Revert last save_excursion_save and save_excursion_restore changes.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <ctype.h>
48 #include <float.h>
49 #include <limits.h>
50 #include <intprops.h>
51 #include <strftime.h>
52 #include <verify.h>
53
54 #include "intervals.h"
55 #include "character.h"
56 #include "buffer.h"
57 #include "coding.h"
58 #include "frame.h"
59 #include "window.h"
60 #include "blockinput.h"
61
62 #ifndef USER_FULL_NAME
63 #define USER_FULL_NAME pw->pw_gecos
64 #endif
65
66 #ifndef USE_CRT_DLL
67 extern char **environ;
68 #endif
69
70 #define TM_YEAR_BASE 1900
71
72 #ifdef WINDOWSNT
73 extern Lisp_Object w32_get_internal_run_time (void);
74 #endif
75
76 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
77 int, struct tm *);
78 static int tm_diff (struct tm *, struct tm *);
79 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
80
81 static Lisp_Object Qbuffer_access_fontify_functions;
82
83 /* Symbol for the text property used to mark fields. */
84
85 Lisp_Object Qfield;
86
87 /* A special value for Qfield properties. */
88
89 static Lisp_Object Qboundary;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 pw = getpwuid (getuid ());
110 #ifdef MSDOS
111 /* We let the real user name default to "root" because that's quite
112 accurate on MSDOG and because it lets Emacs find the init file.
113 (The DVX libraries override the Djgpp libraries here.) */
114 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
115 #else
116 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
117 #endif
118
119 /* Get the effective user name, by consulting environment variables,
120 or the effective uid if those are unset. */
121 user_name = getenv ("LOGNAME");
122 if (!user_name)
123 #ifdef WINDOWSNT
124 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
125 #else /* WINDOWSNT */
126 user_name = getenv ("USER");
127 #endif /* WINDOWSNT */
128 if (!user_name)
129 {
130 pw = getpwuid (geteuid ());
131 user_name = pw ? pw->pw_name : "unknown";
132 }
133 Vuser_login_name = build_string (user_name);
134
135 /* If the user name claimed in the environment vars differs from
136 the real uid, use the claimed name to find the full name. */
137 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
138 if (! NILP (tem))
139 tem = Vuser_login_name;
140 else
141 {
142 uid_t euid = geteuid ();
143 tem = make_fixnum_or_float (euid);
144 }
145 Vuser_full_name = Fuser_full_name (tem);
146
147 p = getenv ("NAME");
148 if (p)
149 Vuser_full_name = build_string (p);
150 else if (NILP (Vuser_full_name))
151 Vuser_full_name = build_string ("unknown");
152
153 #ifdef HAVE_SYS_UTSNAME_H
154 {
155 struct utsname uts;
156 uname (&uts);
157 Voperating_system_release = build_string (uts.release);
158 }
159 #else
160 Voperating_system_release = Qnil;
161 #endif
162 }
163 \f
164 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
165 doc: /* Convert arg CHAR to a string containing that character.
166 usage: (char-to-string CHAR) */)
167 (Lisp_Object character)
168 {
169 int c, len;
170 unsigned char str[MAX_MULTIBYTE_LENGTH];
171
172 CHECK_CHARACTER (character);
173 c = XFASTINT (character);
174
175 len = CHAR_STRING (c, str);
176 return make_string_from_bytes ((char *) str, 1, len);
177 }
178
179 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
180 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
181 (Lisp_Object byte)
182 {
183 unsigned char b;
184 CHECK_NUMBER (byte);
185 if (XINT (byte) < 0 || XINT (byte) > 255)
186 error ("Invalid byte");
187 b = XINT (byte);
188 return make_string_from_bytes ((char *) &b, 1, 1);
189 }
190
191 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
192 doc: /* Return the first character in STRING. */)
193 (register Lisp_Object string)
194 {
195 register Lisp_Object val;
196 CHECK_STRING (string);
197 if (SCHARS (string))
198 {
199 if (STRING_MULTIBYTE (string))
200 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
201 else
202 XSETFASTINT (val, SREF (string, 0));
203 }
204 else
205 XSETFASTINT (val, 0);
206 return val;
207 }
208
209 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
210 doc: /* Return value of point, as an integer.
211 Beginning of buffer is position (point-min). */)
212 (void)
213 {
214 Lisp_Object temp;
215 XSETFASTINT (temp, PT);
216 return temp;
217 }
218
219 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
220 doc: /* Return value of point, as a marker object. */)
221 (void)
222 {
223 return build_marker (current_buffer, PT, PT_BYTE);
224 }
225
226 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
227 doc: /* Set point to POSITION, a number or marker.
228 Beginning of buffer is position (point-min), end is (point-max).
229
230 The return value is POSITION. */)
231 (register Lisp_Object position)
232 {
233 ptrdiff_t pos;
234
235 if (MARKERP (position)
236 && current_buffer == XMARKER (position)->buffer)
237 {
238 pos = marker_position (position);
239 if (pos < BEGV)
240 SET_PT_BOTH (BEGV, BEGV_BYTE);
241 else if (pos > ZV)
242 SET_PT_BOTH (ZV, ZV_BYTE);
243 else
244 SET_PT_BOTH (pos, marker_byte_position (position));
245
246 return position;
247 }
248
249 CHECK_NUMBER_COERCE_MARKER (position);
250
251 pos = clip_to_bounds (BEGV, XINT (position), ZV);
252 SET_PT (pos);
253 return position;
254 }
255
256
257 /* Return the start or end position of the region.
258 BEGINNINGP non-zero means return the start.
259 If there is no region active, signal an error. */
260
261 static Lisp_Object
262 region_limit (int beginningp)
263 {
264 Lisp_Object m;
265
266 if (!NILP (Vtransient_mark_mode)
267 && NILP (Vmark_even_if_inactive)
268 && NILP (BVAR (current_buffer, mark_active)))
269 xsignal0 (Qmark_inactive);
270
271 m = Fmarker_position (BVAR (current_buffer, mark));
272 if (NILP (m))
273 error ("The mark is not set now, so there is no region");
274
275 /* Clip to the current narrowing (bug#11770). */
276 return make_number ((PT < XFASTINT (m)) == (beginningp != 0)
277 ? PT
278 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
279 }
280
281 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
282 doc: /* Return the integer value of point or mark, whichever is smaller. */)
283 (void)
284 {
285 return region_limit (1);
286 }
287
288 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
289 doc: /* Return the integer value of point or mark, whichever is larger. */)
290 (void)
291 {
292 return region_limit (0);
293 }
294
295 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
296 doc: /* Return this buffer's mark, as a marker object.
297 Watch out! Moving this marker changes the mark position.
298 If you set the marker not to point anywhere, the buffer will have no mark. */)
299 (void)
300 {
301 return BVAR (current_buffer, mark);
302 }
303
304 \f
305 /* Find all the overlays in the current buffer that touch position POS.
306 Return the number found, and store them in a vector in VEC
307 of length LEN. */
308
309 static ptrdiff_t
310 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
311 {
312 Lisp_Object overlay, start, end;
313 struct Lisp_Overlay *tail;
314 ptrdiff_t startpos, endpos;
315 ptrdiff_t idx = 0;
316
317 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
318 {
319 XSETMISC (overlay, tail);
320
321 end = OVERLAY_END (overlay);
322 endpos = OVERLAY_POSITION (end);
323 if (endpos < pos)
324 break;
325 start = OVERLAY_START (overlay);
326 startpos = OVERLAY_POSITION (start);
327 if (startpos <= pos)
328 {
329 if (idx < len)
330 vec[idx] = overlay;
331 /* Keep counting overlays even if we can't return them all. */
332 idx++;
333 }
334 }
335
336 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 start = OVERLAY_START (overlay);
341 startpos = OVERLAY_POSITION (start);
342 if (pos < startpos)
343 break;
344 end = OVERLAY_END (overlay);
345 endpos = OVERLAY_POSITION (end);
346 if (pos <= endpos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 idx++;
351 }
352 }
353
354 return idx;
355 }
356
357 /* Return the value of property PROP, in OBJECT at POSITION.
358 It's the value of PROP that a char inserted at POSITION would get.
359 OBJECT is optional and defaults to the current buffer.
360 If OBJECT is a buffer, then overlay properties are considered as well as
361 text properties.
362 If OBJECT is a window, then that window's buffer is used, but
363 window-specific overlays are considered only if they are associated
364 with OBJECT. */
365 Lisp_Object
366 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
367 {
368 CHECK_NUMBER_COERCE_MARKER (position);
369
370 if (NILP (object))
371 XSETBUFFER (object, current_buffer);
372 else if (WINDOWP (object))
373 object = XWINDOW (object)->buffer;
374
375 if (!BUFFERP (object))
376 /* pos-property only makes sense in buffers right now, since strings
377 have no overlays and no notion of insertion for which stickiness
378 could be obeyed. */
379 return Fget_text_property (position, prop, object);
380 else
381 {
382 EMACS_INT posn = XINT (position);
383 ptrdiff_t noverlays;
384 Lisp_Object *overlay_vec, tem;
385 struct buffer *obuf = current_buffer;
386
387 set_buffer_temp (XBUFFER (object));
388
389 /* First try with room for 40 overlays. */
390 noverlays = 40;
391 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
392 noverlays = overlays_around (posn, overlay_vec, noverlays);
393
394 /* If there are more than 40,
395 make enough space for all, and try again. */
396 if (noverlays > 40)
397 {
398 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
399 noverlays = overlays_around (posn, overlay_vec, noverlays);
400 }
401 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
402
403 set_buffer_temp (obuf);
404
405 /* Now check the overlays in order of decreasing priority. */
406 while (--noverlays >= 0)
407 {
408 Lisp_Object ol = overlay_vec[noverlays];
409 tem = Foverlay_get (ol, prop);
410 if (!NILP (tem))
411 {
412 /* Check the overlay is indeed active at point. */
413 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
414 if ((OVERLAY_POSITION (start) == posn
415 && XMARKER (start)->insertion_type == 1)
416 || (OVERLAY_POSITION (finish) == posn
417 && XMARKER (finish)->insertion_type == 0))
418 ; /* The overlay will not cover a char inserted at point. */
419 else
420 {
421 return tem;
422 }
423 }
424 }
425
426 { /* Now check the text properties. */
427 int stickiness = text_property_stickiness (prop, position, object);
428 if (stickiness > 0)
429 return Fget_text_property (position, prop, object);
430 else if (stickiness < 0
431 && XINT (position) > BUF_BEGV (XBUFFER (object)))
432 return Fget_text_property (make_number (XINT (position) - 1),
433 prop, object);
434 else
435 return Qnil;
436 }
437 }
438 }
439
440 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
441 the value of point is used instead. If BEG or END is null,
442 means don't store the beginning or end of the field.
443
444 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
445 results; they do not effect boundary behavior.
446
447 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
448 position of a field, then the beginning of the previous field is
449 returned instead of the beginning of POS's field (since the end of a
450 field is actually also the beginning of the next input field, this
451 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
452 true case, if two fields are separated by a field with the special
453 value `boundary', and POS lies within it, then the two separated
454 fields are considered to be adjacent, and POS between them, when
455 finding the beginning and ending of the "merged" field.
456
457 Either BEG or END may be 0, in which case the corresponding value
458 is not stored. */
459
460 static void
461 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
462 Lisp_Object beg_limit,
463 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
464 {
465 /* Fields right before and after the point. */
466 Lisp_Object before_field, after_field;
467 /* 1 if POS counts as the start of a field. */
468 int at_field_start = 0;
469 /* 1 if POS counts as the end of a field. */
470 int at_field_end = 0;
471
472 if (NILP (pos))
473 XSETFASTINT (pos, PT);
474 else
475 CHECK_NUMBER_COERCE_MARKER (pos);
476
477 after_field
478 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
479 before_field
480 = (XFASTINT (pos) > BEGV
481 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
482 Qfield, Qnil, NULL)
483 /* Using nil here would be a more obvious choice, but it would
484 fail when the buffer starts with a non-sticky field. */
485 : after_field);
486
487 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
488 and POS is at beginning of a field, which can also be interpreted
489 as the end of the previous field. Note that the case where if
490 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
491 more natural one; then we avoid treating the beginning of a field
492 specially. */
493 if (NILP (merge_at_boundary))
494 {
495 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
496 if (!EQ (field, after_field))
497 at_field_end = 1;
498 if (!EQ (field, before_field))
499 at_field_start = 1;
500 if (NILP (field) && at_field_start && at_field_end)
501 /* If an inserted char would have a nil field while the surrounding
502 text is non-nil, we're probably not looking at a
503 zero-length field, but instead at a non-nil field that's
504 not intended for editing (such as comint's prompts). */
505 at_field_end = at_field_start = 0;
506 }
507
508 /* Note about special `boundary' fields:
509
510 Consider the case where the point (`.') is between the fields `x' and `y':
511
512 xxxx.yyyy
513
514 In this situation, if merge_at_boundary is true, we consider the
515 `x' and `y' fields as forming one big merged field, and so the end
516 of the field is the end of `y'.
517
518 However, if `x' and `y' are separated by a special `boundary' field
519 (a field with a `field' char-property of 'boundary), then we ignore
520 this special field when merging adjacent fields. Here's the same
521 situation, but with a `boundary' field between the `x' and `y' fields:
522
523 xxx.BBBByyyy
524
525 Here, if point is at the end of `x', the beginning of `y', or
526 anywhere in-between (within the `boundary' field), we merge all
527 three fields and consider the beginning as being the beginning of
528 the `x' field, and the end as being the end of the `y' field. */
529
530 if (beg)
531 {
532 if (at_field_start)
533 /* POS is at the edge of a field, and we should consider it as
534 the beginning of the following field. */
535 *beg = XFASTINT (pos);
536 else
537 /* Find the previous field boundary. */
538 {
539 Lisp_Object p = pos;
540 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
541 /* Skip a `boundary' field. */
542 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
543 beg_limit);
544
545 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
546 beg_limit);
547 *beg = NILP (p) ? BEGV : XFASTINT (p);
548 }
549 }
550
551 if (end)
552 {
553 if (at_field_end)
554 /* POS is at the edge of a field, and we should consider it as
555 the end of the previous field. */
556 *end = XFASTINT (pos);
557 else
558 /* Find the next field boundary. */
559 {
560 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
561 /* Skip a `boundary' field. */
562 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
563 end_limit);
564
565 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
566 end_limit);
567 *end = NILP (pos) ? ZV : XFASTINT (pos);
568 }
569 }
570 }
571
572 \f
573 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
574 doc: /* Delete the field surrounding POS.
575 A field is a region of text with the same `field' property.
576 If POS is nil, the value of point is used for POS. */)
577 (Lisp_Object pos)
578 {
579 ptrdiff_t beg, end;
580 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
581 if (beg != end)
582 del_range (beg, end);
583 return Qnil;
584 }
585
586 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
587 doc: /* Return the contents of the field surrounding POS as a string.
588 A field is a region of text with the same `field' property.
589 If POS is nil, the value of point is used for POS. */)
590 (Lisp_Object pos)
591 {
592 ptrdiff_t beg, end;
593 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
594 return make_buffer_string (beg, end, 1);
595 }
596
597 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
598 doc: /* Return the contents of the field around POS, without text properties.
599 A field is a region of text with the same `field' property.
600 If POS is nil, the value of point is used for POS. */)
601 (Lisp_Object pos)
602 {
603 ptrdiff_t beg, end;
604 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
605 return make_buffer_string (beg, end, 0);
606 }
607
608 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
609 doc: /* Return the beginning of the field surrounding POS.
610 A field is a region of text with the same `field' property.
611 If POS is nil, the value of point is used for POS.
612 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
613 field, then the beginning of the *previous* field is returned.
614 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
615 is before LIMIT, then LIMIT will be returned instead. */)
616 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
617 {
618 ptrdiff_t beg;
619 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
620 return make_number (beg);
621 }
622
623 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
624 doc: /* Return the end of the field surrounding POS.
625 A field is a region of text with the same `field' property.
626 If POS is nil, the value of point is used for POS.
627 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
628 then the end of the *following* field is returned.
629 If LIMIT is non-nil, it is a buffer position; if the end of the field
630 is after LIMIT, then LIMIT will be returned instead. */)
631 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
632 {
633 ptrdiff_t end;
634 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
635 return make_number (end);
636 }
637
638 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
639 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
640 A field is a region of text with the same `field' property.
641
642 If NEW-POS is nil, then use the current point instead, and move point
643 to the resulting constrained position, in addition to returning that
644 position.
645
646 If OLD-POS is at the boundary of two fields, then the allowable
647 positions for NEW-POS depends on the value of the optional argument
648 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
649 constrained to the field that has the same `field' char-property
650 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
651 is non-nil, NEW-POS is constrained to the union of the two adjacent
652 fields. Additionally, if two fields are separated by another field with
653 the special value `boundary', then any point within this special field is
654 also considered to be `on the boundary'.
655
656 If the optional argument ONLY-IN-LINE is non-nil and constraining
657 NEW-POS would move it to a different line, NEW-POS is returned
658 unconstrained. This useful for commands that move by line, like
659 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
660 only in the case where they can still move to the right line.
661
662 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
663 a non-nil property of that name, then any field boundaries are ignored.
664
665 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
666 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
667 {
668 /* If non-zero, then the original point, before re-positioning. */
669 ptrdiff_t orig_point = 0;
670 int fwd;
671 Lisp_Object prev_old, prev_new;
672
673 if (NILP (new_pos))
674 /* Use the current point, and afterwards, set it. */
675 {
676 orig_point = PT;
677 XSETFASTINT (new_pos, PT);
678 }
679
680 CHECK_NUMBER_COERCE_MARKER (new_pos);
681 CHECK_NUMBER_COERCE_MARKER (old_pos);
682
683 fwd = (XINT (new_pos) > XINT (old_pos));
684
685 prev_old = make_number (XINT (old_pos) - 1);
686 prev_new = make_number (XINT (new_pos) - 1);
687
688 if (NILP (Vinhibit_field_text_motion)
689 && !EQ (new_pos, old_pos)
690 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
691 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
692 /* To recognize field boundaries, we must also look at the
693 previous positions; we could use `get_pos_property'
694 instead, but in itself that would fail inside non-sticky
695 fields (like comint prompts). */
696 || (XFASTINT (new_pos) > BEGV
697 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
698 || (XFASTINT (old_pos) > BEGV
699 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
700 && (NILP (inhibit_capture_property)
701 /* Field boundaries are again a problem; but now we must
702 decide the case exactly, so we need to call
703 `get_pos_property' as well. */
704 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
705 && (XFASTINT (old_pos) <= BEGV
706 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
707 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
708 /* It is possible that NEW_POS is not within the same field as
709 OLD_POS; try to move NEW_POS so that it is. */
710 {
711 ptrdiff_t shortage;
712 Lisp_Object field_bound;
713
714 if (fwd)
715 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
716 else
717 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
718
719 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
720 other side of NEW_POS, which would mean that NEW_POS is
721 already acceptable, and it's not necessary to constrain it
722 to FIELD_BOUND. */
723 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
724 /* NEW_POS should be constrained, but only if either
725 ONLY_IN_LINE is nil (in which case any constraint is OK),
726 or NEW_POS and FIELD_BOUND are on the same line (in which
727 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
728 && (NILP (only_in_line)
729 /* This is the ONLY_IN_LINE case, check that NEW_POS and
730 FIELD_BOUND are on the same line by seeing whether
731 there's an intervening newline or not. */
732 || (scan_buffer ('\n',
733 XFASTINT (new_pos), XFASTINT (field_bound),
734 fwd ? -1 : 1, &shortage, 1),
735 shortage != 0)))
736 /* Constrain NEW_POS to FIELD_BOUND. */
737 new_pos = field_bound;
738
739 if (orig_point && XFASTINT (new_pos) != orig_point)
740 /* The NEW_POS argument was originally nil, so automatically set PT. */
741 SET_PT (XFASTINT (new_pos));
742 }
743
744 return new_pos;
745 }
746
747 \f
748 DEFUN ("line-beginning-position",
749 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
750 doc: /* Return the character position of the first character on the current line.
751 With argument N not nil or 1, move forward N - 1 lines first.
752 If scan reaches end of buffer, return that position.
753
754 The returned position is of the first character in the logical order,
755 i.e. the one that has the smallest character position.
756
757 This function constrains the returned position to the current field
758 unless that would be on a different line than the original,
759 unconstrained result. If N is nil or 1, and a front-sticky field
760 starts at point, the scan stops as soon as it starts. To ignore field
761 boundaries bind `inhibit-field-text-motion' to t.
762
763 This function does not move point. */)
764 (Lisp_Object n)
765 {
766 ptrdiff_t orig, orig_byte, end;
767 ptrdiff_t count = SPECPDL_INDEX ();
768 specbind (Qinhibit_point_motion_hooks, Qt);
769
770 if (NILP (n))
771 XSETFASTINT (n, 1);
772 else
773 CHECK_NUMBER (n);
774
775 orig = PT;
776 orig_byte = PT_BYTE;
777 Fforward_line (make_number (XINT (n) - 1));
778 end = PT;
779
780 SET_PT_BOTH (orig, orig_byte);
781
782 unbind_to (count, Qnil);
783
784 /* Return END constrained to the current input field. */
785 return Fconstrain_to_field (make_number (end), make_number (orig),
786 XINT (n) != 1 ? Qt : Qnil,
787 Qt, Qnil);
788 }
789
790 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
791 doc: /* Return the character position of the last character on the current line.
792 With argument N not nil or 1, move forward N - 1 lines first.
793 If scan reaches end of buffer, return that position.
794
795 The returned position is of the last character in the logical order,
796 i.e. the character whose buffer position is the largest one.
797
798 This function constrains the returned position to the current field
799 unless that would be on a different line than the original,
800 unconstrained result. If N is nil or 1, and a rear-sticky field ends
801 at point, the scan stops as soon as it starts. To ignore field
802 boundaries bind `inhibit-field-text-motion' to t.
803
804 This function does not move point. */)
805 (Lisp_Object n)
806 {
807 ptrdiff_t clipped_n;
808 ptrdiff_t end_pos;
809 ptrdiff_t orig = PT;
810
811 if (NILP (n))
812 XSETFASTINT (n, 1);
813 else
814 CHECK_NUMBER (n);
815
816 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
817 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
818
819 /* Return END_POS constrained to the current input field. */
820 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
821 Qnil, Qt, Qnil);
822 }
823
824 \f
825 Lisp_Object
826 save_excursion_save (void)
827 {
828 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
829 == current_buffer);
830
831 return Fcons (Fpoint_marker (),
832 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
833 Fcons (visible ? Qt : Qnil,
834 Fcons (BVAR (current_buffer, mark_active),
835 selected_window))));
836 }
837
838 Lisp_Object
839 save_excursion_restore (Lisp_Object info)
840 {
841 Lisp_Object tem, tem1, omark, nmark;
842 struct gcpro gcpro1, gcpro2, gcpro3;
843 int visible_p;
844
845 tem = Fmarker_buffer (XCAR (info));
846 /* If buffer being returned to is now deleted, avoid error */
847 /* Otherwise could get error here while unwinding to top level
848 and crash */
849 /* In that case, Fmarker_buffer returns nil now. */
850 if (NILP (tem))
851 return Qnil;
852
853 omark = nmark = Qnil;
854 GCPRO3 (info, omark, nmark);
855
856 Fset_buffer (tem);
857
858 /* Point marker. */
859 tem = XCAR (info);
860 Fgoto_char (tem);
861 unchain_marker (XMARKER (tem));
862
863 /* Mark marker. */
864 info = XCDR (info);
865 tem = XCAR (info);
866 omark = Fmarker_position (BVAR (current_buffer, mark));
867 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
868 nmark = Fmarker_position (tem);
869 unchain_marker (XMARKER (tem));
870
871 /* visible */
872 info = XCDR (info);
873 visible_p = !NILP (XCAR (info));
874
875 #if 0 /* We used to make the current buffer visible in the selected window
876 if that was true previously. That avoids some anomalies.
877 But it creates others, and it wasn't documented, and it is simpler
878 and cleaner never to alter the window/buffer connections. */
879 tem1 = Fcar (tem);
880 if (!NILP (tem1)
881 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
882 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
883 #endif /* 0 */
884
885 /* Mark active */
886 info = XCDR (info);
887 tem = XCAR (info);
888 tem1 = BVAR (current_buffer, mark_active);
889 BVAR (current_buffer, mark_active) = tem;
890
891 /* If mark is active now, and either was not active
892 or was at a different place, run the activate hook. */
893 if (! NILP (tem))
894 {
895 if (! EQ (omark, nmark))
896 {
897 tem = intern ("activate-mark-hook");
898 Frun_hooks (1, &tem);
899 }
900 }
901 /* If mark has ceased to be active, run deactivate hook. */
902 else if (! NILP (tem1))
903 {
904 tem = intern ("deactivate-mark-hook");
905 Frun_hooks (1, &tem);
906 }
907
908 /* If buffer was visible in a window, and a different window was
909 selected, and the old selected window is still showing this
910 buffer, restore point in that window. */
911 tem = XCDR (info);
912 if (visible_p
913 && !EQ (tem, selected_window)
914 && (tem1 = XWINDOW (tem)->buffer,
915 (/* Window is live... */
916 BUFFERP (tem1)
917 /* ...and it shows the current buffer. */
918 && XBUFFER (tem1) == current_buffer)))
919 Fset_window_point (tem, make_number (PT));
920
921 UNGCPRO;
922 return Qnil;
923 }
924
925 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
926 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
927 Executes BODY just like `progn'.
928 The values of point, mark and the current buffer are restored
929 even in case of abnormal exit (throw or error).
930 The state of activation of the mark is also restored.
931
932 This construct does not save `deactivate-mark', and therefore
933 functions that change the buffer will still cause deactivation
934 of the mark at the end of the command. To prevent that, bind
935 `deactivate-mark' with `let'.
936
937 If you only want to save the current buffer but not point nor mark,
938 then just use `save-current-buffer', or even `with-current-buffer'.
939
940 usage: (save-excursion &rest BODY) */)
941 (Lisp_Object args)
942 {
943 register Lisp_Object val;
944 ptrdiff_t count = SPECPDL_INDEX ();
945
946 record_unwind_protect (save_excursion_restore, save_excursion_save ());
947
948 val = Fprogn (args);
949 return unbind_to (count, val);
950 }
951
952 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
953 doc: /* Save the current buffer; execute BODY; restore the current buffer.
954 Executes BODY just like `progn'.
955 usage: (save-current-buffer &rest BODY) */)
956 (Lisp_Object args)
957 {
958 Lisp_Object val;
959 ptrdiff_t count = SPECPDL_INDEX ();
960
961 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
962
963 val = Fprogn (args);
964 return unbind_to (count, val);
965 }
966 \f
967 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
968 doc: /* Return the number of characters in the current buffer.
969 If BUFFER, return the number of characters in that buffer instead. */)
970 (Lisp_Object buffer)
971 {
972 if (NILP (buffer))
973 return make_number (Z - BEG);
974 else
975 {
976 CHECK_BUFFER (buffer);
977 return make_number (BUF_Z (XBUFFER (buffer))
978 - BUF_BEG (XBUFFER (buffer)));
979 }
980 }
981
982 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
983 doc: /* Return the minimum permissible value of point in the current buffer.
984 This is 1, unless narrowing (a buffer restriction) is in effect. */)
985 (void)
986 {
987 Lisp_Object temp;
988 XSETFASTINT (temp, BEGV);
989 return temp;
990 }
991
992 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
993 doc: /* Return a marker to the minimum permissible value of point in this buffer.
994 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
995 (void)
996 {
997 return build_marker (current_buffer, BEGV, BEGV_BYTE);
998 }
999
1000 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1001 doc: /* Return the maximum permissible value of point in the current buffer.
1002 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1003 is in effect, in which case it is less. */)
1004 (void)
1005 {
1006 Lisp_Object temp;
1007 XSETFASTINT (temp, ZV);
1008 return temp;
1009 }
1010
1011 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1012 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1013 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1014 is in effect, in which case it is less. */)
1015 (void)
1016 {
1017 return build_marker (current_buffer, ZV, ZV_BYTE);
1018 }
1019
1020 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1021 doc: /* Return the position of the gap, in the current buffer.
1022 See also `gap-size'. */)
1023 (void)
1024 {
1025 Lisp_Object temp;
1026 XSETFASTINT (temp, GPT);
1027 return temp;
1028 }
1029
1030 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1031 doc: /* Return the size of the current buffer's gap.
1032 See also `gap-position'. */)
1033 (void)
1034 {
1035 Lisp_Object temp;
1036 XSETFASTINT (temp, GAP_SIZE);
1037 return temp;
1038 }
1039
1040 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1041 doc: /* Return the byte position for character position POSITION.
1042 If POSITION is out of range, the value is nil. */)
1043 (Lisp_Object position)
1044 {
1045 CHECK_NUMBER_COERCE_MARKER (position);
1046 if (XINT (position) < BEG || XINT (position) > Z)
1047 return Qnil;
1048 return make_number (CHAR_TO_BYTE (XINT (position)));
1049 }
1050
1051 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1052 doc: /* Return the character position for byte position BYTEPOS.
1053 If BYTEPOS is out of range, the value is nil. */)
1054 (Lisp_Object bytepos)
1055 {
1056 CHECK_NUMBER (bytepos);
1057 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1058 return Qnil;
1059 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1060 }
1061 \f
1062 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1063 doc: /* Return the character following point, as a number.
1064 At the end of the buffer or accessible region, return 0. */)
1065 (void)
1066 {
1067 Lisp_Object temp;
1068 if (PT >= ZV)
1069 XSETFASTINT (temp, 0);
1070 else
1071 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1072 return temp;
1073 }
1074
1075 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1076 doc: /* Return the character preceding point, as a number.
1077 At the beginning of the buffer or accessible region, return 0. */)
1078 (void)
1079 {
1080 Lisp_Object temp;
1081 if (PT <= BEGV)
1082 XSETFASTINT (temp, 0);
1083 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1084 {
1085 ptrdiff_t pos = PT_BYTE;
1086 DEC_POS (pos);
1087 XSETFASTINT (temp, FETCH_CHAR (pos));
1088 }
1089 else
1090 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1091 return temp;
1092 }
1093
1094 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1095 doc: /* Return t if point is at the beginning of the buffer.
1096 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1097 (void)
1098 {
1099 if (PT == BEGV)
1100 return Qt;
1101 return Qnil;
1102 }
1103
1104 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1105 doc: /* Return t if point is at the end of the buffer.
1106 If the buffer is narrowed, this means the end of the narrowed part. */)
1107 (void)
1108 {
1109 if (PT == ZV)
1110 return Qt;
1111 return Qnil;
1112 }
1113
1114 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1115 doc: /* Return t if point is at the beginning of a line. */)
1116 (void)
1117 {
1118 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1124 doc: /* Return t if point is at the end of a line.
1125 `End of a line' includes point being at the end of the buffer. */)
1126 (void)
1127 {
1128 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1129 return Qt;
1130 return Qnil;
1131 }
1132
1133 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1134 doc: /* Return character in current buffer at position POS.
1135 POS is an integer or a marker and defaults to point.
1136 If POS is out of range, the value is nil. */)
1137 (Lisp_Object pos)
1138 {
1139 register ptrdiff_t pos_byte;
1140
1141 if (NILP (pos))
1142 {
1143 pos_byte = PT_BYTE;
1144 XSETFASTINT (pos, PT);
1145 }
1146
1147 if (MARKERP (pos))
1148 {
1149 pos_byte = marker_byte_position (pos);
1150 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1151 return Qnil;
1152 }
1153 else
1154 {
1155 CHECK_NUMBER_COERCE_MARKER (pos);
1156 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1157 return Qnil;
1158
1159 pos_byte = CHAR_TO_BYTE (XINT (pos));
1160 }
1161
1162 return make_number (FETCH_CHAR (pos_byte));
1163 }
1164
1165 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1166 doc: /* Return character in current buffer preceding position POS.
1167 POS is an integer or a marker and defaults to point.
1168 If POS is out of range, the value is nil. */)
1169 (Lisp_Object pos)
1170 {
1171 register Lisp_Object val;
1172 register ptrdiff_t pos_byte;
1173
1174 if (NILP (pos))
1175 {
1176 pos_byte = PT_BYTE;
1177 XSETFASTINT (pos, PT);
1178 }
1179
1180 if (MARKERP (pos))
1181 {
1182 pos_byte = marker_byte_position (pos);
1183
1184 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1185 return Qnil;
1186 }
1187 else
1188 {
1189 CHECK_NUMBER_COERCE_MARKER (pos);
1190
1191 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1192 return Qnil;
1193
1194 pos_byte = CHAR_TO_BYTE (XINT (pos));
1195 }
1196
1197 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1198 {
1199 DEC_POS (pos_byte);
1200 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1201 }
1202 else
1203 {
1204 pos_byte--;
1205 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1206 }
1207 return val;
1208 }
1209 \f
1210 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1211 doc: /* Return the name under which the user logged in, as a string.
1212 This is based on the effective uid, not the real uid.
1213 Also, if the environment variables LOGNAME or USER are set,
1214 that determines the value of this function.
1215
1216 If optional argument UID is an integer or a float, return the login name
1217 of the user with that uid, or nil if there is no such user. */)
1218 (Lisp_Object uid)
1219 {
1220 struct passwd *pw;
1221 uid_t id;
1222
1223 /* Set up the user name info if we didn't do it before.
1224 (That can happen if Emacs is dumpable
1225 but you decide to run `temacs -l loadup' and not dump. */
1226 if (INTEGERP (Vuser_login_name))
1227 init_editfns ();
1228
1229 if (NILP (uid))
1230 return Vuser_login_name;
1231
1232 CONS_TO_INTEGER (uid, uid_t, id);
1233 BLOCK_INPUT;
1234 pw = getpwuid (id);
1235 UNBLOCK_INPUT;
1236 return (pw ? build_string (pw->pw_name) : Qnil);
1237 }
1238
1239 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1240 0, 0, 0,
1241 doc: /* Return the name of the user's real uid, as a string.
1242 This ignores the environment variables LOGNAME and USER, so it differs from
1243 `user-login-name' when running under `su'. */)
1244 (void)
1245 {
1246 /* Set up the user name info if we didn't do it before.
1247 (That can happen if Emacs is dumpable
1248 but you decide to run `temacs -l loadup' and not dump. */
1249 if (INTEGERP (Vuser_login_name))
1250 init_editfns ();
1251 return Vuser_real_login_name;
1252 }
1253
1254 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1255 doc: /* Return the effective uid of Emacs.
1256 Value is an integer or a float, depending on the value. */)
1257 (void)
1258 {
1259 uid_t euid = geteuid ();
1260 return make_fixnum_or_float (euid);
1261 }
1262
1263 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1264 doc: /* Return the real uid of Emacs.
1265 Value is an integer or a float, depending on the value. */)
1266 (void)
1267 {
1268 uid_t uid = getuid ();
1269 return make_fixnum_or_float (uid);
1270 }
1271
1272 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1273 doc: /* Return the full name of the user logged in, as a string.
1274 If the full name corresponding to Emacs's userid is not known,
1275 return "unknown".
1276
1277 If optional argument UID is an integer or float, return the full name
1278 of the user with that uid, or nil if there is no such user.
1279 If UID is a string, return the full name of the user with that login
1280 name, or nil if there is no such user. */)
1281 (Lisp_Object uid)
1282 {
1283 struct passwd *pw;
1284 register char *p, *q;
1285 Lisp_Object full;
1286
1287 if (NILP (uid))
1288 return Vuser_full_name;
1289 else if (NUMBERP (uid))
1290 {
1291 uid_t u;
1292 CONS_TO_INTEGER (uid, uid_t, u);
1293 BLOCK_INPUT;
1294 pw = getpwuid (u);
1295 UNBLOCK_INPUT;
1296 }
1297 else if (STRINGP (uid))
1298 {
1299 BLOCK_INPUT;
1300 pw = getpwnam (SSDATA (uid));
1301 UNBLOCK_INPUT;
1302 }
1303 else
1304 error ("Invalid UID specification");
1305
1306 if (!pw)
1307 return Qnil;
1308
1309 p = USER_FULL_NAME;
1310 /* Chop off everything after the first comma. */
1311 q = strchr (p, ',');
1312 full = make_string (p, q ? q - p : strlen (p));
1313
1314 #ifdef AMPERSAND_FULL_NAME
1315 p = SSDATA (full);
1316 q = strchr (p, '&');
1317 /* Substitute the login name for the &, upcasing the first character. */
1318 if (q)
1319 {
1320 register char *r;
1321 Lisp_Object login;
1322
1323 login = Fuser_login_name (make_number (pw->pw_uid));
1324 r = alloca (strlen (p) + SCHARS (login) + 1);
1325 memcpy (r, p, q - p);
1326 r[q - p] = 0;
1327 strcat (r, SSDATA (login));
1328 r[q - p] = upcase ((unsigned char) r[q - p]);
1329 strcat (r, q + 1);
1330 full = build_string (r);
1331 }
1332 #endif /* AMPERSAND_FULL_NAME */
1333
1334 return full;
1335 }
1336
1337 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1338 doc: /* Return the host name of the machine you are running on, as a string. */)
1339 (void)
1340 {
1341 return Vsystem_name;
1342 }
1343
1344 const char *
1345 get_system_name (void)
1346 {
1347 if (STRINGP (Vsystem_name))
1348 return SSDATA (Vsystem_name);
1349 else
1350 return "";
1351 }
1352
1353 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1354 doc: /* Return the process ID of Emacs, as a number. */)
1355 (void)
1356 {
1357 pid_t pid = getpid ();
1358 return make_fixnum_or_float (pid);
1359 }
1360
1361 \f
1362
1363 #ifndef TIME_T_MIN
1364 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1365 #endif
1366 #ifndef TIME_T_MAX
1367 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1368 #endif
1369
1370 /* Report that a time value is out of range for Emacs. */
1371 void
1372 time_overflow (void)
1373 {
1374 error ("Specified time is not representable");
1375 }
1376
1377 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1378 static EMACS_INT
1379 hi_time (time_t t)
1380 {
1381 time_t hi = t >> 16;
1382
1383 /* Check for overflow, helping the compiler for common cases where
1384 no runtime check is needed, and taking care not to convert
1385 negative numbers to unsigned before comparing them. */
1386 if (! ((! TYPE_SIGNED (time_t)
1387 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1388 || MOST_NEGATIVE_FIXNUM <= hi)
1389 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1390 || hi <= MOST_POSITIVE_FIXNUM)))
1391 time_overflow ();
1392
1393 return hi;
1394 }
1395
1396 /* Return the bottom 16 bits of the time T. */
1397 static int
1398 lo_time (time_t t)
1399 {
1400 return t & ((1 << 16) - 1);
1401 }
1402
1403 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1404 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1405 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1406 HIGH has the most significant bits of the seconds, while LOW has the
1407 least significant 16 bits. USEC and PSEC are the microsecond and
1408 picosecond counts. */)
1409 (void)
1410 {
1411 return make_lisp_time (current_emacs_time ());
1412 }
1413
1414 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1415 0, 0, 0,
1416 doc: /* Return the current run time used by Emacs.
1417 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1418 style as (current-time).
1419
1420 On systems that can't determine the run time, `get-internal-run-time'
1421 does the same thing as `current-time'. */)
1422 (void)
1423 {
1424 #ifdef HAVE_GETRUSAGE
1425 struct rusage usage;
1426 time_t secs;
1427 int usecs;
1428
1429 if (getrusage (RUSAGE_SELF, &usage) < 0)
1430 /* This shouldn't happen. What action is appropriate? */
1431 xsignal0 (Qerror);
1432
1433 /* Sum up user time and system time. */
1434 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1435 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1436 if (usecs >= 1000000)
1437 {
1438 usecs -= 1000000;
1439 secs++;
1440 }
1441 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1442 #else /* ! HAVE_GETRUSAGE */
1443 #ifdef WINDOWSNT
1444 return w32_get_internal_run_time ();
1445 #else /* ! WINDOWSNT */
1446 return Fcurrent_time ();
1447 #endif /* WINDOWSNT */
1448 #endif /* HAVE_GETRUSAGE */
1449 }
1450 \f
1451
1452 /* Make a Lisp list that represents the time T with fraction TAIL. */
1453 static Lisp_Object
1454 make_time_tail (time_t t, Lisp_Object tail)
1455 {
1456 return Fcons (make_number (hi_time (t)),
1457 Fcons (make_number (lo_time (t)), tail));
1458 }
1459
1460 /* Make a Lisp list that represents the system time T. */
1461 static Lisp_Object
1462 make_time (time_t t)
1463 {
1464 return make_time_tail (t, Qnil);
1465 }
1466
1467 /* Make a Lisp list that represents the Emacs time T. T may be an
1468 invalid time, with a slightly negative tv_nsec value such as
1469 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1470 correspondingly negative picosecond count. */
1471 Lisp_Object
1472 make_lisp_time (EMACS_TIME t)
1473 {
1474 int ns = EMACS_NSECS (t);
1475 return make_time_tail (EMACS_SECS (t),
1476 list2 (make_number (ns / 1000),
1477 make_number (ns % 1000 * 1000)));
1478 }
1479
1480 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1481 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1482 Return nonzero if successful. */
1483 static int
1484 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1485 Lisp_Object *plow, Lisp_Object *pusec,
1486 Lisp_Object *ppsec)
1487 {
1488 if (CONSP (specified_time))
1489 {
1490 Lisp_Object low = XCDR (specified_time);
1491 Lisp_Object usec = make_number (0);
1492 Lisp_Object psec = make_number (0);
1493 if (CONSP (low))
1494 {
1495 Lisp_Object low_tail = XCDR (low);
1496 low = XCAR (low);
1497 if (CONSP (low_tail))
1498 {
1499 usec = XCAR (low_tail);
1500 low_tail = XCDR (low_tail);
1501 if (CONSP (low_tail))
1502 psec = XCAR (low_tail);
1503 }
1504 else if (!NILP (low_tail))
1505 usec = low_tail;
1506 }
1507
1508 *phigh = XCAR (specified_time);
1509 *plow = low;
1510 *pusec = usec;
1511 *ppsec = psec;
1512 return 1;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1519 list, generate the corresponding time value.
1520
1521 If RESULT is not null, store into *RESULT the converted time;
1522 this can fail if the converted time does not fit into EMACS_TIME.
1523 If *DRESULT is not null, store into *DRESULT the number of
1524 seconds since the start of the POSIX Epoch.
1525
1526 Return nonzero if successful. */
1527 int
1528 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1529 Lisp_Object psec,
1530 EMACS_TIME *result, double *dresult)
1531 {
1532 EMACS_INT hi, lo, us, ps;
1533 if (! (INTEGERP (high) && INTEGERP (low)
1534 && INTEGERP (usec) && INTEGERP (psec)))
1535 return 0;
1536 hi = XINT (high);
1537 lo = XINT (low);
1538 us = XINT (usec);
1539 ps = XINT (psec);
1540
1541 /* Normalize out-of-range lower-order components by carrying
1542 each overflow into the next higher-order component. */
1543 us += ps / 1000000 - (ps % 1000000 < 0);
1544 lo += us / 1000000 - (us % 1000000 < 0);
1545 hi += lo >> 16;
1546 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1547 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1548 lo &= (1 << 16) - 1;
1549
1550 if (result)
1551 {
1552 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1553 && hi <= TIME_T_MAX >> 16)
1554 {
1555 /* Return the greatest representable time that is not greater
1556 than the requested time. */
1557 time_t sec = hi;
1558 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1559 }
1560 else
1561 {
1562 /* Overflow in the highest-order component. */
1563 return 0;
1564 }
1565 }
1566
1567 if (dresult)
1568 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1569
1570 return 1;
1571 }
1572
1573 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1574 If SPECIFIED_TIME is nil, use the current time.
1575
1576 Round the time down to the nearest EMACS_TIME value.
1577 Return seconds since the Epoch.
1578 Signal an error if unsuccessful. */
1579 EMACS_TIME
1580 lisp_time_argument (Lisp_Object specified_time)
1581 {
1582 EMACS_TIME t;
1583 if (NILP (specified_time))
1584 t = current_emacs_time ();
1585 else
1586 {
1587 Lisp_Object high, low, usec, psec;
1588 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1589 && decode_time_components (high, low, usec, psec, &t, 0)))
1590 error ("Invalid time specification");
1591 }
1592 return t;
1593 }
1594
1595 /* Like lisp_time_argument, except decode only the seconds part,
1596 do not allow out-of-range time stamps, do not check the subseconds part,
1597 and always round down. */
1598 static time_t
1599 lisp_seconds_argument (Lisp_Object specified_time)
1600 {
1601 if (NILP (specified_time))
1602 return time (NULL);
1603 else
1604 {
1605 Lisp_Object high, low, usec, psec;
1606 EMACS_TIME t;
1607 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1608 && decode_time_components (high, low, make_number (0),
1609 make_number (0), &t, 0)))
1610 error ("Invalid time specification");
1611 return EMACS_SECS (t);
1612 }
1613 }
1614
1615 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1616 doc: /* Return the current time, as a float number of seconds since the epoch.
1617 If SPECIFIED-TIME is given, it is the time to convert to float
1618 instead of the current time. The argument should have the form
1619 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1620 you can use times from `current-time' and from `file-attributes'.
1621 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1622 considered obsolete.
1623
1624 WARNING: Since the result is floating point, it may not be exact.
1625 If precise time stamps are required, use either `current-time',
1626 or (if you need time as a string) `format-time-string'. */)
1627 (Lisp_Object specified_time)
1628 {
1629 double t;
1630 if (NILP (specified_time))
1631 {
1632 EMACS_TIME now = current_emacs_time ();
1633 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1634 }
1635 else
1636 {
1637 Lisp_Object high, low, usec, psec;
1638 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1639 && decode_time_components (high, low, usec, psec, 0, &t)))
1640 error ("Invalid time specification");
1641 }
1642 return make_float (t);
1643 }
1644
1645 /* Write information into buffer S of size MAXSIZE, according to the
1646 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1647 Default to Universal Time if UT is nonzero, local time otherwise.
1648 Use NS as the number of nanoseconds in the %N directive.
1649 Return the number of bytes written, not including the terminating
1650 '\0'. If S is NULL, nothing will be written anywhere; so to
1651 determine how many bytes would be written, use NULL for S and
1652 ((size_t) -1) for MAXSIZE.
1653
1654 This function behaves like nstrftime, except it allows null
1655 bytes in FORMAT and it does not support nanoseconds. */
1656 static size_t
1657 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1658 size_t format_len, const struct tm *tp, int ut, int ns)
1659 {
1660 size_t total = 0;
1661
1662 /* Loop through all the null-terminated strings in the format
1663 argument. Normally there's just one null-terminated string, but
1664 there can be arbitrarily many, concatenated together, if the
1665 format contains '\0' bytes. nstrftime stops at the first
1666 '\0' byte so we must invoke it separately for each such string. */
1667 for (;;)
1668 {
1669 size_t len;
1670 size_t result;
1671
1672 if (s)
1673 s[0] = '\1';
1674
1675 result = nstrftime (s, maxsize, format, tp, ut, ns);
1676
1677 if (s)
1678 {
1679 if (result == 0 && s[0] != '\0')
1680 return 0;
1681 s += result + 1;
1682 }
1683
1684 maxsize -= result + 1;
1685 total += result;
1686 len = strlen (format);
1687 if (len == format_len)
1688 return total;
1689 total++;
1690 format += len + 1;
1691 format_len -= len + 1;
1692 }
1693 }
1694
1695 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1696 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1697 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1698 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1699 is also still accepted.
1700 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1701 as Universal Time; nil means describe TIME in the local time zone.
1702 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1703 by text that describes the specified date and time in TIME:
1704
1705 %Y is the year, %y within the century, %C the century.
1706 %G is the year corresponding to the ISO week, %g within the century.
1707 %m is the numeric month.
1708 %b and %h are the locale's abbreviated month name, %B the full name.
1709 %d is the day of the month, zero-padded, %e is blank-padded.
1710 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1711 %a is the locale's abbreviated name of the day of week, %A the full name.
1712 %U is the week number starting on Sunday, %W starting on Monday,
1713 %V according to ISO 8601.
1714 %j is the day of the year.
1715
1716 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1717 only blank-padded, %l is like %I blank-padded.
1718 %p is the locale's equivalent of either AM or PM.
1719 %M is the minute.
1720 %S is the second.
1721 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1722 %Z is the time zone name, %z is the numeric form.
1723 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1724
1725 %c is the locale's date and time format.
1726 %x is the locale's "preferred" date format.
1727 %D is like "%m/%d/%y".
1728
1729 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1730 %X is the locale's "preferred" time format.
1731
1732 Finally, %n is a newline, %t is a tab, %% is a literal %.
1733
1734 Certain flags and modifiers are available with some format controls.
1735 The flags are `_', `-', `^' and `#'. For certain characters X,
1736 %_X is like %X, but padded with blanks; %-X is like %X,
1737 but without padding. %^X is like %X, but with all textual
1738 characters up-cased; %#X is like %X, but with letter-case of
1739 all textual characters reversed.
1740 %NX (where N stands for an integer) is like %X,
1741 but takes up at least N (a number) positions.
1742 The modifiers are `E' and `O'. For certain characters X,
1743 %EX is a locale's alternative version of %X;
1744 %OX is like %X, but uses the locale's number symbols.
1745
1746 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1747
1748 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1749 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1750 {
1751 EMACS_TIME t = lisp_time_argument (timeval);
1752 struct tm tm;
1753
1754 CHECK_STRING (format_string);
1755 format_string = code_convert_string_norecord (format_string,
1756 Vlocale_coding_system, 1);
1757 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1758 t, ! NILP (universal), &tm);
1759 }
1760
1761 static Lisp_Object
1762 format_time_string (char const *format, ptrdiff_t formatlen,
1763 EMACS_TIME t, int ut, struct tm *tmp)
1764 {
1765 char buffer[4000];
1766 char *buf = buffer;
1767 ptrdiff_t size = sizeof buffer;
1768 size_t len;
1769 Lisp_Object bufstring;
1770 int ns = EMACS_NSECS (t);
1771 struct tm *tm;
1772 USE_SAFE_ALLOCA;
1773
1774 while (1)
1775 {
1776 time_t *taddr = emacs_secs_addr (&t);
1777 BLOCK_INPUT;
1778
1779 synchronize_system_time_locale ();
1780
1781 tm = ut ? gmtime (taddr) : localtime (taddr);
1782 if (! tm)
1783 {
1784 UNBLOCK_INPUT;
1785 time_overflow ();
1786 }
1787 *tmp = *tm;
1788
1789 buf[0] = '\1';
1790 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1791 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1792 break;
1793
1794 /* Buffer was too small, so make it bigger and try again. */
1795 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1796 UNBLOCK_INPUT;
1797 if (STRING_BYTES_BOUND <= len)
1798 string_overflow ();
1799 size = len + 1;
1800 SAFE_ALLOCA (buf, char *, size);
1801 }
1802
1803 UNBLOCK_INPUT;
1804 bufstring = make_unibyte_string (buf, len);
1805 SAFE_FREE ();
1806 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1807 }
1808
1809 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1810 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1811 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1812 as from `current-time' and `file-attributes', or nil to use the
1813 current time. The obsolete form (HIGH . LOW) is also still accepted.
1814 The list has the following nine members: SEC is an integer between 0
1815 and 60; SEC is 60 for a leap second, which only some operating systems
1816 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1817 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1818 integer between 1 and 12. YEAR is an integer indicating the
1819 four-digit year. DOW is the day of week, an integer between 0 and 6,
1820 where 0 is Sunday. DST is t if daylight saving time is in effect,
1821 otherwise nil. ZONE is an integer indicating the number of seconds
1822 east of Greenwich. (Note that Common Lisp has different meanings for
1823 DOW and ZONE.) */)
1824 (Lisp_Object specified_time)
1825 {
1826 time_t time_spec = lisp_seconds_argument (specified_time);
1827 struct tm save_tm;
1828 struct tm *decoded_time;
1829 Lisp_Object list_args[9];
1830
1831 BLOCK_INPUT;
1832 decoded_time = localtime (&time_spec);
1833 if (decoded_time)
1834 save_tm = *decoded_time;
1835 UNBLOCK_INPUT;
1836 if (! (decoded_time
1837 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1838 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1839 time_overflow ();
1840 XSETFASTINT (list_args[0], save_tm.tm_sec);
1841 XSETFASTINT (list_args[1], save_tm.tm_min);
1842 XSETFASTINT (list_args[2], save_tm.tm_hour);
1843 XSETFASTINT (list_args[3], save_tm.tm_mday);
1844 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1845 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1846 cast below avoids overflow in int arithmetics. */
1847 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1848 XSETFASTINT (list_args[6], save_tm.tm_wday);
1849 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1850
1851 BLOCK_INPUT;
1852 decoded_time = gmtime (&time_spec);
1853 if (decoded_time == 0)
1854 list_args[8] = Qnil;
1855 else
1856 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1857 UNBLOCK_INPUT;
1858 return Flist (9, list_args);
1859 }
1860
1861 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1862 the result is representable as an int. Assume OFFSET is small and
1863 nonnegative. */
1864 static int
1865 check_tm_member (Lisp_Object obj, int offset)
1866 {
1867 EMACS_INT n;
1868 CHECK_NUMBER (obj);
1869 n = XINT (obj);
1870 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1871 time_overflow ();
1872 return n - offset;
1873 }
1874
1875 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1876 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1877 This is the reverse operation of `decode-time', which see.
1878 ZONE defaults to the current time zone rule. This can
1879 be a string or t (as from `set-time-zone-rule'), or it can be a list
1880 \(as from `current-time-zone') or an integer (as from `decode-time')
1881 applied without consideration for daylight saving time.
1882
1883 You can pass more than 7 arguments; then the first six arguments
1884 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1885 The intervening arguments are ignored.
1886 This feature lets (apply 'encode-time (decode-time ...)) work.
1887
1888 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1889 for example, a DAY of 0 means the day preceding the given month.
1890 Year numbers less than 100 are treated just like other year numbers.
1891 If you want them to stand for years in this century, you must do that yourself.
1892
1893 Years before 1970 are not guaranteed to work. On some systems,
1894 year values as low as 1901 do work.
1895
1896 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1897 (ptrdiff_t nargs, Lisp_Object *args)
1898 {
1899 time_t value;
1900 struct tm tm;
1901 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1902
1903 tm.tm_sec = check_tm_member (args[0], 0);
1904 tm.tm_min = check_tm_member (args[1], 0);
1905 tm.tm_hour = check_tm_member (args[2], 0);
1906 tm.tm_mday = check_tm_member (args[3], 0);
1907 tm.tm_mon = check_tm_member (args[4], 1);
1908 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1909 tm.tm_isdst = -1;
1910
1911 if (CONSP (zone))
1912 zone = XCAR (zone);
1913 if (NILP (zone))
1914 {
1915 BLOCK_INPUT;
1916 value = mktime (&tm);
1917 UNBLOCK_INPUT;
1918 }
1919 else
1920 {
1921 char tzbuf[100];
1922 const char *tzstring;
1923 char **oldenv = environ, **newenv;
1924
1925 if (EQ (zone, Qt))
1926 tzstring = "UTC0";
1927 else if (STRINGP (zone))
1928 tzstring = SSDATA (zone);
1929 else if (INTEGERP (zone))
1930 {
1931 EMACS_INT abszone = eabs (XINT (zone));
1932 EMACS_INT zone_hr = abszone / (60*60);
1933 int zone_min = (abszone/60) % 60;
1934 int zone_sec = abszone % 60;
1935 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1936 zone_hr, zone_min, zone_sec);
1937 tzstring = tzbuf;
1938 }
1939 else
1940 error ("Invalid time zone specification");
1941
1942 BLOCK_INPUT;
1943
1944 /* Set TZ before calling mktime; merely adjusting mktime's returned
1945 value doesn't suffice, since that would mishandle leap seconds. */
1946 set_time_zone_rule (tzstring);
1947
1948 value = mktime (&tm);
1949
1950 /* Restore TZ to previous value. */
1951 newenv = environ;
1952 environ = oldenv;
1953 #ifdef LOCALTIME_CACHE
1954 tzset ();
1955 #endif
1956 UNBLOCK_INPUT;
1957
1958 xfree (newenv);
1959 }
1960
1961 if (value == (time_t) -1)
1962 time_overflow ();
1963
1964 return make_time (value);
1965 }
1966
1967 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1968 doc: /* Return the current local time, as a human-readable string.
1969 Programs can use this function to decode a time,
1970 since the number of columns in each field is fixed
1971 if the year is in the range 1000-9999.
1972 The format is `Sun Sep 16 01:03:52 1973'.
1973 However, see also the functions `decode-time' and `format-time-string'
1974 which provide a much more powerful and general facility.
1975
1976 If SPECIFIED-TIME is given, it is a time to format instead of the
1977 current time. The argument should have the form (HIGH LOW . IGNORED).
1978 Thus, you can use times obtained from `current-time' and from
1979 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1980 but this is considered obsolete. */)
1981 (Lisp_Object specified_time)
1982 {
1983 time_t value = lisp_seconds_argument (specified_time);
1984 struct tm *tm;
1985 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1986 int len IF_LINT (= 0);
1987
1988 /* Convert to a string in ctime format, except without the trailing
1989 newline, and without the 4-digit year limit. Don't use asctime
1990 or ctime, as they might dump core if the year is outside the
1991 range -999 .. 9999. */
1992 BLOCK_INPUT;
1993 tm = localtime (&value);
1994 if (tm)
1995 {
1996 static char const wday_name[][4] =
1997 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1998 static char const mon_name[][4] =
1999 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2000 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2001 printmax_t year_base = TM_YEAR_BASE;
2002
2003 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2004 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2005 tm->tm_hour, tm->tm_min, tm->tm_sec,
2006 tm->tm_year + year_base);
2007 }
2008 UNBLOCK_INPUT;
2009 if (! tm)
2010 time_overflow ();
2011
2012 return make_unibyte_string (buf, len);
2013 }
2014
2015 /* Yield A - B, measured in seconds.
2016 This function is copied from the GNU C Library. */
2017 static int
2018 tm_diff (struct tm *a, struct tm *b)
2019 {
2020 /* Compute intervening leap days correctly even if year is negative.
2021 Take care to avoid int overflow in leap day calculations,
2022 but it's OK to assume that A and B are close to each other. */
2023 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2024 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2025 int a100 = a4 / 25 - (a4 % 25 < 0);
2026 int b100 = b4 / 25 - (b4 % 25 < 0);
2027 int a400 = a100 >> 2;
2028 int b400 = b100 >> 2;
2029 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2030 int years = a->tm_year - b->tm_year;
2031 int days = (365 * years + intervening_leap_days
2032 + (a->tm_yday - b->tm_yday));
2033 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2034 + (a->tm_min - b->tm_min))
2035 + (a->tm_sec - b->tm_sec));
2036 }
2037
2038 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2039 doc: /* Return the offset and name for the local time zone.
2040 This returns a list of the form (OFFSET NAME).
2041 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2042 A negative value means west of Greenwich.
2043 NAME is a string giving the name of the time zone.
2044 If SPECIFIED-TIME is given, the time zone offset is determined from it
2045 instead of using the current time. The argument should have the form
2046 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2047 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2048 have the form (HIGH . LOW), but this is considered obsolete.
2049
2050 Some operating systems cannot provide all this information to Emacs;
2051 in this case, `current-time-zone' returns a list containing nil for
2052 the data it can't find. */)
2053 (Lisp_Object specified_time)
2054 {
2055 EMACS_TIME value;
2056 int offset;
2057 struct tm *t;
2058 struct tm localtm;
2059 Lisp_Object zone_offset, zone_name;
2060
2061 zone_offset = Qnil;
2062 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2063 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2064 BLOCK_INPUT;
2065 t = gmtime (emacs_secs_addr (&value));
2066 if (t)
2067 offset = tm_diff (&localtm, t);
2068 UNBLOCK_INPUT;
2069
2070 if (t)
2071 {
2072 zone_offset = make_number (offset);
2073 if (SCHARS (zone_name) == 0)
2074 {
2075 /* No local time zone name is available; use "+-NNNN" instead. */
2076 int m = offset / 60;
2077 int am = offset < 0 ? - m : m;
2078 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2079 zone_name = make_formatted_string (buf, "%c%02d%02d",
2080 (offset < 0 ? '-' : '+'),
2081 am / 60, am % 60);
2082 }
2083 }
2084
2085 return list2 (zone_offset, zone_name);
2086 }
2087
2088 /* This holds the value of `environ' produced by the previous
2089 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2090 has never been called. */
2091 static char **environbuf;
2092
2093 /* This holds the startup value of the TZ environment variable so it
2094 can be restored if the user calls set-time-zone-rule with a nil
2095 argument. */
2096 static char *initial_tz;
2097
2098 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2099 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2100 If TZ is nil, use implementation-defined default time zone information.
2101 If TZ is t, use Universal Time.
2102
2103 Instead of calling this function, you typically want (setenv "TZ" TZ).
2104 That changes both the environment of the Emacs process and the
2105 variable `process-environment', whereas `set-time-zone-rule' affects
2106 only the former. */)
2107 (Lisp_Object tz)
2108 {
2109 const char *tzstring;
2110 char **old_environbuf;
2111
2112 if (! (NILP (tz) || EQ (tz, Qt)))
2113 CHECK_STRING (tz);
2114
2115 BLOCK_INPUT;
2116
2117 /* When called for the first time, save the original TZ. */
2118 old_environbuf = environbuf;
2119 if (!old_environbuf)
2120 initial_tz = (char *) getenv ("TZ");
2121
2122 if (NILP (tz))
2123 tzstring = initial_tz;
2124 else if (EQ (tz, Qt))
2125 tzstring = "UTC0";
2126 else
2127 tzstring = SSDATA (tz);
2128
2129 set_time_zone_rule (tzstring);
2130 environbuf = environ;
2131
2132 UNBLOCK_INPUT;
2133
2134 xfree (old_environbuf);
2135 return Qnil;
2136 }
2137
2138 #ifdef LOCALTIME_CACHE
2139
2140 /* These two values are known to load tz files in buggy implementations,
2141 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2142 Their values shouldn't matter in non-buggy implementations.
2143 We don't use string literals for these strings,
2144 since if a string in the environment is in readonly
2145 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2146 See Sun bugs 1113095 and 1114114, ``Timezone routines
2147 improperly modify environment''. */
2148
2149 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2150 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2151
2152 #endif
2153
2154 /* Set the local time zone rule to TZSTRING.
2155 This allocates memory into `environ', which it is the caller's
2156 responsibility to free. */
2157
2158 void
2159 set_time_zone_rule (const char *tzstring)
2160 {
2161 ptrdiff_t envptrs;
2162 char **from, **to, **newenv;
2163
2164 /* Make the ENVIRON vector longer with room for TZSTRING. */
2165 for (from = environ; *from; from++)
2166 continue;
2167 envptrs = from - environ + 2;
2168 newenv = to = xmalloc (envptrs * sizeof *newenv
2169 + (tzstring ? strlen (tzstring) + 4 : 0));
2170
2171 /* Add TZSTRING to the end of environ, as a value for TZ. */
2172 if (tzstring)
2173 {
2174 char *t = (char *) (to + envptrs);
2175 strcpy (t, "TZ=");
2176 strcat (t, tzstring);
2177 *to++ = t;
2178 }
2179
2180 /* Copy the old environ vector elements into NEWENV,
2181 but don't copy the TZ variable.
2182 So we have only one definition of TZ, which came from TZSTRING. */
2183 for (from = environ; *from; from++)
2184 if (strncmp (*from, "TZ=", 3) != 0)
2185 *to++ = *from;
2186 *to = 0;
2187
2188 environ = newenv;
2189
2190 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2191 the TZ variable is stored. If we do not have a TZSTRING,
2192 TO points to the vector slot which has the terminating null. */
2193
2194 #ifdef LOCALTIME_CACHE
2195 {
2196 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2197 "US/Pacific" that loads a tz file, then changes to a value like
2198 "XXX0" that does not load a tz file, and then changes back to
2199 its original value, the last change is (incorrectly) ignored.
2200 Also, if TZ changes twice in succession to values that do
2201 not load a tz file, tzset can dump core (see Sun bug#1225179).
2202 The following code works around these bugs. */
2203
2204 if (tzstring)
2205 {
2206 /* Temporarily set TZ to a value that loads a tz file
2207 and that differs from tzstring. */
2208 char *tz = *newenv;
2209 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2210 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2211 tzset ();
2212 *newenv = tz;
2213 }
2214 else
2215 {
2216 /* The implied tzstring is unknown, so temporarily set TZ to
2217 two different values that each load a tz file. */
2218 *to = set_time_zone_rule_tz1;
2219 to[1] = 0;
2220 tzset ();
2221 *to = set_time_zone_rule_tz2;
2222 tzset ();
2223 *to = 0;
2224 }
2225
2226 /* Now TZ has the desired value, and tzset can be invoked safely. */
2227 }
2228
2229 tzset ();
2230 #endif
2231 }
2232 \f
2233 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2234 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2235 type of object is Lisp_String). INHERIT is passed to
2236 INSERT_FROM_STRING_FUNC as the last argument. */
2237
2238 static void
2239 general_insert_function (void (*insert_func)
2240 (const char *, ptrdiff_t),
2241 void (*insert_from_string_func)
2242 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2243 ptrdiff_t, ptrdiff_t, int),
2244 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2245 {
2246 ptrdiff_t argnum;
2247 register Lisp_Object val;
2248
2249 for (argnum = 0; argnum < nargs; argnum++)
2250 {
2251 val = args[argnum];
2252 if (CHARACTERP (val))
2253 {
2254 int c = XFASTINT (val);
2255 unsigned char str[MAX_MULTIBYTE_LENGTH];
2256 int len;
2257
2258 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2259 len = CHAR_STRING (c, str);
2260 else
2261 {
2262 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2263 len = 1;
2264 }
2265 (*insert_func) ((char *) str, len);
2266 }
2267 else if (STRINGP (val))
2268 {
2269 (*insert_from_string_func) (val, 0, 0,
2270 SCHARS (val),
2271 SBYTES (val),
2272 inherit);
2273 }
2274 else
2275 wrong_type_argument (Qchar_or_string_p, val);
2276 }
2277 }
2278
2279 void
2280 insert1 (Lisp_Object arg)
2281 {
2282 Finsert (1, &arg);
2283 }
2284
2285
2286 /* Callers passing one argument to Finsert need not gcpro the
2287 argument "array", since the only element of the array will
2288 not be used after calling insert or insert_from_string, so
2289 we don't care if it gets trashed. */
2290
2291 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2292 doc: /* Insert the arguments, either strings or characters, at point.
2293 Point and before-insertion markers move forward to end up
2294 after the inserted text.
2295 Any other markers at the point of insertion remain before the text.
2296
2297 If the current buffer is multibyte, unibyte strings are converted
2298 to multibyte for insertion (see `string-make-multibyte').
2299 If the current buffer is unibyte, multibyte strings are converted
2300 to unibyte for insertion (see `string-make-unibyte').
2301
2302 When operating on binary data, it may be necessary to preserve the
2303 original bytes of a unibyte string when inserting it into a multibyte
2304 buffer; to accomplish this, apply `string-as-multibyte' to the string
2305 and insert the result.
2306
2307 usage: (insert &rest ARGS) */)
2308 (ptrdiff_t nargs, Lisp_Object *args)
2309 {
2310 general_insert_function (insert, insert_from_string, 0, nargs, args);
2311 return Qnil;
2312 }
2313
2314 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2315 0, MANY, 0,
2316 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2317 Point and before-insertion markers move forward to end up
2318 after the inserted text.
2319 Any other markers at the point of insertion remain before the text.
2320
2321 If the current buffer is multibyte, unibyte strings are converted
2322 to multibyte for insertion (see `unibyte-char-to-multibyte').
2323 If the current buffer is unibyte, multibyte strings are converted
2324 to unibyte for insertion.
2325
2326 usage: (insert-and-inherit &rest ARGS) */)
2327 (ptrdiff_t nargs, Lisp_Object *args)
2328 {
2329 general_insert_function (insert_and_inherit, insert_from_string, 1,
2330 nargs, args);
2331 return Qnil;
2332 }
2333
2334 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2335 doc: /* Insert strings or characters at point, relocating markers after the text.
2336 Point and markers move forward to end up after the inserted text.
2337
2338 If the current buffer is multibyte, unibyte strings are converted
2339 to multibyte for insertion (see `unibyte-char-to-multibyte').
2340 If the current buffer is unibyte, multibyte strings are converted
2341 to unibyte for insertion.
2342
2343 usage: (insert-before-markers &rest ARGS) */)
2344 (ptrdiff_t nargs, Lisp_Object *args)
2345 {
2346 general_insert_function (insert_before_markers,
2347 insert_from_string_before_markers, 0,
2348 nargs, args);
2349 return Qnil;
2350 }
2351
2352 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2353 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2354 doc: /* Insert text at point, relocating markers and inheriting properties.
2355 Point and markers move forward to end up after the inserted text.
2356
2357 If the current buffer is multibyte, unibyte strings are converted
2358 to multibyte for insertion (see `unibyte-char-to-multibyte').
2359 If the current buffer is unibyte, multibyte strings are converted
2360 to unibyte for insertion.
2361
2362 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2363 (ptrdiff_t nargs, Lisp_Object *args)
2364 {
2365 general_insert_function (insert_before_markers_and_inherit,
2366 insert_from_string_before_markers, 1,
2367 nargs, args);
2368 return Qnil;
2369 }
2370 \f
2371 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2372 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2373 (prefix-numeric-value current-prefix-arg)\
2374 t))",
2375 doc: /* Insert COUNT copies of CHARACTER.
2376 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2377 of these ways:
2378
2379 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2380 Completion is available; if you type a substring of the name
2381 preceded by an asterisk `*', Emacs shows all names which include
2382 that substring, not necessarily at the beginning of the name.
2383
2384 - As a hexadecimal code point, e.g. 263A. Note that code points in
2385 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2386 the Unicode code space).
2387
2388 - As a code point with a radix specified with #, e.g. #o21430
2389 (octal), #x2318 (hex), or #10r8984 (decimal).
2390
2391 If called interactively, COUNT is given by the prefix argument. If
2392 omitted or nil, it defaults to 1.
2393
2394 Inserting the character(s) relocates point and before-insertion
2395 markers in the same ways as the function `insert'.
2396
2397 The optional third argument INHERIT, if non-nil, says to inherit text
2398 properties from adjoining text, if those properties are sticky. If
2399 called interactively, INHERIT is t. */)
2400 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2401 {
2402 int i, stringlen;
2403 register ptrdiff_t n;
2404 int c, len;
2405 unsigned char str[MAX_MULTIBYTE_LENGTH];
2406 char string[4000];
2407
2408 CHECK_CHARACTER (character);
2409 if (NILP (count))
2410 XSETFASTINT (count, 1);
2411 CHECK_NUMBER (count);
2412 c = XFASTINT (character);
2413
2414 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2415 len = CHAR_STRING (c, str);
2416 else
2417 str[0] = c, len = 1;
2418 if (XINT (count) <= 0)
2419 return Qnil;
2420 if (BUF_BYTES_MAX / len < XINT (count))
2421 buffer_overflow ();
2422 n = XINT (count) * len;
2423 stringlen = min (n, sizeof string - sizeof string % len);
2424 for (i = 0; i < stringlen; i++)
2425 string[i] = str[i % len];
2426 while (n > stringlen)
2427 {
2428 QUIT;
2429 if (!NILP (inherit))
2430 insert_and_inherit (string, stringlen);
2431 else
2432 insert (string, stringlen);
2433 n -= stringlen;
2434 }
2435 if (!NILP (inherit))
2436 insert_and_inherit (string, n);
2437 else
2438 insert (string, n);
2439 return Qnil;
2440 }
2441
2442 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2443 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2444 Both arguments are required.
2445 BYTE is a number of the range 0..255.
2446
2447 If BYTE is 128..255 and the current buffer is multibyte, the
2448 corresponding eight-bit character is inserted.
2449
2450 Point, and before-insertion markers, are relocated as in the function `insert'.
2451 The optional third arg INHERIT, if non-nil, says to inherit text properties
2452 from adjoining text, if those properties are sticky. */)
2453 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2454 {
2455 CHECK_NUMBER (byte);
2456 if (XINT (byte) < 0 || XINT (byte) > 255)
2457 args_out_of_range_3 (byte, make_number (0), make_number (255));
2458 if (XINT (byte) >= 128
2459 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2460 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2461 return Finsert_char (byte, count, inherit);
2462 }
2463
2464 \f
2465 /* Making strings from buffer contents. */
2466
2467 /* Return a Lisp_String containing the text of the current buffer from
2468 START to END. If text properties are in use and the current buffer
2469 has properties in the range specified, the resulting string will also
2470 have them, if PROPS is nonzero.
2471
2472 We don't want to use plain old make_string here, because it calls
2473 make_uninit_string, which can cause the buffer arena to be
2474 compacted. make_string has no way of knowing that the data has
2475 been moved, and thus copies the wrong data into the string. This
2476 doesn't effect most of the other users of make_string, so it should
2477 be left as is. But we should use this function when conjuring
2478 buffer substrings. */
2479
2480 Lisp_Object
2481 make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2482 {
2483 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2484 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2485
2486 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2487 }
2488
2489 /* Return a Lisp_String containing the text of the current buffer from
2490 START / START_BYTE to END / END_BYTE.
2491
2492 If text properties are in use and the current buffer
2493 has properties in the range specified, the resulting string will also
2494 have them, if PROPS is nonzero.
2495
2496 We don't want to use plain old make_string here, because it calls
2497 make_uninit_string, which can cause the buffer arena to be
2498 compacted. make_string has no way of knowing that the data has
2499 been moved, and thus copies the wrong data into the string. This
2500 doesn't effect most of the other users of make_string, so it should
2501 be left as is. But we should use this function when conjuring
2502 buffer substrings. */
2503
2504 Lisp_Object
2505 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2506 ptrdiff_t end, ptrdiff_t end_byte, int props)
2507 {
2508 Lisp_Object result, tem, tem1;
2509
2510 if (start < GPT && GPT < end)
2511 move_gap (start);
2512
2513 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2514 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2515 else
2516 result = make_uninit_string (end - start);
2517 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2518
2519 /* If desired, update and copy the text properties. */
2520 if (props)
2521 {
2522 update_buffer_properties (start, end);
2523
2524 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2525 tem1 = Ftext_properties_at (make_number (start), Qnil);
2526
2527 if (XINT (tem) != end || !NILP (tem1))
2528 copy_intervals_to_string (result, current_buffer, start,
2529 end - start);
2530 }
2531
2532 return result;
2533 }
2534
2535 /* Call Vbuffer_access_fontify_functions for the range START ... END
2536 in the current buffer, if necessary. */
2537
2538 static void
2539 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2540 {
2541 /* If this buffer has some access functions,
2542 call them, specifying the range of the buffer being accessed. */
2543 if (!NILP (Vbuffer_access_fontify_functions))
2544 {
2545 Lisp_Object args[3];
2546 Lisp_Object tem;
2547
2548 args[0] = Qbuffer_access_fontify_functions;
2549 XSETINT (args[1], start);
2550 XSETINT (args[2], end);
2551
2552 /* But don't call them if we can tell that the work
2553 has already been done. */
2554 if (!NILP (Vbuffer_access_fontified_property))
2555 {
2556 tem = Ftext_property_any (args[1], args[2],
2557 Vbuffer_access_fontified_property,
2558 Qnil, Qnil);
2559 if (! NILP (tem))
2560 Frun_hook_with_args (3, args);
2561 }
2562 else
2563 Frun_hook_with_args (3, args);
2564 }
2565 }
2566
2567 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2568 doc: /* Return the contents of part of the current buffer as a string.
2569 The two arguments START and END are character positions;
2570 they can be in either order.
2571 The string returned is multibyte if the buffer is multibyte.
2572
2573 This function copies the text properties of that part of the buffer
2574 into the result string; if you don't want the text properties,
2575 use `buffer-substring-no-properties' instead. */)
2576 (Lisp_Object start, Lisp_Object end)
2577 {
2578 register ptrdiff_t b, e;
2579
2580 validate_region (&start, &end);
2581 b = XINT (start);
2582 e = XINT (end);
2583
2584 return make_buffer_string (b, e, 1);
2585 }
2586
2587 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2588 Sbuffer_substring_no_properties, 2, 2, 0,
2589 doc: /* Return the characters of part of the buffer, without the text properties.
2590 The two arguments START and END are character positions;
2591 they can be in either order. */)
2592 (Lisp_Object start, Lisp_Object end)
2593 {
2594 register ptrdiff_t b, e;
2595
2596 validate_region (&start, &end);
2597 b = XINT (start);
2598 e = XINT (end);
2599
2600 return make_buffer_string (b, e, 0);
2601 }
2602
2603 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2604 doc: /* Return the contents of the current buffer as a string.
2605 If narrowing is in effect, this function returns only the visible part
2606 of the buffer. */)
2607 (void)
2608 {
2609 return make_buffer_string (BEGV, ZV, 1);
2610 }
2611
2612 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2613 1, 3, 0,
2614 doc: /* Insert before point a substring of the contents of BUFFER.
2615 BUFFER may be a buffer or a buffer name.
2616 Arguments START and END are character positions specifying the substring.
2617 They default to the values of (point-min) and (point-max) in BUFFER. */)
2618 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2619 {
2620 register EMACS_INT b, e, temp;
2621 register struct buffer *bp, *obuf;
2622 Lisp_Object buf;
2623
2624 buf = Fget_buffer (buffer);
2625 if (NILP (buf))
2626 nsberror (buffer);
2627 bp = XBUFFER (buf);
2628 if (NILP (BVAR (bp, name)))
2629 error ("Selecting deleted buffer");
2630
2631 if (NILP (start))
2632 b = BUF_BEGV (bp);
2633 else
2634 {
2635 CHECK_NUMBER_COERCE_MARKER (start);
2636 b = XINT (start);
2637 }
2638 if (NILP (end))
2639 e = BUF_ZV (bp);
2640 else
2641 {
2642 CHECK_NUMBER_COERCE_MARKER (end);
2643 e = XINT (end);
2644 }
2645
2646 if (b > e)
2647 temp = b, b = e, e = temp;
2648
2649 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2650 args_out_of_range (start, end);
2651
2652 obuf = current_buffer;
2653 set_buffer_internal_1 (bp);
2654 update_buffer_properties (b, e);
2655 set_buffer_internal_1 (obuf);
2656
2657 insert_from_buffer (bp, b, e - b, 0);
2658 return Qnil;
2659 }
2660
2661 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2662 6, 6, 0,
2663 doc: /* Compare two substrings of two buffers; return result as number.
2664 the value is -N if first string is less after N-1 chars,
2665 +N if first string is greater after N-1 chars, or 0 if strings match.
2666 Each substring is represented as three arguments: BUFFER, START and END.
2667 That makes six args in all, three for each substring.
2668
2669 The value of `case-fold-search' in the current buffer
2670 determines whether case is significant or ignored. */)
2671 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2672 {
2673 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2674 register struct buffer *bp1, *bp2;
2675 register Lisp_Object trt
2676 = (!NILP (BVAR (current_buffer, case_fold_search))
2677 ? BVAR (current_buffer, case_canon_table) : Qnil);
2678 ptrdiff_t chars = 0;
2679 ptrdiff_t i1, i2, i1_byte, i2_byte;
2680
2681 /* Find the first buffer and its substring. */
2682
2683 if (NILP (buffer1))
2684 bp1 = current_buffer;
2685 else
2686 {
2687 Lisp_Object buf1;
2688 buf1 = Fget_buffer (buffer1);
2689 if (NILP (buf1))
2690 nsberror (buffer1);
2691 bp1 = XBUFFER (buf1);
2692 if (NILP (BVAR (bp1, name)))
2693 error ("Selecting deleted buffer");
2694 }
2695
2696 if (NILP (start1))
2697 begp1 = BUF_BEGV (bp1);
2698 else
2699 {
2700 CHECK_NUMBER_COERCE_MARKER (start1);
2701 begp1 = XINT (start1);
2702 }
2703 if (NILP (end1))
2704 endp1 = BUF_ZV (bp1);
2705 else
2706 {
2707 CHECK_NUMBER_COERCE_MARKER (end1);
2708 endp1 = XINT (end1);
2709 }
2710
2711 if (begp1 > endp1)
2712 temp = begp1, begp1 = endp1, endp1 = temp;
2713
2714 if (!(BUF_BEGV (bp1) <= begp1
2715 && begp1 <= endp1
2716 && endp1 <= BUF_ZV (bp1)))
2717 args_out_of_range (start1, end1);
2718
2719 /* Likewise for second substring. */
2720
2721 if (NILP (buffer2))
2722 bp2 = current_buffer;
2723 else
2724 {
2725 Lisp_Object buf2;
2726 buf2 = Fget_buffer (buffer2);
2727 if (NILP (buf2))
2728 nsberror (buffer2);
2729 bp2 = XBUFFER (buf2);
2730 if (NILP (BVAR (bp2, name)))
2731 error ("Selecting deleted buffer");
2732 }
2733
2734 if (NILP (start2))
2735 begp2 = BUF_BEGV (bp2);
2736 else
2737 {
2738 CHECK_NUMBER_COERCE_MARKER (start2);
2739 begp2 = XINT (start2);
2740 }
2741 if (NILP (end2))
2742 endp2 = BUF_ZV (bp2);
2743 else
2744 {
2745 CHECK_NUMBER_COERCE_MARKER (end2);
2746 endp2 = XINT (end2);
2747 }
2748
2749 if (begp2 > endp2)
2750 temp = begp2, begp2 = endp2, endp2 = temp;
2751
2752 if (!(BUF_BEGV (bp2) <= begp2
2753 && begp2 <= endp2
2754 && endp2 <= BUF_ZV (bp2)))
2755 args_out_of_range (start2, end2);
2756
2757 i1 = begp1;
2758 i2 = begp2;
2759 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2760 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2761
2762 while (i1 < endp1 && i2 < endp2)
2763 {
2764 /* When we find a mismatch, we must compare the
2765 characters, not just the bytes. */
2766 int c1, c2;
2767
2768 QUIT;
2769
2770 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2771 {
2772 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2773 BUF_INC_POS (bp1, i1_byte);
2774 i1++;
2775 }
2776 else
2777 {
2778 c1 = BUF_FETCH_BYTE (bp1, i1);
2779 MAKE_CHAR_MULTIBYTE (c1);
2780 i1++;
2781 }
2782
2783 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2784 {
2785 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2786 BUF_INC_POS (bp2, i2_byte);
2787 i2++;
2788 }
2789 else
2790 {
2791 c2 = BUF_FETCH_BYTE (bp2, i2);
2792 MAKE_CHAR_MULTIBYTE (c2);
2793 i2++;
2794 }
2795
2796 if (!NILP (trt))
2797 {
2798 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2799 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2800 }
2801 if (c1 < c2)
2802 return make_number (- 1 - chars);
2803 if (c1 > c2)
2804 return make_number (chars + 1);
2805
2806 chars++;
2807 }
2808
2809 /* The strings match as far as they go.
2810 If one is shorter, that one is less. */
2811 if (chars < endp1 - begp1)
2812 return make_number (chars + 1);
2813 else if (chars < endp2 - begp2)
2814 return make_number (- chars - 1);
2815
2816 /* Same length too => they are equal. */
2817 return make_number (0);
2818 }
2819 \f
2820 static Lisp_Object
2821 subst_char_in_region_unwind (Lisp_Object arg)
2822 {
2823 return BVAR (current_buffer, undo_list) = arg;
2824 }
2825
2826 static Lisp_Object
2827 subst_char_in_region_unwind_1 (Lisp_Object arg)
2828 {
2829 return BVAR (current_buffer, filename) = arg;
2830 }
2831
2832 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2833 Ssubst_char_in_region, 4, 5, 0,
2834 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2835 If optional arg NOUNDO is non-nil, don't record this change for undo
2836 and don't mark the buffer as really changed.
2837 Both characters must have the same length of multi-byte form. */)
2838 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2839 {
2840 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2841 /* Keep track of the first change in the buffer:
2842 if 0 we haven't found it yet.
2843 if < 0 we've found it and we've run the before-change-function.
2844 if > 0 we've actually performed it and the value is its position. */
2845 ptrdiff_t changed = 0;
2846 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2847 unsigned char *p;
2848 ptrdiff_t count = SPECPDL_INDEX ();
2849 #define COMBINING_NO 0
2850 #define COMBINING_BEFORE 1
2851 #define COMBINING_AFTER 2
2852 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2853 int maybe_byte_combining = COMBINING_NO;
2854 ptrdiff_t last_changed = 0;
2855 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2856 int fromc, toc;
2857
2858 restart:
2859
2860 validate_region (&start, &end);
2861 CHECK_CHARACTER (fromchar);
2862 CHECK_CHARACTER (tochar);
2863 fromc = XFASTINT (fromchar);
2864 toc = XFASTINT (tochar);
2865
2866 if (multibyte_p)
2867 {
2868 len = CHAR_STRING (fromc, fromstr);
2869 if (CHAR_STRING (toc, tostr) != len)
2870 error ("Characters in `subst-char-in-region' have different byte-lengths");
2871 if (!ASCII_BYTE_P (*tostr))
2872 {
2873 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2874 complete multibyte character, it may be combined with the
2875 after bytes. If it is in the range 0xA0..0xFF, it may be
2876 combined with the before and after bytes. */
2877 if (!CHAR_HEAD_P (*tostr))
2878 maybe_byte_combining = COMBINING_BOTH;
2879 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2880 maybe_byte_combining = COMBINING_AFTER;
2881 }
2882 }
2883 else
2884 {
2885 len = 1;
2886 fromstr[0] = fromc;
2887 tostr[0] = toc;
2888 }
2889
2890 pos = XINT (start);
2891 pos_byte = CHAR_TO_BYTE (pos);
2892 stop = CHAR_TO_BYTE (XINT (end));
2893 end_byte = stop;
2894
2895 /* If we don't want undo, turn off putting stuff on the list.
2896 That's faster than getting rid of things,
2897 and it prevents even the entry for a first change.
2898 Also inhibit locking the file. */
2899 if (!changed && !NILP (noundo))
2900 {
2901 record_unwind_protect (subst_char_in_region_unwind,
2902 BVAR (current_buffer, undo_list));
2903 BVAR (current_buffer, undo_list) = Qt;
2904 /* Don't do file-locking. */
2905 record_unwind_protect (subst_char_in_region_unwind_1,
2906 BVAR (current_buffer, filename));
2907 BVAR (current_buffer, filename) = Qnil;
2908 }
2909
2910 if (pos_byte < GPT_BYTE)
2911 stop = min (stop, GPT_BYTE);
2912 while (1)
2913 {
2914 ptrdiff_t pos_byte_next = pos_byte;
2915
2916 if (pos_byte >= stop)
2917 {
2918 if (pos_byte >= end_byte) break;
2919 stop = end_byte;
2920 }
2921 p = BYTE_POS_ADDR (pos_byte);
2922 if (multibyte_p)
2923 INC_POS (pos_byte_next);
2924 else
2925 ++pos_byte_next;
2926 if (pos_byte_next - pos_byte == len
2927 && p[0] == fromstr[0]
2928 && (len == 1
2929 || (p[1] == fromstr[1]
2930 && (len == 2 || (p[2] == fromstr[2]
2931 && (len == 3 || p[3] == fromstr[3]))))))
2932 {
2933 if (changed < 0)
2934 /* We've already seen this and run the before-change-function;
2935 this time we only need to record the actual position. */
2936 changed = pos;
2937 else if (!changed)
2938 {
2939 changed = -1;
2940 modify_region (current_buffer, pos, XINT (end), 0);
2941
2942 if (! NILP (noundo))
2943 {
2944 if (MODIFF - 1 == SAVE_MODIFF)
2945 SAVE_MODIFF++;
2946 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2947 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2948 }
2949
2950 /* The before-change-function may have moved the gap
2951 or even modified the buffer so we should start over. */
2952 goto restart;
2953 }
2954
2955 /* Take care of the case where the new character
2956 combines with neighboring bytes. */
2957 if (maybe_byte_combining
2958 && (maybe_byte_combining == COMBINING_AFTER
2959 ? (pos_byte_next < Z_BYTE
2960 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2961 : ((pos_byte_next < Z_BYTE
2962 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2963 || (pos_byte > BEG_BYTE
2964 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2965 {
2966 Lisp_Object tem, string;
2967
2968 struct gcpro gcpro1;
2969
2970 tem = BVAR (current_buffer, undo_list);
2971 GCPRO1 (tem);
2972
2973 /* Make a multibyte string containing this single character. */
2974 string = make_multibyte_string ((char *) tostr, 1, len);
2975 /* replace_range is less efficient, because it moves the gap,
2976 but it handles combining correctly. */
2977 replace_range (pos, pos + 1, string,
2978 0, 0, 1);
2979 pos_byte_next = CHAR_TO_BYTE (pos);
2980 if (pos_byte_next > pos_byte)
2981 /* Before combining happened. We should not increment
2982 POS. So, to cancel the later increment of POS,
2983 decrease it now. */
2984 pos--;
2985 else
2986 INC_POS (pos_byte_next);
2987
2988 if (! NILP (noundo))
2989 BVAR (current_buffer, undo_list) = tem;
2990
2991 UNGCPRO;
2992 }
2993 else
2994 {
2995 if (NILP (noundo))
2996 record_change (pos, 1);
2997 for (i = 0; i < len; i++) *p++ = tostr[i];
2998 }
2999 last_changed = pos + 1;
3000 }
3001 pos_byte = pos_byte_next;
3002 pos++;
3003 }
3004
3005 if (changed > 0)
3006 {
3007 signal_after_change (changed,
3008 last_changed - changed, last_changed - changed);
3009 update_compositions (changed, last_changed, CHECK_ALL);
3010 }
3011
3012 unbind_to (count, Qnil);
3013 return Qnil;
3014 }
3015
3016
3017 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3018 Lisp_Object);
3019
3020 /* Helper function for Ftranslate_region_internal.
3021
3022 Check if a character sequence at POS (POS_BYTE) matches an element
3023 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3024 element is found, return it. Otherwise return Qnil. */
3025
3026 static Lisp_Object
3027 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3028 Lisp_Object val)
3029 {
3030 int buf_size = 16, buf_used = 0;
3031 int *buf = alloca (sizeof (int) * buf_size);
3032
3033 for (; CONSP (val); val = XCDR (val))
3034 {
3035 Lisp_Object elt;
3036 ptrdiff_t len, i;
3037
3038 elt = XCAR (val);
3039 if (! CONSP (elt))
3040 continue;
3041 elt = XCAR (elt);
3042 if (! VECTORP (elt))
3043 continue;
3044 len = ASIZE (elt);
3045 if (len <= end - pos)
3046 {
3047 for (i = 0; i < len; i++)
3048 {
3049 if (buf_used <= i)
3050 {
3051 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3052 int len1;
3053
3054 if (buf_used == buf_size)
3055 {
3056 int *newbuf;
3057
3058 buf_size += 16;
3059 newbuf = alloca (sizeof (int) * buf_size);
3060 memcpy (newbuf, buf, sizeof (int) * buf_used);
3061 buf = newbuf;
3062 }
3063 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3064 pos_byte += len1;
3065 }
3066 if (XINT (AREF (elt, i)) != buf[i])
3067 break;
3068 }
3069 if (i == len)
3070 return XCAR (val);
3071 }
3072 }
3073 return Qnil;
3074 }
3075
3076
3077 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3078 Stranslate_region_internal, 3, 3, 0,
3079 doc: /* Internal use only.
3080 From START to END, translate characters according to TABLE.
3081 TABLE is a string or a char-table; the Nth character in it is the
3082 mapping for the character with code N.
3083 It returns the number of characters changed. */)
3084 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3085 {
3086 register unsigned char *tt; /* Trans table. */
3087 register int nc; /* New character. */
3088 int cnt; /* Number of changes made. */
3089 ptrdiff_t size; /* Size of translate table. */
3090 ptrdiff_t pos, pos_byte, end_pos;
3091 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3092 int string_multibyte IF_LINT (= 0);
3093
3094 validate_region (&start, &end);
3095 if (CHAR_TABLE_P (table))
3096 {
3097 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3098 error ("Not a translation table");
3099 size = MAX_CHAR;
3100 tt = NULL;
3101 }
3102 else
3103 {
3104 CHECK_STRING (table);
3105
3106 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3107 table = string_make_unibyte (table);
3108 string_multibyte = SCHARS (table) < SBYTES (table);
3109 size = SBYTES (table);
3110 tt = SDATA (table);
3111 }
3112
3113 pos = XINT (start);
3114 pos_byte = CHAR_TO_BYTE (pos);
3115 end_pos = XINT (end);
3116 modify_region (current_buffer, pos, end_pos, 0);
3117
3118 cnt = 0;
3119 for (; pos < end_pos; )
3120 {
3121 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3122 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3123 int len, str_len;
3124 int oc;
3125 Lisp_Object val;
3126
3127 if (multibyte)
3128 oc = STRING_CHAR_AND_LENGTH (p, len);
3129 else
3130 oc = *p, len = 1;
3131 if (oc < size)
3132 {
3133 if (tt)
3134 {
3135 /* Reload as signal_after_change in last iteration may GC. */
3136 tt = SDATA (table);
3137 if (string_multibyte)
3138 {
3139 str = tt + string_char_to_byte (table, oc);
3140 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3141 }
3142 else
3143 {
3144 nc = tt[oc];
3145 if (! ASCII_BYTE_P (nc) && multibyte)
3146 {
3147 str_len = BYTE8_STRING (nc, buf);
3148 str = buf;
3149 }
3150 else
3151 {
3152 str_len = 1;
3153 str = tt + oc;
3154 }
3155 }
3156 }
3157 else
3158 {
3159 nc = oc;
3160 val = CHAR_TABLE_REF (table, oc);
3161 if (CHARACTERP (val))
3162 {
3163 nc = XFASTINT (val);
3164 str_len = CHAR_STRING (nc, buf);
3165 str = buf;
3166 }
3167 else if (VECTORP (val) || (CONSP (val)))
3168 {
3169 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3170 where TO is TO-CHAR or [TO-CHAR ...]. */
3171 nc = -1;
3172 }
3173 }
3174
3175 if (nc != oc && nc >= 0)
3176 {
3177 /* Simple one char to one char translation. */
3178 if (len != str_len)
3179 {
3180 Lisp_Object string;
3181
3182 /* This is less efficient, because it moves the gap,
3183 but it should handle multibyte characters correctly. */
3184 string = make_multibyte_string ((char *) str, 1, str_len);
3185 replace_range (pos, pos + 1, string, 1, 0, 1);
3186 len = str_len;
3187 }
3188 else
3189 {
3190 record_change (pos, 1);
3191 while (str_len-- > 0)
3192 *p++ = *str++;
3193 signal_after_change (pos, 1, 1);
3194 update_compositions (pos, pos + 1, CHECK_BORDER);
3195 }
3196 ++cnt;
3197 }
3198 else if (nc < 0)
3199 {
3200 Lisp_Object string;
3201
3202 if (CONSP (val))
3203 {
3204 val = check_translation (pos, pos_byte, end_pos, val);
3205 if (NILP (val))
3206 {
3207 pos_byte += len;
3208 pos++;
3209 continue;
3210 }
3211 /* VAL is ([FROM-CHAR ...] . TO). */
3212 len = ASIZE (XCAR (val));
3213 val = XCDR (val);
3214 }
3215 else
3216 len = 1;
3217
3218 if (VECTORP (val))
3219 {
3220 string = Fconcat (1, &val);
3221 }
3222 else
3223 {
3224 string = Fmake_string (make_number (1), val);
3225 }
3226 replace_range (pos, pos + len, string, 1, 0, 1);
3227 pos_byte += SBYTES (string);
3228 pos += SCHARS (string);
3229 cnt += SCHARS (string);
3230 end_pos += SCHARS (string) - len;
3231 continue;
3232 }
3233 }
3234 pos_byte += len;
3235 pos++;
3236 }
3237
3238 return make_number (cnt);
3239 }
3240
3241 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3242 doc: /* Delete the text between START and END.
3243 If called interactively, delete the region between point and mark.
3244 This command deletes buffer text without modifying the kill ring. */)
3245 (Lisp_Object start, Lisp_Object end)
3246 {
3247 validate_region (&start, &end);
3248 del_range (XINT (start), XINT (end));
3249 return Qnil;
3250 }
3251
3252 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3253 Sdelete_and_extract_region, 2, 2, 0,
3254 doc: /* Delete the text between START and END and return it. */)
3255 (Lisp_Object start, Lisp_Object end)
3256 {
3257 validate_region (&start, &end);
3258 if (XINT (start) == XINT (end))
3259 return empty_unibyte_string;
3260 return del_range_1 (XINT (start), XINT (end), 1, 1);
3261 }
3262 \f
3263 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3264 doc: /* Remove restrictions (narrowing) from current buffer.
3265 This allows the buffer's full text to be seen and edited. */)
3266 (void)
3267 {
3268 if (BEG != BEGV || Z != ZV)
3269 current_buffer->clip_changed = 1;
3270 BEGV = BEG;
3271 BEGV_BYTE = BEG_BYTE;
3272 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3273 /* Changing the buffer bounds invalidates any recorded current column. */
3274 invalidate_current_column ();
3275 return Qnil;
3276 }
3277
3278 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3279 doc: /* Restrict editing in this buffer to the current region.
3280 The rest of the text becomes temporarily invisible and untouchable
3281 but is not deleted; if you save the buffer in a file, the invisible
3282 text is included in the file. \\[widen] makes all visible again.
3283 See also `save-restriction'.
3284
3285 When calling from a program, pass two arguments; positions (integers
3286 or markers) bounding the text that should remain visible. */)
3287 (register Lisp_Object start, Lisp_Object end)
3288 {
3289 CHECK_NUMBER_COERCE_MARKER (start);
3290 CHECK_NUMBER_COERCE_MARKER (end);
3291
3292 if (XINT (start) > XINT (end))
3293 {
3294 Lisp_Object tem;
3295 tem = start; start = end; end = tem;
3296 }
3297
3298 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3299 args_out_of_range (start, end);
3300
3301 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3302 current_buffer->clip_changed = 1;
3303
3304 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3305 SET_BUF_ZV (current_buffer, XFASTINT (end));
3306 if (PT < XFASTINT (start))
3307 SET_PT (XFASTINT (start));
3308 if (PT > XFASTINT (end))
3309 SET_PT (XFASTINT (end));
3310 /* Changing the buffer bounds invalidates any recorded current column. */
3311 invalidate_current_column ();
3312 return Qnil;
3313 }
3314
3315 Lisp_Object
3316 save_restriction_save (void)
3317 {
3318 if (BEGV == BEG && ZV == Z)
3319 /* The common case that the buffer isn't narrowed.
3320 We return just the buffer object, which save_restriction_restore
3321 recognizes as meaning `no restriction'. */
3322 return Fcurrent_buffer ();
3323 else
3324 /* We have to save a restriction, so return a pair of markers, one
3325 for the beginning and one for the end. */
3326 {
3327 Lisp_Object beg, end;
3328
3329 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3330 end = build_marker (current_buffer, ZV, ZV_BYTE);
3331
3332 /* END must move forward if text is inserted at its exact location. */
3333 XMARKER (end)->insertion_type = 1;
3334
3335 return Fcons (beg, end);
3336 }
3337 }
3338
3339 Lisp_Object
3340 save_restriction_restore (Lisp_Object data)
3341 {
3342 struct buffer *cur = NULL;
3343 struct buffer *buf = (CONSP (data)
3344 ? XMARKER (XCAR (data))->buffer
3345 : XBUFFER (data));
3346
3347 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3348 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3349 is the case if it is or has an indirect buffer), then make
3350 sure it is current before we update BEGV, so
3351 set_buffer_internal takes care of managing those markers. */
3352 cur = current_buffer;
3353 set_buffer_internal (buf);
3354 }
3355
3356 if (CONSP (data))
3357 /* A pair of marks bounding a saved restriction. */
3358 {
3359 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3360 struct Lisp_Marker *end = XMARKER (XCDR (data));
3361 eassert (buf == end->buffer);
3362
3363 if (buf /* Verify marker still points to a buffer. */
3364 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3365 /* The restriction has changed from the saved one, so restore
3366 the saved restriction. */
3367 {
3368 ptrdiff_t pt = BUF_PT (buf);
3369
3370 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3371 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3372
3373 if (pt < beg->charpos || pt > end->charpos)
3374 /* The point is outside the new visible range, move it inside. */
3375 SET_BUF_PT_BOTH (buf,
3376 clip_to_bounds (beg->charpos, pt, end->charpos),
3377 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3378 end->bytepos));
3379
3380 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3381 }
3382 /* These aren't needed anymore, so don't wait for GC. */
3383 free_marker (XCAR (data));
3384 free_marker (XCDR (data));
3385 free_cons (XCONS (data));
3386 }
3387 else
3388 /* A buffer, which means that there was no old restriction. */
3389 {
3390 if (buf /* Verify marker still points to a buffer. */
3391 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3392 /* The buffer has been narrowed, get rid of the narrowing. */
3393 {
3394 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3395 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3396
3397 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3398 }
3399 }
3400
3401 /* Changing the buffer bounds invalidates any recorded current column. */
3402 invalidate_current_column ();
3403
3404 if (cur)
3405 set_buffer_internal (cur);
3406
3407 return Qnil;
3408 }
3409
3410 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3411 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3412 The buffer's restrictions make parts of the beginning and end invisible.
3413 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3414 This special form, `save-restriction', saves the current buffer's restrictions
3415 when it is entered, and restores them when it is exited.
3416 So any `narrow-to-region' within BODY lasts only until the end of the form.
3417 The old restrictions settings are restored
3418 even in case of abnormal exit (throw or error).
3419
3420 The value returned is the value of the last form in BODY.
3421
3422 Note: if you are using both `save-excursion' and `save-restriction',
3423 use `save-excursion' outermost:
3424 (save-excursion (save-restriction ...))
3425
3426 usage: (save-restriction &rest BODY) */)
3427 (Lisp_Object body)
3428 {
3429 register Lisp_Object val;
3430 ptrdiff_t count = SPECPDL_INDEX ();
3431
3432 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3433 val = Fprogn (body);
3434 return unbind_to (count, val);
3435 }
3436 \f
3437 /* Buffer for the most recent text displayed by Fmessage_box. */
3438 static char *message_text;
3439
3440 /* Allocated length of that buffer. */
3441 static ptrdiff_t message_length;
3442
3443 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3444 doc: /* Display a message at the bottom of the screen.
3445 The message also goes into the `*Messages*' buffer.
3446 \(In keyboard macros, that's all it does.)
3447 Return the message.
3448
3449 The first argument is a format control string, and the rest are data
3450 to be formatted under control of the string. See `format' for details.
3451
3452 Note: Use (message "%s" VALUE) to print the value of expressions and
3453 variables to avoid accidentally interpreting `%' as format specifiers.
3454
3455 If the first argument is nil or the empty string, the function clears
3456 any existing message; this lets the minibuffer contents show. See
3457 also `current-message'.
3458
3459 usage: (message FORMAT-STRING &rest ARGS) */)
3460 (ptrdiff_t nargs, Lisp_Object *args)
3461 {
3462 if (NILP (args[0])
3463 || (STRINGP (args[0])
3464 && SBYTES (args[0]) == 0))
3465 {
3466 message (0);
3467 return args[0];
3468 }
3469 else
3470 {
3471 register Lisp_Object val;
3472 val = Fformat (nargs, args);
3473 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3474 return val;
3475 }
3476 }
3477
3478 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3479 doc: /* Display a message, in a dialog box if possible.
3480 If a dialog box is not available, use the echo area.
3481 The first argument is a format control string, and the rest are data
3482 to be formatted under control of the string. See `format' for details.
3483
3484 If the first argument is nil or the empty string, clear any existing
3485 message; let the minibuffer contents show.
3486
3487 usage: (message-box FORMAT-STRING &rest ARGS) */)
3488 (ptrdiff_t nargs, Lisp_Object *args)
3489 {
3490 if (NILP (args[0]))
3491 {
3492 message (0);
3493 return Qnil;
3494 }
3495 else
3496 {
3497 register Lisp_Object val;
3498 val = Fformat (nargs, args);
3499 #ifdef HAVE_MENUS
3500 /* The MS-DOS frames support popup menus even though they are
3501 not FRAME_WINDOW_P. */
3502 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3503 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3504 {
3505 Lisp_Object pane, menu;
3506 struct gcpro gcpro1;
3507 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3508 GCPRO1 (pane);
3509 menu = Fcons (val, pane);
3510 Fx_popup_dialog (Qt, menu, Qt);
3511 UNGCPRO;
3512 return val;
3513 }
3514 #endif /* HAVE_MENUS */
3515 /* Copy the data so that it won't move when we GC. */
3516 if (SBYTES (val) > message_length)
3517 {
3518 ptrdiff_t new_length = SBYTES (val) + 80;
3519 message_text = xrealloc (message_text, new_length);
3520 message_length = new_length;
3521 }
3522 memcpy (message_text, SDATA (val), SBYTES (val));
3523 message2 (message_text, SBYTES (val),
3524 STRING_MULTIBYTE (val));
3525 return val;
3526 }
3527 }
3528
3529 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3530 doc: /* Display a message in a dialog box or in the echo area.
3531 If this command was invoked with the mouse, use a dialog box if
3532 `use-dialog-box' is non-nil.
3533 Otherwise, use the echo area.
3534 The first argument is a format control string, and the rest are data
3535 to be formatted under control of the string. See `format' for details.
3536
3537 If the first argument is nil or the empty string, clear any existing
3538 message; let the minibuffer contents show.
3539
3540 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3541 (ptrdiff_t nargs, Lisp_Object *args)
3542 {
3543 #ifdef HAVE_MENUS
3544 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3545 && use_dialog_box)
3546 return Fmessage_box (nargs, args);
3547 #endif
3548 return Fmessage (nargs, args);
3549 }
3550
3551 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3552 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3553 (void)
3554 {
3555 return current_message ();
3556 }
3557
3558
3559 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3560 doc: /* Return a copy of STRING with text properties added.
3561 First argument is the string to copy.
3562 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3563 properties to add to the result.
3564 usage: (propertize STRING &rest PROPERTIES) */)
3565 (ptrdiff_t nargs, Lisp_Object *args)
3566 {
3567 Lisp_Object properties, string;
3568 struct gcpro gcpro1, gcpro2;
3569 ptrdiff_t i;
3570
3571 /* Number of args must be odd. */
3572 if ((nargs & 1) == 0)
3573 error ("Wrong number of arguments");
3574
3575 properties = string = Qnil;
3576 GCPRO2 (properties, string);
3577
3578 /* First argument must be a string. */
3579 CHECK_STRING (args[0]);
3580 string = Fcopy_sequence (args[0]);
3581
3582 for (i = 1; i < nargs; i += 2)
3583 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3584
3585 Fadd_text_properties (make_number (0),
3586 make_number (SCHARS (string)),
3587 properties, string);
3588 RETURN_UNGCPRO (string);
3589 }
3590
3591 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3592 doc: /* Format a string out of a format-string and arguments.
3593 The first argument is a format control string.
3594 The other arguments are substituted into it to make the result, a string.
3595
3596 The format control string may contain %-sequences meaning to substitute
3597 the next available argument:
3598
3599 %s means print a string argument. Actually, prints any object, with `princ'.
3600 %d means print as number in decimal (%o octal, %x hex).
3601 %X is like %x, but uses upper case.
3602 %e means print a number in exponential notation.
3603 %f means print a number in decimal-point notation.
3604 %g means print a number in exponential notation
3605 or decimal-point notation, whichever uses fewer characters.
3606 %c means print a number as a single character.
3607 %S means print any object as an s-expression (using `prin1').
3608
3609 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3610 Use %% to put a single % into the output.
3611
3612 A %-sequence may contain optional flag, width, and precision
3613 specifiers, as follows:
3614
3615 %<flags><width><precision>character
3616
3617 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3618
3619 The + flag character inserts a + before any positive number, while a
3620 space inserts a space before any positive number; these flags only
3621 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3622 The # flag means to use an alternate display form for %o, %x, %X, %e,
3623 %f, and %g sequences. The - and 0 flags affect the width specifier,
3624 as described below.
3625
3626 The width specifier supplies a lower limit for the length of the
3627 printed representation. The padding, if any, normally goes on the
3628 left, but it goes on the right if the - flag is present. The padding
3629 character is normally a space, but it is 0 if the 0 flag is present.
3630 The 0 flag is ignored if the - flag is present, or the format sequence
3631 is something other than %d, %e, %f, and %g.
3632
3633 For %e, %f, and %g sequences, the number after the "." in the
3634 precision specifier says how many decimal places to show; if zero, the
3635 decimal point itself is omitted. For %s and %S, the precision
3636 specifier truncates the string to the given width.
3637
3638 usage: (format STRING &rest OBJECTS) */)
3639 (ptrdiff_t nargs, Lisp_Object *args)
3640 {
3641 ptrdiff_t n; /* The number of the next arg to substitute */
3642 char initial_buffer[4000];
3643 char *buf = initial_buffer;
3644 ptrdiff_t bufsize = sizeof initial_buffer;
3645 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3646 char *p;
3647 Lisp_Object buf_save_value IF_LINT (= {0});
3648 register char *format, *end, *format_start;
3649 ptrdiff_t formatlen, nchars;
3650 /* Nonzero if the format is multibyte. */
3651 int multibyte_format = 0;
3652 /* Nonzero if the output should be a multibyte string,
3653 which is true if any of the inputs is one. */
3654 int multibyte = 0;
3655 /* When we make a multibyte string, we must pay attention to the
3656 byte combining problem, i.e., a byte may be combined with a
3657 multibyte character of the previous string. This flag tells if we
3658 must consider such a situation or not. */
3659 int maybe_combine_byte;
3660 Lisp_Object val;
3661 int arg_intervals = 0;
3662 USE_SAFE_ALLOCA;
3663
3664 /* discarded[I] is 1 if byte I of the format
3665 string was not copied into the output.
3666 It is 2 if byte I was not the first byte of its character. */
3667 char *discarded;
3668
3669 /* Each element records, for one argument,
3670 the start and end bytepos in the output string,
3671 whether the argument has been converted to string (e.g., due to "%S"),
3672 and whether the argument is a string with intervals.
3673 info[0] is unused. Unused elements have -1 for start. */
3674 struct info
3675 {
3676 ptrdiff_t start, end;
3677 int converted_to_string;
3678 int intervals;
3679 } *info = 0;
3680
3681 /* It should not be necessary to GCPRO ARGS, because
3682 the caller in the interpreter should take care of that. */
3683
3684 CHECK_STRING (args[0]);
3685 format_start = SSDATA (args[0]);
3686 formatlen = SBYTES (args[0]);
3687
3688 /* Allocate the info and discarded tables. */
3689 {
3690 ptrdiff_t i;
3691 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3692 memory_full (SIZE_MAX);
3693 SAFE_ALLOCA (info, struct info *, (nargs + 1) * sizeof *info + formatlen);
3694 discarded = (char *) &info[nargs + 1];
3695 for (i = 0; i < nargs + 1; i++)
3696 {
3697 info[i].start = -1;
3698 info[i].intervals = info[i].converted_to_string = 0;
3699 }
3700 memset (discarded, 0, formatlen);
3701 }
3702
3703 /* Try to determine whether the result should be multibyte.
3704 This is not always right; sometimes the result needs to be multibyte
3705 because of an object that we will pass through prin1,
3706 and in that case, we won't know it here. */
3707 multibyte_format = STRING_MULTIBYTE (args[0]);
3708 multibyte = multibyte_format;
3709 for (n = 1; !multibyte && n < nargs; n++)
3710 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3711 multibyte = 1;
3712
3713 /* If we start out planning a unibyte result,
3714 then discover it has to be multibyte, we jump back to retry. */
3715 retry:
3716
3717 p = buf;
3718 nchars = 0;
3719 n = 0;
3720
3721 /* Scan the format and store result in BUF. */
3722 format = format_start;
3723 end = format + formatlen;
3724 maybe_combine_byte = 0;
3725
3726 while (format != end)
3727 {
3728 /* The values of N and FORMAT when the loop body is entered. */
3729 ptrdiff_t n0 = n;
3730 char *format0 = format;
3731
3732 /* Bytes needed to represent the output of this conversion. */
3733 ptrdiff_t convbytes;
3734
3735 if (*format == '%')
3736 {
3737 /* General format specifications look like
3738
3739 '%' [flags] [field-width] [precision] format
3740
3741 where
3742
3743 flags ::= [-+0# ]+
3744 field-width ::= [0-9]+
3745 precision ::= '.' [0-9]*
3746
3747 If a field-width is specified, it specifies to which width
3748 the output should be padded with blanks, if the output
3749 string is shorter than field-width.
3750
3751 If precision is specified, it specifies the number of
3752 digits to print after the '.' for floats, or the max.
3753 number of chars to print from a string. */
3754
3755 int minus_flag = 0;
3756 int plus_flag = 0;
3757 int space_flag = 0;
3758 int sharp_flag = 0;
3759 int zero_flag = 0;
3760 ptrdiff_t field_width;
3761 int precision_given;
3762 uintmax_t precision = UINTMAX_MAX;
3763 char *num_end;
3764 char conversion;
3765
3766 while (1)
3767 {
3768 switch (*++format)
3769 {
3770 case '-': minus_flag = 1; continue;
3771 case '+': plus_flag = 1; continue;
3772 case ' ': space_flag = 1; continue;
3773 case '#': sharp_flag = 1; continue;
3774 case '0': zero_flag = 1; continue;
3775 }
3776 break;
3777 }
3778
3779 /* Ignore flags when sprintf ignores them. */
3780 space_flag &= ~ plus_flag;
3781 zero_flag &= ~ minus_flag;
3782
3783 {
3784 uintmax_t w = strtoumax (format, &num_end, 10);
3785 if (max_bufsize <= w)
3786 string_overflow ();
3787 field_width = w;
3788 }
3789 precision_given = *num_end == '.';
3790 if (precision_given)
3791 precision = strtoumax (num_end + 1, &num_end, 10);
3792 format = num_end;
3793
3794 if (format == end)
3795 error ("Format string ends in middle of format specifier");
3796
3797 memset (&discarded[format0 - format_start], 1, format - format0);
3798 conversion = *format;
3799 if (conversion == '%')
3800 goto copy_char;
3801 discarded[format - format_start] = 1;
3802 format++;
3803
3804 ++n;
3805 if (! (n < nargs))
3806 error ("Not enough arguments for format string");
3807
3808 /* For 'S', prin1 the argument, and then treat like 's'.
3809 For 's', princ any argument that is not a string or
3810 symbol. But don't do this conversion twice, which might
3811 happen after retrying. */
3812 if ((conversion == 'S'
3813 || (conversion == 's'
3814 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3815 {
3816 if (! info[n].converted_to_string)
3817 {
3818 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3819 args[n] = Fprin1_to_string (args[n], noescape);
3820 info[n].converted_to_string = 1;
3821 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3822 {
3823 multibyte = 1;
3824 goto retry;
3825 }
3826 }
3827 conversion = 's';
3828 }
3829 else if (conversion == 'c')
3830 {
3831 if (FLOATP (args[n]))
3832 {
3833 double d = XFLOAT_DATA (args[n]);
3834 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3835 }
3836
3837 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3838 {
3839 if (!multibyte)
3840 {
3841 multibyte = 1;
3842 goto retry;
3843 }
3844 args[n] = Fchar_to_string (args[n]);
3845 info[n].converted_to_string = 1;
3846 }
3847
3848 if (info[n].converted_to_string)
3849 conversion = 's';
3850 zero_flag = 0;
3851 }
3852
3853 if (SYMBOLP (args[n]))
3854 {
3855 args[n] = SYMBOL_NAME (args[n]);
3856 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3857 {
3858 multibyte = 1;
3859 goto retry;
3860 }
3861 }
3862
3863 if (conversion == 's')
3864 {
3865 /* handle case (precision[n] >= 0) */
3866
3867 ptrdiff_t width, padding, nbytes;
3868 ptrdiff_t nchars_string;
3869
3870 ptrdiff_t prec = -1;
3871 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3872 prec = precision;
3873
3874 /* lisp_string_width ignores a precision of 0, but GNU
3875 libc functions print 0 characters when the precision
3876 is 0. Imitate libc behavior here. Changing
3877 lisp_string_width is the right thing, and will be
3878 done, but meanwhile we work with it. */
3879
3880 if (prec == 0)
3881 width = nchars_string = nbytes = 0;
3882 else
3883 {
3884 ptrdiff_t nch, nby;
3885 width = lisp_string_width (args[n], prec, &nch, &nby);
3886 if (prec < 0)
3887 {
3888 nchars_string = SCHARS (args[n]);
3889 nbytes = SBYTES (args[n]);
3890 }
3891 else
3892 {
3893 nchars_string = nch;
3894 nbytes = nby;
3895 }
3896 }
3897
3898 convbytes = nbytes;
3899 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3900 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3901
3902 padding = width < field_width ? field_width - width : 0;
3903
3904 if (max_bufsize - padding <= convbytes)
3905 string_overflow ();
3906 convbytes += padding;
3907 if (convbytes <= buf + bufsize - p)
3908 {
3909 if (! minus_flag)
3910 {
3911 memset (p, ' ', padding);
3912 p += padding;
3913 nchars += padding;
3914 }
3915
3916 if (p > buf
3917 && multibyte
3918 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3919 && STRING_MULTIBYTE (args[n])
3920 && !CHAR_HEAD_P (SREF (args[n], 0)))
3921 maybe_combine_byte = 1;
3922
3923 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3924 nbytes,
3925 STRING_MULTIBYTE (args[n]), multibyte);
3926
3927 info[n].start = nchars;
3928 nchars += nchars_string;
3929 info[n].end = nchars;
3930
3931 if (minus_flag)
3932 {
3933 memset (p, ' ', padding);
3934 p += padding;
3935 nchars += padding;
3936 }
3937
3938 /* If this argument has text properties, record where
3939 in the result string it appears. */
3940 if (STRING_INTERVALS (args[n]))
3941 info[n].intervals = arg_intervals = 1;
3942
3943 continue;
3944 }
3945 }
3946 else if (! (conversion == 'c' || conversion == 'd'
3947 || conversion == 'e' || conversion == 'f'
3948 || conversion == 'g' || conversion == 'i'
3949 || conversion == 'o' || conversion == 'x'
3950 || conversion == 'X'))
3951 error ("Invalid format operation %%%c",
3952 STRING_CHAR ((unsigned char *) format - 1));
3953 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3954 error ("Format specifier doesn't match argument type");
3955 else
3956 {
3957 enum
3958 {
3959 /* Maximum precision for a %f conversion such that the
3960 trailing output digit might be nonzero. Any precision
3961 larger than this will not yield useful information. */
3962 USEFUL_PRECISION_MAX =
3963 ((1 - DBL_MIN_EXP)
3964 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3965 : FLT_RADIX == 16 ? 4
3966 : -1)),
3967
3968 /* Maximum number of bytes generated by any format, if
3969 precision is no more than USEFUL_PRECISION_MAX.
3970 On all practical hosts, %f is the worst case. */
3971 SPRINTF_BUFSIZE =
3972 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3973
3974 /* Length of pM (that is, of pMd without the
3975 trailing "d"). */
3976 pMlen = sizeof pMd - 2
3977 };
3978 verify (0 < USEFUL_PRECISION_MAX);
3979
3980 int prec;
3981 ptrdiff_t padding, sprintf_bytes;
3982 uintmax_t excess_precision, numwidth;
3983 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3984
3985 char sprintf_buf[SPRINTF_BUFSIZE];
3986
3987 /* Copy of conversion specification, modified somewhat.
3988 At most three flags F can be specified at once. */
3989 char convspec[sizeof "%FFF.*d" + pMlen];
3990
3991 /* Avoid undefined behavior in underlying sprintf. */
3992 if (conversion == 'd' || conversion == 'i')
3993 sharp_flag = 0;
3994
3995 /* Create the copy of the conversion specification, with
3996 any width and precision removed, with ".*" inserted,
3997 and with pM inserted for integer formats. */
3998 {
3999 char *f = convspec;
4000 *f++ = '%';
4001 *f = '-'; f += minus_flag;
4002 *f = '+'; f += plus_flag;
4003 *f = ' '; f += space_flag;
4004 *f = '#'; f += sharp_flag;
4005 *f = '0'; f += zero_flag;
4006 *f++ = '.';
4007 *f++ = '*';
4008 if (conversion == 'd' || conversion == 'i'
4009 || conversion == 'o' || conversion == 'x'
4010 || conversion == 'X')
4011 {
4012 memcpy (f, pMd, pMlen);
4013 f += pMlen;
4014 zero_flag &= ~ precision_given;
4015 }
4016 *f++ = conversion;
4017 *f = '\0';
4018 }
4019
4020 prec = -1;
4021 if (precision_given)
4022 prec = min (precision, USEFUL_PRECISION_MAX);
4023
4024 /* Use sprintf to format this number into sprintf_buf. Omit
4025 padding and excess precision, though, because sprintf limits
4026 output length to INT_MAX.
4027
4028 There are four types of conversion: double, unsigned
4029 char (passed as int), wide signed int, and wide
4030 unsigned int. Treat them separately because the
4031 sprintf ABI is sensitive to which type is passed. Be
4032 careful about integer overflow, NaNs, infinities, and
4033 conversions; for example, the min and max macros are
4034 not suitable here. */
4035 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4036 {
4037 double x = (INTEGERP (args[n])
4038 ? XINT (args[n])
4039 : XFLOAT_DATA (args[n]));
4040 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4041 }
4042 else if (conversion == 'c')
4043 {
4044 /* Don't use sprintf here, as it might mishandle prec. */
4045 sprintf_buf[0] = XINT (args[n]);
4046 sprintf_bytes = prec != 0;
4047 }
4048 else if (conversion == 'd')
4049 {
4050 /* For float, maybe we should use "%1.0f"
4051 instead so it also works for values outside
4052 the integer range. */
4053 printmax_t x;
4054 if (INTEGERP (args[n]))
4055 x = XINT (args[n]);
4056 else
4057 {
4058 double d = XFLOAT_DATA (args[n]);
4059 if (d < 0)
4060 {
4061 x = TYPE_MINIMUM (printmax_t);
4062 if (x < d)
4063 x = d;
4064 }
4065 else
4066 {
4067 x = TYPE_MAXIMUM (printmax_t);
4068 if (d < x)
4069 x = d;
4070 }
4071 }
4072 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4073 }
4074 else
4075 {
4076 /* Don't sign-extend for octal or hex printing. */
4077 uprintmax_t x;
4078 if (INTEGERP (args[n]))
4079 x = XUINT (args[n]);
4080 else
4081 {
4082 double d = XFLOAT_DATA (args[n]);
4083 if (d < 0)
4084 x = 0;
4085 else
4086 {
4087 x = TYPE_MAXIMUM (uprintmax_t);
4088 if (d < x)
4089 x = d;
4090 }
4091 }
4092 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4093 }
4094
4095 /* Now the length of the formatted item is known, except it omits
4096 padding and excess precision. Deal with excess precision
4097 first. This happens only when the format specifies
4098 ridiculously large precision. */
4099 excess_precision = precision - prec;
4100 if (excess_precision)
4101 {
4102 if (conversion == 'e' || conversion == 'f'
4103 || conversion == 'g')
4104 {
4105 if ((conversion == 'g' && ! sharp_flag)
4106 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4107 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4108 excess_precision = 0;
4109 else
4110 {
4111 if (conversion == 'g')
4112 {
4113 char *dot = strchr (sprintf_buf, '.');
4114 if (!dot)
4115 excess_precision = 0;
4116 }
4117 }
4118 trailing_zeros = excess_precision;
4119 }
4120 else
4121 leading_zeros = excess_precision;
4122 }
4123
4124 /* Compute the total bytes needed for this item, including
4125 excess precision and padding. */
4126 numwidth = sprintf_bytes + excess_precision;
4127 padding = numwidth < field_width ? field_width - numwidth : 0;
4128 if (max_bufsize - sprintf_bytes <= excess_precision
4129 || max_bufsize - padding <= numwidth)
4130 string_overflow ();
4131 convbytes = numwidth + padding;
4132
4133 if (convbytes <= buf + bufsize - p)
4134 {
4135 /* Copy the formatted item from sprintf_buf into buf,
4136 inserting padding and excess-precision zeros. */
4137
4138 char *src = sprintf_buf;
4139 char src0 = src[0];
4140 int exponent_bytes = 0;
4141 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4142 int significand_bytes;
4143 if (zero_flag
4144 && ((src[signedp] >= '0' && src[signedp] <= '9')
4145 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4146 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4147 {
4148 leading_zeros += padding;
4149 padding = 0;
4150 }
4151
4152 if (excess_precision
4153 && (conversion == 'e' || conversion == 'g'))
4154 {
4155 char *e = strchr (src, 'e');
4156 if (e)
4157 exponent_bytes = src + sprintf_bytes - e;
4158 }
4159
4160 if (! minus_flag)
4161 {
4162 memset (p, ' ', padding);
4163 p += padding;
4164 nchars += padding;
4165 }
4166
4167 *p = src0;
4168 src += signedp;
4169 p += signedp;
4170 memset (p, '0', leading_zeros);
4171 p += leading_zeros;
4172 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4173 memcpy (p, src, significand_bytes);
4174 p += significand_bytes;
4175 src += significand_bytes;
4176 memset (p, '0', trailing_zeros);
4177 p += trailing_zeros;
4178 memcpy (p, src, exponent_bytes);
4179 p += exponent_bytes;
4180
4181 info[n].start = nchars;
4182 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4183 info[n].end = nchars;
4184
4185 if (minus_flag)
4186 {
4187 memset (p, ' ', padding);
4188 p += padding;
4189 nchars += padding;
4190 }
4191
4192 continue;
4193 }
4194 }
4195 }
4196 else
4197 copy_char:
4198 {
4199 /* Copy a single character from format to buf. */
4200
4201 char *src = format;
4202 unsigned char str[MAX_MULTIBYTE_LENGTH];
4203
4204 if (multibyte_format)
4205 {
4206 /* Copy a whole multibyte character. */
4207 if (p > buf
4208 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4209 && !CHAR_HEAD_P (*format))
4210 maybe_combine_byte = 1;
4211
4212 do
4213 format++;
4214 while (! CHAR_HEAD_P (*format));
4215
4216 convbytes = format - src;
4217 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4218 }
4219 else
4220 {
4221 unsigned char uc = *format++;
4222 if (! multibyte || ASCII_BYTE_P (uc))
4223 convbytes = 1;
4224 else
4225 {
4226 int c = BYTE8_TO_CHAR (uc);
4227 convbytes = CHAR_STRING (c, str);
4228 src = (char *) str;
4229 }
4230 }
4231
4232 if (convbytes <= buf + bufsize - p)
4233 {
4234 memcpy (p, src, convbytes);
4235 p += convbytes;
4236 nchars++;
4237 continue;
4238 }
4239 }
4240
4241 /* There wasn't enough room to store this conversion or single
4242 character. CONVBYTES says how much room is needed. Allocate
4243 enough room (and then some) and do it again. */
4244 {
4245 ptrdiff_t used = p - buf;
4246
4247 if (max_bufsize - used < convbytes)
4248 string_overflow ();
4249 bufsize = used + convbytes;
4250 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4251
4252 if (buf == initial_buffer)
4253 {
4254 buf = xmalloc (bufsize);
4255 sa_must_free = 1;
4256 buf_save_value = make_save_value (buf, 0);
4257 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4258 memcpy (buf, initial_buffer, used);
4259 }
4260 else
4261 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4262
4263 p = buf + used;
4264 }
4265
4266 format = format0;
4267 n = n0;
4268 }
4269
4270 if (bufsize < p - buf)
4271 abort ();
4272
4273 if (maybe_combine_byte)
4274 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4275 val = make_specified_string (buf, nchars, p - buf, multibyte);
4276
4277 /* If we allocated BUF with malloc, free it too. */
4278 SAFE_FREE ();
4279
4280 /* If the format string has text properties, or any of the string
4281 arguments has text properties, set up text properties of the
4282 result string. */
4283
4284 if (STRING_INTERVALS (args[0]) || arg_intervals)
4285 {
4286 Lisp_Object len, new_len, props;
4287 struct gcpro gcpro1;
4288
4289 /* Add text properties from the format string. */
4290 len = make_number (SCHARS (args[0]));
4291 props = text_property_list (args[0], make_number (0), len, Qnil);
4292 GCPRO1 (props);
4293
4294 if (CONSP (props))
4295 {
4296 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4297 ptrdiff_t argn = 1;
4298 Lisp_Object list;
4299
4300 /* Adjust the bounds of each text property
4301 to the proper start and end in the output string. */
4302
4303 /* Put the positions in PROPS in increasing order, so that
4304 we can do (effectively) one scan through the position
4305 space of the format string. */
4306 props = Fnreverse (props);
4307
4308 /* BYTEPOS is the byte position in the format string,
4309 POSITION is the untranslated char position in it,
4310 TRANSLATED is the translated char position in BUF,
4311 and ARGN is the number of the next arg we will come to. */
4312 for (list = props; CONSP (list); list = XCDR (list))
4313 {
4314 Lisp_Object item;
4315 ptrdiff_t pos;
4316
4317 item = XCAR (list);
4318
4319 /* First adjust the property start position. */
4320 pos = XINT (XCAR (item));
4321
4322 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4323 up to this position. */
4324 for (; position < pos; bytepos++)
4325 {
4326 if (! discarded[bytepos])
4327 position++, translated++;
4328 else if (discarded[bytepos] == 1)
4329 {
4330 position++;
4331 if (translated == info[argn].start)
4332 {
4333 translated += info[argn].end - info[argn].start;
4334 argn++;
4335 }
4336 }
4337 }
4338
4339 XSETCAR (item, make_number (translated));
4340
4341 /* Likewise adjust the property end position. */
4342 pos = XINT (XCAR (XCDR (item)));
4343
4344 for (; position < pos; bytepos++)
4345 {
4346 if (! discarded[bytepos])
4347 position++, translated++;
4348 else if (discarded[bytepos] == 1)
4349 {
4350 position++;
4351 if (translated == info[argn].start)
4352 {
4353 translated += info[argn].end - info[argn].start;
4354 argn++;
4355 }
4356 }
4357 }
4358
4359 XSETCAR (XCDR (item), make_number (translated));
4360 }
4361
4362 add_text_properties_from_list (val, props, make_number (0));
4363 }
4364
4365 /* Add text properties from arguments. */
4366 if (arg_intervals)
4367 for (n = 1; n < nargs; ++n)
4368 if (info[n].intervals)
4369 {
4370 len = make_number (SCHARS (args[n]));
4371 new_len = make_number (info[n].end - info[n].start);
4372 props = text_property_list (args[n], make_number (0), len, Qnil);
4373 props = extend_property_ranges (props, new_len);
4374 /* If successive arguments have properties, be sure that
4375 the value of `composition' property be the copy. */
4376 if (n > 1 && info[n - 1].end)
4377 make_composition_value_copy (props);
4378 add_text_properties_from_list (val, props,
4379 make_number (info[n].start));
4380 }
4381
4382 UNGCPRO;
4383 }
4384
4385 return val;
4386 }
4387
4388 Lisp_Object
4389 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4390 {
4391 Lisp_Object args[3];
4392 args[0] = build_string (string1);
4393 args[1] = arg0;
4394 args[2] = arg1;
4395 return Fformat (3, args);
4396 }
4397 \f
4398 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4399 doc: /* Return t if two characters match, optionally ignoring case.
4400 Both arguments must be characters (i.e. integers).
4401 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4402 (register Lisp_Object c1, Lisp_Object c2)
4403 {
4404 int i1, i2;
4405 /* Check they're chars, not just integers, otherwise we could get array
4406 bounds violations in downcase. */
4407 CHECK_CHARACTER (c1);
4408 CHECK_CHARACTER (c2);
4409
4410 if (XINT (c1) == XINT (c2))
4411 return Qt;
4412 if (NILP (BVAR (current_buffer, case_fold_search)))
4413 return Qnil;
4414
4415 i1 = XFASTINT (c1);
4416 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4417 && ! ASCII_CHAR_P (i1))
4418 {
4419 MAKE_CHAR_MULTIBYTE (i1);
4420 }
4421 i2 = XFASTINT (c2);
4422 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4423 && ! ASCII_CHAR_P (i2))
4424 {
4425 MAKE_CHAR_MULTIBYTE (i2);
4426 }
4427 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4428 }
4429 \f
4430 /* Transpose the markers in two regions of the current buffer, and
4431 adjust the ones between them if necessary (i.e.: if the regions
4432 differ in size).
4433
4434 START1, END1 are the character positions of the first region.
4435 START1_BYTE, END1_BYTE are the byte positions.
4436 START2, END2 are the character positions of the second region.
4437 START2_BYTE, END2_BYTE are the byte positions.
4438
4439 Traverses the entire marker list of the buffer to do so, adding an
4440 appropriate amount to some, subtracting from some, and leaving the
4441 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4442
4443 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4444
4445 static void
4446 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4447 ptrdiff_t start2, ptrdiff_t end2,
4448 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4449 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4450 {
4451 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4452 register struct Lisp_Marker *marker;
4453
4454 /* Update point as if it were a marker. */
4455 if (PT < start1)
4456 ;
4457 else if (PT < end1)
4458 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4459 PT_BYTE + (end2_byte - end1_byte));
4460 else if (PT < start2)
4461 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4462 (PT_BYTE + (end2_byte - start2_byte)
4463 - (end1_byte - start1_byte)));
4464 else if (PT < end2)
4465 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4466 PT_BYTE - (start2_byte - start1_byte));
4467
4468 /* We used to adjust the endpoints here to account for the gap, but that
4469 isn't good enough. Even if we assume the caller has tried to move the
4470 gap out of our way, it might still be at start1 exactly, for example;
4471 and that places it `inside' the interval, for our purposes. The amount
4472 of adjustment is nontrivial if there's a `denormalized' marker whose
4473 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4474 the dirty work to Fmarker_position, below. */
4475
4476 /* The difference between the region's lengths */
4477 diff = (end2 - start2) - (end1 - start1);
4478 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4479
4480 /* For shifting each marker in a region by the length of the other
4481 region plus the distance between the regions. */
4482 amt1 = (end2 - start2) + (start2 - end1);
4483 amt2 = (end1 - start1) + (start2 - end1);
4484 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4485 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4486
4487 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4488 {
4489 mpos = marker->bytepos;
4490 if (mpos >= start1_byte && mpos < end2_byte)
4491 {
4492 if (mpos < end1_byte)
4493 mpos += amt1_byte;
4494 else if (mpos < start2_byte)
4495 mpos += diff_byte;
4496 else
4497 mpos -= amt2_byte;
4498 marker->bytepos = mpos;
4499 }
4500 mpos = marker->charpos;
4501 if (mpos >= start1 && mpos < end2)
4502 {
4503 if (mpos < end1)
4504 mpos += amt1;
4505 else if (mpos < start2)
4506 mpos += diff;
4507 else
4508 mpos -= amt2;
4509 }
4510 marker->charpos = mpos;
4511 }
4512 }
4513
4514 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4515 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4516 The regions should not be overlapping, because the size of the buffer is
4517 never changed in a transposition.
4518
4519 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4520 any markers that happen to be located in the regions.
4521
4522 Transposing beyond buffer boundaries is an error. */)
4523 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4524 {
4525 register ptrdiff_t start1, end1, start2, end2;
4526 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4527 ptrdiff_t gap, len1, len_mid, len2;
4528 unsigned char *start1_addr, *start2_addr, *temp;
4529
4530 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4531 Lisp_Object buf;
4532
4533 XSETBUFFER (buf, current_buffer);
4534 cur_intv = BUF_INTERVALS (current_buffer);
4535
4536 validate_region (&startr1, &endr1);
4537 validate_region (&startr2, &endr2);
4538
4539 start1 = XFASTINT (startr1);
4540 end1 = XFASTINT (endr1);
4541 start2 = XFASTINT (startr2);
4542 end2 = XFASTINT (endr2);
4543 gap = GPT;
4544
4545 /* Swap the regions if they're reversed. */
4546 if (start2 < end1)
4547 {
4548 register ptrdiff_t glumph = start1;
4549 start1 = start2;
4550 start2 = glumph;
4551 glumph = end1;
4552 end1 = end2;
4553 end2 = glumph;
4554 }
4555
4556 len1 = end1 - start1;
4557 len2 = end2 - start2;
4558
4559 if (start2 < end1)
4560 error ("Transposed regions overlap");
4561 /* Nothing to change for adjacent regions with one being empty */
4562 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4563 return Qnil;
4564
4565 /* The possibilities are:
4566 1. Adjacent (contiguous) regions, or separate but equal regions
4567 (no, really equal, in this case!), or
4568 2. Separate regions of unequal size.
4569
4570 The worst case is usually No. 2. It means that (aside from
4571 potential need for getting the gap out of the way), there also
4572 needs to be a shifting of the text between the two regions. So
4573 if they are spread far apart, we are that much slower... sigh. */
4574
4575 /* It must be pointed out that the really studly thing to do would
4576 be not to move the gap at all, but to leave it in place and work
4577 around it if necessary. This would be extremely efficient,
4578 especially considering that people are likely to do
4579 transpositions near where they are working interactively, which
4580 is exactly where the gap would be found. However, such code
4581 would be much harder to write and to read. So, if you are
4582 reading this comment and are feeling squirrely, by all means have
4583 a go! I just didn't feel like doing it, so I will simply move
4584 the gap the minimum distance to get it out of the way, and then
4585 deal with an unbroken array. */
4586
4587 /* Make sure the gap won't interfere, by moving it out of the text
4588 we will operate on. */
4589 if (start1 < gap && gap < end2)
4590 {
4591 if (gap - start1 < end2 - gap)
4592 move_gap (start1);
4593 else
4594 move_gap (end2);
4595 }
4596
4597 start1_byte = CHAR_TO_BYTE (start1);
4598 start2_byte = CHAR_TO_BYTE (start2);
4599 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4600 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4601
4602 #ifdef BYTE_COMBINING_DEBUG
4603 if (end1 == start2)
4604 {
4605 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4606 len2_byte, start1, start1_byte)
4607 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4608 len1_byte, end2, start2_byte + len2_byte)
4609 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4610 len1_byte, end2, start2_byte + len2_byte))
4611 abort ();
4612 }
4613 else
4614 {
4615 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4616 len2_byte, start1, start1_byte)
4617 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4618 len1_byte, start2, start2_byte)
4619 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4620 len2_byte, end1, start1_byte + len1_byte)
4621 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4622 len1_byte, end2, start2_byte + len2_byte))
4623 abort ();
4624 }
4625 #endif
4626
4627 /* Hmmm... how about checking to see if the gap is large
4628 enough to use as the temporary storage? That would avoid an
4629 allocation... interesting. Later, don't fool with it now. */
4630
4631 /* Working without memmove, for portability (sigh), so must be
4632 careful of overlapping subsections of the array... */
4633
4634 if (end1 == start2) /* adjacent regions */
4635 {
4636 modify_region (current_buffer, start1, end2, 0);
4637 record_change (start1, len1 + len2);
4638
4639 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4640 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4641 /* Don't use Fset_text_properties: that can cause GC, which can
4642 clobber objects stored in the tmp_intervals. */
4643 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4644 if (!NULL_INTERVAL_P (tmp_interval3))
4645 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4646
4647 /* First region smaller than second. */
4648 if (len1_byte < len2_byte)
4649 {
4650 USE_SAFE_ALLOCA;
4651
4652 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4653
4654 /* Don't precompute these addresses. We have to compute them
4655 at the last minute, because the relocating allocator might
4656 have moved the buffer around during the xmalloc. */
4657 start1_addr = BYTE_POS_ADDR (start1_byte);
4658 start2_addr = BYTE_POS_ADDR (start2_byte);
4659
4660 memcpy (temp, start2_addr, len2_byte);
4661 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4662 memcpy (start1_addr, temp, len2_byte);
4663 SAFE_FREE ();
4664 }
4665 else
4666 /* First region not smaller than second. */
4667 {
4668 USE_SAFE_ALLOCA;
4669
4670 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4671 start1_addr = BYTE_POS_ADDR (start1_byte);
4672 start2_addr = BYTE_POS_ADDR (start2_byte);
4673 memcpy (temp, start1_addr, len1_byte);
4674 memcpy (start1_addr, start2_addr, len2_byte);
4675 memcpy (start1_addr + len2_byte, temp, len1_byte);
4676 SAFE_FREE ();
4677 }
4678 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4679 len1, current_buffer, 0);
4680 graft_intervals_into_buffer (tmp_interval2, start1,
4681 len2, current_buffer, 0);
4682 update_compositions (start1, start1 + len2, CHECK_BORDER);
4683 update_compositions (start1 + len2, end2, CHECK_TAIL);
4684 }
4685 /* Non-adjacent regions, because end1 != start2, bleagh... */
4686 else
4687 {
4688 len_mid = start2_byte - (start1_byte + len1_byte);
4689
4690 if (len1_byte == len2_byte)
4691 /* Regions are same size, though, how nice. */
4692 {
4693 USE_SAFE_ALLOCA;
4694
4695 modify_region (current_buffer, start1, end1, 0);
4696 modify_region (current_buffer, start2, end2, 0);
4697 record_change (start1, len1);
4698 record_change (start2, len2);
4699 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4700 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4701
4702 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4703 if (!NULL_INTERVAL_P (tmp_interval3))
4704 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4705
4706 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4707 if (!NULL_INTERVAL_P (tmp_interval3))
4708 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4709
4710 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4711 start1_addr = BYTE_POS_ADDR (start1_byte);
4712 start2_addr = BYTE_POS_ADDR (start2_byte);
4713 memcpy (temp, start1_addr, len1_byte);
4714 memcpy (start1_addr, start2_addr, len2_byte);
4715 memcpy (start2_addr, temp, len1_byte);
4716 SAFE_FREE ();
4717
4718 graft_intervals_into_buffer (tmp_interval1, start2,
4719 len1, current_buffer, 0);
4720 graft_intervals_into_buffer (tmp_interval2, start1,
4721 len2, current_buffer, 0);
4722 }
4723
4724 else if (len1_byte < len2_byte) /* Second region larger than first */
4725 /* Non-adjacent & unequal size, area between must also be shifted. */
4726 {
4727 USE_SAFE_ALLOCA;
4728
4729 modify_region (current_buffer, start1, end2, 0);
4730 record_change (start1, (end2 - start1));
4731 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4732 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4733 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4734
4735 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4736 if (!NULL_INTERVAL_P (tmp_interval3))
4737 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4738
4739 /* holds region 2 */
4740 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4741 start1_addr = BYTE_POS_ADDR (start1_byte);
4742 start2_addr = BYTE_POS_ADDR (start2_byte);
4743 memcpy (temp, start2_addr, len2_byte);
4744 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4745 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4746 memcpy (start1_addr, temp, len2_byte);
4747 SAFE_FREE ();
4748
4749 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4750 len1, current_buffer, 0);
4751 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4752 len_mid, current_buffer, 0);
4753 graft_intervals_into_buffer (tmp_interval2, start1,
4754 len2, current_buffer, 0);
4755 }
4756 else
4757 /* Second region smaller than first. */
4758 {
4759 USE_SAFE_ALLOCA;
4760
4761 record_change (start1, (end2 - start1));
4762 modify_region (current_buffer, start1, end2, 0);
4763
4764 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4765 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4766 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4767
4768 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4769 if (!NULL_INTERVAL_P (tmp_interval3))
4770 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4771
4772 /* holds region 1 */
4773 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4774 start1_addr = BYTE_POS_ADDR (start1_byte);
4775 start2_addr = BYTE_POS_ADDR (start2_byte);
4776 memcpy (temp, start1_addr, len1_byte);
4777 memcpy (start1_addr, start2_addr, len2_byte);
4778 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4779 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4780 SAFE_FREE ();
4781
4782 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4783 len1, current_buffer, 0);
4784 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4785 len_mid, current_buffer, 0);
4786 graft_intervals_into_buffer (tmp_interval2, start1,
4787 len2, current_buffer, 0);
4788 }
4789
4790 update_compositions (start1, start1 + len2, CHECK_BORDER);
4791 update_compositions (end2 - len1, end2, CHECK_BORDER);
4792 }
4793
4794 /* When doing multiple transpositions, it might be nice
4795 to optimize this. Perhaps the markers in any one buffer
4796 should be organized in some sorted data tree. */
4797 if (NILP (leave_markers))
4798 {
4799 transpose_markers (start1, end1, start2, end2,
4800 start1_byte, start1_byte + len1_byte,
4801 start2_byte, start2_byte + len2_byte);
4802 fix_start_end_in_overlays (start1, end2);
4803 }
4804
4805 signal_after_change (start1, end2 - start1, end2 - start1);
4806 return Qnil;
4807 }
4808
4809 \f
4810 void
4811 syms_of_editfns (void)
4812 {
4813 environbuf = 0;
4814 initial_tz = 0;
4815
4816 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4817
4818 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4819 doc: /* Non-nil means text motion commands don't notice fields. */);
4820 Vinhibit_field_text_motion = Qnil;
4821
4822 DEFVAR_LISP ("buffer-access-fontify-functions",
4823 Vbuffer_access_fontify_functions,
4824 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4825 Each function is called with two arguments which specify the range
4826 of the buffer being accessed. */);
4827 Vbuffer_access_fontify_functions = Qnil;
4828
4829 {
4830 Lisp_Object obuf;
4831 obuf = Fcurrent_buffer ();
4832 /* Do this here, because init_buffer_once is too early--it won't work. */
4833 Fset_buffer (Vprin1_to_string_buffer);
4834 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4835 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4836 Qnil);
4837 Fset_buffer (obuf);
4838 }
4839
4840 DEFVAR_LISP ("buffer-access-fontified-property",
4841 Vbuffer_access_fontified_property,
4842 doc: /* Property which (if non-nil) indicates text has been fontified.
4843 `buffer-substring' need not call the `buffer-access-fontify-functions'
4844 functions if all the text being accessed has this property. */);
4845 Vbuffer_access_fontified_property = Qnil;
4846
4847 DEFVAR_LISP ("system-name", Vsystem_name,
4848 doc: /* The host name of the machine Emacs is running on. */);
4849
4850 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4851 doc: /* The full name of the user logged in. */);
4852
4853 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4854 doc: /* The user's name, taken from environment variables if possible. */);
4855
4856 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4857 doc: /* The user's name, based upon the real uid only. */);
4858
4859 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4860 doc: /* The release of the operating system Emacs is running on. */);
4861
4862 defsubr (&Spropertize);
4863 defsubr (&Schar_equal);
4864 defsubr (&Sgoto_char);
4865 defsubr (&Sstring_to_char);
4866 defsubr (&Schar_to_string);
4867 defsubr (&Sbyte_to_string);
4868 defsubr (&Sbuffer_substring);
4869 defsubr (&Sbuffer_substring_no_properties);
4870 defsubr (&Sbuffer_string);
4871
4872 defsubr (&Spoint_marker);
4873 defsubr (&Smark_marker);
4874 defsubr (&Spoint);
4875 defsubr (&Sregion_beginning);
4876 defsubr (&Sregion_end);
4877
4878 DEFSYM (Qfield, "field");
4879 DEFSYM (Qboundary, "boundary");
4880 defsubr (&Sfield_beginning);
4881 defsubr (&Sfield_end);
4882 defsubr (&Sfield_string);
4883 defsubr (&Sfield_string_no_properties);
4884 defsubr (&Sdelete_field);
4885 defsubr (&Sconstrain_to_field);
4886
4887 defsubr (&Sline_beginning_position);
4888 defsubr (&Sline_end_position);
4889
4890 /* defsubr (&Smark); */
4891 /* defsubr (&Sset_mark); */
4892 defsubr (&Ssave_excursion);
4893 defsubr (&Ssave_current_buffer);
4894
4895 defsubr (&Sbufsize);
4896 defsubr (&Spoint_max);
4897 defsubr (&Spoint_min);
4898 defsubr (&Spoint_min_marker);
4899 defsubr (&Spoint_max_marker);
4900 defsubr (&Sgap_position);
4901 defsubr (&Sgap_size);
4902 defsubr (&Sposition_bytes);
4903 defsubr (&Sbyte_to_position);
4904
4905 defsubr (&Sbobp);
4906 defsubr (&Seobp);
4907 defsubr (&Sbolp);
4908 defsubr (&Seolp);
4909 defsubr (&Sfollowing_char);
4910 defsubr (&Sprevious_char);
4911 defsubr (&Schar_after);
4912 defsubr (&Schar_before);
4913 defsubr (&Sinsert);
4914 defsubr (&Sinsert_before_markers);
4915 defsubr (&Sinsert_and_inherit);
4916 defsubr (&Sinsert_and_inherit_before_markers);
4917 defsubr (&Sinsert_char);
4918 defsubr (&Sinsert_byte);
4919
4920 defsubr (&Suser_login_name);
4921 defsubr (&Suser_real_login_name);
4922 defsubr (&Suser_uid);
4923 defsubr (&Suser_real_uid);
4924 defsubr (&Suser_full_name);
4925 defsubr (&Semacs_pid);
4926 defsubr (&Scurrent_time);
4927 defsubr (&Sget_internal_run_time);
4928 defsubr (&Sformat_time_string);
4929 defsubr (&Sfloat_time);
4930 defsubr (&Sdecode_time);
4931 defsubr (&Sencode_time);
4932 defsubr (&Scurrent_time_string);
4933 defsubr (&Scurrent_time_zone);
4934 defsubr (&Sset_time_zone_rule);
4935 defsubr (&Ssystem_name);
4936 defsubr (&Smessage);
4937 defsubr (&Smessage_box);
4938 defsubr (&Smessage_or_box);
4939 defsubr (&Scurrent_message);
4940 defsubr (&Sformat);
4941
4942 defsubr (&Sinsert_buffer_substring);
4943 defsubr (&Scompare_buffer_substrings);
4944 defsubr (&Ssubst_char_in_region);
4945 defsubr (&Stranslate_region_internal);
4946 defsubr (&Sdelete_region);
4947 defsubr (&Sdelete_and_extract_region);
4948 defsubr (&Swiden);
4949 defsubr (&Snarrow_to_region);
4950 defsubr (&Ssave_restriction);
4951 defsubr (&Stranspose_regions);
4952 }