2486
2487 /*
2488 * Strings, symbols, and keywords
2489 */
2490
2491 /* string-length dst:12 src:12
2492 *
2493 * Store the length of the string in SRC in DST.
2494 */
af95414f 2495 VM_DEFINE_OP (66, string_length, "string-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2496 {
2497 ARGS1 (str);
2498 if (SCM_LIKELY (scm_is_string (str)))
2499 RETURN (SCM_I_MAKINUM (scm_i_string_length (str)));
2500 else
2501 {
2502 SYNC_IP ();
2503 RETURN (scm_string_length (str));
2504 }
2505 }
2506
2507 /* string-ref dst:8 src:8 idx:8
2508 *
2509 * Fetch the character at position IDX in the string in SRC, and store
2510 * it in DST.
2511 */
af95414f 2512 VM_DEFINE_OP (67, string_ref, "string-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2513 {
2514 scm_t_signed_bits i = 0;
2515 ARGS2 (str, idx);
2516 if (SCM_LIKELY (scm_is_string (str)
2517 && SCM_I_INUMP (idx)
2518 && ((i = SCM_I_INUM (idx)) >= 0)
2519 && i < scm_i_string_length (str)))
2520 RETURN (SCM_MAKE_CHAR (scm_i_string_ref (str, i)));
2521 else
2522 {
2523 SYNC_IP ();
2524 RETURN (scm_string_ref (str, idx));
2525 }
2526 }
2527
2528 /* No string-set! instruction, as there is no good fast path there. */
2529
2530 /* string-to-number dst:12 src:12
2531 *
2532 * Parse a string in SRC to a number, and store in DST.
2533 */
af95414f 2534 VM_DEFINE_OP (68, string_to_number, "string->number", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2535 {
2536 scm_t_uint16 dst, src;
2537
2538 SCM_UNPACK_RTL_12_12 (op, dst, src);
2539 SYNC_IP ();
2540 LOCAL_SET (dst,
2541 scm_string_to_number (LOCAL_REF (src),
2542 SCM_UNDEFINED /* radix = 10 */));
2543 NEXT (1);
2544 }
2545
2546 /* string-to-symbol dst:12 src:12
2547 *
2548 * Parse a string in SRC to a symbol, and store in DST.
2549 */
af95414f 2550 VM_DEFINE_OP (69, string_to_symbol, "string->symbol", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2551 {
2552 scm_t_uint16 dst, src;
2553
2554 SCM_UNPACK_RTL_12_12 (op, dst, src);
2555 SYNC_IP ();
2556 LOCAL_SET (dst, scm_string_to_symbol (LOCAL_REF (src)));
2557 NEXT (1);
2558 }
2559
2560 /* symbol->keyword dst:12 src:12
2561 *
2562 * Make a keyword from the symbol in SRC, and store it in DST.
2563 */
af95414f 2564 VM_DEFINE_OP (70, symbol_to_keyword, "symbol->keyword", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2565 {
2566 scm_t_uint16 dst, src;
2567 SCM_UNPACK_RTL_12_12 (op, dst, src);
2568 SYNC_IP ();
2569 LOCAL_SET (dst, scm_symbol_to_keyword (LOCAL_REF (src)));
2570 NEXT (1);
2571 }
2572
2573 \f
2574
2575 /*
2576 * Pairs
2577 */
2578
2579 /* cons dst:8 car:8 cdr:8
2580 *
2581 * Cons CAR and CDR, and store the result in DST.
2582 */
af95414f 2583 VM_DEFINE_OP (71, cons, "cons", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2584 {
2585 ARGS2 (x, y);
2586 RETURN (scm_cons (x, y));
2587 }
2588
2589 /* car dst:12 src:12
2590 *
2591 * Place the car of SRC in DST.
2592 */
af95414f 2593 VM_DEFINE_OP (72, car, "car", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2594 {
2595 ARGS1 (x);
2596 VM_VALIDATE_PAIR (x, "car");
2597 RETURN (SCM_CAR (x));
2598 }
2599
2600 /* cdr dst:12 src:12
2601 *
2602 * Place the cdr of SRC in DST.
2603 */
af95414f 2604 VM_DEFINE_OP (73, cdr, "cdr", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2605 {
2606 ARGS1 (x);
2607 VM_VALIDATE_PAIR (x, "cdr");
2608 RETURN (SCM_CDR (x));
2609 }
2610
2611 /* set-car! pair:12 car:12
2612 *
2613 * Set the car of DST to SRC.
2614 */
af95414f 2615 VM_DEFINE_OP (74, set_car, "set-car!", OP1 (U8_U12_U12))
510ca126
AW
2616 {
2617 scm_t_uint16 a, b;
2618 SCM x, y;
2619 SCM_UNPACK_RTL_12_12 (op, a, b);
2620 x = LOCAL_REF (a);
2621 y = LOCAL_REF (b);
2622 VM_VALIDATE_PAIR (x, "set-car!");
2623 SCM_SETCAR (x, y);
2624 NEXT (1);
2625 }
2626
2627 /* set-cdr! pair:12 cdr:12
2628 *
2629 * Set the cdr of DST to SRC.
2630 */
af95414f 2631 VM_DEFINE_OP (75, set_cdr, "set-cdr!", OP1 (U8_U12_U12))
510ca126
AW
2632 {
2633 scm_t_uint16 a, b;
2634 SCM x, y;
2635 SCM_UNPACK_RTL_12_12 (op, a, b);
2636 x = LOCAL_REF (a);
2637 y = LOCAL_REF (b);
2638 VM_VALIDATE_PAIR (x, "set-car!");
2639 SCM_SETCDR (x, y);
2640 NEXT (1);
2641 }
2642
2643
2644 \f
2645
2646 /*
2647 * Numeric operations
2648 */
2649
2650 /* add dst:8 a:8 b:8
2651 *
2652 * Add A to B, and place the result in DST.
2653 */
af95414f 2654 VM_DEFINE_OP (76, add, "add", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2655 {
2656 BINARY_INTEGER_OP (+, scm_sum);
2657 }
2658
2659 /* add1 dst:12 src:12
2660 *
2661 * Add 1 to the value in SRC, and place the result in DST.
2662 */
af95414f 2663 VM_DEFINE_OP (77, add1, "add1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2664 {
2665 ARGS1 (x);
2666
d2295ba5
MW
2667 /* Check for overflow. We must avoid overflow in the signed
2668 addition below, even if X is not an inum. */
2669 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) <= INUM_MAX - INUM_STEP))
510ca126
AW
2670 {
2671 SCM result;
2672
d2295ba5
MW
2673 /* Add 1 to the integer without untagging. */
2674 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) + INUM_STEP);
510ca126
AW
2675
2676 if (SCM_LIKELY (SCM_I_INUMP (result)))
2677 RETURN (result);
2678 }
2679
2680 SYNC_IP ();
2681 RETURN (scm_sum (x, SCM_I_MAKINUM (1)));
2682 }
2683
2684 /* sub dst:8 a:8 b:8
2685 *
2686 * Subtract B from A, and place the result in DST.
2687 */
af95414f 2688 VM_DEFINE_OP (78, sub, "sub", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2689 {
2690 BINARY_INTEGER_OP (-, scm_difference);
2691 }
2692
2693 /* sub1 dst:12 src:12
2694 *
2695 * Subtract 1 from SRC, and place the result in DST.
2696 */
af95414f 2697 VM_DEFINE_OP (79, sub1, "sub1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2698 {
2699 ARGS1 (x);
2700
d2295ba5
MW
2701 /* Check for overflow. We must avoid overflow in the signed
2702 subtraction below, even if X is not an inum. */
2703 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) >= INUM_MIN + INUM_STEP))
510ca126
AW
2704 {
2705 SCM result;
2706
d2295ba5
MW
2707 /* Substract 1 from the integer without untagging. */
2708 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) - INUM_STEP);
510ca126
AW
2709
2710 if (SCM_LIKELY (SCM_I_INUMP (result)))
2711 RETURN (result);
2712 }
2713
2714 SYNC_IP ();
2715 RETURN (scm_difference (x, SCM_I_MAKINUM (1)));
2716 }
2717
2718 /* mul dst:8 a:8 b:8
2719 *
2720 * Multiply A and B, and place the result in DST.
2721 */
af95414f 2722 VM_DEFINE_OP (80, mul, "mul", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2723 {
2724 ARGS2 (x, y);
2725 SYNC_IP ();
2726 RETURN (scm_product (x, y));
2727 }
2728
2729 /* div dst:8 a:8 b:8
2730 *
2731 * Divide A by B, and place the result in DST.
2732 */
af95414f 2733 VM_DEFINE_OP (81, div, "div", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2734 {
2735 ARGS2 (x, y);
2736 SYNC_IP ();
2737 RETURN (scm_divide (x, y));
2738 }
2739
2740 /* quo dst:8 a:8 b:8
2741 *
2742 * Divide A by B, and place the quotient in DST.
2743 */
af95414f 2744 VM_DEFINE_OP (82, quo, "quo", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2745 {
2746 ARGS2 (x, y);
2747 SYNC_IP ();
2748 RETURN (scm_quotient (x, y));
2749 }
2750
2751 /* rem dst:8 a:8 b:8
2752 *
2753 * Divide A by B, and place the remainder in DST.
2754 */
af95414f 2755 VM_DEFINE_OP (83, rem, "rem", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2756 {
2757 ARGS2 (x, y);
2758 SYNC_IP ();
2759 RETURN (scm_remainder (x, y));
2760 }
2761
2762 /* mod dst:8 a:8 b:8
2763 *
2764 * Place the modulo of A by B in DST.
2765 */
af95414f 2766 VM_DEFINE_OP (84, mod, "mod", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2767 {
2768 ARGS2 (x, y);
2769 SYNC_IP ();
2770 RETURN (scm_modulo (x, y));
2771 }
2772
2773 /* ash dst:8 a:8 b:8
2774 *
2775 * Shift A arithmetically by B bits, and place the result in DST.
2776 */
af95414f 2777 VM_DEFINE_OP (85, ash, "ash", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2778 {
2779 ARGS2 (x, y);
2780 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2781 {
2782 if (SCM_I_INUM (y) < 0)
2783 /* Right shift, will be a fixnum. */
0bd65965
MW
2784 RETURN (SCM_I_MAKINUM
2785 (SCM_SRS (SCM_I_INUM (x),
2786 (-SCM_I_INUM (y) <= SCM_I_FIXNUM_BIT-1)
2787 ? -SCM_I_INUM (y) : SCM_I_FIXNUM_BIT-1)));
510ca126
AW
2788 else
2789 /* Left shift. See comments in scm_ash. */
2790 {
2791 scm_t_signed_bits nn, bits_to_shift;
2792
2793 nn = SCM_I_INUM (x);
2794 bits_to_shift = SCM_I_INUM (y);
2795
2796 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
2797 && ((scm_t_bits)
2798 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
2799 <= 1))
2800 RETURN (SCM_I_MAKINUM (nn << bits_to_shift));
2801 /* fall through */
2802 }
2803 /* fall through */
2804 }
2805 SYNC_IP ();
2806 RETURN (scm_ash (x, y));
2807 }
2808
2809 /* logand dst:8 a:8 b:8
2810 *
2811 * Place the bitwise AND of A and B into DST.
2812 */
af95414f 2813 VM_DEFINE_OP (86, logand, "logand", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2814 {
2815 ARGS2 (x, y);
2816 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2817 /* Compute bitwise AND without untagging */
2818 RETURN (SCM_PACK (SCM_UNPACK (x) & SCM_UNPACK (y)));
510ca126
AW
2819 SYNC_IP ();
2820 RETURN (scm_logand (x, y));
2821 }
2822
2823 /* logior dst:8 a:8 b:8
2824 *
2825 * Place the bitwise inclusive OR of A with B in DST.
2826 */
af95414f 2827 VM_DEFINE_OP (87, logior, "logior", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2828 {
2829 ARGS2 (x, y);
2830 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2831 /* Compute bitwise OR without untagging */
2832 RETURN (SCM_PACK (SCM_UNPACK (x) | SCM_UNPACK (y)));
510ca126
AW
2833 SYNC_IP ();
2834 RETURN (scm_logior (x, y));
2835 }
2836
2837 /* logxor dst:8 a:8 b:8
2838 *
2839 * Place the bitwise exclusive OR of A with B in DST.
2840 */
af95414f 2841 VM_DEFINE_OP (88, logxor, "logxor", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2842 {
2843 ARGS2 (x, y);
2844 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2845 RETURN (SCM_I_MAKINUM (SCM_I_INUM (x) ^ SCM_I_INUM (y)));
2846 SYNC_IP ();
2847 RETURN (scm_logxor (x, y));
2848 }
2849
607fe5a6
AW
2850 /* make-vector dst:8 length:8 init:8
2851 *
2852 * Make a vector and write it to DST. The vector will have space for
2853 * LENGTH slots. They will be filled with the value in slot INIT.
2854 */
2855 VM_DEFINE_OP (89, make_vector, "make-vector", OP1 (U8_U8_U8_U8) | OP_DST)
2856 {
2857 scm_t_uint8 dst, length, init;
2858
2859 SCM_UNPACK_RTL_8_8_8 (op, dst, length, init);
2860
2861 LOCAL_SET (dst, scm_make_vector (LOCAL_REF (length), LOCAL_REF (init)));
2862
2863 NEXT (1);
2864 }
2865
2866 /* constant-make-vector dst:8 length:8 init:8
2867 *
2868 * Make a short vector of known size and write it to DST. The vector
2869 * will have space for LENGTH slots, an immediate value. They will be
2870 * filled with the value in slot INIT.
2871 */
2872 VM_DEFINE_OP (90, constant_make_vector, "constant-make-vector", OP1 (U8_U8_U8_U8) | OP_DST)
2873 {
2874 scm_t_uint8 dst, init;
2875 scm_t_int32 length, n;
2876 SCM val, vector;
2877
2878 SCM_UNPACK_RTL_8_8_8 (op, dst, length, init);
2879
2880 val = LOCAL_REF (init);
2881 vector = scm_words (scm_tc7_vector | (length << 8), length + 1);
2882 for (n = 0; n < length; n++)
2883 SCM_SIMPLE_VECTOR_SET (vector, n, val);
2884 LOCAL_SET (dst, vector);
2885 NEXT (1);
2886 }
2887
510ca126
AW
2888 /* vector-length dst:12 src:12
2889 *
2890 * Store the length of the vector in SRC in DST.
2891 */
607fe5a6 2892 VM_DEFINE_OP (91, vector_length, "vector-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2893 {
2894 ARGS1 (vect);
2895 if (SCM_LIKELY (SCM_I_IS_VECTOR (vect)))
2896 RETURN (SCM_I_MAKINUM (SCM_I_VECTOR_LENGTH (vect)));
2897 else
2898 {
2899 SYNC_IP ();
2900 RETURN (scm_vector_length (vect));
2901 }
2902 }
2903
2904 /* vector-ref dst:8 src:8 idx:8
2905 *
2906 * Fetch the item at position IDX in the vector in SRC, and store it
2907 * in DST.
2908 */
607fe5a6 2909 VM_DEFINE_OP (92, vector_ref, "vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2910 {
2911 scm_t_signed_bits i = 0;
2912 ARGS2 (vect, idx);
2913 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2914 && SCM_I_INUMP (idx)
2915 && ((i = SCM_I_INUM (idx)) >= 0)
2916 && i < SCM_I_VECTOR_LENGTH (vect)))
2917 RETURN (SCM_I_VECTOR_ELTS (vect)[i]);
2918 else
2919 {
2920 SYNC_IP ();
2921 RETURN (scm_vector_ref (vect, idx));
2922 }
2923 }
2924
2925 /* constant-vector-ref dst:8 src:8 idx:8
2926 *
2927 * Fill DST with the item IDX elements into the vector at SRC. Useful
2928 * for building data types using vectors.
2929 */
607fe5a6 2930 VM_DEFINE_OP (93, constant_vector_ref, "constant-vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2931 {
2932 scm_t_uint8 dst, src, idx;
2933 SCM v;
2934
2935 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
2936 v = LOCAL_REF (src);
2937 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (v)
2938 && idx < SCM_I_VECTOR_LENGTH (v)))
2939 LOCAL_SET (dst, SCM_I_VECTOR_ELTS (LOCAL_REF (src))[idx]);
2940 else
2941 LOCAL_SET (dst, scm_c_vector_ref (v, idx));
2942 NEXT (1);
2943 }
2944
2945 /* vector-set! dst:8 idx:8 src:8
2946 *
2947 * Store SRC into the vector DST at index IDX.
2948 */
607fe5a6 2949 VM_DEFINE_OP (94, vector_set, "vector-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
2950 {
2951 scm_t_uint8 dst, idx_var, src;
2952 SCM vect, idx, val;
2953 scm_t_signed_bits i = 0;
2954
2955 SCM_UNPACK_RTL_8_8_8 (op, dst, idx_var, src);
2956 vect = LOCAL_REF (dst);
2957 idx = LOCAL_REF (idx_var);
2958 val = LOCAL_REF (src);
2959
2960 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2961 && SCM_I_INUMP (idx)
2962 && ((i = SCM_I_INUM (idx)) >= 0)
2963 && i < SCM_I_VECTOR_LENGTH (vect)))
2964 SCM_I_VECTOR_WELTS (vect)[i] = val;
2965 else
2966 {
2967 SYNC_IP ();
2968 scm_vector_set_x (vect, idx, val);
2969 }
2970 NEXT (1);
2971 }
2972
8ba3f20c
AW
2973 /* constant-vector-set! dst:8 idx:8 src:8
2974 *
2975 * Store SRC into the vector DST at index IDX. Here IDX is an
2976 * immediate value.
2977 */
607fe5a6 2978 VM_DEFINE_OP (95, constant_vector_set, "constant-vector-set!", OP1 (U8_U8_U8_U8))
8ba3f20c
AW
2979 {
2980 scm_t_uint8 dst, idx, src;
2981 SCM vect, val;
2982
2983 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
2984 vect = LOCAL_REF (dst);
2985 val = LOCAL_REF (src);
2986
2987 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2988 && idx < SCM_I_VECTOR_LENGTH (vect)))
2989 SCM_I_VECTOR_WELTS (vect)[idx] = val;
2990 else
2991 {
2992 SYNC_IP ();
2993 scm_vector_set_x (vect, scm_from_uint8 (idx), val);
2994 }
2995 NEXT (1);
2996 }
2997
510ca126
AW
2998
2999 \f
3000
3001 /*
3002 * Structs and GOOPS
3003 */
3004
3005 /* struct-vtable dst:12 src:12
3006 *
3007 * Store the vtable of SRC into DST.
3008 */
607fe5a6 3009 VM_DEFINE_OP (96, struct_vtable, "struct-vtable", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
3010 {
3011 ARGS1 (obj);
3012 VM_VALIDATE_STRUCT (obj, "struct_vtable");
3013 RETURN (SCM_STRUCT_VTABLE (obj));
3014 }
3015
14d10292 3016 /* allocate-struct dst:8 vtable:8 nfields:8
510ca126 3017 *
14d10292
AW
3018 * Allocate a new struct with VTABLE, and place it in DST. The struct
3019 * will be constructed with space for NFIELDS fields, which should
3020 * correspond to the field count of the VTABLE.
510ca126 3021 */
607fe5a6 3022 VM_DEFINE_OP (97, allocate_struct, "allocate-struct", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126 3023 {
14d10292
AW
3024 scm_t_uint8 dst, vtable, nfields;
3025 SCM ret;
510ca126 3026
14d10292 3027 SCM_UNPACK_RTL_8_8_8 (op, dst, vtable, nfields);
510ca126
AW
3028
3029 SYNC_IP ();
14d10292 3030 ret = scm_allocate_struct (LOCAL_REF (vtable), SCM_I_MAKINUM (nfields));
510ca126 3031 LOCAL_SET (dst, ret);
14d10292
AW
3032
3033 NEXT (1);
510ca126 3034 }
510ca126
AW
3035
3036 /* struct-ref dst:8 src:8 idx:8
3037 *
3038 * Fetch the item at slot IDX in the struct in SRC, and store it
3039 * in DST.
3040 */
607fe5a6 3041 VM_DEFINE_OP (98, struct_ref, "struct-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3042 {
3043 ARGS2 (obj, pos);
3044
3045 if (SCM_LIKELY (SCM_STRUCTP (obj)
3046 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3047 SCM_VTABLE_FLAG_SIMPLE)
3048 && SCM_I_INUMP (pos)))
3049 {
3050 SCM vtable;
3051 scm_t_bits index, len;
3052
3053 /* True, an inum is a signed value, but cast to unsigned it will
3054 certainly be more than the length, so we will fall through if
3055 index is negative. */
3056 index = SCM_I_INUM (pos);
3057 vtable = SCM_STRUCT_VTABLE (obj);
3058 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
3059
3060 if (SCM_LIKELY (index < len))
3061 {
3062 scm_t_bits *data = SCM_STRUCT_DATA (obj);
3063 RETURN (SCM_PACK (data[index]));
3064 }
3065 }
3066
3067 SYNC_IP ();
3068 RETURN (scm_struct_ref (obj, pos));
3069 }
3070
3071 /* struct-set! dst:8 idx:8 src:8
3072 *
3073 * Store SRC into the struct DST at slot IDX.
3074 */
607fe5a6 3075 VM_DEFINE_OP (99, struct_set, "struct-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3076 {
3077 scm_t_uint8 dst, idx, src;
3078 SCM obj, pos, val;
3079
3080 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3081 obj = LOCAL_REF (dst);
3082 pos = LOCAL_REF (idx);
3083 val = LOCAL_REF (src);
3084
3085 if (SCM_LIKELY (SCM_STRUCTP (obj)
3086 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3087 SCM_VTABLE_FLAG_SIMPLE)
3088 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3089 SCM_VTABLE_FLAG_SIMPLE_RW)
3090 && SCM_I_INUMP (pos)))
3091 {
3092 SCM vtable;
3093 scm_t_bits index, len;
3094
3095 /* See above regarding index being >= 0. */
3096 index = SCM_I_INUM (pos);
3097 vtable = SCM_STRUCT_VTABLE (obj);
3098 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
3099 if (SCM_LIKELY (index < len))
3100 {
3101 scm_t_bits *data = SCM_STRUCT_DATA (obj);
3102 data[index] = SCM_UNPACK (val);
3103 NEXT (1);
3104 }
3105 }
3106
3107 SYNC_IP ();
3108 scm_struct_set_x (obj, pos, val);
3109 NEXT (1);
3110 }
3111
3112 /* class-of dst:12 type:12
3113 *
3114 * Store the vtable of SRC into DST.
3115 */
607fe5a6 3116 VM_DEFINE_OP (100, class_of, "class-of", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
3117 {
3118 ARGS1 (obj);
3119 if (SCM_INSTANCEP (obj))
3120 RETURN (SCM_CLASS_OF (obj));
3121 SYNC_IP ();
3122 RETURN (scm_class_of (obj));
3123 }
3124
3125 /* slot-ref dst:8 src:8 idx:8
3126 *
3127 * Fetch the item at slot IDX in the struct in SRC, and store it in
3128 * DST. Unlike struct-ref, IDX is an 8-bit immediate value, not an
3129 * index into the stack.
3130 */
607fe5a6 3131 VM_DEFINE_OP (101, slot_ref, "slot-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3132 {
3133 scm_t_uint8 dst, src, idx;
3134 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
3135 LOCAL_SET (dst,
3136 SCM_PACK (SCM_STRUCT_DATA (LOCAL_REF (src))[idx]));
3137 NEXT (1);
3138 }
3139
3140 /* slot-set! dst:8 idx:8 src:8
3141 *
3142 * Store SRC into slot IDX of the struct in DST. Unlike struct-set!,
3143 * IDX is an 8-bit immediate value, not an index into the stack.
3144 */
607fe5a6 3145 VM_DEFINE_OP (102, slot_set, "slot-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3146 {
3147 scm_t_uint8 dst, idx, src;
3148 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3149 SCM_STRUCT_DATA (LOCAL_REF (dst))[idx] = SCM_UNPACK (LOCAL_REF (src));
3150 NEXT (1);
3151 }
3152
3153
3154 \f
3155
3156 /*
3157 * Arrays, packed uniform arrays, and bytevectors.
3158 */
3159
3160 /* load-typed-array dst:8 type:8 shape:8 offset:32 len:32
3161 *
3162 * Load the contiguous typed array located at OFFSET 32-bit words away
3163 * from the instruction pointer, and store into DST. LEN is a byte
3164 * length. OFFSET is signed.
3165 */
607fe5a6 3166 VM_DEFINE_OP (103, load_typed_array, "load-typed-array", OP3 (U8_U8_U8_U8, N32, U32) | OP_DST)
510ca126
AW
3167 {
3168 scm_t_uint8 dst, type, shape;
3169 scm_t_int32 offset;
3170 scm_t_uint32 len;
3171
3172 SCM_UNPACK_RTL_8_8_8 (op, dst, type, shape);
3173 offset = ip[1];
3174 len = ip[2];
3175 SYNC_IP ();
3176 LOCAL_SET (dst, scm_from_contiguous_typed_array (LOCAL_REF (type),
3177 LOCAL_REF (shape),
3178 ip + offset, len));
3179 NEXT (3);
3180 }
3181
3182 /* make-array dst:12 type:12 _:8 fill:12 bounds:12
3183 *
3184 * Make a new array with TYPE, FILL, and BOUNDS, storing it in DST.
3185 */
607fe5a6 3186 VM_DEFINE_OP (104, make_array, "make-array", OP2 (U8_U12_U12, X8_U12_U12) | OP_DST)
510ca126
AW
3187 {
3188 scm_t_uint16 dst, type, fill, bounds;
3189 SCM_UNPACK_RTL_12_12 (op, dst, type);
3190 SCM_UNPACK_RTL_12_12 (ip[1], fill, bounds);
3191 SYNC_IP ();
3192 LOCAL_SET (dst, scm_make_typed_array (LOCAL_REF (type), LOCAL_REF (fill),
3193 LOCAL_REF (bounds)));
3194 NEXT (2);
3195 }
3196
3197 /* bv-u8-ref dst:8 src:8 idx:8
3198 * bv-s8-ref dst:8 src:8 idx:8
3199 * bv-u16-ref dst:8 src:8 idx:8
3200 * bv-s16-ref dst:8 src:8 idx:8
3201 * bv-u32-ref dst:8 src:8 idx:8
3202 * bv-s32-ref dst:8 src:8 idx:8
3203 * bv-u64-ref dst:8 src:8 idx:8
3204 * bv-s64-ref dst:8 src:8 idx:8
3205 * bv-f32-ref dst:8 src:8 idx:8
3206 * bv-f64-ref dst:8 src:8 idx:8
3207 *
3208 * Fetch the item at byte offset IDX in the bytevector SRC, and store
3209 * it in DST. All accesses use native endianness.
3210 */
3211#define BV_FIXABLE_INT_REF(stem, fn_stem, type, size) \
3212 do { \
3213 scm_t_signed_bits i; \
3214 const scm_t_ ## type *int_ptr; \
3215 ARGS2 (bv, idx); \
3216 \
3217 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3218 i = SCM_I_INUM (idx); \
3219 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3220 \
3221 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3222 && (i >= 0) \
3223 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3224 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3225 RETURN (SCM_I_MAKINUM (*int_ptr)); \
3226 else \
3227 { \
3228 SYNC_IP (); \
3229 RETURN (scm_bytevector_ ## fn_stem ## _ref (bv, idx)); \
3230 } \
3231 } while (0)
3232
3233#define BV_INT_REF(stem, type, size) \
3234 do { \
3235 scm_t_signed_bits i; \
3236 const scm_t_ ## type *int_ptr; \
3237 ARGS2 (bv, idx); \
3238 \
3239 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3240 i = SCM_I_INUM (idx); \
3241 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3242 \
3243 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3244 && (i >= 0) \
3245 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3246 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3247 { \
3248 scm_t_ ## type x = *int_ptr; \
3249 if (SCM_FIXABLE (x)) \
3250 RETURN (SCM_I_MAKINUM (x)); \
3251 else \
3252 { \
3253 SYNC_IP (); \
3254 RETURN (scm_from_ ## type (x)); \
3255 } \
3256 } \
3257 else \
3258 { \
3259 SYNC_IP (); \
3260 RETURN (scm_bytevector_ ## stem ## _native_ref (bv, idx)); \
3261 } \
3262 } while (0)
3263
3264#define BV_FLOAT_REF(stem, fn_stem, type, size) \
3265 do { \
3266 scm_t_signed_bits i; \
3267 const type *float_ptr; \
3268 ARGS2 (bv, idx); \
3269 \
3270 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3271 i = SCM_I_INUM (idx); \
3272 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3273 \
3274 SYNC_IP (); \
3275 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3276 && (i >= 0) \
3277 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3278 && (ALIGNED_P (float_ptr, type)))) \
3279 RETURN (scm_from_double (*float_ptr)); \
3280 else \
3281 RETURN (scm_bytevector_ ## fn_stem ## _native_ref (bv, idx)); \
3282 } while (0)
3283
607fe5a6 3284 VM_DEFINE_OP (105, bv_u8_ref, "bv-u8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3285 BV_FIXABLE_INT_REF (u8, u8, uint8, 1);
3286
607fe5a6 3287 VM_DEFINE_OP (106, bv_s8_ref, "bv-s8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3288 BV_FIXABLE_INT_REF (s8, s8, int8, 1);
3289
607fe5a6 3290 VM_DEFINE_OP (107, bv_u16_ref, "bv-u16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3291 BV_FIXABLE_INT_REF (u16, u16_native, uint16, 2);
3292
607fe5a6 3293 VM_DEFINE_OP (108, bv_s16_ref, "bv-s16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3294 BV_FIXABLE_INT_REF (s16, s16_native, int16, 2);
3295
607fe5a6 3296 VM_DEFINE_OP (109, bv_u32_ref, "bv-u32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3297#if SIZEOF_VOID_P > 4
3298 BV_FIXABLE_INT_REF (u32, u32_native, uint32, 4);
3299#else
3300 BV_INT_REF (u32, uint32, 4);
3301#endif
3302
607fe5a6 3303 VM_DEFINE_OP (110, bv_s32_ref, "bv-s32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3304#if SIZEOF_VOID_P > 4
3305 BV_FIXABLE_INT_REF (s32, s32_native, int32, 4);
3306#else
3307 BV_INT_REF (s32, int32, 4);
3308#endif
3309
607fe5a6 3310 VM_DEFINE_OP (111, bv_u64_ref, "bv-u64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3311 BV_INT_REF (u64, uint64, 8);
3312
607fe5a6 3313 VM_DEFINE_OP (112, bv_s64_ref, "bv-s64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3314 BV_INT_REF (s64, int64, 8);
3315
607fe5a6 3316 VM_DEFINE_OP (113, bv_f32_ref, "bv-f32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3317 BV_FLOAT_REF (f32, ieee_single, float, 4);
3318
607fe5a6 3319 VM_DEFINE_OP (114, bv_f64_ref, "bv-f64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3320 BV_FLOAT_REF (f64, ieee_double, double, 8);
3321
3322 /* bv-u8-set! dst:8 idx:8 src:8
3323 * bv-s8-set! dst:8 idx:8 src:8
3324 * bv-u16-set! dst:8 idx:8 src:8
3325 * bv-s16-set! dst:8 idx:8 src:8
3326 * bv-u32-set! dst:8 idx:8 src:8
3327 * bv-s32-set! dst:8 idx:8 src:8
3328 * bv-u64-set! dst:8 idx:8 src:8
3329 * bv-s64-set! dst:8 idx:8 src:8
3330 * bv-f32-set! dst:8 idx:8 src:8
3331 * bv-f64-set! dst:8 idx:8 src:8
3332 *
3333 * Store SRC into the bytevector DST at byte offset IDX. Multibyte
3334 * values are written using native endianness.
3335 */
3336#define BV_FIXABLE_INT_SET(stem, fn_stem, type, min, max, size) \
3337 do { \
3338 scm_t_uint8 dst, idx, src; \
3339 scm_t_signed_bits i, j = 0; \
3340 SCM bv, scm_idx, val; \
3341 scm_t_ ## type *int_ptr; \
3342 \
3343 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3344 bv = LOCAL_REF (dst); \
3345 scm_idx = LOCAL_REF (idx); \
3346 val = LOCAL_REF (src); \
3347 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3348 i = SCM_I_INUM (scm_idx); \
3349 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3350 \
3351 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3352 && (i >= 0) \
3353 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3354 && (ALIGNED_P (int_ptr, scm_t_ ## type)) \
3355 && (SCM_I_INUMP (val)) \
3356 && ((j = SCM_I_INUM (val)) >= min) \
3357 && (j <= max))) \
3358 *int_ptr = (scm_t_ ## type) j; \
3359 else \
3360 { \
3361 SYNC_IP (); \
3362 scm_bytevector_ ## fn_stem ## _set_x (bv, scm_idx, val); \
3363 } \
3364 NEXT (1); \
3365 } while (0)
3366
3367#define BV_INT_SET(stem, type, size) \
3368 do { \
3369 scm_t_uint8 dst, idx, src; \
3370 scm_t_signed_bits i; \
3371 SCM bv, scm_idx, val; \
3372 scm_t_ ## type *int_ptr; \
3373 \
3374 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3375 bv = LOCAL_REF (dst); \
3376 scm_idx = LOCAL_REF (idx); \
3377 val = LOCAL_REF (src); \
3378 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3379 i = SCM_I_INUM (scm_idx); \
3380 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3381 \
3382 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3383 && (i >= 0) \
3384 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3385 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3386 *int_ptr = scm_to_ ## type (val); \
3387 else \
3388 { \
3389 SYNC_IP (); \
3390 scm_bytevector_ ## stem ## _native_set_x (bv, scm_idx, val); \
3391 } \
3392 NEXT (1); \
3393 } while (0)
3394
3395#define BV_FLOAT_SET(stem, fn_stem, type, size) \
3396 do { \
3397 scm_t_uint8 dst, idx, src; \
3398 scm_t_signed_bits i; \
3399 SCM bv, scm_idx, val; \
3400 type *float_ptr; \
3401 \
3402 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3403 bv = LOCAL_REF (dst); \
3404 scm_idx = LOCAL_REF (idx); \
3405 val = LOCAL_REF (src); \
3406 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3407 i = SCM_I_INUM (scm_idx); \
3408 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3409 \
3410 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3411 && (i >= 0) \
3412 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3413 && (ALIGNED_P (float_ptr, type)))) \
3414 *float_ptr = scm_to_double (val); \
3415 else \
3416 { \
3417 SYNC_IP (); \
3418 scm_bytevector_ ## fn_stem ## _native_set_x (bv, scm_idx, val); \
3419 } \
3420 NEXT (1); \
3421 } while (0)
3422
607fe5a6 3423 VM_DEFINE_OP (115, bv_u8_set, "bv-u8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3424 BV_FIXABLE_INT_SET (u8, u8, uint8, 0, SCM_T_UINT8_MAX, 1);
3425
607fe5a6 3426 VM_DEFINE_OP (116, bv_s8_set, "bv-s8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3427 BV_FIXABLE_INT_SET (s8, s8, int8, SCM_T_INT8_MIN, SCM_T_INT8_MAX, 1);
3428
607fe5a6 3429 VM_DEFINE_OP (117, bv_u16_set, "bv-u16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3430 BV_FIXABLE_INT_SET (u16, u16_native, uint16, 0, SCM_T_UINT16_MAX, 2);
3431
607fe5a6 3432 VM_DEFINE_OP (118, bv_s16_set, "bv-s16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3433 BV_FIXABLE_INT_SET (s16, s16_native, int16, SCM_T_INT16_MIN, SCM_T_INT16_MAX, 2);
3434
607fe5a6 3435 VM_DEFINE_OP (119, bv_u32_set, "bv-u32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3436#if SIZEOF_VOID_P > 4
3437 BV_FIXABLE_INT_SET (u32, u32_native, uint32, 0, SCM_T_UINT32_MAX, 4);
3438#else
3439 BV_INT_SET (u32, uint32, 4);
3440#endif
3441
607fe5a6 3442 VM_DEFINE_OP (120, bv_s32_set, "bv-s32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3443#if SIZEOF_VOID_P > 4
3444 BV_FIXABLE_INT_SET (s32, s32_native, int32, SCM_T_INT32_MIN, SCM_T_INT32_MAX, 4);
3445#else
3446 BV_INT_SET (s32, int32, 4);
3447#endif
3448
607fe5a6 3449 VM_DEFINE_OP (121, bv_u64_set, "bv-u64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3450 BV_INT_SET (u64, uint64, 8);
3451
607fe5a6 3452 VM_DEFINE_OP (122, bv_s64_set, "bv-s64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3453 BV_INT_SET (s64, int64, 8);
3454
607fe5a6 3455 VM_DEFINE_OP (123, bv_f32_set, "bv-f32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3456 BV_FLOAT_SET (f32, ieee_single, float, 4);
3457
607fe5a6 3458 VM_DEFINE_OP (124, bv_f64_set, "bv-f64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3459 BV_FLOAT_SET (f64, ieee_double, double, 8);
3460
3461 END_DISPATCH_SWITCH;
3462
3463 vm_error_bad_instruction:
3464 vm_error_bad_instruction (op);
3465
3466 abort (); /* never reached */
3467}
3468
3469
3470#undef ABORT_CONTINUATION_HOOK
3471#undef ALIGNED_P
3472#undef APPLY_HOOK
3473#undef ARGS1
3474#undef ARGS2
3475#undef BEGIN_DISPATCH_SWITCH
3476#undef BINARY_INTEGER_OP
3477#undef BR_ARITHMETIC
3478#undef BR_BINARY
3479#undef BR_NARGS
3480#undef BR_UNARY
3481#undef BV_FIXABLE_INT_REF
3482#undef BV_FIXABLE_INT_SET
3483#undef BV_FLOAT_REF
3484#undef BV_FLOAT_SET
3485#undef BV_INT_REF
3486#undef BV_INT_SET
3487#undef CACHE_REGISTER
3488#undef CHECK_OVERFLOW
3489#undef END_DISPATCH_SWITCH
3490#undef FREE_VARIABLE_REF
3491#undef INIT
3492#undef INUM_MAX
3493#undef INUM_MIN
3494#undef LOCAL_REF
3495#undef LOCAL_SET
3496#undef NEXT
3497#undef NEXT_HOOK
3498#undef NEXT_JUMP
3499#undef POP_CONTINUATION_HOOK
3500#undef PUSH_CONTINUATION_HOOK
3501#undef RESTORE_CONTINUATION_HOOK
3502#undef RETURN
3503#undef RETURN_ONE_VALUE
3504#undef RETURN_VALUE_LIST
3505#undef RUN_HOOK
3506#undef RUN_HOOK0
3507#undef SYNC_ALL
3508#undef SYNC_BEFORE_GC
3509#undef SYNC_IP
3510#undef SYNC_REGISTER
3511#undef VARIABLE_BOUNDP
3512#undef VARIABLE_REF
3513#undef VARIABLE_SET
3514#undef VM_CHECK_FREE_VARIABLE
3515#undef VM_CHECK_OBJECT
3516#undef VM_CHECK_UNDERFLOW
3517#undef VM_DEFINE_OP
3518#undef VM_INSTRUCTION_TO_LABEL
3519#undef VM_USE_HOOKS
3520#undef VM_VALIDATE_BYTEVECTOR
3521#undef VM_VALIDATE_PAIR
3522#undef VM_VALIDATE_STRUCT
3523
3524/*
3525(defun renumber-ops ()
3526 "start from top of buffer and renumber 'VM_DEFINE_FOO (\n' sequences"
3527 (interactive "")
3528 (save-excursion
3529 (let ((counter -1)) (goto-char (point-min))
3530 (while (re-search-forward "^ *VM_DEFINE_[^ ]+ (\\([^,]+\\)," (point-max) t)
3531 (replace-match
3532 (number-to-string (setq counter (1+ counter)))
3533 t t nil 1)))))
3534(renumber-ops)
3535*/
17e90c5e
KN
3536/*
3537 Local Variables:
3538 c-file-style: "gnu"
3539 End:
3540*/