Update copyright.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Keywords: internal
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to
23 ;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25 ;;; Commentary:
26
27 ;;; ========================================================================
28 ;;; "No matter how hard you try, you can't make a racehorse out of a pig.
29 ;;; you can, however, make a faster pig."
30 ;;;
31 ;;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
32 ;;; makes it be a VW Bug with fuel injection and a turbocharger... You're
33 ;;; still not going to make it go faster than 70 mph, but it might be easier
34 ;;; to get it there.
35 ;;;
36
37 ;;; TO DO:
38 ;;;
39 ;;; (apply '(lambda (x &rest y) ...) 1 (foo))
40 ;;;
41 ;;; collapse common subexpressions
42 ;;;
43 ;;; maintain a list of functions known not to access any global variables
44 ;;; (actually, give them a 'dynamically-safe property) and then
45 ;;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;;; by recursing on this, we might be able to eliminate the entire let.
48 ;;; However certain variables should never have their bindings optimized
49 ;;; away, because they affect everything.
50 ;;; (put 'debug-on-error 'binding-is-magic t)
51 ;;; (put 'debug-on-abort 'binding-is-magic t)
52 ;;; (put 'inhibit-quit 'binding-is-magic t)
53 ;;; (put 'quit-flag 'binding-is-magic t)
54 ;;; others?
55 ;;;
56 ;;; Simple defsubsts often produce forms like
57 ;;; (let ((v1 (f1)) (v2 (f2)) ...)
58 ;;; (FN v1 v2 ...))
59 ;;; It would be nice if we could optimize this to
60 ;;; (FN (f1) (f2) ...)
61 ;;; but we can't unless FN is dynamically-safe (it might be dynamically
62 ;;; referring to the bindings that the lambda arglist established.)
63 ;;; One of the uncountable lossages introduced by dynamic scope...
64 ;;;
65 ;;; Maybe there should be a control-structure that says "turn on
66 ;;; fast-and-loose type-assumptive optimizations here." Then when
67 ;;; we see a form like (car foo) we can from then on assume that
68 ;;; the variable foo is of type cons, and optimize based on that.
69 ;;; But, this won't win much because of (you guessed it) dynamic
70 ;;; scope. Anything down the stack could change the value.
71 ;;;
72 ;;; It would be nice if redundant sequences could be factored out as well,
73 ;;; when they are known to have no side-effects:
74 ;;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
75 ;;; but beware of traps like
76 ;;; (cons (list x y) (list x y))
77 ;;;
78 ;;; Tail-recursion elimination is not really possible in Emacs Lisp.
79 ;;; Tail-recursion elimination is almost always impossible when all variables
80 ;;; have dynamic scope, but given that the "return" byteop requires the
81 ;;; binding stack to be empty (rather than emptying it itself), there can be
82 ;;; no truly tail-recursive Emacs Lisp functions that take any arguments or
83 ;;; make any bindings.
84 ;;;
85 ;;; Here is an example of an Emacs Lisp function which could safely be
86 ;;; byte-compiled tail-recursively:
87 ;;;
88 ;;; (defun tail-map (fn list)
89 ;;; (cond (list
90 ;;; (funcall fn (car list))
91 ;;; (tail-map fn (cdr list)))))
92 ;;;
93 ;;; However, if there was even a single let-binding around the COND,
94 ;;; it could not be byte-compiled, because there would be an "unbind"
95 ;;; byte-op between the final "call" and "return." Adding a
96 ;;; Bunbind_all byteop would fix this.
97 ;;;
98 ;;; (defun foo (x y z) ... (foo a b c))
99 ;;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
100 ;;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
101 ;;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
102 ;;;
103 ;;; this also can be considered tail recursion:
104 ;;;
105 ;;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
106 ;;; could generalize this by doing the optimization
107 ;;; (goto X) ... X: (return) --> (return)
108 ;;;
109 ;;; But this doesn't solve all of the problems: although by doing tail-
110 ;;; recursion elimination in this way, the call-stack does not grow, the
111 ;;; binding-stack would grow with each recursive step, and would eventually
112 ;;; overflow. I don't believe there is any way around this without lexical
113 ;;; scope.
114 ;;;
115 ;;; Wouldn't it be nice if Emacs Lisp had lexical scope.
116 ;;;
117 ;;; Idea: the form (lexical-scope) in a file means that the file may be
118 ;;; compiled lexically. This proclamation is file-local. Then, within
119 ;;; that file, "let" would establish lexical bindings, and "let-dynamic"
120 ;;; would do things the old way. (Or we could use CL "declare" forms.)
121 ;;; We'd have to notice defvars and defconsts, since those variables should
122 ;;; always be dynamic, and attempting to do a lexical binding of them
123 ;;; should simply do a dynamic binding instead.
124 ;;; But! We need to know about variables that were not necessarily defvarred
125 ;;; in the file being compiled (doing a boundp check isn't good enough.)
126 ;;; Fdefvar() would have to be modified to add something to the plist.
127 ;;;
128 ;;; A major disadvantage of this scheme is that the interpreter and compiler
129 ;;; would have different semantics for files compiled with (dynamic-scope).
130 ;;; Since this would be a file-local optimization, there would be no way to
131 ;;; modify the interpreter to obey this (unless the loader was hacked
132 ;;; in some grody way, but that's a really bad idea.)
133 ;;;
134 ;;; Really the Right Thing is to make lexical scope the default across
135 ;;; the board, in the interpreter and compiler, and just FIX all of
136 ;;; the code that relies on dynamic scope of non-defvarred variables.
137
138 ;;; Code:
139
140 (defun byte-compile-log-lap-1 (format &rest args)
141 (if (aref byte-code-vector 0)
142 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
143 (byte-compile-log-1
144 (apply 'format format
145 (let (c a)
146 (mapcar '(lambda (arg)
147 (if (not (consp arg))
148 (if (and (symbolp arg)
149 (string-match "^byte-" (symbol-name arg)))
150 (intern (substring (symbol-name arg) 5))
151 arg)
152 (if (integerp (setq c (car arg)))
153 (error "non-symbolic byte-op %s" c))
154 (if (eq c 'TAG)
155 (setq c arg)
156 (setq a (cond ((memq c byte-goto-ops)
157 (car (cdr (cdr arg))))
158 ((memq c byte-constref-ops)
159 (car (cdr arg)))
160 (t (cdr arg))))
161 (setq c (symbol-name c))
162 (if (string-match "^byte-." c)
163 (setq c (intern (substring c 5)))))
164 (if (eq c 'constant) (setq c 'const))
165 (if (and (eq (cdr arg) 0)
166 (not (memq c '(unbind call const))))
167 c
168 (format "(%s %s)" c a))))
169 args)))))
170
171 (defmacro byte-compile-log-lap (format-string &rest args)
172 (list 'and
173 '(memq byte-optimize-log '(t byte))
174 (cons 'byte-compile-log-lap-1
175 (cons format-string args))))
176
177 \f
178 ;;; byte-compile optimizers to support inlining
179
180 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
181
182 (defun byte-optimize-inline-handler (form)
183 "byte-optimize-handler for the `inline' special-form."
184 (cons 'progn
185 (mapcar
186 '(lambda (sexp)
187 (let ((fn (car-safe sexp)))
188 (if (and (symbolp fn)
189 (or (cdr (assq fn byte-compile-function-environment))
190 (and (fboundp fn)
191 (not (or (cdr (assq fn byte-compile-macro-environment))
192 (and (consp (setq fn (symbol-function fn)))
193 (eq (car fn) 'macro))
194 (subrp fn))))))
195 (byte-compile-inline-expand sexp)
196 sexp)))
197 (cdr form))))
198
199
200 ;; Splice the given lap code into the current instruction stream.
201 ;; If it has any labels in it, you're responsible for making sure there
202 ;; are no collisions, and that byte-compile-tag-number is reasonable
203 ;; after this is spliced in. The provided list is destroyed.
204 (defun byte-inline-lapcode (lap)
205 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
206
207
208 (defun byte-compile-inline-expand (form)
209 (let* ((name (car form))
210 (fn (or (cdr (assq name byte-compile-function-environment))
211 (and (fboundp name) (symbol-function name)))))
212 (if (null fn)
213 (progn
214 (byte-compile-warn "attempt to inline %s before it was defined" name)
215 form)
216 ;; else
217 (if (and (consp fn) (eq (car fn) 'autoload))
218 (load (nth 1 fn)))
219 (if (and (consp fn) (eq (car fn) 'autoload))
220 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
221 (if (symbolp fn)
222 (byte-compile-inline-expand (cons fn (cdr form)))
223 (if (byte-code-function-p fn)
224 (progn
225 (fetch-bytecode fn)
226 (cons (list 'lambda (aref fn 0)
227 (list 'byte-code (aref fn 1) (aref fn 2) (aref fn 3)))
228 (cdr form)))
229 (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
230 (cons fn (cdr form)))))))
231
232 ;;; ((lambda ...) ...)
233 ;;;
234 (defun byte-compile-unfold-lambda (form &optional name)
235 (or name (setq name "anonymous lambda"))
236 (let ((lambda (car form))
237 (values (cdr form)))
238 (if (byte-code-function-p lambda)
239 (setq lambda (list 'lambda (aref lambda 0)
240 (list 'byte-code (aref lambda 1)
241 (aref lambda 2) (aref lambda 3)))))
242 (let ((arglist (nth 1 lambda))
243 (body (cdr (cdr lambda)))
244 optionalp restp
245 bindings)
246 (if (and (stringp (car body)) (cdr body))
247 (setq body (cdr body)))
248 (if (and (consp (car body)) (eq 'interactive (car (car body))))
249 (setq body (cdr body)))
250 (while arglist
251 (cond ((eq (car arglist) '&optional)
252 ;; ok, I'll let this slide because funcall_lambda() does...
253 ;; (if optionalp (error "multiple &optional keywords in %s" name))
254 (if restp (error "&optional found after &rest in %s" name))
255 (if (null (cdr arglist))
256 (error "nothing after &optional in %s" name))
257 (setq optionalp t))
258 ((eq (car arglist) '&rest)
259 ;; ...but it is by no stretch of the imagination a reasonable
260 ;; thing that funcall_lambda() allows (&rest x y) and
261 ;; (&rest x &optional y) in arglists.
262 (if (null (cdr arglist))
263 (error "nothing after &rest in %s" name))
264 (if (cdr (cdr arglist))
265 (error "multiple vars after &rest in %s" name))
266 (setq restp t))
267 (restp
268 (setq bindings (cons (list (car arglist)
269 (and values (cons 'list values)))
270 bindings)
271 values nil))
272 ((and (not optionalp) (null values))
273 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
274 (setq arglist nil values 'too-few))
275 (t
276 (setq bindings (cons (list (car arglist) (car values))
277 bindings)
278 values (cdr values))))
279 (setq arglist (cdr arglist)))
280 (if values
281 (progn
282 (or (eq values 'too-few)
283 (byte-compile-warn
284 "attempt to open-code %s with too many arguments" name))
285 form)
286 (let ((newform
287 (if bindings
288 (cons 'let (cons (nreverse bindings) body))
289 (cons 'progn body))))
290 (byte-compile-log " %s\t==>\t%s" form newform)
291 newform)))))
292
293 \f
294 ;;; implementing source-level optimizers
295
296 (defun byte-optimize-form-code-walker (form for-effect)
297 ;;
298 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
299 ;; we need to have special knowledge of the syntax of the special forms
300 ;; like let and defun (that's why they're special forms :-). (Actually,
301 ;; the important aspect is that they are subrs that don't evaluate all of
302 ;; their args.)
303 ;;
304 (let ((fn (car-safe form))
305 tmp)
306 (cond ((not (consp form))
307 (if (not (and for-effect
308 (or byte-compile-delete-errors
309 (not (symbolp form))
310 (eq form t))))
311 form))
312 ((eq fn 'quote)
313 (if (cdr (cdr form))
314 (byte-compile-warn "malformed quote form: %s"
315 (prin1-to-string form)))
316 ;; map (quote nil) to nil to simplify optimizer logic.
317 ;; map quoted constants to nil if for-effect (just because).
318 (and (nth 1 form)
319 (not for-effect)
320 form))
321 ((or (byte-code-function-p fn)
322 (eq 'lambda (car-safe fn)))
323 (byte-compile-unfold-lambda form))
324 ((memq fn '(let let*))
325 ;; recursively enter the optimizer for the bindings and body
326 ;; of a let or let*. This for depth-firstness: forms that
327 ;; are more deeply nested are optimized first.
328 (cons fn
329 (cons
330 (mapcar '(lambda (binding)
331 (if (symbolp binding)
332 binding
333 (if (cdr (cdr binding))
334 (byte-compile-warn "malformed let binding: %s"
335 (prin1-to-string binding)))
336 (list (car binding)
337 (byte-optimize-form (nth 1 binding) nil))))
338 (nth 1 form))
339 (byte-optimize-body (cdr (cdr form)) for-effect))))
340 ((eq fn 'cond)
341 (cons fn
342 (mapcar '(lambda (clause)
343 (if (consp clause)
344 (cons
345 (byte-optimize-form (car clause) nil)
346 (byte-optimize-body (cdr clause) for-effect))
347 (byte-compile-warn "malformed cond form: %s"
348 (prin1-to-string clause))
349 clause))
350 (cdr form))))
351 ((eq fn 'progn)
352 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
353 (if (cdr (cdr form))
354 (progn
355 (setq tmp (byte-optimize-body (cdr form) for-effect))
356 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
357 (byte-optimize-form (nth 1 form) for-effect)))
358 ((eq fn 'prog1)
359 (if (cdr (cdr form))
360 (cons 'prog1
361 (cons (byte-optimize-form (nth 1 form) for-effect)
362 (byte-optimize-body (cdr (cdr form)) t)))
363 (byte-optimize-form (nth 1 form) for-effect)))
364 ((eq fn 'prog2)
365 (cons 'prog2
366 (cons (byte-optimize-form (nth 1 form) t)
367 (cons (byte-optimize-form (nth 2 form) for-effect)
368 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
369
370 ((memq fn '(save-excursion save-restriction))
371 ;; those subrs which have an implicit progn; it's not quite good
372 ;; enough to treat these like normal function calls.
373 ;; This can turn (save-excursion ...) into (save-excursion) which
374 ;; will be optimized away in the lap-optimize pass.
375 (cons fn (byte-optimize-body (cdr form) for-effect)))
376
377 ((eq fn 'with-output-to-temp-buffer)
378 ;; this is just like the above, except for the first argument.
379 (cons fn
380 (cons
381 (byte-optimize-form (nth 1 form) nil)
382 (byte-optimize-body (cdr (cdr form)) for-effect))))
383
384 ((eq fn 'if)
385 (cons fn
386 (cons (byte-optimize-form (nth 1 form) nil)
387 (cons
388 (byte-optimize-form (nth 2 form) for-effect)
389 (byte-optimize-body (nthcdr 3 form) for-effect)))))
390
391 ((memq fn '(and or)) ; remember, and/or are control structures.
392 ;; take forms off the back until we can't any more.
393 ;; In the future it could conceivably be a problem that the
394 ;; subexpressions of these forms are optimized in the reverse
395 ;; order, but it's ok for now.
396 (if for-effect
397 (let ((backwards (reverse (cdr form))))
398 (while (and backwards
399 (null (setcar backwards
400 (byte-optimize-form (car backwards)
401 for-effect))))
402 (setq backwards (cdr backwards)))
403 (if (and (cdr form) (null backwards))
404 (byte-compile-log
405 " all subforms of %s called for effect; deleted" form))
406 (and backwards
407 (cons fn (nreverse backwards))))
408 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
409
410 ((eq fn 'interactive)
411 (byte-compile-warn "misplaced interactive spec: %s"
412 (prin1-to-string form))
413 nil)
414
415 ((memq fn '(defun defmacro function
416 condition-case save-window-excursion))
417 ;; These forms are compiled as constants or by breaking out
418 ;; all the subexpressions and compiling them separately.
419 form)
420
421 ((eq fn 'unwind-protect)
422 ;; the "protected" part of an unwind-protect is compiled (and thus
423 ;; optimized) as a top-level form, so don't do it here. But the
424 ;; non-protected part has the same for-effect status as the
425 ;; unwind-protect itself. (The protected part is always for effect,
426 ;; but that isn't handled properly yet.)
427 (cons fn
428 (cons (byte-optimize-form (nth 1 form) for-effect)
429 (cdr (cdr form)))))
430
431 ((eq fn 'catch)
432 ;; the body of a catch is compiled (and thus optimized) as a
433 ;; top-level form, so don't do it here. The tag is never
434 ;; for-effect. The body should have the same for-effect status
435 ;; as the catch form itself, but that isn't handled properly yet.
436 (cons fn
437 (cons (byte-optimize-form (nth 1 form) nil)
438 (cdr (cdr form)))))
439
440 ;; If optimization is on, this is the only place that macros are
441 ;; expanded. If optimization is off, then macroexpansion happens
442 ;; in byte-compile-form. Otherwise, the macros are already expanded
443 ;; by the time that is reached.
444 ((not (eq form
445 (setq form (macroexpand form
446 byte-compile-macro-environment))))
447 (byte-optimize-form form for-effect))
448
449 ((not (symbolp fn))
450 (or (eq 'mocklisp (car-safe fn)) ; ha!
451 (byte-compile-warn "%s is a malformed function"
452 (prin1-to-string fn)))
453 form)
454
455 ((and for-effect (setq tmp (get fn 'side-effect-free))
456 (or byte-compile-delete-errors
457 (eq tmp 'error-free)
458 (progn
459 (byte-compile-warn "%s called for effect"
460 (prin1-to-string form))
461 nil)))
462 (byte-compile-log " %s called for effect; deleted" fn)
463 ;; appending a nil here might not be necessary, but it can't hurt.
464 (byte-optimize-form
465 (cons 'progn (append (cdr form) '(nil))) t))
466
467 (t
468 ;; Otherwise, no args can be considered to be for-effect,
469 ;; even if the called function is for-effect, because we
470 ;; don't know anything about that function.
471 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
472
473
474 (defun byte-optimize-form (form &optional for-effect)
475 "The source-level pass of the optimizer."
476 ;;
477 ;; First, optimize all sub-forms of this one.
478 (setq form (byte-optimize-form-code-walker form for-effect))
479 ;;
480 ;; after optimizing all subforms, optimize this form until it doesn't
481 ;; optimize any further. This means that some forms will be passed through
482 ;; the optimizer many times, but that's necessary to make the for-effect
483 ;; processing do as much as possible.
484 ;;
485 (let (opt new)
486 (if (and (consp form)
487 (symbolp (car form))
488 (or (and for-effect
489 ;; we don't have any of these yet, but we might.
490 (setq opt (get (car form) 'byte-for-effect-optimizer)))
491 (setq opt (get (car form) 'byte-optimizer)))
492 (not (eq form (setq new (funcall opt form)))))
493 (progn
494 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
495 (byte-compile-log " %s\t==>\t%s" form new)
496 (setq new (byte-optimize-form new for-effect))
497 new)
498 form)))
499
500
501 (defun byte-optimize-body (forms all-for-effect)
502 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
503 ;; forms, all but the last of which are optimized with the assumption that
504 ;; they are being called for effect. the last is for-effect as well if
505 ;; all-for-effect is true. returns a new list of forms.
506 (let ((rest forms)
507 (result nil)
508 fe new)
509 (while rest
510 (setq fe (or all-for-effect (cdr rest)))
511 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
512 (if (or new (not fe))
513 (setq result (cons new result)))
514 (setq rest (cdr rest)))
515 (nreverse result)))
516
517 \f
518 ;;; some source-level optimizers
519 ;;;
520 ;;; when writing optimizers, be VERY careful that the optimizer returns
521 ;;; something not EQ to its argument if and ONLY if it has made a change.
522 ;;; This implies that you cannot simply destructively modify the list;
523 ;;; you must return something not EQ to it if you make an optimization.
524 ;;;
525 ;;; It is now safe to optimize code such that it introduces new bindings.
526
527 ;; I'd like this to be a defsubst, but let's not be self-referential...
528 (defmacro byte-compile-trueconstp (form)
529 ;; Returns non-nil if FORM is a non-nil constant.
530 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
531 ((not (symbolp (, form))))
532 ((eq (, form) t)))))
533
534 ;; If the function is being called with constant numeric args,
535 ;; evaluate as much as possible at compile-time. This optimizer
536 ;; assumes that the function is associative, like + or *.
537 (defun byte-optimize-associative-math (form)
538 (let ((args nil)
539 (constants nil)
540 (rest (cdr form)))
541 (while rest
542 (if (numberp (car rest))
543 (setq constants (cons (car rest) constants))
544 (setq args (cons (car rest) args)))
545 (setq rest (cdr rest)))
546 (if (cdr constants)
547 (if args
548 (list (car form)
549 (apply (car form) constants)
550 (if (cdr args)
551 (cons (car form) (nreverse args))
552 (car args)))
553 (apply (car form) constants))
554 form)))
555
556 ;; If the function is being called with constant numeric args,
557 ;; evaluate as much as possible at compile-time. This optimizer
558 ;; assumes that the function is nonassociative, like - or /.
559 (defun byte-optimize-nonassociative-math (form)
560 (if (or (not (numberp (car (cdr form))))
561 (not (numberp (car (cdr (cdr form))))))
562 form
563 (let ((constant (car (cdr form)))
564 (rest (cdr (cdr form))))
565 (while (numberp (car rest))
566 (setq constant (funcall (car form) constant (car rest))
567 rest (cdr rest)))
568 (if rest
569 (cons (car form) (cons constant rest))
570 constant))))
571
572 ;;(defun byte-optimize-associative-two-args-math (form)
573 ;; (setq form (byte-optimize-associative-math form))
574 ;; (if (consp form)
575 ;; (byte-optimize-two-args-left form)
576 ;; form))
577
578 ;;(defun byte-optimize-nonassociative-two-args-math (form)
579 ;; (setq form (byte-optimize-nonassociative-math form))
580 ;; (if (consp form)
581 ;; (byte-optimize-two-args-right form)
582 ;; form))
583
584 (defun byte-optimize-delay-constants-math (form start fun)
585 ;; Merge all FORM's constants from number START, call FUN on them
586 ;; and put the result at the end.
587 (let ((rest (nthcdr (1- start) form)))
588 (while (cdr (setq rest (cdr rest)))
589 (if (numberp (car rest))
590 (let (constants)
591 (setq form (copy-sequence form)
592 rest (nthcdr (1- start) form))
593 (while (setq rest (cdr rest))
594 (cond ((numberp (car rest))
595 (setq constants (cons (car rest) constants))
596 (setcar rest nil))))
597 (setq form (nconc (delq nil form)
598 (list (apply fun (nreverse constants))))))))
599 form))
600
601 (defun byte-optimize-plus (form)
602 (setq form (byte-optimize-delay-constants-math form 1 '+))
603 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
604 ;;(setq form (byte-optimize-associative-two-args-math form))
605 (cond ((null (cdr form))
606 (condition-case ()
607 (eval form)
608 (error form)))
609 ;;; It is not safe to delete the function entirely
610 ;;; (actually, it would be safe if we know the sole arg
611 ;;; is not a marker).
612 ;; ((null (cdr (cdr form))) (nth 1 form))
613 (t form)))
614
615 (defun byte-optimize-minus (form)
616 ;; Put constants at the end, except the last constant.
617 (setq form (byte-optimize-delay-constants-math form 2 '+))
618 ;; Now only first and last element can be a number.
619 (let ((last (car (reverse (nthcdr 3 form)))))
620 (cond ((eq 0 last)
621 ;; (- x y ... 0) --> (- x y ...)
622 (setq form (copy-sequence form))
623 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
624 ;; If form is (- CONST foo... CONST), merge first and last.
625 ((and (numberp (nth 1 form))
626 (numberp last))
627 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
628 (delq last (copy-sequence (nthcdr 3 form))))))))
629 ;;; It is not safe to delete the function entirely
630 ;;; (actually, it would be safe if we know the sole arg
631 ;;; is not a marker).
632 ;;; (if (eq (nth 2 form) 0)
633 ;;; (nth 1 form) ; (- x 0) --> x
634 (byte-optimize-predicate
635 (if (and (null (cdr (cdr (cdr form))))
636 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
637 (cons (car form) (cdr (cdr form)))
638 form))
639 ;;; )
640 )
641
642 (defun byte-optimize-multiply (form)
643 (setq form (byte-optimize-delay-constants-math form 1 '*))
644 ;; If there is a constant in FORM, it is now the last element.
645 (cond ((null (cdr form)) 1)
646 ;;; It is not safe to delete the function entirely
647 ;;; (actually, it would be safe if we know the sole arg
648 ;;; is not a marker or if it appears in other arithmetic).
649 ;;; ((null (cdr (cdr form))) (nth 1 form))
650 ((let ((last (car (reverse form))))
651 (cond ((eq 0 last) (list 'progn (cdr form)))
652 ((eq 1 last) (delq 1 (copy-sequence form)))
653 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
654 ((and (eq 2 last)
655 (memq t (mapcar 'symbolp (cdr form))))
656 (prog1 (setq form (delq 2 (copy-sequence form)))
657 (while (not (symbolp (car (setq form (cdr form))))))
658 (setcar form (list '+ (car form) (car form)))))
659 (form))))))
660
661 (defsubst byte-compile-butlast (form)
662 (nreverse (cdr (reverse form))))
663
664 (defun byte-optimize-divide (form)
665 (setq form (byte-optimize-delay-constants-math form 2 '*))
666 (let ((last (car (reverse (cdr (cdr form))))))
667 (if (numberp last)
668 (cond ((= (length form) 3)
669 ;; Don't shrink to less than two arguments--would get an error.
670 nil)
671 ((= last 1)
672 (setq form (byte-compile-butlast form)))
673 ((numberp (nth 1 form))
674 (setq form (cons (car form)
675 (cons (/ (nth 1 form) last)
676 (byte-compile-butlast (cdr (cdr form)))))
677 last nil))))
678 (cond
679 ;;; ((null (cdr (cdr form)))
680 ;;; (nth 1 form))
681 ((eq (nth 1 form) 0)
682 (append '(progn) (cdr (cdr form)) '(0)))
683 ((eq last -1)
684 (list '- (if (nthcdr 3 form)
685 (byte-compile-butlast form)
686 (nth 1 form))))
687 (form))))
688
689 (defun byte-optimize-logmumble (form)
690 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
691 (byte-optimize-predicate
692 (cond ((memq 0 form)
693 (setq form (if (eq (car form) 'logand)
694 (cons 'progn (cdr form))
695 (delq 0 (copy-sequence form)))))
696 ((and (eq (car-safe form) 'logior)
697 (memq -1 form))
698 (delq -1 (copy-sequence form)))
699 (form))))
700
701
702 (defun byte-optimize-binary-predicate (form)
703 (if (byte-compile-constp (nth 1 form))
704 (if (byte-compile-constp (nth 2 form))
705 (condition-case ()
706 (list 'quote (eval form))
707 (error form))
708 ;; This can enable some lapcode optimizations.
709 (list (car form) (nth 2 form) (nth 1 form)))
710 form))
711
712 (defun byte-optimize-predicate (form)
713 (let ((ok t)
714 (rest (cdr form)))
715 (while (and rest ok)
716 (setq ok (byte-compile-constp (car rest))
717 rest (cdr rest)))
718 (if ok
719 (condition-case ()
720 (list 'quote (eval form))
721 (error form))
722 form)))
723
724 (defun byte-optimize-identity (form)
725 (if (and (cdr form) (null (cdr (cdr form))))
726 (nth 1 form)
727 (byte-compile-warn "identity called with %d arg%s, but requires 1"
728 (length (cdr form))
729 (if (= 1 (length (cdr form))) "" "s"))
730 form))
731
732 (put 'identity 'byte-optimizer 'byte-optimize-identity)
733
734 (put '+ 'byte-optimizer 'byte-optimize-plus)
735 (put '* 'byte-optimizer 'byte-optimize-multiply)
736 (put '- 'byte-optimizer 'byte-optimize-minus)
737 (put '/ 'byte-optimizer 'byte-optimize-divide)
738 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
739 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
740
741 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
742 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
743 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
744 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
745 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
746 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
747
748 (put '< 'byte-optimizer 'byte-optimize-predicate)
749 (put '> 'byte-optimizer 'byte-optimize-predicate)
750 (put '<= 'byte-optimizer 'byte-optimize-predicate)
751 (put '>= 'byte-optimizer 'byte-optimize-predicate)
752 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
753 (put '1- 'byte-optimizer 'byte-optimize-predicate)
754 (put 'not 'byte-optimizer 'byte-optimize-predicate)
755 (put 'null 'byte-optimizer 'byte-optimize-predicate)
756 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
757 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
758 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
759 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
760 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
761 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
762 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
763
764 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
765 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
766 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
767 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
768
769 (put 'car 'byte-optimizer 'byte-optimize-predicate)
770 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
771 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
772 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
773
774
775 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
776 ;; take care of this? - Jamie
777 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
778 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
779 (put 'quote 'byte-optimizer 'byte-optimize-quote)
780 (defun byte-optimize-quote (form)
781 (if (or (consp (nth 1 form))
782 (and (symbolp (nth 1 form))
783 (not (memq (nth 1 form) '(nil t)))))
784 form
785 (nth 1 form)))
786
787 (defun byte-optimize-zerop (form)
788 (cond ((numberp (nth 1 form))
789 (eval form))
790 (byte-compile-delete-errors
791 (list '= (nth 1 form) 0))
792 (form)))
793
794 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
795
796 (defun byte-optimize-and (form)
797 ;; Simplify if less than 2 args.
798 ;; if there is a literal nil in the args to `and', throw it and following
799 ;; forms away, and surround the `and' with (progn ... nil).
800 (cond ((null (cdr form)))
801 ((memq nil form)
802 (list 'progn
803 (byte-optimize-and
804 (prog1 (setq form (copy-sequence form))
805 (while (nth 1 form)
806 (setq form (cdr form)))
807 (setcdr form nil)))
808 nil))
809 ((null (cdr (cdr form)))
810 (nth 1 form))
811 ((byte-optimize-predicate form))))
812
813 (defun byte-optimize-or (form)
814 ;; Throw away nil's, and simplify if less than 2 args.
815 ;; If there is a literal non-nil constant in the args to `or', throw away all
816 ;; following forms.
817 (if (memq nil form)
818 (setq form (delq nil (copy-sequence form))))
819 (let ((rest form))
820 (while (cdr (setq rest (cdr rest)))
821 (if (byte-compile-trueconstp (car rest))
822 (setq form (copy-sequence form)
823 rest (setcdr (memq (car rest) form) nil))))
824 (if (cdr (cdr form))
825 (byte-optimize-predicate form)
826 (nth 1 form))))
827
828 (defun byte-optimize-cond (form)
829 ;; if any clauses have a literal nil as their test, throw them away.
830 ;; if any clause has a literal non-nil constant as its test, throw
831 ;; away all following clauses.
832 (let (rest)
833 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
834 (while (setq rest (assq nil (cdr form)))
835 (setq form (delq rest (copy-sequence form))))
836 (if (memq nil (cdr form))
837 (setq form (delq nil (copy-sequence form))))
838 (setq rest form)
839 (while (setq rest (cdr rest))
840 (cond ((byte-compile-trueconstp (car-safe (car rest)))
841 (cond ((eq rest (cdr form))
842 (setq form
843 (if (cdr (car rest))
844 (if (cdr (cdr (car rest)))
845 (cons 'progn (cdr (car rest)))
846 (nth 1 (car rest)))
847 (car (car rest)))))
848 ((cdr rest)
849 (setq form (copy-sequence form))
850 (setcdr (memq (car rest) form) nil)))
851 (setq rest nil)))))
852 ;;
853 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
854 (if (eq 'cond (car-safe form))
855 (let ((clauses (cdr form)))
856 (if (and (consp (car clauses))
857 (null (cdr (car clauses))))
858 (list 'or (car (car clauses))
859 (byte-optimize-cond
860 (cons (car form) (cdr (cdr form)))))
861 form))
862 form))
863
864 (defun byte-optimize-if (form)
865 ;; (if <true-constant> <then> <else...>) ==> <then>
866 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
867 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
868 ;; (if <test> <then> nil) ==> (if <test> <then>)
869 (let ((clause (nth 1 form)))
870 (cond ((byte-compile-trueconstp clause)
871 (nth 2 form))
872 ((null clause)
873 (if (nthcdr 4 form)
874 (cons 'progn (nthcdr 3 form))
875 (nth 3 form)))
876 ((nth 2 form)
877 (if (equal '(nil) (nthcdr 3 form))
878 (list 'if clause (nth 2 form))
879 form))
880 ((or (nth 3 form) (nthcdr 4 form))
881 (list 'if (list 'not clause)
882 (if (nthcdr 4 form)
883 (cons 'progn (nthcdr 3 form))
884 (nth 3 form))))
885 (t
886 (list 'progn clause nil)))))
887
888 (defun byte-optimize-while (form)
889 (if (nth 1 form)
890 form))
891
892 (put 'and 'byte-optimizer 'byte-optimize-and)
893 (put 'or 'byte-optimizer 'byte-optimize-or)
894 (put 'cond 'byte-optimizer 'byte-optimize-cond)
895 (put 'if 'byte-optimizer 'byte-optimize-if)
896 (put 'while 'byte-optimizer 'byte-optimize-while)
897
898 ;; byte-compile-negation-optimizer lives in bytecomp.el
899 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
900 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
901 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
902
903
904 (defun byte-optimize-funcall (form)
905 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
906 ;; (funcall 'foo ...) ==> (foo ...)
907 (let ((fn (nth 1 form)))
908 (if (memq (car-safe fn) '(quote function))
909 (cons (nth 1 fn) (cdr (cdr form)))
910 form)))
911
912 (defun byte-optimize-apply (form)
913 ;; If the last arg is a literal constant, turn this into a funcall.
914 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
915 (let ((fn (nth 1 form))
916 (last (nth (1- (length form)) form))) ; I think this really is fastest
917 (or (if (or (null last)
918 (eq (car-safe last) 'quote))
919 (if (listp (nth 1 last))
920 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
921 (nconc (list 'funcall fn) butlast
922 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
923 (byte-compile-warn
924 "last arg to apply can't be a literal atom: %s"
925 (prin1-to-string last))
926 nil))
927 form)))
928
929 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
930 (put 'apply 'byte-optimizer 'byte-optimize-apply)
931
932
933 (put 'let 'byte-optimizer 'byte-optimize-letX)
934 (put 'let* 'byte-optimizer 'byte-optimize-letX)
935 (defun byte-optimize-letX (form)
936 (cond ((null (nth 1 form))
937 ;; No bindings
938 (cons 'progn (cdr (cdr form))))
939 ((or (nth 2 form) (nthcdr 3 form))
940 form)
941 ;; The body is nil
942 ((eq (car form) 'let)
943 (append '(progn) (mapcar 'car (mapcar 'cdr (nth 1 form))) '(nil)))
944 (t
945 (let ((binds (reverse (nth 1 form))))
946 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
947
948
949 (put 'nth 'byte-optimizer 'byte-optimize-nth)
950 (defun byte-optimize-nth (form)
951 (if (memq (nth 1 form) '(0 1))
952 (list 'car (if (zerop (nth 1 form))
953 (nth 2 form)
954 (list 'cdr (nth 2 form))))
955 (byte-optimize-predicate form)))
956
957 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
958 (defun byte-optimize-nthcdr (form)
959 (let ((count (nth 1 form)))
960 (if (not (memq count '(0 1 2)))
961 (byte-optimize-predicate form)
962 (setq form (nth 2 form))
963 (while (natnump (setq count (1- count)))
964 (setq form (list 'cdr form)))
965 form)))
966 \f
967 ;;; enumerating those functions which need not be called if the returned
968 ;;; value is not used. That is, something like
969 ;;; (progn (list (something-with-side-effects) (yow))
970 ;;; (foo))
971 ;;; may safely be turned into
972 ;;; (progn (progn (something-with-side-effects) (yow))
973 ;;; (foo))
974 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
975
976 ;;; I wonder if I missed any :-\)
977 (let ((side-effect-free-fns
978 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
979 assoc assq
980 boundp buffer-file-name buffer-local-variables buffer-modified-p
981 buffer-substring
982 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
983 copy-marker cos count-lines
984 default-boundp default-value documentation downcase
985 elt exp expt fboundp featurep
986 file-directory-p file-exists-p file-locked-p file-name-absolute-p
987 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
988 float floor format
989 get get-buffer get-buffer-window getenv get-file-buffer
990 int-to-string
991 length log log10 logand logb logior lognot logxor lsh
992 marker-buffer max member memq min mod
993 next-window nth nthcdr number-to-string
994 parse-colon-path previous-window
995 radians-to-degrees rassq regexp-quote reverse round
996 sin sqrt string< string= string-equal string-lessp string-to-char
997 string-to-int string-to-number substring symbol-plist
998 tan upcase user-variable-p vconcat
999 window-buffer window-dedicated-p window-edges window-height
1000 window-hscroll window-minibuffer-p window-width
1001 zerop))
1002 (side-effect-and-error-free-fns
1003 '(arrayp atom
1004 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1005 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1006 current-buffer
1007 dot dot-marker eobp eolp eq eql equal eventp floatp framep
1008 get-largest-window get-lru-window
1009 identity ignore integerp integer-or-marker-p interactive-p
1010 invocation-directory invocation-name
1011 keymapp list listp
1012 make-marker mark mark-marker markerp memory-limit minibuffer-window
1013 mouse-movement-p
1014 natnump nlistp not null number-or-marker-p numberp
1015 one-window-p overlayp
1016 point point-marker point-min point-max processp
1017 selected-window sequencep stringp subrp symbolp syntax-table-p
1018 user-full-name user-login-name user-original-login-name
1019 user-real-login-name user-real-uid user-uid
1020 vector vectorp
1021 window-configuration-p window-live-p windowp)))
1022 (while side-effect-free-fns
1023 (put (car side-effect-free-fns) 'side-effect-free t)
1024 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1025 (while side-effect-and-error-free-fns
1026 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1027 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1028 nil)
1029
1030
1031 (defun byte-compile-splice-in-already-compiled-code (form)
1032 ;; form is (byte-code "..." [...] n)
1033 (if (not (memq byte-optimize '(t lap)))
1034 (byte-compile-normal-call form)
1035 (byte-inline-lapcode
1036 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1037 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1038 byte-compile-maxdepth))
1039 (setq byte-compile-depth (1+ byte-compile-depth))))
1040
1041 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1042
1043 \f
1044 (defconst byte-constref-ops
1045 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1046
1047 ;;; This function extracts the bitfields from variable-length opcodes.
1048 ;;; Originally defined in disass.el (which no longer uses it.)
1049
1050 (defun disassemble-offset ()
1051 "Don't call this!"
1052 ;; fetch and return the offset for the current opcode.
1053 ;; return NIL if this opcode has no offset
1054 ;; OP, PTR and BYTES are used and set dynamically
1055 (defvar op)
1056 (defvar ptr)
1057 (defvar bytes)
1058 (cond ((< op byte-nth)
1059 (let ((tem (logand op 7)))
1060 (setq op (logand op 248))
1061 (cond ((eq tem 6)
1062 (setq ptr (1+ ptr)) ;offset in next byte
1063 (aref bytes ptr))
1064 ((eq tem 7)
1065 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1066 (+ (aref bytes ptr)
1067 (progn (setq ptr (1+ ptr))
1068 (lsh (aref bytes ptr) 8))))
1069 (t tem)))) ;offset was in opcode
1070 ((>= op byte-constant)
1071 (prog1 (- op byte-constant) ;offset in opcode
1072 (setq op byte-constant)))
1073 ((and (>= op byte-constant2)
1074 (<= op byte-goto-if-not-nil-else-pop))
1075 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1076 (+ (aref bytes ptr)
1077 (progn (setq ptr (1+ ptr))
1078 (lsh (aref bytes ptr) 8))))
1079 ((and (>= op byte-listN)
1080 (<= op byte-insertN))
1081 (setq ptr (1+ ptr)) ;offset in next byte
1082 (aref bytes ptr))))
1083
1084
1085 ;;; This de-compiler is used for inline expansion of compiled functions,
1086 ;;; and by the disassembler.
1087 ;;;
1088 ;;; This list contains numbers, which are pc values,
1089 ;;; before each instruction.
1090 (defun byte-decompile-bytecode (bytes constvec)
1091 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1092 (let ((byte-compile-constants nil)
1093 (byte-compile-variables nil)
1094 (byte-compile-tag-number 0))
1095 (byte-decompile-bytecode-1 bytes constvec)))
1096
1097 ;; As byte-decompile-bytecode, but updates
1098 ;; byte-compile-{constants, variables, tag-number}.
1099 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1100 ;; with `goto's destined for the end of the code.
1101 ;; That is for use by the compiler.
1102 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1103 ;; In that case, we put a pc value into the list
1104 ;; before each insn (or its label).
1105 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1106 (let ((length (length bytes))
1107 (ptr 0) optr tag tags op offset
1108 lap tmp
1109 endtag
1110 (retcount 0))
1111 (while (not (= ptr length))
1112 (or make-spliceable
1113 (setq lap (cons ptr lap)))
1114 (setq op (aref bytes ptr)
1115 optr ptr
1116 offset (disassemble-offset)) ; this does dynamic-scope magic
1117 (setq op (aref byte-code-vector op))
1118 (cond ((memq op byte-goto-ops)
1119 ;; it's a pc
1120 (setq offset
1121 (cdr (or (assq offset tags)
1122 (car (setq tags
1123 (cons (cons offset
1124 (byte-compile-make-tag))
1125 tags)))))))
1126 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1127 ((memq op byte-constref-ops)))
1128 (setq tmp (aref constvec offset)
1129 offset (if (eq op 'byte-constant)
1130 (byte-compile-get-constant tmp)
1131 (or (assq tmp byte-compile-variables)
1132 (car (setq byte-compile-variables
1133 (cons (list tmp)
1134 byte-compile-variables)))))))
1135 ((and make-spliceable
1136 (eq op 'byte-return))
1137 (if (= ptr (1- length))
1138 (setq op nil)
1139 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1140 op 'byte-goto))))
1141 ;; lap = ( [ (pc . (op . arg)) ]* )
1142 (setq lap (cons (cons optr (cons op (or offset 0)))
1143 lap))
1144 (setq ptr (1+ ptr)))
1145 ;; take off the dummy nil op that we replaced a trailing "return" with.
1146 (let ((rest lap))
1147 (while rest
1148 (cond ((numberp (car rest)))
1149 ((setq tmp (assq (car (car rest)) tags))
1150 ;; this addr is jumped to
1151 (setcdr rest (cons (cons nil (cdr tmp))
1152 (cdr rest)))
1153 (setq tags (delq tmp tags))
1154 (setq rest (cdr rest))))
1155 (setq rest (cdr rest))))
1156 (if tags (error "optimizer error: missed tags %s" tags))
1157 (if (null (car (cdr (car lap))))
1158 (setq lap (cdr lap)))
1159 (if endtag
1160 (setq lap (cons (cons nil endtag) lap)))
1161 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1162 (mapcar (function (lambda (elt)
1163 (if (numberp elt)
1164 elt
1165 (cdr elt))))
1166 (nreverse lap))))
1167
1168 \f
1169 ;;; peephole optimizer
1170
1171 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1172
1173 (defconst byte-conditional-ops
1174 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1175 byte-goto-if-not-nil-else-pop))
1176
1177 (defconst byte-after-unbind-ops
1178 '(byte-constant byte-dup
1179 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1180 byte-eq byte-equal byte-not
1181 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1182 byte-interactive-p)
1183 ;; How about other side-effect-free-ops? Is it safe to move an
1184 ;; error invocation (such as from nth) out of an unwind-protect?
1185 "Byte-codes that can be moved past an unbind.")
1186
1187 (defconst byte-compile-side-effect-and-error-free-ops
1188 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1189 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1190 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1191 byte-point-min byte-following-char byte-preceding-char
1192 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1193 byte-current-buffer byte-interactive-p))
1194
1195 (defconst byte-compile-side-effect-free-ops
1196 (nconc
1197 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1198 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1199 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1200 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1201 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1202 byte-member byte-assq byte-quo byte-rem)
1203 byte-compile-side-effect-and-error-free-ops))
1204
1205 ;;; This piece of shit is because of the way DEFVAR_BOOL() variables work.
1206 ;;; Consider the code
1207 ;;;
1208 ;;; (defun foo (flag)
1209 ;;; (let ((old-pop-ups pop-up-windows)
1210 ;;; (pop-up-windows flag))
1211 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1212 ;;; (setq old-pop-ups pop-up-windows)
1213 ;;; ...))))
1214 ;;;
1215 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1216 ;;; something else. But if we optimize
1217 ;;;
1218 ;;; varref flag
1219 ;;; varbind pop-up-windows
1220 ;;; varref pop-up-windows
1221 ;;; not
1222 ;;; to
1223 ;;; varref flag
1224 ;;; dup
1225 ;;; varbind pop-up-windows
1226 ;;; not
1227 ;;;
1228 ;;; we break the program, because it will appear that pop-up-windows and
1229 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1230 ;;; the BOOL variables are, and not perform this optimization on them.
1231 ;;;
1232 (defconst byte-boolean-vars
1233 '(abbrev-all-caps abbrevs-changed byte-metering-on
1234 check-protected-fields completion-auto-help completion-ignore-case
1235 cursor-in-echo-area debug-on-next-call debug-on-quit
1236 defining-kbd-macro delete-exited-processes
1237 enable-recursive-minibuffers
1238 highlight-nonselected-windows indent-tabs-mode
1239 insert-default-directory inverse-video load-in-progress
1240 menu-prompting mode-line-inverse-video no-redraw-on-reenter
1241 noninteractive parse-sexp-ignore-comments pop-up-frames
1242 pop-up-windows print-escape-newlines print-escape-newlines
1243 truncate-partial-width-windows visible-bell vms-stmlf-recfm
1244 words-include-escapes x-save-under)
1245 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1246 If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1247 may generate incorrect code.")
1248
1249 (defun byte-optimize-lapcode (lap &optional for-effect)
1250 "Simple peephole optimizer. LAP is both modified and returned."
1251 (let (lap0 off0
1252 lap1 off1
1253 lap2 off2
1254 (keep-going 'first-time)
1255 (add-depth 0)
1256 rest tmp tmp2 tmp3
1257 (side-effect-free (if byte-compile-delete-errors
1258 byte-compile-side-effect-free-ops
1259 byte-compile-side-effect-and-error-free-ops)))
1260 (while keep-going
1261 (or (eq keep-going 'first-time)
1262 (byte-compile-log-lap " ---- next pass"))
1263 (setq rest lap
1264 keep-going nil)
1265 (while rest
1266 (setq lap0 (car rest)
1267 lap1 (nth 1 rest)
1268 lap2 (nth 2 rest))
1269
1270 ;; You may notice that sequences like "dup varset discard" are
1271 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1272 ;; You may be tempted to change this; resist that temptation.
1273 (cond ;;
1274 ;; <side-effect-free> pop --> <deleted>
1275 ;; ...including:
1276 ;; const-X pop --> <deleted>
1277 ;; varref-X pop --> <deleted>
1278 ;; dup pop --> <deleted>
1279 ;;
1280 ((and (eq 'byte-discard (car lap1))
1281 (memq (car lap0) side-effect-free))
1282 (setq keep-going t)
1283 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1284 (setq rest (cdr rest))
1285 (cond ((= tmp 1)
1286 (byte-compile-log-lap
1287 " %s discard\t-->\t<deleted>" lap0)
1288 (setq lap (delq lap0 (delq lap1 lap))))
1289 ((= tmp 0)
1290 (byte-compile-log-lap
1291 " %s discard\t-->\t<deleted> discard" lap0)
1292 (setq lap (delq lap0 lap)))
1293 ((= tmp -1)
1294 (byte-compile-log-lap
1295 " %s discard\t-->\tdiscard discard" lap0)
1296 (setcar lap0 'byte-discard)
1297 (setcdr lap0 0))
1298 ((error "Optimizer error: too much on the stack"))))
1299 ;;
1300 ;; goto*-X X: --> X:
1301 ;;
1302 ((and (memq (car lap0) byte-goto-ops)
1303 (eq (cdr lap0) lap1))
1304 (cond ((eq (car lap0) 'byte-goto)
1305 (setq lap (delq lap0 lap))
1306 (setq tmp "<deleted>"))
1307 ((memq (car lap0) byte-goto-always-pop-ops)
1308 (setcar lap0 (setq tmp 'byte-discard))
1309 (setcdr lap0 0))
1310 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1311 (and (memq byte-optimize-log '(t byte))
1312 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1313 (nth 1 lap1) (nth 1 lap1)
1314 tmp (nth 1 lap1)))
1315 (setq keep-going t))
1316 ;;
1317 ;; varset-X varref-X --> dup varset-X
1318 ;; varbind-X varref-X --> dup varbind-X
1319 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1320 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1321 ;; The latter two can enable other optimizations.
1322 ;;
1323 ((and (eq 'byte-varref (car lap2))
1324 (eq (cdr lap1) (cdr lap2))
1325 (memq (car lap1) '(byte-varset byte-varbind)))
1326 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1327 (not (eq (car lap0) 'byte-constant)))
1328 nil
1329 (setq keep-going t)
1330 (if (memq (car lap0) '(byte-constant byte-dup))
1331 (progn
1332 (setq tmp (if (or (not tmp)
1333 (memq (car (cdr lap0)) '(nil t)))
1334 (cdr lap0)
1335 (byte-compile-get-constant t)))
1336 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1337 lap0 lap1 lap2 lap0 lap1
1338 (cons (car lap0) tmp))
1339 (setcar lap2 (car lap0))
1340 (setcdr lap2 tmp))
1341 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1342 (setcar lap2 (car lap1))
1343 (setcar lap1 'byte-dup)
1344 (setcdr lap1 0)
1345 ;; The stack depth gets locally increased, so we will
1346 ;; increase maxdepth in case depth = maxdepth here.
1347 ;; This can cause the third argument to byte-code to
1348 ;; be larger than necessary.
1349 (setq add-depth 1))))
1350 ;;
1351 ;; dup varset-X discard --> varset-X
1352 ;; dup varbind-X discard --> varbind-X
1353 ;; (the varbind variant can emerge from other optimizations)
1354 ;;
1355 ((and (eq 'byte-dup (car lap0))
1356 (eq 'byte-discard (car lap2))
1357 (memq (car lap1) '(byte-varset byte-varbind)))
1358 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1359 (setq keep-going t
1360 rest (cdr rest))
1361 (setq lap (delq lap0 (delq lap2 lap))))
1362 ;;
1363 ;; not goto-X-if-nil --> goto-X-if-non-nil
1364 ;; not goto-X-if-non-nil --> goto-X-if-nil
1365 ;;
1366 ;; it is wrong to do the same thing for the -else-pop variants.
1367 ;;
1368 ((and (eq 'byte-not (car lap0))
1369 (or (eq 'byte-goto-if-nil (car lap1))
1370 (eq 'byte-goto-if-not-nil (car lap1))))
1371 (byte-compile-log-lap " not %s\t-->\t%s"
1372 lap1
1373 (cons
1374 (if (eq (car lap1) 'byte-goto-if-nil)
1375 'byte-goto-if-not-nil
1376 'byte-goto-if-nil)
1377 (cdr lap1)))
1378 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1379 'byte-goto-if-not-nil
1380 'byte-goto-if-nil))
1381 (setq lap (delq lap0 lap))
1382 (setq keep-going t))
1383 ;;
1384 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1385 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1386 ;;
1387 ;; it is wrong to do the same thing for the -else-pop variants.
1388 ;;
1389 ((and (or (eq 'byte-goto-if-nil (car lap0))
1390 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1391 (eq 'byte-goto (car lap1)) ; gotoY
1392 (eq (cdr lap0) lap2)) ; TAG X
1393 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1394 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1395 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1396 lap0 lap1 lap2
1397 (cons inverse (cdr lap1)) lap2)
1398 (setq lap (delq lap0 lap))
1399 (setcar lap1 inverse)
1400 (setq keep-going t)))
1401 ;;
1402 ;; const goto-if-* --> whatever
1403 ;;
1404 ((and (eq 'byte-constant (car lap0))
1405 (memq (car lap1) byte-conditional-ops))
1406 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1407 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1408 (car (cdr lap0))
1409 (not (car (cdr lap0))))
1410 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1411 lap0 lap1)
1412 (setq rest (cdr rest)
1413 lap (delq lap0 (delq lap1 lap))))
1414 (t
1415 (if (memq (car lap1) byte-goto-always-pop-ops)
1416 (progn
1417 (byte-compile-log-lap " %s %s\t-->\t%s"
1418 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1419 (setq lap (delq lap0 lap)))
1420 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1421 (cons 'byte-goto (cdr lap1))))
1422 (setcar lap1 'byte-goto)))
1423 (setq keep-going t))
1424 ;;
1425 ;; varref-X varref-X --> varref-X dup
1426 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1427 ;; We don't optimize the const-X variations on this here,
1428 ;; because that would inhibit some goto optimizations; we
1429 ;; optimize the const-X case after all other optimizations.
1430 ;;
1431 ((and (eq 'byte-varref (car lap0))
1432 (progn
1433 (setq tmp (cdr rest))
1434 (while (eq (car (car tmp)) 'byte-dup)
1435 (setq tmp (cdr tmp)))
1436 t)
1437 (eq (cdr lap0) (cdr (car tmp)))
1438 (eq 'byte-varref (car (car tmp))))
1439 (if (memq byte-optimize-log '(t byte))
1440 (let ((str ""))
1441 (setq tmp2 (cdr rest))
1442 (while (not (eq tmp tmp2))
1443 (setq tmp2 (cdr tmp2)
1444 str (concat str " dup")))
1445 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1446 lap0 str lap0 lap0 str)))
1447 (setq keep-going t)
1448 (setcar (car tmp) 'byte-dup)
1449 (setcdr (car tmp) 0)
1450 (setq rest tmp))
1451 ;;
1452 ;; TAG1: TAG2: --> TAG1: <deleted>
1453 ;; (and other references to TAG2 are replaced with TAG1)
1454 ;;
1455 ((and (eq (car lap0) 'TAG)
1456 (eq (car lap1) 'TAG))
1457 (and (memq byte-optimize-log '(t byte))
1458 (byte-compile-log " adjacent tags %d and %d merged"
1459 (nth 1 lap1) (nth 1 lap0)))
1460 (setq tmp3 lap)
1461 (while (setq tmp2 (rassq lap0 tmp3))
1462 (setcdr tmp2 lap1)
1463 (setq tmp3 (cdr (memq tmp2 tmp3))))
1464 (setq lap (delq lap0 lap)
1465 keep-going t))
1466 ;;
1467 ;; unused-TAG: --> <deleted>
1468 ;;
1469 ((and (eq 'TAG (car lap0))
1470 (not (rassq lap0 lap)))
1471 (and (memq byte-optimize-log '(t byte))
1472 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1473 (setq lap (delq lap0 lap)
1474 keep-going t))
1475 ;;
1476 ;; goto ... --> goto <delete until TAG or end>
1477 ;; return ... --> return <delete until TAG or end>
1478 ;;
1479 ((and (memq (car lap0) '(byte-goto byte-return))
1480 (not (memq (car lap1) '(TAG nil))))
1481 (setq tmp rest)
1482 (let ((i 0)
1483 (opt-p (memq byte-optimize-log '(t lap)))
1484 str deleted)
1485 (while (and (setq tmp (cdr tmp))
1486 (not (eq 'TAG (car (car tmp)))))
1487 (if opt-p (setq deleted (cons (car tmp) deleted)
1488 str (concat str " %s")
1489 i (1+ i))))
1490 (if opt-p
1491 (let ((tagstr
1492 (if (eq 'TAG (car (car tmp)))
1493 (format "%d:" (cdr (car tmp)))
1494 (or (car tmp) ""))))
1495 (if (< i 6)
1496 (apply 'byte-compile-log-lap-1
1497 (concat " %s" str
1498 " %s\t-->\t%s <deleted> %s")
1499 lap0
1500 (nconc (nreverse deleted)
1501 (list tagstr lap0 tagstr)))
1502 (byte-compile-log-lap
1503 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1504 lap0 i (if (= i 1) "" "s")
1505 tagstr lap0 tagstr))))
1506 (rplacd rest tmp))
1507 (setq keep-going t))
1508 ;;
1509 ;; <safe-op> unbind --> unbind <safe-op>
1510 ;; (this may enable other optimizations.)
1511 ;;
1512 ((and (eq 'byte-unbind (car lap1))
1513 (memq (car lap0) byte-after-unbind-ops))
1514 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1515 (setcar rest lap1)
1516 (setcar (cdr rest) lap0)
1517 (setq keep-going t))
1518 ;;
1519 ;; varbind-X unbind-N --> discard unbind-(N-1)
1520 ;; save-excursion unbind-N --> unbind-(N-1)
1521 ;; save-restriction unbind-N --> unbind-(N-1)
1522 ;;
1523 ((and (eq 'byte-unbind (car lap1))
1524 (memq (car lap0) '(byte-varbind byte-save-excursion
1525 byte-save-restriction))
1526 (< 0 (cdr lap1)))
1527 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1528 (delq lap1 rest))
1529 (if (eq (car lap0) 'byte-varbind)
1530 (setcar rest (cons 'byte-discard 0))
1531 (setq lap (delq lap0 lap)))
1532 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1533 lap0 (cons (car lap1) (1+ (cdr lap1)))
1534 (if (eq (car lap0) 'byte-varbind)
1535 (car rest)
1536 (car (cdr rest)))
1537 (if (and (/= 0 (cdr lap1))
1538 (eq (car lap0) 'byte-varbind))
1539 (car (cdr rest))
1540 ""))
1541 (setq keep-going t))
1542 ;;
1543 ;; goto*-X ... X: goto-Y --> goto*-Y
1544 ;; goto-X ... X: return --> return
1545 ;;
1546 ((and (memq (car lap0) byte-goto-ops)
1547 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1548 '(byte-goto byte-return)))
1549 (cond ((and (not (eq tmp lap0))
1550 (or (eq (car lap0) 'byte-goto)
1551 (eq (car tmp) 'byte-goto)))
1552 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1553 (car lap0) tmp tmp)
1554 (if (eq (car tmp) 'byte-return)
1555 (setcar lap0 'byte-return))
1556 (setcdr lap0 (cdr tmp))
1557 (setq keep-going t))))
1558 ;;
1559 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1560 ;; goto-*-else-pop X ... X: discard --> whatever
1561 ;;
1562 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1563 byte-goto-if-not-nil-else-pop))
1564 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1565 (eval-when-compile
1566 (cons 'byte-discard byte-conditional-ops)))
1567 (not (eq lap0 (car tmp))))
1568 (setq tmp2 (car tmp))
1569 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1570 byte-goto-if-nil)
1571 (byte-goto-if-not-nil-else-pop
1572 byte-goto-if-not-nil))))
1573 (if (memq (car tmp2) tmp3)
1574 (progn (setcar lap0 (car tmp2))
1575 (setcdr lap0 (cdr tmp2))
1576 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1577 (car lap0) tmp2 lap0))
1578 ;; Get rid of the -else-pop's and jump one step further.
1579 (or (eq 'TAG (car (nth 1 tmp)))
1580 (setcdr tmp (cons (byte-compile-make-tag)
1581 (cdr tmp))))
1582 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1583 (car lap0) tmp2 (nth 1 tmp3))
1584 (setcar lap0 (nth 1 tmp3))
1585 (setcdr lap0 (nth 1 tmp)))
1586 (setq keep-going t))
1587 ;;
1588 ;; const goto-X ... X: goto-if-* --> whatever
1589 ;; const goto-X ... X: discard --> whatever
1590 ;;
1591 ((and (eq (car lap0) 'byte-constant)
1592 (eq (car lap1) 'byte-goto)
1593 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1594 (eval-when-compile
1595 (cons 'byte-discard byte-conditional-ops)))
1596 (not (eq lap1 (car tmp))))
1597 (setq tmp2 (car tmp))
1598 (cond ((memq (car tmp2)
1599 (if (null (car (cdr lap0)))
1600 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1601 '(byte-goto-if-not-nil
1602 byte-goto-if-not-nil-else-pop)))
1603 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1604 lap0 tmp2 lap0 tmp2)
1605 (setcar lap1 (car tmp2))
1606 (setcdr lap1 (cdr tmp2))
1607 ;; Let next step fix the (const,goto-if*) sequence.
1608 (setq rest (cons nil rest)))
1609 (t
1610 ;; Jump one step further
1611 (byte-compile-log-lap
1612 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1613 lap0 tmp2)
1614 (or (eq 'TAG (car (nth 1 tmp)))
1615 (setcdr tmp (cons (byte-compile-make-tag)
1616 (cdr tmp))))
1617 (setcdr lap1 (car (cdr tmp)))
1618 (setq lap (delq lap0 lap))))
1619 (setq keep-going t))
1620 ;;
1621 ;; X: varref-Y ... varset-Y goto-X -->
1622 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1623 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1624 ;; (This is so usual for while loops that it is worth handling).
1625 ;;
1626 ((and (eq (car lap1) 'byte-varset)
1627 (eq (car lap2) 'byte-goto)
1628 (not (memq (cdr lap2) rest)) ;Backwards jump
1629 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1630 'byte-varref)
1631 (eq (cdr (car tmp)) (cdr lap1))
1632 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1633 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1634 (let ((newtag (byte-compile-make-tag)))
1635 (byte-compile-log-lap
1636 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1637 (nth 1 (cdr lap2)) (car tmp)
1638 lap1 lap2
1639 (nth 1 (cdr lap2)) (car tmp)
1640 (nth 1 newtag) 'byte-dup lap1
1641 (cons 'byte-goto newtag)
1642 )
1643 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1644 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1645 (setq add-depth 1)
1646 (setq keep-going t))
1647 ;;
1648 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1649 ;; (This can pull the loop test to the end of the loop)
1650 ;;
1651 ((and (eq (car lap0) 'byte-goto)
1652 (eq (car lap1) 'TAG)
1653 (eq lap1
1654 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1655 (memq (car (car tmp))
1656 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1657 byte-goto-if-nil-else-pop)))
1658 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1659 ;; lap0 lap1 (cdr lap0) (car tmp))
1660 (let ((newtag (byte-compile-make-tag)))
1661 (byte-compile-log-lap
1662 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1663 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1664 (cons (cdr (assq (car (car tmp))
1665 '((byte-goto-if-nil . byte-goto-if-not-nil)
1666 (byte-goto-if-not-nil . byte-goto-if-nil)
1667 (byte-goto-if-nil-else-pop .
1668 byte-goto-if-not-nil-else-pop)
1669 (byte-goto-if-not-nil-else-pop .
1670 byte-goto-if-nil-else-pop))))
1671 newtag)
1672
1673 (nth 1 newtag)
1674 )
1675 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1676 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1677 ;; We can handle this case but not the -if-not-nil case,
1678 ;; because we won't know which non-nil constant to push.
1679 (setcdr rest (cons (cons 'byte-constant
1680 (byte-compile-get-constant nil))
1681 (cdr rest))))
1682 (setcar lap0 (nth 1 (memq (car (car tmp))
1683 '(byte-goto-if-nil-else-pop
1684 byte-goto-if-not-nil
1685 byte-goto-if-nil
1686 byte-goto-if-not-nil
1687 byte-goto byte-goto))))
1688 )
1689 (setq keep-going t))
1690 )
1691 (setq rest (cdr rest)))
1692 )
1693 ;; Cleanup stage:
1694 ;; Rebuild byte-compile-constants / byte-compile-variables.
1695 ;; Simple optimizations that would inhibit other optimizations if they
1696 ;; were done in the optimizing loop, and optimizations which there is no
1697 ;; need to do more than once.
1698 (setq byte-compile-constants nil
1699 byte-compile-variables nil)
1700 (setq rest lap)
1701 (while rest
1702 (setq lap0 (car rest)
1703 lap1 (nth 1 rest))
1704 (if (memq (car lap0) byte-constref-ops)
1705 (if (eq (cdr lap0) 'byte-constant)
1706 (or (memq (cdr lap0) byte-compile-variables)
1707 (setq byte-compile-variables (cons (cdr lap0)
1708 byte-compile-variables)))
1709 (or (memq (cdr lap0) byte-compile-constants)
1710 (setq byte-compile-constants (cons (cdr lap0)
1711 byte-compile-constants)))))
1712 (cond (;;
1713 ;; const-C varset-X const-C --> const-C dup varset-X
1714 ;; const-C varbind-X const-C --> const-C dup varbind-X
1715 ;;
1716 (and (eq (car lap0) 'byte-constant)
1717 (eq (car (nth 2 rest)) 'byte-constant)
1718 (eq (cdr lap0) (car (nth 2 rest)))
1719 (memq (car lap1) '(byte-varbind byte-varset)))
1720 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1721 lap0 lap1 lap0 lap0 lap1)
1722 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1723 (setcar (cdr rest) (cons 'byte-dup 0))
1724 (setq add-depth 1))
1725 ;;
1726 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1727 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1728 ;;
1729 ((memq (car lap0) '(byte-constant byte-varref))
1730 (setq tmp rest
1731 tmp2 nil)
1732 (while (progn
1733 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1734 (and (eq (cdr lap0) (cdr (car tmp)))
1735 (eq (car lap0) (car (car tmp)))))
1736 (setcar tmp (cons 'byte-dup 0))
1737 (setq tmp2 t))
1738 (if tmp2
1739 (byte-compile-log-lap
1740 " %s [dup/%s]... %s\t-->\t%s dup..." lap0 lap0 lap0)))
1741 ;;
1742 ;; unbind-N unbind-M --> unbind-(N+M)
1743 ;;
1744 ((and (eq 'byte-unbind (car lap0))
1745 (eq 'byte-unbind (car lap1)))
1746 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1747 (cons 'byte-unbind
1748 (+ (cdr lap0) (cdr lap1))))
1749 (setq keep-going t)
1750 (setq lap (delq lap0 lap))
1751 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1752 )
1753 (setq rest (cdr rest)))
1754 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1755 lap)
1756
1757 (provide 'byte-optimize)
1758
1759 \f
1760 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1761 ;; itself, compile some of its most used recursive functions (at load time).
1762 ;;
1763 (eval-when-compile
1764 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1765 (assq 'byte-code (symbol-function 'byte-optimize-form))
1766 (let ((byte-optimize nil)
1767 (byte-compile-warnings nil))
1768 (mapcar '(lambda (x)
1769 (or noninteractive (message "compiling %s..." x))
1770 (byte-compile x)
1771 (or noninteractive (message "compiling %s...done" x)))
1772 '(byte-optimize-form
1773 byte-optimize-body
1774 byte-optimize-predicate
1775 byte-optimize-binary-predicate
1776 ;; Inserted some more than necessary, to speed it up.
1777 byte-optimize-form-code-walker
1778 byte-optimize-lapcode))))
1779 nil)
1780
1781 ;;; byte-opt.el ends here