Merge from emacs-24; up to 2012-04-24T21:47:24Z!michael.albinus@gmx.de
[bpt/emacs.git] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2012 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
20
21 /* Documentation note.
22
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
35
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
51
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
54
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
63
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
73
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
86 */
87
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
92
93 #include <stdlib.h>
94 #include <config.h>
95 #undef malloc
96 #undef realloc
97 #undef free
98
99 #include "unexec.h"
100
101 #include <stdio.h>
102 #include <fcntl.h>
103 #include <stdarg.h>
104 #include <sys/types.h>
105 #include <unistd.h>
106 #include <mach/mach.h>
107 #include <mach-o/loader.h>
108 #include <mach-o/reloc.h>
109 #if defined (__ppc__)
110 #include <mach-o/ppc/reloc.h>
111 #endif
112 #ifdef HAVE_MALLOC_MALLOC_H
113 #include <malloc/malloc.h>
114 #else
115 #include <objc/malloc.h>
116 #endif
117
118 #include <assert.h>
119
120 #ifdef _LP64
121 #define mach_header mach_header_64
122 #define segment_command segment_command_64
123 #undef VM_REGION_BASIC_INFO_COUNT
124 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
125 #undef VM_REGION_BASIC_INFO
126 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
127 #undef LC_SEGMENT
128 #define LC_SEGMENT LC_SEGMENT_64
129 #define vm_region vm_region_64
130 #define section section_64
131 #undef MH_MAGIC
132 #define MH_MAGIC MH_MAGIC_64
133 #endif
134
135 #define VERBOSE 1
136
137 /* Size of buffer used to copy data from the input file to the output
138 file in function unexec_copy. */
139 #define UNEXEC_COPY_BUFSZ 1024
140
141 /* Regions with memory addresses above this value are assumed to be
142 mapped to dynamically loaded libraries and will not be dumped. */
143 #define VM_DATA_TOP (20 * 1024 * 1024)
144
145 /* Type of an element on the list of regions to be dumped. */
146 struct region_t {
147 vm_address_t address;
148 vm_size_t size;
149 vm_prot_t protection;
150 vm_prot_t max_protection;
151
152 struct region_t *next;
153 };
154
155 /* Head and tail of the list of regions to be dumped. */
156 static struct region_t *region_list_head = 0;
157 static struct region_t *region_list_tail = 0;
158
159 /* Pointer to array of load commands. */
160 static struct load_command **lca;
161
162 /* Number of load commands. */
163 static int nlc;
164
165 /* The highest VM address of segments loaded by the input file.
166 Regions with addresses beyond this are assumed to be allocated
167 dynamically and thus require dumping. */
168 static vm_address_t infile_lc_highest_addr = 0;
169
170 /* The lowest file offset used by the all sections in the __TEXT
171 segments. This leaves room at the beginning of the file to store
172 the Mach-O header. Check this value against header size to ensure
173 the added load commands for the new __DATA segments did not
174 overwrite any of the sections in the __TEXT segment. */
175 static unsigned long text_seg_lowest_offset = 0x10000000;
176
177 /* Mach header. */
178 static struct mach_header mh;
179
180 /* Offset at which the next load command should be written. */
181 static unsigned long curr_header_offset = sizeof (struct mach_header);
182
183 /* Offset at which the next segment should be written. */
184 static unsigned long curr_file_offset = 0;
185
186 static unsigned long pagesize;
187 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
188
189 static int infd, outfd;
190
191 static int in_dumped_exec = 0;
192
193 static malloc_zone_t *emacs_zone;
194
195 /* file offset of input file's data segment */
196 static off_t data_segment_old_fileoff = 0;
197
198 static struct segment_command *data_segment_scp;
199
200 static void unexec_error (const char *format, ...) NO_RETURN;
201
202 /* Read N bytes from infd into memory starting at address DEST.
203 Return true if successful, false otherwise. */
204 static int
205 unexec_read (void *dest, size_t n)
206 {
207 return n == read (infd, dest, n);
208 }
209
210 /* Write COUNT bytes from memory starting at address SRC to outfd
211 starting at offset DEST. Return true if successful, false
212 otherwise. */
213 static int
214 unexec_write (off_t dest, const void *src, size_t count)
215 {
216 if (lseek (outfd, dest, SEEK_SET) != dest)
217 return 0;
218
219 return write (outfd, src, count) == count;
220 }
221
222 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
223 Return true if successful, false otherwise. */
224 static int
225 unexec_write_zero (off_t dest, size_t count)
226 {
227 char buf[UNEXEC_COPY_BUFSZ];
228 ssize_t bytes;
229
230 memset (buf, 0, UNEXEC_COPY_BUFSZ);
231 if (lseek (outfd, dest, SEEK_SET) != dest)
232 return 0;
233
234 while (count > 0)
235 {
236 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
237 if (write (outfd, buf, bytes) != bytes)
238 return 0;
239 count -= bytes;
240 }
241
242 return 1;
243 }
244
245 /* Copy COUNT bytes from starting offset SRC in infd to starting
246 offset DEST in outfd. Return true if successful, false
247 otherwise. */
248 static int
249 unexec_copy (off_t dest, off_t src, ssize_t count)
250 {
251 ssize_t bytes_read;
252 ssize_t bytes_to_read;
253
254 char buf[UNEXEC_COPY_BUFSZ];
255
256 if (lseek (infd, src, SEEK_SET) != src)
257 return 0;
258
259 if (lseek (outfd, dest, SEEK_SET) != dest)
260 return 0;
261
262 while (count > 0)
263 {
264 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
265 bytes_read = read (infd, buf, bytes_to_read);
266 if (bytes_read <= 0)
267 return 0;
268 if (write (outfd, buf, bytes_read) != bytes_read)
269 return 0;
270 count -= bytes_read;
271 }
272
273 return 1;
274 }
275
276 /* Debugging and informational messages routines. */
277
278 static void
279 unexec_error (const char *format, ...)
280 {
281 va_list ap;
282
283 va_start (ap, format);
284 fprintf (stderr, "unexec: ");
285 vfprintf (stderr, format, ap);
286 fprintf (stderr, "\n");
287 va_end (ap);
288 exit (1);
289 }
290
291 static void
292 print_prot (vm_prot_t prot)
293 {
294 if (prot == VM_PROT_NONE)
295 printf ("none");
296 else
297 {
298 putchar (prot & VM_PROT_READ ? 'r' : ' ');
299 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
300 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
301 putchar (' ');
302 }
303 }
304
305 static void
306 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
307 vm_prot_t max_prot)
308 {
309 printf ("%#10lx %#8lx ", (long) address, (long) size);
310 print_prot (prot);
311 putchar (' ');
312 print_prot (max_prot);
313 putchar ('\n');
314 }
315
316 static void
317 print_region_list (void)
318 {
319 struct region_t *r;
320
321 printf (" address size prot maxp\n");
322
323 for (r = region_list_head; r; r = r->next)
324 print_region (r->address, r->size, r->protection, r->max_protection);
325 }
326
327 static void
328 print_regions (void)
329 {
330 task_t target_task = mach_task_self ();
331 vm_address_t address = (vm_address_t) 0;
332 vm_size_t size;
333 struct vm_region_basic_info info;
334 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
335 mach_port_t object_name;
336
337 printf (" address size prot maxp\n");
338
339 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
340 (vm_region_info_t) &info, &info_count, &object_name)
341 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
342 {
343 print_region (address, size, info.protection, info.max_protection);
344
345 if (object_name != MACH_PORT_NULL)
346 mach_port_deallocate (target_task, object_name);
347
348 address += size;
349 }
350 }
351
352 /* Build the list of regions that need to be dumped. Regions with
353 addresses above VM_DATA_TOP are omitted. Adjacent regions with
354 identical protection are merged. Note that non-writable regions
355 cannot be omitted because they some regions created at run time are
356 read-only. */
357 static void
358 build_region_list (void)
359 {
360 task_t target_task = mach_task_self ();
361 vm_address_t address = (vm_address_t) 0;
362 vm_size_t size;
363 struct vm_region_basic_info info;
364 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
365 mach_port_t object_name;
366 struct region_t *r;
367
368 #if VERBOSE
369 printf ("--- List of All Regions ---\n");
370 printf (" address size prot maxp\n");
371 #endif
372
373 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
374 (vm_region_info_t) &info, &info_count, &object_name)
375 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
376 {
377 /* Done when we reach addresses of shared libraries, which are
378 loaded in high memory. */
379 if (address >= VM_DATA_TOP)
380 break;
381
382 #if VERBOSE
383 print_region (address, size, info.protection, info.max_protection);
384 #endif
385
386 /* If a region immediately follows the previous one (the one
387 most recently added to the list) and has identical
388 protection, merge it with the latter. Otherwise create a
389 new list element for it. */
390 if (region_list_tail
391 && info.protection == region_list_tail->protection
392 && info.max_protection == region_list_tail->max_protection
393 && region_list_tail->address + region_list_tail->size == address)
394 {
395 region_list_tail->size += size;
396 }
397 else
398 {
399 r = (struct region_t *) malloc (sizeof (struct region_t));
400
401 if (!r)
402 unexec_error ("cannot allocate region structure");
403
404 r->address = address;
405 r->size = size;
406 r->protection = info.protection;
407 r->max_protection = info.max_protection;
408
409 r->next = 0;
410 if (region_list_head == 0)
411 {
412 region_list_head = r;
413 region_list_tail = r;
414 }
415 else
416 {
417 region_list_tail->next = r;
418 region_list_tail = r;
419 }
420
421 /* Deallocate (unused) object name returned by
422 vm_region. */
423 if (object_name != MACH_PORT_NULL)
424 mach_port_deallocate (target_task, object_name);
425 }
426
427 address += size;
428 }
429
430 printf ("--- List of Regions to be Dumped ---\n");
431 print_region_list ();
432 }
433
434
435 #define MAX_UNEXEC_REGIONS 400
436
437 static int num_unexec_regions;
438 typedef struct {
439 vm_range_t range;
440 vm_size_t filesize;
441 } unexec_region_info;
442 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
443
444 static void
445 unexec_regions_recorder (task_t task, void *rr, unsigned type,
446 vm_range_t *ranges, unsigned num)
447 {
448 vm_address_t p;
449 vm_size_t filesize;
450
451 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
452 {
453 /* Subtract the size of trailing null bytes from filesize. It
454 can be smaller than vmsize in segment commands. In such a
455 case, trailing bytes are initialized with zeros. */
456 for (p = ranges->address + ranges->size; p > ranges->address; p--)
457 if (*(((char *) p)-1))
458 break;
459 filesize = p - ranges->address;
460
461 unexec_regions[num_unexec_regions].filesize = filesize;
462 unexec_regions[num_unexec_regions++].range = *ranges;
463 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
464 (long) filesize, (long) (ranges->size));
465 ranges++; num--;
466 }
467 }
468
469 static kern_return_t
470 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
471 {
472 *ptr = (void *) address;
473 return KERN_SUCCESS;
474 }
475
476 static void
477 find_emacs_zone_regions (void)
478 {
479 num_unexec_regions = 0;
480
481 emacs_zone->introspect->enumerator (mach_task_self (), 0,
482 MALLOC_PTR_REGION_RANGE_TYPE
483 | MALLOC_ADMIN_REGION_RANGE_TYPE,
484 (vm_address_t) emacs_zone,
485 unexec_reader,
486 unexec_regions_recorder);
487
488 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
489 unexec_error ("find_emacs_zone_regions: too many regions");
490 }
491
492 static int
493 unexec_regions_sort_compare (const void *a, const void *b)
494 {
495 vm_address_t aa = ((unexec_region_info *) a)->range.address;
496 vm_address_t bb = ((unexec_region_info *) b)->range.address;
497
498 if (aa < bb)
499 return -1;
500 else if (aa > bb)
501 return 1;
502 else
503 return 0;
504 }
505
506 static void
507 unexec_regions_merge (void)
508 {
509 int i, n;
510 unexec_region_info r;
511 vm_size_t padsize;
512
513 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
514 &unexec_regions_sort_compare);
515 n = 0;
516 r = unexec_regions[0];
517 padsize = r.range.address & (pagesize - 1);
518 if (padsize)
519 {
520 r.range.address -= padsize;
521 r.range.size += padsize;
522 r.filesize += padsize;
523 }
524 for (i = 1; i < num_unexec_regions; i++)
525 {
526 if (r.range.address + r.range.size == unexec_regions[i].range.address
527 && r.range.size - r.filesize < 2 * pagesize)
528 {
529 r.filesize = r.range.size + unexec_regions[i].filesize;
530 r.range.size += unexec_regions[i].range.size;
531 }
532 else
533 {
534 unexec_regions[n++] = r;
535 r = unexec_regions[i];
536 padsize = r.range.address & (pagesize - 1);
537 if (padsize)
538 {
539 if ((unexec_regions[n-1].range.address
540 + unexec_regions[n-1].range.size) == r.range.address)
541 unexec_regions[n-1].range.size -= padsize;
542
543 r.range.address -= padsize;
544 r.range.size += padsize;
545 r.filesize += padsize;
546 }
547 }
548 }
549 unexec_regions[n++] = r;
550 num_unexec_regions = n;
551 }
552
553
554 /* More informational messages routines. */
555
556 static void
557 print_load_command_name (int lc)
558 {
559 switch (lc)
560 {
561 case LC_SEGMENT:
562 #ifndef _LP64
563 printf ("LC_SEGMENT ");
564 #else
565 printf ("LC_SEGMENT_64 ");
566 #endif
567 break;
568 case LC_LOAD_DYLINKER:
569 printf ("LC_LOAD_DYLINKER ");
570 break;
571 case LC_LOAD_DYLIB:
572 printf ("LC_LOAD_DYLIB ");
573 break;
574 case LC_SYMTAB:
575 printf ("LC_SYMTAB ");
576 break;
577 case LC_DYSYMTAB:
578 printf ("LC_DYSYMTAB ");
579 break;
580 case LC_UNIXTHREAD:
581 printf ("LC_UNIXTHREAD ");
582 break;
583 case LC_PREBOUND_DYLIB:
584 printf ("LC_PREBOUND_DYLIB");
585 break;
586 case LC_TWOLEVEL_HINTS:
587 printf ("LC_TWOLEVEL_HINTS");
588 break;
589 #ifdef LC_UUID
590 case LC_UUID:
591 printf ("LC_UUID ");
592 break;
593 #endif
594 #ifdef LC_DYLD_INFO
595 case LC_DYLD_INFO:
596 printf ("LC_DYLD_INFO ");
597 break;
598 case LC_DYLD_INFO_ONLY:
599 printf ("LC_DYLD_INFO_ONLY");
600 break;
601 #endif
602 #ifdef LC_VERSION_MIN_MACOSX
603 case LC_VERSION_MIN_MACOSX:
604 printf ("LC_VERSION_MIN_MACOSX");
605 break;
606 #endif
607 #ifdef LC_FUNCTION_STARTS
608 case LC_FUNCTION_STARTS:
609 printf ("LC_FUNCTION_STARTS");
610 break;
611 #endif
612 default:
613 printf ("unknown ");
614 }
615 }
616
617 static void
618 print_load_command (struct load_command *lc)
619 {
620 print_load_command_name (lc->cmd);
621 printf ("%8d", lc->cmdsize);
622
623 if (lc->cmd == LC_SEGMENT)
624 {
625 struct segment_command *scp;
626 struct section *sectp;
627 int j;
628
629 scp = (struct segment_command *) lc;
630 printf (" %-16.16s %#10lx %#8lx\n",
631 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
632
633 sectp = (struct section *) (scp + 1);
634 for (j = 0; j < scp->nsects; j++)
635 {
636 printf (" %-16.16s %#10lx %#8lx\n",
637 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
638 sectp++;
639 }
640 }
641 else
642 printf ("\n");
643 }
644
645 /* Read header and load commands from input file. Store the latter in
646 the global array lca. Store the total number of load commands in
647 global variable nlc. */
648 static void
649 read_load_commands (void)
650 {
651 int i;
652
653 if (!unexec_read (&mh, sizeof (struct mach_header)))
654 unexec_error ("cannot read mach-o header");
655
656 if (mh.magic != MH_MAGIC)
657 unexec_error ("input file not in Mach-O format");
658
659 if (mh.filetype != MH_EXECUTE)
660 unexec_error ("input Mach-O file is not an executable object file");
661
662 #if VERBOSE
663 printf ("--- Header Information ---\n");
664 printf ("Magic = 0x%08x\n", mh.magic);
665 printf ("CPUType = %d\n", mh.cputype);
666 printf ("CPUSubType = %d\n", mh.cpusubtype);
667 printf ("FileType = 0x%x\n", mh.filetype);
668 printf ("NCmds = %d\n", mh.ncmds);
669 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
670 printf ("Flags = 0x%08x\n", mh.flags);
671 #endif
672
673 nlc = mh.ncmds;
674 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
675
676 for (i = 0; i < nlc; i++)
677 {
678 struct load_command lc;
679 /* Load commands are variable-size: so read the command type and
680 size first and then read the rest. */
681 if (!unexec_read (&lc, sizeof (struct load_command)))
682 unexec_error ("cannot read load command");
683 lca[i] = (struct load_command *) malloc (lc.cmdsize);
684 memcpy (lca[i], &lc, sizeof (struct load_command));
685 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
686 unexec_error ("cannot read content of load command");
687 if (lc.cmd == LC_SEGMENT)
688 {
689 struct segment_command *scp = (struct segment_command *) lca[i];
690
691 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
692 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
693
694 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
695 {
696 struct section *sectp = (struct section *) (scp + 1);
697 int j;
698
699 for (j = 0; j < scp->nsects; j++)
700 if (sectp->offset < text_seg_lowest_offset)
701 text_seg_lowest_offset = sectp->offset;
702 }
703 }
704 }
705
706 printf ("Highest address of load commands in input file: %#8lx\n",
707 (unsigned long)infile_lc_highest_addr);
708
709 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
710 text_seg_lowest_offset);
711
712 printf ("--- List of Load Commands in Input File ---\n");
713 printf ("# cmd cmdsize name address size\n");
714
715 for (i = 0; i < nlc; i++)
716 {
717 printf ("%1d ", i);
718 print_load_command (lca[i]);
719 }
720 }
721
722 /* Copy a LC_SEGMENT load command other than the __DATA segment from
723 the input file to the output file, adjusting the file offset of the
724 segment and the file offsets of sections contained in it. */
725 static void
726 copy_segment (struct load_command *lc)
727 {
728 struct segment_command *scp = (struct segment_command *) lc;
729 unsigned long old_fileoff = scp->fileoff;
730 struct section *sectp;
731 int j;
732
733 scp->fileoff = curr_file_offset;
734
735 sectp = (struct section *) (scp + 1);
736 for (j = 0; j < scp->nsects; j++)
737 {
738 sectp->offset += curr_file_offset - old_fileoff;
739 sectp++;
740 }
741
742 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
743 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
744 (long) (scp->vmsize), (long) (scp->vmaddr));
745
746 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
747 unexec_error ("cannot copy segment from input to output file");
748 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
749
750 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
751 unexec_error ("cannot write load command to header");
752
753 curr_header_offset += lc->cmdsize;
754 }
755
756 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
757 file to the output file. We assume that only one such segment load
758 command exists in the input file and it contains the sections
759 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
760 __dyld. The first three of these should be dumped from memory and
761 the rest should be copied from the input file. Note that the
762 sections __bss and __common contain no data in the input file
763 because their flag fields have the value S_ZEROFILL. Dumping these
764 from memory makes it necessary to adjust file offset fields in
765 subsequently dumped load commands. Then, create new __DATA segment
766 load commands for regions on the region list other than the one
767 corresponding to the __DATA segment in the input file. */
768 static void
769 copy_data_segment (struct load_command *lc)
770 {
771 struct segment_command *scp = (struct segment_command *) lc;
772 struct section *sectp;
773 int j;
774 unsigned long header_offset, old_file_offset;
775
776 /* The new filesize of the segment is set to its vmsize because data
777 blocks for segments must start at region boundaries. Note that
778 this may leave unused locations at the end of the segment data
779 block because the total of the sizes of all sections in the
780 segment is generally smaller than vmsize. */
781 scp->filesize = scp->vmsize;
782
783 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
784 scp->segname, curr_file_offset, (long)(scp->filesize),
785 (long)(scp->vmsize), (long) (scp->vmaddr));
786
787 /* Offsets in the output file for writing the next section structure
788 and segment data block, respectively. */
789 header_offset = curr_header_offset + sizeof (struct segment_command);
790
791 sectp = (struct section *) (scp + 1);
792 for (j = 0; j < scp->nsects; j++)
793 {
794 old_file_offset = sectp->offset;
795 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
796 /* The __data section is dumped from memory. The __bss and
797 __common sections are also dumped from memory but their flag
798 fields require changing (from S_ZEROFILL to S_REGULAR). The
799 other three kinds of sections are just copied from the input
800 file. */
801 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
802 {
803 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
804 unexec_error ("cannot write section %s", SECT_DATA);
805 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
806 unexec_error ("cannot write section %s's header", SECT_DATA);
807 }
808 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
809 {
810 sectp->flags = S_REGULAR;
811 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
812 unexec_error ("cannot write section %.16s", sectp->sectname);
813 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
814 unexec_error ("cannot write section %.16s's header", sectp->sectname);
815 }
816 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
817 {
818 extern char *my_endbss_static;
819 unsigned long my_size;
820
821 sectp->flags = S_REGULAR;
822
823 /* Clear uninitialized local variables in statically linked
824 libraries. In particular, function pointers stored by
825 libSystemStub.a, which is introduced in Mac OS X 10.4 for
826 binary compatibility with respect to long double, are
827 cleared so that they will be reinitialized when the
828 dumped binary is executed on other versions of OS. */
829 my_size = (unsigned long)my_endbss_static - sectp->addr;
830 if (!(sectp->addr <= (unsigned long)my_endbss_static
831 && my_size <= sectp->size))
832 unexec_error ("my_endbss_static is not in section %.16s",
833 sectp->sectname);
834 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
835 unexec_error ("cannot write section %.16s", sectp->sectname);
836 if (!unexec_write_zero (sectp->offset + my_size,
837 sectp->size - my_size))
838 unexec_error ("cannot write section %.16s", sectp->sectname);
839 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
840 unexec_error ("cannot write section %.16s's header", sectp->sectname);
841 }
842 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
843 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
844 || strncmp (sectp->sectname, "__got", 16) == 0
845 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
846 || strncmp (sectp->sectname, "__dyld", 16) == 0
847 || strncmp (sectp->sectname, "__const", 16) == 0
848 || strncmp (sectp->sectname, "__cfstring", 16) == 0
849 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
850 || strncmp (sectp->sectname, "__program_vars", 16) == 0
851 || strncmp (sectp->sectname, "__objc_", 7) == 0)
852 {
853 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
854 unexec_error ("cannot copy section %.16s", sectp->sectname);
855 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
856 unexec_error ("cannot write section %.16s's header", sectp->sectname);
857 }
858 else
859 unexec_error ("unrecognized section %.16s in __DATA segment",
860 sectp->sectname);
861
862 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
863 sectp->sectname, (long) (sectp->offset),
864 (long) (sectp->offset + sectp->size), (long) (sectp->size));
865
866 header_offset += sizeof (struct section);
867 sectp++;
868 }
869
870 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
871
872 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
873 unexec_error ("cannot write header of __DATA segment");
874 curr_header_offset += lc->cmdsize;
875
876 /* Create new __DATA segment load commands for regions on the region
877 list that do not corresponding to any segment load commands in
878 the input file.
879 */
880 for (j = 0; j < num_unexec_regions; j++)
881 {
882 struct segment_command sc;
883
884 sc.cmd = LC_SEGMENT;
885 sc.cmdsize = sizeof (struct segment_command);
886 strncpy (sc.segname, SEG_DATA, 16);
887 sc.vmaddr = unexec_regions[j].range.address;
888 sc.vmsize = unexec_regions[j].range.size;
889 sc.fileoff = curr_file_offset;
890 sc.filesize = unexec_regions[j].filesize;
891 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
892 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
893 sc.nsects = 0;
894 sc.flags = 0;
895
896 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
897 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
898 (long) (sc.vmsize), (long) (sc.vmaddr));
899
900 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
901 unexec_error ("cannot write new __DATA segment");
902 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
903
904 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
905 unexec_error ("cannot write new __DATA segment's header");
906 curr_header_offset += sc.cmdsize;
907 mh.ncmds++;
908 }
909 }
910
911 /* Copy a LC_SYMTAB load command from the input file to the output
912 file, adjusting the file offset fields. */
913 static void
914 copy_symtab (struct load_command *lc, long delta)
915 {
916 struct symtab_command *stp = (struct symtab_command *) lc;
917
918 stp->symoff += delta;
919 stp->stroff += delta;
920
921 printf ("Writing LC_SYMTAB command\n");
922
923 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
924 unexec_error ("cannot write symtab command to header");
925
926 curr_header_offset += lc->cmdsize;
927 }
928
929 /* Fix up relocation entries. */
930 static void
931 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
932 {
933 int i, unreloc_count;
934 struct relocation_info reloc_info;
935 struct scattered_relocation_info *sc_reloc_info
936 = (struct scattered_relocation_info *) &reloc_info;
937 vm_address_t location;
938
939 for (unreloc_count = 0, i = 0; i < nrel; i++)
940 {
941 if (lseek (infd, reloff, L_SET) != reloff)
942 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
943 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
944 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
945 reloff += sizeof (reloc_info);
946
947 if (sc_reloc_info->r_scattered == 0)
948 switch (reloc_info.r_type)
949 {
950 case GENERIC_RELOC_VANILLA:
951 location = base + reloc_info.r_address;
952 if (location >= data_segment_scp->vmaddr
953 && location < (data_segment_scp->vmaddr
954 + data_segment_scp->vmsize))
955 {
956 off_t src_off = data_segment_old_fileoff
957 + (location - data_segment_scp->vmaddr);
958 off_t dst_off = data_segment_scp->fileoff
959 + (location - data_segment_scp->vmaddr);
960
961 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
962 unexec_error ("unrelocate: %s:%d cannot copy original value",
963 name, i);
964 unreloc_count++;
965 }
966 break;
967 default:
968 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
969 name, i, reloc_info.r_type);
970 }
971 else
972 switch (sc_reloc_info->r_type)
973 {
974 #if defined (__ppc__)
975 case PPC_RELOC_PB_LA_PTR:
976 /* nothing to do for prebound lazy pointer */
977 break;
978 #endif
979 default:
980 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
981 name, i, sc_reloc_info->r_type);
982 }
983 }
984
985 if (nrel > 0)
986 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
987 unreloc_count, nrel, name);
988 }
989
990 #if __ppc64__
991 /* Rebase r_address in the relocation table. */
992 static void
993 rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
994 {
995 int i;
996 struct relocation_info reloc_info;
997 struct scattered_relocation_info *sc_reloc_info
998 = (struct scattered_relocation_info *) &reloc_info;
999
1000 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
1001 {
1002 if (lseek (infd, reloff - linkedit_delta, L_SET)
1003 != reloff - linkedit_delta)
1004 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
1005 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1006 unexec_error ("rebase_reloc_table: cannot read reloc_info");
1007
1008 if (sc_reloc_info->r_scattered == 0
1009 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
1010 {
1011 reloc_info.r_address -= diff;
1012 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
1013 unexec_error ("rebase_reloc_table: cannot write reloc_info");
1014 }
1015 }
1016 }
1017 #endif
1018
1019 /* Copy a LC_DYSYMTAB load command from the input file to the output
1020 file, adjusting the file offset fields. */
1021 static void
1022 copy_dysymtab (struct load_command *lc, long delta)
1023 {
1024 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1025 vm_address_t base;
1026
1027 #ifdef _LP64
1028 #if __ppc64__
1029 {
1030 int i;
1031
1032 base = 0;
1033 for (i = 0; i < nlc; i++)
1034 if (lca[i]->cmd == LC_SEGMENT)
1035 {
1036 struct segment_command *scp = (struct segment_command *) lca[i];
1037
1038 if (scp->vmaddr + scp->vmsize > 0x100000000
1039 && (scp->initprot & VM_PROT_WRITE) != 0)
1040 {
1041 base = data_segment_scp->vmaddr;
1042 break;
1043 }
1044 }
1045 }
1046 #else
1047 /* First writable segment address. */
1048 base = data_segment_scp->vmaddr;
1049 #endif
1050 #else
1051 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1052 base = 0;
1053 #endif
1054
1055 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1056 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1057
1058 if (dstp->nextrel > 0) {
1059 dstp->extreloff += delta;
1060 }
1061
1062 if (dstp->nlocrel > 0) {
1063 dstp->locreloff += delta;
1064 }
1065
1066 if (dstp->nindirectsyms > 0)
1067 dstp->indirectsymoff += delta;
1068
1069 printf ("Writing LC_DYSYMTAB command\n");
1070
1071 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1072 unexec_error ("cannot write symtab command to header");
1073
1074 curr_header_offset += lc->cmdsize;
1075
1076 #if __ppc64__
1077 /* Check if the relocation base needs to be changed. */
1078 if (base == 0)
1079 {
1080 vm_address_t newbase = 0;
1081 int i;
1082
1083 for (i = 0; i < num_unexec_regions; i++)
1084 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1085 > 0x100000000)
1086 {
1087 newbase = data_segment_scp->vmaddr;
1088 break;
1089 }
1090
1091 if (newbase)
1092 {
1093 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1094 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1095 }
1096 }
1097 #endif
1098 }
1099
1100 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1101 file, adjusting the file offset fields. */
1102 static void
1103 copy_twolevelhints (struct load_command *lc, long delta)
1104 {
1105 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1106
1107 if (tlhp->nhints > 0) {
1108 tlhp->offset += delta;
1109 }
1110
1111 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1112
1113 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1114 unexec_error ("cannot write two level hint command to header");
1115
1116 curr_header_offset += lc->cmdsize;
1117 }
1118
1119 #ifdef LC_DYLD_INFO
1120 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1121 file, adjusting the file offset fields. */
1122 static void
1123 copy_dyld_info (struct load_command *lc, long delta)
1124 {
1125 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1126
1127 if (dip->rebase_off > 0)
1128 dip->rebase_off += delta;
1129 if (dip->bind_off > 0)
1130 dip->bind_off += delta;
1131 if (dip->weak_bind_off > 0)
1132 dip->weak_bind_off += delta;
1133 if (dip->lazy_bind_off > 0)
1134 dip->lazy_bind_off += delta;
1135 if (dip->export_off > 0)
1136 dip->export_off += delta;
1137
1138 printf ("Writing ");
1139 print_load_command_name (lc->cmd);
1140 printf (" command\n");
1141
1142 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1143 unexec_error ("cannot write dyld info command to header");
1144
1145 curr_header_offset += lc->cmdsize;
1146 }
1147 #endif
1148
1149 #ifdef LC_FUNCTION_STARTS
1150 /* Copy a LC_FUNCTION_STARTS load command from the input file to the
1151 output file, adjusting the data offset field. */
1152 static void
1153 copy_linkedit_data (struct load_command *lc, long delta)
1154 {
1155 struct linkedit_data_command *ldp = (struct linkedit_data_command *) lc;
1156
1157 if (ldp->dataoff > 0)
1158 ldp->dataoff += delta;
1159
1160 printf ("Writing ");
1161 print_load_command_name (lc->cmd);
1162 printf (" command\n");
1163
1164 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1165 unexec_error ("cannot write linkedit data command to header");
1166
1167 curr_header_offset += lc->cmdsize;
1168 }
1169 #endif
1170
1171 /* Copy other kinds of load commands from the input file to the output
1172 file, ones that do not require adjustments of file offsets. */
1173 static void
1174 copy_other (struct load_command *lc)
1175 {
1176 printf ("Writing ");
1177 print_load_command_name (lc->cmd);
1178 printf (" command\n");
1179
1180 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1181 unexec_error ("cannot write symtab command to header");
1182
1183 curr_header_offset += lc->cmdsize;
1184 }
1185
1186 /* Loop through all load commands and dump them. Then write the Mach
1187 header. */
1188 static void
1189 dump_it (void)
1190 {
1191 int i;
1192 long linkedit_delta = 0;
1193
1194 printf ("--- Load Commands written to Output File ---\n");
1195
1196 for (i = 0; i < nlc; i++)
1197 switch (lca[i]->cmd)
1198 {
1199 case LC_SEGMENT:
1200 {
1201 struct segment_command *scp = (struct segment_command *) lca[i];
1202 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1203 {
1204 /* save data segment file offset and segment_command for
1205 unrelocate */
1206 if (data_segment_old_fileoff)
1207 unexec_error ("cannot handle multiple DATA segments"
1208 " in input file");
1209 data_segment_old_fileoff = scp->fileoff;
1210 data_segment_scp = scp;
1211
1212 copy_data_segment (lca[i]);
1213 }
1214 else
1215 {
1216 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1217 {
1218 if (linkedit_delta)
1219 unexec_error ("cannot handle multiple LINKEDIT segments"
1220 " in input file");
1221 linkedit_delta = curr_file_offset - scp->fileoff;
1222 }
1223
1224 copy_segment (lca[i]);
1225 }
1226 }
1227 break;
1228 case LC_SYMTAB:
1229 copy_symtab (lca[i], linkedit_delta);
1230 break;
1231 case LC_DYSYMTAB:
1232 copy_dysymtab (lca[i], linkedit_delta);
1233 break;
1234 case LC_TWOLEVEL_HINTS:
1235 copy_twolevelhints (lca[i], linkedit_delta);
1236 break;
1237 #ifdef LC_DYLD_INFO
1238 case LC_DYLD_INFO:
1239 case LC_DYLD_INFO_ONLY:
1240 copy_dyld_info (lca[i], linkedit_delta);
1241 break;
1242 #endif
1243 #ifdef LC_FUNCTION_STARTS
1244 case LC_FUNCTION_STARTS:
1245 copy_linkedit_data (lca[i], linkedit_delta);
1246 break;
1247 #endif
1248 default:
1249 copy_other (lca[i]);
1250 break;
1251 }
1252
1253 if (curr_header_offset > text_seg_lowest_offset)
1254 unexec_error ("not enough room for load commands for new __DATA segments");
1255
1256 printf ("%ld unused bytes follow Mach-O header\n",
1257 text_seg_lowest_offset - curr_header_offset);
1258
1259 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1260 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1261 unexec_error ("cannot write final header contents");
1262 }
1263
1264 /* Take a snapshot of Emacs and make a Mach-O format executable file
1265 from it. The file names of the output and input files are outfile
1266 and infile, respectively. The three other parameters are
1267 ignored. */
1268 void
1269 unexec (const char *outfile, const char *infile)
1270 {
1271 if (in_dumped_exec)
1272 unexec_error ("Unexec from a dumped executable is not supported.");
1273
1274 pagesize = getpagesize ();
1275 infd = open (infile, O_RDONLY, 0);
1276 if (infd < 0)
1277 {
1278 unexec_error ("cannot open input file `%s'", infile);
1279 }
1280
1281 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1282 if (outfd < 0)
1283 {
1284 close (infd);
1285 unexec_error ("cannot open output file `%s'", outfile);
1286 }
1287
1288 build_region_list ();
1289 read_load_commands ();
1290
1291 find_emacs_zone_regions ();
1292 unexec_regions_merge ();
1293
1294 in_dumped_exec = 1;
1295
1296 dump_it ();
1297
1298 close (outfd);
1299 }
1300
1301
1302 void
1303 unexec_init_emacs_zone (void)
1304 {
1305 emacs_zone = malloc_create_zone (0, 0);
1306 malloc_set_zone_name (emacs_zone, "EmacsZone");
1307 }
1308
1309 #ifndef MACOSX_MALLOC_MULT16
1310 #define MACOSX_MALLOC_MULT16 1
1311 #endif
1312
1313 typedef struct unexec_malloc_header {
1314 union {
1315 char c[8];
1316 size_t size;
1317 } u;
1318 } unexec_malloc_header_t;
1319
1320 #if MACOSX_MALLOC_MULT16
1321
1322 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1323
1324 #else
1325
1326 int
1327 ptr_in_unexec_regions (void *ptr)
1328 {
1329 int i;
1330
1331 for (i = 0; i < num_unexec_regions; i++)
1332 if ((vm_address_t) ptr - unexec_regions[i].range.address
1333 < unexec_regions[i].range.size)
1334 return 1;
1335
1336 return 0;
1337 }
1338
1339 #endif
1340
1341 void *
1342 unexec_malloc (size_t size)
1343 {
1344 if (in_dumped_exec)
1345 {
1346 void *p;
1347
1348 p = malloc (size);
1349 #if MACOSX_MALLOC_MULT16
1350 assert (((vm_address_t) p % 16) == 0);
1351 #endif
1352 return p;
1353 }
1354 else
1355 {
1356 unexec_malloc_header_t *ptr;
1357
1358 ptr = (unexec_malloc_header_t *)
1359 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1360 ptr->u.size = size;
1361 ptr++;
1362 #if MACOSX_MALLOC_MULT16
1363 assert (((vm_address_t) ptr % 16) == 8);
1364 #endif
1365 return (void *) ptr;
1366 }
1367 }
1368
1369 void *
1370 unexec_realloc (void *old_ptr, size_t new_size)
1371 {
1372 if (in_dumped_exec)
1373 {
1374 void *p;
1375
1376 if (ptr_in_unexec_regions (old_ptr))
1377 {
1378 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1379 size_t size = new_size > old_size ? old_size : new_size;
1380
1381 p = (size_t *) malloc (new_size);
1382 if (size)
1383 memcpy (p, old_ptr, size);
1384 }
1385 else
1386 {
1387 p = realloc (old_ptr, new_size);
1388 }
1389 #if MACOSX_MALLOC_MULT16
1390 assert (((vm_address_t) p % 16) == 0);
1391 #endif
1392 return p;
1393 }
1394 else
1395 {
1396 unexec_malloc_header_t *ptr;
1397
1398 ptr = (unexec_malloc_header_t *)
1399 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1400 new_size + sizeof (unexec_malloc_header_t));
1401 ptr->u.size = new_size;
1402 ptr++;
1403 #if MACOSX_MALLOC_MULT16
1404 assert (((vm_address_t) ptr % 16) == 8);
1405 #endif
1406 return (void *) ptr;
1407 }
1408 }
1409
1410 void
1411 unexec_free (void *ptr)
1412 {
1413 if (ptr == NULL)
1414 return;
1415 if (in_dumped_exec)
1416 {
1417 if (!ptr_in_unexec_regions (ptr))
1418 free (ptr);
1419 }
1420 else
1421 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1422 }