*** empty log message ***
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34
35 #define min(a, b) ((a) < (b) ? (a) : (b))
36
37 /* The number of elements in keymap vectors. */
38 #define DENSE_TABLE_SIZE (0200)
39
40 /* Actually allocate storage for these variables */
41
42 Lisp_Object current_global_map; /* Current global keymap */
43
44 Lisp_Object global_map; /* default global key bindings */
45
46 Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49 Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52 /* was MinibufLocalMap */
53 Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58 /* was MinibufLocalNSMap */
59 Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64 /* keymap used for minibuffers when doing completion */
65 /* was MinibufLocalCompletionMap */
66 Lisp_Object Vminibuffer_local_completion_map;
67
68 /* keymap used for minibuffers when doing completion and require a match */
69 /* was MinibufLocalMustMatchMap */
70 Lisp_Object Vminibuffer_local_must_match_map;
71
72 /* Alist of minor mode variables and keymaps. */
73 Lisp_Object Vminor_mode_map_alist;
74
75 /* Alist of major-mode-specific overrides for
76 minor mode variables and keymaps. */
77 Lisp_Object Vminor_mode_overriding_map_alist;
78
79 /* Keymap mapping ASCII function key sequences onto their preferred forms.
80 Initialized by the terminal-specific lisp files. See DEFVAR for more
81 documentation. */
82 Lisp_Object Vfunction_key_map;
83
84 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
85 Lisp_Object Vkey_translation_map;
86
87 /* A list of all commands given new bindings since a certain time
88 when nil was stored here.
89 This is used to speed up recomputation of menu key equivalents
90 when Emacs starts up. t means don't record anything here. */
91 Lisp_Object Vdefine_key_rebound_commands;
92
93 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
94
95 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
96 in a string key sequence is equivalent to prefixing with this
97 character. */
98 extern Lisp_Object meta_prefix_char;
99
100 extern Lisp_Object Voverriding_local_map;
101
102 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
103 static Lisp_Object where_is_cache;
104 /* Which keymaps are reverse-stored in the cache. */
105 static Lisp_Object where_is_cache_keymaps;
106
107 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
108 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
109
110 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
111 static Lisp_Object describe_buffer_bindings P_ ((Lisp_Object));
112 static void describe_command P_ ((Lisp_Object));
113 static void describe_translation P_ ((Lisp_Object));
114 static void describe_map P_ ((Lisp_Object, Lisp_Object,
115 void (*) P_ ((Lisp_Object)),
116 int, Lisp_Object, Lisp_Object*, int));
117 \f
118 /* Keymap object support - constructors and predicates. */
119
120 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
121 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
122 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
123 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
124 mouse events, and any other things that appear in the input stream.\n\
125 All entries in it are initially nil, meaning \"command undefined\".\n\n\
126 The optional arg STRING supplies a menu name for the keymap\n\
127 in case you use it as a menu with `x-popup-menu'.")
128 (string)
129 Lisp_Object string;
130 {
131 Lisp_Object tail;
132 if (!NILP (string))
133 tail = Fcons (string, Qnil);
134 else
135 tail = Qnil;
136 return Fcons (Qkeymap,
137 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
138 }
139
140 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
141 "Construct and return a new sparse keymap.\n\
142 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
143 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
144 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
145 Initially the alist is nil.\n\n\
146 The optional arg STRING supplies a menu name for the keymap\n\
147 in case you use it as a menu with `x-popup-menu'.")
148 (string)
149 Lisp_Object string;
150 {
151 if (!NILP (string))
152 return Fcons (Qkeymap, Fcons (string, Qnil));
153 return Fcons (Qkeymap, Qnil);
154 }
155
156 /* This function is used for installing the standard key bindings
157 at initialization time.
158
159 For example:
160
161 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
162
163 void
164 initial_define_key (keymap, key, defname)
165 Lisp_Object keymap;
166 int key;
167 char *defname;
168 {
169 store_in_keymap (keymap, make_number (key), intern (defname));
170 }
171
172 void
173 initial_define_lispy_key (keymap, keyname, defname)
174 Lisp_Object keymap;
175 char *keyname;
176 char *defname;
177 {
178 store_in_keymap (keymap, intern (keyname), intern (defname));
179 }
180
181 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
182 "Return t if OBJECT is a keymap.\n\
183 \n\
184 A keymap is a list (keymap . ALIST),\n\
185 or a symbol whose function definition is itself a keymap.\n\
186 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
187 a vector of densely packed bindings for small character codes\n\
188 is also allowed as an element.")
189 (object)
190 Lisp_Object object;
191 {
192 return (KEYMAPP (object) ? Qt : Qnil);
193 }
194
195 /* Check that OBJECT is a keymap (after dereferencing through any
196 symbols). If it is, return it.
197
198 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
199 is an autoload form, do the autoload and try again.
200 If AUTOLOAD is nonzero, callers must assume GC is possible.
201
202 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
203 is zero as well), return Qt.
204
205 ERROR controls how we respond if OBJECT isn't a keymap.
206 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
207
208 Note that most of the time, we don't want to pursue autoloads.
209 Functions like Faccessible_keymaps which scan entire keymap trees
210 shouldn't load every autoloaded keymap. I'm not sure about this,
211 but it seems to me that only read_key_sequence, Flookup_key, and
212 Fdefine_key should cause keymaps to be autoloaded.
213
214 This function can GC when AUTOLOAD is non-zero, because it calls
215 do_autoload which can GC. */
216
217 Lisp_Object
218 get_keymap (object, error, autoload)
219 Lisp_Object object;
220 int error, autoload;
221 {
222 Lisp_Object tem;
223
224 autoload_retry:
225 if (NILP (object))
226 goto end;
227 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
228 return object;
229
230 tem = indirect_function (object);
231 if (CONSP (tem))
232 {
233 if (EQ (XCAR (tem), Qkeymap))
234 return tem;
235
236 /* Should we do an autoload? Autoload forms for keymaps have
237 Qkeymap as their fifth element. */
238 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
239 {
240 Lisp_Object tail;
241
242 tail = Fnth (make_number (4), tem);
243 if (EQ (tail, Qkeymap))
244 {
245 if (autoload)
246 {
247 struct gcpro gcpro1, gcpro2;
248
249 GCPRO2 (tem, object);
250 do_autoload (tem, object);
251 UNGCPRO;
252
253 goto autoload_retry;
254 }
255 else
256 return Qt;
257 }
258 }
259 }
260
261 end:
262 if (error)
263 wrong_type_argument (Qkeymapp, object);
264 return Qnil;
265 }
266 \f
267 /* Return the parent map of the keymap MAP, or nil if it has none.
268 We assume that MAP is a valid keymap. */
269
270 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
271 "Return the parent keymap of KEYMAP.")
272 (keymap)
273 Lisp_Object keymap;
274 {
275 Lisp_Object list;
276
277 keymap = get_keymap (keymap, 1, 1);
278
279 /* Skip past the initial element `keymap'. */
280 list = XCDR (keymap);
281 for (; CONSP (list); list = XCDR (list))
282 {
283 /* See if there is another `keymap'. */
284 if (KEYMAPP (list))
285 return list;
286 }
287
288 return get_keymap (list, 0, 1);
289 }
290
291
292 /* Check whether MAP is one of MAPS parents. */
293 int
294 keymap_memberp (map, maps)
295 Lisp_Object map, maps;
296 {
297 if (NILP (map)) return 0;
298 while (KEYMAPP (maps) && !EQ (map, maps))
299 maps = Fkeymap_parent (maps);
300 return (EQ (map, maps));
301 }
302
303 /* Set the parent keymap of MAP to PARENT. */
304
305 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
306 "Modify KEYMAP to set its parent map to PARENT.\n\
307 PARENT should be nil or another keymap.")
308 (keymap, parent)
309 Lisp_Object keymap, parent;
310 {
311 Lisp_Object list, prev;
312 struct gcpro gcpro1;
313 int i;
314
315 /* Force a keymap flush for the next call to where-is.
316 Since this can be called from within where-is, we don't set where_is_cache
317 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
318 be changed during where-is, while where_is_cache_keymaps is only used at
319 the very beginning of where-is and can thus be changed here without any
320 adverse effect.
321 This is a very minor correctness (rather than safety) issue. */
322 where_is_cache_keymaps = Qt;
323
324 keymap = get_keymap (keymap, 1, 1);
325 GCPRO1 (keymap);
326
327 if (!NILP (parent))
328 {
329 parent = get_keymap (parent, 1, 1);
330
331 /* Check for cycles. */
332 if (keymap_memberp (keymap, parent))
333 error ("Cyclic keymap inheritance");
334 }
335
336 /* Skip past the initial element `keymap'. */
337 prev = keymap;
338 while (1)
339 {
340 list = XCDR (prev);
341 /* If there is a parent keymap here, replace it.
342 If we came to the end, add the parent in PREV. */
343 if (! CONSP (list) || KEYMAPP (list))
344 {
345 /* If we already have the right parent, return now
346 so that we avoid the loops below. */
347 if (EQ (XCDR (prev), parent))
348 RETURN_UNGCPRO (parent);
349
350 XCDR (prev) = parent;
351 break;
352 }
353 prev = list;
354 }
355
356 /* Scan through for submaps, and set their parents too. */
357
358 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
359 {
360 /* Stop the scan when we come to the parent. */
361 if (EQ (XCAR (list), Qkeymap))
362 break;
363
364 /* If this element holds a prefix map, deal with it. */
365 if (CONSP (XCAR (list))
366 && CONSP (XCDR (XCAR (list))))
367 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
368 XCDR (XCAR (list)));
369
370 if (VECTORP (XCAR (list)))
371 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
372 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
373 fix_submap_inheritance (keymap, make_number (i),
374 XVECTOR (XCAR (list))->contents[i]);
375
376 if (CHAR_TABLE_P (XCAR (list)))
377 {
378 Lisp_Object indices[3];
379
380 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
381 keymap, 0, indices);
382 }
383 }
384
385 RETURN_UNGCPRO (parent);
386 }
387
388 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
389 if EVENT is also a prefix in MAP's parent,
390 make sure that SUBMAP inherits that definition as its own parent. */
391
392 static void
393 fix_submap_inheritance (map, event, submap)
394 Lisp_Object map, event, submap;
395 {
396 Lisp_Object map_parent, parent_entry;
397
398 /* SUBMAP is a cons that we found as a key binding.
399 Discard the other things found in a menu key binding. */
400
401 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
402
403 /* If it isn't a keymap now, there's no work to do. */
404 if (!CONSP (submap))
405 return;
406
407 map_parent = Fkeymap_parent (map);
408 if (!NILP (map_parent))
409 parent_entry =
410 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
411 else
412 parent_entry = Qnil;
413
414 /* If MAP's parent has something other than a keymap,
415 our own submap shadows it completely. */
416 if (!CONSP (parent_entry))
417 return;
418
419 if (! EQ (parent_entry, submap))
420 {
421 Lisp_Object submap_parent;
422 submap_parent = submap;
423 while (1)
424 {
425 Lisp_Object tem;
426
427 tem = Fkeymap_parent (submap_parent);
428
429 if (KEYMAPP (tem))
430 {
431 if (keymap_memberp (tem, parent_entry))
432 /* Fset_keymap_parent could create a cycle. */
433 return;
434 submap_parent = tem;
435 }
436 else
437 break;
438 }
439 Fset_keymap_parent (submap_parent, parent_entry);
440 }
441 }
442 \f
443 /* Look up IDX in MAP. IDX may be any sort of event.
444 Note that this does only one level of lookup; IDX must be a single
445 event, not a sequence.
446
447 If T_OK is non-zero, bindings for Qt are treated as default
448 bindings; any key left unmentioned by other tables and bindings is
449 given the binding of Qt.
450
451 If T_OK is zero, bindings for Qt are not treated specially.
452
453 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
454
455 Lisp_Object
456 access_keymap (map, idx, t_ok, noinherit, autoload)
457 Lisp_Object map;
458 Lisp_Object idx;
459 int t_ok;
460 int noinherit;
461 int autoload;
462 {
463 int noprefix = 0;
464 Lisp_Object val;
465
466 /* If idx is a list (some sort of mouse click, perhaps?),
467 the index we want to use is the car of the list, which
468 ought to be a symbol. */
469 idx = EVENT_HEAD (idx);
470
471 /* If idx is a symbol, it might have modifiers, which need to
472 be put in the canonical order. */
473 if (SYMBOLP (idx))
474 idx = reorder_modifiers (idx);
475 else if (INTEGERP (idx))
476 /* Clobber the high bits that can be present on a machine
477 with more than 24 bits of integer. */
478 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
479
480 /* Handle the special meta -> esc mapping. */
481 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
482 {
483 /* See if there is a meta-map. If there's none, there is
484 no binding for IDX, unless a default binding exists in MAP. */
485 Lisp_Object meta_map =
486 get_keymap (access_keymap (map, meta_prefix_char,
487 t_ok, noinherit, autoload),
488 0, autoload);
489 if (CONSP (meta_map))
490 {
491 map = meta_map;
492 idx = make_number (XUINT (idx) & ~meta_modifier);
493 }
494 else if (t_ok)
495 /* Set IDX to t, so that we only find a default binding. */
496 idx = Qt;
497 else
498 /* We know there is no binding. */
499 return Qnil;
500 }
501
502 {
503 Lisp_Object tail;
504 Lisp_Object t_binding;
505
506 t_binding = Qnil;
507 for (tail = XCDR (map);
508 (CONSP (tail)
509 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
510 tail = XCDR (tail))
511 {
512 Lisp_Object binding;
513
514 binding = XCAR (tail);
515 if (SYMBOLP (binding))
516 {
517 /* If NOINHERIT, stop finding prefix definitions
518 after we pass a second occurrence of the `keymap' symbol. */
519 if (noinherit && EQ (binding, Qkeymap))
520 noprefix = 1;
521 }
522 else if (CONSP (binding))
523 {
524 if (EQ (XCAR (binding), idx))
525 {
526 val = XCDR (binding);
527 if (noprefix && KEYMAPP (val))
528 return Qnil;
529 if (CONSP (val))
530 fix_submap_inheritance (map, idx, val);
531 return get_keyelt (val, autoload);
532 }
533 if (t_ok && EQ (XCAR (binding), Qt))
534 t_binding = XCDR (binding);
535 }
536 else if (VECTORP (binding))
537 {
538 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
539 {
540 val = XVECTOR (binding)->contents[XFASTINT (idx)];
541 if (noprefix && KEYMAPP (val))
542 return Qnil;
543 if (CONSP (val))
544 fix_submap_inheritance (map, idx, val);
545 return get_keyelt (val, autoload);
546 }
547 }
548 else if (CHAR_TABLE_P (binding))
549 {
550 /* Character codes with modifiers
551 are not included in a char-table.
552 All character codes without modifiers are included. */
553 if (NATNUMP (idx)
554 && ! (XFASTINT (idx)
555 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
556 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
557 {
558 val = Faref (binding, idx);
559 if (noprefix && KEYMAPP (val))
560 return Qnil;
561 if (CONSP (val))
562 fix_submap_inheritance (map, idx, val);
563 return get_keyelt (val, autoload);
564 }
565 }
566
567 QUIT;
568 }
569
570 return get_keyelt (t_binding, autoload);
571 }
572 }
573
574 /* Given OBJECT which was found in a slot in a keymap,
575 trace indirect definitions to get the actual definition of that slot.
576 An indirect definition is a list of the form
577 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
578 and INDEX is the object to look up in KEYMAP to yield the definition.
579
580 Also if OBJECT has a menu string as the first element,
581 remove that. Also remove a menu help string as second element.
582
583 If AUTOLOAD is nonzero, load autoloadable keymaps
584 that are referred to with indirection. */
585
586 Lisp_Object
587 get_keyelt (object, autoload)
588 register Lisp_Object object;
589 int autoload;
590 {
591 while (1)
592 {
593 if (!(CONSP (object)))
594 /* This is really the value. */
595 return object;
596
597 /* If the keymap contents looks like (keymap ...) or (lambda ...)
598 then use itself. */
599 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
600 return object;
601
602 /* If the keymap contents looks like (menu-item name . DEFN)
603 or (menu-item name DEFN ...) then use DEFN.
604 This is a new format menu item. */
605 else if (EQ (XCAR (object), Qmenu_item))
606 {
607 if (CONSP (XCDR (object)))
608 {
609 Lisp_Object tem;
610
611 object = XCDR (XCDR (object));
612 tem = object;
613 if (CONSP (object))
614 object = XCAR (object);
615
616 /* If there's a `:filter FILTER', apply FILTER to the
617 menu-item's definition to get the real definition to
618 use. */
619 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
620 if (EQ (XCAR (tem), QCfilter) && autoload)
621 {
622 Lisp_Object filter;
623 filter = XCAR (XCDR (tem));
624 filter = list2 (filter, list2 (Qquote, object));
625 object = menu_item_eval_property (filter);
626 break;
627 }
628 }
629 else
630 /* Invalid keymap */
631 return object;
632 }
633
634 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
635 Keymap alist elements like (CHAR MENUSTRING . DEFN)
636 will be used by HierarKey menus. */
637 else if (STRINGP (XCAR (object)))
638 {
639 object = XCDR (object);
640 /* Also remove a menu help string, if any,
641 following the menu item name. */
642 if (CONSP (object) && STRINGP (XCAR (object)))
643 object = XCDR (object);
644 /* Also remove the sublist that caches key equivalences, if any. */
645 if (CONSP (object) && CONSP (XCAR (object)))
646 {
647 Lisp_Object carcar;
648 carcar = XCAR (XCAR (object));
649 if (NILP (carcar) || VECTORP (carcar))
650 object = XCDR (object);
651 }
652 }
653
654 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
655 else
656 {
657 Lisp_Object map;
658 map = get_keymap (Fcar_safe (object), 0, autoload);
659 return (!CONSP (map) ? object /* Invalid keymap */
660 : access_keymap (map, Fcdr (object), 0, 0, autoload));
661 }
662 }
663 }
664
665 static Lisp_Object
666 store_in_keymap (keymap, idx, def)
667 Lisp_Object keymap;
668 register Lisp_Object idx;
669 register Lisp_Object def;
670 {
671 /* Flush any reverse-map cache. */
672 where_is_cache = Qnil;
673 where_is_cache_keymaps = Qt;
674
675 /* If we are preparing to dump, and DEF is a menu element
676 with a menu item indicator, copy it to ensure it is not pure. */
677 if (CONSP (def) && PURE_P (def)
678 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
679 def = Fcons (XCAR (def), XCDR (def));
680
681 if (!CONSP (keymap) || ! EQ (XCAR (keymap), Qkeymap))
682 error ("attempt to define a key in a non-keymap");
683
684 /* If idx is a list (some sort of mouse click, perhaps?),
685 the index we want to use is the car of the list, which
686 ought to be a symbol. */
687 idx = EVENT_HEAD (idx);
688
689 /* If idx is a symbol, it might have modifiers, which need to
690 be put in the canonical order. */
691 if (SYMBOLP (idx))
692 idx = reorder_modifiers (idx);
693 else if (INTEGERP (idx))
694 /* Clobber the high bits that can be present on a machine
695 with more than 24 bits of integer. */
696 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
697
698 /* Scan the keymap for a binding of idx. */
699 {
700 Lisp_Object tail;
701
702 /* The cons after which we should insert new bindings. If the
703 keymap has a table element, we record its position here, so new
704 bindings will go after it; this way, the table will stay
705 towards the front of the alist and character lookups in dense
706 keymaps will remain fast. Otherwise, this just points at the
707 front of the keymap. */
708 Lisp_Object insertion_point;
709
710 insertion_point = keymap;
711 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
712 {
713 Lisp_Object elt;
714
715 elt = XCAR (tail);
716 if (VECTORP (elt))
717 {
718 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
719 {
720 ASET (elt, XFASTINT (idx), def);
721 return def;
722 }
723 insertion_point = tail;
724 }
725 else if (CHAR_TABLE_P (elt))
726 {
727 /* Character codes with modifiers
728 are not included in a char-table.
729 All character codes without modifiers are included. */
730 if (NATNUMP (idx)
731 && ! (XFASTINT (idx)
732 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
733 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
734 {
735 Faset (elt, idx, def);
736 return def;
737 }
738 insertion_point = tail;
739 }
740 else if (CONSP (elt))
741 {
742 if (EQ (idx, XCAR (elt)))
743 {
744 XCDR (elt) = def;
745 return def;
746 }
747 }
748 else if (EQ (elt, Qkeymap))
749 /* If we find a 'keymap' symbol in the spine of KEYMAP,
750 then we must have found the start of a second keymap
751 being used as the tail of KEYMAP, and a binding for IDX
752 should be inserted before it. */
753 goto keymap_end;
754
755 QUIT;
756 }
757
758 keymap_end:
759 /* We have scanned the entire keymap, and not found a binding for
760 IDX. Let's add one. */
761 XCDR (insertion_point)
762 = Fcons (Fcons (idx, def), XCDR (insertion_point));
763 }
764
765 return def;
766 }
767
768 void
769 copy_keymap_1 (chartable, idx, elt)
770 Lisp_Object chartable, idx, elt;
771 {
772 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
773 Faset (chartable, idx, Fcopy_keymap (elt));
774 }
775
776 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
777 "Return a copy of the keymap KEYMAP.\n\
778 The copy starts out with the same definitions of KEYMAP,\n\
779 but changing either the copy or KEYMAP does not affect the other.\n\
780 Any key definitions that are subkeymaps are recursively copied.\n\
781 However, a key definition which is a symbol whose definition is a keymap\n\
782 is not copied.")
783 (keymap)
784 Lisp_Object keymap;
785 {
786 register Lisp_Object copy, tail;
787
788 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
789
790 for (tail = copy; CONSP (tail); tail = XCDR (tail))
791 {
792 Lisp_Object elt;
793
794 elt = XCAR (tail);
795 if (CHAR_TABLE_P (elt))
796 {
797 Lisp_Object indices[3];
798
799 elt = Fcopy_sequence (elt);
800 XCAR (tail) = elt;
801
802 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
803 }
804 else if (VECTORP (elt))
805 {
806 int i;
807
808 elt = Fcopy_sequence (elt);
809 XCAR (tail) = elt;
810
811 for (i = 0; i < ASIZE (elt); i++)
812 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
813 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
814 }
815 else if (CONSP (elt) && CONSP (XCDR (elt)))
816 {
817 Lisp_Object tem;
818 tem = XCDR (elt);
819
820 /* Is this a new format menu item. */
821 if (EQ (XCAR (tem),Qmenu_item))
822 {
823 /* Copy cell with menu-item marker. */
824 XCDR (elt)
825 = Fcons (XCAR (tem), XCDR (tem));
826 elt = XCDR (elt);
827 tem = XCDR (elt);
828 if (CONSP (tem))
829 {
830 /* Copy cell with menu-item name. */
831 XCDR (elt)
832 = Fcons (XCAR (tem), XCDR (tem));
833 elt = XCDR (elt);
834 tem = XCDR (elt);
835 };
836 if (CONSP (tem))
837 {
838 /* Copy cell with binding and if the binding is a keymap,
839 copy that. */
840 XCDR (elt)
841 = Fcons (XCAR (tem), XCDR (tem));
842 elt = XCDR (elt);
843 tem = XCAR (elt);
844 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
845 XCAR (elt) = Fcopy_keymap (tem);
846 tem = XCDR (elt);
847 if (CONSP (tem) && CONSP (XCAR (tem)))
848 /* Delete cache for key equivalences. */
849 XCDR (elt) = XCDR (tem);
850 }
851 }
852 else
853 {
854 /* It may be an old fomat menu item.
855 Skip the optional menu string.
856 */
857 if (STRINGP (XCAR (tem)))
858 {
859 /* Copy the cell, since copy-alist didn't go this deep. */
860 XCDR (elt)
861 = Fcons (XCAR (tem), XCDR (tem));
862 elt = XCDR (elt);
863 tem = XCDR (elt);
864 /* Also skip the optional menu help string. */
865 if (CONSP (tem) && STRINGP (XCAR (tem)))
866 {
867 XCDR (elt)
868 = Fcons (XCAR (tem), XCDR (tem));
869 elt = XCDR (elt);
870 tem = XCDR (elt);
871 }
872 /* There may also be a list that caches key equivalences.
873 Just delete it for the new keymap. */
874 if (CONSP (tem)
875 && CONSP (XCAR (tem))
876 && (NILP (XCAR (XCAR (tem)))
877 || VECTORP (XCAR (XCAR (tem)))))
878 XCDR (elt) = XCDR (tem);
879 }
880 if (CONSP (elt)
881 && CONSP (XCDR (elt))
882 && EQ (XCAR (XCDR (elt)), Qkeymap))
883 XCDR (elt) = Fcopy_keymap (XCDR (elt));
884 }
885
886 }
887 }
888
889 return copy;
890 }
891 \f
892 /* Simple Keymap mutators and accessors. */
893
894 /* GC is possible in this function if it autoloads a keymap. */
895
896 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
897 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
898 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
899 meaning a sequence of keystrokes and events.\n\
900 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
901 can be included if you use a vector.\n\
902 DEF is anything that can be a key's definition:\n\
903 nil (means key is undefined in this keymap),\n\
904 a command (a Lisp function suitable for interactive calling)\n\
905 a string (treated as a keyboard macro),\n\
906 a keymap (to define a prefix key),\n\
907 a symbol. When the key is looked up, the symbol will stand for its\n\
908 function definition, which should at that time be one of the above,\n\
909 or another symbol whose function definition is used, etc.\n\
910 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
911 (DEFN should be a valid definition in its own right),\n\
912 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
913 \n\
914 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
915 the front of KEYMAP.")
916 (keymap, key, def)
917 Lisp_Object keymap;
918 Lisp_Object key;
919 Lisp_Object def;
920 {
921 register int idx;
922 register Lisp_Object c;
923 register Lisp_Object cmd;
924 int metized = 0;
925 int meta_bit;
926 int length;
927 struct gcpro gcpro1, gcpro2, gcpro3;
928
929 keymap = get_keymap (keymap, 1, 1);
930
931 if (!VECTORP (key) && !STRINGP (key))
932 key = wrong_type_argument (Qarrayp, key);
933
934 length = XFASTINT (Flength (key));
935 if (length == 0)
936 return Qnil;
937
938 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
939 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
940
941 GCPRO3 (keymap, key, def);
942
943 if (VECTORP (key))
944 meta_bit = meta_modifier;
945 else
946 meta_bit = 0x80;
947
948 idx = 0;
949 while (1)
950 {
951 c = Faref (key, make_number (idx));
952
953 if (CONSP (c) && lucid_event_type_list_p (c))
954 c = Fevent_convert_list (c);
955
956 if (INTEGERP (c)
957 && (XINT (c) & meta_bit)
958 && !metized)
959 {
960 c = meta_prefix_char;
961 metized = 1;
962 }
963 else
964 {
965 if (INTEGERP (c))
966 XSETINT (c, XINT (c) & ~meta_bit);
967
968 metized = 0;
969 idx++;
970 }
971
972 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
973 error ("Key sequence contains invalid events");
974
975 if (idx == length)
976 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
977
978 cmd = access_keymap (keymap, c, 0, 1, 1);
979
980 /* If this key is undefined, make it a prefix. */
981 if (NILP (cmd))
982 cmd = define_as_prefix (keymap, c);
983
984 keymap = get_keymap (cmd, 0, 1);
985 if (!CONSP (keymap))
986 /* We must use Fkey_description rather than just passing key to
987 error; key might be a vector, not a string. */
988 error ("Key sequence %s uses invalid prefix characters",
989 XSTRING (Fkey_description (key))->data);
990 }
991 }
992
993 /* Value is number if KEY is too long; NIL if valid but has no definition. */
994 /* GC is possible in this function if it autoloads a keymap. */
995
996 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
997 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
998 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
999 \n\
1000 A number as value means KEY is \"too long\";\n\
1001 that is, characters or symbols in it except for the last one\n\
1002 fail to be a valid sequence of prefix characters in KEYMAP.\n\
1003 The number is how many characters at the front of KEY\n\
1004 it takes to reach a non-prefix command.\n\
1005 \n\
1006 Normally, `lookup-key' ignores bindings for t, which act as default\n\
1007 bindings, used when nothing else in the keymap applies; this makes it\n\
1008 usable as a general function for probing keymaps. However, if the\n\
1009 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
1010 recognize the default bindings, just as `read-key-sequence' does.")
1011 (keymap, key, accept_default)
1012 register Lisp_Object keymap;
1013 Lisp_Object key;
1014 Lisp_Object accept_default;
1015 {
1016 register int idx;
1017 register Lisp_Object cmd;
1018 register Lisp_Object c;
1019 int length;
1020 int t_ok = ! NILP (accept_default);
1021 struct gcpro gcpro1;
1022
1023 keymap = get_keymap (keymap, 1, 1);
1024
1025 if (!VECTORP (key) && !STRINGP (key))
1026 key = wrong_type_argument (Qarrayp, key);
1027
1028 length = XFASTINT (Flength (key));
1029 if (length == 0)
1030 return keymap;
1031
1032 GCPRO1 (key);
1033
1034 idx = 0;
1035 while (1)
1036 {
1037 c = Faref (key, make_number (idx++));
1038
1039 if (CONSP (c) && lucid_event_type_list_p (c))
1040 c = Fevent_convert_list (c);
1041
1042 /* Turn the 8th bit of string chars into a meta modifier. */
1043 if (XINT (c) & 0x80 && STRINGP (key))
1044 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1045
1046 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1047 if (idx == length)
1048 RETURN_UNGCPRO (cmd);
1049
1050 keymap = get_keymap (cmd, 0, 1);
1051 if (!CONSP (keymap))
1052 RETURN_UNGCPRO (make_number (idx));
1053
1054 QUIT;
1055 }
1056 }
1057
1058 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1059 Assume that currently it does not define C at all.
1060 Return the keymap. */
1061
1062 static Lisp_Object
1063 define_as_prefix (keymap, c)
1064 Lisp_Object keymap, c;
1065 {
1066 Lisp_Object cmd;
1067
1068 cmd = Fmake_sparse_keymap (Qnil);
1069 /* If this key is defined as a prefix in an inherited keymap,
1070 make it a prefix in this map, and make its definition
1071 inherit the other prefix definition. */
1072 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1073 store_in_keymap (keymap, c, cmd);
1074
1075 return cmd;
1076 }
1077
1078 /* Append a key to the end of a key sequence. We always make a vector. */
1079
1080 Lisp_Object
1081 append_key (key_sequence, key)
1082 Lisp_Object key_sequence, key;
1083 {
1084 Lisp_Object args[2];
1085
1086 args[0] = key_sequence;
1087
1088 args[1] = Fcons (key, Qnil);
1089 return Fvconcat (2, args);
1090 }
1091
1092 \f
1093 /* Global, local, and minor mode keymap stuff. */
1094
1095 /* We can't put these variables inside current_minor_maps, since under
1096 some systems, static gets macro-defined to be the empty string.
1097 Ickypoo. */
1098 static Lisp_Object *cmm_modes, *cmm_maps;
1099 static int cmm_size;
1100
1101 /* Error handler used in current_minor_maps. */
1102 static Lisp_Object
1103 current_minor_maps_error ()
1104 {
1105 return Qnil;
1106 }
1107
1108 /* Store a pointer to an array of the keymaps of the currently active
1109 minor modes in *buf, and return the number of maps it contains.
1110
1111 This function always returns a pointer to the same buffer, and may
1112 free or reallocate it, so if you want to keep it for a long time or
1113 hand it out to lisp code, copy it. This procedure will be called
1114 for every key sequence read, so the nice lispy approach (return a
1115 new assoclist, list, what have you) for each invocation would
1116 result in a lot of consing over time.
1117
1118 If we used xrealloc/xmalloc and ran out of memory, they would throw
1119 back to the command loop, which would try to read a key sequence,
1120 which would call this function again, resulting in an infinite
1121 loop. Instead, we'll use realloc/malloc and silently truncate the
1122 list, let the key sequence be read, and hope some other piece of
1123 code signals the error. */
1124 int
1125 current_minor_maps (modeptr, mapptr)
1126 Lisp_Object **modeptr, **mapptr;
1127 {
1128 int i = 0;
1129 int list_number = 0;
1130 Lisp_Object alist, assoc, var, val;
1131 Lisp_Object lists[2];
1132
1133 lists[0] = Vminor_mode_overriding_map_alist;
1134 lists[1] = Vminor_mode_map_alist;
1135
1136 for (list_number = 0; list_number < 2; list_number++)
1137 for (alist = lists[list_number];
1138 CONSP (alist);
1139 alist = XCDR (alist))
1140 if ((assoc = XCAR (alist), CONSP (assoc))
1141 && (var = XCAR (assoc), SYMBOLP (var))
1142 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1143 && ! NILP (val))
1144 {
1145 Lisp_Object temp;
1146
1147 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1148 and also an entry in Vminor_mode_map_alist,
1149 ignore the latter. */
1150 if (list_number == 1)
1151 {
1152 val = assq_no_quit (var, lists[0]);
1153 if (!NILP (val))
1154 break;
1155 }
1156
1157 if (i >= cmm_size)
1158 {
1159 Lisp_Object *newmodes, *newmaps;
1160
1161 /* Use malloc/realloc here. See the comment above
1162 this function. */
1163 if (cmm_maps)
1164 {
1165 BLOCK_INPUT;
1166 cmm_size *= 2;
1167 newmodes
1168 = (Lisp_Object *) realloc (cmm_modes,
1169 cmm_size * sizeof *newmodes);
1170 newmaps
1171 = (Lisp_Object *) realloc (cmm_maps,
1172 cmm_size * sizeof *newmaps);
1173 UNBLOCK_INPUT;
1174 }
1175 else
1176 {
1177 BLOCK_INPUT;
1178 cmm_size = 30;
1179 newmodes
1180 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1181 newmaps
1182 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1183 UNBLOCK_INPUT;
1184 }
1185
1186 if (newmodes)
1187 cmm_modes = newmodes;
1188 if (newmaps)
1189 cmm_maps = newmaps;
1190
1191 if (newmodes == NULL || newmaps == NULL)
1192 break;
1193 }
1194
1195 /* Get the keymap definition--or nil if it is not defined. */
1196 temp = internal_condition_case_1 (Findirect_function,
1197 XCDR (assoc),
1198 Qerror, current_minor_maps_error);
1199 if (!NILP (temp))
1200 {
1201 cmm_modes[i] = var;
1202 cmm_maps [i] = temp;
1203 i++;
1204 }
1205 }
1206
1207 if (modeptr) *modeptr = cmm_modes;
1208 if (mapptr) *mapptr = cmm_maps;
1209 return i;
1210 }
1211
1212 /* GC is possible in this function if it autoloads a keymap. */
1213
1214 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1215 "Return the binding for command KEY in current keymaps.\n\
1216 KEY is a string or vector, a sequence of keystrokes.\n\
1217 The binding is probably a symbol with a function definition.\n\
1218 \n\
1219 Normally, `key-binding' ignores bindings for t, which act as default\n\
1220 bindings, used when nothing else in the keymap applies; this makes it\n\
1221 usable as a general function for probing keymaps. However, if the\n\
1222 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1223 recognize the default bindings, just as `read-key-sequence' does.")
1224 (key, accept_default)
1225 Lisp_Object key, accept_default;
1226 {
1227 Lisp_Object *maps, value;
1228 int nmaps, i;
1229 struct gcpro gcpro1;
1230
1231 GCPRO1 (key);
1232
1233 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1234 {
1235 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1236 key, accept_default);
1237 if (! NILP (value) && !INTEGERP (value))
1238 RETURN_UNGCPRO (value);
1239 }
1240 else if (!NILP (Voverriding_local_map))
1241 {
1242 value = Flookup_key (Voverriding_local_map, key, accept_default);
1243 if (! NILP (value) && !INTEGERP (value))
1244 RETURN_UNGCPRO (value);
1245 }
1246 else
1247 {
1248 Lisp_Object local;
1249
1250 nmaps = current_minor_maps (0, &maps);
1251 /* Note that all these maps are GCPRO'd
1252 in the places where we found them. */
1253
1254 for (i = 0; i < nmaps; i++)
1255 if (! NILP (maps[i]))
1256 {
1257 value = Flookup_key (maps[i], key, accept_default);
1258 if (! NILP (value) && !INTEGERP (value))
1259 RETURN_UNGCPRO (value);
1260 }
1261
1262 local = get_local_map (PT, current_buffer, Qkeymap);
1263 if (! NILP (local))
1264 {
1265 value = Flookup_key (local, key, accept_default);
1266 if (! NILP (value) && !INTEGERP (value))
1267 RETURN_UNGCPRO (value);
1268 }
1269
1270 local = get_local_map (PT, current_buffer, Qlocal_map);
1271
1272 if (! NILP (local))
1273 {
1274 value = Flookup_key (local, key, accept_default);
1275 if (! NILP (value) && !INTEGERP (value))
1276 RETURN_UNGCPRO (value);
1277 }
1278 }
1279
1280 value = Flookup_key (current_global_map, key, accept_default);
1281 UNGCPRO;
1282 if (! NILP (value) && !INTEGERP (value))
1283 return value;
1284
1285 return Qnil;
1286 }
1287
1288 /* GC is possible in this function if it autoloads a keymap. */
1289
1290 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1291 "Return the binding for command KEYS in current local keymap only.\n\
1292 KEYS is a string, a sequence of keystrokes.\n\
1293 The binding is probably a symbol with a function definition.\n\
1294 \n\
1295 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1296 bindings; see the description of `lookup-key' for more details about this.")
1297 (keys, accept_default)
1298 Lisp_Object keys, accept_default;
1299 {
1300 register Lisp_Object map;
1301 map = current_buffer->keymap;
1302 if (NILP (map))
1303 return Qnil;
1304 return Flookup_key (map, keys, accept_default);
1305 }
1306
1307 /* GC is possible in this function if it autoloads a keymap. */
1308
1309 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1310 "Return the binding for command KEYS in current global keymap only.\n\
1311 KEYS is a string, a sequence of keystrokes.\n\
1312 The binding is probably a symbol with a function definition.\n\
1313 This function's return values are the same as those of lookup-key\n\
1314 \(which see).\n\
1315 \n\
1316 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1317 bindings; see the description of `lookup-key' for more details about this.")
1318 (keys, accept_default)
1319 Lisp_Object keys, accept_default;
1320 {
1321 return Flookup_key (current_global_map, keys, accept_default);
1322 }
1323
1324 /* GC is possible in this function if it autoloads a keymap. */
1325
1326 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1327 "Find the visible minor mode bindings of KEY.\n\
1328 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1329 the symbol which names the minor mode binding KEY, and BINDING is\n\
1330 KEY's definition in that mode. In particular, if KEY has no\n\
1331 minor-mode bindings, return nil. If the first binding is a\n\
1332 non-prefix, all subsequent bindings will be omitted, since they would\n\
1333 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1334 that come after prefix bindings.\n\
1335 \n\
1336 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1337 bindings; see the description of `lookup-key' for more details about this.")
1338 (key, accept_default)
1339 Lisp_Object key, accept_default;
1340 {
1341 Lisp_Object *modes, *maps;
1342 int nmaps;
1343 Lisp_Object binding;
1344 int i, j;
1345 struct gcpro gcpro1, gcpro2;
1346
1347 nmaps = current_minor_maps (&modes, &maps);
1348 /* Note that all these maps are GCPRO'd
1349 in the places where we found them. */
1350
1351 binding = Qnil;
1352 GCPRO2 (key, binding);
1353
1354 for (i = j = 0; i < nmaps; i++)
1355 if (!NILP (maps[i])
1356 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1357 && !INTEGERP (binding))
1358 {
1359 if (KEYMAPP (binding))
1360 maps[j++] = Fcons (modes[i], binding);
1361 else if (j == 0)
1362 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1363 }
1364
1365 UNGCPRO;
1366 return Flist (j, maps);
1367 }
1368
1369 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1370 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1371 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1372 If a second optional argument MAPVAR is given, the map is stored as\n\
1373 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1374 as a function.\n\
1375 The third optional argument NAME, if given, supplies a menu name\n\
1376 string for the map. This is required to use the keymap as a menu.")
1377 (command, mapvar, name)
1378 Lisp_Object command, mapvar, name;
1379 {
1380 Lisp_Object map;
1381 map = Fmake_sparse_keymap (name);
1382 Ffset (command, map);
1383 if (!NILP (mapvar))
1384 Fset (mapvar, map);
1385 else
1386 Fset (command, map);
1387 return command;
1388 }
1389
1390 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1391 "Select KEYMAP as the global keymap.")
1392 (keymap)
1393 Lisp_Object keymap;
1394 {
1395 keymap = get_keymap (keymap, 1, 1);
1396 current_global_map = keymap;
1397
1398 return Qnil;
1399 }
1400
1401 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1402 "Select KEYMAP as the local keymap.\n\
1403 If KEYMAP is nil, that means no local keymap.")
1404 (keymap)
1405 Lisp_Object keymap;
1406 {
1407 if (!NILP (keymap))
1408 keymap = get_keymap (keymap, 1, 1);
1409
1410 current_buffer->keymap = keymap;
1411
1412 return Qnil;
1413 }
1414
1415 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1416 "Return current buffer's local keymap, or nil if it has none.")
1417 ()
1418 {
1419 return current_buffer->keymap;
1420 }
1421
1422 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1423 "Return the current global keymap.")
1424 ()
1425 {
1426 return current_global_map;
1427 }
1428
1429 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1430 "Return a list of keymaps for the minor modes of the current buffer.")
1431 ()
1432 {
1433 Lisp_Object *maps;
1434 int nmaps = current_minor_maps (0, &maps);
1435
1436 return Flist (nmaps, maps);
1437 }
1438 \f
1439 /* Help functions for describing and documenting keymaps. */
1440
1441 static void accessible_keymaps_char_table P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
1442
1443 /* This function cannot GC. */
1444
1445 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1446 1, 2, 0,
1447 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1448 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1449 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1450 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1451 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1452 then the value includes only maps for prefixes that start with PREFIX.")
1453 (keymap, prefix)
1454 Lisp_Object keymap, prefix;
1455 {
1456 Lisp_Object maps, good_maps, tail;
1457 int prefixlen = 0;
1458
1459 /* no need for gcpro because we don't autoload any keymaps. */
1460
1461 if (!NILP (prefix))
1462 prefixlen = XINT (Flength (prefix));
1463
1464 if (!NILP (prefix))
1465 {
1466 /* If a prefix was specified, start with the keymap (if any) for
1467 that prefix, so we don't waste time considering other prefixes. */
1468 Lisp_Object tem;
1469 tem = Flookup_key (keymap, prefix, Qt);
1470 /* Flookup_key may give us nil, or a number,
1471 if the prefix is not defined in this particular map.
1472 It might even give us a list that isn't a keymap. */
1473 tem = get_keymap (tem, 0, 0);
1474 if (CONSP (tem))
1475 {
1476 /* Convert PREFIX to a vector now, so that later on
1477 we don't have to deal with the possibility of a string. */
1478 if (STRINGP (prefix))
1479 {
1480 int i, i_byte, c;
1481 Lisp_Object copy;
1482
1483 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1484 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1485 {
1486 int i_before = i;
1487
1488 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1489 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1490 c ^= 0200 | meta_modifier;
1491 ASET (copy, i_before, make_number (c));
1492 }
1493 prefix = copy;
1494 }
1495 maps = Fcons (Fcons (prefix, tem), Qnil);
1496 }
1497 else
1498 return Qnil;
1499 }
1500 else
1501 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1502 get_keymap (keymap, 1, 0)),
1503 Qnil);
1504
1505 /* For each map in the list maps,
1506 look at any other maps it points to,
1507 and stick them at the end if they are not already in the list.
1508
1509 This is a breadth-first traversal, where tail is the queue of
1510 nodes, and maps accumulates a list of all nodes visited. */
1511
1512 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1513 {
1514 register Lisp_Object thisseq, thismap;
1515 Lisp_Object last;
1516 /* Does the current sequence end in the meta-prefix-char? */
1517 int is_metized;
1518
1519 thisseq = Fcar (Fcar (tail));
1520 thismap = Fcdr (Fcar (tail));
1521 last = make_number (XINT (Flength (thisseq)) - 1);
1522 is_metized = (XINT (last) >= 0
1523 /* Don't metize the last char of PREFIX. */
1524 && XINT (last) >= prefixlen
1525 && EQ (Faref (thisseq, last), meta_prefix_char));
1526
1527 for (; CONSP (thismap); thismap = XCDR (thismap))
1528 {
1529 Lisp_Object elt;
1530
1531 elt = XCAR (thismap);
1532
1533 QUIT;
1534
1535 if (CHAR_TABLE_P (elt))
1536 {
1537 Lisp_Object indices[3];
1538
1539 map_char_table (accessible_keymaps_char_table, Qnil,
1540 elt, Fcons (Fcons (maps, is_metized),
1541 Fcons (tail, thisseq)),
1542 0, indices);
1543 }
1544 else if (VECTORP (elt))
1545 {
1546 register int i;
1547
1548 /* Vector keymap. Scan all the elements. */
1549 for (i = 0; i < ASIZE (elt); i++)
1550 {
1551 register Lisp_Object tem;
1552 register Lisp_Object cmd;
1553
1554 cmd = get_keyelt (AREF (elt, i), 0);
1555 if (NILP (cmd)) continue;
1556 tem = get_keymap (cmd, 0, 0);
1557 if (CONSP (tem))
1558 {
1559 cmd = tem;
1560 /* Ignore keymaps that are already added to maps. */
1561 tem = Frassq (cmd, maps);
1562 if (NILP (tem))
1563 {
1564 /* If the last key in thisseq is meta-prefix-char,
1565 turn it into a meta-ized keystroke. We know
1566 that the event we're about to append is an
1567 ascii keystroke since we're processing a
1568 keymap table. */
1569 if (is_metized)
1570 {
1571 int meta_bit = meta_modifier;
1572 tem = Fcopy_sequence (thisseq);
1573
1574 Faset (tem, last, make_number (i | meta_bit));
1575
1576 /* This new sequence is the same length as
1577 thisseq, so stick it in the list right
1578 after this one. */
1579 XCDR (tail)
1580 = Fcons (Fcons (tem, cmd), XCDR (tail));
1581 }
1582 else
1583 {
1584 tem = append_key (thisseq, make_number (i));
1585 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1586 }
1587 }
1588 }
1589 }
1590 }
1591 else if (CONSP (elt))
1592 {
1593 register Lisp_Object cmd, tem;
1594
1595 cmd = get_keyelt (XCDR (elt), 0);
1596 /* Ignore definitions that aren't keymaps themselves. */
1597 tem = get_keymap (cmd, 0, 0);
1598 if (CONSP (tem))
1599 {
1600 /* Ignore keymaps that have been seen already. */
1601 cmd = tem;
1602 tem = Frassq (cmd, maps);
1603 if (NILP (tem))
1604 {
1605 /* Let elt be the event defined by this map entry. */
1606 elt = XCAR (elt);
1607
1608 /* If the last key in thisseq is meta-prefix-char, and
1609 this entry is a binding for an ascii keystroke,
1610 turn it into a meta-ized keystroke. */
1611 if (is_metized && INTEGERP (elt))
1612 {
1613 Lisp_Object element;
1614
1615 element = thisseq;
1616 tem = Fvconcat (1, &element);
1617 XSETFASTINT (AREF (tem, XINT (last)),
1618 XINT (elt) | meta_modifier);
1619
1620 /* This new sequence is the same length as
1621 thisseq, so stick it in the list right
1622 after this one. */
1623 XCDR (tail)
1624 = Fcons (Fcons (tem, cmd), XCDR (tail));
1625 }
1626 else
1627 nconc2 (tail,
1628 Fcons (Fcons (append_key (thisseq, elt), cmd),
1629 Qnil));
1630 }
1631 }
1632 }
1633 }
1634 }
1635
1636 if (NILP (prefix))
1637 return maps;
1638
1639 /* Now find just the maps whose access prefixes start with PREFIX. */
1640
1641 good_maps = Qnil;
1642 for (; CONSP (maps); maps = XCDR (maps))
1643 {
1644 Lisp_Object elt, thisseq;
1645 elt = XCAR (maps);
1646 thisseq = XCAR (elt);
1647 /* The access prefix must be at least as long as PREFIX,
1648 and the first elements must match those of PREFIX. */
1649 if (XINT (Flength (thisseq)) >= prefixlen)
1650 {
1651 int i;
1652 for (i = 0; i < prefixlen; i++)
1653 {
1654 Lisp_Object i1;
1655 XSETFASTINT (i1, i);
1656 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1657 break;
1658 }
1659 if (i == prefixlen)
1660 good_maps = Fcons (elt, good_maps);
1661 }
1662 }
1663
1664 return Fnreverse (good_maps);
1665 }
1666
1667 static void
1668 accessible_keymaps_char_table (args, index, cmd)
1669 Lisp_Object args, index, cmd;
1670 {
1671 Lisp_Object tem;
1672 Lisp_Object maps, tail, thisseq, is_metized;
1673
1674 cmd = get_keyelt (cmd, 0);
1675 if (NILP (cmd))
1676 return;
1677
1678 maps = XCAR (XCAR (args));
1679 is_metized = XCDR (XCAR (args));
1680 tail = XCAR (XCDR (args));
1681 thisseq = XCDR (XCDR (args));
1682
1683 tem = get_keymap (cmd, 0, 0);
1684 if (CONSP (tem))
1685 {
1686 cmd = tem;
1687 /* Ignore keymaps that are already added to maps. */
1688 tem = Frassq (cmd, maps);
1689 if (NILP (tem))
1690 {
1691 /* If the last key in thisseq is meta-prefix-char,
1692 turn it into a meta-ized keystroke. We know
1693 that the event we're about to append is an
1694 ascii keystroke since we're processing a
1695 keymap table. */
1696 if (is_metized)
1697 {
1698 int meta_bit = meta_modifier;
1699 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1700 tem = Fcopy_sequence (thisseq);
1701
1702 Faset (tem, last, make_number (XINT (index) | meta_bit));
1703
1704 /* This new sequence is the same length as
1705 thisseq, so stick it in the list right
1706 after this one. */
1707 XCDR (tail)
1708 = Fcons (Fcons (tem, cmd), XCDR (tail));
1709 }
1710 else
1711 {
1712 tem = append_key (thisseq, index);
1713 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1714 }
1715 }
1716 }
1717 }
1718 \f
1719 Lisp_Object Qsingle_key_description, Qkey_description;
1720
1721 /* This function cannot GC. */
1722
1723 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1724 "Return a pretty description of key-sequence KEYS.\n\
1725 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1726 spaces are put between sequence elements, etc.")
1727 (keys)
1728 Lisp_Object keys;
1729 {
1730 int len = 0;
1731 int i, i_byte;
1732 Lisp_Object sep;
1733 Lisp_Object *args = NULL;
1734
1735 if (STRINGP (keys))
1736 {
1737 Lisp_Object vector;
1738 vector = Fmake_vector (Flength (keys), Qnil);
1739 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1740 {
1741 int c;
1742 int i_before = i;
1743
1744 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1745 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1746 c ^= 0200 | meta_modifier;
1747 XSETFASTINT (AREF (vector, i_before), c);
1748 }
1749 keys = vector;
1750 }
1751
1752 if (VECTORP (keys))
1753 {
1754 /* In effect, this computes
1755 (mapconcat 'single-key-description keys " ")
1756 but we shouldn't use mapconcat because it can do GC. */
1757
1758 len = XVECTOR (keys)->size;
1759 sep = build_string (" ");
1760 /* This has one extra element at the end that we don't pass to Fconcat. */
1761 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1762
1763 for (i = 0; i < len; i++)
1764 {
1765 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1766 args[i * 2 + 1] = sep;
1767 }
1768 }
1769 else if (CONSP (keys))
1770 {
1771 /* In effect, this computes
1772 (mapconcat 'single-key-description keys " ")
1773 but we shouldn't use mapconcat because it can do GC. */
1774
1775 len = XFASTINT (Flength (keys));
1776 sep = build_string (" ");
1777 /* This has one extra element at the end that we don't pass to Fconcat. */
1778 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1779
1780 for (i = 0; i < len; i++)
1781 {
1782 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1783 args[i * 2 + 1] = sep;
1784 keys = XCDR (keys);
1785 }
1786 }
1787 else
1788 keys = wrong_type_argument (Qarrayp, keys);
1789
1790 if (len == 0)
1791 return build_string ("");
1792 return Fconcat (len * 2 - 1, args);
1793 }
1794
1795 char *
1796 push_key_description (c, p, force_multibyte)
1797 register unsigned int c;
1798 register char *p;
1799 int force_multibyte;
1800 {
1801 unsigned c2;
1802
1803 /* Clear all the meaningless bits above the meta bit. */
1804 c &= meta_modifier | ~ - meta_modifier;
1805 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1806 | meta_modifier | shift_modifier | super_modifier);
1807
1808 if (c & alt_modifier)
1809 {
1810 *p++ = 'A';
1811 *p++ = '-';
1812 c -= alt_modifier;
1813 }
1814 if ((c & ctrl_modifier) != 0
1815 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1816 {
1817 *p++ = 'C';
1818 *p++ = '-';
1819 c &= ~ctrl_modifier;
1820 }
1821 if (c & hyper_modifier)
1822 {
1823 *p++ = 'H';
1824 *p++ = '-';
1825 c -= hyper_modifier;
1826 }
1827 if (c & meta_modifier)
1828 {
1829 *p++ = 'M';
1830 *p++ = '-';
1831 c -= meta_modifier;
1832 }
1833 if (c & shift_modifier)
1834 {
1835 *p++ = 'S';
1836 *p++ = '-';
1837 c -= shift_modifier;
1838 }
1839 if (c & super_modifier)
1840 {
1841 *p++ = 's';
1842 *p++ = '-';
1843 c -= super_modifier;
1844 }
1845 if (c < 040)
1846 {
1847 if (c == 033)
1848 {
1849 *p++ = 'E';
1850 *p++ = 'S';
1851 *p++ = 'C';
1852 }
1853 else if (c == '\t')
1854 {
1855 *p++ = 'T';
1856 *p++ = 'A';
1857 *p++ = 'B';
1858 }
1859 else if (c == Ctl ('M'))
1860 {
1861 *p++ = 'R';
1862 *p++ = 'E';
1863 *p++ = 'T';
1864 }
1865 else
1866 {
1867 /* `C-' already added above. */
1868 if (c > 0 && c <= Ctl ('Z'))
1869 *p++ = c + 0140;
1870 else
1871 *p++ = c + 0100;
1872 }
1873 }
1874 else if (c == 0177)
1875 {
1876 *p++ = 'D';
1877 *p++ = 'E';
1878 *p++ = 'L';
1879 }
1880 else if (c == ' ')
1881 {
1882 *p++ = 'S';
1883 *p++ = 'P';
1884 *p++ = 'C';
1885 }
1886 else if (c < 128
1887 || (NILP (current_buffer->enable_multibyte_characters)
1888 && SINGLE_BYTE_CHAR_P (c)
1889 && !force_multibyte))
1890 {
1891 *p++ = c;
1892 }
1893 else
1894 {
1895 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
1896
1897 if (force_multibyte && valid_p)
1898 {
1899 if (SINGLE_BYTE_CHAR_P (c))
1900 c = unibyte_char_to_multibyte (c);
1901 p += CHAR_STRING (c, p);
1902 }
1903 else if (NILP (current_buffer->enable_multibyte_characters)
1904 || valid_p)
1905 {
1906 int bit_offset;
1907 *p++ = '\\';
1908 /* The biggest character code uses 19 bits. */
1909 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1910 {
1911 if (c >= (1 << bit_offset))
1912 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1913 }
1914 }
1915 else
1916 p += CHAR_STRING (c, p);
1917 }
1918
1919 return p;
1920 }
1921
1922 /* This function cannot GC. */
1923
1924 DEFUN ("single-key-description", Fsingle_key_description,
1925 Ssingle_key_description, 1, 2, 0,
1926 "Return a pretty description of command character KEY.\n\
1927 Control characters turn into C-whatever, etc.\n\
1928 Optional argument NO-ANGLES non-nil means don't put angle brackets\n\
1929 around function keys and event symbols.")
1930 (key, no_angles)
1931 Lisp_Object key, no_angles;
1932 {
1933 if (CONSP (key) && lucid_event_type_list_p (key))
1934 key = Fevent_convert_list (key);
1935
1936 key = EVENT_HEAD (key);
1937
1938 if (INTEGERP (key)) /* Normal character */
1939 {
1940 unsigned int charset, c1, c2;
1941 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1942
1943 if (SINGLE_BYTE_CHAR_P (without_bits))
1944 charset = 0;
1945 else
1946 SPLIT_CHAR (without_bits, charset, c1, c2);
1947
1948 if (charset
1949 && CHARSET_DEFINED_P (charset)
1950 && ((c1 >= 0 && c1 < 32)
1951 || (c2 >= 0 && c2 < 32)))
1952 {
1953 /* Handle a generic character. */
1954 Lisp_Object name;
1955 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1956 CHECK_STRING (name, 0);
1957 return concat2 (build_string ("Character set "), name);
1958 }
1959 else
1960 {
1961 char tem[KEY_DESCRIPTION_SIZE];
1962
1963 *push_key_description (XUINT (key), tem, 1) = 0;
1964 return build_string (tem);
1965 }
1966 }
1967 else if (SYMBOLP (key)) /* Function key or event-symbol */
1968 {
1969 if (NILP (no_angles))
1970 {
1971 char *buffer
1972 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
1973 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
1974 return build_string (buffer);
1975 }
1976 else
1977 return Fsymbol_name (key);
1978 }
1979 else if (STRINGP (key)) /* Buffer names in the menubar. */
1980 return Fcopy_sequence (key);
1981 else
1982 error ("KEY must be an integer, cons, symbol, or string");
1983 return Qnil;
1984 }
1985
1986 char *
1987 push_text_char_description (c, p)
1988 register unsigned int c;
1989 register char *p;
1990 {
1991 if (c >= 0200)
1992 {
1993 *p++ = 'M';
1994 *p++ = '-';
1995 c -= 0200;
1996 }
1997 if (c < 040)
1998 {
1999 *p++ = '^';
2000 *p++ = c + 64; /* 'A' - 1 */
2001 }
2002 else if (c == 0177)
2003 {
2004 *p++ = '^';
2005 *p++ = '?';
2006 }
2007 else
2008 *p++ = c;
2009 return p;
2010 }
2011
2012 /* This function cannot GC. */
2013
2014 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2015 "Return a pretty description of file-character CHARACTER.\n\
2016 Control characters turn into \"^char\", etc.")
2017 (character)
2018 Lisp_Object character;
2019 {
2020 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2021 unsigned char str[6];
2022 int c;
2023
2024 CHECK_NUMBER (character, 0);
2025
2026 c = XINT (character);
2027 if (!SINGLE_BYTE_CHAR_P (c))
2028 {
2029 int len = CHAR_STRING (c, str);
2030
2031 return make_multibyte_string (str, 1, len);
2032 }
2033
2034 *push_text_char_description (c & 0377, str) = 0;
2035
2036 return build_string (str);
2037 }
2038
2039 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2040 a meta bit. */
2041 static int
2042 ascii_sequence_p (seq)
2043 Lisp_Object seq;
2044 {
2045 int i;
2046 int len = XINT (Flength (seq));
2047
2048 for (i = 0; i < len; i++)
2049 {
2050 Lisp_Object ii, elt;
2051
2052 XSETFASTINT (ii, i);
2053 elt = Faref (seq, ii);
2054
2055 if (!INTEGERP (elt)
2056 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2057 return 0;
2058 }
2059
2060 return 1;
2061 }
2062
2063 \f
2064 /* where-is - finding a command in a set of keymaps. */
2065
2066 static Lisp_Object where_is_internal_1 ();
2067 static void where_is_internal_2 ();
2068
2069 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2070 Returns the first non-nil binding found in any of those maps. */
2071
2072 static Lisp_Object
2073 shadow_lookup (shadow, key, flag)
2074 Lisp_Object shadow, key, flag;
2075 {
2076 Lisp_Object tail, value;
2077
2078 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2079 {
2080 value = Flookup_key (XCAR (tail), key, flag);
2081 if (!NILP (value) && !NATNUMP (value))
2082 return value;
2083 }
2084 return Qnil;
2085 }
2086
2087 /* This function can GC if Flookup_key autoloads any keymaps. */
2088
2089 static Lisp_Object
2090 where_is_internal (definition, keymaps, firstonly, noindirect)
2091 Lisp_Object definition, keymaps;
2092 Lisp_Object firstonly, noindirect;
2093 {
2094 Lisp_Object maps = Qnil;
2095 Lisp_Object found, sequences;
2096 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2097 /* 1 means ignore all menu bindings entirely. */
2098 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2099
2100 found = keymaps;
2101 while (CONSP (found))
2102 {
2103 maps =
2104 nconc2 (maps,
2105 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2106 found = XCDR (found);
2107 }
2108
2109 GCPRO5 (definition, keymaps, maps, found, sequences);
2110 found = Qnil;
2111 sequences = Qnil;
2112
2113 for (; !NILP (maps); maps = Fcdr (maps))
2114 {
2115 /* Key sequence to reach map, and the map that it reaches */
2116 register Lisp_Object this, map;
2117
2118 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2119 [M-CHAR] sequences, check if last character of the sequence
2120 is the meta-prefix char. */
2121 Lisp_Object last;
2122 int last_is_meta;
2123
2124 this = Fcar (Fcar (maps));
2125 map = Fcdr (Fcar (maps));
2126 last = make_number (XINT (Flength (this)) - 1);
2127 last_is_meta = (XINT (last) >= 0
2128 && EQ (Faref (this, last), meta_prefix_char));
2129
2130 /* if (nomenus && !ascii_sequence_p (this)) */
2131 if (nomenus && XINT (last) >= 0
2132 && !INTEGERP (Faref (this, make_number (0))))
2133 /* If no menu entries should be returned, skip over the
2134 keymaps bound to `menu-bar' and `tool-bar' and other
2135 non-ascii prefixes like `C-down-mouse-2'. */
2136 continue;
2137
2138 QUIT;
2139
2140 while (CONSP (map))
2141 {
2142 /* Because the code we want to run on each binding is rather
2143 large, we don't want to have two separate loop bodies for
2144 sparse keymap bindings and tables; we want to iterate one
2145 loop body over both keymap and vector bindings.
2146
2147 For this reason, if Fcar (map) is a vector, we don't
2148 advance map to the next element until i indicates that we
2149 have finished off the vector. */
2150 Lisp_Object elt, key, binding;
2151 elt = XCAR (map);
2152 map = XCDR (map);
2153
2154 sequences = Qnil;
2155
2156 QUIT;
2157
2158 /* Set key and binding to the current key and binding, and
2159 advance map and i to the next binding. */
2160 if (VECTORP (elt))
2161 {
2162 Lisp_Object sequence;
2163 int i;
2164 /* In a vector, look at each element. */
2165 for (i = 0; i < XVECTOR (elt)->size; i++)
2166 {
2167 binding = AREF (elt, i);
2168 XSETFASTINT (key, i);
2169 sequence = where_is_internal_1 (binding, key, definition,
2170 noindirect, this,
2171 last, nomenus, last_is_meta);
2172 if (!NILP (sequence))
2173 sequences = Fcons (sequence, sequences);
2174 }
2175 }
2176 else if (CHAR_TABLE_P (elt))
2177 {
2178 Lisp_Object indices[3];
2179 Lisp_Object args;
2180
2181 args = Fcons (Fcons (Fcons (definition, noindirect),
2182 Qnil), /* Result accumulator. */
2183 Fcons (Fcons (this, last),
2184 Fcons (make_number (nomenus),
2185 make_number (last_is_meta))));
2186 map_char_table (where_is_internal_2, Qnil, elt, args,
2187 0, indices);
2188 sequences = XCDR (XCAR (args));
2189 }
2190 else if (CONSP (elt))
2191 {
2192 Lisp_Object sequence;
2193
2194 key = XCAR (elt);
2195 binding = XCDR (elt);
2196
2197 sequence = where_is_internal_1 (binding, key, definition,
2198 noindirect, this,
2199 last, nomenus, last_is_meta);
2200 if (!NILP (sequence))
2201 sequences = Fcons (sequence, sequences);
2202 }
2203
2204
2205 for (; ! NILP (sequences); sequences = XCDR (sequences))
2206 {
2207 Lisp_Object sequence;
2208
2209 sequence = XCAR (sequences);
2210
2211 /* Verify that this key binding is not shadowed by another
2212 binding for the same key, before we say it exists.
2213
2214 Mechanism: look for local definition of this key and if
2215 it is defined and does not match what we found then
2216 ignore this key.
2217
2218 Either nil or number as value from Flookup_key
2219 means undefined. */
2220 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2221 continue;
2222
2223 /* It is a true unshadowed match. Record it, unless it's already
2224 been seen (as could happen when inheriting keymaps). */
2225 if (NILP (Fmember (sequence, found)))
2226 found = Fcons (sequence, found);
2227
2228 /* If firstonly is Qnon_ascii, then we can return the first
2229 binding we find. If firstonly is not Qnon_ascii but not
2230 nil, then we should return the first ascii-only binding
2231 we find. */
2232 if (EQ (firstonly, Qnon_ascii))
2233 RETURN_UNGCPRO (sequence);
2234 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2235 RETURN_UNGCPRO (sequence);
2236 }
2237 }
2238 }
2239
2240 UNGCPRO;
2241
2242 found = Fnreverse (found);
2243
2244 /* firstonly may have been t, but we may have gone all the way through
2245 the keymaps without finding an all-ASCII key sequence. So just
2246 return the best we could find. */
2247 if (! NILP (firstonly))
2248 return Fcar (found);
2249
2250 return found;
2251 }
2252
2253 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2254 "Return list of keys that invoke DEFINITION.\n\
2255 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2256 If KEYMAP is nil, search all the currently active keymaps.\n\
2257 If KEYMAP is a list of keymaps, search only those keymaps.\n\
2258 \n\
2259 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2260 rather than a list of all possible key sequences.\n\
2261 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2262 no matter what it is.\n\
2263 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2264 and entirely reject menu bindings.\n\
2265 \n\
2266 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2267 to other keymaps or slots. This makes it possible to search for an\n\
2268 indirect definition itself.")
2269 (definition, keymap, firstonly, noindirect)
2270 Lisp_Object definition, keymap;
2271 Lisp_Object firstonly, noindirect;
2272 {
2273 Lisp_Object sequences, keymaps;
2274 /* 1 means ignore all menu bindings entirely. */
2275 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2276 Lisp_Object result;
2277
2278 /* Find the relevant keymaps. */
2279 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2280 keymaps = keymap;
2281 else if (! NILP (keymap))
2282 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2283 else
2284 keymaps =
2285 Fdelq (Qnil,
2286 nconc2 (Fcurrent_minor_mode_maps (),
2287 Fcons (get_local_map (PT, current_buffer, Qkeymap),
2288 Fcons (get_local_map (PT, current_buffer,
2289 Qlocal_map),
2290 Fcons (current_global_map, Qnil)))));
2291
2292 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2293 We don't really need to check `keymap'. */
2294 if (nomenus && NILP (noindirect) && NILP (keymap))
2295 {
2296 Lisp_Object *defns;
2297 int i, j, n;
2298 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2299
2300 /* Check heuristic-consistency of the cache. */
2301 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2302 where_is_cache = Qnil;
2303
2304 if (NILP (where_is_cache))
2305 {
2306 /* We need to create the cache. */
2307 Lisp_Object args[2];
2308 where_is_cache = Fmake_hash_table (0, args);
2309 where_is_cache_keymaps = Qt;
2310
2311 /* Fill in the cache. */
2312 GCPRO4 (definition, keymaps, firstonly, noindirect);
2313 where_is_internal (definition, keymaps, firstonly, noindirect);
2314 UNGCPRO;
2315
2316 where_is_cache_keymaps = keymaps;
2317 }
2318
2319 /* We want to process definitions from the last to the first.
2320 Instead of consing, copy definitions to a vector and step
2321 over that vector. */
2322 sequences = Fgethash (definition, where_is_cache, Qnil);
2323 n = XINT (Flength (sequences));
2324 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2325 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2326 defns[i++] = XCAR (sequences);
2327
2328 /* Verify that the key bindings are not shadowed. Note that
2329 the following can GC. */
2330 GCPRO2 (definition, keymaps);
2331 result = Qnil;
2332 j = -1;
2333 for (i = n - 1; i >= 0; --i)
2334 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2335 {
2336 if (ascii_sequence_p (defns[i]))
2337 break;
2338 else if (j < 0)
2339 j = i;
2340 }
2341
2342 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2343 UNGCPRO;
2344 }
2345 else
2346 {
2347 /* Kill the cache so that where_is_internal_1 doesn't think
2348 we're filling it up. */
2349 where_is_cache = Qnil;
2350 result = where_is_internal (definition, keymaps, firstonly, noindirect);
2351 }
2352
2353 return result;
2354 }
2355
2356 /* This is the function that Fwhere_is_internal calls using map_char_table.
2357 ARGS has the form
2358 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2359 .
2360 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2361 Since map_char_table doesn't really use the return value from this function,
2362 we the result append to RESULT, the slot in ARGS.
2363
2364 This function can GC because it calls where_is_internal_1 which can
2365 GC. */
2366
2367 static void
2368 where_is_internal_2 (args, key, binding)
2369 Lisp_Object args, key, binding;
2370 {
2371 Lisp_Object definition, noindirect, this, last;
2372 Lisp_Object result, sequence;
2373 int nomenus, last_is_meta;
2374 struct gcpro gcpro1, gcpro2, gcpro3;
2375
2376 GCPRO3 (args, key, binding);
2377 result = XCDR (XCAR (args));
2378 definition = XCAR (XCAR (XCAR (args)));
2379 noindirect = XCDR (XCAR (XCAR (args)));
2380 this = XCAR (XCAR (XCDR (args)));
2381 last = XCDR (XCAR (XCDR (args)));
2382 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2383 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2384
2385 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2386 this, last, nomenus, last_is_meta);
2387
2388 if (!NILP (sequence))
2389 XCDR (XCAR (args)) = Fcons (sequence, result);
2390
2391 UNGCPRO;
2392 }
2393
2394
2395 /* This function cannot GC. */
2396
2397 static Lisp_Object
2398 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2399 nomenus, last_is_meta)
2400 Lisp_Object binding, key, definition, noindirect, this, last;
2401 int nomenus, last_is_meta;
2402 {
2403 Lisp_Object sequence;
2404
2405 /* Search through indirections unless that's not wanted. */
2406 if (NILP (noindirect))
2407 binding = get_keyelt (binding, 0);
2408
2409 /* End this iteration if this element does not match
2410 the target. */
2411
2412 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2413 || EQ (binding, definition)
2414 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2415 /* Doesn't match. */
2416 return Qnil;
2417
2418 /* We have found a match. Construct the key sequence where we found it. */
2419 if (INTEGERP (key) && last_is_meta)
2420 {
2421 sequence = Fcopy_sequence (this);
2422 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2423 }
2424 else
2425 sequence = append_key (this, key);
2426
2427 if (!NILP (where_is_cache))
2428 {
2429 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2430 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2431 return Qnil;
2432 }
2433 else
2434 return sequence;
2435 }
2436 \f
2437 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2438
2439 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2440 "Show a list of all defined keys, and their definitions.\n\
2441 We put that list in a buffer, and display the buffer.\n\
2442 \n\
2443 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2444 \(Ordinarily these are omitted from the output.)\n\
2445 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2446 then we display only bindings that start with that prefix.")
2447 (menus, prefix)
2448 Lisp_Object menus, prefix;
2449 {
2450 register Lisp_Object thisbuf;
2451 XSETBUFFER (thisbuf, current_buffer);
2452 internal_with_output_to_temp_buffer ("*Help*",
2453 describe_buffer_bindings,
2454 list3 (thisbuf, prefix, menus));
2455 return Qnil;
2456 }
2457
2458 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2459
2460 static Lisp_Object
2461 describe_buffer_bindings (arg)
2462 Lisp_Object arg;
2463 {
2464 Lisp_Object descbuf, prefix, shadow;
2465 int nomenu;
2466 register Lisp_Object start1;
2467 struct gcpro gcpro1;
2468
2469 char *alternate_heading
2470 = "\
2471 Keyboard translations:\n\n\
2472 You type Translation\n\
2473 -------- -----------\n";
2474
2475 descbuf = XCAR (arg);
2476 arg = XCDR (arg);
2477 prefix = XCAR (arg);
2478 arg = XCDR (arg);
2479 nomenu = NILP (XCAR (arg));
2480
2481 shadow = Qnil;
2482 GCPRO1 (shadow);
2483
2484 Fset_buffer (Vstandard_output);
2485
2486 /* Report on alternates for keys. */
2487 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2488 {
2489 int c;
2490 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2491 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2492
2493 for (c = 0; c < translate_len; c++)
2494 if (translate[c] != c)
2495 {
2496 char buf[KEY_DESCRIPTION_SIZE];
2497 char *bufend;
2498
2499 if (alternate_heading)
2500 {
2501 insert_string (alternate_heading);
2502 alternate_heading = 0;
2503 }
2504
2505 bufend = push_key_description (translate[c], buf, 1);
2506 insert (buf, bufend - buf);
2507 Findent_to (make_number (16), make_number (1));
2508 bufend = push_key_description (c, buf, 1);
2509 insert (buf, bufend - buf);
2510
2511 insert ("\n", 1);
2512 }
2513
2514 insert ("\n", 1);
2515 }
2516
2517 if (!NILP (Vkey_translation_map))
2518 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2519 "Key translations", nomenu, 1, 0);
2520
2521 {
2522 int i, nmaps;
2523 Lisp_Object *modes, *maps;
2524
2525 /* Temporarily switch to descbuf, so that we can get that buffer's
2526 minor modes correctly. */
2527 Fset_buffer (descbuf);
2528
2529 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2530 || !NILP (Voverriding_local_map))
2531 nmaps = 0;
2532 else
2533 nmaps = current_minor_maps (&modes, &maps);
2534 Fset_buffer (Vstandard_output);
2535
2536 /* Print the minor mode maps. */
2537 for (i = 0; i < nmaps; i++)
2538 {
2539 /* The title for a minor mode keymap
2540 is constructed at run time.
2541 We let describe_map_tree do the actual insertion
2542 because it takes care of other features when doing so. */
2543 char *title, *p;
2544
2545 if (!SYMBOLP (modes[i]))
2546 abort();
2547
2548 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2549 *p++ = '\f';
2550 *p++ = '\n';
2551 *p++ = '`';
2552 bcopy (XSYMBOL (modes[i])->name->data, p,
2553 XSYMBOL (modes[i])->name->size);
2554 p += XSYMBOL (modes[i])->name->size;
2555 *p++ = '\'';
2556 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2557 p += sizeof (" Minor Mode Bindings") - 1;
2558 *p = 0;
2559
2560 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2561 shadow = Fcons (maps[i], shadow);
2562 }
2563 }
2564
2565 /* Print the (major mode) local map. */
2566 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2567 start1 = current_kboard->Voverriding_terminal_local_map;
2568 else if (!NILP (Voverriding_local_map))
2569 start1 = Voverriding_local_map;
2570 else
2571 start1 = XBUFFER (descbuf)->keymap;
2572
2573 if (!NILP (start1))
2574 {
2575 describe_map_tree (start1, 1, shadow, prefix,
2576 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2577 shadow = Fcons (start1, shadow);
2578 }
2579
2580 describe_map_tree (current_global_map, 1, shadow, prefix,
2581 "\f\nGlobal Bindings", nomenu, 0, 1);
2582
2583 /* Print the function-key-map translations under this prefix. */
2584 if (!NILP (Vfunction_key_map))
2585 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2586 "\f\nFunction key map translations", nomenu, 1, 0);
2587
2588 call0 (intern ("help-mode"));
2589 Fset_buffer (descbuf);
2590 UNGCPRO;
2591 return Qnil;
2592 }
2593
2594 /* Insert a description of the key bindings in STARTMAP,
2595 followed by those of all maps reachable through STARTMAP.
2596 If PARTIAL is nonzero, omit certain "uninteresting" commands
2597 (such as `undefined').
2598 If SHADOW is non-nil, it is a list of maps;
2599 don't mention keys which would be shadowed by any of them.
2600 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2601 TITLE, if not 0, is a string to insert at the beginning.
2602 TITLE should not end with a colon or a newline; we supply that.
2603 If NOMENU is not 0, then omit menu-bar commands.
2604
2605 If TRANSL is nonzero, the definitions are actually key translations
2606 so print strings and vectors differently.
2607
2608 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2609 to look through. */
2610
2611 void
2612 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2613 always_title)
2614 Lisp_Object startmap, shadow, prefix;
2615 int partial;
2616 char *title;
2617 int nomenu;
2618 int transl;
2619 int always_title;
2620 {
2621 Lisp_Object maps, orig_maps, seen, sub_shadows;
2622 struct gcpro gcpro1, gcpro2, gcpro3;
2623 int something = 0;
2624 char *key_heading
2625 = "\
2626 key binding\n\
2627 --- -------\n";
2628
2629 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2630 seen = Qnil;
2631 sub_shadows = Qnil;
2632 GCPRO3 (maps, seen, sub_shadows);
2633
2634 if (nomenu)
2635 {
2636 Lisp_Object list;
2637
2638 /* Delete from MAPS each element that is for the menu bar. */
2639 for (list = maps; !NILP (list); list = XCDR (list))
2640 {
2641 Lisp_Object elt, prefix, tem;
2642
2643 elt = Fcar (list);
2644 prefix = Fcar (elt);
2645 if (XVECTOR (prefix)->size >= 1)
2646 {
2647 tem = Faref (prefix, make_number (0));
2648 if (EQ (tem, Qmenu_bar))
2649 maps = Fdelq (elt, maps);
2650 }
2651 }
2652 }
2653
2654 if (!NILP (maps) || always_title)
2655 {
2656 if (title)
2657 {
2658 insert_string (title);
2659 if (!NILP (prefix))
2660 {
2661 insert_string (" Starting With ");
2662 insert1 (Fkey_description (prefix));
2663 }
2664 insert_string (":\n");
2665 }
2666 insert_string (key_heading);
2667 something = 1;
2668 }
2669
2670 for (; !NILP (maps); maps = Fcdr (maps))
2671 {
2672 register Lisp_Object elt, prefix, tail;
2673
2674 elt = Fcar (maps);
2675 prefix = Fcar (elt);
2676
2677 sub_shadows = Qnil;
2678
2679 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2680 {
2681 Lisp_Object shmap;
2682
2683 shmap = XCAR (tail);
2684
2685 /* If the sequence by which we reach this keymap is zero-length,
2686 then the shadow map for this keymap is just SHADOW. */
2687 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2688 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2689 ;
2690 /* If the sequence by which we reach this keymap actually has
2691 some elements, then the sequence's definition in SHADOW is
2692 what we should use. */
2693 else
2694 {
2695 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2696 if (INTEGERP (shmap))
2697 shmap = Qnil;
2698 }
2699
2700 /* If shmap is not nil and not a keymap,
2701 it completely shadows this map, so don't
2702 describe this map at all. */
2703 if (!NILP (shmap) && !KEYMAPP (shmap))
2704 goto skip;
2705
2706 if (!NILP (shmap))
2707 sub_shadows = Fcons (shmap, sub_shadows);
2708 }
2709
2710 /* Maps we have already listed in this loop shadow this map. */
2711 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2712 {
2713 Lisp_Object tem;
2714 tem = Fequal (Fcar (XCAR (tail)), prefix);
2715 if (! NILP (tem))
2716 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2717 }
2718
2719 describe_map (Fcdr (elt), prefix,
2720 transl ? describe_translation : describe_command,
2721 partial, sub_shadows, &seen, nomenu);
2722
2723 skip: ;
2724 }
2725
2726 if (something)
2727 insert_string ("\n");
2728
2729 UNGCPRO;
2730 }
2731
2732 static int previous_description_column;
2733
2734 static void
2735 describe_command (definition)
2736 Lisp_Object definition;
2737 {
2738 register Lisp_Object tem1;
2739 int column = current_column ();
2740 int description_column;
2741
2742 /* If column 16 is no good, go to col 32;
2743 but don't push beyond that--go to next line instead. */
2744 if (column > 30)
2745 {
2746 insert_char ('\n');
2747 description_column = 32;
2748 }
2749 else if (column > 14 || (column > 10 && previous_description_column == 32))
2750 description_column = 32;
2751 else
2752 description_column = 16;
2753
2754 Findent_to (make_number (description_column), make_number (1));
2755 previous_description_column = description_column;
2756
2757 if (SYMBOLP (definition))
2758 {
2759 XSETSTRING (tem1, XSYMBOL (definition)->name);
2760 insert1 (tem1);
2761 insert_string ("\n");
2762 }
2763 else if (STRINGP (definition) || VECTORP (definition))
2764 insert_string ("Keyboard Macro\n");
2765 else if (KEYMAPP (definition))
2766 insert_string ("Prefix Command\n");
2767 else
2768 insert_string ("??\n");
2769 }
2770
2771 static void
2772 describe_translation (definition)
2773 Lisp_Object definition;
2774 {
2775 register Lisp_Object tem1;
2776
2777 Findent_to (make_number (16), make_number (1));
2778
2779 if (SYMBOLP (definition))
2780 {
2781 XSETSTRING (tem1, XSYMBOL (definition)->name);
2782 insert1 (tem1);
2783 insert_string ("\n");
2784 }
2785 else if (STRINGP (definition) || VECTORP (definition))
2786 {
2787 insert1 (Fkey_description (definition));
2788 insert_string ("\n");
2789 }
2790 else if (KEYMAPP (definition))
2791 insert_string ("Prefix Command\n");
2792 else
2793 insert_string ("??\n");
2794 }
2795
2796 /* Describe the contents of map MAP, assuming that this map itself is
2797 reached by the sequence of prefix keys KEYS (a string or vector).
2798 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2799
2800 static void
2801 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2802 register Lisp_Object map;
2803 Lisp_Object keys;
2804 void (*elt_describer) P_ ((Lisp_Object));
2805 int partial;
2806 Lisp_Object shadow;
2807 Lisp_Object *seen;
2808 int nomenu;
2809 {
2810 Lisp_Object elt_prefix;
2811 Lisp_Object tail, definition, event;
2812 Lisp_Object tem;
2813 Lisp_Object suppress;
2814 Lisp_Object kludge;
2815 int first = 1;
2816 struct gcpro gcpro1, gcpro2, gcpro3;
2817
2818 suppress = Qnil;
2819
2820 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2821 {
2822 /* Call Fkey_description first, to avoid GC bug for the other string. */
2823 tem = Fkey_description (keys);
2824 elt_prefix = concat2 (tem, build_string (" "));
2825 }
2826 else
2827 elt_prefix = Qnil;
2828
2829 if (partial)
2830 suppress = intern ("suppress-keymap");
2831
2832 /* This vector gets used to present single keys to Flookup_key. Since
2833 that is done once per keymap element, we don't want to cons up a
2834 fresh vector every time. */
2835 kludge = Fmake_vector (make_number (1), Qnil);
2836 definition = Qnil;
2837
2838 GCPRO3 (elt_prefix, definition, kludge);
2839
2840 for (tail = map; CONSP (tail); tail = XCDR (tail))
2841 {
2842 QUIT;
2843
2844 if (VECTORP (XCAR (tail))
2845 || CHAR_TABLE_P (XCAR (tail)))
2846 describe_vector (XCAR (tail),
2847 elt_prefix, elt_describer, partial, shadow, map,
2848 (int *)0, 0);
2849 else if (CONSP (XCAR (tail)))
2850 {
2851 event = XCAR (XCAR (tail));
2852
2853 /* Ignore bindings whose "keys" are not really valid events.
2854 (We get these in the frames and buffers menu.) */
2855 if (! (SYMBOLP (event) || INTEGERP (event)))
2856 continue;
2857
2858 if (nomenu && EQ (event, Qmenu_bar))
2859 continue;
2860
2861 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2862
2863 /* Don't show undefined commands or suppressed commands. */
2864 if (NILP (definition)) continue;
2865 if (SYMBOLP (definition) && partial)
2866 {
2867 tem = Fget (definition, suppress);
2868 if (!NILP (tem))
2869 continue;
2870 }
2871
2872 /* Don't show a command that isn't really visible
2873 because a local definition of the same key shadows it. */
2874
2875 ASET (kludge, 0, event);
2876 if (!NILP (shadow))
2877 {
2878 tem = shadow_lookup (shadow, kludge, Qt);
2879 if (!NILP (tem)) continue;
2880 }
2881
2882 tem = Flookup_key (map, kludge, Qt);
2883 if (! EQ (tem, definition)) continue;
2884
2885 if (first)
2886 {
2887 previous_description_column = 0;
2888 insert ("\n", 1);
2889 first = 0;
2890 }
2891
2892 if (!NILP (elt_prefix))
2893 insert1 (elt_prefix);
2894
2895 /* THIS gets the string to describe the character EVENT. */
2896 insert1 (Fsingle_key_description (event, Qnil));
2897
2898 /* Print a description of the definition of this character.
2899 elt_describer will take care of spacing out far enough
2900 for alignment purposes. */
2901 (*elt_describer) (definition);
2902 }
2903 else if (EQ (XCAR (tail), Qkeymap))
2904 {
2905 /* The same keymap might be in the structure twice, if we're
2906 using an inherited keymap. So skip anything we've already
2907 encountered. */
2908 tem = Fassq (tail, *seen);
2909 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2910 break;
2911 *seen = Fcons (Fcons (tail, keys), *seen);
2912 }
2913 }
2914
2915 UNGCPRO;
2916 }
2917
2918 static void
2919 describe_vector_princ (elt)
2920 Lisp_Object elt;
2921 {
2922 Findent_to (make_number (16), make_number (1));
2923 Fprinc (elt, Qnil);
2924 Fterpri (Qnil);
2925 }
2926
2927 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2928 "Insert a description of contents of VECTOR.\n\
2929 This is text showing the elements of vector matched against indices.")
2930 (vector)
2931 Lisp_Object vector;
2932 {
2933 int count = specpdl_ptr - specpdl;
2934
2935 specbind (Qstandard_output, Fcurrent_buffer ());
2936 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2937 describe_vector (vector, Qnil, describe_vector_princ, 0,
2938 Qnil, Qnil, (int *)0, 0);
2939
2940 return unbind_to (count, Qnil);
2941 }
2942
2943 /* Insert in the current buffer a description of the contents of VECTOR.
2944 We call ELT_DESCRIBER to insert the description of one value found
2945 in VECTOR.
2946
2947 ELT_PREFIX describes what "comes before" the keys or indices defined
2948 by this vector. This is a human-readable string whose size
2949 is not necessarily related to the situation.
2950
2951 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2952 leads to this keymap.
2953
2954 If the vector is a chartable, ELT_PREFIX is the vector
2955 of bytes that lead to the character set or portion of a character
2956 set described by this chartable.
2957
2958 If PARTIAL is nonzero, it means do not mention suppressed commands
2959 (that assumes the vector is in a keymap).
2960
2961 SHADOW is a list of keymaps that shadow this map.
2962 If it is non-nil, then we look up the key in those maps
2963 and we don't mention it now if it is defined by any of them.
2964
2965 ENTIRE_MAP is the keymap in which this vector appears.
2966 If the definition in effect in the whole map does not match
2967 the one in this vector, we ignore this one.
2968
2969 When describing a sub-char-table, INDICES is a list of
2970 indices at higher levels in this char-table,
2971 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2972
2973 void
2974 describe_vector (vector, elt_prefix, elt_describer,
2975 partial, shadow, entire_map,
2976 indices, char_table_depth)
2977 register Lisp_Object vector;
2978 Lisp_Object elt_prefix;
2979 void (*elt_describer) P_ ((Lisp_Object));
2980 int partial;
2981 Lisp_Object shadow;
2982 Lisp_Object entire_map;
2983 int *indices;
2984 int char_table_depth;
2985 {
2986 Lisp_Object definition;
2987 Lisp_Object tem2;
2988 register int i;
2989 Lisp_Object suppress;
2990 Lisp_Object kludge;
2991 int first = 1;
2992 struct gcpro gcpro1, gcpro2, gcpro3;
2993 /* Range of elements to be handled. */
2994 int from, to;
2995 /* A flag to tell if a leaf in this level of char-table is not a
2996 generic character (i.e. a complete multibyte character). */
2997 int complete_char;
2998 int character;
2999 int starting_i;
3000
3001 suppress = Qnil;
3002
3003 if (indices == 0)
3004 indices = (int *) alloca (3 * sizeof (int));
3005
3006 definition = Qnil;
3007
3008 /* This vector gets used to present single keys to Flookup_key. Since
3009 that is done once per vector element, we don't want to cons up a
3010 fresh vector every time. */
3011 kludge = Fmake_vector (make_number (1), Qnil);
3012 GCPRO3 (elt_prefix, definition, kludge);
3013
3014 if (partial)
3015 suppress = intern ("suppress-keymap");
3016
3017 if (CHAR_TABLE_P (vector))
3018 {
3019 if (char_table_depth == 0)
3020 {
3021 /* VECTOR is a top level char-table. */
3022 complete_char = 1;
3023 from = 0;
3024 to = CHAR_TABLE_ORDINARY_SLOTS;
3025 }
3026 else
3027 {
3028 /* VECTOR is a sub char-table. */
3029 if (char_table_depth >= 3)
3030 /* A char-table is never that deep. */
3031 error ("Too deep char table");
3032
3033 complete_char
3034 = (CHARSET_VALID_P (indices[0])
3035 && ((CHARSET_DIMENSION (indices[0]) == 1
3036 && char_table_depth == 1)
3037 || char_table_depth == 2));
3038
3039 /* Meaningful elements are from 32th to 127th. */
3040 from = 32;
3041 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3042 }
3043 }
3044 else
3045 {
3046 /* This does the right thing for ordinary vectors. */
3047
3048 complete_char = 1;
3049 from = 0;
3050 to = XVECTOR (vector)->size;
3051 }
3052
3053 for (i = from; i < to; i++)
3054 {
3055 QUIT;
3056
3057 if (CHAR_TABLE_P (vector))
3058 {
3059 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3060 complete_char = 0;
3061
3062 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3063 && !CHARSET_DEFINED_P (i - 128))
3064 continue;
3065
3066 definition
3067 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3068 }
3069 else
3070 definition = get_keyelt (AREF (vector, i), 0);
3071
3072 if (NILP (definition)) continue;
3073
3074 /* Don't mention suppressed commands. */
3075 if (SYMBOLP (definition) && partial)
3076 {
3077 Lisp_Object tem;
3078
3079 tem = Fget (definition, suppress);
3080
3081 if (!NILP (tem)) continue;
3082 }
3083
3084 /* Set CHARACTER to the character this entry describes, if any.
3085 Also update *INDICES. */
3086 if (CHAR_TABLE_P (vector))
3087 {
3088 indices[char_table_depth] = i;
3089
3090 if (char_table_depth == 0)
3091 {
3092 character = i;
3093 indices[0] = i - 128;
3094 }
3095 else if (complete_char)
3096 {
3097 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3098 }
3099 else
3100 character = 0;
3101 }
3102 else
3103 character = i;
3104
3105 /* If this binding is shadowed by some other map, ignore it. */
3106 if (!NILP (shadow) && complete_char)
3107 {
3108 Lisp_Object tem;
3109
3110 ASET (kludge, 0, make_number (character));
3111 tem = shadow_lookup (shadow, kludge, Qt);
3112
3113 if (!NILP (tem)) continue;
3114 }
3115
3116 /* Ignore this definition if it is shadowed by an earlier
3117 one in the same keymap. */
3118 if (!NILP (entire_map) && complete_char)
3119 {
3120 Lisp_Object tem;
3121
3122 ASET (kludge, 0, make_number (character));
3123 tem = Flookup_key (entire_map, kludge, Qt);
3124
3125 if (! EQ (tem, definition))
3126 continue;
3127 }
3128
3129 if (first)
3130 {
3131 if (char_table_depth == 0)
3132 insert ("\n", 1);
3133 first = 0;
3134 }
3135
3136 /* For a sub char-table, show the depth by indentation.
3137 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3138 if (char_table_depth > 0)
3139 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3140
3141 /* Output the prefix that applies to every entry in this map. */
3142 if (!NILP (elt_prefix))
3143 insert1 (elt_prefix);
3144
3145 /* Insert or describe the character this slot is for,
3146 or a description of what it is for. */
3147 if (SUB_CHAR_TABLE_P (vector))
3148 {
3149 if (complete_char)
3150 insert_char (character);
3151 else
3152 {
3153 /* We need an octal representation for this block of
3154 characters. */
3155 char work[16];
3156 sprintf (work, "(row %d)", i);
3157 insert (work, strlen (work));
3158 }
3159 }
3160 else if (CHAR_TABLE_P (vector))
3161 {
3162 if (complete_char)
3163 insert1 (Fsingle_key_description (make_number (character), Qnil));
3164 else
3165 {
3166 /* Print the information for this character set. */
3167 insert_string ("<");
3168 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3169 if (STRINGP (tem2))
3170 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3171 STRING_BYTES (XSTRING (tem2)), 0);
3172 else
3173 insert ("?", 1);
3174 insert (">", 1);
3175 }
3176 }
3177 else
3178 {
3179 insert1 (Fsingle_key_description (make_number (character), Qnil));
3180 }
3181
3182 /* If we find a sub char-table within a char-table,
3183 scan it recursively; it defines the details for
3184 a character set or a portion of a character set. */
3185 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3186 {
3187 insert ("\n", 1);
3188 describe_vector (definition, elt_prefix, elt_describer,
3189 partial, shadow, entire_map,
3190 indices, char_table_depth + 1);
3191 continue;
3192 }
3193
3194 starting_i = i;
3195
3196 /* Find all consecutive characters or rows that have the same
3197 definition. But, for elements of a top level char table, if
3198 they are for charsets, we had better describe one by one even
3199 if they have the same definition. */
3200 if (CHAR_TABLE_P (vector))
3201 {
3202 int limit = to;
3203
3204 if (char_table_depth == 0)
3205 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3206
3207 while (i + 1 < limit
3208 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3209 !NILP (tem2))
3210 && !NILP (Fequal (tem2, definition)))
3211 i++;
3212 }
3213 else
3214 while (i + 1 < to
3215 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3216 !NILP (tem2))
3217 && !NILP (Fequal (tem2, definition)))
3218 i++;
3219
3220
3221 /* If we have a range of more than one character,
3222 print where the range reaches to. */
3223
3224 if (i != starting_i)
3225 {
3226 insert (" .. ", 4);
3227
3228 if (!NILP (elt_prefix))
3229 insert1 (elt_prefix);
3230
3231 if (CHAR_TABLE_P (vector))
3232 {
3233 if (char_table_depth == 0)
3234 {
3235 insert1 (Fsingle_key_description (make_number (i), Qnil));
3236 }
3237 else if (complete_char)
3238 {
3239 indices[char_table_depth] = i;
3240 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3241 insert_char (character);
3242 }
3243 else
3244 {
3245 /* We need an octal representation for this block of
3246 characters. */
3247 char work[16];
3248 sprintf (work, "(row %d)", i);
3249 insert (work, strlen (work));
3250 }
3251 }
3252 else
3253 {
3254 insert1 (Fsingle_key_description (make_number (i), Qnil));
3255 }
3256 }
3257
3258 /* Print a description of the definition of this character.
3259 elt_describer will take care of spacing out far enough
3260 for alignment purposes. */
3261 (*elt_describer) (definition);
3262 }
3263
3264 /* For (sub) char-table, print `defalt' slot at last. */
3265 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3266 {
3267 insert (" ", char_table_depth * 2);
3268 insert_string ("<<default>>");
3269 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3270 }
3271
3272 UNGCPRO;
3273 }
3274 \f
3275 /* Apropos - finding all symbols whose names match a regexp. */
3276 Lisp_Object apropos_predicate;
3277 Lisp_Object apropos_accumulate;
3278
3279 static void
3280 apropos_accum (symbol, string)
3281 Lisp_Object symbol, string;
3282 {
3283 register Lisp_Object tem;
3284
3285 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3286 if (!NILP (tem) && !NILP (apropos_predicate))
3287 tem = call1 (apropos_predicate, symbol);
3288 if (!NILP (tem))
3289 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3290 }
3291
3292 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3293 "Show all symbols whose names contain match for REGEXP.\n\
3294 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3295 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3296 Return list of symbols found.")
3297 (regexp, predicate)
3298 Lisp_Object regexp, predicate;
3299 {
3300 struct gcpro gcpro1, gcpro2;
3301 CHECK_STRING (regexp, 0);
3302 apropos_predicate = predicate;
3303 GCPRO2 (apropos_predicate, apropos_accumulate);
3304 apropos_accumulate = Qnil;
3305 map_obarray (Vobarray, apropos_accum, regexp);
3306 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3307 UNGCPRO;
3308 return apropos_accumulate;
3309 }
3310 \f
3311 void
3312 syms_of_keymap ()
3313 {
3314 Qkeymap = intern ("keymap");
3315 staticpro (&Qkeymap);
3316
3317 /* Now we are ready to set up this property, so we can
3318 create char tables. */
3319 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3320
3321 /* Initialize the keymaps standardly used.
3322 Each one is the value of a Lisp variable, and is also
3323 pointed to by a C variable */
3324
3325 global_map = Fmake_keymap (Qnil);
3326 Fset (intern ("global-map"), global_map);
3327
3328 current_global_map = global_map;
3329 staticpro (&global_map);
3330 staticpro (&current_global_map);
3331
3332 meta_map = Fmake_keymap (Qnil);
3333 Fset (intern ("esc-map"), meta_map);
3334 Ffset (intern ("ESC-prefix"), meta_map);
3335
3336 control_x_map = Fmake_keymap (Qnil);
3337 Fset (intern ("ctl-x-map"), control_x_map);
3338 Ffset (intern ("Control-X-prefix"), control_x_map);
3339
3340 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3341 "List of commands given new key bindings recently.\n\
3342 This is used for internal purposes during Emacs startup;\n\
3343 don't alter it yourself.");
3344 Vdefine_key_rebound_commands = Qt;
3345
3346 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3347 "Default keymap to use when reading from the minibuffer.");
3348 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3349
3350 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3351 "Local keymap for the minibuffer when spaces are not allowed.");
3352 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3353
3354 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3355 "Local keymap for minibuffer input with completion.");
3356 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3357
3358 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3359 "Local keymap for minibuffer input with completion, for exact match.");
3360 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3361
3362 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3363 "Alist of keymaps to use for minor modes.\n\
3364 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3365 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3366 If two active keymaps bind the same key, the keymap appearing earlier\n\
3367 in the list takes precedence.");
3368 Vminor_mode_map_alist = Qnil;
3369
3370 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3371 "Alist of keymaps to use for minor modes, in current major mode.\n\
3372 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3373 used the same way (and before `minor-mode-map-alist'); however,\n\
3374 it is provided for major modes to bind locally.");
3375 Vminor_mode_overriding_map_alist = Qnil;
3376
3377 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3378 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3379 This allows Emacs to recognize function keys sent from ASCII\n\
3380 terminals at any point in a key sequence.\n\
3381 \n\
3382 The `read-key-sequence' function replaces any subsequence bound by\n\
3383 `function-key-map' with its binding. More precisely, when the active\n\
3384 keymaps have no binding for the current key sequence but\n\
3385 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3386 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3387 continues with the new sequence.\n\
3388 \n\
3389 The events that come from bindings in `function-key-map' are not\n\
3390 themselves looked up in `function-key-map'.\n\
3391 \n\
3392 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3393 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3394 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3395 key, typing `ESC O P x' would return [f1 x].");
3396 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3397
3398 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3399 "Keymap of key translations that can override keymaps.\n\
3400 This keymap works like `function-key-map', but comes after that,\n\
3401 and applies even for keys that have ordinary bindings.");
3402 Vkey_translation_map = Qnil;
3403
3404 Qsingle_key_description = intern ("single-key-description");
3405 staticpro (&Qsingle_key_description);
3406
3407 Qkey_description = intern ("key-description");
3408 staticpro (&Qkey_description);
3409
3410 Qkeymapp = intern ("keymapp");
3411 staticpro (&Qkeymapp);
3412
3413 Qnon_ascii = intern ("non-ascii");
3414 staticpro (&Qnon_ascii);
3415
3416 Qmenu_item = intern ("menu-item");
3417 staticpro (&Qmenu_item);
3418
3419 where_is_cache_keymaps = Qt;
3420 where_is_cache = Qnil;
3421 staticpro (&where_is_cache);
3422 staticpro (&where_is_cache_keymaps);
3423
3424 defsubr (&Skeymapp);
3425 defsubr (&Skeymap_parent);
3426 defsubr (&Sset_keymap_parent);
3427 defsubr (&Smake_keymap);
3428 defsubr (&Smake_sparse_keymap);
3429 defsubr (&Scopy_keymap);
3430 defsubr (&Skey_binding);
3431 defsubr (&Slocal_key_binding);
3432 defsubr (&Sglobal_key_binding);
3433 defsubr (&Sminor_mode_key_binding);
3434 defsubr (&Sdefine_key);
3435 defsubr (&Slookup_key);
3436 defsubr (&Sdefine_prefix_command);
3437 defsubr (&Suse_global_map);
3438 defsubr (&Suse_local_map);
3439 defsubr (&Scurrent_local_map);
3440 defsubr (&Scurrent_global_map);
3441 defsubr (&Scurrent_minor_mode_maps);
3442 defsubr (&Saccessible_keymaps);
3443 defsubr (&Skey_description);
3444 defsubr (&Sdescribe_vector);
3445 defsubr (&Ssingle_key_description);
3446 defsubr (&Stext_char_description);
3447 defsubr (&Swhere_is_internal);
3448 defsubr (&Sdescribe_bindings_internal);
3449 defsubr (&Sapropos_internal);
3450 }
3451
3452 void
3453 keys_of_keymap ()
3454 {
3455 initial_define_key (global_map, 033, "ESC-prefix");
3456 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3457 }