Merge from trunk.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <setjmp.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "character.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
33
34 #include <sys/types.h>
35 #include "regex.h"
36
37 #define REGEXP_CACHE_SIZE 20
38
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
42 {
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 /* Syntax table for which the regexp applies. We need this because
46 of character classes. If this is t, then the compiled pattern is valid
47 for any syntax-table. */
48 Lisp_Object syntax_table;
49 struct re_pattern_buffer buf;
50 char fastmap[0400];
51 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
52 char posix;
53 };
54
55 /* The instances of that struct. */
56 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
57
58 /* The head of the linked list; points to the most recently used buffer. */
59 static struct regexp_cache *searchbuf_head;
60
61
62 /* Every call to re_match, etc., must pass &search_regs as the regs
63 argument unless you can show it is unnecessary (i.e., if re_match
64 is certainly going to be called again before region-around-match
65 can be called).
66
67 Since the registers are now dynamically allocated, we need to make
68 sure not to refer to the Nth register before checking that it has
69 been allocated by checking search_regs.num_regs.
70
71 The regex code keeps track of whether it has allocated the search
72 buffer using bits in the re_pattern_buffer. This means that whenever
73 you compile a new pattern, it completely forgets whether it has
74 allocated any registers, and will allocate new registers the next
75 time you call a searching or matching function. Therefore, we need
76 to call re_set_registers after compiling a new pattern or after
77 setting the match registers, so that the regex functions will be
78 able to free or re-allocate it properly. */
79 static struct re_registers search_regs;
80
81 /* The buffer in which the last search was performed, or
82 Qt if the last search was done in a string;
83 Qnil if no searching has been done yet. */
84 static Lisp_Object last_thing_searched;
85
86 /* error condition signaled when regexp compile_pattern fails */
87
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 ptrdiff_t s1, s2;
276 register ptrdiff_t i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 ptrdiff_t val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos;
374 ptrdiff_t pos_byte, i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 ptrdiff_t len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 ptrdiff_t
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 ptrdiff_t val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 ptrdiff_t
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 ptrdiff_t val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 ptrdiff_t
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 ptrdiff_t val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 ptrdiff_t
539 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 ptrdiff_t s1, s2;
545 ptrdiff_t len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 ptrdiff_t
645 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
646 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
680 ptrdiff_t tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 ptrdiff_t next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 start_byte + scan_start - base,
730 start_byte + cursor - base);
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
752 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
753 ptrdiff_t tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 ptrdiff_t next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 start_byte + cursor - base,
796 start_byte + scan_start - base);
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
839 ptrdiff_t limit, ptrdiff_t limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 ptrdiff_t ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 ptrdiff_t
934 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 ptrdiff_t
944 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
945 {
946 ptrdiff_t shortage;
947 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register EMACS_INT np;
962 EMACS_INT lim;
963 ptrdiff_t lim_byte;
964 EMACS_INT n = direction;
965
966 if (!NILP (count))
967 {
968 CHECK_NUMBER (count);
969 n *= XINT (count);
970 }
971
972 CHECK_STRING (string);
973 if (NILP (bound))
974 {
975 if (n > 0)
976 lim = ZV, lim_byte = ZV_BYTE;
977 else
978 lim = BEGV, lim_byte = BEGV_BYTE;
979 }
980 else
981 {
982 CHECK_NUMBER_COERCE_MARKER (bound);
983 lim = XINT (bound);
984 if (n > 0 ? lim < PT : lim > PT)
985 error ("Invalid search bound (wrong side of point)");
986 if (lim > ZV)
987 lim = ZV, lim_byte = ZV_BYTE;
988 else if (lim < BEGV)
989 lim = BEGV, lim_byte = BEGV_BYTE;
990 else
991 lim_byte = CHAR_TO_BYTE (lim);
992 }
993
994 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
995 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
996 = BVAR (current_buffer, case_eqv_table);
997
998 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
999 (!NILP (BVAR (current_buffer, case_fold_search))
1000 ? BVAR (current_buffer, case_canon_table)
1001 : Qnil),
1002 (!NILP (BVAR (current_buffer, case_fold_search))
1003 ? BVAR (current_buffer, case_eqv_table)
1004 : Qnil),
1005 posix);
1006 if (np <= 0)
1007 {
1008 if (NILP (noerror))
1009 xsignal1 (Qsearch_failed, string);
1010
1011 if (!EQ (noerror, Qt))
1012 {
1013 if (lim < BEGV || lim > ZV)
1014 abort ();
1015 SET_PT_BOTH (lim, lim_byte);
1016 return Qnil;
1017 #if 0 /* This would be clean, but maybe programs depend on
1018 a value of nil here. */
1019 np = lim;
1020 #endif
1021 }
1022 else
1023 return Qnil;
1024 }
1025
1026 if (np < BEGV || np > ZV)
1027 abort ();
1028
1029 SET_PT (np);
1030
1031 return make_number (np);
1032 }
1033 \f
1034 /* Return 1 if REGEXP it matches just one constant string. */
1035
1036 static int
1037 trivial_regexp_p (Lisp_Object regexp)
1038 {
1039 ptrdiff_t len = SBYTES (regexp);
1040 unsigned char *s = SDATA (regexp);
1041 while (--len >= 0)
1042 {
1043 switch (*s++)
1044 {
1045 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1046 return 0;
1047 case '\\':
1048 if (--len < 0)
1049 return 0;
1050 switch (*s++)
1051 {
1052 case '|': case '(': case ')': case '`': case '\'': case 'b':
1053 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1054 case 'S': case '=': case '{': case '}': case '_':
1055 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1056 case '1': case '2': case '3': case '4': case '5':
1057 case '6': case '7': case '8': case '9':
1058 return 0;
1059 }
1060 }
1061 }
1062 return 1;
1063 }
1064
1065 /* Search for the n'th occurrence of STRING in the current buffer,
1066 starting at position POS and stopping at position LIM,
1067 treating STRING as a literal string if RE is false or as
1068 a regular expression if RE is true.
1069
1070 If N is positive, searching is forward and LIM must be greater than POS.
1071 If N is negative, searching is backward and LIM must be less than POS.
1072
1073 Returns -x if x occurrences remain to be found (x > 0),
1074 or else the position at the beginning of the Nth occurrence
1075 (if searching backward) or the end (if searching forward).
1076
1077 POSIX is nonzero if we want full backtracking (POSIX style)
1078 for this pattern. 0 means backtrack only enough to get a valid match. */
1079
1080 #define TRANSLATE(out, trt, d) \
1081 do \
1082 { \
1083 if (! NILP (trt)) \
1084 { \
1085 Lisp_Object temp; \
1086 temp = Faref (trt, make_number (d)); \
1087 if (INTEGERP (temp)) \
1088 out = XINT (temp); \
1089 else \
1090 out = d; \
1091 } \
1092 else \
1093 out = d; \
1094 } \
1095 while (0)
1096
1097 /* Only used in search_buffer, to record the end position of the match
1098 when searching regexps and SEARCH_REGS should not be changed
1099 (i.e. Vinhibit_changing_match_data is non-nil). */
1100 static struct re_registers search_regs_1;
1101
1102 static EMACS_INT
1103 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1104 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1105 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1106 {
1107 ptrdiff_t len = SCHARS (string);
1108 ptrdiff_t len_byte = SBYTES (string);
1109 register ptrdiff_t i;
1110
1111 if (running_asynch_code)
1112 save_search_regs ();
1113
1114 /* Searching 0 times means don't move. */
1115 /* Null string is found at starting position. */
1116 if (len == 0 || n == 0)
1117 {
1118 set_search_regs (pos_byte, 0);
1119 return pos;
1120 }
1121
1122 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1123 {
1124 unsigned char *p1, *p2;
1125 ptrdiff_t s1, s2;
1126 struct re_pattern_buffer *bufp;
1127
1128 bufp = compile_pattern (string,
1129 (NILP (Vinhibit_changing_match_data)
1130 ? &search_regs : &search_regs_1),
1131 trt, posix,
1132 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1133
1134 immediate_quit = 1; /* Quit immediately if user types ^G,
1135 because letting this function finish
1136 can take too long. */
1137 QUIT; /* Do a pending quit right away,
1138 to avoid paradoxical behavior */
1139 /* Get pointers and sizes of the two strings
1140 that make up the visible portion of the buffer. */
1141
1142 p1 = BEGV_ADDR;
1143 s1 = GPT_BYTE - BEGV_BYTE;
1144 p2 = GAP_END_ADDR;
1145 s2 = ZV_BYTE - GPT_BYTE;
1146 if (s1 < 0)
1147 {
1148 p2 = p1;
1149 s2 = ZV_BYTE - BEGV_BYTE;
1150 s1 = 0;
1151 }
1152 if (s2 < 0)
1153 {
1154 s1 = ZV_BYTE - BEGV_BYTE;
1155 s2 = 0;
1156 }
1157 re_match_object = Qnil;
1158
1159 while (n < 0)
1160 {
1161 ptrdiff_t val;
1162 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1163 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1164 (NILP (Vinhibit_changing_match_data)
1165 ? &search_regs : &search_regs_1),
1166 /* Don't allow match past current point */
1167 pos_byte - BEGV_BYTE);
1168 if (val == -2)
1169 {
1170 matcher_overflow ();
1171 }
1172 if (val >= 0)
1173 {
1174 if (NILP (Vinhibit_changing_match_data))
1175 {
1176 pos_byte = search_regs.start[0] + BEGV_BYTE;
1177 for (i = 0; i < search_regs.num_regs; i++)
1178 if (search_regs.start[i] >= 0)
1179 {
1180 search_regs.start[i]
1181 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1182 search_regs.end[i]
1183 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1184 }
1185 XSETBUFFER (last_thing_searched, current_buffer);
1186 /* Set pos to the new position. */
1187 pos = search_regs.start[0];
1188 }
1189 else
1190 {
1191 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1192 /* Set pos to the new position. */
1193 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1194 }
1195 }
1196 else
1197 {
1198 immediate_quit = 0;
1199 return (n);
1200 }
1201 n++;
1202 }
1203 while (n > 0)
1204 {
1205 ptrdiff_t val;
1206 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1207 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1208 (NILP (Vinhibit_changing_match_data)
1209 ? &search_regs : &search_regs_1),
1210 lim_byte - BEGV_BYTE);
1211 if (val == -2)
1212 {
1213 matcher_overflow ();
1214 }
1215 if (val >= 0)
1216 {
1217 if (NILP (Vinhibit_changing_match_data))
1218 {
1219 pos_byte = search_regs.end[0] + BEGV_BYTE;
1220 for (i = 0; i < search_regs.num_regs; i++)
1221 if (search_regs.start[i] >= 0)
1222 {
1223 search_regs.start[i]
1224 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1225 search_regs.end[i]
1226 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1227 }
1228 XSETBUFFER (last_thing_searched, current_buffer);
1229 pos = search_regs.end[0];
1230 }
1231 else
1232 {
1233 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1234 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1235 }
1236 }
1237 else
1238 {
1239 immediate_quit = 0;
1240 return (0 - n);
1241 }
1242 n--;
1243 }
1244 immediate_quit = 0;
1245 return (pos);
1246 }
1247 else /* non-RE case */
1248 {
1249 unsigned char *raw_pattern, *pat;
1250 ptrdiff_t raw_pattern_size;
1251 ptrdiff_t raw_pattern_size_byte;
1252 unsigned char *patbuf;
1253 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1254 unsigned char *base_pat;
1255 /* Set to positive if we find a non-ASCII char that need
1256 translation. Otherwise set to zero later. */
1257 int char_base = -1;
1258 int boyer_moore_ok = 1;
1259
1260 /* MULTIBYTE says whether the text to be searched is multibyte.
1261 We must convert PATTERN to match that, or we will not really
1262 find things right. */
1263
1264 if (multibyte == STRING_MULTIBYTE (string))
1265 {
1266 raw_pattern = SDATA (string);
1267 raw_pattern_size = SCHARS (string);
1268 raw_pattern_size_byte = SBYTES (string);
1269 }
1270 else if (multibyte)
1271 {
1272 raw_pattern_size = SCHARS (string);
1273 raw_pattern_size_byte
1274 = count_size_as_multibyte (SDATA (string),
1275 raw_pattern_size);
1276 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1277 copy_text (SDATA (string), raw_pattern,
1278 SCHARS (string), 0, 1);
1279 }
1280 else
1281 {
1282 /* Converting multibyte to single-byte.
1283
1284 ??? Perhaps this conversion should be done in a special way
1285 by subtracting nonascii-insert-offset from each non-ASCII char,
1286 so that only the multibyte chars which really correspond to
1287 the chosen single-byte character set can possibly match. */
1288 raw_pattern_size = SCHARS (string);
1289 raw_pattern_size_byte = SCHARS (string);
1290 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1291 copy_text (SDATA (string), raw_pattern,
1292 SBYTES (string), 1, 0);
1293 }
1294
1295 /* Copy and optionally translate the pattern. */
1296 len = raw_pattern_size;
1297 len_byte = raw_pattern_size_byte;
1298 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1299 pat = patbuf;
1300 base_pat = raw_pattern;
1301 if (multibyte)
1302 {
1303 /* Fill patbuf by translated characters in STRING while
1304 checking if we can use boyer-moore search. If TRT is
1305 non-nil, we can use boyer-moore search only if TRT can be
1306 represented by the byte array of 256 elements. For that,
1307 all non-ASCII case-equivalents of all case-senstive
1308 characters in STRING must belong to the same charset and
1309 row. */
1310
1311 while (--len >= 0)
1312 {
1313 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1314 int c, translated, inverse;
1315 int in_charlen, charlen;
1316
1317 /* If we got here and the RE flag is set, it's because we're
1318 dealing with a regexp known to be trivial, so the backslash
1319 just quotes the next character. */
1320 if (RE && *base_pat == '\\')
1321 {
1322 len--;
1323 raw_pattern_size--;
1324 len_byte--;
1325 base_pat++;
1326 }
1327
1328 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1329
1330 if (NILP (trt))
1331 {
1332 str = base_pat;
1333 charlen = in_charlen;
1334 }
1335 else
1336 {
1337 /* Translate the character. */
1338 TRANSLATE (translated, trt, c);
1339 charlen = CHAR_STRING (translated, str_base);
1340 str = str_base;
1341
1342 /* Check if C has any other case-equivalents. */
1343 TRANSLATE (inverse, inverse_trt, c);
1344 /* If so, check if we can use boyer-moore. */
1345 if (c != inverse && boyer_moore_ok)
1346 {
1347 /* Check if all equivalents belong to the same
1348 group of characters. Note that the check of C
1349 itself is done by the last iteration. */
1350 int this_char_base = -1;
1351
1352 while (boyer_moore_ok)
1353 {
1354 if (ASCII_BYTE_P (inverse))
1355 {
1356 if (this_char_base > 0)
1357 boyer_moore_ok = 0;
1358 else
1359 this_char_base = 0;
1360 }
1361 else if (CHAR_BYTE8_P (inverse))
1362 /* Boyer-moore search can't handle a
1363 translation of an eight-bit
1364 character. */
1365 boyer_moore_ok = 0;
1366 else if (this_char_base < 0)
1367 {
1368 this_char_base = inverse & ~0x3F;
1369 if (char_base < 0)
1370 char_base = this_char_base;
1371 else if (this_char_base != char_base)
1372 boyer_moore_ok = 0;
1373 }
1374 else if ((inverse & ~0x3F) != this_char_base)
1375 boyer_moore_ok = 0;
1376 if (c == inverse)
1377 break;
1378 TRANSLATE (inverse, inverse_trt, inverse);
1379 }
1380 }
1381 }
1382
1383 /* Store this character into the translated pattern. */
1384 memcpy (pat, str, charlen);
1385 pat += charlen;
1386 base_pat += in_charlen;
1387 len_byte -= in_charlen;
1388 }
1389
1390 /* If char_base is still negative we didn't find any translated
1391 non-ASCII characters. */
1392 if (char_base < 0)
1393 char_base = 0;
1394 }
1395 else
1396 {
1397 /* Unibyte buffer. */
1398 char_base = 0;
1399 while (--len >= 0)
1400 {
1401 int c, translated;
1402
1403 /* If we got here and the RE flag is set, it's because we're
1404 dealing with a regexp known to be trivial, so the backslash
1405 just quotes the next character. */
1406 if (RE && *base_pat == '\\')
1407 {
1408 len--;
1409 raw_pattern_size--;
1410 base_pat++;
1411 }
1412 c = *base_pat++;
1413 TRANSLATE (translated, trt, c);
1414 *pat++ = translated;
1415 }
1416 }
1417
1418 len_byte = pat - patbuf;
1419 pat = base_pat = patbuf;
1420
1421 if (boyer_moore_ok)
1422 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1423 pos_byte, lim_byte,
1424 char_base);
1425 else
1426 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1427 pos, pos_byte, lim, lim_byte);
1428 }
1429 }
1430 \f
1431 /* Do a simple string search N times for the string PAT,
1432 whose length is LEN/LEN_BYTE,
1433 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1434 TRT is the translation table.
1435
1436 Return the character position where the match is found.
1437 Otherwise, if M matches remained to be found, return -M.
1438
1439 This kind of search works regardless of what is in PAT and
1440 regardless of what is in TRT. It is used in cases where
1441 boyer_moore cannot work. */
1442
1443 static EMACS_INT
1444 simple_search (EMACS_INT n, unsigned char *pat,
1445 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1446 ptrdiff_t pos, ptrdiff_t pos_byte,
1447 ptrdiff_t lim, ptrdiff_t lim_byte)
1448 {
1449 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1450 int forward = n > 0;
1451 /* Number of buffer bytes matched. Note that this may be different
1452 from len_byte in a multibyte buffer. */
1453 ptrdiff_t match_byte;
1454
1455 if (lim > pos && multibyte)
1456 while (n > 0)
1457 {
1458 while (1)
1459 {
1460 /* Try matching at position POS. */
1461 ptrdiff_t this_pos = pos;
1462 ptrdiff_t this_pos_byte = pos_byte;
1463 ptrdiff_t this_len = len;
1464 unsigned char *p = pat;
1465 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1466 goto stop;
1467
1468 while (this_len > 0)
1469 {
1470 int charlen, buf_charlen;
1471 int pat_ch, buf_ch;
1472
1473 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1474 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1475 buf_charlen);
1476 TRANSLATE (buf_ch, trt, buf_ch);
1477
1478 if (buf_ch != pat_ch)
1479 break;
1480
1481 this_len--;
1482 p += charlen;
1483
1484 this_pos_byte += buf_charlen;
1485 this_pos++;
1486 }
1487
1488 if (this_len == 0)
1489 {
1490 match_byte = this_pos_byte - pos_byte;
1491 pos += len;
1492 pos_byte += match_byte;
1493 break;
1494 }
1495
1496 INC_BOTH (pos, pos_byte);
1497 }
1498
1499 n--;
1500 }
1501 else if (lim > pos)
1502 while (n > 0)
1503 {
1504 while (1)
1505 {
1506 /* Try matching at position POS. */
1507 ptrdiff_t this_pos = pos;
1508 ptrdiff_t this_len = len;
1509 unsigned char *p = pat;
1510
1511 if (pos + len > lim)
1512 goto stop;
1513
1514 while (this_len > 0)
1515 {
1516 int pat_ch = *p++;
1517 int buf_ch = FETCH_BYTE (this_pos);
1518 TRANSLATE (buf_ch, trt, buf_ch);
1519
1520 if (buf_ch != pat_ch)
1521 break;
1522
1523 this_len--;
1524 this_pos++;
1525 }
1526
1527 if (this_len == 0)
1528 {
1529 match_byte = len;
1530 pos += len;
1531 break;
1532 }
1533
1534 pos++;
1535 }
1536
1537 n--;
1538 }
1539 /* Backwards search. */
1540 else if (lim < pos && multibyte)
1541 while (n < 0)
1542 {
1543 while (1)
1544 {
1545 /* Try matching at position POS. */
1546 ptrdiff_t this_pos = pos;
1547 ptrdiff_t this_pos_byte = pos_byte;
1548 ptrdiff_t this_len = len;
1549 const unsigned char *p = pat + len_byte;
1550
1551 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1552 goto stop;
1553
1554 while (this_len > 0)
1555 {
1556 int pat_ch, buf_ch;
1557
1558 DEC_BOTH (this_pos, this_pos_byte);
1559 PREV_CHAR_BOUNDARY (p, pat);
1560 pat_ch = STRING_CHAR (p);
1561 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1562 TRANSLATE (buf_ch, trt, buf_ch);
1563
1564 if (buf_ch != pat_ch)
1565 break;
1566
1567 this_len--;
1568 }
1569
1570 if (this_len == 0)
1571 {
1572 match_byte = pos_byte - this_pos_byte;
1573 pos = this_pos;
1574 pos_byte = this_pos_byte;
1575 break;
1576 }
1577
1578 DEC_BOTH (pos, pos_byte);
1579 }
1580
1581 n++;
1582 }
1583 else if (lim < pos)
1584 while (n < 0)
1585 {
1586 while (1)
1587 {
1588 /* Try matching at position POS. */
1589 ptrdiff_t this_pos = pos - len;
1590 ptrdiff_t this_len = len;
1591 unsigned char *p = pat;
1592
1593 if (this_pos < lim)
1594 goto stop;
1595
1596 while (this_len > 0)
1597 {
1598 int pat_ch = *p++;
1599 int buf_ch = FETCH_BYTE (this_pos);
1600 TRANSLATE (buf_ch, trt, buf_ch);
1601
1602 if (buf_ch != pat_ch)
1603 break;
1604 this_len--;
1605 this_pos++;
1606 }
1607
1608 if (this_len == 0)
1609 {
1610 match_byte = len;
1611 pos -= len;
1612 break;
1613 }
1614
1615 pos--;
1616 }
1617
1618 n++;
1619 }
1620
1621 stop:
1622 if (n == 0)
1623 {
1624 if (forward)
1625 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1626 else
1627 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1628
1629 return pos;
1630 }
1631 else if (n > 0)
1632 return -n;
1633 else
1634 return n;
1635 }
1636 \f
1637 /* Do Boyer-Moore search N times for the string BASE_PAT,
1638 whose length is LEN_BYTE,
1639 from buffer position POS_BYTE until LIM_BYTE.
1640 DIRECTION says which direction we search in.
1641 TRT and INVERSE_TRT are translation tables.
1642 Characters in PAT are already translated by TRT.
1643
1644 This kind of search works if all the characters in BASE_PAT that
1645 have nontrivial translation are the same aside from the last byte.
1646 This makes it possible to translate just the last byte of a
1647 character, and do so after just a simple test of the context.
1648 CHAR_BASE is nonzero if there is such a non-ASCII character.
1649
1650 If that criterion is not satisfied, do not call this function. */
1651
1652 static EMACS_INT
1653 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1654 ptrdiff_t len_byte,
1655 Lisp_Object trt, Lisp_Object inverse_trt,
1656 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1657 int char_base)
1658 {
1659 int direction = ((n > 0) ? 1 : -1);
1660 register ptrdiff_t dirlen;
1661 ptrdiff_t limit;
1662 int stride_for_teases = 0;
1663 int BM_tab[0400];
1664 register unsigned char *cursor, *p_limit;
1665 register ptrdiff_t i;
1666 register int j;
1667 unsigned char *pat, *pat_end;
1668 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1669
1670 unsigned char simple_translate[0400];
1671 /* These are set to the preceding bytes of a byte to be translated
1672 if char_base is nonzero. As the maximum byte length of a
1673 multibyte character is 5, we have to check at most four previous
1674 bytes. */
1675 int translate_prev_byte1 = 0;
1676 int translate_prev_byte2 = 0;
1677 int translate_prev_byte3 = 0;
1678
1679 /* The general approach is that we are going to maintain that we know
1680 the first (closest to the present position, in whatever direction
1681 we're searching) character that could possibly be the last
1682 (furthest from present position) character of a valid match. We
1683 advance the state of our knowledge by looking at that character
1684 and seeing whether it indeed matches the last character of the
1685 pattern. If it does, we take a closer look. If it does not, we
1686 move our pointer (to putative last characters) as far as is
1687 logically possible. This amount of movement, which I call a
1688 stride, will be the length of the pattern if the actual character
1689 appears nowhere in the pattern, otherwise it will be the distance
1690 from the last occurrence of that character to the end of the
1691 pattern. If the amount is zero we have a possible match. */
1692
1693 /* Here we make a "mickey mouse" BM table. The stride of the search
1694 is determined only by the last character of the putative match.
1695 If that character does not match, we will stride the proper
1696 distance to propose a match that superimposes it on the last
1697 instance of a character that matches it (per trt), or misses
1698 it entirely if there is none. */
1699
1700 dirlen = len_byte * direction;
1701
1702 /* Record position after the end of the pattern. */
1703 pat_end = base_pat + len_byte;
1704 /* BASE_PAT points to a character that we start scanning from.
1705 It is the first character in a forward search,
1706 the last character in a backward search. */
1707 if (direction < 0)
1708 base_pat = pat_end - 1;
1709
1710 /* A character that does not appear in the pattern induces a
1711 stride equal to the pattern length. */
1712 for (i = 0; i < 0400; i++)
1713 BM_tab[i] = dirlen;
1714
1715 /* We use this for translation, instead of TRT itself.
1716 We fill this in to handle the characters that actually
1717 occur in the pattern. Others don't matter anyway! */
1718 for (i = 0; i < 0400; i++)
1719 simple_translate[i] = i;
1720
1721 if (char_base)
1722 {
1723 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1724 byte following them are the target of translation. */
1725 unsigned char str[MAX_MULTIBYTE_LENGTH];
1726 int cblen = CHAR_STRING (char_base, str);
1727
1728 translate_prev_byte1 = str[cblen - 2];
1729 if (cblen > 2)
1730 {
1731 translate_prev_byte2 = str[cblen - 3];
1732 if (cblen > 3)
1733 translate_prev_byte3 = str[cblen - 4];
1734 }
1735 }
1736
1737 i = 0;
1738 while (i != dirlen)
1739 {
1740 unsigned char *ptr = base_pat + i;
1741 i += direction;
1742 if (! NILP (trt))
1743 {
1744 /* If the byte currently looking at is the last of a
1745 character to check case-equivalents, set CH to that
1746 character. An ASCII character and a non-ASCII character
1747 matching with CHAR_BASE are to be checked. */
1748 int ch = -1;
1749
1750 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1751 ch = *ptr;
1752 else if (char_base
1753 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1754 {
1755 unsigned char *charstart = ptr - 1;
1756
1757 while (! (CHAR_HEAD_P (*charstart)))
1758 charstart--;
1759 ch = STRING_CHAR (charstart);
1760 if (char_base != (ch & ~0x3F))
1761 ch = -1;
1762 }
1763
1764 if (ch >= 0200 && multibyte)
1765 j = (ch & 0x3F) | 0200;
1766 else
1767 j = *ptr;
1768
1769 if (i == dirlen)
1770 stride_for_teases = BM_tab[j];
1771
1772 BM_tab[j] = dirlen - i;
1773 /* A translation table is accompanied by its inverse -- see
1774 comment following downcase_table for details. */
1775 if (ch >= 0)
1776 {
1777 int starting_ch = ch;
1778 int starting_j = j;
1779
1780 while (1)
1781 {
1782 TRANSLATE (ch, inverse_trt, ch);
1783 if (ch >= 0200 && multibyte)
1784 j = (ch & 0x3F) | 0200;
1785 else
1786 j = ch;
1787
1788 /* For all the characters that map into CH,
1789 set up simple_translate to map the last byte
1790 into STARTING_J. */
1791 simple_translate[j] = starting_j;
1792 if (ch == starting_ch)
1793 break;
1794 BM_tab[j] = dirlen - i;
1795 }
1796 }
1797 }
1798 else
1799 {
1800 j = *ptr;
1801
1802 if (i == dirlen)
1803 stride_for_teases = BM_tab[j];
1804 BM_tab[j] = dirlen - i;
1805 }
1806 /* stride_for_teases tells how much to stride if we get a
1807 match on the far character but are subsequently
1808 disappointed, by recording what the stride would have been
1809 for that character if the last character had been
1810 different. */
1811 }
1812 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1813 /* loop invariant - POS_BYTE points at where last char (first
1814 char if reverse) of pattern would align in a possible match. */
1815 while (n != 0)
1816 {
1817 ptrdiff_t tail_end;
1818 unsigned char *tail_end_ptr;
1819
1820 /* It's been reported that some (broken) compiler thinks that
1821 Boolean expressions in an arithmetic context are unsigned.
1822 Using an explicit ?1:0 prevents this. */
1823 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1824 < 0)
1825 return (n * (0 - direction));
1826 /* First we do the part we can by pointers (maybe nothing) */
1827 QUIT;
1828 pat = base_pat;
1829 limit = pos_byte - dirlen + direction;
1830 if (direction > 0)
1831 {
1832 limit = BUFFER_CEILING_OF (limit);
1833 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1834 can take on without hitting edge of buffer or the gap. */
1835 limit = min (limit, pos_byte + 20000);
1836 limit = min (limit, lim_byte - 1);
1837 }
1838 else
1839 {
1840 limit = BUFFER_FLOOR_OF (limit);
1841 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1842 can take on without hitting edge of buffer or the gap. */
1843 limit = max (limit, pos_byte - 20000);
1844 limit = max (limit, lim_byte);
1845 }
1846 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1847 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1848
1849 if ((limit - pos_byte) * direction > 20)
1850 {
1851 unsigned char *p2;
1852
1853 p_limit = BYTE_POS_ADDR (limit);
1854 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1855 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1856 while (1) /* use one cursor setting as long as i can */
1857 {
1858 if (direction > 0) /* worth duplicating */
1859 {
1860 while (cursor <= p_limit)
1861 {
1862 if (BM_tab[*cursor] == 0)
1863 goto hit;
1864 cursor += BM_tab[*cursor];
1865 }
1866 }
1867 else
1868 {
1869 while (cursor >= p_limit)
1870 {
1871 if (BM_tab[*cursor] == 0)
1872 goto hit;
1873 cursor += BM_tab[*cursor];
1874 }
1875 }
1876 /* If you are here, cursor is beyond the end of the
1877 searched region. You fail to match within the
1878 permitted region and would otherwise try a character
1879 beyond that region. */
1880 break;
1881
1882 hit:
1883 i = dirlen - direction;
1884 if (! NILP (trt))
1885 {
1886 while ((i -= direction) + direction != 0)
1887 {
1888 int ch;
1889 cursor -= direction;
1890 /* Translate only the last byte of a character. */
1891 if (! multibyte
1892 || ((cursor == tail_end_ptr
1893 || CHAR_HEAD_P (cursor[1]))
1894 && (CHAR_HEAD_P (cursor[0])
1895 /* Check if this is the last byte of
1896 a translable character. */
1897 || (translate_prev_byte1 == cursor[-1]
1898 && (CHAR_HEAD_P (translate_prev_byte1)
1899 || (translate_prev_byte2 == cursor[-2]
1900 && (CHAR_HEAD_P (translate_prev_byte2)
1901 || (translate_prev_byte3 == cursor[-3]))))))))
1902 ch = simple_translate[*cursor];
1903 else
1904 ch = *cursor;
1905 if (pat[i] != ch)
1906 break;
1907 }
1908 }
1909 else
1910 {
1911 while ((i -= direction) + direction != 0)
1912 {
1913 cursor -= direction;
1914 if (pat[i] != *cursor)
1915 break;
1916 }
1917 }
1918 cursor += dirlen - i - direction; /* fix cursor */
1919 if (i + direction == 0)
1920 {
1921 ptrdiff_t position, start, end;
1922
1923 cursor -= direction;
1924
1925 position = pos_byte + cursor - p2 + ((direction > 0)
1926 ? 1 - len_byte : 0);
1927 set_search_regs (position, len_byte);
1928
1929 if (NILP (Vinhibit_changing_match_data))
1930 {
1931 start = search_regs.start[0];
1932 end = search_regs.end[0];
1933 }
1934 else
1935 /* If Vinhibit_changing_match_data is non-nil,
1936 search_regs will not be changed. So let's
1937 compute start and end here. */
1938 {
1939 start = BYTE_TO_CHAR (position);
1940 end = BYTE_TO_CHAR (position + len_byte);
1941 }
1942
1943 if ((n -= direction) != 0)
1944 cursor += dirlen; /* to resume search */
1945 else
1946 return direction > 0 ? end : start;
1947 }
1948 else
1949 cursor += stride_for_teases; /* <sigh> we lose - */
1950 }
1951 pos_byte += cursor - p2;
1952 }
1953 else
1954 /* Now we'll pick up a clump that has to be done the hard
1955 way because it covers a discontinuity. */
1956 {
1957 limit = ((direction > 0)
1958 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1959 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1960 limit = ((direction > 0)
1961 ? min (limit + len_byte, lim_byte - 1)
1962 : max (limit - len_byte, lim_byte));
1963 /* LIMIT is now the last value POS_BYTE can have
1964 and still be valid for a possible match. */
1965 while (1)
1966 {
1967 /* This loop can be coded for space rather than
1968 speed because it will usually run only once.
1969 (the reach is at most len + 21, and typically
1970 does not exceed len). */
1971 while ((limit - pos_byte) * direction >= 0)
1972 {
1973 int ch = FETCH_BYTE (pos_byte);
1974 if (BM_tab[ch] == 0)
1975 goto hit2;
1976 pos_byte += BM_tab[ch];
1977 }
1978 break; /* ran off the end */
1979
1980 hit2:
1981 /* Found what might be a match. */
1982 i = dirlen - direction;
1983 while ((i -= direction) + direction != 0)
1984 {
1985 int ch;
1986 unsigned char *ptr;
1987 pos_byte -= direction;
1988 ptr = BYTE_POS_ADDR (pos_byte);
1989 /* Translate only the last byte of a character. */
1990 if (! multibyte
1991 || ((ptr == tail_end_ptr
1992 || CHAR_HEAD_P (ptr[1]))
1993 && (CHAR_HEAD_P (ptr[0])
1994 /* Check if this is the last byte of a
1995 translable character. */
1996 || (translate_prev_byte1 == ptr[-1]
1997 && (CHAR_HEAD_P (translate_prev_byte1)
1998 || (translate_prev_byte2 == ptr[-2]
1999 && (CHAR_HEAD_P (translate_prev_byte2)
2000 || translate_prev_byte3 == ptr[-3])))))))
2001 ch = simple_translate[*ptr];
2002 else
2003 ch = *ptr;
2004 if (pat[i] != ch)
2005 break;
2006 }
2007 /* Above loop has moved POS_BYTE part or all the way
2008 back to the first pos (last pos if reverse).
2009 Set it once again at the last (first if reverse) char. */
2010 pos_byte += dirlen - i - direction;
2011 if (i + direction == 0)
2012 {
2013 ptrdiff_t position, start, end;
2014 pos_byte -= direction;
2015
2016 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2017 set_search_regs (position, len_byte);
2018
2019 if (NILP (Vinhibit_changing_match_data))
2020 {
2021 start = search_regs.start[0];
2022 end = search_regs.end[0];
2023 }
2024 else
2025 /* If Vinhibit_changing_match_data is non-nil,
2026 search_regs will not be changed. So let's
2027 compute start and end here. */
2028 {
2029 start = BYTE_TO_CHAR (position);
2030 end = BYTE_TO_CHAR (position + len_byte);
2031 }
2032
2033 if ((n -= direction) != 0)
2034 pos_byte += dirlen; /* to resume search */
2035 else
2036 return direction > 0 ? end : start;
2037 }
2038 else
2039 pos_byte += stride_for_teases;
2040 }
2041 }
2042 /* We have done one clump. Can we continue? */
2043 if ((lim_byte - pos_byte) * direction < 0)
2044 return ((0 - n) * direction);
2045 }
2046 return BYTE_TO_CHAR (pos_byte);
2047 }
2048
2049 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2050 for the overall match just found in the current buffer.
2051 Also clear out the match data for registers 1 and up. */
2052
2053 static void
2054 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2055 {
2056 ptrdiff_t i;
2057
2058 if (!NILP (Vinhibit_changing_match_data))
2059 return;
2060
2061 /* Make sure we have registers in which to store
2062 the match position. */
2063 if (search_regs.num_regs == 0)
2064 {
2065 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2066 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2067 search_regs.num_regs = 2;
2068 }
2069
2070 /* Clear out the other registers. */
2071 for (i = 1; i < search_regs.num_regs; i++)
2072 {
2073 search_regs.start[i] = -1;
2074 search_regs.end[i] = -1;
2075 }
2076
2077 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2078 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2079 XSETBUFFER (last_thing_searched, current_buffer);
2080 }
2081 \f
2082 /* Given STRING, a string of words separated by word delimiters,
2083 compute a regexp that matches those exact words separated by
2084 arbitrary punctuation. If LAX is nonzero, the end of the string
2085 need not match a word boundary unless it ends in whitespace. */
2086
2087 static Lisp_Object
2088 wordify (Lisp_Object string, int lax)
2089 {
2090 register unsigned char *o;
2091 register ptrdiff_t i, i_byte, len, punct_count = 0, word_count = 0;
2092 Lisp_Object val;
2093 int prev_c = 0;
2094 EMACS_INT adjust;
2095 int whitespace_at_end;
2096
2097 CHECK_STRING (string);
2098 len = SCHARS (string);
2099
2100 for (i = 0, i_byte = 0; i < len; )
2101 {
2102 int c;
2103
2104 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2105
2106 if (SYNTAX (c) != Sword)
2107 {
2108 punct_count++;
2109 if (SYNTAX (prev_c) == Sword)
2110 word_count++;
2111 }
2112
2113 prev_c = c;
2114 }
2115
2116 if (SYNTAX (prev_c) == Sword)
2117 {
2118 word_count++;
2119 whitespace_at_end = 0;
2120 }
2121 else
2122 {
2123 whitespace_at_end = 1;
2124 if (!word_count)
2125 return empty_unibyte_string;
2126 }
2127
2128 adjust = word_count - 1;
2129 if (TYPE_MAXIMUM (EMACS_INT) / 5 < adjust)
2130 memory_full (SIZE_MAX);
2131 adjust = - punct_count + 5 * adjust
2132 + ((lax && !whitespace_at_end) ? 2 : 4);
2133 if (STRING_MULTIBYTE (string))
2134 {
2135 if (INT_ADD_OVERFLOW (SBYTES (string), adjust))
2136 memory_full (SIZE_MAX);
2137 val = make_uninit_multibyte_string (len + adjust,
2138 SBYTES (string) + adjust);
2139 }
2140 else
2141 {
2142 if (INT_ADD_OVERFLOW (len, adjust))
2143 memory_full (SIZE_MAX);
2144 val = make_uninit_string (len + adjust);
2145 }
2146
2147 o = SDATA (val);
2148 *o++ = '\\';
2149 *o++ = 'b';
2150 prev_c = 0;
2151
2152 for (i = 0, i_byte = 0; i < len; )
2153 {
2154 int c;
2155 ptrdiff_t i_byte_orig = i_byte;
2156
2157 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2158
2159 if (SYNTAX (c) == Sword)
2160 {
2161 memcpy (o, SDATA (string) + i_byte_orig, i_byte - i_byte_orig);
2162 o += i_byte - i_byte_orig;
2163 }
2164 else if (SYNTAX (prev_c) == Sword && --word_count)
2165 {
2166 *o++ = '\\';
2167 *o++ = 'W';
2168 *o++ = '\\';
2169 *o++ = 'W';
2170 *o++ = '*';
2171 }
2172
2173 prev_c = c;
2174 }
2175
2176 if (!lax || whitespace_at_end)
2177 {
2178 *o++ = '\\';
2179 *o++ = 'b';
2180 }
2181
2182 return val;
2183 }
2184 \f
2185 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2186 "MSearch backward: ",
2187 doc: /* Search backward from point for STRING.
2188 Set point to the beginning of the occurrence found, and return point.
2189 An optional second argument bounds the search; it is a buffer position.
2190 The match found must not extend before that position.
2191 Optional third argument, if t, means if fail just return nil (no error).
2192 If not nil and not t, position at limit of search and return nil.
2193 Optional fourth argument is repeat count--search for successive occurrences.
2194
2195 Search case-sensitivity is determined by the value of the variable
2196 `case-fold-search', which see.
2197
2198 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2199 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2200 {
2201 return search_command (string, bound, noerror, count, -1, 0, 0);
2202 }
2203
2204 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2205 doc: /* Search forward from point for STRING.
2206 Set point to the end of the occurrence found, and return point.
2207 An optional second argument bounds the search; it is a buffer position.
2208 The match found must not extend after that position. A value of nil is
2209 equivalent to (point-max).
2210 Optional third argument, if t, means if fail just return nil (no error).
2211 If not nil and not t, move to limit of search and return nil.
2212 Optional fourth argument is repeat count--search for successive occurrences.
2213
2214 Search case-sensitivity is determined by the value of the variable
2215 `case-fold-search', which see.
2216
2217 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2218 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2219 {
2220 return search_command (string, bound, noerror, count, 1, 0, 0);
2221 }
2222
2223 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2224 "sWord search backward: ",
2225 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2226 Set point to the beginning of the occurrence found, and return point.
2227 An optional second argument bounds the search; it is a buffer position.
2228 The match found must not extend before that position.
2229 Optional third argument, if t, means if fail just return nil (no error).
2230 If not nil and not t, move to limit of search and return nil.
2231 Optional fourth argument is repeat count--search for successive occurrences. */)
2232 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2233 {
2234 return search_command (wordify (string, 0), bound, noerror, count, -1, 1, 0);
2235 }
2236
2237 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2238 "sWord search: ",
2239 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2240 Set point to the end of the occurrence found, and return point.
2241 An optional second argument bounds the search; it is a buffer position.
2242 The match found must not extend after that position.
2243 Optional third argument, if t, means if fail just return nil (no error).
2244 If not nil and not t, move to limit of search and return nil.
2245 Optional fourth argument is repeat count--search for successive occurrences. */)
2246 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2247 {
2248 return search_command (wordify (string, 0), bound, noerror, count, 1, 1, 0);
2249 }
2250
2251 DEFUN ("word-search-backward-lax", Fword_search_backward_lax, Sword_search_backward_lax, 1, 4,
2252 "sWord search backward: ",
2253 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2254 Set point to the beginning of the occurrence found, and return point.
2255
2256 Unlike `word-search-backward', the end of STRING need not match a word
2257 boundary unless it ends in whitespace.
2258
2259 An optional second argument bounds the search; it is a buffer position.
2260 The match found must not extend before that position.
2261 Optional third argument, if t, means if fail just return nil (no error).
2262 If not nil and not t, move to limit of search and return nil.
2263 Optional fourth argument is repeat count--search for successive occurrences. */)
2264 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2265 {
2266 return search_command (wordify (string, 1), bound, noerror, count, -1, 1, 0);
2267 }
2268
2269 DEFUN ("word-search-forward-lax", Fword_search_forward_lax, Sword_search_forward_lax, 1, 4,
2270 "sWord search: ",
2271 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2272 Set point to the end of the occurrence found, and return point.
2273
2274 Unlike `word-search-forward', the end of STRING need not match a word
2275 boundary unless it ends in whitespace.
2276
2277 An optional second argument bounds the search; it is a buffer position.
2278 The match found must not extend after that position.
2279 Optional third argument, if t, means if fail just return nil (no error).
2280 If not nil and not t, move to limit of search and return nil.
2281 Optional fourth argument is repeat count--search for successive occurrences. */)
2282 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2283 {
2284 return search_command (wordify (string, 1), bound, noerror, count, 1, 1, 0);
2285 }
2286
2287 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2288 "sRE search backward: ",
2289 doc: /* Search backward from point for match for regular expression REGEXP.
2290 Set point to the beginning of the match, and return point.
2291 The match found is the one starting last in the buffer
2292 and yet ending before the origin of the search.
2293 An optional second argument bounds the search; it is a buffer position.
2294 The match found must start at or after that position.
2295 Optional third argument, if t, means if fail just return nil (no error).
2296 If not nil and not t, move to limit of search and return nil.
2297 Optional fourth argument is repeat count--search for successive occurrences.
2298
2299 Search case-sensitivity is determined by the value of the variable
2300 `case-fold-search', which see.
2301
2302 See also the functions `match-beginning', `match-end', `match-string',
2303 and `replace-match'. */)
2304 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2305 {
2306 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2307 }
2308
2309 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2310 "sRE search: ",
2311 doc: /* Search forward from point for regular expression REGEXP.
2312 Set point to the end of the occurrence found, and return point.
2313 An optional second argument bounds the search; it is a buffer position.
2314 The match found must not extend after that position.
2315 Optional third argument, if t, means if fail just return nil (no error).
2316 If not nil and not t, move to limit of search and return nil.
2317 Optional fourth argument is repeat count--search for successive occurrences.
2318
2319 Search case-sensitivity is determined by the value of the variable
2320 `case-fold-search', which see.
2321
2322 See also the functions `match-beginning', `match-end', `match-string',
2323 and `replace-match'. */)
2324 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2325 {
2326 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2327 }
2328
2329 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2330 "sPosix search backward: ",
2331 doc: /* Search backward from point for match for regular expression REGEXP.
2332 Find the longest match in accord with Posix regular expression rules.
2333 Set point to the beginning of the match, and return point.
2334 The match found is the one starting last in the buffer
2335 and yet ending before the origin of the search.
2336 An optional second argument bounds the search; it is a buffer position.
2337 The match found must start at or after that position.
2338 Optional third argument, if t, means if fail just return nil (no error).
2339 If not nil and not t, move to limit of search and return nil.
2340 Optional fourth argument is repeat count--search for successive occurrences.
2341
2342 Search case-sensitivity is determined by the value of the variable
2343 `case-fold-search', which see.
2344
2345 See also the functions `match-beginning', `match-end', `match-string',
2346 and `replace-match'. */)
2347 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2348 {
2349 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2350 }
2351
2352 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2353 "sPosix search: ",
2354 doc: /* Search forward from point for regular expression REGEXP.
2355 Find the longest match in accord with Posix regular expression rules.
2356 Set point to the end of the occurrence found, and return point.
2357 An optional second argument bounds the search; it is a buffer position.
2358 The match found must not extend after that position.
2359 Optional third argument, if t, means if fail just return nil (no error).
2360 If not nil and not t, move to limit of search and return nil.
2361 Optional fourth argument is repeat count--search for successive occurrences.
2362
2363 Search case-sensitivity is determined by the value of the variable
2364 `case-fold-search', which see.
2365
2366 See also the functions `match-beginning', `match-end', `match-string',
2367 and `replace-match'. */)
2368 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2369 {
2370 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2371 }
2372 \f
2373 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2374 doc: /* Replace text matched by last search with NEWTEXT.
2375 Leave point at the end of the replacement text.
2376
2377 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2378 Otherwise maybe capitalize the whole text, or maybe just word initials,
2379 based on the replaced text.
2380 If the replaced text has only capital letters
2381 and has at least one multiletter word, convert NEWTEXT to all caps.
2382 Otherwise if all words are capitalized in the replaced text,
2383 capitalize each word in NEWTEXT.
2384
2385 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2386 Otherwise treat `\\' as special:
2387 `\\&' in NEWTEXT means substitute original matched text.
2388 `\\N' means substitute what matched the Nth `\\(...\\)'.
2389 If Nth parens didn't match, substitute nothing.
2390 `\\\\' means insert one `\\'.
2391 Case conversion does not apply to these substitutions.
2392
2393 FIXEDCASE and LITERAL are optional arguments.
2394
2395 The optional fourth argument STRING can be a string to modify.
2396 This is meaningful when the previous match was done against STRING,
2397 using `string-match'. When used this way, `replace-match'
2398 creates and returns a new string made by copying STRING and replacing
2399 the part of STRING that was matched.
2400
2401 The optional fifth argument SUBEXP specifies a subexpression;
2402 it says to replace just that subexpression with NEWTEXT,
2403 rather than replacing the entire matched text.
2404 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2405 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2406 NEWTEXT in place of subexp N.
2407 This is useful only after a regular expression search or match,
2408 since only regular expressions have distinguished subexpressions. */)
2409 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2410 {
2411 enum { nochange, all_caps, cap_initial } case_action;
2412 register ptrdiff_t pos, pos_byte;
2413 int some_multiletter_word;
2414 int some_lowercase;
2415 int some_uppercase;
2416 int some_nonuppercase_initial;
2417 register int c, prevc;
2418 ptrdiff_t sub;
2419 ptrdiff_t opoint, newpoint;
2420
2421 CHECK_STRING (newtext);
2422
2423 if (! NILP (string))
2424 CHECK_STRING (string);
2425
2426 case_action = nochange; /* We tried an initialization */
2427 /* but some C compilers blew it */
2428
2429 if (search_regs.num_regs <= 0)
2430 error ("`replace-match' called before any match found");
2431
2432 if (NILP (subexp))
2433 sub = 0;
2434 else
2435 {
2436 CHECK_NUMBER (subexp);
2437 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2438 args_out_of_range (subexp, make_number (search_regs.num_regs));
2439 sub = XINT (subexp);
2440 }
2441
2442 if (NILP (string))
2443 {
2444 if (search_regs.start[sub] < BEGV
2445 || search_regs.start[sub] > search_regs.end[sub]
2446 || search_regs.end[sub] > ZV)
2447 args_out_of_range (make_number (search_regs.start[sub]),
2448 make_number (search_regs.end[sub]));
2449 }
2450 else
2451 {
2452 if (search_regs.start[sub] < 0
2453 || search_regs.start[sub] > search_regs.end[sub]
2454 || search_regs.end[sub] > SCHARS (string))
2455 args_out_of_range (make_number (search_regs.start[sub]),
2456 make_number (search_regs.end[sub]));
2457 }
2458
2459 if (NILP (fixedcase))
2460 {
2461 /* Decide how to casify by examining the matched text. */
2462 ptrdiff_t last;
2463
2464 pos = search_regs.start[sub];
2465 last = search_regs.end[sub];
2466
2467 if (NILP (string))
2468 pos_byte = CHAR_TO_BYTE (pos);
2469 else
2470 pos_byte = string_char_to_byte (string, pos);
2471
2472 prevc = '\n';
2473 case_action = all_caps;
2474
2475 /* some_multiletter_word is set nonzero if any original word
2476 is more than one letter long. */
2477 some_multiletter_word = 0;
2478 some_lowercase = 0;
2479 some_nonuppercase_initial = 0;
2480 some_uppercase = 0;
2481
2482 while (pos < last)
2483 {
2484 if (NILP (string))
2485 {
2486 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2487 INC_BOTH (pos, pos_byte);
2488 }
2489 else
2490 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2491
2492 if (lowercasep (c))
2493 {
2494 /* Cannot be all caps if any original char is lower case */
2495
2496 some_lowercase = 1;
2497 if (SYNTAX (prevc) != Sword)
2498 some_nonuppercase_initial = 1;
2499 else
2500 some_multiletter_word = 1;
2501 }
2502 else if (uppercasep (c))
2503 {
2504 some_uppercase = 1;
2505 if (SYNTAX (prevc) != Sword)
2506 ;
2507 else
2508 some_multiletter_word = 1;
2509 }
2510 else
2511 {
2512 /* If the initial is a caseless word constituent,
2513 treat that like a lowercase initial. */
2514 if (SYNTAX (prevc) != Sword)
2515 some_nonuppercase_initial = 1;
2516 }
2517
2518 prevc = c;
2519 }
2520
2521 /* Convert to all caps if the old text is all caps
2522 and has at least one multiletter word. */
2523 if (! some_lowercase && some_multiletter_word)
2524 case_action = all_caps;
2525 /* Capitalize each word, if the old text has all capitalized words. */
2526 else if (!some_nonuppercase_initial && some_multiletter_word)
2527 case_action = cap_initial;
2528 else if (!some_nonuppercase_initial && some_uppercase)
2529 /* Should x -> yz, operating on X, give Yz or YZ?
2530 We'll assume the latter. */
2531 case_action = all_caps;
2532 else
2533 case_action = nochange;
2534 }
2535
2536 /* Do replacement in a string. */
2537 if (!NILP (string))
2538 {
2539 Lisp_Object before, after;
2540
2541 before = Fsubstring (string, make_number (0),
2542 make_number (search_regs.start[sub]));
2543 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2544
2545 /* Substitute parts of the match into NEWTEXT
2546 if desired. */
2547 if (NILP (literal))
2548 {
2549 ptrdiff_t lastpos = 0;
2550 ptrdiff_t lastpos_byte = 0;
2551 /* We build up the substituted string in ACCUM. */
2552 Lisp_Object accum;
2553 Lisp_Object middle;
2554 ptrdiff_t length = SBYTES (newtext);
2555
2556 accum = Qnil;
2557
2558 for (pos_byte = 0, pos = 0; pos_byte < length;)
2559 {
2560 ptrdiff_t substart = -1;
2561 ptrdiff_t subend = 0;
2562 int delbackslash = 0;
2563
2564 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2565
2566 if (c == '\\')
2567 {
2568 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2569
2570 if (c == '&')
2571 {
2572 substart = search_regs.start[sub];
2573 subend = search_regs.end[sub];
2574 }
2575 else if (c >= '1' && c <= '9')
2576 {
2577 if (c - '0' < search_regs.num_regs
2578 && 0 <= search_regs.start[c - '0'])
2579 {
2580 substart = search_regs.start[c - '0'];
2581 subend = search_regs.end[c - '0'];
2582 }
2583 else
2584 {
2585 /* If that subexp did not match,
2586 replace \\N with nothing. */
2587 substart = 0;
2588 subend = 0;
2589 }
2590 }
2591 else if (c == '\\')
2592 delbackslash = 1;
2593 else
2594 error ("Invalid use of `\\' in replacement text");
2595 }
2596 if (substart >= 0)
2597 {
2598 if (pos - 2 != lastpos)
2599 middle = substring_both (newtext, lastpos,
2600 lastpos_byte,
2601 pos - 2, pos_byte - 2);
2602 else
2603 middle = Qnil;
2604 accum = concat3 (accum, middle,
2605 Fsubstring (string,
2606 make_number (substart),
2607 make_number (subend)));
2608 lastpos = pos;
2609 lastpos_byte = pos_byte;
2610 }
2611 else if (delbackslash)
2612 {
2613 middle = substring_both (newtext, lastpos,
2614 lastpos_byte,
2615 pos - 1, pos_byte - 1);
2616
2617 accum = concat2 (accum, middle);
2618 lastpos = pos;
2619 lastpos_byte = pos_byte;
2620 }
2621 }
2622
2623 if (pos != lastpos)
2624 middle = substring_both (newtext, lastpos,
2625 lastpos_byte,
2626 pos, pos_byte);
2627 else
2628 middle = Qnil;
2629
2630 newtext = concat2 (accum, middle);
2631 }
2632
2633 /* Do case substitution in NEWTEXT if desired. */
2634 if (case_action == all_caps)
2635 newtext = Fupcase (newtext);
2636 else if (case_action == cap_initial)
2637 newtext = Fupcase_initials (newtext);
2638
2639 return concat3 (before, newtext, after);
2640 }
2641
2642 /* Record point, then move (quietly) to the start of the match. */
2643 if (PT >= search_regs.end[sub])
2644 opoint = PT - ZV;
2645 else if (PT > search_regs.start[sub])
2646 opoint = search_regs.end[sub] - ZV;
2647 else
2648 opoint = PT;
2649
2650 /* If we want non-literal replacement,
2651 perform substitution on the replacement string. */
2652 if (NILP (literal))
2653 {
2654 ptrdiff_t length = SBYTES (newtext);
2655 unsigned char *substed;
2656 ptrdiff_t substed_alloc_size, substed_len;
2657 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2658 int str_multibyte = STRING_MULTIBYTE (newtext);
2659 int really_changed = 0;
2660
2661 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2662 ? STRING_BYTES_BOUND
2663 : length * 2 + 100);
2664 substed = (unsigned char *) xmalloc (substed_alloc_size);
2665 substed_len = 0;
2666
2667 /* Go thru NEWTEXT, producing the actual text to insert in
2668 SUBSTED while adjusting multibyteness to that of the current
2669 buffer. */
2670
2671 for (pos_byte = 0, pos = 0; pos_byte < length;)
2672 {
2673 unsigned char str[MAX_MULTIBYTE_LENGTH];
2674 const unsigned char *add_stuff = NULL;
2675 ptrdiff_t add_len = 0;
2676 ptrdiff_t idx = -1;
2677
2678 if (str_multibyte)
2679 {
2680 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2681 if (!buf_multibyte)
2682 c = multibyte_char_to_unibyte (c);
2683 }
2684 else
2685 {
2686 /* Note that we don't have to increment POS. */
2687 c = SREF (newtext, pos_byte++);
2688 if (buf_multibyte)
2689 MAKE_CHAR_MULTIBYTE (c);
2690 }
2691
2692 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2693 or set IDX to a match index, which means put that part
2694 of the buffer text into SUBSTED. */
2695
2696 if (c == '\\')
2697 {
2698 really_changed = 1;
2699
2700 if (str_multibyte)
2701 {
2702 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2703 pos, pos_byte);
2704 if (!buf_multibyte && !ASCII_CHAR_P (c))
2705 c = multibyte_char_to_unibyte (c);
2706 }
2707 else
2708 {
2709 c = SREF (newtext, pos_byte++);
2710 if (buf_multibyte)
2711 MAKE_CHAR_MULTIBYTE (c);
2712 }
2713
2714 if (c == '&')
2715 idx = sub;
2716 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2717 {
2718 if (search_regs.start[c - '0'] >= 1)
2719 idx = c - '0';
2720 }
2721 else if (c == '\\')
2722 add_len = 1, add_stuff = (unsigned char *) "\\";
2723 else
2724 {
2725 xfree (substed);
2726 error ("Invalid use of `\\' in replacement text");
2727 }
2728 }
2729 else
2730 {
2731 add_len = CHAR_STRING (c, str);
2732 add_stuff = str;
2733 }
2734
2735 /* If we want to copy part of a previous match,
2736 set up ADD_STUFF and ADD_LEN to point to it. */
2737 if (idx >= 0)
2738 {
2739 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2740 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2741 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2742 move_gap (search_regs.start[idx]);
2743 add_stuff = BYTE_POS_ADDR (begbyte);
2744 }
2745
2746 /* Now the stuff we want to add to SUBSTED
2747 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2748
2749 /* Make sure SUBSTED is big enough. */
2750 if (substed_alloc_size - substed_len < add_len)
2751 substed =
2752 xpalloc (substed, &substed_alloc_size,
2753 add_len - (substed_alloc_size - substed_len),
2754 STRING_BYTES_BOUND, 1);
2755
2756 /* Now add to the end of SUBSTED. */
2757 if (add_stuff)
2758 {
2759 memcpy (substed + substed_len, add_stuff, add_len);
2760 substed_len += add_len;
2761 }
2762 }
2763
2764 if (really_changed)
2765 {
2766 if (buf_multibyte)
2767 {
2768 ptrdiff_t nchars =
2769 multibyte_chars_in_text (substed, substed_len);
2770
2771 newtext = make_multibyte_string ((char *) substed, nchars,
2772 substed_len);
2773 }
2774 else
2775 newtext = make_unibyte_string ((char *) substed, substed_len);
2776 }
2777 xfree (substed);
2778 }
2779
2780 /* Replace the old text with the new in the cleanest possible way. */
2781 replace_range (search_regs.start[sub], search_regs.end[sub],
2782 newtext, 1, 0, 1);
2783 newpoint = search_regs.start[sub] + SCHARS (newtext);
2784
2785 if (case_action == all_caps)
2786 Fupcase_region (make_number (search_regs.start[sub]),
2787 make_number (newpoint));
2788 else if (case_action == cap_initial)
2789 Fupcase_initials_region (make_number (search_regs.start[sub]),
2790 make_number (newpoint));
2791
2792 /* Adjust search data for this change. */
2793 {
2794 ptrdiff_t oldend = search_regs.end[sub];
2795 ptrdiff_t oldstart = search_regs.start[sub];
2796 ptrdiff_t change = newpoint - search_regs.end[sub];
2797 ptrdiff_t i;
2798
2799 for (i = 0; i < search_regs.num_regs; i++)
2800 {
2801 if (search_regs.start[i] >= oldend)
2802 search_regs.start[i] += change;
2803 else if (search_regs.start[i] > oldstart)
2804 search_regs.start[i] = oldstart;
2805 if (search_regs.end[i] >= oldend)
2806 search_regs.end[i] += change;
2807 else if (search_regs.end[i] > oldstart)
2808 search_regs.end[i] = oldstart;
2809 }
2810 }
2811
2812 /* Put point back where it was in the text. */
2813 if (opoint <= 0)
2814 TEMP_SET_PT (opoint + ZV);
2815 else
2816 TEMP_SET_PT (opoint);
2817
2818 /* Now move point "officially" to the start of the inserted replacement. */
2819 move_if_not_intangible (newpoint);
2820
2821 return Qnil;
2822 }
2823 \f
2824 static Lisp_Object
2825 match_limit (Lisp_Object num, int beginningp)
2826 {
2827 EMACS_INT n;
2828
2829 CHECK_NUMBER (num);
2830 n = XINT (num);
2831 if (n < 0)
2832 args_out_of_range (num, make_number (0));
2833 if (search_regs.num_regs <= 0)
2834 error ("No match data, because no search succeeded");
2835 if (n >= search_regs.num_regs
2836 || search_regs.start[n] < 0)
2837 return Qnil;
2838 return (make_number ((beginningp) ? search_regs.start[n]
2839 : search_regs.end[n]));
2840 }
2841
2842 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2843 doc: /* Return position of start of text matched by last search.
2844 SUBEXP, a number, specifies which parenthesized expression in the last
2845 regexp.
2846 Value is nil if SUBEXPth pair didn't match, or there were less than
2847 SUBEXP pairs.
2848 Zero means the entire text matched by the whole regexp or whole string. */)
2849 (Lisp_Object subexp)
2850 {
2851 return match_limit (subexp, 1);
2852 }
2853
2854 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2855 doc: /* Return position of end of text matched by last search.
2856 SUBEXP, a number, specifies which parenthesized expression in the last
2857 regexp.
2858 Value is nil if SUBEXPth pair didn't match, or there were less than
2859 SUBEXP pairs.
2860 Zero means the entire text matched by the whole regexp or whole string. */)
2861 (Lisp_Object subexp)
2862 {
2863 return match_limit (subexp, 0);
2864 }
2865
2866 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2867 doc: /* Return a list containing all info on what the last search matched.
2868 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2869 All the elements are markers or nil (nil if the Nth pair didn't match)
2870 if the last match was on a buffer; integers or nil if a string was matched.
2871 Use `set-match-data' to reinstate the data in this list.
2872
2873 If INTEGERS (the optional first argument) is non-nil, always use
2874 integers \(rather than markers) to represent buffer positions. In
2875 this case, and if the last match was in a buffer, the buffer will get
2876 stored as one additional element at the end of the list.
2877
2878 If REUSE is a list, reuse it as part of the value. If REUSE is long
2879 enough to hold all the values, and if INTEGERS is non-nil, no consing
2880 is done.
2881
2882 If optional third arg RESEAT is non-nil, any previous markers on the
2883 REUSE list will be modified to point to nowhere.
2884
2885 Return value is undefined if the last search failed. */)
2886 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2887 {
2888 Lisp_Object tail, prev;
2889 Lisp_Object *data;
2890 ptrdiff_t i, len;
2891
2892 if (!NILP (reseat))
2893 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2894 if (MARKERP (XCAR (tail)))
2895 {
2896 unchain_marker (XMARKER (XCAR (tail)));
2897 XSETCAR (tail, Qnil);
2898 }
2899
2900 if (NILP (last_thing_searched))
2901 return Qnil;
2902
2903 prev = Qnil;
2904
2905 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2906 * sizeof (Lisp_Object));
2907
2908 len = 0;
2909 for (i = 0; i < search_regs.num_regs; i++)
2910 {
2911 ptrdiff_t start = search_regs.start[i];
2912 if (start >= 0)
2913 {
2914 if (EQ (last_thing_searched, Qt)
2915 || ! NILP (integers))
2916 {
2917 XSETFASTINT (data[2 * i], start);
2918 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2919 }
2920 else if (BUFFERP (last_thing_searched))
2921 {
2922 data[2 * i] = Fmake_marker ();
2923 Fset_marker (data[2 * i],
2924 make_number (start),
2925 last_thing_searched);
2926 data[2 * i + 1] = Fmake_marker ();
2927 Fset_marker (data[2 * i + 1],
2928 make_number (search_regs.end[i]),
2929 last_thing_searched);
2930 }
2931 else
2932 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2933 abort ();
2934
2935 len = 2 * i + 2;
2936 }
2937 else
2938 data[2 * i] = data[2 * i + 1] = Qnil;
2939 }
2940
2941 if (BUFFERP (last_thing_searched) && !NILP (integers))
2942 {
2943 data[len] = last_thing_searched;
2944 len++;
2945 }
2946
2947 /* If REUSE is not usable, cons up the values and return them. */
2948 if (! CONSP (reuse))
2949 return Flist (len, data);
2950
2951 /* If REUSE is a list, store as many value elements as will fit
2952 into the elements of REUSE. */
2953 for (i = 0, tail = reuse; CONSP (tail);
2954 i++, tail = XCDR (tail))
2955 {
2956 if (i < len)
2957 XSETCAR (tail, data[i]);
2958 else
2959 XSETCAR (tail, Qnil);
2960 prev = tail;
2961 }
2962
2963 /* If we couldn't fit all value elements into REUSE,
2964 cons up the rest of them and add them to the end of REUSE. */
2965 if (i < len)
2966 XSETCDR (prev, Flist (len - i, data + i));
2967
2968 return reuse;
2969 }
2970
2971 /* We used to have an internal use variant of `reseat' described as:
2972
2973 If RESEAT is `evaporate', put the markers back on the free list
2974 immediately. No other references to the markers must exist in this
2975 case, so it is used only internally on the unwind stack and
2976 save-match-data from Lisp.
2977
2978 But it was ill-conceived: those supposedly-internal markers get exposed via
2979 the undo-list, so freeing them here is unsafe. */
2980
2981 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2982 doc: /* Set internal data on last search match from elements of LIST.
2983 LIST should have been created by calling `match-data' previously.
2984
2985 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2986 (register Lisp_Object list, Lisp_Object reseat)
2987 {
2988 ptrdiff_t i;
2989 register Lisp_Object marker;
2990
2991 if (running_asynch_code)
2992 save_search_regs ();
2993
2994 CHECK_LIST (list);
2995
2996 /* Unless we find a marker with a buffer or an explicit buffer
2997 in LIST, assume that this match data came from a string. */
2998 last_thing_searched = Qt;
2999
3000 /* Allocate registers if they don't already exist. */
3001 {
3002 EMACS_INT length = XFASTINT (Flength (list)) / 2;
3003
3004 if (length > search_regs.num_regs)
3005 {
3006 ptrdiff_t num_regs = search_regs.num_regs;
3007 if (PTRDIFF_MAX < length)
3008 memory_full (SIZE_MAX);
3009 search_regs.start =
3010 xpalloc (search_regs.start, &num_regs, length - num_regs,
3011 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
3012 search_regs.end =
3013 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
3014
3015 for (i = search_regs.num_regs; i < num_regs; i++)
3016 search_regs.start[i] = -1;
3017
3018 search_regs.num_regs = num_regs;
3019 }
3020
3021 for (i = 0; CONSP (list); i++)
3022 {
3023 marker = XCAR (list);
3024 if (BUFFERP (marker))
3025 {
3026 last_thing_searched = marker;
3027 break;
3028 }
3029 if (i >= length)
3030 break;
3031 if (NILP (marker))
3032 {
3033 search_regs.start[i] = -1;
3034 list = XCDR (list);
3035 }
3036 else
3037 {
3038 Lisp_Object from;
3039 Lisp_Object m;
3040
3041 m = marker;
3042 if (MARKERP (marker))
3043 {
3044 if (XMARKER (marker)->buffer == 0)
3045 XSETFASTINT (marker, 0);
3046 else
3047 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3048 }
3049
3050 CHECK_NUMBER_COERCE_MARKER (marker);
3051 from = marker;
3052
3053 if (!NILP (reseat) && MARKERP (m))
3054 {
3055 unchain_marker (XMARKER (m));
3056 XSETCAR (list, Qnil);
3057 }
3058
3059 if ((list = XCDR (list), !CONSP (list)))
3060 break;
3061
3062 m = marker = XCAR (list);
3063
3064 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3065 XSETFASTINT (marker, 0);
3066
3067 CHECK_NUMBER_COERCE_MARKER (marker);
3068 if ((XINT (from) < 0
3069 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
3070 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
3071 && (XINT (marker) < 0
3072 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
3073 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
3074 {
3075 search_regs.start[i] = XINT (from);
3076 search_regs.end[i] = XINT (marker);
3077 }
3078 else
3079 {
3080 search_regs.start[i] = -1;
3081 }
3082
3083 if (!NILP (reseat) && MARKERP (m))
3084 {
3085 unchain_marker (XMARKER (m));
3086 XSETCAR (list, Qnil);
3087 }
3088 }
3089 list = XCDR (list);
3090 }
3091
3092 for (; i < search_regs.num_regs; i++)
3093 search_regs.start[i] = -1;
3094 }
3095
3096 return Qnil;
3097 }
3098
3099 /* If non-zero the match data have been saved in saved_search_regs
3100 during the execution of a sentinel or filter. */
3101 static int search_regs_saved;
3102 static struct re_registers saved_search_regs;
3103 static Lisp_Object saved_last_thing_searched;
3104
3105 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3106 if asynchronous code (filter or sentinel) is running. */
3107 static void
3108 save_search_regs (void)
3109 {
3110 if (!search_regs_saved)
3111 {
3112 saved_search_regs.num_regs = search_regs.num_regs;
3113 saved_search_regs.start = search_regs.start;
3114 saved_search_regs.end = search_regs.end;
3115 saved_last_thing_searched = last_thing_searched;
3116 last_thing_searched = Qnil;
3117 search_regs.num_regs = 0;
3118 search_regs.start = 0;
3119 search_regs.end = 0;
3120
3121 search_regs_saved = 1;
3122 }
3123 }
3124
3125 /* Called upon exit from filters and sentinels. */
3126 void
3127 restore_search_regs (void)
3128 {
3129 if (search_regs_saved)
3130 {
3131 if (search_regs.num_regs > 0)
3132 {
3133 xfree (search_regs.start);
3134 xfree (search_regs.end);
3135 }
3136 search_regs.num_regs = saved_search_regs.num_regs;
3137 search_regs.start = saved_search_regs.start;
3138 search_regs.end = saved_search_regs.end;
3139 last_thing_searched = saved_last_thing_searched;
3140 saved_last_thing_searched = Qnil;
3141 search_regs_saved = 0;
3142 }
3143 }
3144
3145 static Lisp_Object
3146 unwind_set_match_data (Lisp_Object list)
3147 {
3148 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3149 return Fset_match_data (list, Qt);
3150 }
3151
3152 /* Called to unwind protect the match data. */
3153 void
3154 record_unwind_save_match_data (void)
3155 {
3156 record_unwind_protect (unwind_set_match_data,
3157 Fmatch_data (Qnil, Qnil, Qnil));
3158 }
3159
3160 /* Quote a string to inactivate reg-expr chars */
3161
3162 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3163 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3164 (Lisp_Object string)
3165 {
3166 register char *in, *out, *end;
3167 register char *temp;
3168 int backslashes_added = 0;
3169
3170 CHECK_STRING (string);
3171
3172 temp = (char *) alloca (SBYTES (string) * 2);
3173
3174 /* Now copy the data into the new string, inserting escapes. */
3175
3176 in = SSDATA (string);
3177 end = in + SBYTES (string);
3178 out = temp;
3179
3180 for (; in != end; in++)
3181 {
3182 if (*in == '['
3183 || *in == '*' || *in == '.' || *in == '\\'
3184 || *in == '?' || *in == '+'
3185 || *in == '^' || *in == '$')
3186 *out++ = '\\', backslashes_added++;
3187 *out++ = *in;
3188 }
3189
3190 return make_specified_string (temp,
3191 SCHARS (string) + backslashes_added,
3192 out - temp,
3193 STRING_MULTIBYTE (string));
3194 }
3195 \f
3196 void
3197 syms_of_search (void)
3198 {
3199 register int i;
3200
3201 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3202 {
3203 searchbufs[i].buf.allocated = 100;
3204 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3205 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3206 searchbufs[i].regexp = Qnil;
3207 searchbufs[i].whitespace_regexp = Qnil;
3208 searchbufs[i].syntax_table = Qnil;
3209 staticpro (&searchbufs[i].regexp);
3210 staticpro (&searchbufs[i].whitespace_regexp);
3211 staticpro (&searchbufs[i].syntax_table);
3212 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3213 }
3214 searchbuf_head = &searchbufs[0];
3215
3216 DEFSYM (Qsearch_failed, "search-failed");
3217 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3218
3219 Fput (Qsearch_failed, Qerror_conditions,
3220 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3221 Fput (Qsearch_failed, Qerror_message,
3222 make_pure_c_string ("Search failed"));
3223
3224 Fput (Qinvalid_regexp, Qerror_conditions,
3225 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3226 Fput (Qinvalid_regexp, Qerror_message,
3227 make_pure_c_string ("Invalid regexp"));
3228
3229 last_thing_searched = Qnil;
3230 staticpro (&last_thing_searched);
3231
3232 saved_last_thing_searched = Qnil;
3233 staticpro (&saved_last_thing_searched);
3234
3235 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3236 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3237 Some commands use this for user-specified regexps.
3238 Spaces that occur inside character classes or repetition operators
3239 or other such regexp constructs are not replaced with this.
3240 A value of nil (which is the normal value) means treat spaces literally. */);
3241 Vsearch_spaces_regexp = Qnil;
3242
3243 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3244 doc: /* Internal use only.
3245 If non-nil, the primitive searching and matching functions
3246 such as `looking-at', `string-match', `re-search-forward', etc.,
3247 do not set the match data. The proper way to use this variable
3248 is to bind it with `let' around a small expression. */);
3249 Vinhibit_changing_match_data = Qnil;
3250
3251 defsubr (&Slooking_at);
3252 defsubr (&Sposix_looking_at);
3253 defsubr (&Sstring_match);
3254 defsubr (&Sposix_string_match);
3255 defsubr (&Ssearch_forward);
3256 defsubr (&Ssearch_backward);
3257 defsubr (&Sword_search_forward);
3258 defsubr (&Sword_search_backward);
3259 defsubr (&Sword_search_forward_lax);
3260 defsubr (&Sword_search_backward_lax);
3261 defsubr (&Sre_search_forward);
3262 defsubr (&Sre_search_backward);
3263 defsubr (&Sposix_search_forward);
3264 defsubr (&Sposix_search_backward);
3265 defsubr (&Sreplace_match);
3266 defsubr (&Smatch_beginning);
3267 defsubr (&Smatch_end);
3268 defsubr (&Smatch_data);
3269 defsubr (&Sset_match_data);
3270 defsubr (&Sregexp_quote);
3271 }