Add a `guile-2' SRFI-0 feature.
[bpt/guile.git] / doc / ref / srfi-modules.texi
CommitLineData
2da09c3f
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
620c8965 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009
2da09c3f
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
a0e07ba4
NJ
7@page
8@node SRFI Support
3229f68b 9@section SRFI Support Modules
8742c48b 10@cindex SRFI
a0e07ba4
NJ
11
12SRFI is an acronym for Scheme Request For Implementation. The SRFI
13documents define a lot of syntactic and procedure extensions to standard
14Scheme as defined in R5RS.
15
16Guile has support for a number of SRFIs. This chapter gives an overview
17over the available SRFIs and some usage hints. For complete
18documentation, design rationales and further examples, we advise you to
19get the relevant SRFI documents from the SRFI home page
20@url{http://srfi.schemers.org}.
21
22@menu
23* About SRFI Usage:: What to know about Guile's SRFI support.
24* SRFI-0:: cond-expand
25* SRFI-1:: List library.
26* SRFI-2:: and-let*.
27* SRFI-4:: Homogeneous numeric vector datatypes.
28* SRFI-6:: Basic String Ports.
29* SRFI-8:: receive.
30* SRFI-9:: define-record-type.
31* SRFI-10:: Hash-Comma Reader Extension.
c010924a 32* SRFI-11:: let-values and let*-values.
a0e07ba4
NJ
33* SRFI-13:: String library.
34* SRFI-14:: Character-set library.
35* SRFI-16:: case-lambda
36* SRFI-17:: Generalized set!
e68f492a 37* SRFI-18:: Multithreading support
bfc9c8e0 38* SRFI-19:: Time/Date library.
1de8c1ae 39* SRFI-26:: Specializing parameters
620c8965 40* SRFI-30:: Nested multi-line block comments
8638c417 41* SRFI-31:: A special form `rec' for recursive evaluation
f50ca8da
LC
42* SRFI-34:: Exception handling.
43* SRFI-35:: Conditions.
d4c38221 44* SRFI-37:: args-fold program argument processor
eeadfda1 45* SRFI-39:: Parameter objects
4ea9becb 46* SRFI-55:: Requiring Features.
8503beb8 47* SRFI-60:: Integers as bits.
43ed3b69 48* SRFI-61:: A more general `cond' clause
1317062f 49* SRFI-69:: Basic hash tables.
189681f5 50* SRFI-88:: Keyword objects.
922d417b 51* SRFI-98:: Accessing environment variables.
a0e07ba4
NJ
52@end menu
53
54
55@node About SRFI Usage
3229f68b 56@subsection About SRFI Usage
a0e07ba4
NJ
57
58@c FIXME::martin: Review me!
59
60SRFI support in Guile is currently implemented partly in the core
61library, and partly as add-on modules. That means that some SRFIs are
62automatically available when the interpreter is started, whereas the
63other SRFIs require you to use the appropriate support module
12991fed 64explicitly.
a0e07ba4
NJ
65
66There are several reasons for this inconsistency. First, the feature
67checking syntactic form @code{cond-expand} (@pxref{SRFI-0}) must be
68available immediately, because it must be there when the user wants to
69check for the Scheme implementation, that is, before she can know that
70it is safe to use @code{use-modules} to load SRFI support modules. The
71second reason is that some features defined in SRFIs had been
72implemented in Guile before the developers started to add SRFI
73implementations as modules (for example SRFI-6 (@pxref{SRFI-6})). In
74the future, it is possible that SRFIs in the core library might be
75factored out into separate modules, requiring explicit module loading
76when they are needed. So you should be prepared to have to use
77@code{use-modules} someday in the future to access SRFI-6 bindings. If
78you want, you can do that already. We have included the module
79@code{(srfi srfi-6)} in the distribution, which currently does nothing,
80but ensures that you can write future-safe code.
81
82Generally, support for a specific SRFI is made available by using
83modules named @code{(srfi srfi-@var{number})}, where @var{number} is the
84number of the SRFI needed. Another possibility is to use the command
85line option @code{--use-srfi}, which will load the necessary modules
86automatically (@pxref{Invoking Guile}).
87
88
89@node SRFI-0
3229f68b 90@subsection SRFI-0 - cond-expand
8742c48b 91@cindex SRFI-0
a0e07ba4 92
5eef0f61
KR
93This SRFI lets a portable Scheme program test for the presence of
94certain features, and adapt itself by using different blocks of code,
95or fail if the necessary features are not available. There's no
96module to load, this is in the Guile core.
a0e07ba4 97
5eef0f61
KR
98A program designed only for Guile will generally not need this
99mechanism, such a program can of course directly use the various
100documented parts of Guile.
a0e07ba4 101
5eef0f61
KR
102@deffn syntax cond-expand (feature body@dots{}) @dots{}
103Expand to the @var{body} of the first clause whose @var{feature}
104specification is satisfied. It is an error if no @var{feature} is
a0e07ba4
NJ
105satisfied.
106
5eef0f61
KR
107Features are symbols such as @code{srfi-1}, and a feature
108specification can use @code{and}, @code{or} and @code{not} forms to
109test combinations. The last clause can be an @code{else}, to be used
110if no other passes.
a0e07ba4 111
5eef0f61
KR
112For example, define a private version of @code{alist-cons} if SRFI-1
113is not available.
a0e07ba4 114
5eef0f61
KR
115@example
116(cond-expand (srfi-1
117 )
118 (else
119 (define (alist-cons key val alist)
120 (cons (cons key val) alist))))
121@end example
a0e07ba4 122
5eef0f61
KR
123Or demand a certain set of SRFIs (list operations, string ports,
124@code{receive} and string operations), failing if they're not
125available.
a0e07ba4 126
5eef0f61
KR
127@example
128(cond-expand ((and srfi-1 srfi-6 srfi-8 srfi-13)
129 ))
130@end example
131@end deffn
a0e07ba4 132
f38d22c5
KR
133@noindent
134The Guile core has the following features,
135
136@example
137guile
60c8ad9e 138guile-2 ;; starting from Guile 2.x
f38d22c5
KR
139r5rs
140srfi-0
141srfi-4
142srfi-6
143srfi-13
144srfi-14
145@end example
146
147Other SRFI feature symbols are defined once their code has been loaded
148with @code{use-modules}, since only then are their bindings available.
a0e07ba4 149
5eef0f61
KR
150The @samp{--use-srfi} command line option (@pxref{Invoking Guile}) is
151a good way to load SRFIs to satisfy @code{cond-expand} when running a
152portable program.
a0e07ba4 153
5eef0f61
KR
154Testing the @code{guile} feature allows a program to adapt itself to
155the Guile module system, but still run on other Scheme systems. For
156example the following demands SRFI-8 (@code{receive}), but also knows
157how to load it with the Guile mechanism.
a0e07ba4
NJ
158
159@example
5eef0f61
KR
160(cond-expand (srfi-8
161 )
162 (guile
163 (use-modules (srfi srfi-8))))
a0e07ba4
NJ
164@end example
165
60c8ad9e
LC
166@cindex @code{guile-2} SRFI-0 feature
167@cindex portability between 2.0 and older versions
168Likewise, testing the @code{guile-2} feature allows code to be portable
169between Guile 2.0 and previous versions of Guile. For instance, it
170makes it possible to write code that accounts for Guile 2.0's compiler,
171yet be correctly interpreted on 1.8 and earlier versions:
172
173@example
174(cond-expand (guile-2 (eval-when (compile)
175 ;; This must be evaluated at compile time.
176 (fluid-set! current-reader my-reader)))
177 (guile
178 ;; Earlier versions of Guile do not have a
179 ;; separate compilation phase.
180 (fluid-set! current-reader my-reader)))
181@end example
182
5eef0f61
KR
183It should be noted that @code{cond-expand} is separate from the
184@code{*features*} mechanism (@pxref{Feature Tracking}), feature
185symbols in one are unrelated to those in the other.
a0e07ba4
NJ
186
187
188@node SRFI-1
3229f68b 189@subsection SRFI-1 - List library
8742c48b 190@cindex SRFI-1
7c2e18cd 191@cindex list
a0e07ba4
NJ
192
193@c FIXME::martin: Review me!
194
195The list library defined in SRFI-1 contains a lot of useful list
196processing procedures for construction, examining, destructuring and
197manipulating lists and pairs.
198
199Since SRFI-1 also defines some procedures which are already contained
200in R5RS and thus are supported by the Guile core library, some list
201and pair procedures which appear in the SRFI-1 document may not appear
202in this section. So when looking for a particular list/pair
203processing procedure, you should also have a look at the sections
204@ref{Lists} and @ref{Pairs}.
205
206@menu
207* SRFI-1 Constructors:: Constructing new lists.
208* SRFI-1 Predicates:: Testing list for specific properties.
209* SRFI-1 Selectors:: Selecting elements from lists.
210* SRFI-1 Length Append etc:: Length calculation and list appending.
211* SRFI-1 Fold and Map:: Higher-order list processing.
212* SRFI-1 Filtering and Partitioning:: Filter lists based on predicates.
85a9b4ed 213* SRFI-1 Searching:: Search for elements.
a0e07ba4
NJ
214* SRFI-1 Deleting:: Delete elements from lists.
215* SRFI-1 Association Lists:: Handle association lists.
216* SRFI-1 Set Operations:: Use lists for representing sets.
217@end menu
218
219@node SRFI-1 Constructors
3229f68b 220@subsubsection Constructors
7c2e18cd 221@cindex list constructor
a0e07ba4
NJ
222
223@c FIXME::martin: Review me!
224
225New lists can be constructed by calling one of the following
226procedures.
227
8f85c0c6 228@deffn {Scheme Procedure} xcons d a
a0e07ba4
NJ
229Like @code{cons}, but with interchanged arguments. Useful mostly when
230passed to higher-order procedures.
231@end deffn
232
8f85c0c6 233@deffn {Scheme Procedure} list-tabulate n init-proc
a0e07ba4
NJ
234Return an @var{n}-element list, where each list element is produced by
235applying the procedure @var{init-proc} to the corresponding list
236index. The order in which @var{init-proc} is applied to the indices
237is not specified.
238@end deffn
239
57066448
KR
240@deffn {Scheme Procedure} list-copy lst
241Return a new list containing the elements of the list @var{lst}.
242
243This function differs from the core @code{list-copy} (@pxref{List
244Constructors}) in accepting improper lists too. And if @var{lst} is
245not a pair at all then it's treated as the final tail of an improper
246list and simply returned.
247@end deffn
248
8f85c0c6 249@deffn {Scheme Procedure} circular-list elt1 elt2 @dots{}
a0e07ba4
NJ
250Return a circular list containing the given arguments @var{elt1}
251@var{elt2} @dots{}.
252@end deffn
253
8f85c0c6 254@deffn {Scheme Procedure} iota count [start step]
256853db
KR
255Return a list containing @var{count} numbers, starting from
256@var{start} and adding @var{step} each time. The default @var{start}
257is 0, the default @var{step} is 1. For example,
a0e07ba4 258
256853db
KR
259@example
260(iota 6) @result{} (0 1 2 3 4 5)
261(iota 4 2.5 -2) @result{} (2.5 0.5 -1.5 -3.5)
262@end example
a0e07ba4 263
256853db
KR
264This function takes its name from the corresponding primitive in the
265APL language.
a0e07ba4
NJ
266@end deffn
267
268
269@node SRFI-1 Predicates
3229f68b 270@subsubsection Predicates
7c2e18cd 271@cindex list predicate
a0e07ba4
NJ
272
273@c FIXME::martin: Review me!
274
275The procedures in this section test specific properties of lists.
276
8f85c0c6 277@deffn {Scheme Procedure} proper-list? obj
f18f87aa
KR
278Return @code{#t} if @var{obj} is a proper list, or @code{#f}
279otherwise. This is the same as the core @code{list?} (@pxref{List
280Predicates}).
281
282A proper list is a list which ends with the empty list @code{()} in
283the usual way. The empty list @code{()} itself is a proper list too.
284
285@example
286(proper-list? '(1 2 3)) @result{} #t
287(proper-list? '()) @result{} #t
288@end example
a0e07ba4
NJ
289@end deffn
290
8f85c0c6 291@deffn {Scheme Procedure} circular-list? obj
f18f87aa
KR
292Return @code{#t} if @var{obj} is a circular list, or @code{#f}
293otherwise.
294
295A circular list is a list where at some point the @code{cdr} refers
296back to a previous pair in the list (either the start or some later
297point), so that following the @code{cdr}s takes you around in a
298circle, with no end.
299
300@example
301(define x (list 1 2 3 4))
302(set-cdr! (last-pair x) (cddr x))
303x @result{} (1 2 3 4 3 4 3 4 ...)
304(circular-list? x) @result{} #t
305@end example
a0e07ba4
NJ
306@end deffn
307
8f85c0c6 308@deffn {Scheme Procedure} dotted-list? obj
f18f87aa
KR
309Return @code{#t} if @var{obj} is a dotted list, or @code{#f}
310otherwise.
311
312A dotted list is a list where the @code{cdr} of the last pair is not
313the empty list @code{()}. Any non-pair @var{obj} is also considered a
314dotted list, with length zero.
315
316@example
317(dotted-list? '(1 2 . 3)) @result{} #t
318(dotted-list? 99) @result{} #t
319@end example
a0e07ba4
NJ
320@end deffn
321
f18f87aa
KR
322It will be noted that any Scheme object passes exactly one of the
323above three tests @code{proper-list?}, @code{circular-list?} and
324@code{dotted-list?}. Non-lists are @code{dotted-list?}, finite lists
325are either @code{proper-list?} or @code{dotted-list?}, and infinite
326lists are @code{circular-list?}.
327
328@sp 1
8f85c0c6 329@deffn {Scheme Procedure} null-list? lst
a0e07ba4
NJ
330Return @code{#t} if @var{lst} is the empty list @code{()}, @code{#f}
331otherwise. If something else than a proper or circular list is passed
85a9b4ed 332as @var{lst}, an error is signalled. This procedure is recommended
a0e07ba4
NJ
333for checking for the end of a list in contexts where dotted lists are
334not allowed.
335@end deffn
336
8f85c0c6 337@deffn {Scheme Procedure} not-pair? obj
a0e07ba4
NJ
338Return @code{#t} is @var{obj} is not a pair, @code{#f} otherwise.
339This is shorthand notation @code{(not (pair? @var{obj}))} and is
340supposed to be used for end-of-list checking in contexts where dotted
341lists are allowed.
342@end deffn
343
8f85c0c6 344@deffn {Scheme Procedure} list= elt= list1 @dots{}
a0e07ba4
NJ
345Return @code{#t} if all argument lists are equal, @code{#f} otherwise.
346List equality is determined by testing whether all lists have the same
347length and the corresponding elements are equal in the sense of the
348equality predicate @var{elt=}. If no or only one list is given,
349@code{#t} is returned.
350@end deffn
351
352
353@node SRFI-1 Selectors
3229f68b 354@subsubsection Selectors
7c2e18cd 355@cindex list selector
a0e07ba4
NJ
356
357@c FIXME::martin: Review me!
358
8f85c0c6
NJ
359@deffn {Scheme Procedure} first pair
360@deffnx {Scheme Procedure} second pair
361@deffnx {Scheme Procedure} third pair
362@deffnx {Scheme Procedure} fourth pair
363@deffnx {Scheme Procedure} fifth pair
364@deffnx {Scheme Procedure} sixth pair
365@deffnx {Scheme Procedure} seventh pair
366@deffnx {Scheme Procedure} eighth pair
367@deffnx {Scheme Procedure} ninth pair
368@deffnx {Scheme Procedure} tenth pair
a0e07ba4
NJ
369These are synonyms for @code{car}, @code{cadr}, @code{caddr}, @dots{}.
370@end deffn
371
8f85c0c6 372@deffn {Scheme Procedure} car+cdr pair
a0e07ba4
NJ
373Return two values, the @sc{car} and the @sc{cdr} of @var{pair}.
374@end deffn
375
8f85c0c6
NJ
376@deffn {Scheme Procedure} take lst i
377@deffnx {Scheme Procedure} take! lst i
a0e07ba4
NJ
378Return a list containing the first @var{i} elements of @var{lst}.
379
380@code{take!} may modify the structure of the argument list @var{lst}
381in order to produce the result.
382@end deffn
383
8f85c0c6 384@deffn {Scheme Procedure} drop lst i
a0e07ba4
NJ
385Return a list containing all but the first @var{i} elements of
386@var{lst}.
387@end deffn
388
8f85c0c6 389@deffn {Scheme Procedure} take-right lst i
a0e07ba4 390Return the a list containing the @var{i} last elements of @var{lst}.
64bf8517 391The return shares a common tail with @var{lst}.
a0e07ba4
NJ
392@end deffn
393
8f85c0c6
NJ
394@deffn {Scheme Procedure} drop-right lst i
395@deffnx {Scheme Procedure} drop-right! lst i
a0e07ba4
NJ
396Return the a list containing all but the @var{i} last elements of
397@var{lst}.
398
64bf8517
KR
399@code{drop-right} always returns a new list, even when @var{i} is
400zero. @code{drop-right!} may modify the structure of the argument
401list @var{lst} in order to produce the result.
a0e07ba4
NJ
402@end deffn
403
8f85c0c6
NJ
404@deffn {Scheme Procedure} split-at lst i
405@deffnx {Scheme Procedure} split-at! lst i
a0e07ba4
NJ
406Return two values, a list containing the first @var{i} elements of the
407list @var{lst} and a list containing the remaining elements.
408
409@code{split-at!} may modify the structure of the argument list
410@var{lst} in order to produce the result.
411@end deffn
412
8f85c0c6 413@deffn {Scheme Procedure} last lst
a0e07ba4
NJ
414Return the last element of the non-empty, finite list @var{lst}.
415@end deffn
416
417
418@node SRFI-1 Length Append etc
3229f68b 419@subsubsection Length, Append, Concatenate, etc.
a0e07ba4
NJ
420
421@c FIXME::martin: Review me!
422
8f85c0c6 423@deffn {Scheme Procedure} length+ lst
a0e07ba4
NJ
424Return the length of the argument list @var{lst}. When @var{lst} is a
425circular list, @code{#f} is returned.
426@end deffn
427
8f85c0c6
NJ
428@deffn {Scheme Procedure} concatenate list-of-lists
429@deffnx {Scheme Procedure} concatenate! list-of-lists
a0e07ba4
NJ
430Construct a list by appending all lists in @var{list-of-lists}.
431
432@code{concatenate!} may modify the structure of the given lists in
433order to produce the result.
a3e856f2
KR
434
435@code{concatenate} is the same as @code{(apply append
436@var{list-of-lists})}. It exists because some Scheme implementations
437have a limit on the number of arguments a function takes, which the
438@code{apply} might exceed. In Guile there is no such limit.
a0e07ba4
NJ
439@end deffn
440
8f85c0c6
NJ
441@deffn {Scheme Procedure} append-reverse rev-head tail
442@deffnx {Scheme Procedure} append-reverse! rev-head tail
23f2b9a3
KR
443Reverse @var{rev-head}, append @var{tail} to it, and return the
444result. This is equivalent to @code{(append (reverse @var{rev-head})
445@var{tail})}, but its implementation is more efficient.
446
447@example
448(append-reverse '(1 2 3) '(4 5 6)) @result{} (3 2 1 4 5 6)
449@end example
a0e07ba4
NJ
450
451@code{append-reverse!} may modify @var{rev-head} in order to produce
452the result.
453@end deffn
454
8f85c0c6 455@deffn {Scheme Procedure} zip lst1 lst2 @dots{}
a0e07ba4
NJ
456Return a list as long as the shortest of the argument lists, where
457each element is a list. The first list contains the first elements of
458the argument lists, the second list contains the second elements, and
459so on.
460@end deffn
461
8f85c0c6
NJ
462@deffn {Scheme Procedure} unzip1 lst
463@deffnx {Scheme Procedure} unzip2 lst
464@deffnx {Scheme Procedure} unzip3 lst
465@deffnx {Scheme Procedure} unzip4 lst
466@deffnx {Scheme Procedure} unzip5 lst
a0e07ba4
NJ
467@code{unzip1} takes a list of lists, and returns a list containing the
468first elements of each list, @code{unzip2} returns two lists, the
469first containing the first elements of each lists and the second
470containing the second elements of each lists, and so on.
471@end deffn
472
e508c863
KR
473@deffn {Scheme Procedure} count pred lst1 @dots{} lstN
474Return a count of the number of times @var{pred} returns true when
475called on elements from the given lists.
476
477@var{pred} is called with @var{N} parameters @code{(@var{pred}
478@var{elem1} @dots{} @var{elemN})}, each element being from the
479corresponding @var{lst1} @dots{} @var{lstN}. The first call is with
480the first element of each list, the second with the second element
481from each, and so on.
482
483Counting stops when the end of the shortest list is reached. At least
484one list must be non-circular.
485@end deffn
486
a0e07ba4
NJ
487
488@node SRFI-1 Fold and Map
3229f68b 489@subsubsection Fold, Unfold & Map
7c2e18cd
KR
490@cindex list fold
491@cindex list map
a0e07ba4
NJ
492
493@c FIXME::martin: Review me!
494
1e181a08
KR
495@deffn {Scheme Procedure} fold proc init lst1 @dots{} lstN
496@deffnx {Scheme Procedure} fold-right proc init lst1 @dots{} lstN
497Apply @var{proc} to the elements of @var{lst1} @dots{} @var{lstN} to
498build a result, and return that result.
a0e07ba4 499
1e181a08
KR
500Each @var{proc} call is @code{(@var{proc} @var{elem1} @dots{}
501@var{elemN} @var{previous})}, where @var{elem1} is from @var{lst1},
502through @var{elemN} from @var{lstN}. @var{previous} is the return
503from the previous call to @var{proc}, or the given @var{init} for the
504first call. If any list is empty, just @var{init} is returned.
a0e07ba4 505
1e181a08
KR
506@code{fold} works through the list elements from first to last. The
507following shows a list reversal and the calls it makes,
a0e07ba4 508
1e181a08
KR
509@example
510(fold cons '() '(1 2 3))
a0e07ba4 511
1e181a08
KR
512(cons 1 '())
513(cons 2 '(1))
514(cons 3 '(2 1)
515@result{} (3 2 1)
516@end example
a0e07ba4 517
1e181a08
KR
518@code{fold-right} works through the list elements from last to first,
519ie.@: from the right. So for example the following finds the longest
520string, and the last among equal longest,
521
522@example
523(fold-right (lambda (str prev)
524 (if (> (string-length str) (string-length prev))
525 str
526 prev))
527 ""
528 '("x" "abc" "xyz" "jk"))
529@result{} "xyz"
530@end example
a0e07ba4 531
1e181a08
KR
532If @var{lst1} through @var{lstN} have different lengths, @code{fold}
533stops when the end of the shortest is reached; @code{fold-right}
534commences at the last element of the shortest. Ie.@: elements past
535the length of the shortest are ignored in the other @var{lst}s. At
536least one @var{lst} must be non-circular.
537
538@code{fold} should be preferred over @code{fold-right} if the order of
539processing doesn't matter, or can be arranged either way, since
540@code{fold} is a little more efficient.
541
542The way @code{fold} builds a result from iterating is quite general,
543it can do more than other iterations like say @code{map} or
544@code{filter}. The following for example removes adjacent duplicate
545elements from a list,
546
547@example
548(define (delete-adjacent-duplicates lst)
549 (fold-right (lambda (elem ret)
550 (if (equal? elem (first ret))
551 ret
552 (cons elem ret)))
553 (list (last lst))
554 lst))
555(delete-adjacent-duplicates '(1 2 3 3 4 4 4 5))
556@result{} (1 2 3 4 5)
557@end example
558
559Clearly the same sort of thing can be done with a @code{for-each} and
5f708db6
KR
560a variable in which to build the result, but a self-contained
561@var{proc} can be re-used in multiple contexts, where a
562@code{for-each} would have to be written out each time.
a0e07ba4
NJ
563@end deffn
564
1e181a08
KR
565@deffn {Scheme Procedure} pair-fold proc init lst1 @dots{} lstN
566@deffnx {Scheme Procedure} pair-fold-right proc init lst1 @dots{} lstN
567The same as @code{fold} and @code{fold-right}, but apply @var{proc} to
568the pairs of the lists instead of the list elements.
a0e07ba4
NJ
569@end deffn
570
5f708db6
KR
571@deffn {Scheme Procedure} reduce proc default lst
572@deffnx {Scheme Procedure} reduce-right proc default lst
573@code{reduce} is a variant of @code{fold}, where the first call to
574@var{proc} is on two elements from @var{lst}, rather than one element
575and a given initial value.
1e181a08 576
5f708db6
KR
577If @var{lst} is empty, @code{reduce} returns @var{default} (this is
578the only use for @var{default}). If @var{lst} has just one element
579then that's the return value. Otherwise @var{proc} is called on the
580elements of @var{lst}.
1e181a08 581
5f708db6
KR
582Each @var{proc} call is @code{(@var{proc} @var{elem} @var{previous})},
583where @var{elem} is from @var{lst} (the second and subsequent elements
584of @var{lst}), and @var{previous} is the return from the previous call
585to @var{proc}. The first element of @var{lst} is the @var{previous}
586for the first call to @var{proc}.
1e181a08 587
5f708db6
KR
588For example, the following adds a list of numbers, the calls made to
589@code{+} are shown. (Of course @code{+} accepts multiple arguments
590and can add a list directly, with @code{apply}.)
1e181a08
KR
591
592@example
5f708db6
KR
593(reduce + 0 '(5 6 7)) @result{} 18
594
595(+ 6 5) @result{} 11
596(+ 7 11) @result{} 18
1e181a08
KR
597@end example
598
5f708db6
KR
599@code{reduce} can be used instead of @code{fold} where the @var{init}
600value is an ``identity'', meaning a value which under @var{proc}
601doesn't change the result, in this case 0 is an identity since
602@code{(+ 5 0)} is just 5. @code{reduce} avoids that unnecessary call.
1e181a08
KR
603
604@code{reduce-right} is a similar variation on @code{fold-right},
5f708db6
KR
605working from the end (ie.@: the right) of @var{lst}. The last element
606of @var{lst} is the @var{previous} for the first call to @var{proc},
607and the @var{elem} values go from the second last.
1e181a08
KR
608
609@code{reduce} should be preferred over @code{reduce-right} if the
610order of processing doesn't matter, or can be arranged either way,
611since @code{reduce} is a little more efficient.
a0e07ba4
NJ
612@end deffn
613
8f85c0c6 614@deffn {Scheme Procedure} unfold p f g seed [tail-gen]
a0e07ba4
NJ
615@code{unfold} is defined as follows:
616
617@lisp
618(unfold p f g seed) =
619 (if (p seed) (tail-gen seed)
620 (cons (f seed)
621 (unfold p f g (g seed))))
622@end lisp
623
624@table @var
625@item p
626Determines when to stop unfolding.
627
628@item f
629Maps each seed value to the corresponding list element.
630
631@item g
632Maps each seed value to next seed valu.
633
634@item seed
635The state value for the unfold.
636
637@item tail-gen
638Creates the tail of the list; defaults to @code{(lambda (x) '())}.
639@end table
640
641@var{g} produces a series of seed values, which are mapped to list
642elements by @var{f}. These elements are put into a list in
643left-to-right order, and @var{p} tells when to stop unfolding.
644@end deffn
645
8f85c0c6 646@deffn {Scheme Procedure} unfold-right p f g seed [tail]
a0e07ba4
NJ
647Construct a list with the following loop.
648
649@lisp
650(let lp ((seed seed) (lis tail))
651 (if (p seed) lis
652 (lp (g seed)
653 (cons (f seed) lis))))
654@end lisp
655
656@table @var
657@item p
658Determines when to stop unfolding.
659
660@item f
661Maps each seed value to the corresponding list element.
662
663@item g
664Maps each seed value to next seed valu.
665
666@item seed
667The state value for the unfold.
668
669@item tail-gen
670Creates the tail of the list; defaults to @code{(lambda (x) '())}.
671@end table
672
673@end deffn
674
8f85c0c6 675@deffn {Scheme Procedure} map f lst1 lst2 @dots{}
a0e07ba4
NJ
676Map the procedure over the list(s) @var{lst1}, @var{lst2}, @dots{} and
677return a list containing the results of the procedure applications.
678This procedure is extended with respect to R5RS, because the argument
679lists may have different lengths. The result list will have the same
680length as the shortest argument lists. The order in which @var{f}
681will be applied to the list element(s) is not specified.
682@end deffn
683
8f85c0c6 684@deffn {Scheme Procedure} for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
685Apply the procedure @var{f} to each pair of corresponding elements of
686the list(s) @var{lst1}, @var{lst2}, @dots{}. The return value is not
687specified. This procedure is extended with respect to R5RS, because
688the argument lists may have different lengths. The shortest argument
689list determines the number of times @var{f} is called. @var{f} will
85a9b4ed 690be applied to the list elements in left-to-right order.
a0e07ba4
NJ
691
692@end deffn
693
8f85c0c6
NJ
694@deffn {Scheme Procedure} append-map f lst1 lst2 @dots{}
695@deffnx {Scheme Procedure} append-map! f lst1 lst2 @dots{}
12991fed 696Equivalent to
a0e07ba4
NJ
697
698@lisp
12991fed 699(apply append (map f clist1 clist2 ...))
a0e07ba4
NJ
700@end lisp
701
12991fed 702and
a0e07ba4
NJ
703
704@lisp
12991fed 705(apply append! (map f clist1 clist2 ...))
a0e07ba4
NJ
706@end lisp
707
708Map @var{f} over the elements of the lists, just as in the @code{map}
709function. However, the results of the applications are appended
710together to make the final result. @code{append-map} uses
711@code{append} to append the results together; @code{append-map!} uses
712@code{append!}.
713
714The dynamic order in which the various applications of @var{f} are
715made is not specified.
716@end deffn
717
8f85c0c6 718@deffn {Scheme Procedure} map! f lst1 lst2 @dots{}
a0e07ba4
NJ
719Linear-update variant of @code{map} -- @code{map!} is allowed, but not
720required, to alter the cons cells of @var{lst1} to construct the
721result list.
722
723The dynamic order in which the various applications of @var{f} are
724made is not specified. In the n-ary case, @var{lst2}, @var{lst3},
725@dots{} must have at least as many elements as @var{lst1}.
726@end deffn
727
8f85c0c6 728@deffn {Scheme Procedure} pair-for-each f lst1 lst2 @dots{}
a0e07ba4
NJ
729Like @code{for-each}, but applies the procedure @var{f} to the pairs
730from which the argument lists are constructed, instead of the list
731elements. The return value is not specified.
732@end deffn
733
8f85c0c6 734@deffn {Scheme Procedure} filter-map f lst1 lst2 @dots{}
a0e07ba4
NJ
735Like @code{map}, but only results from the applications of @var{f}
736which are true are saved in the result list.
737@end deffn
738
739
740@node SRFI-1 Filtering and Partitioning
3229f68b 741@subsubsection Filtering and Partitioning
7c2e18cd
KR
742@cindex list filter
743@cindex list partition
a0e07ba4
NJ
744
745@c FIXME::martin: Review me!
746
747Filtering means to collect all elements from a list which satisfy a
748specific condition. Partitioning a list means to make two groups of
749list elements, one which contains the elements satisfying a condition,
750and the other for the elements which don't.
751
60e25dc4
KR
752The @code{filter} and @code{filter!} functions are implemented in the
753Guile core, @xref{List Modification}.
a0e07ba4 754
8f85c0c6
NJ
755@deffn {Scheme Procedure} partition pred lst
756@deffnx {Scheme Procedure} partition! pred lst
193239f1
KR
757Split @var{lst} into those elements which do and don't satisfy the
758predicate @var{pred}.
a0e07ba4 759
193239f1
KR
760The return is two values (@pxref{Multiple Values}), the first being a
761list of all elements from @var{lst} which satisfy @var{pred}, the
762second a list of those which do not.
763
764The elements in the result lists are in the same order as in @var{lst}
765but the order in which the calls @code{(@var{pred} elem)} are made on
766the list elements is unspecified.
767
768@code{partition} does not change @var{lst}, but one of the returned
769lists may share a tail with it. @code{partition!} may modify
770@var{lst} to construct its return.
a0e07ba4
NJ
771@end deffn
772
8f85c0c6
NJ
773@deffn {Scheme Procedure} remove pred lst
774@deffnx {Scheme Procedure} remove! pred lst
a0e07ba4
NJ
775Return a list containing all elements from @var{lst} which do not
776satisfy the predicate @var{pred}. The elements in the result list
777have the same order as in @var{lst}. The order in which @var{pred} is
778applied to the list elements is not specified.
779
780@code{remove!} is allowed, but not required to modify the structure of
781the input list.
782@end deffn
783
784
785@node SRFI-1 Searching
3229f68b 786@subsubsection Searching
7c2e18cd 787@cindex list search
a0e07ba4
NJ
788
789@c FIXME::martin: Review me!
790
791The procedures for searching elements in lists either accept a
792predicate or a comparison object for determining which elements are to
793be searched.
794
8f85c0c6 795@deffn {Scheme Procedure} find pred lst
a0e07ba4
NJ
796Return the first element of @var{lst} which satisfies the predicate
797@var{pred} and @code{#f} if no such element is found.
798@end deffn
799
8f85c0c6 800@deffn {Scheme Procedure} find-tail pred lst
a0e07ba4
NJ
801Return the first pair of @var{lst} whose @sc{car} satisfies the
802predicate @var{pred} and @code{#f} if no such element is found.
803@end deffn
804
8f85c0c6
NJ
805@deffn {Scheme Procedure} take-while pred lst
806@deffnx {Scheme Procedure} take-while! pred lst
a0e07ba4
NJ
807Return the longest initial prefix of @var{lst} whose elements all
808satisfy the predicate @var{pred}.
809
810@code{take-while!} is allowed, but not required to modify the input
811list while producing the result.
812@end deffn
813
8f85c0c6 814@deffn {Scheme Procedure} drop-while pred lst
a0e07ba4
NJ
815Drop the longest initial prefix of @var{lst} whose elements all
816satisfy the predicate @var{pred}.
817@end deffn
818
8f85c0c6
NJ
819@deffn {Scheme Procedure} span pred lst
820@deffnx {Scheme Procedure} span! pred lst
821@deffnx {Scheme Procedure} break pred lst
822@deffnx {Scheme Procedure} break! pred lst
a0e07ba4
NJ
823@code{span} splits the list @var{lst} into the longest initial prefix
824whose elements all satisfy the predicate @var{pred}, and the remaining
825tail. @code{break} inverts the sense of the predicate.
826
827@code{span!} and @code{break!} are allowed, but not required to modify
828the structure of the input list @var{lst} in order to produce the
829result.
3e73b6f9
KR
830
831Note that the name @code{break} conflicts with the @code{break}
832binding established by @code{while} (@pxref{while do}). Applications
833wanting to use @code{break} from within a @code{while} loop will need
834to make a new define under a different name.
a0e07ba4
NJ
835@end deffn
836
62705beb
KR
837@deffn {Scheme Procedure} any pred lst1 lst2 @dots{} lstN
838Test whether any set of elements from @var{lst1} @dots{} lstN
839satisfies @var{pred}. If so the return value is the return from the
840successful @var{pred} call, or if not the return is @code{#f}.
841
842Each @var{pred} call is @code{(@var{pred} @var{elem1} @dots{}
843@var{elemN})} taking an element from each @var{lst}. The calls are
844made successively for the first, second, etc elements of the lists,
845stopping when @var{pred} returns non-@code{#f}, or when the end of the
846shortest list is reached.
847
848The @var{pred} call on the last set of elements (ie.@: when the end of
849the shortest list has been reached), if that point is reached, is a
850tail call.
851@end deffn
852
853@deffn {Scheme Procedure} every pred lst1 lst2 @dots{} lstN
854Test whether every set of elements from @var{lst1} @dots{} lstN
855satisfies @var{pred}. If so the return value is the return from the
856final @var{pred} call, or if not the return is @code{#f}.
857
858Each @var{pred} call is @code{(@var{pred} @var{elem1} @dots{}
859@var{elemN})} taking an element from each @var{lst}. The calls are
860made successively for the first, second, etc elements of the lists,
861stopping if @var{pred} returns @code{#f}, or when the end of any of
862the lists is reached.
863
864The @var{pred} call on the last set of elements (ie.@: when the end of
865the shortest list has been reached) is a tail call.
866
867If one of @var{lst1} @dots{} @var{lstN} is empty then no calls to
868@var{pred} are made, and the return is @code{#t}.
a0e07ba4
NJ
869@end deffn
870
0166e7f2 871@deffn {Scheme Procedure} list-index pred lst1 @dots{} lstN
d1736abf
KR
872Return the index of the first set of elements, one from each of
873@var{lst1}@dots{}@var{lstN}, which satisfies @var{pred}.
874
875@var{pred} is called as @code{(@var{pred} elem1 @dots{} elemN)}.
876Searching stops when the end of the shortest @var{lst} is reached.
877The return index starts from 0 for the first set of elements. If no
878set of elements pass then the return is @code{#f}.
0166e7f2
KR
879
880@example
881(list-index odd? '(2 4 6 9)) @result{} 3
882(list-index = '(1 2 3) '(3 1 2)) @result{} #f
883@end example
a0e07ba4
NJ
884@end deffn
885
8f85c0c6 886@deffn {Scheme Procedure} member x lst [=]
a0e07ba4 887Return the first sublist of @var{lst} whose @sc{car} is equal to
ca04a5ae 888@var{x}. If @var{x} does not appear in @var{lst}, return @code{#f}.
ea6ea01b 889
ca04a5ae
KR
890Equality is determined by @code{equal?}, or by the equality predicate
891@var{=} if given. @var{=} is called @code{(= @var{x} elem)},
892ie.@: with the given @var{x} first, so for example to find the first
893element greater than 5,
894
895@example
896(member 5 '(3 5 1 7 2 9) <) @result{} (7 2 9)
897@end example
898
899This version of @code{member} extends the core @code{member}
900(@pxref{List Searching}) by accepting an equality predicate.
a0e07ba4
NJ
901@end deffn
902
903
904@node SRFI-1 Deleting
3229f68b 905@subsubsection Deleting
7c2e18cd 906@cindex list delete
a0e07ba4 907
8f85c0c6
NJ
908@deffn {Scheme Procedure} delete x lst [=]
909@deffnx {Scheme Procedure} delete! x lst [=]
b6b9376a
KR
910Return a list containing the elements of @var{lst} but with those
911equal to @var{x} deleted. The returned elements will be in the same
912order as they were in @var{lst}.
913
914Equality is determined by the @var{=} predicate, or @code{equal?} if
915not given. An equality call is made just once for each element, but
916the order in which the calls are made on the elements is unspecified.
a0e07ba4 917
243bdb63 918The equality calls are always @code{(= x elem)}, ie.@: the given @var{x}
b6b9376a
KR
919is first. This means for instance elements greater than 5 can be
920deleted with @code{(delete 5 lst <)}.
921
922@code{delete} does not modify @var{lst}, but the return might share a
923common tail with @var{lst}. @code{delete!} may modify the structure
924of @var{lst} to construct its return.
ea6ea01b 925
4eb21177
KR
926These functions extend the core @code{delete} and @code{delete!}
927(@pxref{List Modification}) in accepting an equality predicate. See
928also @code{lset-difference} (@pxref{SRFI-1 Set Operations}) for
929deleting multiple elements from a list.
a0e07ba4
NJ
930@end deffn
931
8f85c0c6
NJ
932@deffn {Scheme Procedure} delete-duplicates lst [=]
933@deffnx {Scheme Procedure} delete-duplicates! lst [=]
b6b9376a
KR
934Return a list containing the elements of @var{lst} but without
935duplicates.
936
937When elements are equal, only the first in @var{lst} is retained.
938Equal elements can be anywhere in @var{lst}, they don't have to be
939adjacent. The returned list will have the retained elements in the
940same order as they were in @var{lst}.
941
942Equality is determined by the @var{=} predicate, or @code{equal?} if
943not given. Calls @code{(= x y)} are made with element @var{x} being
944before @var{y} in @var{lst}. A call is made at most once for each
945combination, but the sequence of the calls across the elements is
946unspecified.
947
948@code{delete-duplicates} does not modify @var{lst}, but the return
949might share a common tail with @var{lst}. @code{delete-duplicates!}
950may modify the structure of @var{lst} to construct its return.
951
952In the worst case, this is an @math{O(N^2)} algorithm because it must
953check each element against all those preceding it. For long lists it
954is more efficient to sort and then compare only adjacent elements.
a0e07ba4
NJ
955@end deffn
956
957
958@node SRFI-1 Association Lists
3229f68b 959@subsubsection Association Lists
7c2e18cd
KR
960@cindex association list
961@cindex alist
a0e07ba4
NJ
962
963@c FIXME::martin: Review me!
964
965Association lists are described in detail in section @ref{Association
966Lists}. The present section only documents the additional procedures
967for dealing with association lists defined by SRFI-1.
968
8f85c0c6 969@deffn {Scheme Procedure} assoc key alist [=]
23f2b9a3
KR
970Return the pair from @var{alist} which matches @var{key}. This
971extends the core @code{assoc} (@pxref{Retrieving Alist Entries}) by
972taking an optional @var{=} comparison procedure.
973
974The default comparison is @code{equal?}. If an @var{=} parameter is
975given it's called @code{(@var{=} @var{key} @var{alistcar})}, ie. the
976given target @var{key} is the first argument, and a @code{car} from
977@var{alist} is second.
ea6ea01b 978
23f2b9a3
KR
979For example a case-insensitive string lookup,
980
981@example
982(assoc "yy" '(("XX" . 1) ("YY" . 2)) string-ci=?)
983@result{} ("YY" . 2)
984@end example
a0e07ba4
NJ
985@end deffn
986
8f85c0c6 987@deffn {Scheme Procedure} alist-cons key datum alist
5e5999f9
KR
988Cons a new association @var{key} and @var{datum} onto @var{alist} and
989return the result. This is equivalent to
a0e07ba4
NJ
990
991@lisp
992(cons (cons @var{key} @var{datum}) @var{alist})
993@end lisp
994
5e5999f9
KR
995@code{acons} (@pxref{Adding or Setting Alist Entries}) in the Guile
996core does the same thing.
a0e07ba4
NJ
997@end deffn
998
8f85c0c6 999@deffn {Scheme Procedure} alist-copy alist
a0e07ba4
NJ
1000Return a newly allocated copy of @var{alist}, that means that the
1001spine of the list as well as the pairs are copied.
1002@end deffn
1003
8f85c0c6
NJ
1004@deffn {Scheme Procedure} alist-delete key alist [=]
1005@deffnx {Scheme Procedure} alist-delete! key alist [=]
bd35f1f0
KR
1006Return a list containing the elements of @var{alist} but with those
1007elements whose keys are equal to @var{key} deleted. The returned
1008elements will be in the same order as they were in @var{alist}.
a0e07ba4 1009
bd35f1f0
KR
1010Equality is determined by the @var{=} predicate, or @code{equal?} if
1011not given. The order in which elements are tested is unspecified, but
1012each equality call is made @code{(= key alistkey)}, ie. the given
1013@var{key} parameter is first and the key from @var{alist} second.
1014This means for instance all associations with a key greater than 5 can
1015be removed with @code{(alist-delete 5 alist <)}.
1016
1017@code{alist-delete} does not modify @var{alist}, but the return might
1018share a common tail with @var{alist}. @code{alist-delete!} may modify
1019the list structure of @var{alist} to construct its return.
a0e07ba4
NJ
1020@end deffn
1021
1022
1023@node SRFI-1 Set Operations
3229f68b 1024@subsubsection Set Operations on Lists
7c2e18cd 1025@cindex list set operation
a0e07ba4 1026
4eb21177
KR
1027Lists can be used to represent sets of objects. The procedures in
1028this section operate on such lists as sets.
1029
1030Note that lists are not an efficient way to implement large sets. The
9aa0c3dd 1031procedures here typically take time @math{@var{m}@cross{}@var{n}} when
4eb21177
KR
1032operating on @var{m} and @var{n} element lists. Other data structures
1033like trees, bitsets (@pxref{Bit Vectors}) or hash tables (@pxref{Hash
1034Tables}) are faster.
1035
1036All these procedures take an equality predicate as the first argument.
1037This predicate is used for testing the objects in the list sets for
1038sameness. This predicate must be consistent with @code{eq?}
1039(@pxref{Equality}) in the sense that if two list elements are
1040@code{eq?} then they must also be equal under the predicate. This
1041simply means a given object must be equal to itself.
a0e07ba4 1042
4eb21177
KR
1043@deffn {Scheme Procedure} lset<= = list1 list2 @dots{}
1044Return @code{#t} if each list is a subset of the one following it.
1045Ie.@: @var{list1} a subset of @var{list2}, @var{list2} a subset of
1046@var{list3}, etc, for as many lists as given. If only one list or no
1047lists are given then the return is @code{#t}.
1048
1049A list @var{x} is a subset of @var{y} if each element of @var{x} is
1050equal to some element in @var{y}. Elements are compared using the
1051given @var{=} procedure, called as @code{(@var{=} xelem yelem)}.
1052
1053@example
1054(lset<= eq?) @result{} #t
1055(lset<= eqv? '(1 2 3) '(1)) @result{} #f
1056(lset<= eqv? '(1 3 2) '(4 3 1 2)) @result{} #t
1057@end example
a0e07ba4
NJ
1058@end deffn
1059
8f85c0c6 1060@deffn {Scheme Procedure} lset= = list1 list2 @dots{}
4eb21177
KR
1061Return @code{#t} if all argument lists are set-equal. @var{list1} is
1062compared to @var{list2}, @var{list2} to @var{list3}, etc, for as many
1063lists as given. If only one list or no lists are given then the
1064return is @code{#t}.
1065
1066Two lists @var{x} and @var{y} are set-equal if each element of @var{x}
1067is equal to some element of @var{y} and conversely each element of
1068@var{y} is equal to some element of @var{x}. The order of the
1069elements in the lists doesn't matter. Element equality is determined
1070with the given @var{=} procedure, called as @code{(@var{=} xelem
1071yelem)}, but exactly which calls are made is unspecified.
1072
1073@example
1074(lset= eq?) @result{} #t
1075(lset= eqv? '(1 2 3) '(3 2 1)) @result{} #t
1076(lset= string-ci=? '("a" "A" "b") '("B" "b" "a")) @result{} #t
1077@end example
a0e07ba4
NJ
1078@end deffn
1079
4eb21177
KR
1080@deffn {Scheme Procedure} lset-adjoin = list elem1 @dots{}
1081Add to @var{list} any of the given @var{elem}s not already in the
1082list. @var{elem}s are @code{cons}ed onto the start of @var{list} (so
1083the return shares a common tail with @var{list}), but the order
1084they're added is unspecified.
1085
1086The given @var{=} procedure is used for comparing elements, called as
1087@code{(@var{=} listelem elem)}, ie.@: the second argument is one of
1088the given @var{elem} parameters.
1089
1090@example
1091(lset-adjoin eqv? '(1 2 3) 4 1 5) @result{} (5 4 1 2 3)
1092@end example
a0e07ba4
NJ
1093@end deffn
1094
4eb21177
KR
1095@deffn {Scheme Procedure} lset-union = list1 list2 @dots{}
1096@deffnx {Scheme Procedure} lset-union! = list1 list2 @dots{}
1097Return the union of the argument list sets. The result is built by
1098taking the union of @var{list1} and @var{list2}, then the union of
1099that with @var{list3}, etc, for as many lists as given. For one list
1100argument that list itself is the result, for no list arguments the
1101result is the empty list.
1102
1103The union of two lists @var{x} and @var{y} is formed as follows. If
1104@var{x} is empty then the result is @var{y}. Otherwise start with
1105@var{x} as the result and consider each @var{y} element (from first to
1106last). A @var{y} element not equal to something already in the result
1107is @code{cons}ed onto the result.
1108
1109The given @var{=} procedure is used for comparing elements, called as
1110@code{(@var{=} relem yelem)}. The first argument is from the result
1111accumulated so far, and the second is from the list being union-ed in.
1112But exactly which calls are made is otherwise unspecified.
1113
1114Notice that duplicate elements in @var{list1} (or the first non-empty
1115list) are preserved, but that repeated elements in subsequent lists
1116are only added once.
1117
1118@example
1119(lset-union eqv?) @result{} ()
1120(lset-union eqv? '(1 2 3)) @result{} (1 2 3)
1121(lset-union eqv? '(1 2 1 3) '(2 4 5) '(5)) @result{} (5 4 1 2 1 3)
1122@end example
1123
1124@code{lset-union} doesn't change the given lists but the result may
1125share a tail with the first non-empty list. @code{lset-union!} can
1126modify all of the given lists to form the result.
a0e07ba4
NJ
1127@end deffn
1128
8f85c0c6
NJ
1129@deffn {Scheme Procedure} lset-intersection = list1 list2 @dots{}
1130@deffnx {Scheme Procedure} lset-intersection! = list1 list2 @dots{}
4eb21177
KR
1131Return the intersection of @var{list1} with the other argument lists,
1132meaning those elements of @var{list1} which are also in all of
1133@var{list2} etc. For one list argument, just that list is returned.
1134
1135The test for an element of @var{list1} to be in the return is simply
1136that it's equal to some element in each of @var{list2} etc. Notice
1137this means an element appearing twice in @var{list1} but only once in
1138each of @var{list2} etc will go into the return twice. The return has
1139its elements in the same order as they were in @var{list1}.
1140
1141The given @var{=} procedure is used for comparing elements, called as
1142@code{(@var{=} elem1 elemN)}. The first argument is from @var{list1}
1143and the second is from one of the subsequent lists. But exactly which
1144calls are made and in what order is unspecified.
1145
1146@example
1147(lset-intersection eqv? '(x y)) @result{} (x y)
1148(lset-intersection eqv? '(1 2 3) '(4 3 2)) @result{} (2 3)
1149(lset-intersection eqv? '(1 1 2 2) '(1 2) '(2 1) '(2)) @result{} (2 2)
1150@end example
1151
1152The return from @code{lset-intersection} may share a tail with
1153@var{list1}. @code{lset-intersection!} may modify @var{list1} to form
1154its result.
a0e07ba4
NJ
1155@end deffn
1156
8f85c0c6
NJ
1157@deffn {Scheme Procedure} lset-difference = list1 list2 @dots{}
1158@deffnx {Scheme Procedure} lset-difference! = list1 list2 @dots{}
4eb21177
KR
1159Return @var{list1} with any elements in @var{list2}, @var{list3} etc
1160removed (ie.@: subtracted). For one list argument, just that list is
1161returned.
1162
1163The given @var{=} procedure is used for comparing elements, called as
1164@code{(@var{=} elem1 elemN)}. The first argument is from @var{list1}
1165and the second from one of the subsequent lists. But exactly which
1166calls are made and in what order is unspecified.
a0e07ba4 1167
4eb21177
KR
1168@example
1169(lset-difference eqv? '(x y)) @result{} (x y)
1170(lset-difference eqv? '(1 2 3) '(3 1)) @result{} (2)
1171(lset-difference eqv? '(1 2 3) '(3) '(2)) @result{} (1)
1172@end example
1173
1174The return from @code{lset-difference} may share a tail with
1175@var{list1}. @code{lset-difference!} may modify @var{list1} to form
1176its result.
a0e07ba4
NJ
1177@end deffn
1178
8f85c0c6
NJ
1179@deffn {Scheme Procedure} lset-diff+intersection = list1 list2 @dots{}
1180@deffnx {Scheme Procedure} lset-diff+intersection! = list1 list2 @dots{}
4eb21177
KR
1181Return two values (@pxref{Multiple Values}), the difference and
1182intersection of the argument lists as per @code{lset-difference} and
1183@code{lset-intersection} above.
1184
1185For two list arguments this partitions @var{list1} into those elements
1186of @var{list1} which are in @var{list2} and not in @var{list2}. (But
1187for more than two arguments there can be elements of @var{list1} which
1188are neither part of the difference nor the intersection.)
1189
1190One of the return values from @code{lset-diff+intersection} may share
1191a tail with @var{list1}. @code{lset-diff+intersection!} may modify
1192@var{list1} to form its results.
1193@end deffn
1194
1195@deffn {Scheme Procedure} lset-xor = list1 list2 @dots{}
1196@deffnx {Scheme Procedure} lset-xor! = list1 list2 @dots{}
1197Return an XOR of the argument lists. For two lists this means those
1198elements which are in exactly one of the lists. For more than two
1199lists it means those elements which appear in an odd number of the
1200lists.
1201
1202To be precise, the XOR of two lists @var{x} and @var{y} is formed by
1203taking those elements of @var{x} not equal to any element of @var{y},
1204plus those elements of @var{y} not equal to any element of @var{x}.
1205Equality is determined with the given @var{=} procedure, called as
1206@code{(@var{=} e1 e2)}. One argument is from @var{x} and the other
1207from @var{y}, but which way around is unspecified. Exactly which
1208calls are made is also unspecified, as is the order of the elements in
1209the result.
1210
1211@example
1212(lset-xor eqv? '(x y)) @result{} (x y)
1213(lset-xor eqv? '(1 2 3) '(4 3 2)) @result{} (4 1)
1214@end example
1215
1216The return from @code{lset-xor} may share a tail with one of the list
1217arguments. @code{lset-xor!} may modify @var{list1} to form its
1218result.
a0e07ba4
NJ
1219@end deffn
1220
1221
1222@node SRFI-2
3229f68b 1223@subsection SRFI-2 - and-let*
8742c48b 1224@cindex SRFI-2
a0e07ba4 1225
4fd0db14
KR
1226@noindent
1227The following syntax can be obtained with
a0e07ba4 1228
4fd0db14
KR
1229@lisp
1230(use-modules (srfi srfi-2))
1231@end lisp
a0e07ba4 1232
4fd0db14
KR
1233@deffn {library syntax} and-let* (clause @dots{}) body @dots{}
1234A combination of @code{and} and @code{let*}.
1235
1236Each @var{clause} is evaluated in turn, and if @code{#f} is obtained
1237then evaluation stops and @code{#f} is returned. If all are
1238non-@code{#f} then @var{body} is evaluated and the last form gives the
6b1a6e4c
KR
1239return value, or if @var{body} is empty then the result is @code{#t}.
1240Each @var{clause} should be one of the following,
4fd0db14
KR
1241
1242@table @code
1243@item (symbol expr)
1244Evaluate @var{expr}, check for @code{#f}, and bind it to @var{symbol}.
1245Like @code{let*}, that binding is available to subsequent clauses.
1246@item (expr)
1247Evaluate @var{expr} and check for @code{#f}.
1248@item symbol
1249Get the value bound to @var{symbol} and check for @code{#f}.
1250@end table
a0e07ba4 1251
4fd0db14
KR
1252Notice that @code{(expr)} has an ``extra'' pair of parentheses, for
1253instance @code{((eq? x y))}. One way to remember this is to imagine
1254the @code{symbol} in @code{(symbol expr)} is omitted.
a0e07ba4 1255
4fd0db14
KR
1256@code{and-let*} is good for calculations where a @code{#f} value means
1257termination, but where a non-@code{#f} value is going to be needed in
1258subsequent expressions.
1259
1260The following illustrates this, it returns text between brackets
1261@samp{[...]} in a string, or @code{#f} if there are no such brackets
1262(ie.@: either @code{string-index} gives @code{#f}).
1263
1264@example
1265(define (extract-brackets str)
1266 (and-let* ((start (string-index str #\[))
1267 (end (string-index str #\] start)))
1268 (substring str (1+ start) end)))
1269@end example
1270
1271The following shows plain variables and expressions tested too.
1272@code{diagnostic-levels} is taken to be an alist associating a
1273diagnostic type with a level. @code{str} is printed only if the type
1274is known and its level is high enough.
1275
1276@example
1277(define (show-diagnostic type str)
1278 (and-let* (want-diagnostics
1279 (level (assq-ref diagnostic-levels type))
1280 ((>= level current-diagnostic-level)))
1281 (display str)))
1282@end example
1283
1284The advantage of @code{and-let*} is that an extended sequence of
1285expressions and tests doesn't require lots of nesting as would arise
1286from separate @code{and} and @code{let*}, or from @code{cond} with
1287@code{=>}.
1288
1289@end deffn
a0e07ba4
NJ
1290
1291
1292@node SRFI-4
3229f68b 1293@subsection SRFI-4 - Homogeneous numeric vector datatypes
8742c48b 1294@cindex SRFI-4
a0e07ba4 1295
e6b226b9 1296The SRFI-4 procedures and data types are always available, @xref{Uniform
3dd6e0cf 1297Numeric Vectors}.
a0e07ba4
NJ
1298
1299@node SRFI-6
3229f68b 1300@subsection SRFI-6 - Basic String Ports
8742c48b 1301@cindex SRFI-6
a0e07ba4
NJ
1302
1303SRFI-6 defines the procedures @code{open-input-string},
1304@code{open-output-string} and @code{get-output-string}. These
1305procedures are included in the Guile core, so using this module does not
1306make any difference at the moment. But it is possible that support for
1307SRFI-6 will be factored out of the core library in the future, so using
1308this module does not hurt, after all.
1309
1310@node SRFI-8
3229f68b 1311@subsection SRFI-8 - receive
8742c48b 1312@cindex SRFI-8
a0e07ba4
NJ
1313
1314@code{receive} is a syntax for making the handling of multiple-value
1315procedures easier. It is documented in @xref{Multiple Values}.
1316
1317
1318@node SRFI-9
3229f68b 1319@subsection SRFI-9 - define-record-type
8742c48b 1320@cindex SRFI-9
7c2e18cd 1321@cindex record
a0e07ba4 1322
6afe385d
KR
1323This SRFI is a syntax for defining new record types and creating
1324predicate, constructor, and field getter and setter functions. In
1325Guile this is simply an alternate interface to the core record
1326functionality (@pxref{Records}). It can be used with,
a0e07ba4 1327
6afe385d
KR
1328@example
1329(use-modules (srfi srfi-9))
1330@end example
1331
1332@deffn {library syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
1333@sp 1
1334Create a new record type, and make various @code{define}s for using
1335it. This syntax can only occur at the top-level, not nested within
1336some other form.
1337
1338@var{type} is bound to the record type, which is as per the return
1339from the core @code{make-record-type}. @var{type} also provides the
1340name for the record, as per @code{record-type-name}.
1341
1342@var{constructor} is bound to a function to be called as
1343@code{(@var{constructor} fieldval @dots{})} to create a new record of
1344this type. The arguments are initial values for the fields, one
1345argument for each field, in the order they appear in the
1346@code{define-record-type} form.
1347
1348The @var{fieldname}s provide the names for the record fields, as per
1349the core @code{record-type-fields} etc, and are referred to in the
1350subsequent accessor/modifier forms.
1351
1352@var{predictate} is bound to a function to be called as
1353@code{(@var{predicate} obj)}. It returns @code{#t} or @code{#f}
1354according to whether @var{obj} is a record of this type.
1355
1356Each @var{accessor} is bound to a function to be called
1357@code{(@var{accessor} record)} to retrieve the respective field from a
1358@var{record}. Similarly each @var{modifier} is bound to a function to
1359be called @code{(@var{modifier} record val)} to set the respective
1360field in a @var{record}.
1361@end deffn
1362
1363@noindent
1364An example will illustrate typical usage,
a0e07ba4
NJ
1365
1366@example
6afe385d
KR
1367(define-record-type employee-type
1368 (make-employee name age salary)
1369 employee?
1370 (name get-employee-name)
1371 (age get-employee-age set-employee-age)
1372 (salary get-employee-salary set-employee-salary))
a0e07ba4
NJ
1373@end example
1374
6afe385d
KR
1375This creates a new employee data type, with name, age and salary
1376fields. Accessor functions are created for each field, but no
1377modifier function for the name (the intention in this example being
1378that it's established only when an employee object is created). These
1379can all then be used as for example,
a0e07ba4
NJ
1380
1381@example
6afe385d
KR
1382employee-type @result{} #<record-type employee-type>
1383
1384(define fred (make-employee "Fred" 45 20000.00))
1385
1386(employee? fred) @result{} #t
1387(get-employee-age fred) @result{} 45
1388(set-employee-salary fred 25000.00) ;; pay rise
a0e07ba4
NJ
1389@end example
1390
6afe385d
KR
1391The functions created by @code{define-record-type} are ordinary
1392top-level @code{define}s. They can be redefined or @code{set!} as
1393desired, exported from a module, etc.
1394
a0e07ba4
NJ
1395
1396@node SRFI-10
3229f68b 1397@subsection SRFI-10 - Hash-Comma Reader Extension
8742c48b 1398@cindex SRFI-10
a0e07ba4
NJ
1399
1400@cindex hash-comma
1401@cindex #,()
633acbe2
KR
1402This SRFI implements a reader extension @code{#,()} called hash-comma.
1403It allows the reader to give new kinds of objects, for use both in
1404data and as constants or literals in source code. This feature is
1405available with
a0e07ba4 1406
633acbe2
KR
1407@example
1408(use-modules (srfi srfi-10))
1409@end example
1410
1411@noindent
1412The new read syntax is of the form
a0e07ba4
NJ
1413
1414@example
633acbe2 1415#,(@var{tag} @var{arg}@dots{})
a0e07ba4
NJ
1416@end example
1417
633acbe2
KR
1418@noindent
1419where @var{tag} is a symbol and the @var{arg}s are objects taken as
1420parameters. @var{tag}s are registered with the following procedure.
a0e07ba4 1421
633acbe2
KR
1422@deffn {Scheme Procedure} define-reader-ctor tag proc
1423Register @var{proc} as the constructor for a hash-comma read syntax
1424starting with symbol @var{tag}, ie. @nicode{#,(@var{tag} arg@dots{})}.
1425@var{proc} is called with the given arguments @code{(@var{proc}
1426arg@dots{})} and the object it returns is the result of the read.
1427@end deffn
a0e07ba4 1428
633acbe2
KR
1429@noindent
1430For example, a syntax giving a list of @var{N} copies of an object.
1431
1432@example
1433(define-reader-ctor 'repeat
1434 (lambda (obj reps)
1435 (make-list reps obj)))
1436
1437(display '#,(repeat 99 3))
1438@print{} (99 99 99)
1439@end example
1440
1441Notice the quote @nicode{'} when the @nicode{#,( )} is used. The
1442@code{repeat} handler returns a list and the program must quote to use
1443it literally, the same as any other list. Ie.
1444
1445@example
1446(display '#,(repeat 99 3))
a0e07ba4 1447@result{}
633acbe2
KR
1448(display '(99 99 99))
1449@end example
a0e07ba4 1450
633acbe2
KR
1451When a handler returns an object which is self-evaluating, like a
1452number or a string, then there's no need for quoting, just as there's
1453no need when giving those directly as literals. For example an
1454addition,
a0e07ba4 1455
633acbe2
KR
1456@example
1457(define-reader-ctor 'sum
1458 (lambda (x y)
1459 (+ x y)))
1460(display #,(sum 123 456)) @print{} 579
1461@end example
1462
1463A typical use for @nicode{#,()} is to get a read syntax for objects
1464which don't otherwise have one. For example, the following allows a
1465hash table to be given literally, with tags and values, ready for fast
1466lookup.
1467
1468@example
1469(define-reader-ctor 'hash
1470 (lambda elems
1471 (let ((table (make-hash-table)))
1472 (for-each (lambda (elem)
01549abb
KR
1473 (apply hash-set! table elem))
1474 elems)
633acbe2
KR
1475 table)))
1476
1477(define (animal->family animal)
1478 (hash-ref '#,(hash ("tiger" "cat")
1479 ("lion" "cat")
1480 ("wolf" "dog"))
1481 animal))
1482
1483(animal->family "lion") @result{} "cat"
1484@end example
1485
1486Or for example the following is a syntax for a compiled regular
1487expression (@pxref{Regular Expressions}).
1488
1489@example
1490(use-modules (ice-9 regex))
1491
1492(define-reader-ctor 'regexp make-regexp)
1493
1494(define (extract-angs str)
1495 (let ((match (regexp-exec '#,(regexp "<([A-Z0-9]+)>") str)))
1496 (and match
1497 (match:substring match 1))))
1498
1499(extract-angs "foo <BAR> quux") @result{} "BAR"
1500@end example
1501
1502@sp 1
1503@nicode{#,()} is somewhat similar to @code{define-macro}
1504(@pxref{Macros}) in that handler code is run to produce a result, but
1505@nicode{#,()} operates at the read stage, so it can appear in data for
1506@code{read} (@pxref{Scheme Read}), not just in code to be executed.
1507
1508Because @nicode{#,()} is handled at read-time it has no direct access
1509to variables etc. A symbol in the arguments is just a symbol, not a
1510variable reference. The arguments are essentially constants, though
1511the handler procedure can use them in any complicated way it might
1512want.
1513
1514Once @code{(srfi srfi-10)} has loaded, @nicode{#,()} is available
1515globally, there's no need to use @code{(srfi srfi-10)} in later
1516modules. Similarly the tags registered are global and can be used
1517anywhere once registered.
1518
1519There's no attempt to record what previous @nicode{#,()} forms have
1520been seen, if two identical forms occur then two calls are made to the
1521handler procedure. The handler might like to maintain a cache or
1522similar to avoid making copies of large objects, depending on expected
1523usage.
1524
1525In code the best uses of @nicode{#,()} are generally when there's a
1526lot of objects of a particular kind as literals or constants. If
1527there's just a few then some local variables and initializers are
1528fine, but that becomes tedious and error prone when there's a lot, and
1529the anonymous and compact syntax of @nicode{#,()} is much better.
a0e07ba4
NJ
1530
1531
1532@node SRFI-11
3229f68b 1533@subsection SRFI-11 - let-values
8742c48b 1534@cindex SRFI-11
a0e07ba4 1535
8742c48b 1536@findex let-values
c010924a 1537@findex let*-values
a0e07ba4 1538This module implements the binding forms for multiple values
c010924a 1539@code{let-values} and @code{let*-values}. These forms are similar to
a0e07ba4
NJ
1540@code{let} and @code{let*} (@pxref{Local Bindings}), but they support
1541binding of the values returned by multiple-valued expressions.
1542
1543Write @code{(use-modules (srfi srfi-11))} to make the bindings
1544available.
1545
1546@lisp
1547(let-values (((x y) (values 1 2))
1548 ((z f) (values 3 4)))
1549 (+ x y z f))
1550@result{}
155110
1552@end lisp
1553
1554@code{let-values} performs all bindings simultaneously, which means that
1555no expression in the binding clauses may refer to variables bound in the
c010924a 1556same clause list. @code{let*-values}, on the other hand, performs the
a0e07ba4
NJ
1557bindings sequentially, just like @code{let*} does for single-valued
1558expressions.
1559
1560
1561@node SRFI-13
3229f68b 1562@subsection SRFI-13 - String Library
8742c48b 1563@cindex SRFI-13
a0e07ba4 1564
5676b4fa 1565The SRFI-13 procedures are always available, @xref{Strings}.
a0e07ba4
NJ
1566
1567@node SRFI-14
3229f68b 1568@subsection SRFI-14 - Character-set Library
8742c48b 1569@cindex SRFI-14
a0e07ba4 1570
050ab45f
MV
1571The SRFI-14 data type and procedures are always available,
1572@xref{Character Sets}.
a0e07ba4
NJ
1573
1574@node SRFI-16
3229f68b 1575@subsection SRFI-16 - case-lambda
8742c48b 1576@cindex SRFI-16
7c2e18cd
KR
1577@cindex variable arity
1578@cindex arity, variable
a0e07ba4
NJ
1579
1580@c FIXME::martin: Review me!
1581
8742c48b 1582@findex case-lambda
a0e07ba4
NJ
1583The syntactic form @code{case-lambda} creates procedures, just like
1584@code{lambda}, but has syntactic extensions for writing procedures of
1585varying arity easier.
1586
1587The syntax of the @code{case-lambda} form is defined in the following
1588EBNF grammar.
1589
1590@example
1591@group
1592<case-lambda>
1593 --> (case-lambda <case-lambda-clause>)
1594<case-lambda-clause>
1595 --> (<formals> <definition-or-command>*)
1596<formals>
1597 --> (<identifier>*)
1598 | (<identifier>* . <identifier>)
1599 | <identifier>
1600@end group
1601@end example
1602
1603The value returned by a @code{case-lambda} form is a procedure which
1604matches the number of actual arguments against the formals in the
1605various clauses, in order. @dfn{Formals} means a formal argument list
1606just like with @code{lambda} (@pxref{Lambda}). The first matching clause
1607is selected, the corresponding values from the actual parameter list are
1608bound to the variable names in the clauses and the body of the clause is
1609evaluated. If no clause matches, an error is signalled.
1610
1611The following (silly) definition creates a procedure @var{foo} which
1612acts differently, depending on the number of actual arguments. If one
1613argument is given, the constant @code{#t} is returned, two arguments are
1614added and if more arguments are passed, their product is calculated.
1615
1616@lisp
1617(define foo (case-lambda
1618 ((x) #t)
1619 ((x y) (+ x y))
1620 (z
1621 (apply * z))))
1622(foo 'bar)
1623@result{}
1624#t
1625(foo 2 4)
1626@result{}
16276
1628(foo 3 3 3)
1629@result{}
163027
1631(foo)
1632@result{}
16331
1634@end lisp
1635
1636The last expression evaluates to 1 because the last clause is matched,
1637@var{z} is bound to the empty list and the following multiplication,
1638applied to zero arguments, yields 1.
1639
1640
1641@node SRFI-17
3229f68b 1642@subsection SRFI-17 - Generalized set!
8742c48b 1643@cindex SRFI-17
a0e07ba4 1644
9a18d8d4
KR
1645This SRFI implements a generalized @code{set!}, allowing some
1646``referencing'' functions to be used as the target location of a
1647@code{set!}. This feature is available from
1648
1649@example
1650(use-modules (srfi srfi-17))
1651@end example
1652
1653@noindent
1654For example @code{vector-ref} is extended so that
1655
1656@example
1657(set! (vector-ref vec idx) new-value)
1658@end example
1659
1660@noindent
1661is equivalent to
1662
1663@example
1664(vector-set! vec idx new-value)
1665@end example
1666
1667The idea is that a @code{vector-ref} expression identifies a location,
1668which may be either fetched or stored. The same form is used for the
1669location in both cases, encouraging visual clarity. This is similar
1670to the idea of an ``lvalue'' in C.
1671
1672The mechanism for this kind of @code{set!} is in the Guile core
1673(@pxref{Procedures with Setters}). This module adds definitions of
1674the following functions as procedures with setters, allowing them to
1675be targets of a @code{set!},
1676
1677@quotation
1678@nicode{car}, @nicode{cdr}, @nicode{caar}, @nicode{cadr},
1679@nicode{cdar}, @nicode{cddr}, @nicode{caaar}, @nicode{caadr},
1680@nicode{cadar}, @nicode{caddr}, @nicode{cdaar}, @nicode{cdadr},
1681@nicode{cddar}, @nicode{cdddr}, @nicode{caaaar}, @nicode{caaadr},
1682@nicode{caadar}, @nicode{caaddr}, @nicode{cadaar}, @nicode{cadadr},
1683@nicode{caddar}, @nicode{cadddr}, @nicode{cdaaar}, @nicode{cdaadr},
1684@nicode{cdadar}, @nicode{cdaddr}, @nicode{cddaar}, @nicode{cddadr},
1685@nicode{cdddar}, @nicode{cddddr}
1686
1687@nicode{string-ref}, @nicode{vector-ref}
1688@end quotation
1689
1690The SRFI specifies @code{setter} (@pxref{Procedures with Setters}) as
1691a procedure with setter, allowing the setter for a procedure to be
1692changed, eg.@: @code{(set! (setter foo) my-new-setter-handler)}.
1693Currently Guile does not implement this, a setter can only be
1694specified on creation (@code{getter-with-setter} below).
1695
1696@defun getter-with-setter
1697The same as the Guile core @code{make-procedure-with-setter}
1698(@pxref{Procedures with Setters}).
1699@end defun
a0e07ba4 1700
12991fed 1701
e68f492a
JG
1702@node SRFI-18
1703@subsection SRFI-18 - Multithreading support
1704@cindex SRFI-18
1705
1706This is an implementation of the SRFI-18 threading and synchronization
1707library. The functions and variables described here are provided by
1708
1709@example
1710(use-modules (srfi srfi-18))
1711@end example
1712
1713As a general rule, the data types and functions in this SRFI-18
1714implementation are compatible with the types and functions in Guile's
1715core threading code. For example, mutexes created with the SRFI-18
1716@code{make-mutex} function can be passed to the built-in Guile
1717function @code{lock-mutex} (@pxref{Mutexes and Condition Variables}),
1718and mutexes created with the built-in Guile function @code{make-mutex}
1719can be passed to the SRFI-18 function @code{mutex-lock!}. Cases in
1720which this does not hold true are noted in the following sections.
1721
1722@menu
1723* SRFI-18 Threads:: Executing code
1724* SRFI-18 Mutexes:: Mutual exclusion devices
1725* SRFI-18 Condition variables:: Synchronizing of groups of threads
1726* SRFI-18 Time:: Representation of times and durations
1727* SRFI-18 Exceptions:: Signalling and handling errors
1728@end menu
1729
1730@node SRFI-18 Threads
1731@subsubsection SRFI-18 Threads
1732
1733Threads created by SRFI-18 differ in two ways from threads created by
1734Guile's built-in thread functions. First, a thread created by SRFI-18
1735@code{make-thread} begins in a blocked state and will not start
1736execution until @code{thread-start!} is called on it. Second, SRFI-18
1737threads are constructed with a top-level exception handler that
1738captures any exceptions that are thrown on thread exit. In all other
1739regards, SRFI-18 threads are identical to normal Guile threads.
1740
1741@defun current-thread
1742Returns the thread that called this function. This is the same
1743procedure as the same-named built-in procedure @code{current-thread}
1744(@pxref{Threads}).
1745@end defun
1746
1747@defun thread? obj
1748Returns @code{#t} if @var{obj} is a thread, @code{#f} otherwise. This
1749is the same procedure as the same-named built-in procedure
1750@code{thread?} (@pxref{Threads}).
1751@end defun
1752
1753@defun make-thread thunk [name]
1754Call @code{thunk} in a new thread and with a new dynamic state,
1755returning the new thread and optionally assigning it the object name
1756@var{name}, which may be any Scheme object.
1757
1758Note that the name @code{make-thread} conflicts with the
1759@code{(ice-9 threads)} function @code{make-thread}. Applications
1760wanting to use both of these functions will need to refer to them by
1761different names.
1762@end defun
1763
1764@defun thread-name thread
1765Returns the name assigned to @var{thread} at the time of its creation,
1766or @code{#f} if it was not given a name.
1767@end defun
1768
1769@defun thread-specific thread
1770@defunx thread-specific-set! thread obj
1771Get or set the ``object-specific'' property of @var{thread}. In
1772Guile's implementation of SRFI-18, this value is stored as an object
1773property, and will be @code{#f} if not set.
1774@end defun
1775
1776@defun thread-start! thread
1777Unblocks @var{thread} and allows it to begin execution if it has not
1778done so already.
1779@end defun
1780
1781@defun thread-yield!
1782If one or more threads are waiting to execute, calling
1783@code{thread-yield!} forces an immediate context switch to one of them.
1784Otherwise, @code{thread-yield!} has no effect. @code{thread-yield!}
1785behaves identically to the Guile built-in function @code{yield}.
1786@end defun
1787
1788@defun thread-sleep! timeout
1789The current thread waits until the point specified by the time object
1790@var{timeout} is reached (@pxref{SRFI-18 Time}). This blocks the
1791thread only if @var{timeout} represents a point in the future. it is
1792an error for @var{timeout} to be @code{#f}.
1793@end defun
1794
1795@defun thread-terminate! thread
1796Causes an abnormal termination of @var{thread}. If @var{thread} is
1797not already terminated, all mutexes owned by @var{thread} become
1798unlocked/abandoned. If @var{thread} is the current thread,
1799@code{thread-terminate!} does not return. Otherwise
1800@code{thread-terminate!} returns an unspecified value; the termination
1801of @var{thread} will occur before @code{thread-terminate!} returns.
1802Subsequent attempts to join on @var{thread} will cause a ``terminated
1803thread exception'' to be raised.
1804
1805@code{thread-terminate!} is compatible with the thread cancellation
1806procedures in the core threads API (@pxref{Threads}) in that if a
1807cleanup handler has been installed for the target thread, it will be
1808called before the thread exits and its return value (or exception, if
1809any) will be stored for later retrieval via a call to
1810@code{thread-join!}.
1811@end defun
1812
1813@defun thread-join! thread [timeout [timeout-val]]
1814Wait for @var{thread} to terminate and return its exit value. When a
1815time value @var{timeout} is given, it specifies a point in time where
1816the waiting should be aborted. When the waiting is aborted,
1817@var{timeoutval} is returned if it is specified; otherwise, a
1818@code{join-timeout-exception} exception is raised
1819(@pxref{SRFI-18 Exceptions}). Exceptions may also be raised if the
1820thread was terminated by a call to @code{thread-terminate!}
1821(@code{terminated-thread-exception} will be raised) or if the thread
1822exited by raising an exception that was handled by the top-level
1823exception handler (@code{uncaught-exception} will be raised; the
1824original exception can be retrieved using
1825@code{uncaught-exception-reason}).
1826@end defun
1827
1828
1829@node SRFI-18 Mutexes
1830@subsubsection SRFI-18 Mutexes
1831
1832The behavior of Guile's built-in mutexes is parameterized via a set of
1833flags passed to the @code{make-mutex} procedure in the core
1834(@pxref{Mutexes and Condition Variables}). To satisfy the requirements
1835for mutexes specified by SRFI-18, the @code{make-mutex} procedure
1836described below sets the following flags:
1837@itemize @bullet
1838@item
1839@code{recursive}: the mutex can be locked recursively
1840@item
1841@code{unchecked-unlock}: attempts to unlock a mutex that is already
1842unlocked will not raise an exception
1843@item
1844@code{allow-external-unlock}: the mutex can be unlocked by any thread,
1845not just the thread that locked it originally
1846@end itemize
1847
1848@defun make-mutex [name]
1849Returns a new mutex, optionally assigning it the object name
1850@var{name}, which may be any Scheme object. The returned mutex will be
1851created with the configuration described above. Note that the name
1852@code{make-mutex} conflicts with Guile core function @code{make-mutex}.
1853Applications wanting to use both of these functions will need to refer
1854to them by different names.
1855@end defun
1856
1857@defun mutex-name mutex
1858Returns the name assigned to @var{mutex} at the time of its creation,
1859or @code{#f} if it was not given a name.
1860@end defun
1861
1862@defun mutex-specific mutex
1863@defunx mutex-specific-set! mutex obj
1864Get or set the ``object-specific'' property of @var{mutex}. In Guile's
1865implementation of SRFI-18, this value is stored as an object property,
1866and will be @code{#f} if not set.
1867@end defun
1868
1869@defun mutex-state mutex
1870Returns information about the state of @var{mutex}. Possible values
1871are:
1872@itemize @bullet
1873@item
1874thread @code{T}: the mutex is in the locked/owned state and thread T
1875is the owner of the mutex
1876@item
1877symbol @code{not-owned}: the mutex is in the locked/not-owned state
1878@item
1879symbol @code{abandoned}: the mutex is in the unlocked/abandoned state
1880@item
1881symbol @code{not-abandoned}: the mutex is in the
1882unlocked/not-abandoned state
1883@end itemize
1884@end defun
1885
1886@defun mutex-lock! mutex [timeout [thread]]
1887Lock @var{mutex}, optionally specifying a time object @var{timeout}
1888after which to abort the lock attempt and a thread @var{thread} giving
1889a new owner for @var{mutex} different than the current thread. This
1890procedure has the same behavior as the @code{lock-mutex} procedure in
1891the core library.
1892@end defun
1893
1894@defun mutex-unlock! mutex [condition-variable [timeout]]
1895Unlock @var{mutex}, optionally specifying a condition variable
1896@var{condition-variable} on which to wait, either indefinitely or,
1897optionally, until the time object @var{timeout} has passed, to be
1898signalled. This procedure has the same behavior as the
1899@code{unlock-mutex} procedure in the core library.
1900@end defun
1901
1902
1903@node SRFI-18 Condition variables
1904@subsubsection SRFI-18 Condition variables
1905
1906SRFI-18 does not specify a ``wait'' function for condition variables.
1907Waiting on a condition variable can be simulated using the SRFI-18
1908@code{mutex-unlock!} function described in the previous section, or
1909Guile's built-in @code{wait-condition-variable} procedure can be used.
1910
1911@defun condition-variable? obj
1912Returns @code{#t} if @var{obj} is a condition variable, @code{#f}
1913otherwise. This is the same procedure as the same-named built-in
1914procedure
1915(@pxref{Mutexes and Condition Variables, @code{condition-variable?}}).
1916@end defun
1917
1918@defun make-condition-variable [name]
1919Returns a new condition variable, optionally assigning it the object
1920name @var{name}, which may be any Scheme object. This procedure
1921replaces a procedure of the same name in the core library.
1922@end defun
1923
1924@defun condition-variable-name condition-variable
1925Returns the name assigned to @var{thread} at the time of its creation,
1926or @code{#f} if it was not given a name.
1927@end defun
1928
1929@defun condition-variable-specific condition-variable
1930@defunx condition-variable-specific-set! condition-variable obj
1931Get or set the ``object-specific'' property of
1932@var{condition-variable}. In Guile's implementation of SRFI-18, this
1933value is stored as an object property, and will be @code{#f} if not
1934set.
1935@end defun
1936
1937@defun condition-variable-signal! condition-variable
1938@defunx condition-variable-broadcast! condition-variable
1939Wake up one thread that is waiting for @var{condition-variable}, in
1940the case of @code{condition-variable-signal!}, or all threads waiting
1941for it, in the case of @code{condition-variable-broadcast!}. The
1942behavior of these procedures is equivalent to that of the procedures
1943@code{signal-condition-variable} and
1944@code{broadcast-condition-variable} in the core library.
1945@end defun
1946
1947
1948@node SRFI-18 Time
1949@subsubsection SRFI-18 Time
1950
1951The SRFI-18 time functions manipulate time in two formats: a
1952``time object'' type that represents an absolute point in time in some
1953implementation-specific way; and the number of seconds since some
1954unspecified ``epoch''. In Guile's implementation, the epoch is the
1955Unix epoch, 00:00:00 UTC, January 1, 1970.
1956
1957@defun current-time
1958Return the current time as a time object. This procedure replaces
1959the procedure of the same name in the core library, which returns the
1960current time in seconds since the epoch.
1961@end defun
1962
1963@defun time? obj
1964Returns @code{#t} if @var{obj} is a time object, @code{#f} otherwise.
1965@end defun
1966
1967@defun time->seconds time
1968@defunx seconds->time seconds
1969Convert between time objects and numerical values representing the
1970number of seconds since the epoch. When converting from a time object
1971to seconds, the return value is the number of seconds between
1972@var{time} and the epoch. When converting from seconds to a time
1973object, the return value is a time object that represents a time
1974@var{seconds} seconds after the epoch.
1975@end defun
1976
1977
1978@node SRFI-18 Exceptions
1979@subsubsection SRFI-18 Exceptions
1980
1981SRFI-18 exceptions are identical to the exceptions provided by
1982Guile's implementation of SRFI-34. The behavior of exception
1983handlers invoked to handle exceptions thrown from SRFI-18 functions,
1984however, differs from the conventional behavior of SRFI-34 in that
1985the continuation of the handler is the same as that of the call to
1986the function. Handlers are called in a tail-recursive manner; the
1987exceptions do not ``bubble up''.
1988
1989@defun current-exception-handler
1990Returns the current exception handler.
1991@end defun
1992
1993@defun with-exception-handler handler thunk
1994Installs @var{handler} as the current exception handler and calls the
1995procedure @var{thunk} with no arguments, returning its value as the
1996value of the exception. @var{handler} must be a procedure that accepts
1997a single argument. The current exception handler at the time this
1998procedure is called will be restored after the call returns.
1999@end defun
2000
2001@defun raise obj
2002Raise @var{obj} as an exception. This is the same procedure as the
2003same-named procedure defined in SRFI 34.
2004@end defun
2005
2006@defun join-timeout-exception? obj
2007Returns @code{#t} if @var{obj} is an exception raised as the result of
2008performing a timed join on a thread that does not exit within the
2009specified timeout, @code{#f} otherwise.
2010@end defun
2011
2012@defun abandoned-mutex-exception? obj
2013Returns @code{#t} if @var{obj} is an exception raised as the result of
2014attempting to lock a mutex that has been abandoned by its owner thread,
2015@code{#f} otherwise.
2016@end defun
2017
2018@defun terminated-thread-exception? obj
2019Returns @code{#t} if @var{obj} is an exception raised as the result of
2020joining on a thread that exited as the result of a call to
2021@code{thread-terminate!}.
2022@end defun
2023
2024@defun uncaught-exception? obj
2025@defunx uncaught-exception-reason exc
2026@code{uncaught-exception?} returns @code{#t} if @var{obj} is an
2027exception thrown as the result of joining a thread that exited by
2028raising an exception that was handled by the top-level exception
2029handler installed by @code{make-thread}. When this occurs, the
2030original exception is preserved as part of the exception thrown by
2031@code{thread-join!} and can be accessed by calling
2032@code{uncaught-exception-reason} on that exception. Note that
2033because this exception-preservation mechanism is a side-effect of
2034@code{make-thread}, joining on threads that exited as described above
2035but were created by other means will not raise this
2036@code{uncaught-exception} error.
2037@end defun
2038
2039
12991fed 2040@node SRFI-19
3229f68b 2041@subsection SRFI-19 - Time/Date Library
8742c48b 2042@cindex SRFI-19
7c2e18cd
KR
2043@cindex time
2044@cindex date
12991fed 2045
85600a0f
KR
2046This is an implementation of the SRFI-19 time/date library. The
2047functions and variables described here are provided by
12991fed
TTN
2048
2049@example
85600a0f 2050(use-modules (srfi srfi-19))
12991fed
TTN
2051@end example
2052
7d281fa5
KR
2053@strong{Caution}: The current code in this module incorrectly extends
2054the Gregorian calendar leap year rule back prior to the introduction
2055of those reforms in 1582 (or the appropriate year in various
2056countries). The Julian calendar was used prior to 1582, and there
2057were 10 days skipped for the reform, but the code doesn't implement
2058that.
2059
2060This will be fixed some time. Until then calculations for 1583
2061onwards are correct, but prior to that any day/month/year and day of
2062the week calculations are wrong.
2063
85600a0f
KR
2064@menu
2065* SRFI-19 Introduction::
2066* SRFI-19 Time::
2067* SRFI-19 Date::
2068* SRFI-19 Time/Date conversions::
2069* SRFI-19 Date to string::
2070* SRFI-19 String to date::
2071@end menu
12991fed 2072
85600a0f 2073@node SRFI-19 Introduction
3229f68b 2074@subsubsection SRFI-19 Introduction
85600a0f
KR
2075
2076@cindex universal time
2077@cindex atomic time
2078@cindex UTC
2079@cindex TAI
2080This module implements time and date representations and calculations,
2081in various time systems, including universal time (UTC) and atomic
2082time (TAI).
2083
2084For those not familiar with these time systems, TAI is based on a
2085fixed length second derived from oscillations of certain atoms. UTC
2086differs from TAI by an integral number of seconds, which is increased
2087or decreased at announced times to keep UTC aligned to a mean solar
2088day (the orbit and rotation of the earth are not quite constant).
2089
2090@cindex leap second
2091So far, only increases in the TAI
2092@tex
2093$\leftrightarrow$
2094@end tex
2095@ifnottex
2096<->
2097@end ifnottex
2098UTC difference have been needed. Such an increase is a ``leap
2099second'', an extra second of TAI introduced at the end of a UTC day.
2100When working entirely within UTC this is never seen, every day simply
2101has 86400 seconds. But when converting from TAI to a UTC date, an
2102extra 23:59:60 is present, where normally a day would end at 23:59:59.
2103Effectively the UTC second from 23:59:59 to 00:00:00 has taken two TAI
2104seconds.
2105
2106@cindex system clock
2107In the current implementation, the system clock is assumed to be UTC,
2108and a table of leap seconds in the code converts to TAI. See comments
2109in @file{srfi-19.scm} for how to update this table.
2110
2111@cindex julian day
2112@cindex modified julian day
2113Also, for those not familiar with the terminology, a @dfn{Julian Day}
2114is a real number which is a count of days and fraction of a day, in
2115UTC, starting from -4713-01-01T12:00:00Z, ie.@: midday Monday 1 Jan
7c2e18cd
KR
21164713 B.C. A @dfn{Modified Julian Day} is the same, but starting from
21171858-11-17T00:00:00Z, ie.@: midnight 17 November 1858 UTC. That time
2118is julian day 2400000.5.
85600a0f
KR
2119
2120@c The SRFI-1 spec says -4714-11-24T12:00:00Z (November 24, -4714 at
2121@c noon, UTC), but this is incorrect. It looks like it might have
2122@c arisen from the code incorrectly treating years a multiple of 100
7c2e18cd 2123@c but not 400 prior to 1582 as non-leap years, where instead the Julian
85600a0f
KR
2124@c calendar should be used so all multiples of 4 before 1582 are leap
2125@c years.
2126
2127
2128@node SRFI-19 Time
3229f68b 2129@subsubsection SRFI-19 Time
85600a0f
KR
2130@cindex time
2131
2132A @dfn{time} object has type, seconds and nanoseconds fields
2133representing a point in time starting from some epoch. This is an
2134arbitrary point in time, not just a time of day. Although times are
2135represented in nanoseconds, the actual resolution may be lower.
2136
2137The following variables hold the possible time types. For instance
2138@code{(current-time time-process)} would give the current CPU process
2139time.
2140
2141@defvar time-utc
2142Universal Coordinated Time (UTC).
2143@cindex UTC
2144@end defvar
12991fed 2145
85600a0f
KR
2146@defvar time-tai
2147International Atomic Time (TAI).
2148@cindex TAI
2149@end defvar
12991fed 2150
85600a0f
KR
2151@defvar time-monotonic
2152Monotonic time, meaning a monotonically increasing time starting from
2153an unspecified epoch.
12991fed 2154
85600a0f
KR
2155Note that in the current implementation @code{time-monotonic} is the
2156same as @code{time-tai}, and unfortunately is therefore affected by
2157adjustments to the system clock. Perhaps this will change in the
2158future.
2159@end defvar
12991fed 2160
85600a0f
KR
2161@defvar time-duration
2162A duration, meaning simply a difference between two times.
2163@end defvar
12991fed 2164
85600a0f
KR
2165@defvar time-process
2166CPU time spent in the current process, starting from when the process
2167began.
2168@cindex process time
2169@end defvar
12991fed 2170
85600a0f
KR
2171@defvar time-thread
2172CPU time spent in the current thread. Not currently implemented.
2173@cindex thread time
2174@end defvar
12991fed 2175
85600a0f
KR
2176@sp 1
2177@defun time? obj
2178Return @code{#t} if @var{obj} is a time object, or @code{#f} if not.
2179@end defun
2180
2181@defun make-time type nanoseconds seconds
2182Create a time object with the given @var{type}, @var{seconds} and
2183@var{nanoseconds}.
2184@end defun
2185
2186@defun time-type time
2187@defunx time-nanosecond time
2188@defunx time-second time
2189@defunx set-time-type! time type
2190@defunx set-time-nanosecond! time nsec
2191@defunx set-time-second! time sec
2192Get or set the type, seconds or nanoseconds fields of a time object.
2193
2194@code{set-time-type!} merely changes the field, it doesn't convert the
2195time value. For conversions, see @ref{SRFI-19 Time/Date conversions}.
2196@end defun
2197
2198@defun copy-time time
2199Return a new time object, which is a copy of the given @var{time}.
2200@end defun
2201
2202@defun current-time [type]
2203Return the current time of the given @var{type}. The default
2204@var{type} is @code{time-utc}.
2205
2206Note that the name @code{current-time} conflicts with the Guile core
e68f492a
JG
2207@code{current-time} function (@pxref{Time}) as well as the SRFI-18
2208@code{current-time} function (@pxref{SRFI-18 Time}). Applications
2209wanting to use more than one of these functions will need to refer to
2210them by different names.
85600a0f
KR
2211@end defun
2212
2213@defun time-resolution [type]
2214Return the resolution, in nanoseconds, of the given time @var{type}.
2215The default @var{type} is @code{time-utc}.
2216@end defun
2217
2218@defun time<=? t1 t2
2219@defunx time<? t1 t2
2220@defunx time=? t1 t2
2221@defunx time>=? t1 t2
2222@defunx time>? t1 t2
2223Return @code{#t} or @code{#f} according to the respective relation
2224between time objects @var{t1} and @var{t2}. @var{t1} and @var{t2}
2225must be the same time type.
2226@end defun
2227
2228@defun time-difference t1 t2
2229@defunx time-difference! t1 t2
2230Return a time object of type @code{time-duration} representing the
2231period between @var{t1} and @var{t2}. @var{t1} and @var{t2} must be
2232the same time type.
2233
2234@code{time-difference} returns a new time object,
2235@code{time-difference!} may modify @var{t1} to form its return.
2236@end defun
2237
2238@defun add-duration time duration
2239@defunx add-duration! time duration
2240@defunx subtract-duration time duration
2241@defunx subtract-duration! time duration
2242Return a time object which is @var{time} with the given @var{duration}
2243added or subtracted. @var{duration} must be a time object of type
2244@code{time-duration}.
2245
2246@code{add-duration} and @code{subtract-duration} return a new time
2247object. @code{add-duration!} and @code{subtract-duration!} may modify
2248the given @var{time} to form their return.
2249@end defun
2250
2251
2252@node SRFI-19 Date
3229f68b 2253@subsubsection SRFI-19 Date
85600a0f
KR
2254@cindex date
2255
2256A @dfn{date} object represents a date in the Gregorian calendar and a
2257time of day on that date in some timezone.
2258
2259The fields are year, month, day, hour, minute, second, nanoseconds and
2260timezone. A date object is immutable, its fields can be read but they
2261cannot be modified once the object is created.
2262
2263@defun date? obj
2264Return @code{#t} if @var{obj} is a date object, or @code{#f} if not.
2265@end defun
2266
2267@defun make-date nsecs seconds minutes hours date month year zone-offset
2268Create a new date object.
2269@c
2270@c FIXME: What can we say about the ranges of the values. The
2271@c current code looks it doesn't normalize, but expects then in their
2272@c usual range already.
2273@c
2274@end defun
2275
2276@defun date-nanosecond date
2277Nanoseconds, 0 to 999999999.
2278@end defun
2279
2280@defun date-second date
7c2e18cd
KR
2281Seconds, 0 to 59, or 60 for a leap second. 60 is never seen when working
2282entirely within UTC, it's only when converting to or from TAI.
85600a0f
KR
2283@end defun
2284
2285@defun date-minute date
2286Minutes, 0 to 59.
2287@end defun
2288
2289@defun date-hour date
2290Hour, 0 to 23.
2291@end defun
2292
2293@defun date-day date
2294Day of the month, 1 to 31 (or less, according to the month).
2295@end defun
2296
2297@defun date-month date
2298Month, 1 to 12.
2299@end defun
2300
2301@defun date-year date
7c2e18cd
KR
2302Year, eg.@: 2003. Dates B.C.@: are negative, eg.@: @math{-46} is 46
2303B.C. There is no year 0, year @math{-1} is followed by year 1.
85600a0f
KR
2304@end defun
2305
2306@defun date-zone-offset date
2307Time zone, an integer number of seconds east of Greenwich.
2308@end defun
2309
2310@defun date-year-day date
2311Day of the year, starting from 1 for 1st January.
2312@end defun
2313
2314@defun date-week-day date
2315Day of the week, starting from 0 for Sunday.
2316@end defun
2317
2318@defun date-week-number date dstartw
2319Week of the year, ignoring a first partial week. @var{dstartw} is the
2320day of the week which is taken to start a week, 0 for Sunday, 1 for
2321Monday, etc.
2322@c
2323@c FIXME: The spec doesn't say whether numbering starts at 0 or 1.
2324@c The code looks like it's 0, if that's the correct intention.
2325@c
2326@end defun
2327
2328@c The SRFI text doesn't actually give the default for tz-offset, but
2329@c the reference implementation has the local timezone and the
2330@c conversions functions all specify that, so it should be ok to
2331@c document it here.
2332@c
2333@defun current-date [tz-offset]
7c2e18cd
KR
2334Return a date object representing the current date/time, in UTC offset
2335by @var{tz-offset}. @var{tz-offset} is seconds east of Greenwich and
2336defaults to the local timezone.
85600a0f
KR
2337@end defun
2338
2339@defun current-julian-day
2340@cindex julian day
2341Return the current Julian Day.
2342@end defun
2343
2344@defun current-modified-julian-day
2345@cindex modified julian day
2346Return the current Modified Julian Day.
2347@end defun
2348
2349
2350@node SRFI-19 Time/Date conversions
3229f68b 2351@subsubsection SRFI-19 Time/Date conversions
7c2e18cd
KR
2352@cindex time conversion
2353@cindex date conversion
85600a0f
KR
2354
2355@defun date->julian-day date
2356@defunx date->modified-julian-day date
2357@defunx date->time-monotonic date
2358@defunx date->time-tai date
2359@defunx date->time-utc date
2360@end defun
2361@defun julian-day->date jdn [tz-offset]
2362@defunx julian-day->time-monotonic jdn
2363@defunx julian-day->time-tai jdn
2364@defunx julian-day->time-utc jdn
2365@end defun
2366@defun modified-julian-day->date jdn [tz-offset]
2367@defunx modified-julian-day->time-monotonic jdn
2368@defunx modified-julian-day->time-tai jdn
2369@defunx modified-julian-day->time-utc jdn
2370@end defun
2371@defun time-monotonic->date time [tz-offset]
2372@defunx time-monotonic->time-tai time
2373@defunx time-monotonic->time-tai! time
2374@defunx time-monotonic->time-utc time
2375@defunx time-monotonic->time-utc! time
2376@end defun
2377@defun time-tai->date time [tz-offset]
2378@defunx time-tai->julian-day time
2379@defunx time-tai->modified-julian-day time
2380@defunx time-tai->time-monotonic time
2381@defunx time-tai->time-monotonic! time
2382@defunx time-tai->time-utc time
2383@defunx time-tai->time-utc! time
2384@end defun
2385@defun time-utc->date time [tz-offset]
2386@defunx time-utc->julian-day time
2387@defunx time-utc->modified-julian-day time
2388@defunx time-utc->time-monotonic time
2389@defunx time-utc->time-monotonic! time
2390@defunx time-utc->time-tai time
2391@defunx time-utc->time-tai! time
2392@sp 1
2393Convert between dates, times and days of the respective types. For
2394instance @code{time-tai->time-utc} accepts a @var{time} object of type
2395@code{time-tai} and returns an object of type @code{time-utc}.
2396
85600a0f
KR
2397The @code{!} variants may modify their @var{time} argument to form
2398their return. The plain functions create a new object.
702e6e09
KR
2399
2400For conversions to dates, @var{tz-offset} is seconds east of
2401Greenwich. The default is the local timezone, at the given time, as
2402provided by the system, using @code{localtime} (@pxref{Time}).
2403
2404On 32-bit systems, @code{localtime} is limited to a 32-bit
2405@code{time_t}, so a default @var{tz-offset} is only available for
2406times between Dec 1901 and Jan 2038. For prior dates an application
2407might like to use the value in 1902, though some locations have zone
2408changes prior to that. For future dates an application might like to
2409assume today's rules extend indefinitely. But for correct daylight
2410savings transitions it will be necessary to take an offset for the
2411same day and time but a year in range and which has the same starting
2412weekday and same leap/non-leap (to support rules like last Sunday in
2413October).
85600a0f
KR
2414@end defun
2415
2416@node SRFI-19 Date to string
3229f68b 2417@subsubsection SRFI-19 Date to string
85600a0f 2418@cindex date to string
7c2e18cd 2419@cindex string, from date
85600a0f
KR
2420
2421@defun date->string date [format]
2422Convert a date to a string under the control of a format.
2423@var{format} should be a string containing @samp{~} escapes, which
2424will be expanded as per the following conversion table. The default
2425@var{format} is @samp{~c}, a locale-dependent date and time.
2426
2427Many of these conversion characters are the same as POSIX
2428@code{strftime} (@pxref{Time}), but there are some extras and some
2429variations.
2430
2431@multitable {MMMM} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
2432@item @nicode{~~} @tab literal ~
2433@item @nicode{~a} @tab locale abbreviated weekday, eg.@: @samp{Sun}
2434@item @nicode{~A} @tab locale full weekday, eg.@: @samp{Sunday}
2435@item @nicode{~b} @tab locale abbreviated month, eg.@: @samp{Jan}
2436@item @nicode{~B} @tab locale full month, eg.@: @samp{January}
2437@item @nicode{~c} @tab locale date and time, eg.@: @*
2438@samp{Fri Jul 14 20:28:42-0400 2000}
2439@item @nicode{~d} @tab day of month, zero padded, @samp{01} to @samp{31}
2440
2441@c Spec says d/m/y, reference implementation says m/d/y.
2442@c Apparently the reference code was the intention, but would like to
2443@c see an errata published for the spec before contradicting it here.
2444@c
2445@c @item @nicode{~D} @tab date @nicode{~d/~m/~y}
2446
2447@item @nicode{~e} @tab day of month, blank padded, @samp{ 1} to @samp{31}
2448@item @nicode{~f} @tab seconds and fractional seconds,
2449with locale decimal point, eg.@: @samp{5.2}
2450@item @nicode{~h} @tab same as @nicode{~b}
2451@item @nicode{~H} @tab hour, 24-hour clock, zero padded, @samp{00} to @samp{23}
2452@item @nicode{~I} @tab hour, 12-hour clock, zero padded, @samp{01} to @samp{12}
2453@item @nicode{~j} @tab day of year, zero padded, @samp{001} to @samp{366}
2454@item @nicode{~k} @tab hour, 24-hour clock, blank padded, @samp{ 0} to @samp{23}
2455@item @nicode{~l} @tab hour, 12-hour clock, blank padded, @samp{ 1} to @samp{12}
2456@item @nicode{~m} @tab month, zero padded, @samp{01} to @samp{12}
2457@item @nicode{~M} @tab minute, zero padded, @samp{00} to @samp{59}
2458@item @nicode{~n} @tab newline
2459@item @nicode{~N} @tab nanosecond, zero padded, @samp{000000000} to @samp{999999999}
2460@item @nicode{~p} @tab locale AM or PM
2461@item @nicode{~r} @tab time, 12 hour clock, @samp{~I:~M:~S ~p}
2462@item @nicode{~s} @tab number of full seconds since ``the epoch'' in UTC
2463@item @nicode{~S} @tab second, zero padded @samp{00} to @samp{60} @*
2464(usual limit is 59, 60 is a leap second)
2465@item @nicode{~t} @tab horizontal tab character
2466@item @nicode{~T} @tab time, 24 hour clock, @samp{~H:~M:~S}
2467@item @nicode{~U} @tab week of year, Sunday first day of week,
2468@samp{00} to @samp{52}
2469@item @nicode{~V} @tab week of year, Monday first day of week,
2470@samp{01} to @samp{53}
2471@item @nicode{~w} @tab day of week, 0 for Sunday, @samp{0} to @samp{6}
2472@item @nicode{~W} @tab week of year, Monday first day of week,
2473@samp{00} to @samp{52}
2474
2475@c The spec has ~x as an apparent duplicate of ~W, and ~X as a locale
2476@c date. The reference code has ~x as the locale date and ~X as a
2477@c locale time. The rule is apparently that the code should be
2478@c believed, but would like to see an errata for the spec before
2479@c contradicting it here.
2480@c
2481@c @item @nicode{~x} @tab week of year, Monday as first day of week,
2482@c @samp{00} to @samp{53}
2483@c @item @nicode{~X} @tab locale date, eg.@: @samp{07/31/00}
2484
2485@item @nicode{~y} @tab year, two digits, @samp{00} to @samp{99}
2486@item @nicode{~Y} @tab year, full, eg.@: @samp{2003}
2487@item @nicode{~z} @tab time zone, RFC-822 style
2488@item @nicode{~Z} @tab time zone symbol (not currently implemented)
2489@item @nicode{~1} @tab ISO-8601 date, @samp{~Y-~m-~d}
2490@item @nicode{~2} @tab ISO-8601 time+zone, @samp{~k:~M:~S~z}
2491@item @nicode{~3} @tab ISO-8601 time, @samp{~k:~M:~S}
2492@item @nicode{~4} @tab ISO-8601 date/time+zone, @samp{~Y-~m-~dT~k:~M:~S~z}
2493@item @nicode{~5} @tab ISO-8601 date/time, @samp{~Y-~m-~dT~k:~M:~S}
2494@end multitable
2495@end defun
2496
2497Conversions @samp{~D}, @samp{~x} and @samp{~X} are not currently
2498described here, since the specification and reference implementation
2499differ.
2500
a2f00b9b
LC
2501Conversion is locale-dependent on systems that support it
2502(@pxref{Accessing Locale Information}). @xref{Locales,
2503@code{setlocale}}, for information on how to change the current
2504locale.
85600a0f
KR
2505
2506
2507@node SRFI-19 String to date
3229f68b 2508@subsubsection SRFI-19 String to date
85600a0f 2509@cindex string to date
7c2e18cd 2510@cindex date, from string
85600a0f
KR
2511
2512@c FIXME: Can we say what happens when an incomplete date is
2513@c converted? Ie. fields left as 0, or what? The spec seems to be
2514@c silent on this.
2515
2516@defun string->date input template
2517Convert an @var{input} string to a date under the control of a
2518@var{template} string. Return a newly created date object.
2519
2520Literal characters in @var{template} must match characters in
2521@var{input} and @samp{~} escapes must match the input forms described
2522in the table below. ``Skip to'' means characters up to one of the
2523given type are ignored, or ``no skip'' for no skipping. ``Read'' is
2524what's then read, and ``Set'' is the field affected in the date
2525object.
2526
2527For example @samp{~Y} skips input characters until a digit is reached,
2528at which point it expects a year and stores that to the year field of
2529the date.
2530
2531@multitable {MMMM} {@nicode{char-alphabetic?}} {MMMMMMMMMMMMMMMMMMMMMMMMM} {@nicode{date-zone-offset}}
2532@item
2533@tab Skip to
2534@tab Read
2535@tab Set
2536
2537@item @nicode{~~}
2538@tab no skip
2539@tab literal ~
2540@tab nothing
2541
2542@item @nicode{~a}
2543@tab @nicode{char-alphabetic?}
2544@tab locale abbreviated weekday name
2545@tab nothing
2546
2547@item @nicode{~A}
2548@tab @nicode{char-alphabetic?}
2549@tab locale full weekday name
2550@tab nothing
2551
2552@c Note that the SRFI spec says that ~b and ~B don't set anything,
2553@c but that looks like a mistake. The reference implementation sets
2554@c the month field, which seems sensible and is what we describe
2555@c here.
2556
2557@item @nicode{~b}
2558@tab @nicode{char-alphabetic?}
2559@tab locale abbreviated month name
2560@tab @nicode{date-month}
2561
2562@item @nicode{~B}
2563@tab @nicode{char-alphabetic?}
2564@tab locale full month name
2565@tab @nicode{date-month}
2566
2567@item @nicode{~d}
2568@tab @nicode{char-numeric?}
2569@tab day of month
2570@tab @nicode{date-day}
2571
2572@item @nicode{~e}
2573@tab no skip
2574@tab day of month, blank padded
2575@tab @nicode{date-day}
2576
2577@item @nicode{~h}
2578@tab same as @samp{~b}
2579
2580@item @nicode{~H}
2581@tab @nicode{char-numeric?}
2582@tab hour
2583@tab @nicode{date-hour}
2584
2585@item @nicode{~k}
2586@tab no skip
2587@tab hour, blank padded
2588@tab @nicode{date-hour}
2589
2590@item @nicode{~m}
2591@tab @nicode{char-numeric?}
2592@tab month
2593@tab @nicode{date-month}
2594
2595@item @nicode{~M}
2596@tab @nicode{char-numeric?}
2597@tab minute
2598@tab @nicode{date-minute}
2599
2600@item @nicode{~S}
2601@tab @nicode{char-numeric?}
2602@tab second
2603@tab @nicode{date-second}
2604
2605@item @nicode{~y}
2606@tab no skip
2607@tab 2-digit year
2608@tab @nicode{date-year} within 50 years
2609
2610@item @nicode{~Y}
2611@tab @nicode{char-numeric?}
2612@tab year
2613@tab @nicode{date-year}
2614
2615@item @nicode{~z}
2616@tab no skip
2617@tab time zone
2618@tab date-zone-offset
2619@end multitable
2620
2621Notice that the weekday matching forms don't affect the date object
2622returned, instead the weekday will be derived from the day, month and
2623year.
2624
a2f00b9b
LC
2625Conversion is locale-dependent on systems that support it
2626(@pxref{Accessing Locale Information}). @xref{Locales,
2627@code{setlocale}}, for information on how to change the current
2628locale.
85600a0f 2629@end defun
12991fed 2630
1de8c1ae 2631
b0b55bd6 2632@node SRFI-26
3229f68b 2633@subsection SRFI-26 - specializing parameters
1de8c1ae 2634@cindex SRFI-26
7c2e18cd
KR
2635@cindex parameter specialize
2636@cindex argument specialize
2637@cindex specialize parameter
1de8c1ae
KR
2638
2639This SRFI provides a syntax for conveniently specializing selected
2640parameters of a function. It can be used with,
2641
2642@example
2643(use-modules (srfi srfi-26))
2644@end example
2645
2646@deffn {library syntax} cut slot @dots{}
2647@deffnx {library syntax} cute slot @dots{}
2648Return a new procedure which will make a call (@var{slot} @dots{}) but
2649with selected parameters specialized to given expressions.
2650
2651An example will illustrate the idea. The following is a
2652specialization of @code{write}, sending output to
2653@code{my-output-port},
2654
2655@example
2656(cut write <> my-output-port)
2657@result{}
2658(lambda (obj) (write obj my-output-port))
2659@end example
2660
2661The special symbol @code{<>} indicates a slot to be filled by an
2662argument to the new procedure. @code{my-output-port} on the other
2663hand is an expression to be evaluated and passed, ie.@: it specializes
2664the behaviour of @code{write}.
2665
2666@table @nicode
2667@item <>
2668A slot to be filled by an argument from the created procedure.
2669Arguments are assigned to @code{<>} slots in the order they appear in
2670the @code{cut} form, there's no way to re-arrange arguments.
2671
2672The first argument to @code{cut} is usually a procedure (or expression
2673giving a procedure), but @code{<>} is allowed there too. For example,
2674
2675@example
2676(cut <> 1 2 3)
2677@result{}
2678(lambda (proc) (proc 1 2 3))
2679@end example
2680
2681@item <...>
2682A slot to be filled by all remaining arguments from the new procedure.
2683This can only occur at the end of a @code{cut} form.
2684
2685For example, a procedure taking a variable number of arguments like
2686@code{max} but in addition enforcing a lower bound,
2687
2688@example
2689(define my-lower-bound 123)
2690
2691(cut max my-lower-bound <...>)
2692@result{}
2693(lambda arglist (apply max my-lower-bound arglist))
2694@end example
2695@end table
2696
2697For @code{cut} the specializing expressions are evaluated each time
2698the new procedure is called. For @code{cute} they're evaluated just
2699once, when the new procedure is created. The name @code{cute} stands
2700for ``@code{cut} with evaluated arguments''. In all cases the
2701evaluations take place in an unspecified order.
2702
2703The following illustrates the difference between @code{cut} and
2704@code{cute},
2705
2706@example
2707(cut format <> "the time is ~s" (current-time))
2708@result{}
2709(lambda (port) (format port "the time is ~s" (current-time)))
2710
2711(cute format <> "the time is ~s" (current-time))
2712@result{}
2713(let ((val (current-time)))
2714 (lambda (port) (format port "the time is ~s" val))
2715@end example
2716
2717(There's no provision for a mixture of @code{cut} and @code{cute}
2718where some expressions would be evaluated every time but others
2719evaluated only once.)
2720
2721@code{cut} is really just a shorthand for the sort of @code{lambda}
2722forms shown in the above examples. But notice @code{cut} avoids the
2723need to name unspecialized parameters, and is more compact. Use in
2724functional programming style or just with @code{map}, @code{for-each}
2725or similar is typical.
2726
2727@example
2728(map (cut * 2 <>) '(1 2 3 4))
2729
2730(for-each (cut write <> my-port) my-list)
2731@end example
2732@end deffn
b0b55bd6 2733
620c8965
LC
2734@node SRFI-30
2735@subsection SRFI-30 - Nested Multi-line Comments
2736@cindex SRFI-30
2737
2738Starting from version 2.0, Guile's @code{read} supports SRFI-30/R6RS
2739nested multi-line comments by default, @ref{Block Comments}.
2740
8638c417
RB
2741@node SRFI-31
2742@subsection SRFI-31 - A special form `rec' for recursive evaluation
2743@cindex SRFI-31
7c2e18cd 2744@cindex recursive expression
8638c417
RB
2745@findex rec
2746
2747SRFI-31 defines a special form that can be used to create
2748self-referential expressions more conveniently. The syntax is as
2749follows:
2750
2751@example
2752@group
2753<rec expression> --> (rec <variable> <expression>)
2754<rec expression> --> (rec (<variable>+) <body>)
2755@end group
2756@end example
2757
2758The first syntax can be used to create self-referential expressions,
2759for example:
2760
2761@lisp
2762 guile> (define tmp (rec ones (cons 1 (delay ones))))
2763@end lisp
2764
2765The second syntax can be used to create anonymous recursive functions:
2766
2767@lisp
2768 guile> (define tmp (rec (display-n item n)
2769 (if (positive? n)
2770 (begin (display n) (display-n (- n 1))))))
2771 guile> (tmp 42 3)
2772 424242
2773 guile>
2774@end lisp
12991fed 2775
eeadfda1 2776
f50ca8da
LC
2777@node SRFI-34
2778@subsection SRFI-34 - Exception handling for programs
2779
2780@cindex SRFI-34
2781Guile provides an implementation of
2782@uref{http://srfi.schemers.org/srfi-34/srfi-34.html, SRFI-34's exception
2783handling mechanisms} as an alternative to its own built-in mechanisms
2784(@pxref{Exceptions}). It can be made available as follows:
2785
2786@lisp
2787(use-modules (srfi srfi-34))
2788@end lisp
2789
2790@c FIXME: Document it.
2791
2792
2793@node SRFI-35
2794@subsection SRFI-35 - Conditions
2795
2796@cindex SRFI-35
2797@cindex conditions
2798@cindex exceptions
2799
2800@uref{http://srfi.schemers.org/srfi-35/srfi-35.html, SRFI-35} implements
2801@dfn{conditions}, a data structure akin to records designed to convey
2802information about exceptional conditions between parts of a program. It
2803is normally used in conjunction with SRFI-34's @code{raise}:
2804
2805@lisp
2806(raise (condition (&message
2807 (message "An error occurred"))))
2808@end lisp
2809
2810Users can define @dfn{condition types} containing arbitrary information.
2811Condition types may inherit from one another. This allows the part of
2812the program that handles (or ``catches'') conditions to get accurate
2813information about the exceptional condition that arose.
2814
2815SRFI-35 conditions are made available using:
2816
2817@lisp
2818(use-modules (srfi srfi-35))
2819@end lisp
2820
2821The procedures available to manipulate condition types are the
2822following:
2823
2824@deffn {Scheme Procedure} make-condition-type id parent field-names
2825Return a new condition type named @var{id}, inheriting from
2826@var{parent}, and with the fields whose names are listed in
2827@var{field-names}. @var{field-names} must be a list of symbols and must
2828not contain names already used by @var{parent} or one of its supertypes.
2829@end deffn
2830
2831@deffn {Scheme Procedure} condition-type? obj
2832Return true if @var{obj} is a condition type.
2833@end deffn
2834
2835Conditions can be created and accessed with the following procedures:
2836
2837@deffn {Scheme Procedure} make-condition type . field+value
2838Return a new condition of type @var{type} with fields initialized as
2839specified by @var{field+value}, a sequence of field names (symbols) and
2840values as in the following example:
2841
2842@lisp
1317062f 2843(let ((&ct (make-condition-type 'foo &condition '(a b c))))
f50ca8da
LC
2844 (make-condition &ct 'a 1 'b 2 'c 3))
2845@end lisp
2846
2847Note that all fields of @var{type} and its supertypes must be specified.
2848@end deffn
2849
2850@deffn {Scheme Procedure} make-compound-condition . conditions
2851Return a new compound condition composed of @var{conditions}. The
2852returned condition has the type of each condition of @var{conditions}
2853(per @code{condition-has-type?}).
2854@end deffn
2855
2856@deffn {Scheme Procedure} condition-has-type? c type
2857Return true if condition @var{c} has type @var{type}.
2858@end deffn
2859
2860@deffn {Scheme Procedure} condition-ref c field-name
2861Return the value of the field named @var{field-name} from condition @var{c}.
2862
2863If @var{c} is a compound condition and several underlying condition
2864types contain a field named @var{field-name}, then the value of the
2865first such field is returned, using the order in which conditions were
2866passed to @var{make-compound-condition}.
2867@end deffn
2868
2869@deffn {Scheme Procedure} extract-condition c type
2870Return a condition of condition type @var{type} with the field values
2871specified by @var{c}.
2872
2873If @var{c} is a compound condition, extract the field values from the
2874subcondition belonging to @var{type} that appeared first in the call to
2875@code{make-compound-condition} that created the the condition.
2876@end deffn
2877
2878Convenience macros are also available to create condition types and
2879conditions.
2880
2881@deffn {library syntax} define-condition-type type supertype predicate field-spec...
2882Define a new condition type named @var{type} that inherits from
2883@var{supertype}. In addition, bind @var{predicate} to a type predicate
2884that returns true when passed a condition of type @var{type} or any of
2885its subtypes. @var{field-spec} must have the form @code{(field
2886accessor)} where @var{field} is the name of field of @var{type} and
2887@var{accessor} is the name of a procedure to access field @var{field} in
2888conditions of type @var{type}.
2889
2890The example below defines condition type @code{&foo}, inheriting from
2891@code{&condition} with fields @code{a}, @code{b} and @code{c}:
2892
2893@lisp
2894(define-condition-type &foo &condition
2895 foo-condition?
2896 (a foo-a)
2897 (b foo-b)
2898 (c foo-c))
2899@end lisp
2900@end deffn
2901
2902@deffn {library syntax} condition type-field-bindings...
2903Return a new condition, or compound condition, initialized according to
2904@var{type-field-bindings}. Each @var{type-field-binding} must have the
2905form @code{(type field-specs...)}, where @var{type} is the name of a
2906variable bound to condition type; each @var{field-spec} must have the
2907form @code{(field-name value)} where @var{field-name} is a symbol
2908denoting the field being initialized to @var{value}. As for
2909@code{make-condition}, all fields must be specified.
2910
2911The following example returns a simple condition:
2912
2913@lisp
2914(condition (&message (message "An error occurred")))
2915@end lisp
2916
2917The one below returns a compound condition:
2918
2919@lisp
2920(condition (&message (message "An error occurred"))
2921 (&serious))
2922@end lisp
2923@end deffn
2924
2925Finally, SRFI-35 defines a several standard condition types.
2926
2927@defvar &condition
2928This condition type is the root of all condition types. It has no
2929fields.
2930@end defvar
2931
2932@defvar &message
2933A condition type that carries a message describing the nature of the
2934condition to humans.
2935@end defvar
2936
2937@deffn {Scheme Procedure} message-condition? c
2938Return true if @var{c} is of type @code{&message} or one of its
2939subtypes.
2940@end deffn
2941
2942@deffn {Scheme Procedure} condition-message c
2943Return the message associated with message condition @var{c}.
2944@end deffn
2945
2946@defvar &serious
2947This type describes conditions serious enough that they cannot safely be
2948ignored. It has no fields.
2949@end defvar
2950
2951@deffn {Scheme Procedure} serious-condition? c
2952Return true if @var{c} is of type @code{&serious} or one of its
2953subtypes.
2954@end deffn
2955
2956@defvar &error
2957This condition describes errors, typically caused by something that has
2958gone wrong in the interaction of the program with the external world or
2959the user.
2960@end defvar
2961
2962@deffn {Scheme Procedure} error? c
2963Return true if @var{c} is of type @code{&error} or one of its subtypes.
2964@end deffn
2965
2966
d4c38221
LC
2967@node SRFI-37
2968@subsection SRFI-37 - args-fold
2969@cindex SRFI-37
2970
2971This is a processor for GNU @code{getopt_long}-style program
2972arguments. It provides an alternative, less declarative interface
2973than @code{getopt-long} in @code{(ice-9 getopt-long)}
2974(@pxref{getopt-long,,The (ice-9 getopt-long) Module}). Unlike
2975@code{getopt-long}, it supports repeated options and any number of
2976short and long names per option. Access it with:
2977
2978@lisp
2979(use-modules (srfi srfi-37))
2980@end lisp
2981
2982@acronym{SRFI}-37 principally provides an @code{option} type and the
2983@code{args-fold} function. To use the library, create a set of
2984options with @code{option} and use it as a specification for invoking
2985@code{args-fold}.
2986
2987Here is an example of a simple argument processor for the typical
2988@samp{--version} and @samp{--help} options, which returns a backwards
2989list of files given on the command line:
2990
2991@lisp
2992(args-fold (cdr (program-arguments))
2993 (let ((display-and-exit-proc
2994 (lambda (msg)
2995 (lambda (opt name arg loads)
2996 (display msg) (quit)))))
2997 (list (option '(#\v "version") #f #f
2998 (display-and-exit-proc "Foo version 42.0\n"))
2999 (option '(#\h "help") #f #f
3000 (display-and-exit-proc
3001 "Usage: foo scheme-file ..."))))
3002 (lambda (opt name arg loads)
3003 (error "Unrecognized option `~A'" name))
3004 (lambda (op loads) (cons op loads))
3005 '())
3006@end lisp
3007
3008@deffn {Scheme Procedure} option names required-arg? optional-arg? processor
3009Return an object that specifies a single kind of program option.
3010
3011@var{names} is a list of command-line option names, and should consist of
3012characters for traditional @code{getopt} short options and strings for
3013@code{getopt_long}-style long options.
3014
3015@var{required-arg?} and @var{optional-arg?} are mutually exclusive;
3016one or both must be @code{#f}. If @var{required-arg?}, the option
3017must be followed by an argument on the command line, such as
3018@samp{--opt=value} for long options, or an error will be signalled.
3019If @var{optional-arg?}, an argument will be taken if available.
3020
3021@var{processor} is a procedure that takes at least 3 arguments, called
3022when @code{args-fold} encounters the option: the containing option
3023object, the name used on the command line, and the argument given for
3024the option (or @code{#f} if none). The rest of the arguments are
3025@code{args-fold} ``seeds'', and the @var{processor} should return
3026seeds as well.
3027@end deffn
3028
3029@deffn {Scheme Procedure} option-names opt
3030@deffnx {Scheme Procedure} option-required-arg? opt
3031@deffnx {Scheme Procedure} option-optional-arg? opt
3032@deffnx {Scheme Procedure} option-processor opt
3033Return the specified field of @var{opt}, an option object, as
3034described above for @code{option}.
3035@end deffn
3036
3037@deffn {Scheme Procedure} args-fold args options unrecognized-option-proc operand-proc seeds @dots{}
3038Process @var{args}, a list of program arguments such as that returned
3039by @code{(cdr (program-arguments))}, in order against @var{options}, a
3040list of option objects as described above. All functions called take
3041the ``seeds'', or the last multiple-values as multiple arguments,
3042starting with @var{seeds}, and must return the new seeds. Return the
3043final seeds.
3044
3045Call @code{unrecognized-option-proc}, which is like an option object's
3046processor, for any options not found in @var{options}.
3047
3048Call @code{operand-proc} with any items on the command line that are
3049not named options. This includes arguments after @samp{--}. It is
3050called with the argument in question, as well as the seeds.
3051@end deffn
3052
3053
eeadfda1
KR
3054@node SRFI-39
3055@subsection SRFI-39 - Parameters
3056@cindex SRFI-39
3057@cindex parameter object
3058@tindex Parameter
3059
3060This SRFI provides parameter objects, which implement dynamically
3061bound locations for values. The functions below are available from
3062
3063@example
3064(use-modules (srfi srfi-39))
3065@end example
3066
3067A parameter object is a procedure. Called with no arguments it
3068returns its value, called with one argument it sets the value.
3069
3070@example
3071(define my-param (make-parameter 123))
3072(my-param) @result{} 123
3073(my-param 456)
3074(my-param) @result{} 456
3075@end example
3076
3077The @code{parameterize} special form establishes new locations for
3078parameters, those new locations having effect within the dynamic scope
3079of the @code{parameterize} body. Leaving restores the previous
3080locations, or re-entering through a saved continuation will again use
3081the new locations.
3082
3083@example
3084(parameterize ((my-param 789))
3085 (my-param) @result{} 789
3086 )
3087(my-param) @result{} 456
3088@end example
3089
3090Parameters are like dynamically bound variables in other Lisp dialets.
3091They allow an application to establish parameter settings (as the name
3092suggests) just for the execution of a particular bit of code,
3093restoring when done. Examples of such parameters might be
3094case-sensitivity for a search, or a prompt for user input.
3095
3096Global variables are not as good as parameter objects for this sort of
3097thing. Changes to them are visible to all threads, but in Guile
3098parameter object locations are per-thread, thereby truely limiting the
3099effect of @code{parameterize} to just its dynamic execution.
3100
3101Passing arguments to functions is thread-safe, but that soon becomes
3102tedious when there's more than a few or when they need to pass down
3103through several layers of calls before reaching the point they should
3104affect. And introducing a new setting to existing code is often
3105easier with a parameter object than adding arguments.
3106
3107
3108@sp 1
3109@defun make-parameter init [converter]
3110Return a new parameter object, with initial value @var{init}.
3111
3112A parameter object is a procedure. When called @code{(param)} it
3113returns its value, or a call @code{(param val)} sets its value. For
3114example,
3115
3116@example
3117(define my-param (make-parameter 123))
3118(my-param) @result{} 123
3119
3120(my-param 456)
3121(my-param) @result{} 456
3122@end example
3123
3124If a @var{converter} is given, then a call @code{(@var{converter}
3125val)} is made for each value set, its return is the value stored.
3126Such a call is made for the @var{init} initial value too.
3127
3128A @var{converter} allows values to be validated, or put into a
3129canonical form. For example,
3130
3131@example
3132(define my-param (make-parameter 123
3133 (lambda (val)
3134 (if (not (number? val))
3135 (error "must be a number"))
3136 (inexact->exact val))))
3137(my-param 0.75)
3138(my-param) @result{} 3/4
3139@end example
3140@end defun
3141
3142@deffn {library syntax} parameterize ((param value) @dots{}) body @dots{}
3143Establish a new dynamic scope with the given @var{param}s bound to new
3144locations and set to the given @var{value}s. @var{body} is evaluated
3145in that environment, the result is the return from the last form in
3146@var{body}.
3147
3148Each @var{param} is an expression which is evaluated to get the
3149parameter object. Often this will just be the name of a variable
3150holding the object, but it can be anything that evaluates to a
3151parameter.
3152
3153The @var{param} expressions and @var{value} expressions are all
3154evaluated before establishing the new dynamic bindings, and they're
3155evaluated in an unspecified order.
3156
3157For example,
3158
3159@example
3160(define prompt (make-parameter "Type something: "))
3161(define (get-input)
3162 (display (prompt))
3163 ...)
3164
3165(parameterize ((prompt "Type a number: "))
3166 (get-input)
3167 ...)
3168@end example
3169@end deffn
3170
3171@deffn {Parameter object} current-input-port [new-port]
3172@deffnx {Parameter object} current-output-port [new-port]
3173@deffnx {Parameter object} current-error-port [new-port]
3174This SRFI extends the core @code{current-input-port} and
3175@code{current-output-port}, making them parameter objects. The
3176Guile-specific @code{current-error-port} is extended too, for
3177consistency. (@pxref{Default Ports}.)
3178
3179This is an upwardly compatible extension, a plain call like
3180@code{(current-input-port)} still returns the current input port, and
3181@code{set-current-input-port} can still be used. But the port can now
3182also be set with @code{(current-input-port my-port)} and bound
3183dynamically with @code{parameterize}.
3184@end deffn
3185
3186@defun with-parameters* param-list value-list thunk
3187Establish a new dynamic scope, as per @code{parameterize} above,
3188taking parameters from @var{param-list} and corresponding values from
3189@var{values-list}. A call @code{(@var{thunk})} is made in the new
3190scope and the result from that @var{thunk} is the return from
3191@code{with-parameters*}.
3192
3193This function is a Guile-specific addition to the SRFI, it's similar
b4fddbbe 3194to the core @code{with-fluids*} (@pxref{Fluids and Dynamic States}).
eeadfda1
KR
3195@end defun
3196
3197
3198@sp 1
b4fddbbe
MV
3199Parameter objects are implemented using fluids (@pxref{Fluids and
3200Dynamic States}), so each dynamic state has it's own parameter
3201locations. That includes the separate locations when outside any
3202@code{parameterize} form. When a parameter is created it gets a
3203separate initial location in each dynamic state, all initialized to
3204the given @var{init} value.
3205
3206As alluded to above, because each thread usually has a separate
3207dynamic state, each thread has it's own locations behind parameter
3208objects, and changes in one thread are not visible to any other. When
3209a new dynamic state or thread is created, the values of parameters in
3210the originating context are copied, into new locations.
eeadfda1
KR
3211
3212SRFI-39 doesn't specify the interaction between parameter objects and
3213threads, so the threading behaviour described here should be regarded
3214as Guile-specific.
3215
3216
4ea9becb
KR
3217@node SRFI-55
3218@subsection SRFI-55 - Requiring Features
3219@cindex SRFI-55
3220
3221SRFI-55 provides @code{require-extension} which is a portable
3222mechanism to load selected SRFI modules. This is implemented in the
3223Guile core, there's no module needed to get SRFI-55 itself.
3224
3225@deffn {library syntax} require-extension clause@dots{}
3226Require each of the given @var{clause} features, throwing an error if
3227any are unavailable.
3228
3229A @var{clause} is of the form @code{(@var{identifier} arg...)}. The
3230only @var{identifier} currently supported is @code{srfi} and the
3231arguments are SRFI numbers. For example to get SRFI-1 and SRFI-6,
3232
3233@example
3234(require-extension (srfi 1 6))
3235@end example
3236
3237@code{require-extension} can only be used at the top-level.
3238
3239A Guile-specific program can simply @code{use-modules} to load SRFIs
3240not already in the core, @code{require-extension} is for programs
3241designed to be portable to other Scheme implementations.
3242@end deffn
3243
3244
8503beb8
KR
3245@node SRFI-60
3246@subsection SRFI-60 - Integers as Bits
3247@cindex SRFI-60
3248@cindex integers as bits
3249@cindex bitwise logical
3250
3251This SRFI provides various functions for treating integers as bits and
3252for bitwise manipulations. These functions can be obtained with,
3253
3254@example
3255(use-modules (srfi srfi-60))
3256@end example
3257
3258Integers are treated as infinite precision twos-complement, the same
3259as in the core logical functions (@pxref{Bitwise Operations}). And
3260likewise bit indexes start from 0 for the least significant bit. The
3261following functions in this SRFI are already in the Guile core,
3262
3263@quotation
3264@code{logand},
3265@code{logior},
3266@code{logxor},
3267@code{lognot},
3268@code{logtest},
3269@code{logcount},
3270@code{integer-length},
3271@code{logbit?},
3272@code{ash}
3273@end quotation
3274
3275@sp 1
3276@defun bitwise-and n1 ...
3277@defunx bitwise-ior n1 ...
3278@defunx bitwise-xor n1 ...
3279@defunx bitwise-not n
3280@defunx any-bits-set? j k
3281@defunx bit-set? index n
3282@defunx arithmetic-shift n count
3283@defunx bit-field n start end
3284@defunx bit-count n
3285Aliases for @code{logand}, @code{logior}, @code{logxor},
3286@code{lognot}, @code{logtest}, @code{logbit?}, @code{ash},
3287@code{bit-extract} and @code{logcount} respectively.
3288
3289Note that the name @code{bit-count} conflicts with @code{bit-count} in
3290the core (@pxref{Bit Vectors}).
3291@end defun
3292
3293@defun bitwise-if mask n1 n0
3294@defunx bitwise-merge mask n1 n0
3295Return an integer with bits selected from @var{n1} and @var{n0}
3296according to @var{mask}. Those bits where @var{mask} has 1s are taken
3297from @var{n1}, and those where @var{mask} has 0s are taken from
3298@var{n0}.
3299
3300@example
3301(bitwise-if 3 #b0101 #b1010) @result{} 9
3302@end example
3303@end defun
3304
3305@defun log2-binary-factors n
3306@defunx first-set-bit n
3307Return a count of how many factors of 2 are present in @var{n}. This
3308is also the bit index of the lowest 1 bit in @var{n}. If @var{n} is
33090, the return is @math{-1}.
3310
3311@example
3312(log2-binary-factors 6) @result{} 1
3313(log2-binary-factors -8) @result{} 3
3314@end example
3315@end defun
3316
3317@defun copy-bit index n newbit
3318Return @var{n} with the bit at @var{index} set according to
3319@var{newbit}. @var{newbit} should be @code{#t} to set the bit to 1,
3320or @code{#f} to set it to 0. Bits other than at @var{index} are
3321unchanged in the return.
3322
3323@example
3324(copy-bit 1 #b0101 #t) @result{} 7
3325@end example
3326@end defun
3327
3328@defun copy-bit-field n newbits start end
3329Return @var{n} with the bits from @var{start} (inclusive) to @var{end}
3330(exclusive) changed to the value @var{newbits}.
3331
3332The least significant bit in @var{newbits} goes to @var{start}, the
3333next to @math{@var{start}+1}, etc. Anything in @var{newbits} past the
3334@var{end} given is ignored.
3335
3336@example
3337(copy-bit-field #b10000 #b11 1 3) @result{} #b10110
3338@end example
3339@end defun
3340
3341@defun rotate-bit-field n count start end
3342Return @var{n} with the bit field from @var{start} (inclusive) to
3343@var{end} (exclusive) rotated upwards by @var{count} bits.
3344
3345@var{count} can be positive or negative, and it can be more than the
3346field width (it'll be reduced modulo the width).
3347
3348@example
3349(rotate-bit-field #b0110 2 1 4) @result{} #b1010
3350@end example
3351@end defun
3352
3353@defun reverse-bit-field n start end
3354Return @var{n} with the bits from @var{start} (inclusive) to @var{end}
3355(exclusive) reversed.
3356
3357@example
3358(reverse-bit-field #b101001 2 4) @result{} #b100101
3359@end example
3360@end defun
3361
3362@defun integer->list n [len]
3363Return bits from @var{n} in the form of a list of @code{#t} for 1 and
3364@code{#f} for 0. The least significant @var{len} bits are returned,
3365and the first list element is the most significant of those bits. If
3366@var{len} is not given, the default is @code{(integer-length @var{n})}
3367(@pxref{Bitwise Operations}).
3368
3369@example
3370(integer->list 6) @result{} (#t #t #f)
3371(integer->list 1 4) @result{} (#f #f #f #t)
3372@end example
3373@end defun
3374
3375@defun list->integer lst
3376@defunx booleans->integer bool@dots{}
3377Return an integer formed bitwise from the given @var{lst} list of
3378booleans, or for @code{booleans->integer} from the @var{bool}
3379arguments.
3380
3381Each boolean is @code{#t} for a 1 and @code{#f} for a 0. The first
3382element becomes the most significant bit in the return.
3383
3384@example
3385(list->integer '(#t #f #t #f)) @result{} 10
3386@end example
3387@end defun
3388
3389
43ed3b69
MV
3390@node SRFI-61
3391@subsection SRFI-61 - A more general @code{cond} clause
3392
3393This SRFI extends RnRS @code{cond} to support test expressions that
3394return multiple values, as well as arbitrary definitions of test
3395success. SRFI 61 is implemented in the Guile core; there's no module
3396needed to get SRFI-61 itself. Extended @code{cond} is documented in
3397@ref{if cond case,, Simple Conditional Evaluation}.
3398
3399
1317062f
LC
3400@node SRFI-69
3401@subsection SRFI-69 - Basic hash tables
3402@cindex SRFI-69
3403
3404This is a portable wrapper around Guile's built-in hash table and weak
3405table support. @xref{Hash Tables}, for information on that built-in
3406support. Above that, this hash-table interface provides association
3407of equality and hash functions with tables at creation time, so
3408variants of each function are not required, as well as a procedure
3409that takes care of most uses for Guile hash table handles, which this
3410SRFI does not provide as such.
3411
3412Access it with:
3413
3414@lisp
3415(use-modules (srfi srfi-69))
3416@end lisp
3417
3418@menu
3419* SRFI-69 Creating hash tables::
3420* SRFI-69 Accessing table items::
3421* SRFI-69 Table properties::
3422* SRFI-69 Hash table algorithms::
3423@end menu
3424
3425@node SRFI-69 Creating hash tables
3426@subsubsection Creating hash tables
3427
3428@deffn {Scheme Procedure} make-hash-table [equal-proc hash-proc #:weak weakness start-size]
3429Create and answer a new hash table with @var{equal-proc} as the
3430equality function and @var{hash-proc} as the hashing function.
3431
3432By default, @var{equal-proc} is @code{equal?}. It can be any
3433two-argument procedure, and should answer whether two keys are the
3434same for this table's purposes.
3435
3436My default @var{hash-proc} assumes that @code{equal-proc} is no
3437coarser than @code{equal?} unless it is literally @code{string-ci=?}.
3438If provided, @var{hash-proc} should be a two-argument procedure that
3439takes a key and the current table size, and answers a reasonably good
3440hash integer between 0 (inclusive) and the size (exclusive).
3441
3442@var{weakness} should be @code{#f} or a symbol indicating how ``weak''
3443the hash table is:
3444
3445@table @code
3446@item #f
3447An ordinary non-weak hash table. This is the default.
3448
3449@item key
3450When the key has no more non-weak references at GC, remove that entry.
3451
3452@item value
3453When the value has no more non-weak references at GC, remove that
3454entry.
3455
3456@item key-or-value
3457When either has no more non-weak references at GC, remove the
3458association.
3459@end table
3460
3461As a legacy of the time when Guile couldn't grow hash tables,
3462@var{start-size} is an optional integer argument that specifies the
dfe8c13b
LC
3463approximate starting size for the hash table, which will be rounded to
3464an algorithmically-sounder number.
1317062f
LC
3465@end deffn
3466
dfe8c13b 3467By @dfn{coarser} than @code{equal?}, we mean that for all @var{x} and
1317062f
LC
3468@var{y} values where @code{(@var{equal-proc} @var{x} @var{y})},
3469@code{(equal? @var{x} @var{y})} as well. If that does not hold for
3470your @var{equal-proc}, you must provide a @var{hash-proc}.
3471
3472In the case of weak tables, remember that @dfn{references} above
3473always refers to @code{eq?}-wise references. Just because you have a
3474reference to some string @code{"foo"} doesn't mean that an association
3475with key @code{"foo"} in a weak-key table @emph{won't} be collected;
3476it only counts as a reference if the two @code{"foo"}s are @code{eq?},
3477regardless of @var{equal-proc}. As such, it is usually only sensible
3478to use @code{eq?} and @code{hashq} as the equivalence and hash
3479functions for a weak table. @xref{Weak References}, for more
3480information on Guile's built-in weak table support.
3481
3482@deffn {Scheme Procedure} alist->hash-table alist [equal-proc hash-proc #:weak weakness start-size]
3483As with @code{make-hash-table}, but initialize it with the
3484associations in @var{alist}. Where keys are repeated in @var{alist},
3485the leftmost association takes precedence.
3486@end deffn
3487
3488@node SRFI-69 Accessing table items
3489@subsubsection Accessing table items
3490
3491@deffn {Scheme Procedure} hash-table-ref table key [default-thunk]
3492@deffnx {Scheme Procedure} hash-table-ref/default table key default
3493Answer the value associated with @var{key} in @var{table}. If
3494@var{key} is not present, answer the result of invoking the thunk
3495@var{default-thunk}, which signals an error instead by default.
3496
3497@code{hash-table-ref/default} is a variant that requires a third
3498argument, @var{default}, and answers @var{default} itself instead of
3499invoking it.
3500@end deffn
3501
3502@deffn {Scheme Procedure} hash-table-set! table key new-value
3503Set @var{key} to @var{new-value} in @var{table}.
3504@end deffn
3505
3506@deffn {Scheme Procedure} hash-table-delete! table key
3507Remove the association of @var{key} in @var{table}, if present. If
3508absent, do nothing.
3509@end deffn
3510
3511@deffn {Scheme Procedure} hash-table-exists? table key
3512Answer whether @var{key} has an association in @var{table}.
3513@end deffn
3514
3515@deffn {Scheme Procedure} hash-table-update! table key modifier [default-thunk]
3516@deffnx {Scheme Procedure} hash-table-update!/default table key modifier default
3517Replace @var{key}'s associated value in @var{table} by invoking
3518@var{modifier} with one argument, the old value.
3519
3520If @var{key} is not present, and @var{default-thunk} is provided,
3521invoke it with no arguments to get the ``old value'' to be passed to
3522@var{modifier} as above. If @var{default-thunk} is not provided in
3523such a case, signal an error.
3524
3525@code{hash-table-update!/default} is a variant that requires the
3526fourth argument, which is used directly as the ``old value'' rather
3527than as a thunk to be invoked to retrieve the ``old value''.
3528@end deffn
3529
3530@node SRFI-69 Table properties
3531@subsubsection Table properties
3532
3533@deffn {Scheme Procedure} hash-table-size table
3534Answer the number of associations in @var{table}. This is guaranteed
3535to run in constant time for non-weak tables.
3536@end deffn
3537
3538@deffn {Scheme Procedure} hash-table-keys table
3539Answer an unordered list of the keys in @var{table}.
3540@end deffn
3541
3542@deffn {Scheme Procedure} hash-table-values table
3543Answer an unordered list of the values in @var{table}.
3544@end deffn
3545
3546@deffn {Scheme Procedure} hash-table-walk table proc
3547Invoke @var{proc} once for each association in @var{table}, passing
3548the key and value as arguments.
3549@end deffn
3550
3551@deffn {Scheme Procedure} hash-table-fold table proc init
3552Invoke @code{(@var{proc} @var{key} @var{value} @var{previous})} for
3553each @var{key} and @var{value} in @var{table}, where @var{previous} is
3554the result of the previous invocation, using @var{init} as the first
3555@var{previous} value. Answer the final @var{proc} result.
3556@end deffn
3557
3558@deffn {Scheme Procedure} hash-table->alist table
3559Answer an alist where each association in @var{table} is an
3560association in the result.
3561@end deffn
3562
3563@node SRFI-69 Hash table algorithms
3564@subsubsection Hash table algorithms
3565
3566Each hash table carries an @dfn{equivalence function} and a @dfn{hash
3567function}, used to implement key lookups. Beginning users should
3568follow the rules for consistency of the default @var{hash-proc}
3569specified above. Advanced users can use these to implement their own
3570equivalence and hash functions for specialized lookup semantics.
3571
3572@deffn {Scheme Procedure} hash-table-equivalence-function hash-table
3573@deffnx {Scheme Procedure} hash-table-hash-function hash-table
3574Answer the equivalence and hash function of @var{hash-table}, respectively.
3575@end deffn
3576
3577@deffn {Scheme Procedure} hash obj [size]
3578@deffnx {Scheme Procedure} string-hash obj [size]
3579@deffnx {Scheme Procedure} string-ci-hash obj [size]
3580@deffnx {Scheme Procedure} hash-by-identity obj [size]
3581Answer a hash value appropriate for equality predicate @code{equal?},
3582@code{string=?}, @code{string-ci=?}, and @code{eq?}, respectively.
3583@end deffn
3584
3585@code{hash} is a backwards-compatible replacement for Guile's built-in
3586@code{hash}.
3587
189681f5
LC
3588@node SRFI-88
3589@subsection SRFI-88 Keyword Objects
3590@cindex SRFI-88
3591@cindex keyword objects
3592
e36280cb 3593@uref{http://srfi.schemers.org/srfi-88/srfi-88.html, SRFI-88} provides
189681f5
LC
3594@dfn{keyword objects}, which are equivalent to Guile's keywords
3595(@pxref{Keywords}). SRFI-88 keywords can be entered using the
3596@dfn{postfix keyword syntax}, which consists of an identifier followed
3597by @code{:} (@pxref{Reader options, @code{postfix} keyword syntax}).
3598SRFI-88 can be made available with:
3599
3600@example
3601(use-modules (srfi srfi-88))
3602@end example
3603
3604Doing so installs the right reader option for keyword syntax, using
3605@code{(read-set! keywords 'postfix)}. It also provides the procedures
3606described below.
3607
3608@deffn {Scheme Procedure} keyword? obj
3609Return @code{#t} if @var{obj} is a keyword. This is the same procedure
3610as the same-named built-in procedure (@pxref{Keyword Procedures,
3611@code{keyword?}}).
3612
3613@example
3614(keyword? foo:) @result{} #t
3615(keyword? 'foo:) @result{} #t
3616(keyword? "foo") @result{} #f
3617@end example
3618@end deffn
3619
3620@deffn {Scheme Procedure} keyword->string kw
3621Return the name of @var{kw} as a string, i.e., without the trailing
3622colon. The returned string may not be modified, e.g., with
3623@code{string-set!}.
3624
3625@example
3626(keyword->string foo:) @result{} "foo"
3627@end example
3628@end deffn
3629
3630@deffn {Scheme Procedure} string->keyword str
3631Return the keyword object whose name is @var{str}.
3632
3633@example
3634(keyword->string (string->keyword "a b c")) @result{} "a b c"
3635@end example
3636@end deffn
3637
922d417b
JG
3638@node SRFI-98
3639@subsection SRFI-98 Accessing environment variables.
3640@cindex SRFI-98
3641@cindex environment variables
3642
3643This is a portable wrapper around Guile's built-in support for
3644interacting with the current environment, @xref{Runtime Environment}.
3645
3646@deffn {Scheme Procedure} get-environment-variable name
3647Returns a string containing the value of the environment variable
3648given by the string @code{name}, or @code{#f} if the named
3649environment variable is not found. This is equivalent to
3650@code{(getenv name)}.
3651@end deffn
3652
3653@deffn {Scheme Procedure} get-environment-variables
3654Returns the names and values of all the environment variables as an
3655association list in which both the keys and the values are strings.
3656@end deffn
1317062f 3657
12991fed 3658@c srfi-modules.texi ends here
193239f1
KR
3659
3660@c Local Variables:
3661@c TeX-master: "guile.texi"
3662@c End: