Merge from emacs-24; up to 2012-12-29T06:14:00Z!cyd@gnu.org
[bpt/emacs.git] / doc / misc / wisent.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename ../../info/wisent
4 @set TITLE Wisent Parser Development
5 @set AUTHOR Eric M. Ludlam, David Ponce, and Richard Y. Kim
6 @settitle @value{TITLE}
7
8 @c *************************************************************************
9 @c @ Header
10 @c *************************************************************************
11
12 @c Merge all indexes into a single index for now.
13 @c We can always separate them later into two or more as needed.
14 @syncodeindex vr cp
15 @syncodeindex fn cp
16 @syncodeindex ky cp
17 @syncodeindex pg cp
18 @syncodeindex tp cp
19
20 @c @footnotestyle separate
21 @c @paragraphindent 2
22 @c @@smallbook
23 @c %**end of header
24
25 @copying
26 Copyright @copyright{} 1988--1993, 1995, 1998--2004, 2007, 2012--2013
27 Free Software Foundation, Inc.
28
29 @c Since we are both GNU manuals, we do not need to ack each other here.
30 @ignore
31 Some texts are borrowed or adapted from the manual of Bison version
32 1.35. The text in section entitled ``Understanding the automaton'' is
33 adapted from the section ``Understanding Your Parser'' in the manual
34 of Bison version 1.49.
35 @end ignore
36
37 @quotation
38 Permission is granted to copy, distribute and/or modify this document
39 under the terms of the GNU Free Documentation License, Version 1.3 or
40 any later version published by the Free Software Foundation; with no
41 Invariant Sections, with the Front-Cover texts being ``A GNU Manual,''
42 and with the Back-Cover Texts as in (a) below. A copy of the license
43 is included in the section entitled ``GNU Free Documentation License''.
44
45 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
46 modify this GNU manual.''
47 @end quotation
48 @end copying
49
50 @dircategory Emacs misc features
51 @direntry
52 * Wisent: (wisent). Semantic Wisent parser development.
53 @end direntry
54
55 @iftex
56 @finalout
57 @end iftex
58
59 @c @setchapternewpage odd
60 @c @setchapternewpage off
61
62 @titlepage
63 @sp 10
64 @title @value{TITLE}
65 @author by @value{AUTHOR}
66 @page
67 @vskip 0pt plus 1 fill
68 @insertcopying
69 @end titlepage
70 @page
71
72 @macro semantic{}
73 @i{Semantic}
74 @end macro
75
76 @c *************************************************************************
77 @c @ Document
78 @c *************************************************************************
79 @contents
80
81 @node top
82 @top @value{TITLE}
83
84 Wisent (the European Bison ;-) is an Emacs Lisp implementation of the
85 GNU Compiler Compiler Bison.
86
87 This manual describes how to use Wisent to develop grammars for
88 programming languages, and how to use grammars to parse language
89 source in Emacs buffers.
90
91 It also describes how Wisent is used with the @semantic{} tool set
92 described in the @ref{Top, Semantic Manual, Semantic Manual, semantic}.
93
94 @ifnottex
95 @insertcopying
96 @end ifnottex
97
98 @menu
99 * Wisent Overview::
100 * Wisent Grammar::
101 * Wisent Parsing::
102 * Wisent Semantic::
103 * GNU Free Documentation License::
104 * Index::
105 @end menu
106
107 @node Wisent Overview
108 @chapter Wisent Overview
109
110 @dfn{Wisent} (the European Bison) is an implementation in Emacs Lisp
111 of the GNU Compiler Compiler Bison. Its code is a port of the C code
112 of GNU Bison 1.28 & 1.31.
113
114 For more details on the basic concepts for understanding Wisent, it is
115 worthwhile to read the @ref{Top, Bison Manual, , bison}.
116 @ifhtml
117 @uref{http://www.gnu.org/manual/bison/html_node/index.html}.
118 @end ifhtml
119
120 Wisent can generate compilers compatible with the @semantic{} tool set.
121 See the @ref{Top, Semantic Manual, , semantic}.
122
123 It benefits from these Bison features:
124
125 @itemize @bullet
126 @item
127 It uses a fast but not so space-efficient encoding for the parse
128 tables, described in Corbett's PhD thesis from Berkeley:
129 @quotation
130 @cite{Static Semantics in Compiler Error Recovery}@*
131 June 1985, Report No. UCB/CSD 85/251.
132 @end quotation
133
134 @item
135 For generating the lookahead sets, Wisent uses the well-known
136 technique of F. DeRemer and A. Pennello described in:
137 @quotation
138 @cite{Efficient Computation of LALR(1) Look-Ahead Sets}@*
139 October 1982, ACM TOPLAS Vol 4 No 4, 615--49,
140 @uref{http://dx.doi.org/10.1145/69622.357187}.
141 @end quotation
142
143 @item
144 Wisent resolves shift/reduce conflicts using operator precedence and
145 associativity.
146
147 @item
148 Parser error recovery is accomplished using rules which match the
149 special token @code{error}.
150 @end itemize
151
152 Nevertheless there are some fundamental differences between Bison and
153 Wisent.
154
155 @itemize
156 @item
157 Wisent is intended to be used in Emacs. It reads and produces Emacs
158 Lisp data structures. All the additional code used in grammars is
159 Emacs Lisp code.
160
161 @item
162 Contrary to Bison, Wisent does not generate a parser which combines
163 Emacs Lisp code and grammar constructs. They exist separately.
164 Wisent reads the grammar from a Lisp data structure and then generates
165 grammar constructs as tables. Afterward, the derived tables can be
166 included and byte-compiled in separate Emacs Lisp files, and be used
167 at a later time by the Wisent's parser engine.
168
169 @item
170 Wisent allows multiple start nonterminals and allows a call to the
171 parsing function to be made for a particular start nonterminal. For
172 example, this is particularly useful to parse a region of an Emacs
173 buffer. @semantic{} heavily depends on the availability of this feature.
174 @end itemize
175
176 @node Wisent Grammar
177 @chapter Wisent Grammar
178
179 @cindex context-free grammar
180 @cindex rule
181 In order for Wisent to parse a language, it must be described by a
182 @dfn{context-free grammar}. That is a grammar specified as rules that
183 can be applied regardless of context. For more information, see
184 @ref{Language and Grammar, , , bison}, in the Bison manual.
185
186 @cindex terminal
187 @cindex nonterminal
188 The formal grammar is formulated using @dfn{terminal} and
189 @dfn{nonterminal} items. Terminals can be Emacs Lisp symbols or
190 characters, and nonterminals are symbols only.
191
192 @cindex token
193 Terminals (also known as @dfn{tokens}) represent the lexical
194 elements of the language like numbers, strings, etc..
195
196 For example @samp{PLUS} can represent the operator @samp{+}.
197
198 Nonterminal symbols are described by rules:
199
200 @example
201 @group
202 RESULT @equiv{} COMPONENTS@dots{}
203 @end group
204 @end example
205
206 @samp{RESULT} is a nonterminal that this rule describes and
207 @samp{COMPONENTS} are various terminals and nonterminals that are put
208 together by this rule.
209
210 For example, this rule:
211
212 @example
213 @group
214 exp @equiv{} exp PLUS exp
215 @end group
216 @end example
217
218 Says that two groupings of type @samp{exp}, with a @samp{PLUS} token
219 in between, can be combined into a larger grouping of type @samp{exp}.
220
221 @menu
222 * Grammar format::
223 * Example::
224 * Compiling a grammar::
225 * Conflicts::
226 @end menu
227
228 @node Grammar format
229 @section Grammar format
230
231 @cindex grammar format
232 To be acceptable by Wisent a context-free grammar must respect a
233 particular format. That is, must be represented as an Emacs Lisp list
234 of the form:
235
236 @code{(@var{terminals} @var{assocs} . @var{non-terminals})}
237
238 @table @var
239 @item terminals
240 Is the list of terminal symbols used in the grammar.
241
242 @cindex associativity
243 @item assocs
244 Specify the associativity of @var{terminals}. It is @code{nil} when
245 there is no associativity defined, or an alist of
246 @w{@code{(@var{assoc-type} . @var{assoc-value})}} elements.
247
248 @var{assoc-type} must be one of the @code{default-prec},
249 @code{nonassoc}, @code{left} or @code{right} symbols. When
250 @var{assoc-type} is @code{default-prec}, @var{assoc-value} must be
251 @code{nil} or @code{t} (the default). Otherwise it is a list of
252 tokens which must have been previously declared in @var{terminals}.
253
254 For details, see @ref{Contextual Precedence, , , bison}, in the
255 Bison manual.
256
257 @item non-terminals
258 Is the list of nonterminal definitions. Each definition has the form:
259
260 @code{(@var{nonterm} . @var{rules})}
261
262 Where @var{nonterm} is the nonterminal symbol defined and
263 @var{rules} the list of rules that describe this nonterminal. Each
264 rule is a list:
265
266 @code{(@var{components} [@var{precedence}] [@var{action}])}
267
268 Where:
269
270 @table @var
271 @item components
272 Is a list of various terminals and nonterminals that are put together
273 by this rule.
274
275 For example,
276
277 @example
278 @group
279 (exp ((exp ?+ exp)) ;; exp: exp '+' exp
280 ) ;; ;
281 @end group
282 @end example
283
284 Says that two groupings of type @samp{exp}, with a @samp{+} token in
285 between, can be combined into a larger grouping of type @samp{exp}.
286
287 @cindex grammar coding conventions
288 By convention, a nonterminal symbol should be in lower case, such as
289 @samp{exp}, @samp{stmt} or @samp{declaration}. Terminal symbols
290 should be upper case to distinguish them from nonterminals: for
291 example, @samp{INTEGER}, @samp{IDENTIFIER}, @samp{IF} or
292 @samp{RETURN}. A terminal symbol that represents a particular keyword
293 in the language is conventionally the same as that keyword converted
294 to upper case. The terminal symbol @code{error} is reserved for error
295 recovery.
296
297 @cindex middle-rule actions
298 Scattered among the components can be @dfn{middle-rule} actions.
299 Usually only @var{action} is provided (@pxref{action}).
300
301 If @var{components} in a rule is @code{nil}, it means that the rule
302 can match the empty string. For example, here is how to define a
303 comma-separated sequence of zero or more @samp{exp} groupings:
304
305 @smallexample
306 @group
307 (expseq (nil) ;; expseq: ;; empty
308 ((expseq1)) ;; | expseq1
309 ) ;; ;
310
311 (expseq1 ((exp)) ;; expseq1: exp
312 ((expseq1 ?, exp)) ;; | expseq1 ',' exp
313 ) ;; ;
314 @end group
315 @end smallexample
316
317 @cindex precedence level
318 @item precedence
319 Assign the rule the precedence of the given terminal item, overriding
320 the precedence that would be deduced for it, that is the one of the
321 last terminal in it. Notice that only terminals declared in
322 @var{assocs} have a precedence level. The altered rule precedence
323 then affects how conflicts involving that rule are resolved.
324
325 @var{precedence} is an optional vector of one terminal item.
326
327 Here is how @var{precedence} solves the problem of unary minus.
328 First, declare a precedence for a fictitious terminal symbol named
329 @code{UMINUS}. There are no tokens of this type, but the symbol
330 serves to stand for its precedence:
331
332 @example
333 @dots{}
334 ((default-prec t) ;; This is the default
335 (left '+' '-')
336 (left '*')
337 (left UMINUS))
338 @end example
339
340 Now the precedence of @code{UMINUS} can be used in specific rules:
341
342 @smallexample
343 @group
344 (exp @dots{} ;; exp: @dots{}
345 ((exp ?- exp)) ;; | exp '-' exp
346 @dots{} ;; @dots{}
347 ((?- exp) [UMINUS]) ;; | '-' exp %prec UMINUS
348 @dots{} ;; @dots{}
349 ) ;; ;
350 @end group
351 @end smallexample
352
353 If you forget to append @code{[UMINUS]} to the rule for unary minus,
354 Wisent silently assumes that minus has its usual precedence. This
355 kind of problem can be tricky to debug, since one typically discovers
356 the mistake only by testing the code.
357
358 Using @code{(default-prec nil)} declaration makes it easier to
359 discover this kind of problem systematically. It causes rules that
360 lack a @var{precedence} modifier to have no precedence, even if the
361 last terminal symbol mentioned in their components has a declared
362 precedence.
363
364 If @code{(default-prec nil)} is in effect, you must specify
365 @var{precedence} for all rules that participate in precedence conflict
366 resolution. Then you will see any shift/reduce conflict until you
367 tell Wisent how to resolve it, either by changing your grammar or by
368 adding an explicit precedence. This will probably add declarations to
369 the grammar, but it helps to protect against incorrect rule
370 precedences.
371
372 The effect of @code{(default-prec nil)} can be reversed by giving
373 @code{(default-prec t)}, which is the default.
374
375 For more details, see @ref{Contextual Precedence, , , bison}, in the
376 Bison manual.
377
378 It is important to understand that @var{assocs} declarations defines
379 associativity but also assign a precedence level to terminals. All
380 terminals declared in the same @code{left}, @code{right} or
381 @code{nonassoc} association get the same precedence level. The
382 precedence level is increased at each new association.
383
384 On the other hand, @var{precedence} explicitly assign the precedence
385 level of the given terminal to a rule.
386
387 @cindex semantic actions
388 @item @anchor{action}action
389 An action is an optional Emacs Lisp function call, like this:
390
391 @code{(identity $1)}
392
393 The result of an action determines the semantic value of a rule.
394
395 From an implementation standpoint, the function call will be embedded
396 in a lambda expression, and several useful local variables will be
397 defined:
398
399 @table @code
400 @vindex $N
401 @item $@var{n}
402 Where @var{n} is a positive integer. Like in Bison, the value of
403 @code{$@var{n}} is the semantic value of the @var{n}th element of
404 @var{components}, starting from 1. It can be of any Lisp data
405 type.
406
407 @vindex $region@var{n}
408 @item $regionN
409 Where @var{n} is a positive integer. For each @code{$@var{n}}
410 variable defined there is a corresponding @code{$region@var{n}}
411 variable. Its value is a pair @code{(@var{start-pos} .
412 @var{end-pos})} that represent the start and end positions (in the
413 lexical input stream) of the @code{$@var{n}} value. It can be
414 @code{nil} when the component positions are not available, like for an
415 empty string component for example.
416
417 @vindex $region
418 @item $region
419 Its value is the leftmost and rightmost positions of input data
420 matched by all @var{components} in the rule. This is a pair
421 @code{(@var{leftmost-pos} . @var{rightmost-pos})}. It can be
422 @code{nil} when components positions are not available.
423
424 @vindex $nterm
425 @item $nterm
426 This variable is initialized with the nonterminal symbol
427 (@var{nonterm}) the rule belongs to. It could be useful to improve
428 error reporting or debugging. It is also used to automatically
429 provide incremental re-parse entry points for @semantic{} tags
430 (@pxref{Wisent Semantic}).
431
432 @vindex $action
433 @item $action
434 The value of @code{$action} is the symbolic name of the current
435 semantic action (@pxref{Debugging actions}).
436 @end table
437
438 When an action is not specified a default value is supplied, it is
439 @code{(identity $1)}. This means that the default semantic value of a
440 rule is the value of its first component. Excepted for a rule
441 matching the empty string, for which the default action is to return
442 @code{nil}.
443 @end table
444 @end table
445
446 @node Example
447 @section Example
448
449 @cindex grammar example
450 Here is an example to parse simple infix arithmetic expressions. See
451 @ref{Infix Calc, , , bison}, in the Bison manual for details.
452
453 @lisp
454 @group
455 '(
456 ;; Terminals
457 (NUM)
458
459 ;; Terminal associativity & precedence
460 ((nonassoc ?=)
461 (left ?- ?+)
462 (left ?* ?/)
463 (left NEG)
464 (right ?^))
465
466 ;; Rules
467 (input
468 ((line))
469 ((input line)
470 (format "%s %s" $1 $2))
471 )
472
473 (line
474 ((?;)
475 (progn ";"))
476 ((exp ?;)
477 (format "%s;" $1))
478 ((error ?;)
479 (progn "Error;")))
480 )
481
482 (exp
483 ((NUM)
484 (string-to-number $1))
485 ((exp ?= exp)
486 (= $1 $3))
487 ((exp ?+ exp)
488 (+ $1 $3))
489 ((exp ?- exp)
490 (- $1 $3))
491 ((exp ?* exp)
492 (* $1 $3))
493 ((exp ?/ exp)
494 (/ $1 $3))
495 ((?- exp) [NEG]
496 (- $2))
497 ((exp ?^ exp)
498 (expt $1 $3))
499 ((?\( exp ?\))
500 (progn $2))
501 )
502 )
503 @end group
504 @end lisp
505
506 In the bison-like @dfn{WY} format (@pxref{Wisent Semantic}) the
507 grammar looks like this:
508
509 @example
510 @group
511 %token <number> NUM
512
513 %nonassoc '=' ;; comparison
514 %left '-' '+'
515 %left '*' '/'
516 %left NEG ;; negation--unary minus
517 %right '^' ;; exponentiation
518
519 %%
520
521 input:
522 line
523 | input line
524 (format "%s %s" $1 $2)
525 ;
526
527 line:
528 ';'
529 @{";"@}
530 | exp ';'
531 (format "%s;" $1)
532 | error ';'
533 @{"Error;"@}
534 ;
535
536 exp:
537 NUM
538 (string-to-number $1)
539 | exp '=' exp
540 (= $1 $3)
541 | exp '+' exp
542 (+ $1 $3)
543 | exp '-' exp
544 (- $1 $3)
545 | exp '*' exp
546 (* $1 $3)
547 | exp '/' exp
548 (/ $1 $3)
549 | '-' exp %prec NEG
550 (- $2)
551 | exp '^' exp
552 (expt $1 $3)
553 | '(' exp ')'
554 @{$2@}
555 ;
556
557 %%
558 @end group
559 @end example
560
561 @node Compiling a grammar
562 @section Compiling a grammar
563
564 @cindex automaton
565 After providing a context-free grammar in a suitable format, it must
566 be translated into a set of tables (an @dfn{automaton}) that will be
567 used to derive the parser. Like Bison, Wisent translates grammars that
568 must be @dfn{LALR(1)}.
569
570 @cindex LALR(1) grammar
571 @cindex look-ahead token
572 A grammar is @acronym{LALR(1)} if it is possible to tell how to parse
573 any portion of an input string with just a single token of look-ahead:
574 the @dfn{look-ahead token}. See @ref{Language and Grammar, , ,
575 bison}, in the Bison manual for more information.
576
577 @cindex grammar compilation
578 Grammar translation (compilation) is achieved by the function:
579
580 @cindex compiling a grammar
581 @vindex wisent-single-start-flag
582 @findex wisent-compile-grammar
583 @defun wisent-compile-grammar grammar &optional start-list
584 Compile @var{grammar} and return an @acronym{LALR(1)} automaton.
585
586 Optional argument @var{start-list} is a list of start symbols
587 (nonterminals). If @code{nil} the first nonterminal defined in the
588 grammar is the default start symbol. If @var{start-list} contains
589 only one element, it defines the start symbol. If @var{start-list}
590 contains more than one element, all are defined as potential start
591 symbols, unless @code{wisent-single-start-flag} is non-@code{nil}. In
592 that case the first element of @var{start-list} defines the start
593 symbol and others are ignored.
594
595 The @acronym{LALR(1)} automaton is a vector of the form:
596
597 @code{[@var{actions gotos starts functions}]}
598
599 @table @var
600 @item actions
601 A state/token matrix telling the parser what to do at every state
602 based on the current look-ahead token. That is shift, reduce, accept
603 or error. See also @ref{Wisent Parsing}.
604
605 @item gotos
606 A state/nonterminal matrix telling the parser the next state to go to
607 after reducing with each rule.
608
609 @item starts
610 An alist which maps the allowed start symbols (nonterminals) to
611 lexical tokens that will be first shifted into the parser stack.
612
613 @item functions
614 An obarray of semantic action symbols. A semantic action is actually
615 an Emacs Lisp function (lambda expression).
616 @end table
617 @end defun
618
619 @node Conflicts
620 @section Conflicts
621
622 Normally, a grammar should produce an automaton where at each state
623 the parser has only one action to do (@pxref{Wisent Parsing}).
624
625 @cindex ambiguous grammar
626 In certain cases, a grammar can produce an automaton where, at some
627 states, there are more than one action possible. Such a grammar is
628 @dfn{ambiguous}, and generates @dfn{conflicts}.
629
630 @cindex deterministic automaton
631 The parser can't be driven by an automaton which isn't completely
632 @dfn{deterministic}, that is which contains conflicts. It is
633 necessary to resolve the conflicts to eliminate them. Wisent resolves
634 conflicts like Bison does.
635
636 @cindex grammar conflicts
637 @cindex conflicts resolution
638 There are two sorts of conflicts:
639
640 @table @dfn
641 @cindex shift/reduce conflicts
642 @item shift/reduce conflicts
643 When either a shift or a reduction would be valid at the same state.
644
645 Such conflicts are resolved by choosing to shift, unless otherwise
646 directed by operator precedence declarations.
647 See @ref{Shift/Reduce , , , bison}, in the Bison manual for more
648 information.
649
650 @cindex reduce/reduce conflicts
651 @item reduce/reduce conflicts
652 That occurs if there are two or more rules that apply to the same
653 sequence of input. This usually indicates a serious error in the
654 grammar.
655
656 Such conflicts are resolved by choosing to use the rule that appears
657 first in the grammar, but it is very risky to rely on this. Every
658 reduce/reduce conflict must be studied and usually eliminated. See
659 @ref{Reduce/Reduce , , , bison}, in the Bison manual for more
660 information.
661 @end table
662
663 @menu
664 * Grammar Debugging::
665 * Understanding the automaton::
666 @end menu
667
668 @node Grammar Debugging
669 @subsection Grammar debugging
670
671 @cindex grammar debugging
672 @cindex grammar verbose description
673 To help writing a new grammar, @code{wisent-compile-grammar} can
674 produce a verbose report containing a detailed description of the
675 grammar and parser (equivalent to what Bison reports with the
676 @option{--verbose} option).
677
678 To enable the verbose report you can set to non-@code{nil} the
679 variable:
680
681 @vindex wisent-verbose-flag
682 @deffn Option wisent-verbose-flag
683 non-@code{nil} means to report verbose information on generated parser.
684 @end deffn
685
686 Or interactively use the command:
687
688 @findex wisent-toggle-verbose-flag
689 @deffn Command wisent-toggle-verbose-flag
690 Toggle whether to report verbose information on generated parser.
691 @end deffn
692
693 The verbose report is printed in the temporary buffer
694 @code{*wisent-log*} when running interactively, or in file
695 @file{wisent.output} when running in batch mode. Different
696 reports are separated from each other by a line like this:
697
698 @example
699 @group
700 *** Wisent @var{source-file} - 2002-06-27 17:33
701 @end group
702 @end example
703
704 where @var{source-file} is the name of the Emacs Lisp file from which
705 the grammar was read. See @ref{Understanding the automaton}, for
706 details on the verbose report.
707
708 @table @strong
709 @item Please Note
710 To help debugging the grammar compiler itself, you can set this
711 variable to print the content of some internal data structures:
712
713 @vindex wisent-debug-flag
714 @defvar wisent-debug-flag
715 non-@code{nil} means enable some debug stuff.
716 @end defvar
717 @end table
718
719 @node Understanding the automaton
720 @subsection Understanding the automaton
721
722 @cindex understanding the automaton
723 This section (took from the manual of Bison 1.49) describes how to use
724 the verbose report printed by @code{wisent-compile-grammar} to
725 understand the generated automaton, to tune or fix a grammar.
726
727 We will use the following example:
728
729 @example
730 @group
731 (let ((wisent-verbose-flag t)) ;; Print a verbose report!
732 (wisent-compile-grammar
733 '((NUM STR) ; %token NUM STR
734
735 ((left ?+ ?-) ; %left '+' '-';
736 (left ?*)) ; %left '*'
737
738 (exp ; exp:
739 ((exp ?+ exp)) ; exp '+' exp
740 ((exp ?- exp)) ; | exp '-' exp
741 ((exp ?* exp)) ; | exp '*' exp
742 ((exp ?/ exp)) ; | exp '/' exp
743 ((NUM)) ; | NUM
744 ) ; ;
745
746 (useless ; useless:
747 ((STR)) ; STR
748 ) ; ;
749 )
750 'nil) ; no %start declarations
751 )
752 @end group
753 @end example
754
755 When evaluating the above expression, grammar compilation first issues
756 the following two clear messages:
757
758 @example
759 @group
760 Grammar contains 1 useless nonterminals and 1 useless rules
761 Grammar contains 7 shift/reduce conflicts
762 @end group
763 @end example
764
765 The @samp{*wisent-log*} buffer details things!
766
767 The first section reports conflicts that were solved using precedence
768 and/or associativity:
769
770 @example
771 @group
772 Conflict in state 7 between rule 1 and token '+' resolved as reduce.
773 Conflict in state 7 between rule 1 and token '-' resolved as reduce.
774 Conflict in state 7 between rule 1 and token '*' resolved as shift.
775 Conflict in state 8 between rule 2 and token '+' resolved as reduce.
776 Conflict in state 8 between rule 2 and token '-' resolved as reduce.
777 Conflict in state 8 between rule 2 and token '*' resolved as shift.
778 Conflict in state 9 between rule 3 and token '+' resolved as reduce.
779 Conflict in state 9 between rule 3 and token '-' resolved as reduce.
780 Conflict in state 9 between rule 3 and token '*' resolved as reduce.
781 @end group
782 @end example
783
784 The next section reports useless tokens, nonterminal and rules (note
785 that useless tokens might be used by the scanner):
786
787 @example
788 @group
789 Useless nonterminals:
790
791 useless
792
793
794 Terminals which are not used:
795
796 STR
797
798
799 Useless rules:
800
801 #6 useless: STR;
802 @end group
803 @end example
804
805 The next section lists states that still have conflicts:
806
807 @example
808 @group
809 State 7 contains 1 shift/reduce conflict.
810 State 8 contains 1 shift/reduce conflict.
811 State 9 contains 1 shift/reduce conflict.
812 State 10 contains 4 shift/reduce conflicts.
813 @end group
814 @end example
815
816 The next section reproduces the grammar used:
817
818 @example
819 @group
820 Grammar
821
822 Number, Rule
823 1 exp -> exp '+' exp
824 2 exp -> exp '-' exp
825 3 exp -> exp '*' exp
826 4 exp -> exp '/' exp
827 5 exp -> NUM
828 @end group
829 @end example
830
831 And reports the uses of the symbols:
832
833 @example
834 @group
835 Terminals, with rules where they appear
836
837 $EOI (-1)
838 error (1)
839 NUM (2) 5
840 STR (3) 6
841 '+' (4) 1
842 '-' (5) 2
843 '*' (6) 3
844 '/' (7) 4
845
846
847 Nonterminals, with rules where they appear
848
849 exp (8)
850 on left: 1 2 3 4 5, on right: 1 2 3 4
851 @end group
852 @end example
853
854 The report then details the automaton itself, describing each state
855 with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
856 item is a production rule together with a point (marked by @samp{.})
857 that the input cursor.
858
859 @example
860 @group
861 state 0
862
863 NUM shift, and go to state 1
864
865 exp go to state 2
866 @end group
867 @end example
868
869 State 0 corresponds to being at the very beginning of the parsing, in
870 the initial rule, right before the start symbol (@samp{exp}). When
871 the parser returns to this state right after having reduced a rule
872 that produced an @samp{exp}, it jumps to state 2. If there is no such
873 transition on a nonterminal symbol, and the lookahead is a @samp{NUM},
874 then this token is shifted on the parse stack, and the control flow
875 jumps to state 1. Any other lookahead triggers a parse error.
876
877 In the state 1...
878
879 @example
880 @group
881 state 1
882
883 exp -> NUM . (rule 5)
884
885 $default reduce using rule 5 (exp)
886 @end group
887 @end example
888
889 the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
890 (@samp{$default}), the parser will reduce it. If it was coming from
891 state 0, then, after this reduction it will return to state 0, and
892 will jump to state 2 (@samp{exp: go to state 2}).
893
894 @example
895 @group
896 state 2
897
898 exp -> exp . '+' exp (rule 1)
899 exp -> exp . '-' exp (rule 2)
900 exp -> exp . '*' exp (rule 3)
901 exp -> exp . '/' exp (rule 4)
902
903 $EOI shift, and go to state 11
904 '+' shift, and go to state 3
905 '-' shift, and go to state 4
906 '*' shift, and go to state 5
907 '/' shift, and go to state 6
908 @end group
909 @end example
910
911 In state 2, the automaton can only shift a symbol. For instance,
912 because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
913 @samp{+}, it will be shifted on the parse stack, and the automaton
914 control will jump to state 3, corresponding to the item
915 @samp{exp -> exp . '+' exp}:
916
917 @example
918 @group
919 state 3
920
921 exp -> exp '+' . exp (rule 1)
922
923 NUM shift, and go to state 1
924
925 exp go to state 7
926 @end group
927 @end example
928
929 Since there is no default action, any other token than those listed
930 above will trigger a parse error.
931
932 The interpretation of states 4 to 6 is straightforward:
933
934 @example
935 @group
936 state 4
937
938 exp -> exp '-' . exp (rule 2)
939
940 NUM shift, and go to state 1
941
942 exp go to state 8
943
944
945
946 state 5
947
948 exp -> exp '*' . exp (rule 3)
949
950 NUM shift, and go to state 1
951
952 exp go to state 9
953
954
955
956 state 6
957
958 exp -> exp '/' . exp (rule 4)
959
960 NUM shift, and go to state 1
961
962 exp go to state 10
963 @end group
964 @end example
965
966 As was announced in beginning of the report, @samp{State 7 contains 1
967 shift/reduce conflict.}:
968
969 @example
970 @group
971 state 7
972
973 exp -> exp . '+' exp (rule 1)
974 exp -> exp '+' exp . (rule 1)
975 exp -> exp . '-' exp (rule 2)
976 exp -> exp . '*' exp (rule 3)
977 exp -> exp . '/' exp (rule 4)
978
979 '*' shift, and go to state 5
980 '/' shift, and go to state 6
981
982 '/' [reduce using rule 1 (exp)]
983 $default reduce using rule 1 (exp)
984 @end group
985 @end example
986
987 Indeed, there are two actions associated to the lookahead @samp{/}:
988 either shifting (and going to state 6), or reducing rule 1. The
989 conflict means that either the grammar is ambiguous, or the parser
990 lacks information to make the right decision. Indeed the grammar is
991 ambiguous, as, since we did not specify the precedence of @samp{/},
992 the sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM
993 / NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM +
994 NUM) / NUM}, which corresponds to reducing rule 1.
995
996 Because in @acronym{LALR(1)} parsing a single decision can be made,
997 Wisent arbitrarily chose to disable the reduction, see
998 @ref{Conflicts}. Discarded actions are reported in between square
999 brackets.
1000
1001 Note that all the previous states had a single possible action: either
1002 shifting the next token and going to the corresponding state, or
1003 reducing a single rule. In the other cases, i.e., when shifting
1004 @emph{and} reducing is possible or when @emph{several} reductions are
1005 possible, the lookahead is required to select the action. State 7 is
1006 one such state: if the lookahead is @samp{*} or @samp{/} then the
1007 action is shifting, otherwise the action is reducing rule 1. In other
1008 words, the first two items, corresponding to rule 1, are not eligible
1009 when the lookahead is @samp{*}, since we specified that @samp{*} has
1010 higher precedence that @samp{+}. More generally, some items are
1011 eligible only with some set of possible lookaheads.
1012
1013 States 8 to 10 are similar:
1014
1015 @example
1016 @group
1017 state 8
1018
1019 exp -> exp . '+' exp (rule 1)
1020 exp -> exp . '-' exp (rule 2)
1021 exp -> exp '-' exp . (rule 2)
1022 exp -> exp . '*' exp (rule 3)
1023 exp -> exp . '/' exp (rule 4)
1024
1025 '*' shift, and go to state 5
1026 '/' shift, and go to state 6
1027
1028 '/' [reduce using rule 2 (exp)]
1029 $default reduce using rule 2 (exp)
1030
1031
1032 state 9
1033
1034 exp -> exp . '+' exp (rule 1)
1035 exp -> exp . '-' exp (rule 2)
1036 exp -> exp . '*' exp (rule 3)
1037 exp -> exp '*' exp . (rule 3)
1038 exp -> exp . '/' exp (rule 4)
1039
1040 '/' shift, and go to state 6
1041
1042 '/' [reduce using rule 3 (exp)]
1043 $default reduce using rule 3 (exp)
1044
1045
1046 state 10
1047
1048 exp -> exp . '+' exp (rule 1)
1049 exp -> exp . '-' exp (rule 2)
1050 exp -> exp . '*' exp (rule 3)
1051 exp -> exp . '/' exp (rule 4)
1052 exp -> exp '/' exp . (rule 4)
1053
1054 '+' shift, and go to state 3
1055 '-' shift, and go to state 4
1056 '*' shift, and go to state 5
1057 '/' shift, and go to state 6
1058
1059 '+' [reduce using rule 4 (exp)]
1060 '-' [reduce using rule 4 (exp)]
1061 '*' [reduce using rule 4 (exp)]
1062 '/' [reduce using rule 4 (exp)]
1063 $default reduce using rule 4 (exp)
1064 @end group
1065 @end example
1066
1067 Observe that state 10 contains conflicts due to the lack of precedence
1068 of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
1069 associativity of @samp{/} is not specified.
1070
1071 Finally, the state 11 (plus 12) is named the @dfn{final state}, or the
1072 @dfn{accepting state}:
1073
1074 @example
1075 @group
1076 state 11
1077
1078 $EOI shift, and go to state 12
1079
1080
1081
1082 state 12
1083
1084 $default accept
1085 @end group
1086 @end example
1087
1088 The end of input is shifted @samp{$EOI shift,} and the parser exits
1089 successfully (@samp{go to state 12}, that terminates).
1090
1091 @node Wisent Parsing
1092 @chapter Wisent Parsing
1093
1094 @cindex bottom-up parser
1095 @cindex shift-reduce parser
1096 The Wisent's parser is what is called a @dfn{bottom-up} or
1097 @dfn{shift-reduce} parser which repeatedly:
1098
1099 @table @dfn
1100 @cindex shift
1101 @item shift
1102 That is pushes the value of the last lexical token read (the
1103 look-ahead token) into a value stack, and reads a new one.
1104
1105 @cindex reduce
1106 @item reduce
1107 That is replaces a nonterminal by its semantic value. The values of
1108 the components which form the right hand side of a rule are popped
1109 from the value stack and reduced by the semantic action of this rule.
1110 The result is pushed back on top of value stack.
1111 @end table
1112
1113 The parser will stop on:
1114
1115 @table @dfn
1116 @cindex accept
1117 @item accept
1118 When all input has been successfully parsed. The semantic value of
1119 the start nonterminal is on top of the value stack.
1120
1121 @cindex syntax error
1122 @item error
1123 When a syntax error (an unexpected token in input) has been detected.
1124 At this point the parser issues an error message and either stops or
1125 calls a recovery routine to try to resume parsing.
1126 @end table
1127
1128 @cindex table-driven parser
1129 The above elementary actions are driven by the @acronym{LALR(1)}
1130 automaton built by @code{wisent-compile-grammar} from a context-free
1131 grammar.
1132
1133 The Wisent's parser is entered by calling the function:
1134
1135 @findex wisent-parse
1136 @defun wisent-parse automaton lexer &optional error start
1137 Parse input using the automaton specified in @var{automaton}.
1138
1139 @table @var
1140 @item automaton
1141 Is an @acronym{LALR(1)} automaton generated by
1142 @code{wisent-compile-grammar} (@pxref{Wisent Grammar}).
1143
1144 @item lexer
1145 Is a function with no argument called by the parser to obtain the next
1146 terminal (token) in input (@pxref{Writing a lexer}).
1147
1148 @item error
1149 Is an optional reporting function called when a parse error occurs.
1150 It receives a message string to report. It defaults to the function
1151 @code{wisent-message} (@pxref{Report errors}).
1152
1153 @item start
1154 Specify the start symbol (nonterminal) used by the parser as its goal.
1155 It defaults to the start symbol defined in the grammar
1156 (@pxref{Wisent Grammar}).
1157 @end table
1158 @end defun
1159
1160 The following two normal hooks permit to do some useful processing
1161 respectively before to start parsing, and after the parser terminated.
1162
1163 @vindex wisent-pre-parse-hook
1164 @defvar wisent-pre-parse-hook
1165 Normal hook run just before entering the @var{LR} parser engine.
1166 @end defvar
1167
1168 @vindex wisent-post-parse-hook
1169 @defvar wisent-post-parse-hook
1170 Normal hook run just after the @var{LR} parser engine terminated.
1171 @end defvar
1172
1173 @menu
1174 * Writing a lexer::
1175 * Actions goodies::
1176 * Report errors::
1177 * Error recovery::
1178 * Debugging actions::
1179 @end menu
1180
1181 @node Writing a lexer
1182 @section What the parser must receive
1183
1184 It is important to understand that the parser does not parse
1185 characters, but lexical tokens, and does not know anything about
1186 characters in text streams!
1187
1188 @cindex lexical analysis
1189 @cindex lexer
1190 @cindex scanner
1191 Reading input data to produce lexical tokens is performed by a lexer
1192 (also called a scanner) in a lexical analysis step, before the syntax
1193 analysis step performed by the parser. The parser automatically calls
1194 the lexer when it needs the next token to parse.
1195
1196 @cindex lexical tokens
1197 A Wisent's lexer is an Emacs Lisp function with no argument. It must
1198 return a valid lexical token of the form:
1199
1200 @code{(@var{token-class value} [@var{start} . @var{end}])}
1201
1202 @table @var
1203 @item token-class
1204 Is a category of lexical token identifying a terminal as specified in
1205 the grammar (@pxref{Wisent Grammar}). It can be a symbol or a character
1206 literal.
1207
1208 @item value
1209 Is the value of the lexical token. It can be of any valid Emacs Lisp
1210 data type.
1211
1212 @item start
1213 @itemx end
1214 Are the optional beginning and ending positions of @var{value} in the
1215 input stream.
1216 @end table
1217
1218 When there are no more tokens to read the lexer must return the token
1219 @code{(list wisent-eoi-term)} to each request.
1220
1221 @vindex wisent-eoi-term
1222 @defvar wisent-eoi-term
1223 Predefined constant, End-Of-Input terminal symbol.
1224 @end defvar
1225
1226 @code{wisent-lex} is an example of a lexer that reads lexical tokens
1227 produced by a @semantic{} lexer, and translates them into lexical tokens
1228 suitable to the Wisent parser. See also @ref{Wisent Lex}.
1229
1230 To call the lexer in a semantic action use the function
1231 @code{wisent-lexer}. See also @ref{Actions goodies}.
1232
1233 @node Actions goodies
1234 @section Variables and macros useful in grammar actions.
1235
1236 @vindex wisent-input
1237 @defvar wisent-input
1238 The last token read.
1239 This variable only has meaning in the scope of @code{wisent-parse}.
1240 @end defvar
1241
1242 @findex wisent-lexer
1243 @defun wisent-lexer
1244 Obtain the next terminal in input.
1245 @end defun
1246
1247 @findex wisent-region
1248 @defun wisent-region &rest positions
1249 Return the start/end positions of the region including
1250 @var{positions}. Each element of @var{positions} is a pair
1251 @w{@code{(@var{start-pos} . @var{end-pos})}} or @code{nil}. The
1252 returned value is the pair @w{@code{(@var{min-start-pos} .
1253 @var{max-end-pos})}} or @code{nil} if no @var{positions} are
1254 available.
1255 @end defun
1256
1257 @node Report errors
1258 @section The error reporting function
1259
1260 @cindex error reporting
1261 When the parser encounters a syntax error it calls a user-defined
1262 function. It must be an Emacs Lisp function with one argument: a
1263 string containing the message to report.
1264
1265 By default the parser uses this function to report error messages:
1266
1267 @findex wisent-message
1268 @defun wisent-message string &rest args
1269 Print a one-line message if @code{wisent-parse-verbose-flag} is set.
1270 Pass @var{string} and @var{args} arguments to @dfn{message}.
1271 @end defun
1272
1273 @table @strong
1274 @item Please Note:
1275 @code{wisent-message} uses the following function to print lexical
1276 tokens:
1277
1278 @defun wisent-token-to-string token
1279 Return a printed representation of lexical token @var{token}.
1280 @end defun
1281
1282 The general printed form of a lexical token is:
1283
1284 @w{@code{@var{token}(@var{value})@@@var{location}}}
1285 @end table
1286
1287 To control the verbosity of the parser you can set to non-@code{nil}
1288 this variable:
1289
1290 @vindex wisent-parse-verbose-flag
1291 @deffn Option wisent-parse-verbose-flag
1292 non-@code{nil} means to issue more messages while parsing.
1293 @end deffn
1294
1295 Or interactively use the command:
1296
1297 @findex wisent-parse-toggle-verbose-flag
1298 @deffn Command wisent-parse-toggle-verbose-flag
1299 Toggle whether to issue more messages while parsing.
1300 @end deffn
1301
1302 When the error reporting function is entered the variable
1303 @code{wisent-input} contains the unexpected token as returned by the
1304 lexer.
1305
1306 The error reporting function can be called from a semantic action too
1307 using the special macro @code{wisent-error}. When called from a
1308 semantic action entered by error recovery (@pxref{Error recovery}) the
1309 value of the variable @code{wisent-recovering} is non-@code{nil}.
1310
1311 @node Error recovery
1312 @section Error recovery
1313
1314 @cindex error recovery
1315 The error recovery mechanism of the Wisent's parser conforms to the
1316 one Bison uses. See @ref{Error Recovery, , , bison}, in the Bison
1317 manual for details.
1318
1319 @cindex error token
1320 To recover from a syntax error you must write rules to recognize the
1321 special token @code{error}. This is a terminal symbol that is
1322 automatically defined and reserved for error handling.
1323
1324 When the parser encounters a syntax error, it pops the state stack
1325 until it finds a state that allows shifting the @code{error} token.
1326 After it has been shifted, if the old look-ahead token is not
1327 acceptable to be shifted next, the parser reads tokens and discards
1328 them until it finds a token which is acceptable.
1329
1330 @cindex error recovery strategy
1331 Strategies for error recovery depend on the choice of error rules in
1332 the grammar. A simple and useful strategy is simply to skip the rest
1333 of the current statement if an error is detected:
1334
1335 @example
1336 @group
1337 (statement (( error ?; )) ;; on error, skip until ';' is read
1338 )
1339 @end group
1340 @end example
1341
1342 It is also useful to recover to the matching close-delimiter of an
1343 opening-delimiter that has already been parsed:
1344
1345 @example
1346 @group
1347 (primary (( ?@{ expr ?@} ))
1348 (( ?@{ error ?@} ))
1349 @dots{}
1350 )
1351 @end group
1352 @end example
1353
1354 @cindex error recovery actions
1355 Note that error recovery rules may have actions, just as any other
1356 rules can. Here are some predefined hooks, variables, functions or
1357 macros, useful in such actions:
1358
1359 @vindex wisent-nerrs
1360 @defvar wisent-nerrs
1361 The number of parse errors encountered so far.
1362 @end defvar
1363
1364 @vindex wisent-recovering
1365 @defvar wisent-recovering
1366 non-@code{nil} means that the parser is recovering.
1367 This variable only has meaning in the scope of @code{wisent-parse}.
1368 @end defvar
1369
1370 @findex wisent-error
1371 @defun wisent-error msg
1372 Call the user supplied error reporting function with message
1373 @var{msg} (@pxref{Report errors}).
1374
1375 For an example of use, @xref{wisent-skip-token}.
1376 @end defun
1377
1378 @findex wisent-errok
1379 @defun wisent-errok
1380 Resume generating error messages immediately for subsequent syntax
1381 errors.
1382
1383 The parser suppress error message for syntax errors that happens
1384 shortly after the first, until three consecutive input tokens have
1385 been successfully shifted.
1386
1387 Calling @code{wisent-errok} in an action, make error messages resume
1388 immediately. No error messages will be suppressed if you call it in
1389 an error rule's action.
1390
1391 For an example of use, @xref{wisent-skip-token}.
1392 @end defun
1393
1394 @findex wisent-clearin
1395 @defun wisent-clearin
1396 Discard the current lookahead token.
1397 This will cause a new lexical token to be read.
1398
1399 In an error rule's action the previous lookahead token is reanalyzed
1400 immediately. @code{wisent-clearin} may be called to clear this token.
1401
1402 For example, suppose that on a parse error, an error handling routine
1403 is called that advances the input stream to some point where parsing
1404 should once again commence. The next symbol returned by the lexical
1405 scanner is probably correct. The previous lookahead token ought to
1406 be discarded with @code{wisent-clearin}.
1407
1408 For an example of use, @xref{wisent-skip-token}.
1409 @end defun
1410
1411 @findex wisent-abort
1412 @defun wisent-abort
1413 Abort parsing and save the lookahead token.
1414 @end defun
1415
1416 @findex wisent-set-region
1417 @defun wisent-set-region start end
1418 Change the region of text matched by the current nonterminal.
1419 @var{start} and @var{end} are respectively the beginning and end
1420 positions of the region occupied by the group of components associated
1421 to this nonterminal. If @var{start} or @var{end} values are not a
1422 valid positions the region is set to @code{nil}.
1423
1424 For an example of use, @xref{wisent-skip-token}.
1425 @end defun
1426
1427 @vindex wisent-discarding-token-functions
1428 @defvar wisent-discarding-token-functions
1429 List of functions to be called when discarding a lexical token.
1430 These functions receive the lexical token discarded.
1431 When the parser encounters unexpected tokens, it can discards them,
1432 based on what directed by error recovery rules. Either when the
1433 parser reads tokens until one is found that can be shifted, or when an
1434 semantic action calls the function @code{wisent-skip-token} or
1435 @code{wisent-skip-block}.
1436 For language specific hooks, make sure you define this as a local
1437 hook.
1438
1439 For example, in @semantic{}, this hook is set to the function
1440 @code{wisent-collect-unmatched-syntax} to collect unmatched lexical
1441 tokens (@pxref{Useful functions}).
1442 @end defvar
1443
1444 @findex wisent-skip-token
1445 @defun wisent-skip-token
1446 @anchor{wisent-skip-token}
1447 Skip the lookahead token in order to resume parsing.
1448 Return nil.
1449 Must be used in error recovery semantic actions.
1450
1451 It typically looks like this:
1452
1453 @lisp
1454 @group
1455 (wisent-message "%s: skip %s" $action
1456 (wisent-token-to-string wisent-input))
1457 (run-hook-with-args
1458 'wisent-discarding-token-functions wisent-input)
1459 (wisent-clearin)
1460 (wisent-errok)))
1461 @end group
1462 @end lisp
1463 @end defun
1464
1465 @findex wisent-skip-block
1466 @defun wisent-skip-block
1467 Safely skip a block in order to resume parsing.
1468 Return nil.
1469 Must be used in error recovery semantic actions.
1470
1471 A block is data between an open-delimiter (syntax class @code{(}) and
1472 a matching close-delimiter (syntax class @code{)}):
1473
1474 @example
1475 @group
1476 (a parenthesized block)
1477 [a block between brackets]
1478 @{a block between braces@}
1479 @end group
1480 @end example
1481
1482 The following example uses @code{wisent-skip-block} to safely skip a
1483 block delimited by @samp{LBRACE} (@code{@{}) and @samp{RBRACE}
1484 (@code{@}}) tokens, when a syntax error occurs in
1485 @samp{other-components}:
1486
1487 @example
1488 @group
1489 (block ((LBRACE other-components RBRACE))
1490 ((LBRACE RBRACE))
1491 ((LBRACE error)
1492 (wisent-skip-block))
1493 )
1494 @end group
1495 @end example
1496 @end defun
1497
1498 @node Debugging actions
1499 @section Debugging semantic actions
1500
1501 @cindex semantic action symbols
1502 Each semantic action is represented by a symbol interned in an
1503 @dfn{obarray} that is part of the @acronym{LALR(1)} automaton
1504 (@pxref{Compiling a grammar}). @code{symbol-function} on a semantic
1505 action symbol return the semantic action lambda expression.
1506
1507 A semantic action symbol name has the form
1508 @code{@var{nonterminal}:@var{index}}, where @var{nonterminal} is the
1509 name of the nonterminal symbol the action belongs to, and @var{index}
1510 is an action sequence number within the scope of @var{nonterminal}.
1511 For example, this nonterminal definition:
1512
1513 @example
1514 @group
1515 input:
1516 line [@code{input:0}]
1517 | input line
1518 (format "%s %s" $1 $2) [@code{input:1}]
1519 ;
1520 @end group
1521 @end example
1522
1523 Will produce two semantic actions, and associated symbols:
1524
1525 @table @code
1526 @item input:0
1527 A default action that returns @code{$1}.
1528
1529 @item input:1
1530 That returns @code{(format "%s %s" $1 $2)}.
1531 @end table
1532
1533 @cindex debugging semantic actions
1534 Debugging uses the Lisp debugger to investigate what is happening
1535 during execution of semantic actions.
1536 Three commands are available to debug semantic actions. They receive
1537 two arguments:
1538
1539 @itemize @bullet
1540 @item The automaton that contains the semantic action.
1541
1542 @item The semantic action symbol.
1543 @end itemize
1544
1545 @findex wisent-debug-on-entry
1546 @deffn Command wisent-debug-on-entry automaton function
1547 Request @var{automaton}'s @var{function} to invoke debugger each time it is called.
1548 @var{function} must be a semantic action symbol that exists in @var{automaton}.
1549 @end deffn
1550
1551 @findex wisent-cancel-debug-on-entry
1552 @deffn Command wisent-cancel-debug-on-entry automaton function
1553 Undo effect of @code{wisent-debug-on-entry} on @var{automaton}'s @var{function}.
1554 @var{function} must be a semantic action symbol that exists in @var{automaton}.
1555 @end deffn
1556
1557 @findex wisent-debug-show-entry
1558 @deffn Command wisent-debug-show-entry automaton function
1559 Show the source of @var{automaton}'s semantic action @var{function}.
1560 @var{function} must be a semantic action symbol that exists in @var{automaton}.
1561 @end deffn
1562
1563 @node Wisent Semantic
1564 @chapter How to use Wisent with Semantic
1565
1566 @cindex tags
1567 This section presents how the Wisent's parser can be used to produce
1568 @dfn{tags} for the @semantic{} tool set.
1569
1570 @semantic{} tags form a hierarchy of Emacs Lisp data structures that
1571 describes a program in a way independent of programming languages.
1572 Tags map program declarations, like functions, methods, variables,
1573 data types, classes, includes, grammar rules, etc..
1574
1575 @cindex WY grammar format
1576 To use the Wisent parser with @semantic{} you have to define
1577 your grammar in @dfn{WY} form, a grammar format very close
1578 to the one used by Bison.
1579
1580 Please @inforef{top, Semantic Grammar Framework Manual, grammar-fw}
1581 for more information on @semantic{} grammars.
1582
1583 @menu
1584 * Grammar styles::
1585 * Wisent Lex::
1586 @end menu
1587
1588 @node Grammar styles
1589 @section Grammar styles
1590
1591 @cindex grammar styles
1592 @semantic{} parsing heavily depends on how you wrote the grammar.
1593 There are mainly two styles to write a Wisent's grammar intended to be
1594 used with the @semantic{} tool set: the @dfn{Iterative style} and the
1595 @dfn{Bison style}. Each one has pros and cons, and in certain cases
1596 it can be worth a mix of the two styles!
1597
1598 @menu
1599 * Iterative style::
1600 * Bison style::
1601 * Mixed style::
1602 * Start nonterminals::
1603 * Useful functions::
1604 @end menu
1605
1606 @node Iterative style
1607 @subsection Iterative style
1608
1609 @cindex grammar iterative style
1610 The @dfn{iterative style} is the preferred style to use with @semantic{}.
1611 It relies on an iterative parser back-end mechanism which parses start
1612 nonterminals one at a time and automagically skips unexpected lexical
1613 tokens in input.
1614
1615 Compared to rule-based iterative functions (@pxref{Bison style}),
1616 iterative parsers are better in that they can handle obscure errors
1617 more cleanly.
1618
1619 @cindex raw tag
1620 Each start nonterminal must produces a @dfn{raw tag} by calling a
1621 @code{TAG}-like grammar macro with appropriate parameters. See also
1622 @ref{Start nonterminals}.
1623
1624 @cindex expanded tag
1625 Then, each parsing iteration automatically translates a raw tag into
1626 @dfn{expanded tags}, updating the raw tag structure with internal
1627 properties and buffer related data.
1628
1629 After parsing completes, it results in a tree of expanded tags.
1630
1631 The following example is a snippet of the iterative style Java grammar
1632 provided in the @semantic{} distribution in the file
1633 @file{semantic/wisent/java-tags.wy}.
1634
1635 @example
1636 @group
1637 @dots{}
1638 ;; Alternate entry points
1639 ;; - Needed by partial re-parse
1640 %start formal_parameter
1641 @dots{}
1642 ;; - Needed by EXPANDFULL clauses
1643 %start formal_parameters
1644 @dots{}
1645
1646 formal_parameter_list
1647 : PAREN_BLOCK
1648 (EXPANDFULL $1 formal_parameters)
1649 ;
1650
1651 formal_parameters
1652 : LPAREN
1653 ()
1654 | RPAREN
1655 ()
1656 | formal_parameter COMMA
1657 | formal_parameter RPAREN
1658 ;
1659
1660 formal_parameter
1661 : formal_parameter_modifier_opt type variable_declarator_id
1662 (VARIABLE-TAG $3 $2 nil :typemodifiers $1)
1663 ;
1664 @end group
1665 @end example
1666
1667 @findex EXPANDFULL
1668 It shows the use of the @code{EXPANDFULL} grammar macro to parse a
1669 @samp{PAREN_BLOCK} which contains a @samp{formal_parameter_list}.
1670 @code{EXPANDFULL} tells to recursively parse @samp{formal_parameters}
1671 inside @samp{PAREN_BLOCK}. The parser iterates until it digested all
1672 available input data inside the @samp{PAREN_BLOCK}, trying to match
1673 any of the @samp{formal_parameters} rules:
1674
1675 @itemize
1676 @item @samp{LPAREN}
1677
1678 @item @samp{RPAREN}
1679
1680 @item @samp{formal_parameter COMMA}
1681
1682 @item @samp{formal_parameter RPAREN}
1683 @end itemize
1684
1685 At each iteration it will return a @samp{formal_parameter} raw tag,
1686 or @code{nil} to skip unwanted (single @samp{LPAREN} or @samp{RPAREN}
1687 for example) or unexpected input data. Those raw tags will be
1688 automatically expanded by the iterative back-end parser.
1689
1690 @node Bison style
1691 @subsection Bison style
1692
1693 @cindex grammar bison style
1694 What we call the @dfn{Bison style} is the traditional style of Bison's
1695 grammars. Compared to iterative style, it is not straightforward to
1696 use grammars written in Bison style in @semantic{}. Mainly because such
1697 grammars are designed to parse the whole input data in one pass, and
1698 don't use the iterative parser back-end mechanism (@pxref{Iterative
1699 style}). With Bison style the parser is called once to parse the
1700 grammar start nonterminal.
1701
1702 The following example is a snippet of the Bison style Java grammar
1703 provided in the @semantic{} distribution in the file
1704 @file{semantic/wisent/java.wy}.
1705
1706 @example
1707 @group
1708 %start formal_parameter
1709 @dots{}
1710
1711 formal_parameter_list
1712 : formal_parameter_list COMMA formal_parameter
1713 (cons $3 $1)
1714 | formal_parameter
1715 (list $1)
1716 ;
1717
1718 formal_parameter
1719 : formal_parameter_modifier_opt type variable_declarator_id
1720 (EXPANDTAG
1721 (VARIABLE-TAG $3 $2 :typemodifiers $1)
1722 )
1723 ;
1724 @end group
1725 @end example
1726
1727 The first consequence is that syntax errors are not automatically
1728 handled by @semantic{}. Thus, it is necessary to explicitly handle
1729 them at the grammar level, providing error recovery rules to skip
1730 unexpected input data.
1731
1732 The second consequence is that the iterative parser can't do automatic
1733 tag expansion, except for the start nonterminal value. It is
1734 necessary to explicitly expand tags from concerned semantic actions by
1735 calling the grammar macro @code{EXPANDTAG} with a raw tag as
1736 parameter. See also @ref{Start nonterminals}, for incremental
1737 re-parse considerations.
1738
1739 @node Mixed style
1740 @subsection Mixed style
1741
1742 @cindex grammar mixed style
1743 @example
1744 @group
1745 %start grammar
1746 ;; Reparse
1747 %start prologue epilogue declaration nonterminal rule
1748 @dots{}
1749
1750 %%
1751
1752 grammar:
1753 prologue
1754 | epilogue
1755 | declaration
1756 | nonterminal
1757 | PERCENT_PERCENT
1758 ;
1759 @dots{}
1760
1761 nonterminal:
1762 SYMBOL COLON rules SEMI
1763 (TAG $1 'nonterminal :children $3)
1764 ;
1765
1766 rules:
1767 lifo_rules
1768 (apply 'nconc (nreverse $1))
1769 ;
1770
1771 lifo_rules:
1772 lifo_rules OR rule
1773 (cons $3 $1)
1774 | rule
1775 (list $1)
1776 ;
1777
1778 rule:
1779 rhs
1780 (let* ((rhs $1)
1781 name type comps prec action elt)
1782 @dots{}
1783 (EXPANDTAG
1784 (TAG name 'rule :type type :value comps :prec prec :expr action)
1785 ))
1786 ;
1787 @end group
1788 @end example
1789
1790 This example shows how iterative and Bison styles can be combined in
1791 the same grammar to obtain a good compromise between grammar
1792 complexity and an efficient parsing strategy in an interactive
1793 environment.
1794
1795 @samp{nonterminal} is parsed using iterative style via the main
1796 @samp{grammar} rule. The semantic action uses the @code{TAG} macro to
1797 produce a raw tag, automagically expanded by @semantic{}.
1798
1799 But @samp{rules} part is parsed in Bison style! Why?
1800
1801 Rule delimiters are the colon (@code{:}), that follows the nonterminal
1802 name, and a final semicolon (@code{;}). Unfortunately these
1803 delimiters are not @code{open-paren}/@code{close-paren} type, and the
1804 Emacs' syntactic analyzer can't easily isolate data between them to
1805 produce a @samp{RULES_PART} parenthesis-block-like lexical token.
1806 Consequently it is not possible to use @code{EXPANDFULL} to iterate in
1807 @samp{RULES_PART}, like this:
1808
1809 @example
1810 @group
1811 nonterminal:
1812 SYMBOL COLON rules SEMI
1813 (TAG $1 'nonterminal :children $3)
1814 ;
1815
1816 rules:
1817 RULES_PART ;; @strong{Map a parenthesis-block-like lexical token}
1818 (EXPANDFULL $1 'rules)
1819 ;
1820
1821 rules:
1822 COLON
1823 ()
1824 OR
1825 ()
1826 SEMI
1827 ()
1828 rhs
1829 rhs
1830 (let* ((rhs $1)
1831 name type comps prec action elt)
1832 @dots{}
1833 (TAG name 'rule :type type :value comps :prec prec :expr action)
1834 )
1835 ;
1836 @end group
1837 @end example
1838
1839 In such cases, when it is difficult for Emacs to obtain
1840 parenthesis-block-like lexical tokens, the best solution is to use the
1841 traditional Bison style with error recovery!
1842
1843 In some extreme cases, it can also be convenient to extend the lexer,
1844 to deliver new lexical tokens, to simplify the grammar.
1845
1846 @node Start nonterminals
1847 @subsection Start nonterminals
1848
1849 @cindex start nonterminals
1850 @cindex @code{reparse-symbol} property
1851 When you write a grammar for @semantic{}, it is important to carefully
1852 indicate the start nonterminals. Each one defines an entry point in
1853 the grammar, and after parsing its semantic value is returned to the
1854 back-end iterative engine. Consequently:
1855
1856 @strong{The semantic value of a start nonterminal must be a produced
1857 by a TAG like grammar macro}.
1858
1859 Start nonterminals are declared by @code{%start} statements. When
1860 nothing is specified the first nonterminal that appears in the grammar
1861 is the start nonterminal.
1862
1863 Generally, the following nonterminals must be declared as start
1864 symbols:
1865
1866 @itemize @bullet
1867 @item The main grammar entry point
1868 @quotation
1869 Of course!
1870 @end quotation
1871
1872 @item nonterminals passed to @code{EXPAND}/@code{EXPANDFULL}
1873 @quotation
1874 These grammar macros recursively parse a part of input data, based on
1875 rules of the given nonterminal.
1876
1877 For example, the following will parse @samp{PAREN_BLOCK} data using
1878 the @samp{formal_parameters} rules:
1879
1880 @example
1881 @group
1882 formal_parameter_list
1883 : PAREN_BLOCK
1884 (EXPANDFULL $1 formal_parameters)
1885 ;
1886 @end group
1887 @end example
1888
1889 The semantic value of @samp{formal_parameters} becomes the value of
1890 the @code{EXPANDFULL} expression. It is a list of @semantic{} tags
1891 spliced in the tags tree.
1892
1893 Because the automaton must know that @samp{formal_parameters} is a
1894 start symbol, you must declare it like this:
1895
1896 @example
1897 @group
1898 %start formal_parameters
1899 @end group
1900 @end example
1901 @end quotation
1902 @end itemize
1903
1904 @cindex incremental re-parse
1905 @cindex reparse-symbol
1906 The @code{EXPANDFULL} macro has a side effect it is important to know,
1907 related to the incremental re-parse mechanism of @semantic{}: the
1908 nonterminal symbol parameter passed to @code{EXPANDFULL} also becomes
1909 the @code{reparse-symbol} property of the tag returned by the
1910 @code{EXPANDFULL} expression.
1911
1912 When buffer's data mapped by a tag is modified, @semantic{}
1913 schedules an incremental re-parse of that data, using the tag's
1914 @code{reparse-symbol} property as start nonterminal.
1915
1916 @strong{The rules associated to such start symbols must be carefully
1917 reviewed to ensure that the incremental parser will work!}
1918
1919 Things are a little bit different when the grammar is written in Bison
1920 style.
1921
1922 @strong{The @code{reparse-symbol} property is set to the nonterminal
1923 symbol the rule that explicitly uses @code{EXPANDTAG} belongs to.}
1924
1925 For example:
1926
1927 @example
1928 @group
1929 rule:
1930 rhs
1931 (let* ((rhs $1)
1932 name type comps prec action elt)
1933 @dots{}
1934 (EXPANDTAG
1935 (TAG name 'rule :type type :value comps :prec prec :expr action)
1936 ))
1937 ;
1938 @end group
1939 @end example
1940
1941 Set the @code{reparse-symbol} property of the expanded tag to
1942 @samp{rule}. A important consequence is that:
1943
1944 @strong{Every nonterminal having any rule that calls @code{EXPANDTAG}
1945 in a semantic action, should be declared as a start symbol!}
1946
1947 @node Useful functions
1948 @subsection Useful functions
1949
1950 Here is a description of some predefined functions it might be useful
1951 to know when writing new code to use Wisent in @semantic{}:
1952
1953 @findex wisent-collect-unmatched-syntax
1954 @defun wisent-collect-unmatched-syntax input
1955 Add @var{input} lexical token to the cache of unmatched tokens, in
1956 variable @code{semantic-unmatched-syntax-cache}.
1957
1958 See implementation of the function @code{wisent-skip-token} in
1959 @ref{Error recovery}, for an example of use.
1960 @end defun
1961
1962 @node Wisent Lex
1963 @section The Wisent Lex lexer
1964
1965 @findex semantic-lex
1966 The lexical analysis step of @semantic{} is performed by the general
1967 function @code{semantic-lex}. For more information, @inforef{Writing
1968 Lexers, ,semantic-langdev}.
1969
1970 @code{semantic-lex} produces lexical tokens of the form:
1971
1972 @example
1973 @group
1974 @code{(@var{token-class start} . @var{end})}
1975 @end group
1976 @end example
1977
1978 @table @var
1979 @item token-class
1980 Is a symbol that identifies a lexical token class, like @code{symbol},
1981 @code{string}, @code{number}, or @code{PAREN_BLOCK}.
1982
1983 @item start
1984 @itemx end
1985 Are the start and end positions of mapped data in the input buffer.
1986 @end table
1987
1988 The Wisent's parser doesn't depend on the nature of analyzed input
1989 stream (buffer, string, etc.), and requires that lexical tokens have a
1990 different form (@pxref{Writing a lexer}):
1991
1992 @example
1993 @group
1994 @code{(@var{token-class value} [@var{start} . @var{end}])}
1995 @end group
1996 @end example
1997
1998 @cindex lexical token mapping
1999 @code{wisent-lex} is the default Wisent's lexer used in @semantic{}.
2000
2001 @vindex wisent-lex-istream
2002 @findex wisent-lex
2003 @defun wisent-lex
2004 Return the next available lexical token in Wisent's form.
2005
2006 The variable @code{wisent-lex-istream} contains the list of lexical
2007 tokens produced by @code{semantic-lex}. Pop the next token available
2008 and convert it to a form suitable for the Wisent's parser.
2009 @end defun
2010
2011 Mapping of lexical tokens as produced by @code{semantic-lex} into
2012 equivalent Wisent lexical tokens is straightforward:
2013
2014 @example
2015 @group
2016 (@var{token-class start} . @var{end})
2017 @result{} (@var{token-class value start} . @var{end})
2018 @end group
2019 @end example
2020
2021 @var{value} is the input @code{buffer-substring} from @var{start} to
2022 @var{end}.
2023
2024 @node GNU Free Documentation License
2025 @appendix GNU Free Documentation License
2026
2027 @include doclicense.texi
2028
2029 @node Index
2030 @unnumbered Index
2031 @printindex cp
2032
2033 @iftex
2034 @contents
2035 @summarycontents
2036 @end iftex
2037
2038 @bye
2039
2040 @c Following comments are for the benefit of ispell.
2041
2042 @c LocalWords: Wisent automagically wisent Wisent's LALR obarray