Use STRING_BYTES and SET_STRING_BYTES.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Note that this declares bzero on OSF/1. How dumb. */
23 #include <signal.h>
24
25 #include <config.h>
26 #include "lisp.h"
27 #include "intervals.h"
28 #include "puresize.h"
29 #ifndef standalone
30 #include "buffer.h"
31 #include "window.h"
32 #include "frame.h"
33 #include "blockinput.h"
34 #include "keyboard.h"
35 #include "charset.h"
36 #endif
37
38 #include "syssignal.h"
39
40 extern char *sbrk ();
41
42 #ifdef DOUG_LEA_MALLOC
43 #include <malloc.h>
44 #define __malloc_size_t int
45 #else
46 /* The following come from gmalloc.c. */
47
48 #if defined (__STDC__) && __STDC__
49 #include <stddef.h>
50 #define __malloc_size_t size_t
51 #else
52 #define __malloc_size_t unsigned int
53 #endif
54 extern __malloc_size_t _bytes_used;
55 extern int __malloc_extra_blocks;
56 #endif /* !defined(DOUG_LEA_MALLOC) */
57
58 extern Lisp_Object Vhistory_length;
59
60 #define max(A,B) ((A) > (B) ? (A) : (B))
61 #define min(A,B) ((A) < (B) ? (A) : (B))
62
63 /* Macro to verify that storage intended for Lisp objects is not
64 out of range to fit in the space for a pointer.
65 ADDRESS is the start of the block, and SIZE
66 is the amount of space within which objects can start. */
67 #define VALIDATE_LISP_STORAGE(address, size) \
68 do \
69 { \
70 Lisp_Object val; \
71 XSETCONS (val, (char *) address + size); \
72 if ((char *) XCONS (val) != (char *) address + size) \
73 { \
74 xfree (address); \
75 memory_full (); \
76 } \
77 } while (0)
78
79 /* Value of _bytes_used, when spare_memory was freed. */
80 static __malloc_size_t bytes_used_when_full;
81
82 /* Number of bytes of consing done since the last gc */
83 int consing_since_gc;
84
85 /* Count the amount of consing of various sorts of space. */
86 int cons_cells_consed;
87 int floats_consed;
88 int vector_cells_consed;
89 int symbols_consed;
90 int string_chars_consed;
91 int misc_objects_consed;
92 int intervals_consed;
93
94 /* Number of bytes of consing since gc before another gc should be done. */
95 int gc_cons_threshold;
96
97 /* Nonzero during gc */
98 int gc_in_progress;
99
100 /* Nonzero means display messages at beginning and end of GC. */
101 int garbage_collection_messages;
102
103 #ifndef VIRT_ADDR_VARIES
104 extern
105 #endif /* VIRT_ADDR_VARIES */
106 int malloc_sbrk_used;
107
108 #ifndef VIRT_ADDR_VARIES
109 extern
110 #endif /* VIRT_ADDR_VARIES */
111 int malloc_sbrk_unused;
112
113 /* Two limits controlling how much undo information to keep. */
114 int undo_limit;
115 int undo_strong_limit;
116
117 int total_conses, total_markers, total_symbols, total_string_size, total_vector_size;
118 int total_free_conses, total_free_markers, total_free_symbols;
119 #ifdef LISP_FLOAT_TYPE
120 int total_free_floats, total_floats;
121 #endif /* LISP_FLOAT_TYPE */
122
123 /* Points to memory space allocated as "spare",
124 to be freed if we run out of memory. */
125 static char *spare_memory;
126
127 /* Amount of spare memory to keep in reserve. */
128 #define SPARE_MEMORY (1 << 14)
129
130 /* Number of extra blocks malloc should get when it needs more core. */
131 static int malloc_hysteresis;
132
133 /* Nonzero when malloc is called for allocating Lisp object space. */
134 int allocating_for_lisp;
135
136 /* Non-nil means defun should do purecopy on the function definition */
137 Lisp_Object Vpurify_flag;
138
139 #ifndef HAVE_SHM
140 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,}; /* Force it into data space! */
141 #define PUREBEG (char *) pure
142 #else
143 #define pure PURE_SEG_BITS /* Use shared memory segment */
144 #define PUREBEG (char *)PURE_SEG_BITS
145
146 /* This variable is used only by the XPNTR macro when HAVE_SHM is
147 defined. If we used the PURESIZE macro directly there, that would
148 make most of emacs dependent on puresize.h, which we don't want -
149 you should be able to change that without too much recompilation.
150 So map_in_data initializes pure_size, and the dependencies work
151 out. */
152 EMACS_INT pure_size;
153 #endif /* not HAVE_SHM */
154
155 /* Index in pure at which next pure object will be allocated. */
156 int pureptr;
157
158 /* If nonzero, this is a warning delivered by malloc and not yet displayed. */
159 char *pending_malloc_warning;
160
161 /* Pre-computed signal argument for use when memory is exhausted. */
162 Lisp_Object memory_signal_data;
163
164 /* Maximum amount of C stack to save when a GC happens. */
165
166 #ifndef MAX_SAVE_STACK
167 #define MAX_SAVE_STACK 16000
168 #endif
169
170 /* Define DONT_COPY_FLAG to be some bit which will always be zero in a
171 pointer to a Lisp_Object, when that pointer is viewed as an integer.
172 (On most machines, pointers are even, so we can use the low bit.
173 Word-addressable architectures may need to override this in the m-file.)
174 When linking references to small strings through the size field, we
175 use this slot to hold the bit that would otherwise be interpreted as
176 the GC mark bit. */
177 #ifndef DONT_COPY_FLAG
178 #define DONT_COPY_FLAG 1
179 #endif /* no DONT_COPY_FLAG */
180
181 /* Buffer in which we save a copy of the C stack at each GC. */
182
183 char *stack_copy;
184 int stack_copy_size;
185
186 /* Non-zero means ignore malloc warnings. Set during initialization. */
187 int ignore_warnings;
188
189 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
190
191 static void mark_object (), mark_buffer (), mark_kboards ();
192 static void clear_marks (), gc_sweep ();
193 static void compact_strings ();
194
195 extern int message_enable_multibyte;
196 \f
197 /* Versions of malloc and realloc that print warnings as memory gets full. */
198
199 Lisp_Object
200 malloc_warning_1 (str)
201 Lisp_Object str;
202 {
203 Fprinc (str, Vstandard_output);
204 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
205 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
206 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
207 return Qnil;
208 }
209
210 /* malloc calls this if it finds we are near exhausting storage */
211
212 void
213 malloc_warning (str)
214 char *str;
215 {
216 pending_malloc_warning = str;
217 }
218
219 void
220 display_malloc_warning ()
221 {
222 register Lisp_Object val;
223
224 val = build_string (pending_malloc_warning);
225 pending_malloc_warning = 0;
226 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
227 }
228
229 #ifdef DOUG_LEA_MALLOC
230 # define BYTES_USED (mallinfo ().arena)
231 #else
232 # define BYTES_USED _bytes_used
233 #endif
234
235 /* Called if malloc returns zero */
236
237 void
238 memory_full ()
239 {
240 #ifndef SYSTEM_MALLOC
241 bytes_used_when_full = BYTES_USED;
242 #endif
243
244 /* The first time we get here, free the spare memory. */
245 if (spare_memory)
246 {
247 free (spare_memory);
248 spare_memory = 0;
249 }
250
251 /* This used to call error, but if we've run out of memory, we could get
252 infinite recursion trying to build the string. */
253 while (1)
254 Fsignal (Qnil, memory_signal_data);
255 }
256
257 /* Called if we can't allocate relocatable space for a buffer. */
258
259 void
260 buffer_memory_full ()
261 {
262 /* If buffers use the relocating allocator,
263 no need to free spare_memory, because we may have plenty of malloc
264 space left that we could get, and if we don't, the malloc that fails
265 will itself cause spare_memory to be freed.
266 If buffers don't use the relocating allocator,
267 treat this like any other failing malloc. */
268
269 #ifndef REL_ALLOC
270 memory_full ();
271 #endif
272
273 /* This used to call error, but if we've run out of memory, we could get
274 infinite recursion trying to build the string. */
275 while (1)
276 Fsignal (Qerror, memory_signal_data);
277 }
278
279 /* like malloc routines but check for no memory and block interrupt input. */
280
281 long *
282 xmalloc (size)
283 int size;
284 {
285 register long *val;
286
287 BLOCK_INPUT;
288 val = (long *) malloc (size);
289 UNBLOCK_INPUT;
290
291 if (!val && size) memory_full ();
292 return val;
293 }
294
295 long *
296 xrealloc (block, size)
297 long *block;
298 int size;
299 {
300 register long *val;
301
302 BLOCK_INPUT;
303 /* We must call malloc explicitly when BLOCK is 0, since some
304 reallocs don't do this. */
305 if (! block)
306 val = (long *) malloc (size);
307 else
308 val = (long *) realloc (block, size);
309 UNBLOCK_INPUT;
310
311 if (!val && size) memory_full ();
312 return val;
313 }
314
315 void
316 xfree (block)
317 long *block;
318 {
319 BLOCK_INPUT;
320 free (block);
321 UNBLOCK_INPUT;
322 }
323
324 \f
325 /* Arranging to disable input signals while we're in malloc.
326
327 This only works with GNU malloc. To help out systems which can't
328 use GNU malloc, all the calls to malloc, realloc, and free
329 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
330 pairs; unfortunately, we have no idea what C library functions
331 might call malloc, so we can't really protect them unless you're
332 using GNU malloc. Fortunately, most of the major operating can use
333 GNU malloc. */
334
335 #ifndef SYSTEM_MALLOC
336 extern void * (*__malloc_hook) ();
337 static void * (*old_malloc_hook) ();
338 extern void * (*__realloc_hook) ();
339 static void * (*old_realloc_hook) ();
340 extern void (*__free_hook) ();
341 static void (*old_free_hook) ();
342
343 /* This function is used as the hook for free to call. */
344
345 static void
346 emacs_blocked_free (ptr)
347 void *ptr;
348 {
349 BLOCK_INPUT;
350 __free_hook = old_free_hook;
351 free (ptr);
352 /* If we released our reserve (due to running out of memory),
353 and we have a fair amount free once again,
354 try to set aside another reserve in case we run out once more. */
355 if (spare_memory == 0
356 /* Verify there is enough space that even with the malloc
357 hysteresis this call won't run out again.
358 The code here is correct as long as SPARE_MEMORY
359 is substantially larger than the block size malloc uses. */
360 && (bytes_used_when_full
361 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
362 spare_memory = (char *) malloc (SPARE_MEMORY);
363
364 __free_hook = emacs_blocked_free;
365 UNBLOCK_INPUT;
366 }
367
368 /* If we released our reserve (due to running out of memory),
369 and we have a fair amount free once again,
370 try to set aside another reserve in case we run out once more.
371
372 This is called when a relocatable block is freed in ralloc.c. */
373
374 void
375 refill_memory_reserve ()
376 {
377 if (spare_memory == 0)
378 spare_memory = (char *) malloc (SPARE_MEMORY);
379 }
380
381 /* This function is the malloc hook that Emacs uses. */
382
383 static void *
384 emacs_blocked_malloc (size)
385 unsigned size;
386 {
387 void *value;
388
389 BLOCK_INPUT;
390 __malloc_hook = old_malloc_hook;
391 #ifdef DOUG_LEA_MALLOC
392 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
393 #else
394 __malloc_extra_blocks = malloc_hysteresis;
395 #endif
396 value = (void *) malloc (size);
397 __malloc_hook = emacs_blocked_malloc;
398 UNBLOCK_INPUT;
399
400 return value;
401 }
402
403 static void *
404 emacs_blocked_realloc (ptr, size)
405 void *ptr;
406 unsigned size;
407 {
408 void *value;
409
410 BLOCK_INPUT;
411 __realloc_hook = old_realloc_hook;
412 value = (void *) realloc (ptr, size);
413 __realloc_hook = emacs_blocked_realloc;
414 UNBLOCK_INPUT;
415
416 return value;
417 }
418
419 void
420 uninterrupt_malloc ()
421 {
422 old_free_hook = __free_hook;
423 __free_hook = emacs_blocked_free;
424
425 old_malloc_hook = __malloc_hook;
426 __malloc_hook = emacs_blocked_malloc;
427
428 old_realloc_hook = __realloc_hook;
429 __realloc_hook = emacs_blocked_realloc;
430 }
431 #endif
432 \f
433 /* Interval allocation. */
434
435 #ifdef USE_TEXT_PROPERTIES
436 #define INTERVAL_BLOCK_SIZE \
437 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
438
439 struct interval_block
440 {
441 struct interval_block *next;
442 struct interval intervals[INTERVAL_BLOCK_SIZE];
443 };
444
445 struct interval_block *interval_block;
446 static int interval_block_index;
447
448 INTERVAL interval_free_list;
449
450 static void
451 init_intervals ()
452 {
453 allocating_for_lisp = 1;
454 interval_block
455 = (struct interval_block *) malloc (sizeof (struct interval_block));
456 allocating_for_lisp = 0;
457 interval_block->next = 0;
458 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
459 interval_block_index = 0;
460 interval_free_list = 0;
461 }
462
463 #define INIT_INTERVALS init_intervals ()
464
465 INTERVAL
466 make_interval ()
467 {
468 INTERVAL val;
469
470 if (interval_free_list)
471 {
472 val = interval_free_list;
473 interval_free_list = interval_free_list->parent;
474 }
475 else
476 {
477 if (interval_block_index == INTERVAL_BLOCK_SIZE)
478 {
479 register struct interval_block *newi;
480
481 allocating_for_lisp = 1;
482 newi = (struct interval_block *) xmalloc (sizeof (struct interval_block));
483
484 allocating_for_lisp = 0;
485 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
486 newi->next = interval_block;
487 interval_block = newi;
488 interval_block_index = 0;
489 }
490 val = &interval_block->intervals[interval_block_index++];
491 }
492 consing_since_gc += sizeof (struct interval);
493 intervals_consed++;
494 RESET_INTERVAL (val);
495 return val;
496 }
497
498 static int total_free_intervals, total_intervals;
499
500 /* Mark the pointers of one interval. */
501
502 static void
503 mark_interval (i, dummy)
504 register INTERVAL i;
505 Lisp_Object dummy;
506 {
507 if (XMARKBIT (i->plist))
508 abort ();
509 mark_object (&i->plist);
510 XMARK (i->plist);
511 }
512
513 static void
514 mark_interval_tree (tree)
515 register INTERVAL tree;
516 {
517 /* No need to test if this tree has been marked already; this
518 function is always called through the MARK_INTERVAL_TREE macro,
519 which takes care of that. */
520
521 /* XMARK expands to an assignment; the LHS of an assignment can't be
522 a cast. */
523 XMARK (* (Lisp_Object *) &tree->parent);
524
525 traverse_intervals (tree, 1, 0, mark_interval, Qnil);
526 }
527
528 #define MARK_INTERVAL_TREE(i) \
529 do { \
530 if (!NULL_INTERVAL_P (i) \
531 && ! XMARKBIT (*(Lisp_Object *) &i->parent)) \
532 mark_interval_tree (i); \
533 } while (0)
534
535 /* The oddity in the call to XUNMARK is necessary because XUNMARK
536 expands to an assignment to its argument, and most C compilers don't
537 support casts on the left operand of `='. */
538 #define UNMARK_BALANCE_INTERVALS(i) \
539 { \
540 if (! NULL_INTERVAL_P (i)) \
541 { \
542 XUNMARK (* (Lisp_Object *) (&(i)->parent)); \
543 (i) = balance_intervals (i); \
544 } \
545 }
546
547 #else /* no interval use */
548
549 #define INIT_INTERVALS
550
551 #define UNMARK_BALANCE_INTERVALS(i)
552 #define MARK_INTERVAL_TREE(i)
553
554 #endif /* no interval use */
555 \f
556 /* Floating point allocation. */
557
558 #ifdef LISP_FLOAT_TYPE
559 /* Allocation of float cells, just like conses */
560 /* We store float cells inside of float_blocks, allocating a new
561 float_block with malloc whenever necessary. Float cells reclaimed by
562 GC are put on a free list to be reallocated before allocating
563 any new float cells from the latest float_block.
564
565 Each float_block is just under 1020 bytes long,
566 since malloc really allocates in units of powers of two
567 and uses 4 bytes for its own overhead. */
568
569 #define FLOAT_BLOCK_SIZE \
570 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
571
572 struct float_block
573 {
574 struct float_block *next;
575 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
576 };
577
578 struct float_block *float_block;
579 int float_block_index;
580
581 struct Lisp_Float *float_free_list;
582
583 void
584 init_float ()
585 {
586 allocating_for_lisp = 1;
587 float_block = (struct float_block *) malloc (sizeof (struct float_block));
588 allocating_for_lisp = 0;
589 float_block->next = 0;
590 bzero ((char *) float_block->floats, sizeof float_block->floats);
591 float_block_index = 0;
592 float_free_list = 0;
593 }
594
595 /* Explicitly free a float cell. */
596 free_float (ptr)
597 struct Lisp_Float *ptr;
598 {
599 *(struct Lisp_Float **)&ptr->data = float_free_list;
600 float_free_list = ptr;
601 }
602
603 Lisp_Object
604 make_float (float_value)
605 double float_value;
606 {
607 register Lisp_Object val;
608
609 if (float_free_list)
610 {
611 /* We use the data field for chaining the free list
612 so that we won't use the same field that has the mark bit. */
613 XSETFLOAT (val, float_free_list);
614 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
615 }
616 else
617 {
618 if (float_block_index == FLOAT_BLOCK_SIZE)
619 {
620 register struct float_block *new;
621
622 allocating_for_lisp = 1;
623 new = (struct float_block *) xmalloc (sizeof (struct float_block));
624 allocating_for_lisp = 0;
625 VALIDATE_LISP_STORAGE (new, sizeof *new);
626 new->next = float_block;
627 float_block = new;
628 float_block_index = 0;
629 }
630 XSETFLOAT (val, &float_block->floats[float_block_index++]);
631 }
632 XFLOAT (val)->data = float_value;
633 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
634 consing_since_gc += sizeof (struct Lisp_Float);
635 floats_consed++;
636 return val;
637 }
638
639 #endif /* LISP_FLOAT_TYPE */
640 \f
641 /* Allocation of cons cells */
642 /* We store cons cells inside of cons_blocks, allocating a new
643 cons_block with malloc whenever necessary. Cons cells reclaimed by
644 GC are put on a free list to be reallocated before allocating
645 any new cons cells from the latest cons_block.
646
647 Each cons_block is just under 1020 bytes long,
648 since malloc really allocates in units of powers of two
649 and uses 4 bytes for its own overhead. */
650
651 #define CONS_BLOCK_SIZE \
652 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
653
654 struct cons_block
655 {
656 struct cons_block *next;
657 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
658 };
659
660 struct cons_block *cons_block;
661 int cons_block_index;
662
663 struct Lisp_Cons *cons_free_list;
664
665 void
666 init_cons ()
667 {
668 allocating_for_lisp = 1;
669 cons_block = (struct cons_block *) malloc (sizeof (struct cons_block));
670 allocating_for_lisp = 0;
671 cons_block->next = 0;
672 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
673 cons_block_index = 0;
674 cons_free_list = 0;
675 }
676
677 /* Explicitly free a cons cell. */
678
679 void
680 free_cons (ptr)
681 struct Lisp_Cons *ptr;
682 {
683 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
684 cons_free_list = ptr;
685 }
686
687 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
688 "Create a new cons, give it CAR and CDR as components, and return it.")
689 (car, cdr)
690 Lisp_Object car, cdr;
691 {
692 register Lisp_Object val;
693
694 if (cons_free_list)
695 {
696 /* We use the cdr for chaining the free list
697 so that we won't use the same field that has the mark bit. */
698 XSETCONS (val, cons_free_list);
699 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
700 }
701 else
702 {
703 if (cons_block_index == CONS_BLOCK_SIZE)
704 {
705 register struct cons_block *new;
706 allocating_for_lisp = 1;
707 new = (struct cons_block *) xmalloc (sizeof (struct cons_block));
708 allocating_for_lisp = 0;
709 VALIDATE_LISP_STORAGE (new, sizeof *new);
710 new->next = cons_block;
711 cons_block = new;
712 cons_block_index = 0;
713 }
714 XSETCONS (val, &cons_block->conses[cons_block_index++]);
715 }
716 XCONS (val)->car = car;
717 XCONS (val)->cdr = cdr;
718 consing_since_gc += sizeof (struct Lisp_Cons);
719 cons_cells_consed++;
720 return val;
721 }
722 \f
723 /* Make a list of 2, 3, 4 or 5 specified objects. */
724
725 Lisp_Object
726 list2 (arg1, arg2)
727 Lisp_Object arg1, arg2;
728 {
729 return Fcons (arg1, Fcons (arg2, Qnil));
730 }
731
732 Lisp_Object
733 list3 (arg1, arg2, arg3)
734 Lisp_Object arg1, arg2, arg3;
735 {
736 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
737 }
738
739 Lisp_Object
740 list4 (arg1, arg2, arg3, arg4)
741 Lisp_Object arg1, arg2, arg3, arg4;
742 {
743 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
744 }
745
746 Lisp_Object
747 list5 (arg1, arg2, arg3, arg4, arg5)
748 Lisp_Object arg1, arg2, arg3, arg4, arg5;
749 {
750 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
751 Fcons (arg5, Qnil)))));
752 }
753
754 DEFUN ("list", Flist, Slist, 0, MANY, 0,
755 "Return a newly created list with specified arguments as elements.\n\
756 Any number of arguments, even zero arguments, are allowed.")
757 (nargs, args)
758 int nargs;
759 register Lisp_Object *args;
760 {
761 register Lisp_Object val;
762 val = Qnil;
763
764 while (nargs > 0)
765 {
766 nargs--;
767 val = Fcons (args[nargs], val);
768 }
769 return val;
770 }
771
772 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
773 "Return a newly created list of length LENGTH, with each element being INIT.")
774 (length, init)
775 register Lisp_Object length, init;
776 {
777 register Lisp_Object val;
778 register int size;
779
780 CHECK_NATNUM (length, 0);
781 size = XFASTINT (length);
782
783 val = Qnil;
784 while (size-- > 0)
785 val = Fcons (init, val);
786 return val;
787 }
788 \f
789 /* Allocation of vectors */
790
791 struct Lisp_Vector *all_vectors;
792
793 struct Lisp_Vector *
794 allocate_vectorlike (len)
795 EMACS_INT len;
796 {
797 struct Lisp_Vector *p;
798
799 allocating_for_lisp = 1;
800 #ifdef DOUG_LEA_MALLOC
801 /* Prevent mmap'ing the chunk (which is potentially very large). */
802 mallopt (M_MMAP_MAX, 0);
803 #endif
804 p = (struct Lisp_Vector *)xmalloc (sizeof (struct Lisp_Vector)
805 + (len - 1) * sizeof (Lisp_Object));
806 #ifdef DOUG_LEA_MALLOC
807 /* Back to a reasonable maximum of mmap'ed areas. */
808 mallopt (M_MMAP_MAX, 64);
809 #endif
810 allocating_for_lisp = 0;
811 VALIDATE_LISP_STORAGE (p, 0);
812 consing_since_gc += (sizeof (struct Lisp_Vector)
813 + (len - 1) * sizeof (Lisp_Object));
814 vector_cells_consed += len;
815
816 p->next = all_vectors;
817 all_vectors = p;
818 return p;
819 }
820
821 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
822 "Return a newly created vector of length LENGTH, with each element being INIT.\n\
823 See also the function `vector'.")
824 (length, init)
825 register Lisp_Object length, init;
826 {
827 Lisp_Object vector;
828 register EMACS_INT sizei;
829 register int index;
830 register struct Lisp_Vector *p;
831
832 CHECK_NATNUM (length, 0);
833 sizei = XFASTINT (length);
834
835 p = allocate_vectorlike (sizei);
836 p->size = sizei;
837 for (index = 0; index < sizei; index++)
838 p->contents[index] = init;
839
840 XSETVECTOR (vector, p);
841 return vector;
842 }
843
844 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
845 "Return a newly created char-table, with purpose PURPOSE.\n\
846 Each element is initialized to INIT, which defaults to nil.\n\
847 PURPOSE should be a symbol which has a `char-table-extra-slots' property.\n\
848 The property's value should be an integer between 0 and 10.")
849 (purpose, init)
850 register Lisp_Object purpose, init;
851 {
852 Lisp_Object vector;
853 Lisp_Object n;
854 CHECK_SYMBOL (purpose, 1);
855 n = Fget (purpose, Qchar_table_extra_slots);
856 CHECK_NUMBER (n, 0);
857 if (XINT (n) < 0 || XINT (n) > 10)
858 args_out_of_range (n, Qnil);
859 /* Add 2 to the size for the defalt and parent slots. */
860 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
861 init);
862 XCHAR_TABLE (vector)->top = Qt;
863 XCHAR_TABLE (vector)->parent = Qnil;
864 XCHAR_TABLE (vector)->purpose = purpose;
865 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
866 return vector;
867 }
868
869 /* Return a newly created sub char table with default value DEFALT.
870 Since a sub char table does not appear as a top level Emacs Lisp
871 object, we don't need a Lisp interface to make it. */
872
873 Lisp_Object
874 make_sub_char_table (defalt)
875 Lisp_Object defalt;
876 {
877 Lisp_Object vector
878 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
879 XCHAR_TABLE (vector)->top = Qnil;
880 XCHAR_TABLE (vector)->defalt = defalt;
881 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
882 return vector;
883 }
884
885 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
886 "Return a newly created vector with specified arguments as elements.\n\
887 Any number of arguments, even zero arguments, are allowed.")
888 (nargs, args)
889 register int nargs;
890 Lisp_Object *args;
891 {
892 register Lisp_Object len, val;
893 register int index;
894 register struct Lisp_Vector *p;
895
896 XSETFASTINT (len, nargs);
897 val = Fmake_vector (len, Qnil);
898 p = XVECTOR (val);
899 for (index = 0; index < nargs; index++)
900 p->contents[index] = args[index];
901 return val;
902 }
903
904 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
905 "Create a byte-code object with specified arguments as elements.\n\
906 The arguments should be the arglist, bytecode-string, constant vector,\n\
907 stack size, (optional) doc string, and (optional) interactive spec.\n\
908 The first four arguments are required; at most six have any\n\
909 significance.")
910 (nargs, args)
911 register int nargs;
912 Lisp_Object *args;
913 {
914 register Lisp_Object len, val;
915 register int index;
916 register struct Lisp_Vector *p;
917
918 XSETFASTINT (len, nargs);
919 if (!NILP (Vpurify_flag))
920 val = make_pure_vector ((EMACS_INT) nargs);
921 else
922 val = Fmake_vector (len, Qnil);
923 p = XVECTOR (val);
924 for (index = 0; index < nargs; index++)
925 {
926 if (!NILP (Vpurify_flag))
927 args[index] = Fpurecopy (args[index]);
928 p->contents[index] = args[index];
929 }
930 XSETCOMPILED (val, p);
931 return val;
932 }
933 \f
934 /* Allocation of symbols.
935 Just like allocation of conses!
936
937 Each symbol_block is just under 1020 bytes long,
938 since malloc really allocates in units of powers of two
939 and uses 4 bytes for its own overhead. */
940
941 #define SYMBOL_BLOCK_SIZE \
942 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
943
944 struct symbol_block
945 {
946 struct symbol_block *next;
947 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
948 };
949
950 struct symbol_block *symbol_block;
951 int symbol_block_index;
952
953 struct Lisp_Symbol *symbol_free_list;
954
955 void
956 init_symbol ()
957 {
958 allocating_for_lisp = 1;
959 symbol_block = (struct symbol_block *) malloc (sizeof (struct symbol_block));
960 allocating_for_lisp = 0;
961 symbol_block->next = 0;
962 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
963 symbol_block_index = 0;
964 symbol_free_list = 0;
965 }
966
967 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
968 "Return a newly allocated uninterned symbol whose name is NAME.\n\
969 Its value and function definition are void, and its property list is nil.")
970 (name)
971 Lisp_Object name;
972 {
973 register Lisp_Object val;
974 register struct Lisp_Symbol *p;
975
976 CHECK_STRING (name, 0);
977
978 if (symbol_free_list)
979 {
980 XSETSYMBOL (val, symbol_free_list);
981 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
982 }
983 else
984 {
985 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
986 {
987 struct symbol_block *new;
988 allocating_for_lisp = 1;
989 new = (struct symbol_block *) xmalloc (sizeof (struct symbol_block));
990 allocating_for_lisp = 0;
991 VALIDATE_LISP_STORAGE (new, sizeof *new);
992 new->next = symbol_block;
993 symbol_block = new;
994 symbol_block_index = 0;
995 }
996 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
997 }
998 p = XSYMBOL (val);
999 p->name = XSTRING (name);
1000 p->obarray = Qnil;
1001 p->plist = Qnil;
1002 p->value = Qunbound;
1003 p->function = Qunbound;
1004 p->next = 0;
1005 consing_since_gc += sizeof (struct Lisp_Symbol);
1006 symbols_consed++;
1007 return val;
1008 }
1009 \f
1010 /* Allocation of markers and other objects that share that structure.
1011 Works like allocation of conses. */
1012
1013 #define MARKER_BLOCK_SIZE \
1014 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
1015
1016 struct marker_block
1017 {
1018 struct marker_block *next;
1019 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
1020 };
1021
1022 struct marker_block *marker_block;
1023 int marker_block_index;
1024
1025 union Lisp_Misc *marker_free_list;
1026
1027 void
1028 init_marker ()
1029 {
1030 allocating_for_lisp = 1;
1031 marker_block = (struct marker_block *) malloc (sizeof (struct marker_block));
1032 allocating_for_lisp = 0;
1033 marker_block->next = 0;
1034 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
1035 marker_block_index = 0;
1036 marker_free_list = 0;
1037 }
1038
1039 /* Return a newly allocated Lisp_Misc object, with no substructure. */
1040 Lisp_Object
1041 allocate_misc ()
1042 {
1043 Lisp_Object val;
1044
1045 if (marker_free_list)
1046 {
1047 XSETMISC (val, marker_free_list);
1048 marker_free_list = marker_free_list->u_free.chain;
1049 }
1050 else
1051 {
1052 if (marker_block_index == MARKER_BLOCK_SIZE)
1053 {
1054 struct marker_block *new;
1055 allocating_for_lisp = 1;
1056 new = (struct marker_block *) xmalloc (sizeof (struct marker_block));
1057 allocating_for_lisp = 0;
1058 VALIDATE_LISP_STORAGE (new, sizeof *new);
1059 new->next = marker_block;
1060 marker_block = new;
1061 marker_block_index = 0;
1062 }
1063 XSETMISC (val, &marker_block->markers[marker_block_index++]);
1064 }
1065 consing_since_gc += sizeof (union Lisp_Misc);
1066 misc_objects_consed++;
1067 return val;
1068 }
1069
1070 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
1071 "Return a newly allocated marker which does not point at any place.")
1072 ()
1073 {
1074 register Lisp_Object val;
1075 register struct Lisp_Marker *p;
1076
1077 val = allocate_misc ();
1078 XMISCTYPE (val) = Lisp_Misc_Marker;
1079 p = XMARKER (val);
1080 p->buffer = 0;
1081 p->bytepos = 0;
1082 p->charpos = 0;
1083 p->chain = Qnil;
1084 p->insertion_type = 0;
1085 return val;
1086 }
1087
1088 /* Put MARKER back on the free list after using it temporarily. */
1089
1090 void
1091 free_marker (marker)
1092 Lisp_Object marker;
1093 {
1094 unchain_marker (marker);
1095
1096 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
1097 XMISC (marker)->u_free.chain = marker_free_list;
1098 marker_free_list = XMISC (marker);
1099
1100 total_free_markers++;
1101 }
1102 \f
1103 /* Allocation of strings */
1104
1105 /* Strings reside inside of string_blocks. The entire data of the string,
1106 both the size and the contents, live in part of the `chars' component of a string_block.
1107 The `pos' component is the index within `chars' of the first free byte.
1108
1109 first_string_block points to the first string_block ever allocated.
1110 Each block points to the next one with its `next' field.
1111 The `prev' fields chain in reverse order.
1112 The last one allocated is the one currently being filled.
1113 current_string_block points to it.
1114
1115 The string_blocks that hold individual large strings
1116 go in a separate chain, started by large_string_blocks. */
1117
1118
1119 /* String blocks contain this many useful bytes.
1120 8188 is power of 2, minus 4 for malloc overhead. */
1121 #define STRING_BLOCK_SIZE (8188 - sizeof (struct string_block_head))
1122
1123 /* A string bigger than this gets its own specially-made string block
1124 if it doesn't fit in the current one. */
1125 #define STRING_BLOCK_OUTSIZE 1024
1126
1127 struct string_block_head
1128 {
1129 struct string_block *next, *prev;
1130 EMACS_INT pos;
1131 };
1132
1133 struct string_block
1134 {
1135 struct string_block *next, *prev;
1136 EMACS_INT pos;
1137 char chars[STRING_BLOCK_SIZE];
1138 };
1139
1140 /* This points to the string block we are now allocating strings. */
1141
1142 struct string_block *current_string_block;
1143
1144 /* This points to the oldest string block, the one that starts the chain. */
1145
1146 struct string_block *first_string_block;
1147
1148 /* Last string block in chain of those made for individual large strings. */
1149
1150 struct string_block *large_string_blocks;
1151
1152 /* If SIZE is the length of a string, this returns how many bytes
1153 the string occupies in a string_block (including padding). */
1154
1155 #define STRING_FULLSIZE(size) (((size) + 1 + STRING_BASE_SIZE + STRING_PAD - 1) \
1156 & ~(STRING_PAD - 1))
1157 /* Add 1 for the null terminator,
1158 and add STRING_PAD - 1 as part of rounding up. */
1159
1160 #define STRING_PAD (sizeof (EMACS_INT))
1161 /* Size of the stuff in the string not including its data. */
1162 #define STRING_BASE_SIZE (((sizeof (struct Lisp_String) - 1) / STRING_PAD) * STRING_PAD)
1163
1164 #if 0
1165 #define STRING_FULLSIZE(SIZE) \
1166 (((SIZE) + 2 * sizeof (EMACS_INT)) & ~(sizeof (EMACS_INT) - 1))
1167 #endif
1168
1169 void
1170 init_strings ()
1171 {
1172 allocating_for_lisp = 1;
1173 current_string_block = (struct string_block *) malloc (sizeof (struct string_block));
1174 allocating_for_lisp = 0;
1175 first_string_block = current_string_block;
1176 consing_since_gc += sizeof (struct string_block);
1177 current_string_block->next = 0;
1178 current_string_block->prev = 0;
1179 current_string_block->pos = 0;
1180 large_string_blocks = 0;
1181 }
1182
1183 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1184 "Return a newly created string of length LENGTH, with each element being INIT.\n\
1185 Both LENGTH and INIT must be numbers.")
1186 (length, init)
1187 Lisp_Object length, init;
1188 {
1189 register Lisp_Object val;
1190 register unsigned char *p, *end;
1191 int c, nbytes;
1192
1193 CHECK_NATNUM (length, 0);
1194 CHECK_NUMBER (init, 1);
1195
1196 c = XINT (init);
1197 if (SINGLE_BYTE_CHAR_P (c))
1198 {
1199 nbytes = XINT (length);
1200 val = make_uninit_multibyte_string (nbytes, nbytes);
1201 p = XSTRING (val)->data;
1202 end = p + XSTRING (val)->size;
1203 while (p != end)
1204 *p++ = c;
1205 }
1206 else
1207 {
1208 unsigned char work[4], *str;
1209 int len = CHAR_STRING (c, work, str);
1210
1211 nbytes = len * XINT (length);
1212 val = make_uninit_multibyte_string (XINT (length), nbytes);
1213 p = XSTRING (val)->data;
1214 end = p + nbytes;
1215 while (p != end)
1216 {
1217 bcopy (str, p, len);
1218 p += len;
1219 }
1220 }
1221 *p = 0;
1222 return val;
1223 }
1224
1225 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1226 "Return a new bool-vector of length LENGTH, using INIT for as each element.\n\
1227 LENGTH must be a number. INIT matters only in whether it is t or nil.")
1228 (length, init)
1229 Lisp_Object length, init;
1230 {
1231 register Lisp_Object val;
1232 struct Lisp_Bool_Vector *p;
1233 int real_init, i;
1234 int length_in_chars, length_in_elts, bits_per_value;
1235
1236 CHECK_NATNUM (length, 0);
1237
1238 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1239
1240 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1241 length_in_chars = length_in_elts * sizeof (EMACS_INT);
1242
1243 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1244 slot `size' of the struct Lisp_Bool_Vector. */
1245 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1246 p = XBOOL_VECTOR (val);
1247 /* Get rid of any bits that would cause confusion. */
1248 p->vector_size = 0;
1249 XSETBOOL_VECTOR (val, p);
1250 p->size = XFASTINT (length);
1251
1252 real_init = (NILP (init) ? 0 : -1);
1253 for (i = 0; i < length_in_chars ; i++)
1254 p->data[i] = real_init;
1255
1256 return val;
1257 }
1258
1259 /* Make a string from NBYTES bytes at CONTENTS,
1260 and compute the number of characters from the contents. */
1261
1262 Lisp_Object
1263 make_string (contents, nbytes)
1264 char *contents;
1265 int nbytes;
1266 {
1267 register Lisp_Object val;
1268 int nchars = chars_in_text (contents, nbytes);
1269 val = make_uninit_multibyte_string (nchars, nbytes);
1270 bcopy (contents, XSTRING (val)->data, nbytes);
1271 return val;
1272 }
1273
1274 /* Make a string from LENGTH bytes at CONTENTS,
1275 assuming each byte is a character. */
1276
1277 Lisp_Object
1278 make_unibyte_string (contents, length)
1279 char *contents;
1280 int length;
1281 {
1282 register Lisp_Object val;
1283 val = make_uninit_string (length);
1284 bcopy (contents, XSTRING (val)->data, length);
1285 return val;
1286 }
1287
1288 /* Make a string from NCHARS characters occupying NBYTES bytes at CONTENTS. */
1289
1290 Lisp_Object
1291 make_multibyte_string (contents, nchars, nbytes)
1292 char *contents;
1293 int nchars, nbytes;
1294 {
1295 register Lisp_Object val;
1296 val = make_uninit_multibyte_string (nchars, nbytes);
1297 bcopy (contents, XSTRING (val)->data, nbytes);
1298 return val;
1299 }
1300
1301 /* Make a string from the data at STR,
1302 treating it as multibyte if the data warrants. */
1303
1304 Lisp_Object
1305 build_string (str)
1306 char *str;
1307 {
1308 return make_string (str, strlen (str));
1309 }
1310
1311 Lisp_Object
1312 make_uninit_string (length)
1313 int length;
1314 {
1315 return make_uninit_multibyte_string (length, length);
1316 }
1317
1318 Lisp_Object
1319 make_uninit_multibyte_string (length, length_byte)
1320 int length, length_byte;
1321 {
1322 register Lisp_Object val;
1323 register int fullsize = STRING_FULLSIZE (length_byte);
1324
1325 if (length < 0) abort ();
1326
1327 if (fullsize <= STRING_BLOCK_SIZE - current_string_block->pos)
1328 /* This string can fit in the current string block */
1329 {
1330 XSETSTRING (val,
1331 ((struct Lisp_String *)
1332 (current_string_block->chars + current_string_block->pos)));
1333 current_string_block->pos += fullsize;
1334 }
1335 else if (fullsize > STRING_BLOCK_OUTSIZE)
1336 /* This string gets its own string block */
1337 {
1338 register struct string_block *new;
1339 allocating_for_lisp = 1;
1340 #ifdef DOUG_LEA_MALLOC
1341 /* Prevent mmap'ing the chunk (which is potentially very large). */
1342 mallopt (M_MMAP_MAX, 0);
1343 #endif
1344 new = (struct string_block *) xmalloc (sizeof (struct string_block_head) + fullsize);
1345 #ifdef DOUG_LEA_MALLOC
1346 /* Back to a reasonable maximum of mmap'ed areas. */
1347 mallopt (M_MMAP_MAX, 64);
1348 #endif
1349 allocating_for_lisp = 0;
1350 VALIDATE_LISP_STORAGE (new, 0);
1351 consing_since_gc += sizeof (struct string_block_head) + fullsize;
1352 new->pos = fullsize;
1353 new->next = large_string_blocks;
1354 large_string_blocks = new;
1355 XSETSTRING (val,
1356 ((struct Lisp_String *)
1357 ((struct string_block_head *)new + 1)));
1358 }
1359 else
1360 /* Make a new current string block and start it off with this string */
1361 {
1362 register struct string_block *new;
1363 allocating_for_lisp = 1;
1364 new = (struct string_block *) xmalloc (sizeof (struct string_block));
1365 allocating_for_lisp = 0;
1366 VALIDATE_LISP_STORAGE (new, sizeof *new);
1367 consing_since_gc += sizeof (struct string_block);
1368 current_string_block->next = new;
1369 new->prev = current_string_block;
1370 new->next = 0;
1371 current_string_block = new;
1372 new->pos = fullsize;
1373 XSETSTRING (val,
1374 (struct Lisp_String *) current_string_block->chars);
1375 }
1376
1377 string_chars_consed += fullsize;
1378 XSTRING (val)->size = length;
1379 SET_STRING_BYTES (XSTRING (val), length_byte);
1380 XSTRING (val)->data[length_byte] = 0;
1381 INITIALIZE_INTERVAL (XSTRING (val), NULL_INTERVAL);
1382
1383 return val;
1384 }
1385
1386 /* Return a newly created vector or string with specified arguments as
1387 elements. If all the arguments are characters that can fit
1388 in a string of events, make a string; otherwise, make a vector.
1389
1390 Any number of arguments, even zero arguments, are allowed. */
1391
1392 Lisp_Object
1393 make_event_array (nargs, args)
1394 register int nargs;
1395 Lisp_Object *args;
1396 {
1397 int i;
1398
1399 for (i = 0; i < nargs; i++)
1400 /* The things that fit in a string
1401 are characters that are in 0...127,
1402 after discarding the meta bit and all the bits above it. */
1403 if (!INTEGERP (args[i])
1404 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
1405 return Fvector (nargs, args);
1406
1407 /* Since the loop exited, we know that all the things in it are
1408 characters, so we can make a string. */
1409 {
1410 Lisp_Object result;
1411
1412 result = Fmake_string (make_number (nargs), make_number (0));
1413 for (i = 0; i < nargs; i++)
1414 {
1415 XSTRING (result)->data[i] = XINT (args[i]);
1416 /* Move the meta bit to the right place for a string char. */
1417 if (XINT (args[i]) & CHAR_META)
1418 XSTRING (result)->data[i] |= 0x80;
1419 }
1420
1421 return result;
1422 }
1423 }
1424 \f
1425 /* Pure storage management. */
1426
1427 /* Must get an error if pure storage is full,
1428 since if it cannot hold a large string
1429 it may be able to hold conses that point to that string;
1430 then the string is not protected from gc. */
1431
1432 Lisp_Object
1433 make_pure_string (data, length, length_byte)
1434 char *data;
1435 int length;
1436 int length_byte;
1437 {
1438 register Lisp_Object new;
1439 register int size = STRING_FULLSIZE (length_byte);
1440
1441 if (pureptr + size > PURESIZE)
1442 error ("Pure Lisp storage exhausted");
1443 XSETSTRING (new, PUREBEG + pureptr);
1444 XSTRING (new)->size = length;
1445 SET_STRING_BYTES (XSTRING (new), length_byte);
1446 bcopy (data, XSTRING (new)->data, length_byte);
1447 XSTRING (new)->data[length_byte] = 0;
1448
1449 /* We must give strings in pure storage some kind of interval. So we
1450 give them a null one. */
1451 #if defined (USE_TEXT_PROPERTIES)
1452 XSTRING (new)->intervals = NULL_INTERVAL;
1453 #endif
1454 pureptr += size;
1455 return new;
1456 }
1457
1458 Lisp_Object
1459 pure_cons (car, cdr)
1460 Lisp_Object car, cdr;
1461 {
1462 register Lisp_Object new;
1463
1464 if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
1465 error ("Pure Lisp storage exhausted");
1466 XSETCONS (new, PUREBEG + pureptr);
1467 pureptr += sizeof (struct Lisp_Cons);
1468 XCONS (new)->car = Fpurecopy (car);
1469 XCONS (new)->cdr = Fpurecopy (cdr);
1470 return new;
1471 }
1472
1473 #ifdef LISP_FLOAT_TYPE
1474
1475 Lisp_Object
1476 make_pure_float (num)
1477 double num;
1478 {
1479 register Lisp_Object new;
1480
1481 /* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
1482 (double) boundary. Some architectures (like the sparc) require
1483 this, and I suspect that floats are rare enough that it's no
1484 tragedy for those that do. */
1485 {
1486 int alignment;
1487 char *p = PUREBEG + pureptr;
1488
1489 #ifdef __GNUC__
1490 #if __GNUC__ >= 2
1491 alignment = __alignof (struct Lisp_Float);
1492 #else
1493 alignment = sizeof (struct Lisp_Float);
1494 #endif
1495 #else
1496 alignment = sizeof (struct Lisp_Float);
1497 #endif
1498 p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
1499 pureptr = p - PUREBEG;
1500 }
1501
1502 if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
1503 error ("Pure Lisp storage exhausted");
1504 XSETFLOAT (new, PUREBEG + pureptr);
1505 pureptr += sizeof (struct Lisp_Float);
1506 XFLOAT (new)->data = num;
1507 XSETFASTINT (XFLOAT (new)->type, 0); /* bug chasing -wsr */
1508 return new;
1509 }
1510
1511 #endif /* LISP_FLOAT_TYPE */
1512
1513 Lisp_Object
1514 make_pure_vector (len)
1515 EMACS_INT len;
1516 {
1517 register Lisp_Object new;
1518 register EMACS_INT size = sizeof (struct Lisp_Vector) + (len - 1) * sizeof (Lisp_Object);
1519
1520 if (pureptr + size > PURESIZE)
1521 error ("Pure Lisp storage exhausted");
1522
1523 XSETVECTOR (new, PUREBEG + pureptr);
1524 pureptr += size;
1525 XVECTOR (new)->size = len;
1526 return new;
1527 }
1528
1529 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
1530 "Make a copy of OBJECT in pure storage.\n\
1531 Recursively copies contents of vectors and cons cells.\n\
1532 Does not copy symbols.")
1533 (obj)
1534 register Lisp_Object obj;
1535 {
1536 if (NILP (Vpurify_flag))
1537 return obj;
1538
1539 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
1540 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
1541 return obj;
1542
1543 if (CONSP (obj))
1544 return pure_cons (XCONS (obj)->car, XCONS (obj)->cdr);
1545 #ifdef LISP_FLOAT_TYPE
1546 else if (FLOATP (obj))
1547 return make_pure_float (XFLOAT (obj)->data);
1548 #endif /* LISP_FLOAT_TYPE */
1549 else if (STRINGP (obj))
1550 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
1551 STRING_BYTES (XSTRING (obj)));
1552 else if (COMPILEDP (obj) || VECTORP (obj))
1553 {
1554 register struct Lisp_Vector *vec;
1555 register int i, size;
1556
1557 size = XVECTOR (obj)->size;
1558 if (size & PSEUDOVECTOR_FLAG)
1559 size &= PSEUDOVECTOR_SIZE_MASK;
1560 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
1561 for (i = 0; i < size; i++)
1562 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
1563 if (COMPILEDP (obj))
1564 XSETCOMPILED (obj, vec);
1565 else
1566 XSETVECTOR (obj, vec);
1567 return obj;
1568 }
1569 else if (MARKERP (obj))
1570 error ("Attempt to copy a marker to pure storage");
1571 else
1572 return obj;
1573 }
1574 \f
1575 /* Recording what needs to be marked for gc. */
1576
1577 struct gcpro *gcprolist;
1578
1579 #define NSTATICS 768
1580
1581 Lisp_Object *staticvec[NSTATICS] = {0};
1582
1583 int staticidx = 0;
1584
1585 /* Put an entry in staticvec, pointing at the variable whose address is given */
1586
1587 void
1588 staticpro (varaddress)
1589 Lisp_Object *varaddress;
1590 {
1591 staticvec[staticidx++] = varaddress;
1592 if (staticidx >= NSTATICS)
1593 abort ();
1594 }
1595
1596 struct catchtag
1597 {
1598 Lisp_Object tag;
1599 Lisp_Object val;
1600 struct catchtag *next;
1601 #if 0 /* We don't need this for GC purposes */
1602 jmp_buf jmp;
1603 #endif
1604 };
1605
1606 struct backtrace
1607 {
1608 struct backtrace *next;
1609 Lisp_Object *function;
1610 Lisp_Object *args; /* Points to vector of args. */
1611 int nargs; /* length of vector */
1612 /* if nargs is UNEVALLED, args points to slot holding list of unevalled args */
1613 char evalargs;
1614 };
1615 \f
1616 /* Garbage collection! */
1617
1618 /* Temporarily prevent garbage collection. */
1619
1620 int
1621 inhibit_garbage_collection ()
1622 {
1623 int count = specpdl_ptr - specpdl;
1624 Lisp_Object number;
1625 int nbits = min (VALBITS, BITS_PER_INT);
1626
1627 XSETINT (number, ((EMACS_INT) 1 << (nbits - 1)) - 1);
1628
1629 specbind (Qgc_cons_threshold, number);
1630
1631 return count;
1632 }
1633
1634 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
1635 "Reclaim storage for Lisp objects no longer needed.\n\
1636 Returns info on amount of space in use:\n\
1637 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
1638 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
1639 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS))\n\
1640 Garbage collection happens automatically if you cons more than\n\
1641 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
1642 ()
1643 {
1644 register struct gcpro *tail;
1645 register struct specbinding *bind;
1646 struct catchtag *catch;
1647 struct handler *handler;
1648 register struct backtrace *backlist;
1649 register Lisp_Object tem;
1650 char *omessage = echo_area_glyphs;
1651 int omessage_length = echo_area_glyphs_length;
1652 int oldmultibyte = message_enable_multibyte;
1653 char stack_top_variable;
1654 register int i;
1655
1656 /* In case user calls debug_print during GC,
1657 don't let that cause a recursive GC. */
1658 consing_since_gc = 0;
1659
1660 /* Save a copy of the contents of the stack, for debugging. */
1661 #if MAX_SAVE_STACK > 0
1662 if (NILP (Vpurify_flag))
1663 {
1664 i = &stack_top_variable - stack_bottom;
1665 if (i < 0) i = -i;
1666 if (i < MAX_SAVE_STACK)
1667 {
1668 if (stack_copy == 0)
1669 stack_copy = (char *) xmalloc (stack_copy_size = i);
1670 else if (stack_copy_size < i)
1671 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
1672 if (stack_copy)
1673 {
1674 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
1675 bcopy (stack_bottom, stack_copy, i);
1676 else
1677 bcopy (&stack_top_variable, stack_copy, i);
1678 }
1679 }
1680 }
1681 #endif /* MAX_SAVE_STACK > 0 */
1682
1683 if (garbage_collection_messages)
1684 message1_nolog ("Garbage collecting...");
1685
1686 /* Don't keep command history around forever. */
1687 if (NUMBERP (Vhistory_length) && XINT (Vhistory_length) > 0)
1688 {
1689 tem = Fnthcdr (Vhistory_length, Vcommand_history);
1690 if (CONSP (tem))
1691 XCONS (tem)->cdr = Qnil;
1692 }
1693
1694 /* Likewise for undo information. */
1695 {
1696 register struct buffer *nextb = all_buffers;
1697
1698 while (nextb)
1699 {
1700 /* If a buffer's undo list is Qt, that means that undo is
1701 turned off in that buffer. Calling truncate_undo_list on
1702 Qt tends to return NULL, which effectively turns undo back on.
1703 So don't call truncate_undo_list if undo_list is Qt. */
1704 if (! EQ (nextb->undo_list, Qt))
1705 nextb->undo_list
1706 = truncate_undo_list (nextb->undo_list, undo_limit,
1707 undo_strong_limit);
1708 nextb = nextb->next;
1709 }
1710 }
1711
1712 gc_in_progress = 1;
1713
1714 /* clear_marks (); */
1715
1716 /* In each "large string", set the MARKBIT of the size field.
1717 That enables mark_object to recognize them. */
1718 {
1719 register struct string_block *b;
1720 for (b = large_string_blocks; b; b = b->next)
1721 ((struct Lisp_String *)(&b->chars[0]))->size |= MARKBIT;
1722 }
1723
1724 /* Mark all the special slots that serve as the roots of accessibility.
1725
1726 Usually the special slots to mark are contained in particular structures.
1727 Then we know no slot is marked twice because the structures don't overlap.
1728 In some cases, the structures point to the slots to be marked.
1729 For these, we use MARKBIT to avoid double marking of the slot. */
1730
1731 for (i = 0; i < staticidx; i++)
1732 mark_object (staticvec[i]);
1733 for (tail = gcprolist; tail; tail = tail->next)
1734 for (i = 0; i < tail->nvars; i++)
1735 if (!XMARKBIT (tail->var[i]))
1736 {
1737 mark_object (&tail->var[i]);
1738 XMARK (tail->var[i]);
1739 }
1740 for (bind = specpdl; bind != specpdl_ptr; bind++)
1741 {
1742 mark_object (&bind->symbol);
1743 mark_object (&bind->old_value);
1744 }
1745 for (catch = catchlist; catch; catch = catch->next)
1746 {
1747 mark_object (&catch->tag);
1748 mark_object (&catch->val);
1749 }
1750 for (handler = handlerlist; handler; handler = handler->next)
1751 {
1752 mark_object (&handler->handler);
1753 mark_object (&handler->var);
1754 }
1755 for (backlist = backtrace_list; backlist; backlist = backlist->next)
1756 {
1757 if (!XMARKBIT (*backlist->function))
1758 {
1759 mark_object (backlist->function);
1760 XMARK (*backlist->function);
1761 }
1762 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
1763 i = 0;
1764 else
1765 i = backlist->nargs - 1;
1766 for (; i >= 0; i--)
1767 if (!XMARKBIT (backlist->args[i]))
1768 {
1769 mark_object (&backlist->args[i]);
1770 XMARK (backlist->args[i]);
1771 }
1772 }
1773 mark_kboards ();
1774
1775 gc_sweep ();
1776
1777 /* Clear the mark bits that we set in certain root slots. */
1778
1779 for (tail = gcprolist; tail; tail = tail->next)
1780 for (i = 0; i < tail->nvars; i++)
1781 XUNMARK (tail->var[i]);
1782 for (backlist = backtrace_list; backlist; backlist = backlist->next)
1783 {
1784 XUNMARK (*backlist->function);
1785 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
1786 i = 0;
1787 else
1788 i = backlist->nargs - 1;
1789 for (; i >= 0; i--)
1790 XUNMARK (backlist->args[i]);
1791 }
1792 XUNMARK (buffer_defaults.name);
1793 XUNMARK (buffer_local_symbols.name);
1794
1795 /* clear_marks (); */
1796 gc_in_progress = 0;
1797
1798 consing_since_gc = 0;
1799 if (gc_cons_threshold < 10000)
1800 gc_cons_threshold = 10000;
1801
1802 if (garbage_collection_messages)
1803 {
1804 if (omessage || minibuf_level > 0)
1805 message2_nolog (omessage, omessage_length, oldmultibyte);
1806 else
1807 message1_nolog ("Garbage collecting...done");
1808 }
1809
1810 return Fcons (Fcons (make_number (total_conses),
1811 make_number (total_free_conses)),
1812 Fcons (Fcons (make_number (total_symbols),
1813 make_number (total_free_symbols)),
1814 Fcons (Fcons (make_number (total_markers),
1815 make_number (total_free_markers)),
1816 Fcons (make_number (total_string_size),
1817 Fcons (make_number (total_vector_size),
1818 Fcons (Fcons
1819 #ifdef LISP_FLOAT_TYPE
1820 (make_number (total_floats),
1821 make_number (total_free_floats)),
1822 #else /* not LISP_FLOAT_TYPE */
1823 (make_number (0), make_number (0)),
1824 #endif /* not LISP_FLOAT_TYPE */
1825 Fcons (Fcons
1826 #ifdef USE_TEXT_PROPERTIES
1827 (make_number (total_intervals),
1828 make_number (total_free_intervals)),
1829 #else /* not USE_TEXT_PROPERTIES */
1830 (make_number (0), make_number (0)),
1831 #endif /* not USE_TEXT_PROPERTIES */
1832 Qnil)))))));
1833 }
1834 \f
1835 #if 0
1836 static void
1837 clear_marks ()
1838 {
1839 /* Clear marks on all conses */
1840 {
1841 register struct cons_block *cblk;
1842 register int lim = cons_block_index;
1843
1844 for (cblk = cons_block; cblk; cblk = cblk->next)
1845 {
1846 register int i;
1847 for (i = 0; i < lim; i++)
1848 XUNMARK (cblk->conses[i].car);
1849 lim = CONS_BLOCK_SIZE;
1850 }
1851 }
1852 /* Clear marks on all symbols */
1853 {
1854 register struct symbol_block *sblk;
1855 register int lim = symbol_block_index;
1856
1857 for (sblk = symbol_block; sblk; sblk = sblk->next)
1858 {
1859 register int i;
1860 for (i = 0; i < lim; i++)
1861 {
1862 XUNMARK (sblk->symbols[i].plist);
1863 }
1864 lim = SYMBOL_BLOCK_SIZE;
1865 }
1866 }
1867 /* Clear marks on all markers */
1868 {
1869 register struct marker_block *sblk;
1870 register int lim = marker_block_index;
1871
1872 for (sblk = marker_block; sblk; sblk = sblk->next)
1873 {
1874 register int i;
1875 for (i = 0; i < lim; i++)
1876 if (sblk->markers[i].u_marker.type == Lisp_Misc_Marker)
1877 XUNMARK (sblk->markers[i].u_marker.chain);
1878 lim = MARKER_BLOCK_SIZE;
1879 }
1880 }
1881 /* Clear mark bits on all buffers */
1882 {
1883 register struct buffer *nextb = all_buffers;
1884
1885 while (nextb)
1886 {
1887 XUNMARK (nextb->name);
1888 nextb = nextb->next;
1889 }
1890 }
1891 }
1892 #endif
1893 \f
1894 /* Mark reference to a Lisp_Object.
1895 If the object referred to has not been seen yet, recursively mark
1896 all the references contained in it.
1897
1898 If the object referenced is a short string, the referencing slot
1899 is threaded into a chain of such slots, pointed to from
1900 the `size' field of the string. The actual string size
1901 lives in the last slot in the chain. We recognize the end
1902 because it is < (unsigned) STRING_BLOCK_SIZE. */
1903
1904 #define LAST_MARKED_SIZE 500
1905 Lisp_Object *last_marked[LAST_MARKED_SIZE];
1906 int last_marked_index;
1907
1908 static void
1909 mark_object (argptr)
1910 Lisp_Object *argptr;
1911 {
1912 Lisp_Object *objptr = argptr;
1913 register Lisp_Object obj;
1914
1915 loop:
1916 obj = *objptr;
1917 loop2:
1918 XUNMARK (obj);
1919
1920 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
1921 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
1922 return;
1923
1924 last_marked[last_marked_index++] = objptr;
1925 if (last_marked_index == LAST_MARKED_SIZE)
1926 last_marked_index = 0;
1927
1928 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
1929 {
1930 case Lisp_String:
1931 {
1932 register struct Lisp_String *ptr = XSTRING (obj);
1933
1934 MARK_INTERVAL_TREE (ptr->intervals);
1935 if (ptr->size & MARKBIT)
1936 /* A large string. Just set ARRAY_MARK_FLAG. */
1937 ptr->size |= ARRAY_MARK_FLAG;
1938 else
1939 {
1940 /* A small string. Put this reference
1941 into the chain of references to it.
1942 If the address includes MARKBIT, put that bit elsewhere
1943 when we store OBJPTR into the size field. */
1944
1945 if (XMARKBIT (*objptr))
1946 {
1947 XSETFASTINT (*objptr, ptr->size);
1948 XMARK (*objptr);
1949 }
1950 else
1951 XSETFASTINT (*objptr, ptr->size);
1952
1953 if ((EMACS_INT) objptr & DONT_COPY_FLAG)
1954 abort ();
1955 ptr->size = (EMACS_INT) objptr;
1956 if (ptr->size & MARKBIT)
1957 ptr->size ^= MARKBIT | DONT_COPY_FLAG;
1958 }
1959 }
1960 break;
1961
1962 case Lisp_Vectorlike:
1963 if (GC_BUFFERP (obj))
1964 {
1965 if (!XMARKBIT (XBUFFER (obj)->name))
1966 mark_buffer (obj);
1967 }
1968 else if (GC_SUBRP (obj))
1969 break;
1970 else if (GC_COMPILEDP (obj))
1971 /* We could treat this just like a vector, but it is better
1972 to save the COMPILED_CONSTANTS element for last and avoid recursion
1973 there. */
1974 {
1975 register struct Lisp_Vector *ptr = XVECTOR (obj);
1976 register EMACS_INT size = ptr->size;
1977 /* See comment above under Lisp_Vector. */
1978 struct Lisp_Vector *volatile ptr1 = ptr;
1979 register int i;
1980
1981 if (size & ARRAY_MARK_FLAG)
1982 break; /* Already marked */
1983 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1984 size &= PSEUDOVECTOR_SIZE_MASK;
1985 for (i = 0; i < size; i++) /* and then mark its elements */
1986 {
1987 if (i != COMPILED_CONSTANTS)
1988 mark_object (&ptr1->contents[i]);
1989 }
1990 /* This cast should be unnecessary, but some Mips compiler complains
1991 (MIPS-ABI + SysVR4, DC/OSx, etc). */
1992 objptr = (Lisp_Object *) &ptr1->contents[COMPILED_CONSTANTS];
1993 goto loop;
1994 }
1995 else if (GC_FRAMEP (obj))
1996 {
1997 /* See comment above under Lisp_Vector for why this is volatile. */
1998 register struct frame *volatile ptr = XFRAME (obj);
1999 register EMACS_INT size = ptr->size;
2000
2001 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
2002 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
2003
2004 mark_object (&ptr->name);
2005 mark_object (&ptr->icon_name);
2006 mark_object (&ptr->title);
2007 mark_object (&ptr->focus_frame);
2008 mark_object (&ptr->selected_window);
2009 mark_object (&ptr->minibuffer_window);
2010 mark_object (&ptr->param_alist);
2011 mark_object (&ptr->scroll_bars);
2012 mark_object (&ptr->condemned_scroll_bars);
2013 mark_object (&ptr->menu_bar_items);
2014 mark_object (&ptr->face_alist);
2015 mark_object (&ptr->menu_bar_vector);
2016 mark_object (&ptr->buffer_predicate);
2017 mark_object (&ptr->buffer_list);
2018 }
2019 else if (GC_BOOL_VECTOR_P (obj))
2020 {
2021 register struct Lisp_Vector *ptr = XVECTOR (obj);
2022
2023 if (ptr->size & ARRAY_MARK_FLAG)
2024 break; /* Already marked */
2025 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
2026 }
2027 else
2028 {
2029 register struct Lisp_Vector *ptr = XVECTOR (obj);
2030 register EMACS_INT size = ptr->size;
2031 /* The reason we use ptr1 is to avoid an apparent hardware bug
2032 that happens occasionally on the FSF's HP 300s.
2033 The bug is that a2 gets clobbered by recursive calls to mark_object.
2034 The clobberage seems to happen during function entry,
2035 perhaps in the moveml instruction.
2036 Yes, this is a crock, but we have to do it. */
2037 struct Lisp_Vector *volatile ptr1 = ptr;
2038 register int i;
2039
2040 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
2041 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
2042 if (size & PSEUDOVECTOR_FLAG)
2043 size &= PSEUDOVECTOR_SIZE_MASK;
2044 for (i = 0; i < size; i++) /* and then mark its elements */
2045 mark_object (&ptr1->contents[i]);
2046 }
2047 break;
2048
2049 case Lisp_Symbol:
2050 {
2051 /* See comment above under Lisp_Vector for why this is volatile. */
2052 register struct Lisp_Symbol *volatile ptr = XSYMBOL (obj);
2053 struct Lisp_Symbol *ptrx;
2054
2055 if (XMARKBIT (ptr->plist)) break;
2056 XMARK (ptr->plist);
2057 mark_object ((Lisp_Object *) &ptr->value);
2058 mark_object (&ptr->function);
2059 mark_object (&ptr->plist);
2060 XSETTYPE (*(Lisp_Object *) &ptr->name, Lisp_String);
2061 mark_object (&ptr->name);
2062 /* Note that we do not mark the obarray of the symbol.
2063 It is safe not to do so because nothing accesses that
2064 slot except to check whether it is nil. */
2065 ptr = ptr->next;
2066 if (ptr)
2067 {
2068 /* For the benefit of the last_marked log. */
2069 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
2070 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
2071 XSETSYMBOL (obj, ptrx);
2072 /* We can't goto loop here because *objptr doesn't contain an
2073 actual Lisp_Object with valid datatype field. */
2074 goto loop2;
2075 }
2076 }
2077 break;
2078
2079 case Lisp_Misc:
2080 switch (XMISCTYPE (obj))
2081 {
2082 case Lisp_Misc_Marker:
2083 XMARK (XMARKER (obj)->chain);
2084 /* DO NOT mark thru the marker's chain.
2085 The buffer's markers chain does not preserve markers from gc;
2086 instead, markers are removed from the chain when freed by gc. */
2087 break;
2088
2089 case Lisp_Misc_Buffer_Local_Value:
2090 case Lisp_Misc_Some_Buffer_Local_Value:
2091 {
2092 register struct Lisp_Buffer_Local_Value *ptr
2093 = XBUFFER_LOCAL_VALUE (obj);
2094 if (XMARKBIT (ptr->realvalue)) break;
2095 XMARK (ptr->realvalue);
2096 /* If the cdr is nil, avoid recursion for the car. */
2097 if (EQ (ptr->cdr, Qnil))
2098 {
2099 objptr = &ptr->realvalue;
2100 goto loop;
2101 }
2102 mark_object (&ptr->realvalue);
2103 mark_object (&ptr->buffer);
2104 mark_object (&ptr->frame);
2105 /* See comment above under Lisp_Vector for why not use ptr here. */
2106 objptr = &XBUFFER_LOCAL_VALUE (obj)->cdr;
2107 goto loop;
2108 }
2109
2110 case Lisp_Misc_Intfwd:
2111 case Lisp_Misc_Boolfwd:
2112 case Lisp_Misc_Objfwd:
2113 case Lisp_Misc_Buffer_Objfwd:
2114 case Lisp_Misc_Kboard_Objfwd:
2115 /* Don't bother with Lisp_Buffer_Objfwd,
2116 since all markable slots in current buffer marked anyway. */
2117 /* Don't need to do Lisp_Objfwd, since the places they point
2118 are protected with staticpro. */
2119 break;
2120
2121 case Lisp_Misc_Overlay:
2122 {
2123 struct Lisp_Overlay *ptr = XOVERLAY (obj);
2124 if (!XMARKBIT (ptr->plist))
2125 {
2126 XMARK (ptr->plist);
2127 mark_object (&ptr->start);
2128 mark_object (&ptr->end);
2129 objptr = &ptr->plist;
2130 goto loop;
2131 }
2132 }
2133 break;
2134
2135 default:
2136 abort ();
2137 }
2138 break;
2139
2140 case Lisp_Cons:
2141 {
2142 register struct Lisp_Cons *ptr = XCONS (obj);
2143 if (XMARKBIT (ptr->car)) break;
2144 XMARK (ptr->car);
2145 /* If the cdr is nil, avoid recursion for the car. */
2146 if (EQ (ptr->cdr, Qnil))
2147 {
2148 objptr = &ptr->car;
2149 goto loop;
2150 }
2151 mark_object (&ptr->car);
2152 /* See comment above under Lisp_Vector for why not use ptr here. */
2153 objptr = &XCONS (obj)->cdr;
2154 goto loop;
2155 }
2156
2157 #ifdef LISP_FLOAT_TYPE
2158 case Lisp_Float:
2159 XMARK (XFLOAT (obj)->type);
2160 break;
2161 #endif /* LISP_FLOAT_TYPE */
2162
2163 case Lisp_Int:
2164 break;
2165
2166 default:
2167 abort ();
2168 }
2169 }
2170
2171 /* Mark the pointers in a buffer structure. */
2172
2173 static void
2174 mark_buffer (buf)
2175 Lisp_Object buf;
2176 {
2177 register struct buffer *buffer = XBUFFER (buf);
2178 register Lisp_Object *ptr;
2179 Lisp_Object base_buffer;
2180
2181 /* This is the buffer's markbit */
2182 mark_object (&buffer->name);
2183 XMARK (buffer->name);
2184
2185 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
2186
2187 #if 0
2188 mark_object (buffer->syntax_table);
2189
2190 /* Mark the various string-pointers in the buffer object.
2191 Since the strings may be relocated, we must mark them
2192 in their actual slots. So gc_sweep must convert each slot
2193 back to an ordinary C pointer. */
2194 XSETSTRING (*(Lisp_Object *)&buffer->upcase_table, buffer->upcase_table);
2195 mark_object ((Lisp_Object *)&buffer->upcase_table);
2196 XSETSTRING (*(Lisp_Object *)&buffer->downcase_table, buffer->downcase_table);
2197 mark_object ((Lisp_Object *)&buffer->downcase_table);
2198
2199 XSETSTRING (*(Lisp_Object *)&buffer->sort_table, buffer->sort_table);
2200 mark_object ((Lisp_Object *)&buffer->sort_table);
2201 XSETSTRING (*(Lisp_Object *)&buffer->folding_sort_table, buffer->folding_sort_table);
2202 mark_object ((Lisp_Object *)&buffer->folding_sort_table);
2203 #endif
2204
2205 for (ptr = &buffer->name + 1;
2206 (char *)ptr < (char *)buffer + sizeof (struct buffer);
2207 ptr++)
2208 mark_object (ptr);
2209
2210 /* If this is an indirect buffer, mark its base buffer. */
2211 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
2212 {
2213 XSETBUFFER (base_buffer, buffer->base_buffer);
2214 mark_buffer (base_buffer);
2215 }
2216 }
2217
2218
2219 /* Mark the pointers in the kboard objects. */
2220
2221 static void
2222 mark_kboards ()
2223 {
2224 KBOARD *kb;
2225 Lisp_Object *p;
2226 for (kb = all_kboards; kb; kb = kb->next_kboard)
2227 {
2228 if (kb->kbd_macro_buffer)
2229 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
2230 mark_object (p);
2231 mark_object (&kb->Vprefix_arg);
2232 mark_object (&kb->kbd_queue);
2233 mark_object (&kb->Vlast_kbd_macro);
2234 mark_object (&kb->Vsystem_key_alist);
2235 mark_object (&kb->system_key_syms);
2236 }
2237 }
2238 \f
2239 /* Sweep: find all structures not marked, and free them. */
2240
2241 static void
2242 gc_sweep ()
2243 {
2244 total_string_size = 0;
2245 compact_strings ();
2246
2247 /* Put all unmarked conses on free list */
2248 {
2249 register struct cons_block *cblk;
2250 struct cons_block **cprev = &cons_block;
2251 register int lim = cons_block_index;
2252 register int num_free = 0, num_used = 0;
2253
2254 cons_free_list = 0;
2255
2256 for (cblk = cons_block; cblk; cblk = *cprev)
2257 {
2258 register int i;
2259 int this_free = 0;
2260 for (i = 0; i < lim; i++)
2261 if (!XMARKBIT (cblk->conses[i].car))
2262 {
2263 num_free++;
2264 this_free++;
2265 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
2266 cons_free_list = &cblk->conses[i];
2267 }
2268 else
2269 {
2270 num_used++;
2271 XUNMARK (cblk->conses[i].car);
2272 }
2273 lim = CONS_BLOCK_SIZE;
2274 /* If this block contains only free conses and we have already
2275 seen more than two blocks worth of free conses then deallocate
2276 this block. */
2277 if (this_free == CONS_BLOCK_SIZE && num_free > 2*CONS_BLOCK_SIZE)
2278 {
2279 num_free -= CONS_BLOCK_SIZE;
2280 *cprev = cblk->next;
2281 /* Unhook from the free list. */
2282 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
2283 xfree (cblk);
2284 }
2285 else
2286 cprev = &cblk->next;
2287 }
2288 total_conses = num_used;
2289 total_free_conses = num_free;
2290 }
2291
2292 #ifdef LISP_FLOAT_TYPE
2293 /* Put all unmarked floats on free list */
2294 {
2295 register struct float_block *fblk;
2296 struct float_block **fprev = &float_block;
2297 register int lim = float_block_index;
2298 register int num_free = 0, num_used = 0;
2299
2300 float_free_list = 0;
2301
2302 for (fblk = float_block; fblk; fblk = *fprev)
2303 {
2304 register int i;
2305 int this_free = 0;
2306 for (i = 0; i < lim; i++)
2307 if (!XMARKBIT (fblk->floats[i].type))
2308 {
2309 num_free++;
2310 this_free++;
2311 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
2312 float_free_list = &fblk->floats[i];
2313 }
2314 else
2315 {
2316 num_used++;
2317 XUNMARK (fblk->floats[i].type);
2318 }
2319 lim = FLOAT_BLOCK_SIZE;
2320 /* If this block contains only free floats and we have already
2321 seen more than two blocks worth of free floats then deallocate
2322 this block. */
2323 if (this_free == FLOAT_BLOCK_SIZE && num_free > 2*FLOAT_BLOCK_SIZE)
2324 {
2325 num_free -= FLOAT_BLOCK_SIZE;
2326 *fprev = fblk->next;
2327 /* Unhook from the free list. */
2328 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
2329 xfree (fblk);
2330 }
2331 else
2332 fprev = &fblk->next;
2333 }
2334 total_floats = num_used;
2335 total_free_floats = num_free;
2336 }
2337 #endif /* LISP_FLOAT_TYPE */
2338
2339 #ifdef USE_TEXT_PROPERTIES
2340 /* Put all unmarked intervals on free list */
2341 {
2342 register struct interval_block *iblk;
2343 struct interval_block **iprev = &interval_block;
2344 register int lim = interval_block_index;
2345 register int num_free = 0, num_used = 0;
2346
2347 interval_free_list = 0;
2348
2349 for (iblk = interval_block; iblk; iblk = *iprev)
2350 {
2351 register int i;
2352 int this_free = 0;
2353
2354 for (i = 0; i < lim; i++)
2355 {
2356 if (! XMARKBIT (iblk->intervals[i].plist))
2357 {
2358 iblk->intervals[i].parent = interval_free_list;
2359 interval_free_list = &iblk->intervals[i];
2360 num_free++;
2361 this_free++;
2362 }
2363 else
2364 {
2365 num_used++;
2366 XUNMARK (iblk->intervals[i].plist);
2367 }
2368 }
2369 lim = INTERVAL_BLOCK_SIZE;
2370 /* If this block contains only free intervals and we have already
2371 seen more than two blocks worth of free intervals then
2372 deallocate this block. */
2373 if (this_free == INTERVAL_BLOCK_SIZE
2374 && num_free > 2*INTERVAL_BLOCK_SIZE)
2375 {
2376 num_free -= INTERVAL_BLOCK_SIZE;
2377 *iprev = iblk->next;
2378 /* Unhook from the free list. */
2379 interval_free_list = iblk->intervals[0].parent;
2380 xfree (iblk);
2381 }
2382 else
2383 iprev = &iblk->next;
2384 }
2385 total_intervals = num_used;
2386 total_free_intervals = num_free;
2387 }
2388 #endif /* USE_TEXT_PROPERTIES */
2389
2390 /* Put all unmarked symbols on free list */
2391 {
2392 register struct symbol_block *sblk;
2393 struct symbol_block **sprev = &symbol_block;
2394 register int lim = symbol_block_index;
2395 register int num_free = 0, num_used = 0;
2396
2397 symbol_free_list = 0;
2398
2399 for (sblk = symbol_block; sblk; sblk = *sprev)
2400 {
2401 register int i;
2402 int this_free = 0;
2403 for (i = 0; i < lim; i++)
2404 if (!XMARKBIT (sblk->symbols[i].plist))
2405 {
2406 *(struct Lisp_Symbol **)&sblk->symbols[i].value = symbol_free_list;
2407 symbol_free_list = &sblk->symbols[i];
2408 num_free++;
2409 this_free++;
2410 }
2411 else
2412 {
2413 num_used++;
2414 sblk->symbols[i].name
2415 = XSTRING (*(Lisp_Object *) &sblk->symbols[i].name);
2416 XUNMARK (sblk->symbols[i].plist);
2417 }
2418 lim = SYMBOL_BLOCK_SIZE;
2419 /* If this block contains only free symbols and we have already
2420 seen more than two blocks worth of free symbols then deallocate
2421 this block. */
2422 if (this_free == SYMBOL_BLOCK_SIZE && num_free > 2*SYMBOL_BLOCK_SIZE)
2423 {
2424 num_free -= SYMBOL_BLOCK_SIZE;
2425 *sprev = sblk->next;
2426 /* Unhook from the free list. */
2427 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
2428 xfree (sblk);
2429 }
2430 else
2431 sprev = &sblk->next;
2432 }
2433 total_symbols = num_used;
2434 total_free_symbols = num_free;
2435 }
2436
2437 #ifndef standalone
2438 /* Put all unmarked misc's on free list.
2439 For a marker, first unchain it from the buffer it points into. */
2440 {
2441 register struct marker_block *mblk;
2442 struct marker_block **mprev = &marker_block;
2443 register int lim = marker_block_index;
2444 register int num_free = 0, num_used = 0;
2445
2446 marker_free_list = 0;
2447
2448 for (mblk = marker_block; mblk; mblk = *mprev)
2449 {
2450 register int i;
2451 int this_free = 0;
2452 EMACS_INT already_free = -1;
2453
2454 for (i = 0; i < lim; i++)
2455 {
2456 Lisp_Object *markword;
2457 switch (mblk->markers[i].u_marker.type)
2458 {
2459 case Lisp_Misc_Marker:
2460 markword = &mblk->markers[i].u_marker.chain;
2461 break;
2462 case Lisp_Misc_Buffer_Local_Value:
2463 case Lisp_Misc_Some_Buffer_Local_Value:
2464 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
2465 break;
2466 case Lisp_Misc_Overlay:
2467 markword = &mblk->markers[i].u_overlay.plist;
2468 break;
2469 case Lisp_Misc_Free:
2470 /* If the object was already free, keep it
2471 on the free list. */
2472 markword = (Lisp_Object *) &already_free;
2473 break;
2474 default:
2475 markword = 0;
2476 break;
2477 }
2478 if (markword && !XMARKBIT (*markword))
2479 {
2480 Lisp_Object tem;
2481 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
2482 {
2483 /* tem1 avoids Sun compiler bug */
2484 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
2485 XSETMARKER (tem, tem1);
2486 unchain_marker (tem);
2487 }
2488 /* Set the type of the freed object to Lisp_Misc_Free.
2489 We could leave the type alone, since nobody checks it,
2490 but this might catch bugs faster. */
2491 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
2492 mblk->markers[i].u_free.chain = marker_free_list;
2493 marker_free_list = &mblk->markers[i];
2494 num_free++;
2495 this_free++;
2496 }
2497 else
2498 {
2499 num_used++;
2500 if (markword)
2501 XUNMARK (*markword);
2502 }
2503 }
2504 lim = MARKER_BLOCK_SIZE;
2505 /* If this block contains only free markers and we have already
2506 seen more than two blocks worth of free markers then deallocate
2507 this block. */
2508 if (this_free == MARKER_BLOCK_SIZE && num_free > 2*MARKER_BLOCK_SIZE)
2509 {
2510 num_free -= MARKER_BLOCK_SIZE;
2511 *mprev = mblk->next;
2512 /* Unhook from the free list. */
2513 marker_free_list = mblk->markers[0].u_free.chain;
2514 xfree (mblk);
2515 }
2516 else
2517 mprev = &mblk->next;
2518 }
2519
2520 total_markers = num_used;
2521 total_free_markers = num_free;
2522 }
2523
2524 /* Free all unmarked buffers */
2525 {
2526 register struct buffer *buffer = all_buffers, *prev = 0, *next;
2527
2528 while (buffer)
2529 if (!XMARKBIT (buffer->name))
2530 {
2531 if (prev)
2532 prev->next = buffer->next;
2533 else
2534 all_buffers = buffer->next;
2535 next = buffer->next;
2536 xfree (buffer);
2537 buffer = next;
2538 }
2539 else
2540 {
2541 XUNMARK (buffer->name);
2542 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
2543
2544 #if 0
2545 /* Each `struct Lisp_String *' was turned into a Lisp_Object
2546 for purposes of marking and relocation.
2547 Turn them back into C pointers now. */
2548 buffer->upcase_table
2549 = XSTRING (*(Lisp_Object *)&buffer->upcase_table);
2550 buffer->downcase_table
2551 = XSTRING (*(Lisp_Object *)&buffer->downcase_table);
2552 buffer->sort_table
2553 = XSTRING (*(Lisp_Object *)&buffer->sort_table);
2554 buffer->folding_sort_table
2555 = XSTRING (*(Lisp_Object *)&buffer->folding_sort_table);
2556 #endif
2557
2558 prev = buffer, buffer = buffer->next;
2559 }
2560 }
2561
2562 #endif /* standalone */
2563
2564 /* Free all unmarked vectors */
2565 {
2566 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
2567 total_vector_size = 0;
2568
2569 while (vector)
2570 if (!(vector->size & ARRAY_MARK_FLAG))
2571 {
2572 if (prev)
2573 prev->next = vector->next;
2574 else
2575 all_vectors = vector->next;
2576 next = vector->next;
2577 xfree (vector);
2578 vector = next;
2579 }
2580 else
2581 {
2582 vector->size &= ~ARRAY_MARK_FLAG;
2583 if (vector->size & PSEUDOVECTOR_FLAG)
2584 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
2585 else
2586 total_vector_size += vector->size;
2587 prev = vector, vector = vector->next;
2588 }
2589 }
2590
2591 /* Free all "large strings" not marked with ARRAY_MARK_FLAG. */
2592 {
2593 register struct string_block *sb = large_string_blocks, *prev = 0, *next;
2594 struct Lisp_String *s;
2595
2596 while (sb)
2597 {
2598 s = (struct Lisp_String *) &sb->chars[0];
2599 if (s->size & ARRAY_MARK_FLAG)
2600 {
2601 ((struct Lisp_String *)(&sb->chars[0]))->size
2602 &= ~ARRAY_MARK_FLAG & ~MARKBIT;
2603 UNMARK_BALANCE_INTERVALS (s->intervals);
2604 total_string_size += ((struct Lisp_String *)(&sb->chars[0]))->size;
2605 prev = sb, sb = sb->next;
2606 }
2607 else
2608 {
2609 if (prev)
2610 prev->next = sb->next;
2611 else
2612 large_string_blocks = sb->next;
2613 next = sb->next;
2614 xfree (sb);
2615 sb = next;
2616 }
2617 }
2618 }
2619 }
2620 \f
2621 /* Compactify strings, relocate references, and free empty string blocks. */
2622
2623 static void
2624 compact_strings ()
2625 {
2626 /* String block of old strings we are scanning. */
2627 register struct string_block *from_sb;
2628 /* A preceding string block (or maybe the same one)
2629 where we are copying the still-live strings to. */
2630 register struct string_block *to_sb;
2631 int pos;
2632 int to_pos;
2633
2634 to_sb = first_string_block;
2635 to_pos = 0;
2636
2637 /* Scan each existing string block sequentially, string by string. */
2638 for (from_sb = first_string_block; from_sb; from_sb = from_sb->next)
2639 {
2640 pos = 0;
2641 /* POS is the index of the next string in the block. */
2642 while (pos < from_sb->pos)
2643 {
2644 register struct Lisp_String *nextstr
2645 = (struct Lisp_String *) &from_sb->chars[pos];
2646
2647 register struct Lisp_String *newaddr;
2648 register EMACS_INT size = nextstr->size;
2649 EMACS_INT size_byte = STRING_BYTES (nextstr);
2650
2651 /* NEXTSTR is the old address of the next string.
2652 Just skip it if it isn't marked. */
2653 if (((EMACS_UINT) size & ~DONT_COPY_FLAG) > STRING_BLOCK_SIZE)
2654 {
2655 /* It is marked, so its size field is really a chain of refs.
2656 Find the end of the chain, where the actual size lives. */
2657 while (((EMACS_UINT) size & ~DONT_COPY_FLAG) > STRING_BLOCK_SIZE)
2658 {
2659 if (size & DONT_COPY_FLAG)
2660 size ^= MARKBIT | DONT_COPY_FLAG;
2661 size = *(EMACS_INT *)size & ~MARKBIT;
2662 }
2663
2664 total_string_size += size_byte;
2665
2666 /* If it won't fit in TO_SB, close it out,
2667 and move to the next sb. Keep doing so until
2668 TO_SB reaches a large enough, empty enough string block.
2669 We know that TO_SB cannot advance past FROM_SB here
2670 since FROM_SB is large enough to contain this string.
2671 Any string blocks skipped here
2672 will be patched out and freed later. */
2673 while (to_pos + STRING_FULLSIZE (size_byte)
2674 > max (to_sb->pos, STRING_BLOCK_SIZE))
2675 {
2676 to_sb->pos = to_pos;
2677 to_sb = to_sb->next;
2678 to_pos = 0;
2679 }
2680 /* Compute new address of this string
2681 and update TO_POS for the space being used. */
2682 newaddr = (struct Lisp_String *) &to_sb->chars[to_pos];
2683 to_pos += STRING_FULLSIZE (size_byte);
2684
2685 /* Copy the string itself to the new place. */
2686 if (nextstr != newaddr)
2687 bcopy (nextstr, newaddr, STRING_FULLSIZE (size_byte));
2688
2689 /* Go through NEXTSTR's chain of references
2690 and make each slot in the chain point to
2691 the new address of this string. */
2692 size = newaddr->size;
2693 while (((EMACS_UINT) size & ~DONT_COPY_FLAG) > STRING_BLOCK_SIZE)
2694 {
2695 register Lisp_Object *objptr;
2696 if (size & DONT_COPY_FLAG)
2697 size ^= MARKBIT | DONT_COPY_FLAG;
2698 objptr = (Lisp_Object *)size;
2699
2700 size = XFASTINT (*objptr) & ~MARKBIT;
2701 if (XMARKBIT (*objptr))
2702 {
2703 XSETSTRING (*objptr, newaddr);
2704 XMARK (*objptr);
2705 }
2706 else
2707 XSETSTRING (*objptr, newaddr);
2708 }
2709 /* Store the actual size in the size field. */
2710 newaddr->size = size;
2711
2712 #ifdef USE_TEXT_PROPERTIES
2713 /* Now that the string has been relocated, rebalance its
2714 interval tree, and update the tree's parent pointer. */
2715 if (! NULL_INTERVAL_P (newaddr->intervals))
2716 {
2717 UNMARK_BALANCE_INTERVALS (newaddr->intervals);
2718 XSETSTRING (* (Lisp_Object *) &newaddr->intervals->parent,
2719 newaddr);
2720 }
2721 #endif /* USE_TEXT_PROPERTIES */
2722 }
2723 pos += STRING_FULLSIZE (size_byte);
2724 }
2725 }
2726
2727 /* Close out the last string block still used and free any that follow. */
2728 to_sb->pos = to_pos;
2729 current_string_block = to_sb;
2730
2731 from_sb = to_sb->next;
2732 to_sb->next = 0;
2733 while (from_sb)
2734 {
2735 to_sb = from_sb->next;
2736 xfree (from_sb);
2737 from_sb = to_sb;
2738 }
2739
2740 /* Free any empty string blocks further back in the chain.
2741 This loop will never free first_string_block, but it is very
2742 unlikely that that one will become empty, so why bother checking? */
2743
2744 from_sb = first_string_block;
2745 while (to_sb = from_sb->next)
2746 {
2747 if (to_sb->pos == 0)
2748 {
2749 if (from_sb->next = to_sb->next)
2750 from_sb->next->prev = from_sb;
2751 xfree (to_sb);
2752 }
2753 else
2754 from_sb = to_sb;
2755 }
2756 }
2757 \f
2758 /* Debugging aids. */
2759
2760 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
2761 "Return the address of the last byte Emacs has allocated, divided by 1024.\n\
2762 This may be helpful in debugging Emacs's memory usage.\n\
2763 We divide the value by 1024 to make sure it fits in a Lisp integer.")
2764 ()
2765 {
2766 Lisp_Object end;
2767
2768 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
2769
2770 return end;
2771 }
2772
2773 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
2774 "Return a list of counters that measure how much consing there has been.\n\
2775 Each of these counters increments for a certain kind of object.\n\
2776 The counters wrap around from the largest positive integer to zero.\n\
2777 Garbage collection does not decrease them.\n\
2778 The elements of the value are as follows:\n\
2779 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS)\n\
2780 All are in units of 1 = one object consed\n\
2781 except for VECTOR-CELLS and STRING-CHARS, which count the total length of\n\
2782 objects consed.\n\
2783 MISCS include overlays, markers, and some internal types.\n\
2784 Frames, windows, buffers, and subprocesses count as vectors\n\
2785 (but the contents of a buffer's text do not count here).")
2786 ()
2787 {
2788 Lisp_Object lisp_cons_cells_consed;
2789 Lisp_Object lisp_floats_consed;
2790 Lisp_Object lisp_vector_cells_consed;
2791 Lisp_Object lisp_symbols_consed;
2792 Lisp_Object lisp_string_chars_consed;
2793 Lisp_Object lisp_misc_objects_consed;
2794 Lisp_Object lisp_intervals_consed;
2795
2796 XSETINT (lisp_cons_cells_consed,
2797 cons_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2798 XSETINT (lisp_floats_consed,
2799 floats_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2800 XSETINT (lisp_vector_cells_consed,
2801 vector_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2802 XSETINT (lisp_symbols_consed,
2803 symbols_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2804 XSETINT (lisp_string_chars_consed,
2805 string_chars_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2806 XSETINT (lisp_misc_objects_consed,
2807 misc_objects_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2808 XSETINT (lisp_intervals_consed,
2809 intervals_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2810
2811 return Fcons (lisp_cons_cells_consed,
2812 Fcons (lisp_floats_consed,
2813 Fcons (lisp_vector_cells_consed,
2814 Fcons (lisp_symbols_consed,
2815 Fcons (lisp_string_chars_consed,
2816 Fcons (lisp_misc_objects_consed,
2817 Fcons (lisp_intervals_consed,
2818 Qnil)))))));
2819 }
2820 \f
2821 /* Initialization */
2822
2823 init_alloc_once ()
2824 {
2825 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
2826 pureptr = 0;
2827 #ifdef HAVE_SHM
2828 pure_size = PURESIZE;
2829 #endif
2830 all_vectors = 0;
2831 ignore_warnings = 1;
2832 #ifdef DOUG_LEA_MALLOC
2833 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
2834 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
2835 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
2836 #endif
2837 init_strings ();
2838 init_cons ();
2839 init_symbol ();
2840 init_marker ();
2841 #ifdef LISP_FLOAT_TYPE
2842 init_float ();
2843 #endif /* LISP_FLOAT_TYPE */
2844 INIT_INTERVALS;
2845
2846 #ifdef REL_ALLOC
2847 malloc_hysteresis = 32;
2848 #else
2849 malloc_hysteresis = 0;
2850 #endif
2851
2852 spare_memory = (char *) malloc (SPARE_MEMORY);
2853
2854 ignore_warnings = 0;
2855 gcprolist = 0;
2856 staticidx = 0;
2857 consing_since_gc = 0;
2858 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
2859 #ifdef VIRT_ADDR_VARIES
2860 malloc_sbrk_unused = 1<<22; /* A large number */
2861 malloc_sbrk_used = 100000; /* as reasonable as any number */
2862 #endif /* VIRT_ADDR_VARIES */
2863 }
2864
2865 init_alloc ()
2866 {
2867 gcprolist = 0;
2868 }
2869
2870 void
2871 syms_of_alloc ()
2872 {
2873 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
2874 "*Number of bytes of consing between garbage collections.\n\
2875 Garbage collection can happen automatically once this many bytes have been\n\
2876 allocated since the last garbage collection. All data types count.\n\n\
2877 Garbage collection happens automatically only when `eval' is called.\n\n\
2878 By binding this temporarily to a large number, you can effectively\n\
2879 prevent garbage collection during a part of the program.");
2880
2881 DEFVAR_INT ("pure-bytes-used", &pureptr,
2882 "Number of bytes of sharable Lisp data allocated so far.");
2883
2884 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
2885 "Number of cons cells that have been consed so far.");
2886
2887 DEFVAR_INT ("floats-consed", &floats_consed,
2888 "Number of floats that have been consed so far.");
2889
2890 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
2891 "Number of vector cells that have been consed so far.");
2892
2893 DEFVAR_INT ("symbols-consed", &symbols_consed,
2894 "Number of symbols that have been consed so far.");
2895
2896 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
2897 "Number of string characters that have been consed so far.");
2898
2899 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
2900 "Number of miscellaneous objects that have been consed so far.");
2901
2902 DEFVAR_INT ("intervals-consed", &intervals_consed,
2903 "Number of intervals that have been consed so far.");
2904
2905 #if 0
2906 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used,
2907 "Number of bytes of unshared memory allocated in this session.");
2908
2909 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused,
2910 "Number of bytes of unshared memory remaining available in this session.");
2911 #endif
2912
2913 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
2914 "Non-nil means loading Lisp code in order to dump an executable.\n\
2915 This means that certain objects should be allocated in shared (pure) space.");
2916
2917 DEFVAR_INT ("undo-limit", &undo_limit,
2918 "Keep no more undo information once it exceeds this size.\n\
2919 This limit is applied when garbage collection happens.\n\
2920 The size is counted as the number of bytes occupied,\n\
2921 which includes both saved text and other data.");
2922 undo_limit = 20000;
2923
2924 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
2925 "Don't keep more than this much size of undo information.\n\
2926 A command which pushes past this size is itself forgotten.\n\
2927 This limit is applied when garbage collection happens.\n\
2928 The size is counted as the number of bytes occupied,\n\
2929 which includes both saved text and other data.");
2930 undo_strong_limit = 30000;
2931
2932 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
2933 "Non-nil means display messages at start and end of garbage collection.");
2934 garbage_collection_messages = 0;
2935
2936 /* We build this in advance because if we wait until we need it, we might
2937 not be able to allocate the memory to hold it. */
2938 memory_signal_data
2939 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
2940 staticpro (&memory_signal_data);
2941
2942 staticpro (&Qgc_cons_threshold);
2943 Qgc_cons_threshold = intern ("gc-cons-threshold");
2944
2945 staticpro (&Qchar_table_extra_slots);
2946 Qchar_table_extra_slots = intern ("char-table-extra-slots");
2947
2948 defsubr (&Scons);
2949 defsubr (&Slist);
2950 defsubr (&Svector);
2951 defsubr (&Smake_byte_code);
2952 defsubr (&Smake_list);
2953 defsubr (&Smake_vector);
2954 defsubr (&Smake_char_table);
2955 defsubr (&Smake_string);
2956 defsubr (&Smake_bool_vector);
2957 defsubr (&Smake_symbol);
2958 defsubr (&Smake_marker);
2959 defsubr (&Spurecopy);
2960 defsubr (&Sgarbage_collect);
2961 defsubr (&Smemory_limit);
2962 defsubr (&Smemory_use_counts);
2963 }