(flyspell-default-dictionary): Fix previous change.
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
29 */
30
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
35
36 #undef _GNU_SOURCE
37 #define _GNU_SOURCE
38
39 #ifdef HAVE_CONFIG_H
40 # include <config.h>
41 #endif
42
43 #if defined STDC_HEADERS && !defined emacs
44 # include <stddef.h>
45 #else
46 /* We need this for `regex.h', and perhaps for the Emacs include files. */
47 # include <sys/types.h>
48 #endif
49
50 /* Whether to use ISO C Amendment 1 wide char functions.
51 Those should not be used for Emacs since it uses its own. */
52 #if defined _LIBC
53 #define WIDE_CHAR_SUPPORT 1
54 #else
55 #define WIDE_CHAR_SUPPORT \
56 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
57 #endif
58
59 /* For platform which support the ISO C amendement 1 functionality we
60 support user defined character classes. */
61 #if WIDE_CHAR_SUPPORT
62 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
63 # include <wchar.h>
64 # include <wctype.h>
65 #endif
66
67 #ifdef _LIBC
68 /* We have to keep the namespace clean. */
69 # define regfree(preg) __regfree (preg)
70 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
71 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
72 # define regerror(errcode, preg, errbuf, errbuf_size) \
73 __regerror(errcode, preg, errbuf, errbuf_size)
74 # define re_set_registers(bu, re, nu, st, en) \
75 __re_set_registers (bu, re, nu, st, en)
76 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
77 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
78 # define re_match(bufp, string, size, pos, regs) \
79 __re_match (bufp, string, size, pos, regs)
80 # define re_search(bufp, string, size, startpos, range, regs) \
81 __re_search (bufp, string, size, startpos, range, regs)
82 # define re_compile_pattern(pattern, length, bufp) \
83 __re_compile_pattern (pattern, length, bufp)
84 # define re_set_syntax(syntax) __re_set_syntax (syntax)
85 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
86 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
87 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88
89 /* Make sure we call libc's function even if the user overrides them. */
90 # define btowc __btowc
91 # define iswctype __iswctype
92 # define wctype __wctype
93
94 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95
96 /* We are also using some library internals. */
97 # include <locale/localeinfo.h>
98 # include <locale/elem-hash.h>
99 # include <langinfo.h>
100 #else
101 # define WEAK_ALIAS(a,b)
102 #endif
103
104 /* This is for other GNU distributions with internationalized messages. */
105 #if HAVE_LIBINTL_H || defined _LIBC
106 # include <libintl.h>
107 #else
108 # define gettext(msgid) (msgid)
109 #endif
110
111 #ifndef gettext_noop
112 /* This define is so xgettext can find the internationalizable
113 strings. */
114 # define gettext_noop(String) String
115 #endif
116
117 /* The `emacs' switch turns on certain matching commands
118 that make sense only in Emacs. */
119 #ifdef emacs
120
121 # include "lisp.h"
122 # include "buffer.h"
123
124 /* Make syntax table lookup grant data in gl_state. */
125 # define SYNTAX_ENTRY_VIA_PROPERTY
126
127 # include "syntax.h"
128 # include "charset.h"
129 # include "category.h"
130
131 # ifdef malloc
132 # undef malloc
133 # endif
134 # define malloc xmalloc
135 # ifdef realloc
136 # undef realloc
137 # endif
138 # define realloc xrealloc
139 # ifdef free
140 # undef free
141 # endif
142 # define free xfree
143
144 /* Converts the pointer to the char to BEG-based offset from the start. */
145 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147
148 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149 # define RE_STRING_CHAR(p, s) \
150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
151 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153
154 /* Set C a (possibly multibyte) character before P. P points into a
155 string which is the virtual concatenation of STR1 (which ends at
156 END1) or STR2 (which ends at END2). */
157 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
158 do { \
159 if (multibyte) \
160 { \
161 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
162 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
163 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
164 c = STRING_CHAR (dtemp, (p) - dtemp); \
165 } \
166 else \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
168 } while (0)
169
170
171 #else /* not emacs */
172
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
176 # undef REL_ALLOC
177
178 # if defined STDC_HEADERS || defined _LIBC
179 # include <stdlib.h>
180 # else
181 char *malloc ();
182 char *realloc ();
183 # endif
184
185 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
186 If nothing else has been done, use the method below. */
187 # ifdef INHIBIT_STRING_HEADER
188 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
189 # if !defined bzero && !defined bcopy
190 # undef INHIBIT_STRING_HEADER
191 # endif
192 # endif
193 # endif
194
195 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
196 This is used in most programs--a few other programs avoid this
197 by defining INHIBIT_STRING_HEADER. */
198 # ifndef INHIBIT_STRING_HEADER
199 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
200 # include <string.h>
201 # ifndef bzero
202 # ifndef _LIBC
203 # define bzero(s, n) (memset (s, '\0', n), (s))
204 # else
205 # define bzero(s, n) __bzero (s, n)
206 # endif
207 # endif
208 # else
209 # include <strings.h>
210 # ifndef memcmp
211 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
212 # endif
213 # ifndef memcpy
214 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
215 # endif
216 # endif
217 # endif
218
219 /* Define the syntax stuff for \<, \>, etc. */
220
221 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
222 enum syntaxcode { Swhitespace = 0, Sword = 1 };
223
224 # ifdef SWITCH_ENUM_BUG
225 # define SWITCH_ENUM_CAST(x) ((int)(x))
226 # else
227 # define SWITCH_ENUM_CAST(x) (x)
228 # endif
229
230 /* Dummy macros for non-Emacs environments. */
231 # define BASE_LEADING_CODE_P(c) (0)
232 # define CHAR_CHARSET(c) 0
233 # define CHARSET_LEADING_CODE_BASE(c) 0
234 # define MAX_MULTIBYTE_LENGTH 1
235 # define RE_MULTIBYTE_P(x) 0
236 # define WORD_BOUNDARY_P(c1, c2) (0)
237 # define CHAR_HEAD_P(p) (1)
238 # define SINGLE_BYTE_CHAR_P(c) (1)
239 # define SAME_CHARSET_P(c1, c2) (1)
240 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
241 # define STRING_CHAR(p, s) (*(p))
242 # define RE_STRING_CHAR STRING_CHAR
243 # define CHAR_STRING(c, s) (*(s) = (c), 1)
244 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
248 # define MAKE_CHAR(charset, c1, c2) (c1)
249 #endif /* not emacs */
250
251 #ifndef RE_TRANSLATE
252 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253 # define RE_TRANSLATE_P(TBL) (TBL)
254 #endif
255 \f
256 /* Get the interface, including the syntax bits. */
257 #include "regex.h"
258
259 /* isalpha etc. are used for the character classes. */
260 #include <ctype.h>
261
262 #ifdef emacs
263
264 /* 1 if C is an ASCII character. */
265 # define IS_REAL_ASCII(c) ((c) < 0200)
266
267 /* 1 if C is a unibyte character. */
268 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
269
270 /* The Emacs definitions should not be directly affected by locales. */
271
272 /* In Emacs, these are only used for single-byte characters. */
273 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274 # define ISCNTRL(c) ((c) < ' ')
275 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
278
279 /* This is only used for single-byte characters. */
280 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
281
282 /* The rest must handle multibyte characters. */
283
284 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
286 : 1)
287
288 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
290 : 1)
291
292 # define ISALNUM(c) (IS_REAL_ASCII (c) \
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
296 : SYNTAX (c) == Sword)
297
298 # define ISALPHA(c) (IS_REAL_ASCII (c) \
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
301 : SYNTAX (c) == Sword)
302
303 # define ISLOWER(c) (LOWERCASEP (c))
304
305 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
310 : SYNTAX (c) != Sword)
311
312 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
313
314 # define ISUPPER(c) (UPPERCASEP (c))
315
316 # define ISWORD(c) (SYNTAX (c) == Sword)
317
318 #else /* not emacs */
319
320 /* Jim Meyering writes:
321
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
325 ctype uses should be through macros like ISPRINT... If
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
331
332 # undef ISASCII
333 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334 # define ISASCII(c) 1
335 # else
336 # define ISASCII(c) isascii(c)
337 # endif
338
339 /* 1 if C is an ASCII character. */
340 # define IS_REAL_ASCII(c) ((c) < 0200)
341
342 /* This distinction is not meaningful, except in Emacs. */
343 # define ISUNIBYTE(c) 1
344
345 # ifdef isblank
346 # define ISBLANK(c) (ISASCII (c) && isblank (c))
347 # else
348 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
349 # endif
350 # ifdef isgraph
351 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352 # else
353 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
354 # endif
355
356 # undef ISPRINT
357 # define ISPRINT(c) (ISASCII (c) && isprint (c))
358 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
360 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
361 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362 # define ISLOWER(c) (ISASCII (c) && islower (c))
363 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364 # define ISSPACE(c) (ISASCII (c) && isspace (c))
365 # define ISUPPER(c) (ISASCII (c) && isupper (c))
366 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367
368 # define ISWORD(c) ISALPHA(c)
369
370 # ifdef _tolower
371 # define TOLOWER(c) _tolower(c)
372 # else
373 # define TOLOWER(c) tolower(c)
374 # endif
375
376 /* How many characters in the character set. */
377 # define CHAR_SET_SIZE 256
378
379 # ifdef SYNTAX_TABLE
380
381 extern char *re_syntax_table;
382
383 # else /* not SYNTAX_TABLE */
384
385 static char re_syntax_table[CHAR_SET_SIZE];
386
387 static void
388 init_syntax_once ()
389 {
390 register int c;
391 static int done = 0;
392
393 if (done)
394 return;
395
396 bzero (re_syntax_table, sizeof re_syntax_table);
397
398 for (c = 0; c < CHAR_SET_SIZE; ++c)
399 if (ISALNUM (c))
400 re_syntax_table[c] = Sword;
401
402 re_syntax_table['_'] = Sword;
403
404 done = 1;
405 }
406
407 # endif /* not SYNTAX_TABLE */
408
409 # define SYNTAX(c) re_syntax_table[(c)]
410
411 #endif /* not emacs */
412 \f
413 #ifndef NULL
414 # define NULL (void *)0
415 #endif
416
417 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
420 (Per Bothner suggested the basic approach.) */
421 #undef SIGN_EXTEND_CHAR
422 #if __STDC__
423 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
424 #else /* not __STDC__ */
425 /* As in Harbison and Steele. */
426 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
427 #endif
428 \f
429 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
433 the other hand, malloc is more portable, and easier to debug.
434
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
438
439 #ifdef REGEX_MALLOC
440
441 # define REGEX_ALLOCATE malloc
442 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443 # define REGEX_FREE free
444
445 #else /* not REGEX_MALLOC */
446
447 /* Emacs already defines alloca, sometimes. */
448 # ifndef alloca
449
450 /* Make alloca work the best possible way. */
451 # ifdef __GNUC__
452 # define alloca __builtin_alloca
453 # else /* not __GNUC__ */
454 # if HAVE_ALLOCA_H
455 # include <alloca.h>
456 # endif /* HAVE_ALLOCA_H */
457 # endif /* not __GNUC__ */
458
459 # endif /* not alloca */
460
461 # define REGEX_ALLOCATE alloca
462
463 /* Assumes a `char *destination' variable. */
464 # define REGEX_REALLOCATE(source, osize, nsize) \
465 (destination = (char *) alloca (nsize), \
466 memcpy (destination, source, osize))
467
468 /* No need to do anything to free, after alloca. */
469 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
470
471 #endif /* not REGEX_MALLOC */
472
473 /* Define how to allocate the failure stack. */
474
475 #if defined REL_ALLOC && defined REGEX_MALLOC
476
477 # define REGEX_ALLOCATE_STACK(size) \
478 r_alloc (&failure_stack_ptr, (size))
479 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
480 r_re_alloc (&failure_stack_ptr, (nsize))
481 # define REGEX_FREE_STACK(ptr) \
482 r_alloc_free (&failure_stack_ptr)
483
484 #else /* not using relocating allocator */
485
486 # ifdef REGEX_MALLOC
487
488 # define REGEX_ALLOCATE_STACK malloc
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490 # define REGEX_FREE_STACK free
491
492 # else /* not REGEX_MALLOC */
493
494 # define REGEX_ALLOCATE_STACK alloca
495
496 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
497 REGEX_REALLOCATE (source, osize, nsize)
498 /* No need to explicitly free anything. */
499 # define REGEX_FREE_STACK(arg) ((void)0)
500
501 # endif /* not REGEX_MALLOC */
502 #endif /* not using relocating allocator */
503
504
505 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
507 a good thing. */
508 #define FIRST_STRING_P(ptr) \
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510
511 /* (Re)Allocate N items of type T using malloc, or fail. */
512 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514 #define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517
518 #define BYTEWIDTH 8 /* In bits. */
519
520 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521
522 #undef MAX
523 #undef MIN
524 #define MAX(a, b) ((a) > (b) ? (a) : (b))
525 #define MIN(a, b) ((a) < (b) ? (a) : (b))
526
527 /* Type of source-pattern and string chars. */
528 typedef const unsigned char re_char;
529
530 typedef char boolean;
531 #define false 0
532 #define true 1
533
534 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
535 re_char *string1, int size1,
536 re_char *string2, int size2,
537 int pos,
538 struct re_registers *regs,
539 int stop));
540 \f
541 /* These are the command codes that appear in compiled regular
542 expressions. Some opcodes are followed by argument bytes. A
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
545
546 typedef enum
547 {
548 no_op = 0,
549
550 /* Succeed right away--no more backtracking. */
551 succeed,
552
553 /* Followed by one byte giving n, then by n literal bytes. */
554 exactn,
555
556 /* Matches any (more or less) character. */
557 anychar,
558
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
564 automatically not in the set.
565
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
569 See RANGE_TABLE_WORK_BITS below.
570 2 bytes, the number of pairs that follow (upto 32767)
571 pairs, each 2 multibyte characters,
572 each multibyte character represented as 3 bytes. */
573 charset,
574
575 /* Same parameters as charset, but match any character that is
576 not one of those specified. */
577 charset_not,
578
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
582 field. */
583 start_memory,
584
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
588 pattern buffer. */
589 stop_memory,
590
591 /* Match a duplicate of something remembered. Followed by one
592 byte containing the register number. */
593 duplicate,
594
595 /* Fail unless at beginning of line. */
596 begline,
597
598 /* Fail unless at end of line. */
599 endline,
600
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
603 begbuf,
604
605 /* Analogously, for end of buffer/string. */
606 endbuf,
607
608 /* Followed by two byte relative address to which to jump. */
609 jump,
610
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
613 on_failure_jump,
614
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
617 on_failure_keep_string_jump,
618
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
621 indefinitely). */
622 on_failure_jump_loop,
623
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
627 by a `no_op'. */
628 on_failure_jump_nastyloop,
629
630 /* A smart `on_failure_jump' used for greedy * and + operators.
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
636 on_failure_jump_smart,
637
638 /* Followed by two-byte relative address and two-byte number n.
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
641 instead. */
642 succeed_n,
643
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
646 jump_n,
647
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
650 bytes of number. */
651 set_number_at,
652
653 wordbeg, /* Succeeds if at word beginning. */
654 wordend, /* Succeeds if at word end. */
655
656 wordbound, /* Succeeds if at a word boundary. */
657 notwordbound, /* Succeeds if not at a word boundary. */
658
659 /* Matches any character whose syntax is specified. Followed by
660 a byte which contains a syntax code, e.g., Sword. */
661 syntaxspec,
662
663 /* Matches any character whose syntax is not that specified. */
664 notsyntaxspec
665
666 #ifdef emacs
667 ,before_dot, /* Succeeds if before point. */
668 at_dot, /* Succeeds if at point. */
669 after_dot, /* Succeeds if after point. */
670
671 /* Matches any character whose category-set contains the specified
672 category. The operator is followed by a byte which contains a
673 category code (mnemonic ASCII character). */
674 categoryspec,
675
676 /* Matches any character whose category-set does not contain the
677 specified category. The operator is followed by a byte which
678 contains the category code (mnemonic ASCII character). */
679 notcategoryspec
680 #endif /* emacs */
681 } re_opcode_t;
682 \f
683 /* Common operations on the compiled pattern. */
684
685 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
686
687 #define STORE_NUMBER(destination, number) \
688 do { \
689 (destination)[0] = (number) & 0377; \
690 (destination)[1] = (number) >> 8; \
691 } while (0)
692
693 /* Same as STORE_NUMBER, except increment DESTINATION to
694 the byte after where the number is stored. Therefore, DESTINATION
695 must be an lvalue. */
696
697 #define STORE_NUMBER_AND_INCR(destination, number) \
698 do { \
699 STORE_NUMBER (destination, number); \
700 (destination) += 2; \
701 } while (0)
702
703 /* Put into DESTINATION a number stored in two contiguous bytes starting
704 at SOURCE. */
705
706 #define EXTRACT_NUMBER(destination, source) \
707 do { \
708 (destination) = *(source) & 0377; \
709 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
710 } while (0)
711
712 #ifdef DEBUG
713 static void extract_number _RE_ARGS ((int *dest, re_char *source));
714 static void
715 extract_number (dest, source)
716 int *dest;
717 re_char *source;
718 {
719 int temp = SIGN_EXTEND_CHAR (*(source + 1));
720 *dest = *source & 0377;
721 *dest += temp << 8;
722 }
723
724 # ifndef EXTRACT_MACROS /* To debug the macros. */
725 # undef EXTRACT_NUMBER
726 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
727 # endif /* not EXTRACT_MACROS */
728
729 #endif /* DEBUG */
730
731 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
732 SOURCE must be an lvalue. */
733
734 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
735 do { \
736 EXTRACT_NUMBER (destination, source); \
737 (source) += 2; \
738 } while (0)
739
740 #ifdef DEBUG
741 static void extract_number_and_incr _RE_ARGS ((int *destination,
742 re_char **source));
743 static void
744 extract_number_and_incr (destination, source)
745 int *destination;
746 re_char **source;
747 {
748 extract_number (destination, *source);
749 *source += 2;
750 }
751
752 # ifndef EXTRACT_MACROS
753 # undef EXTRACT_NUMBER_AND_INCR
754 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
755 extract_number_and_incr (&dest, &src)
756 # endif /* not EXTRACT_MACROS */
757
758 #endif /* DEBUG */
759 \f
760 /* Store a multibyte character in three contiguous bytes starting
761 DESTINATION, and increment DESTINATION to the byte after where the
762 character is stored. Therefore, DESTINATION must be an lvalue. */
763
764 #define STORE_CHARACTER_AND_INCR(destination, character) \
765 do { \
766 (destination)[0] = (character) & 0377; \
767 (destination)[1] = ((character) >> 8) & 0377; \
768 (destination)[2] = (character) >> 16; \
769 (destination) += 3; \
770 } while (0)
771
772 /* Put into DESTINATION a character stored in three contiguous bytes
773 starting at SOURCE. */
774
775 #define EXTRACT_CHARACTER(destination, source) \
776 do { \
777 (destination) = ((source)[0] \
778 | ((source)[1] << 8) \
779 | ((source)[2] << 16)); \
780 } while (0)
781
782
783 /* Macros for charset. */
784
785 /* Size of bitmap of charset P in bytes. P is a start of charset,
786 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
787 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
788
789 /* Nonzero if charset P has range table. */
790 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
791
792 /* Return the address of range table of charset P. But not the start
793 of table itself, but the before where the number of ranges is
794 stored. `2 +' means to skip re_opcode_t and size of bitmap,
795 and the 2 bytes of flags at the start of the range table. */
796 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
797
798 /* Extract the bit flags that start a range table. */
799 #define CHARSET_RANGE_TABLE_BITS(p) \
800 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
801 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
802
803 /* Test if C is listed in the bitmap of charset P. */
804 #define CHARSET_LOOKUP_BITMAP(p, c) \
805 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
806 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
807
808 /* Return the address of end of RANGE_TABLE. COUNT is number of
809 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
810 is start of range and end of range. `* 3' is size of each start
811 and end. */
812 #define CHARSET_RANGE_TABLE_END(range_table, count) \
813 ((range_table) + (count) * 2 * 3)
814
815 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
816 COUNT is number of ranges in RANGE_TABLE. */
817 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
818 do \
819 { \
820 re_wchar_t range_start, range_end; \
821 re_char *p; \
822 re_char *range_table_end \
823 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
824 \
825 for (p = (range_table); p < range_table_end; p += 2 * 3) \
826 { \
827 EXTRACT_CHARACTER (range_start, p); \
828 EXTRACT_CHARACTER (range_end, p + 3); \
829 \
830 if (range_start <= (c) && (c) <= range_end) \
831 { \
832 (not) = !(not); \
833 break; \
834 } \
835 } \
836 } \
837 while (0)
838
839 /* Test if C is in range table of CHARSET. The flag NOT is negated if
840 C is listed in it. */
841 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
842 do \
843 { \
844 /* Number of ranges in range table. */ \
845 int count; \
846 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
847 \
848 EXTRACT_NUMBER_AND_INCR (count, range_table); \
849 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
850 } \
851 while (0)
852 \f
853 /* If DEBUG is defined, Regex prints many voluminous messages about what
854 it is doing (if the variable `debug' is nonzero). If linked with the
855 main program in `iregex.c', you can enter patterns and strings
856 interactively. And if linked with the main program in `main.c' and
857 the other test files, you can run the already-written tests. */
858
859 #ifdef DEBUG
860
861 /* We use standard I/O for debugging. */
862 # include <stdio.h>
863
864 /* It is useful to test things that ``must'' be true when debugging. */
865 # include <assert.h>
866
867 static int debug = -100000;
868
869 # define DEBUG_STATEMENT(e) e
870 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
871 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
872 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
873 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
874 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
875 if (debug > 0) print_partial_compiled_pattern (s, e)
876 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
877 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
878
879
880 /* Print the fastmap in human-readable form. */
881
882 void
883 print_fastmap (fastmap)
884 char *fastmap;
885 {
886 unsigned was_a_range = 0;
887 unsigned i = 0;
888
889 while (i < (1 << BYTEWIDTH))
890 {
891 if (fastmap[i++])
892 {
893 was_a_range = 0;
894 putchar (i - 1);
895 while (i < (1 << BYTEWIDTH) && fastmap[i])
896 {
897 was_a_range = 1;
898 i++;
899 }
900 if (was_a_range)
901 {
902 printf ("-");
903 putchar (i - 1);
904 }
905 }
906 }
907 putchar ('\n');
908 }
909
910
911 /* Print a compiled pattern string in human-readable form, starting at
912 the START pointer into it and ending just before the pointer END. */
913
914 void
915 print_partial_compiled_pattern (start, end)
916 re_char *start;
917 re_char *end;
918 {
919 int mcnt, mcnt2;
920 re_char *p = start;
921 re_char *pend = end;
922
923 if (start == NULL)
924 {
925 printf ("(null)\n");
926 return;
927 }
928
929 /* Loop over pattern commands. */
930 while (p < pend)
931 {
932 printf ("%d:\t", p - start);
933
934 switch ((re_opcode_t) *p++)
935 {
936 case no_op:
937 printf ("/no_op");
938 break;
939
940 case succeed:
941 printf ("/succeed");
942 break;
943
944 case exactn:
945 mcnt = *p++;
946 printf ("/exactn/%d", mcnt);
947 do
948 {
949 putchar ('/');
950 putchar (*p++);
951 }
952 while (--mcnt);
953 break;
954
955 case start_memory:
956 printf ("/start_memory/%d", *p++);
957 break;
958
959 case stop_memory:
960 printf ("/stop_memory/%d", *p++);
961 break;
962
963 case duplicate:
964 printf ("/duplicate/%d", *p++);
965 break;
966
967 case anychar:
968 printf ("/anychar");
969 break;
970
971 case charset:
972 case charset_not:
973 {
974 register int c, last = -100;
975 register int in_range = 0;
976 int length = CHARSET_BITMAP_SIZE (p - 1);
977 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
978
979 printf ("/charset [%s",
980 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
981
982 assert (p + *p < pend);
983
984 for (c = 0; c < 256; c++)
985 if (c / 8 < length
986 && (p[1 + (c/8)] & (1 << (c % 8))))
987 {
988 /* Are we starting a range? */
989 if (last + 1 == c && ! in_range)
990 {
991 putchar ('-');
992 in_range = 1;
993 }
994 /* Have we broken a range? */
995 else if (last + 1 != c && in_range)
996 {
997 putchar (last);
998 in_range = 0;
999 }
1000
1001 if (! in_range)
1002 putchar (c);
1003
1004 last = c;
1005 }
1006
1007 if (in_range)
1008 putchar (last);
1009
1010 putchar (']');
1011
1012 p += 1 + length;
1013
1014 if (has_range_table)
1015 {
1016 int count;
1017 printf ("has-range-table");
1018
1019 /* ??? Should print the range table; for now, just skip it. */
1020 p += 2; /* skip range table bits */
1021 EXTRACT_NUMBER_AND_INCR (count, p);
1022 p = CHARSET_RANGE_TABLE_END (p, count);
1023 }
1024 }
1025 break;
1026
1027 case begline:
1028 printf ("/begline");
1029 break;
1030
1031 case endline:
1032 printf ("/endline");
1033 break;
1034
1035 case on_failure_jump:
1036 extract_number_and_incr (&mcnt, &p);
1037 printf ("/on_failure_jump to %d", p + mcnt - start);
1038 break;
1039
1040 case on_failure_keep_string_jump:
1041 extract_number_and_incr (&mcnt, &p);
1042 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1043 break;
1044
1045 case on_failure_jump_nastyloop:
1046 extract_number_and_incr (&mcnt, &p);
1047 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1048 break;
1049
1050 case on_failure_jump_loop:
1051 extract_number_and_incr (&mcnt, &p);
1052 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
1053 break;
1054
1055 case on_failure_jump_smart:
1056 extract_number_and_incr (&mcnt, &p);
1057 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
1058 break;
1059
1060 case jump:
1061 extract_number_and_incr (&mcnt, &p);
1062 printf ("/jump to %d", p + mcnt - start);
1063 break;
1064
1065 case succeed_n:
1066 extract_number_and_incr (&mcnt, &p);
1067 extract_number_and_incr (&mcnt2, &p);
1068 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1069 break;
1070
1071 case jump_n:
1072 extract_number_and_incr (&mcnt, &p);
1073 extract_number_and_incr (&mcnt2, &p);
1074 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1075 break;
1076
1077 case set_number_at:
1078 extract_number_and_incr (&mcnt, &p);
1079 extract_number_and_incr (&mcnt2, &p);
1080 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1081 break;
1082
1083 case wordbound:
1084 printf ("/wordbound");
1085 break;
1086
1087 case notwordbound:
1088 printf ("/notwordbound");
1089 break;
1090
1091 case wordbeg:
1092 printf ("/wordbeg");
1093 break;
1094
1095 case wordend:
1096 printf ("/wordend");
1097
1098 case syntaxspec:
1099 printf ("/syntaxspec");
1100 mcnt = *p++;
1101 printf ("/%d", mcnt);
1102 break;
1103
1104 case notsyntaxspec:
1105 printf ("/notsyntaxspec");
1106 mcnt = *p++;
1107 printf ("/%d", mcnt);
1108 break;
1109
1110 # ifdef emacs
1111 case before_dot:
1112 printf ("/before_dot");
1113 break;
1114
1115 case at_dot:
1116 printf ("/at_dot");
1117 break;
1118
1119 case after_dot:
1120 printf ("/after_dot");
1121 break;
1122
1123 case categoryspec:
1124 printf ("/categoryspec");
1125 mcnt = *p++;
1126 printf ("/%d", mcnt);
1127 break;
1128
1129 case notcategoryspec:
1130 printf ("/notcategoryspec");
1131 mcnt = *p++;
1132 printf ("/%d", mcnt);
1133 break;
1134 # endif /* emacs */
1135
1136 case begbuf:
1137 printf ("/begbuf");
1138 break;
1139
1140 case endbuf:
1141 printf ("/endbuf");
1142 break;
1143
1144 default:
1145 printf ("?%d", *(p-1));
1146 }
1147
1148 putchar ('\n');
1149 }
1150
1151 printf ("%d:\tend of pattern.\n", p - start);
1152 }
1153
1154
1155 void
1156 print_compiled_pattern (bufp)
1157 struct re_pattern_buffer *bufp;
1158 {
1159 re_char *buffer = bufp->buffer;
1160
1161 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1162 printf ("%ld bytes used/%ld bytes allocated.\n",
1163 bufp->used, bufp->allocated);
1164
1165 if (bufp->fastmap_accurate && bufp->fastmap)
1166 {
1167 printf ("fastmap: ");
1168 print_fastmap (bufp->fastmap);
1169 }
1170
1171 printf ("re_nsub: %d\t", bufp->re_nsub);
1172 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1173 printf ("can_be_null: %d\t", bufp->can_be_null);
1174 printf ("no_sub: %d\t", bufp->no_sub);
1175 printf ("not_bol: %d\t", bufp->not_bol);
1176 printf ("not_eol: %d\t", bufp->not_eol);
1177 printf ("syntax: %lx\n", bufp->syntax);
1178 fflush (stdout);
1179 /* Perhaps we should print the translate table? */
1180 }
1181
1182
1183 void
1184 print_double_string (where, string1, size1, string2, size2)
1185 re_char *where;
1186 re_char *string1;
1187 re_char *string2;
1188 int size1;
1189 int size2;
1190 {
1191 int this_char;
1192
1193 if (where == NULL)
1194 printf ("(null)");
1195 else
1196 {
1197 if (FIRST_STRING_P (where))
1198 {
1199 for (this_char = where - string1; this_char < size1; this_char++)
1200 putchar (string1[this_char]);
1201
1202 where = string2;
1203 }
1204
1205 for (this_char = where - string2; this_char < size2; this_char++)
1206 putchar (string2[this_char]);
1207 }
1208 }
1209
1210 #else /* not DEBUG */
1211
1212 # undef assert
1213 # define assert(e)
1214
1215 # define DEBUG_STATEMENT(e)
1216 # define DEBUG_PRINT1(x)
1217 # define DEBUG_PRINT2(x1, x2)
1218 # define DEBUG_PRINT3(x1, x2, x3)
1219 # define DEBUG_PRINT4(x1, x2, x3, x4)
1220 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1221 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1222
1223 #endif /* not DEBUG */
1224 \f
1225 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1226 also be assigned to arbitrarily: each pattern buffer stores its own
1227 syntax, so it can be changed between regex compilations. */
1228 /* This has no initializer because initialized variables in Emacs
1229 become read-only after dumping. */
1230 reg_syntax_t re_syntax_options;
1231
1232
1233 /* Specify the precise syntax of regexps for compilation. This provides
1234 for compatibility for various utilities which historically have
1235 different, incompatible syntaxes.
1236
1237 The argument SYNTAX is a bit mask comprised of the various bits
1238 defined in regex.h. We return the old syntax. */
1239
1240 reg_syntax_t
1241 re_set_syntax (syntax)
1242 reg_syntax_t syntax;
1243 {
1244 reg_syntax_t ret = re_syntax_options;
1245
1246 re_syntax_options = syntax;
1247 return ret;
1248 }
1249 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1250 \f
1251 /* This table gives an error message for each of the error codes listed
1252 in regex.h. Obviously the order here has to be same as there.
1253 POSIX doesn't require that we do anything for REG_NOERROR,
1254 but why not be nice? */
1255
1256 static const char *re_error_msgid[] =
1257 {
1258 gettext_noop ("Success"), /* REG_NOERROR */
1259 gettext_noop ("No match"), /* REG_NOMATCH */
1260 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1261 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1262 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1263 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1264 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1265 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1266 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1267 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1268 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1269 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1270 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1271 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1272 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1273 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1274 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1275 };
1276 \f
1277 /* Avoiding alloca during matching, to placate r_alloc. */
1278
1279 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1280 searching and matching functions should not call alloca. On some
1281 systems, alloca is implemented in terms of malloc, and if we're
1282 using the relocating allocator routines, then malloc could cause a
1283 relocation, which might (if the strings being searched are in the
1284 ralloc heap) shift the data out from underneath the regexp
1285 routines.
1286
1287 Here's another reason to avoid allocation: Emacs
1288 processes input from X in a signal handler; processing X input may
1289 call malloc; if input arrives while a matching routine is calling
1290 malloc, then we're scrod. But Emacs can't just block input while
1291 calling matching routines; then we don't notice interrupts when
1292 they come in. So, Emacs blocks input around all regexp calls
1293 except the matching calls, which it leaves unprotected, in the
1294 faith that they will not malloc. */
1295
1296 /* Normally, this is fine. */
1297 #define MATCH_MAY_ALLOCATE
1298
1299 /* When using GNU C, we are not REALLY using the C alloca, no matter
1300 what config.h may say. So don't take precautions for it. */
1301 #ifdef __GNUC__
1302 # undef C_ALLOCA
1303 #endif
1304
1305 /* The match routines may not allocate if (1) they would do it with malloc
1306 and (2) it's not safe for them to use malloc.
1307 Note that if REL_ALLOC is defined, matching would not use malloc for the
1308 failure stack, but we would still use it for the register vectors;
1309 so REL_ALLOC should not affect this. */
1310 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1311 # undef MATCH_MAY_ALLOCATE
1312 #endif
1313
1314 \f
1315 /* Failure stack declarations and macros; both re_compile_fastmap and
1316 re_match_2 use a failure stack. These have to be macros because of
1317 REGEX_ALLOCATE_STACK. */
1318
1319
1320 /* Approximate number of failure points for which to initially allocate space
1321 when matching. If this number is exceeded, we allocate more
1322 space, so it is not a hard limit. */
1323 #ifndef INIT_FAILURE_ALLOC
1324 # define INIT_FAILURE_ALLOC 20
1325 #endif
1326
1327 /* Roughly the maximum number of failure points on the stack. Would be
1328 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1329 This is a variable only so users of regex can assign to it; we never
1330 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1331 before using it, so it should probably be a byte-count instead. */
1332 # if defined MATCH_MAY_ALLOCATE
1333 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1334 whose default stack limit is 2mb. In order for a larger
1335 value to work reliably, you have to try to make it accord
1336 with the process stack limit. */
1337 size_t re_max_failures = 40000;
1338 # else
1339 size_t re_max_failures = 4000;
1340 # endif
1341
1342 union fail_stack_elt
1343 {
1344 re_char *pointer;
1345 /* This should be the biggest `int' that's no bigger than a pointer. */
1346 long integer;
1347 };
1348
1349 typedef union fail_stack_elt fail_stack_elt_t;
1350
1351 typedef struct
1352 {
1353 fail_stack_elt_t *stack;
1354 size_t size;
1355 size_t avail; /* Offset of next open position. */
1356 size_t frame; /* Offset of the cur constructed frame. */
1357 } fail_stack_type;
1358
1359 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1360 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1361
1362
1363 /* Define macros to initialize and free the failure stack.
1364 Do `return -2' if the alloc fails. */
1365
1366 #ifdef MATCH_MAY_ALLOCATE
1367 # define INIT_FAIL_STACK() \
1368 do { \
1369 fail_stack.stack = (fail_stack_elt_t *) \
1370 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1371 * sizeof (fail_stack_elt_t)); \
1372 \
1373 if (fail_stack.stack == NULL) \
1374 return -2; \
1375 \
1376 fail_stack.size = INIT_FAILURE_ALLOC; \
1377 fail_stack.avail = 0; \
1378 fail_stack.frame = 0; \
1379 } while (0)
1380
1381 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1382 #else
1383 # define INIT_FAIL_STACK() \
1384 do { \
1385 fail_stack.avail = 0; \
1386 fail_stack.frame = 0; \
1387 } while (0)
1388
1389 # define RESET_FAIL_STACK() ((void)0)
1390 #endif
1391
1392
1393 /* Double the size of FAIL_STACK, up to a limit
1394 which allows approximately `re_max_failures' items.
1395
1396 Return 1 if succeeds, and 0 if either ran out of memory
1397 allocating space for it or it was already too large.
1398
1399 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1400
1401 /* Factor to increase the failure stack size by
1402 when we increase it.
1403 This used to be 2, but 2 was too wasteful
1404 because the old discarded stacks added up to as much space
1405 were as ultimate, maximum-size stack. */
1406 #define FAIL_STACK_GROWTH_FACTOR 4
1407
1408 #define GROW_FAIL_STACK(fail_stack) \
1409 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1410 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1411 ? 0 \
1412 : ((fail_stack).stack \
1413 = (fail_stack_elt_t *) \
1414 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1415 (fail_stack).size * sizeof (fail_stack_elt_t), \
1416 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1417 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1418 * FAIL_STACK_GROWTH_FACTOR))), \
1419 \
1420 (fail_stack).stack == NULL \
1421 ? 0 \
1422 : ((fail_stack).size \
1423 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1424 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1425 * FAIL_STACK_GROWTH_FACTOR)) \
1426 / sizeof (fail_stack_elt_t)), \
1427 1)))
1428
1429
1430 /* Push a pointer value onto the failure stack.
1431 Assumes the variable `fail_stack'. Probably should only
1432 be called from within `PUSH_FAILURE_POINT'. */
1433 #define PUSH_FAILURE_POINTER(item) \
1434 fail_stack.stack[fail_stack.avail++].pointer = (item)
1435
1436 /* This pushes an integer-valued item onto the failure stack.
1437 Assumes the variable `fail_stack'. Probably should only
1438 be called from within `PUSH_FAILURE_POINT'. */
1439 #define PUSH_FAILURE_INT(item) \
1440 fail_stack.stack[fail_stack.avail++].integer = (item)
1441
1442 /* Push a fail_stack_elt_t value onto the failure stack.
1443 Assumes the variable `fail_stack'. Probably should only
1444 be called from within `PUSH_FAILURE_POINT'. */
1445 #define PUSH_FAILURE_ELT(item) \
1446 fail_stack.stack[fail_stack.avail++] = (item)
1447
1448 /* These three POP... operations complement the three PUSH... operations.
1449 All assume that `fail_stack' is nonempty. */
1450 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1451 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1452 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1453
1454 /* Individual items aside from the registers. */
1455 #define NUM_NONREG_ITEMS 3
1456
1457 /* Used to examine the stack (to detect infinite loops). */
1458 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1459 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1460 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1461 #define TOP_FAILURE_HANDLE() fail_stack.frame
1462
1463
1464 #define ENSURE_FAIL_STACK(space) \
1465 while (REMAINING_AVAIL_SLOTS <= space) { \
1466 if (!GROW_FAIL_STACK (fail_stack)) \
1467 return -2; \
1468 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1469 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1470 }
1471
1472 /* Push register NUM onto the stack. */
1473 #define PUSH_FAILURE_REG(num) \
1474 do { \
1475 char *destination; \
1476 ENSURE_FAIL_STACK(3); \
1477 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1478 num, regstart[num], regend[num]); \
1479 PUSH_FAILURE_POINTER (regstart[num]); \
1480 PUSH_FAILURE_POINTER (regend[num]); \
1481 PUSH_FAILURE_INT (num); \
1482 } while (0)
1483
1484 /* Change the counter's value to VAL, but make sure that it will
1485 be reset when backtracking. */
1486 #define PUSH_NUMBER(ptr,val) \
1487 do { \
1488 char *destination; \
1489 int c; \
1490 ENSURE_FAIL_STACK(3); \
1491 EXTRACT_NUMBER (c, ptr); \
1492 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1493 PUSH_FAILURE_INT (c); \
1494 PUSH_FAILURE_POINTER (ptr); \
1495 PUSH_FAILURE_INT (-1); \
1496 STORE_NUMBER (ptr, val); \
1497 } while (0)
1498
1499 /* Pop a saved register off the stack. */
1500 #define POP_FAILURE_REG_OR_COUNT() \
1501 do { \
1502 int reg = POP_FAILURE_INT (); \
1503 if (reg == -1) \
1504 { \
1505 /* It's a counter. */ \
1506 /* Here, we discard `const', making re_match non-reentrant. */ \
1507 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1508 reg = POP_FAILURE_INT (); \
1509 STORE_NUMBER (ptr, reg); \
1510 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1511 } \
1512 else \
1513 { \
1514 regend[reg] = POP_FAILURE_POINTER (); \
1515 regstart[reg] = POP_FAILURE_POINTER (); \
1516 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1517 reg, regstart[reg], regend[reg]); \
1518 } \
1519 } while (0)
1520
1521 /* Check that we are not stuck in an infinite loop. */
1522 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1523 do { \
1524 int failure = TOP_FAILURE_HANDLE(); \
1525 /* Check for infinite matching loops */ \
1526 while (failure > 0 && \
1527 (FAILURE_STR (failure) == string_place \
1528 || FAILURE_STR (failure) == NULL)) \
1529 { \
1530 assert (FAILURE_PAT (failure) >= bufp->buffer \
1531 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1532 if (FAILURE_PAT (failure) == pat_cur) \
1533 goto fail; \
1534 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1535 failure = NEXT_FAILURE_HANDLE(failure); \
1536 } \
1537 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1538 } while (0)
1539
1540 /* Push the information about the state we will need
1541 if we ever fail back to it.
1542
1543 Requires variables fail_stack, regstart, regend and
1544 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1545 declared.
1546
1547 Does `return FAILURE_CODE' if runs out of memory. */
1548
1549 #define PUSH_FAILURE_POINT(pattern, string_place) \
1550 do { \
1551 char *destination; \
1552 /* Must be int, so when we don't save any registers, the arithmetic \
1553 of 0 + -1 isn't done as unsigned. */ \
1554 \
1555 DEBUG_STATEMENT (nfailure_points_pushed++); \
1556 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1557 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1558 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1559 \
1560 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1561 \
1562 DEBUG_PRINT1 ("\n"); \
1563 \
1564 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1565 PUSH_FAILURE_INT (fail_stack.frame); \
1566 \
1567 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1568 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1569 DEBUG_PRINT1 ("'\n"); \
1570 PUSH_FAILURE_POINTER (string_place); \
1571 \
1572 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1573 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1574 PUSH_FAILURE_POINTER (pattern); \
1575 \
1576 /* Close the frame by moving the frame pointer past it. */ \
1577 fail_stack.frame = fail_stack.avail; \
1578 } while (0)
1579
1580 /* Estimate the size of data pushed by a typical failure stack entry.
1581 An estimate is all we need, because all we use this for
1582 is to choose a limit for how big to make the failure stack. */
1583 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1584 #define TYPICAL_FAILURE_SIZE 20
1585
1586 /* How many items can still be added to the stack without overflowing it. */
1587 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1588
1589
1590 /* Pops what PUSH_FAIL_STACK pushes.
1591
1592 We restore into the parameters, all of which should be lvalues:
1593 STR -- the saved data position.
1594 PAT -- the saved pattern position.
1595 REGSTART, REGEND -- arrays of string positions.
1596
1597 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1598 `pend', `string1', `size1', `string2', and `size2'. */
1599
1600 #define POP_FAILURE_POINT(str, pat) \
1601 do { \
1602 assert (!FAIL_STACK_EMPTY ()); \
1603 \
1604 /* Remove failure points and point to how many regs pushed. */ \
1605 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1606 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1607 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1608 \
1609 /* Pop the saved registers. */ \
1610 while (fail_stack.frame < fail_stack.avail) \
1611 POP_FAILURE_REG_OR_COUNT (); \
1612 \
1613 pat = POP_FAILURE_POINTER (); \
1614 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1615 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1616 \
1617 /* If the saved string location is NULL, it came from an \
1618 on_failure_keep_string_jump opcode, and we want to throw away the \
1619 saved NULL, thus retaining our current position in the string. */ \
1620 str = POP_FAILURE_POINTER (); \
1621 DEBUG_PRINT2 (" Popping string %p: `", str); \
1622 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1623 DEBUG_PRINT1 ("'\n"); \
1624 \
1625 fail_stack.frame = POP_FAILURE_INT (); \
1626 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1627 \
1628 assert (fail_stack.avail >= 0); \
1629 assert (fail_stack.frame <= fail_stack.avail); \
1630 \
1631 DEBUG_STATEMENT (nfailure_points_popped++); \
1632 } while (0) /* POP_FAILURE_POINT */
1633
1634
1635 \f
1636 /* Registers are set to a sentinel when they haven't yet matched. */
1637 #define REG_UNSET(e) ((e) == NULL)
1638 \f
1639 /* Subroutine declarations and macros for regex_compile. */
1640
1641 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1642 reg_syntax_t syntax,
1643 struct re_pattern_buffer *bufp));
1644 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1645 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1646 int arg1, int arg2));
1647 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1648 int arg, unsigned char *end));
1649 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1650 int arg1, int arg2, unsigned char *end));
1651 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1652 re_char *p,
1653 reg_syntax_t syntax));
1654 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1655 re_char *pend,
1656 reg_syntax_t syntax));
1657 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1658 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1659 char *fastmap, const int multibyte));
1660
1661 /* Fetch the next character in the uncompiled pattern---translating it
1662 if necessary. */
1663 #define PATFETCH(c) \
1664 do { \
1665 PATFETCH_RAW (c); \
1666 c = TRANSLATE (c); \
1667 } while (0)
1668
1669 /* Fetch the next character in the uncompiled pattern, with no
1670 translation. */
1671 #define PATFETCH_RAW(c) \
1672 do { \
1673 int len; \
1674 if (p == pend) return REG_EEND; \
1675 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1676 p += len; \
1677 } while (0)
1678
1679
1680 /* If `translate' is non-null, return translate[D], else just D. We
1681 cast the subscript to translate because some data is declared as
1682 `char *', to avoid warnings when a string constant is passed. But
1683 when we use a character as a subscript we must make it unsigned. */
1684 #ifndef TRANSLATE
1685 # define TRANSLATE(d) \
1686 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1687 #endif
1688
1689
1690 /* Macros for outputting the compiled pattern into `buffer'. */
1691
1692 /* If the buffer isn't allocated when it comes in, use this. */
1693 #define INIT_BUF_SIZE 32
1694
1695 /* Make sure we have at least N more bytes of space in buffer. */
1696 #define GET_BUFFER_SPACE(n) \
1697 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1698 EXTEND_BUFFER ()
1699
1700 /* Make sure we have one more byte of buffer space and then add C to it. */
1701 #define BUF_PUSH(c) \
1702 do { \
1703 GET_BUFFER_SPACE (1); \
1704 *b++ = (unsigned char) (c); \
1705 } while (0)
1706
1707
1708 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1709 #define BUF_PUSH_2(c1, c2) \
1710 do { \
1711 GET_BUFFER_SPACE (2); \
1712 *b++ = (unsigned char) (c1); \
1713 *b++ = (unsigned char) (c2); \
1714 } while (0)
1715
1716
1717 /* As with BUF_PUSH_2, except for three bytes. */
1718 #define BUF_PUSH_3(c1, c2, c3) \
1719 do { \
1720 GET_BUFFER_SPACE (3); \
1721 *b++ = (unsigned char) (c1); \
1722 *b++ = (unsigned char) (c2); \
1723 *b++ = (unsigned char) (c3); \
1724 } while (0)
1725
1726
1727 /* Store a jump with opcode OP at LOC to location TO. We store a
1728 relative address offset by the three bytes the jump itself occupies. */
1729 #define STORE_JUMP(op, loc, to) \
1730 store_op1 (op, loc, (to) - (loc) - 3)
1731
1732 /* Likewise, for a two-argument jump. */
1733 #define STORE_JUMP2(op, loc, to, arg) \
1734 store_op2 (op, loc, (to) - (loc) - 3, arg)
1735
1736 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1737 #define INSERT_JUMP(op, loc, to) \
1738 insert_op1 (op, loc, (to) - (loc) - 3, b)
1739
1740 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1741 #define INSERT_JUMP2(op, loc, to, arg) \
1742 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1743
1744
1745 /* This is not an arbitrary limit: the arguments which represent offsets
1746 into the pattern are two bytes long. So if 2^16 bytes turns out to
1747 be too small, many things would have to change. */
1748 /* Any other compiler which, like MSC, has allocation limit below 2^16
1749 bytes will have to use approach similar to what was done below for
1750 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1751 reallocating to 0 bytes. Such thing is not going to work too well.
1752 You have been warned!! */
1753 #if defined _MSC_VER && !defined WIN32
1754 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1755 # define MAX_BUF_SIZE 65500L
1756 #else
1757 # define MAX_BUF_SIZE (1L << 16)
1758 #endif
1759
1760 /* Extend the buffer by twice its current size via realloc and
1761 reset the pointers that pointed into the old block to point to the
1762 correct places in the new one. If extending the buffer results in it
1763 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1764 #if __BOUNDED_POINTERS__
1765 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1766 # define MOVE_BUFFER_POINTER(P) \
1767 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1768 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1769 else \
1770 { \
1771 SET_HIGH_BOUND (b); \
1772 SET_HIGH_BOUND (begalt); \
1773 if (fixup_alt_jump) \
1774 SET_HIGH_BOUND (fixup_alt_jump); \
1775 if (laststart) \
1776 SET_HIGH_BOUND (laststart); \
1777 if (pending_exact) \
1778 SET_HIGH_BOUND (pending_exact); \
1779 }
1780 #else
1781 # define MOVE_BUFFER_POINTER(P) (P) += incr
1782 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1783 #endif
1784 #define EXTEND_BUFFER() \
1785 do { \
1786 re_char *old_buffer = bufp->buffer; \
1787 if (bufp->allocated == MAX_BUF_SIZE) \
1788 return REG_ESIZE; \
1789 bufp->allocated <<= 1; \
1790 if (bufp->allocated > MAX_BUF_SIZE) \
1791 bufp->allocated = MAX_BUF_SIZE; \
1792 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1793 if (bufp->buffer == NULL) \
1794 return REG_ESPACE; \
1795 /* If the buffer moved, move all the pointers into it. */ \
1796 if (old_buffer != bufp->buffer) \
1797 { \
1798 int incr = bufp->buffer - old_buffer; \
1799 MOVE_BUFFER_POINTER (b); \
1800 MOVE_BUFFER_POINTER (begalt); \
1801 if (fixup_alt_jump) \
1802 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1803 if (laststart) \
1804 MOVE_BUFFER_POINTER (laststart); \
1805 if (pending_exact) \
1806 MOVE_BUFFER_POINTER (pending_exact); \
1807 } \
1808 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1809 } while (0)
1810
1811
1812 /* Since we have one byte reserved for the register number argument to
1813 {start,stop}_memory, the maximum number of groups we can report
1814 things about is what fits in that byte. */
1815 #define MAX_REGNUM 255
1816
1817 /* But patterns can have more than `MAX_REGNUM' registers. We just
1818 ignore the excess. */
1819 typedef unsigned regnum_t;
1820
1821
1822 /* Macros for the compile stack. */
1823
1824 /* Since offsets can go either forwards or backwards, this type needs to
1825 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1826 /* int may be not enough when sizeof(int) == 2. */
1827 typedef long pattern_offset_t;
1828
1829 typedef struct
1830 {
1831 pattern_offset_t begalt_offset;
1832 pattern_offset_t fixup_alt_jump;
1833 pattern_offset_t laststart_offset;
1834 regnum_t regnum;
1835 } compile_stack_elt_t;
1836
1837
1838 typedef struct
1839 {
1840 compile_stack_elt_t *stack;
1841 unsigned size;
1842 unsigned avail; /* Offset of next open position. */
1843 } compile_stack_type;
1844
1845
1846 #define INIT_COMPILE_STACK_SIZE 32
1847
1848 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1849 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1850
1851 /* The next available element. */
1852 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1853
1854
1855 /* Structure to manage work area for range table. */
1856 struct range_table_work_area
1857 {
1858 int *table; /* actual work area. */
1859 int allocated; /* allocated size for work area in bytes. */
1860 int used; /* actually used size in words. */
1861 int bits; /* flag to record character classes */
1862 };
1863
1864 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1865 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1866 do { \
1867 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1868 { \
1869 (work_area).allocated += 16 * sizeof (int); \
1870 if ((work_area).table) \
1871 (work_area).table \
1872 = (int *) realloc ((work_area).table, (work_area).allocated); \
1873 else \
1874 (work_area).table \
1875 = (int *) malloc ((work_area).allocated); \
1876 if ((work_area).table == 0) \
1877 FREE_STACK_RETURN (REG_ESPACE); \
1878 } \
1879 } while (0)
1880
1881 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1882 (work_area).bits |= (bit)
1883
1884 /* Bits used to implement the multibyte-part of the various character classes
1885 such as [:alnum:] in a charset's range table. */
1886 #define BIT_WORD 0x1
1887 #define BIT_LOWER 0x2
1888 #define BIT_PUNCT 0x4
1889 #define BIT_SPACE 0x8
1890 #define BIT_UPPER 0x10
1891 #define BIT_MULTIBYTE 0x20
1892
1893 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1894 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1895 do { \
1896 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1897 (work_area).table[(work_area).used++] = (range_start); \
1898 (work_area).table[(work_area).used++] = (range_end); \
1899 } while (0)
1900
1901 /* Free allocated memory for WORK_AREA. */
1902 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1903 do { \
1904 if ((work_area).table) \
1905 free ((work_area).table); \
1906 } while (0)
1907
1908 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1909 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1910 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1911 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1912
1913
1914 /* Set the bit for character C in a list. */
1915 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1916
1917
1918 /* Get the next unsigned number in the uncompiled pattern. */
1919 #define GET_UNSIGNED_NUMBER(num) \
1920 do { if (p != pend) \
1921 { \
1922 PATFETCH (c); \
1923 while ('0' <= c && c <= '9') \
1924 { \
1925 if (num < 0) \
1926 num = 0; \
1927 num = num * 10 + c - '0'; \
1928 if (p == pend) \
1929 break; \
1930 PATFETCH (c); \
1931 } \
1932 } \
1933 } while (0)
1934
1935 #if WIDE_CHAR_SUPPORT
1936 /* The GNU C library provides support for user-defined character classes
1937 and the functions from ISO C amendement 1. */
1938 # ifdef CHARCLASS_NAME_MAX
1939 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1940 # else
1941 /* This shouldn't happen but some implementation might still have this
1942 problem. Use a reasonable default value. */
1943 # define CHAR_CLASS_MAX_LENGTH 256
1944 # endif
1945 typedef wctype_t re_wctype_t;
1946 typedef wchar_t re_wchar_t;
1947 # define re_wctype wctype
1948 # define re_iswctype iswctype
1949 # define re_wctype_to_bit(cc) 0
1950 #else
1951 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1952 # define btowc(c) c
1953
1954 /* Character classes. */
1955 typedef enum { RECC_ERROR = 0,
1956 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1957 RECC_GRAPH, RECC_PRINT,
1958 RECC_LOWER, RECC_UPPER,
1959 RECC_PUNCT, RECC_CNTRL,
1960 RECC_DIGIT, RECC_XDIGIT,
1961 RECC_BLANK, RECC_SPACE,
1962 RECC_MULTIBYTE, RECC_NONASCII,
1963 RECC_ASCII, RECC_UNIBYTE
1964 } re_wctype_t;
1965
1966 typedef int re_wchar_t;
1967
1968 /* Map a string to the char class it names (if any). */
1969 static re_wctype_t
1970 re_wctype (str)
1971 re_char *str;
1972 {
1973 const char *string = str;
1974 if (STREQ (string, "alnum")) return RECC_ALNUM;
1975 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1976 else if (STREQ (string, "word")) return RECC_WORD;
1977 else if (STREQ (string, "ascii")) return RECC_ASCII;
1978 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1979 else if (STREQ (string, "graph")) return RECC_GRAPH;
1980 else if (STREQ (string, "lower")) return RECC_LOWER;
1981 else if (STREQ (string, "print")) return RECC_PRINT;
1982 else if (STREQ (string, "punct")) return RECC_PUNCT;
1983 else if (STREQ (string, "space")) return RECC_SPACE;
1984 else if (STREQ (string, "upper")) return RECC_UPPER;
1985 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1986 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1987 else if (STREQ (string, "digit")) return RECC_DIGIT;
1988 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1989 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1990 else if (STREQ (string, "blank")) return RECC_BLANK;
1991 else return 0;
1992 }
1993
1994 /* True iff CH is in the char class CC. */
1995 static boolean
1996 re_iswctype (ch, cc)
1997 int ch;
1998 re_wctype_t cc;
1999 {
2000 switch (cc)
2001 {
2002 case RECC_ALNUM: return ISALNUM (ch);
2003 case RECC_ALPHA: return ISALPHA (ch);
2004 case RECC_BLANK: return ISBLANK (ch);
2005 case RECC_CNTRL: return ISCNTRL (ch);
2006 case RECC_DIGIT: return ISDIGIT (ch);
2007 case RECC_GRAPH: return ISGRAPH (ch);
2008 case RECC_LOWER: return ISLOWER (ch);
2009 case RECC_PRINT: return ISPRINT (ch);
2010 case RECC_PUNCT: return ISPUNCT (ch);
2011 case RECC_SPACE: return ISSPACE (ch);
2012 case RECC_UPPER: return ISUPPER (ch);
2013 case RECC_XDIGIT: return ISXDIGIT (ch);
2014 case RECC_ASCII: return IS_REAL_ASCII (ch);
2015 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2016 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2017 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2018 case RECC_WORD: return ISWORD (ch);
2019 case RECC_ERROR: return false;
2020 default:
2021 abort();
2022 }
2023 }
2024
2025 /* Return a bit-pattern to use in the range-table bits to match multibyte
2026 chars of class CC. */
2027 static int
2028 re_wctype_to_bit (cc)
2029 re_wctype_t cc;
2030 {
2031 switch (cc)
2032 {
2033 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2034 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2035 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2036 case RECC_LOWER: return BIT_LOWER;
2037 case RECC_UPPER: return BIT_UPPER;
2038 case RECC_PUNCT: return BIT_PUNCT;
2039 case RECC_SPACE: return BIT_SPACE;
2040 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2041 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2042 default:
2043 abort();
2044 }
2045 }
2046 #endif
2047
2048 /* Explicit quit checking is only used on NTemacs. */
2049 #if defined WINDOWSNT && defined emacs && defined QUIT
2050 extern int immediate_quit;
2051 # define IMMEDIATE_QUIT_CHECK \
2052 do { \
2053 if (immediate_quit) QUIT; \
2054 } while (0)
2055 #else
2056 # define IMMEDIATE_QUIT_CHECK ((void)0)
2057 #endif
2058 \f
2059 #ifndef MATCH_MAY_ALLOCATE
2060
2061 /* If we cannot allocate large objects within re_match_2_internal,
2062 we make the fail stack and register vectors global.
2063 The fail stack, we grow to the maximum size when a regexp
2064 is compiled.
2065 The register vectors, we adjust in size each time we
2066 compile a regexp, according to the number of registers it needs. */
2067
2068 static fail_stack_type fail_stack;
2069
2070 /* Size with which the following vectors are currently allocated.
2071 That is so we can make them bigger as needed,
2072 but never make them smaller. */
2073 static int regs_allocated_size;
2074
2075 static re_char ** regstart, ** regend;
2076 static re_char **best_regstart, **best_regend;
2077
2078 /* Make the register vectors big enough for NUM_REGS registers,
2079 but don't make them smaller. */
2080
2081 static
2082 regex_grow_registers (num_regs)
2083 int num_regs;
2084 {
2085 if (num_regs > regs_allocated_size)
2086 {
2087 RETALLOC_IF (regstart, num_regs, re_char *);
2088 RETALLOC_IF (regend, num_regs, re_char *);
2089 RETALLOC_IF (best_regstart, num_regs, re_char *);
2090 RETALLOC_IF (best_regend, num_regs, re_char *);
2091
2092 regs_allocated_size = num_regs;
2093 }
2094 }
2095
2096 #endif /* not MATCH_MAY_ALLOCATE */
2097 \f
2098 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2099 compile_stack,
2100 regnum_t regnum));
2101
2102 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2103 Returns one of error codes defined in `regex.h', or zero for success.
2104
2105 Assumes the `allocated' (and perhaps `buffer') and `translate'
2106 fields are set in BUFP on entry.
2107
2108 If it succeeds, results are put in BUFP (if it returns an error, the
2109 contents of BUFP are undefined):
2110 `buffer' is the compiled pattern;
2111 `syntax' is set to SYNTAX;
2112 `used' is set to the length of the compiled pattern;
2113 `fastmap_accurate' is zero;
2114 `re_nsub' is the number of subexpressions in PATTERN;
2115 `not_bol' and `not_eol' are zero;
2116
2117 The `fastmap' field is neither examined nor set. */
2118
2119 /* Insert the `jump' from the end of last alternative to "here".
2120 The space for the jump has already been allocated. */
2121 #define FIXUP_ALT_JUMP() \
2122 do { \
2123 if (fixup_alt_jump) \
2124 STORE_JUMP (jump, fixup_alt_jump, b); \
2125 } while (0)
2126
2127
2128 /* Return, freeing storage we allocated. */
2129 #define FREE_STACK_RETURN(value) \
2130 do { \
2131 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2132 free (compile_stack.stack); \
2133 return value; \
2134 } while (0)
2135
2136 static reg_errcode_t
2137 regex_compile (pattern, size, syntax, bufp)
2138 re_char *pattern;
2139 size_t size;
2140 reg_syntax_t syntax;
2141 struct re_pattern_buffer *bufp;
2142 {
2143 /* We fetch characters from PATTERN here. */
2144 register re_wchar_t c, c1;
2145
2146 /* A random temporary spot in PATTERN. */
2147 re_char *p1;
2148
2149 /* Points to the end of the buffer, where we should append. */
2150 register unsigned char *b;
2151
2152 /* Keeps track of unclosed groups. */
2153 compile_stack_type compile_stack;
2154
2155 /* Points to the current (ending) position in the pattern. */
2156 #ifdef AIX
2157 /* `const' makes AIX compiler fail. */
2158 unsigned char *p = pattern;
2159 #else
2160 re_char *p = pattern;
2161 #endif
2162 re_char *pend = pattern + size;
2163
2164 /* How to translate the characters in the pattern. */
2165 RE_TRANSLATE_TYPE translate = bufp->translate;
2166
2167 /* Address of the count-byte of the most recently inserted `exactn'
2168 command. This makes it possible to tell if a new exact-match
2169 character can be added to that command or if the character requires
2170 a new `exactn' command. */
2171 unsigned char *pending_exact = 0;
2172
2173 /* Address of start of the most recently finished expression.
2174 This tells, e.g., postfix * where to find the start of its
2175 operand. Reset at the beginning of groups and alternatives. */
2176 unsigned char *laststart = 0;
2177
2178 /* Address of beginning of regexp, or inside of last group. */
2179 unsigned char *begalt;
2180
2181 /* Place in the uncompiled pattern (i.e., the {) to
2182 which to go back if the interval is invalid. */
2183 re_char *beg_interval;
2184
2185 /* Address of the place where a forward jump should go to the end of
2186 the containing expression. Each alternative of an `or' -- except the
2187 last -- ends with a forward jump of this sort. */
2188 unsigned char *fixup_alt_jump = 0;
2189
2190 /* Counts open-groups as they are encountered. Remembered for the
2191 matching close-group on the compile stack, so the same register
2192 number is put in the stop_memory as the start_memory. */
2193 regnum_t regnum = 0;
2194
2195 /* Work area for range table of charset. */
2196 struct range_table_work_area range_table_work;
2197
2198 /* If the object matched can contain multibyte characters. */
2199 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2200
2201 #ifdef DEBUG
2202 debug++;
2203 DEBUG_PRINT1 ("\nCompiling pattern: ");
2204 if (debug > 0)
2205 {
2206 unsigned debug_count;
2207
2208 for (debug_count = 0; debug_count < size; debug_count++)
2209 putchar (pattern[debug_count]);
2210 putchar ('\n');
2211 }
2212 #endif /* DEBUG */
2213
2214 /* Initialize the compile stack. */
2215 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2216 if (compile_stack.stack == NULL)
2217 return REG_ESPACE;
2218
2219 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2220 compile_stack.avail = 0;
2221
2222 range_table_work.table = 0;
2223 range_table_work.allocated = 0;
2224
2225 /* Initialize the pattern buffer. */
2226 bufp->syntax = syntax;
2227 bufp->fastmap_accurate = 0;
2228 bufp->not_bol = bufp->not_eol = 0;
2229
2230 /* Set `used' to zero, so that if we return an error, the pattern
2231 printer (for debugging) will think there's no pattern. We reset it
2232 at the end. */
2233 bufp->used = 0;
2234
2235 /* Always count groups, whether or not bufp->no_sub is set. */
2236 bufp->re_nsub = 0;
2237
2238 #if !defined emacs && !defined SYNTAX_TABLE
2239 /* Initialize the syntax table. */
2240 init_syntax_once ();
2241 #endif
2242
2243 if (bufp->allocated == 0)
2244 {
2245 if (bufp->buffer)
2246 { /* If zero allocated, but buffer is non-null, try to realloc
2247 enough space. This loses if buffer's address is bogus, but
2248 that is the user's responsibility. */
2249 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2250 }
2251 else
2252 { /* Caller did not allocate a buffer. Do it for them. */
2253 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2254 }
2255 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2256
2257 bufp->allocated = INIT_BUF_SIZE;
2258 }
2259
2260 begalt = b = bufp->buffer;
2261
2262 /* Loop through the uncompiled pattern until we're at the end. */
2263 while (p != pend)
2264 {
2265 PATFETCH (c);
2266
2267 switch (c)
2268 {
2269 case '^':
2270 {
2271 if ( /* If at start of pattern, it's an operator. */
2272 p == pattern + 1
2273 /* If context independent, it's an operator. */
2274 || syntax & RE_CONTEXT_INDEP_ANCHORS
2275 /* Otherwise, depends on what's come before. */
2276 || at_begline_loc_p (pattern, p, syntax))
2277 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2278 else
2279 goto normal_char;
2280 }
2281 break;
2282
2283
2284 case '$':
2285 {
2286 if ( /* If at end of pattern, it's an operator. */
2287 p == pend
2288 /* If context independent, it's an operator. */
2289 || syntax & RE_CONTEXT_INDEP_ANCHORS
2290 /* Otherwise, depends on what's next. */
2291 || at_endline_loc_p (p, pend, syntax))
2292 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2293 else
2294 goto normal_char;
2295 }
2296 break;
2297
2298
2299 case '+':
2300 case '?':
2301 if ((syntax & RE_BK_PLUS_QM)
2302 || (syntax & RE_LIMITED_OPS))
2303 goto normal_char;
2304 handle_plus:
2305 case '*':
2306 /* If there is no previous pattern... */
2307 if (!laststart)
2308 {
2309 if (syntax & RE_CONTEXT_INVALID_OPS)
2310 FREE_STACK_RETURN (REG_BADRPT);
2311 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2312 goto normal_char;
2313 }
2314
2315 {
2316 /* 1 means zero (many) matches is allowed. */
2317 boolean zero_times_ok = 0, many_times_ok = 0;
2318 boolean greedy = 1;
2319
2320 /* If there is a sequence of repetition chars, collapse it
2321 down to just one (the right one). We can't combine
2322 interval operators with these because of, e.g., `a{2}*',
2323 which should only match an even number of `a's. */
2324
2325 for (;;)
2326 {
2327 if ((syntax & RE_FRUGAL)
2328 && c == '?' && (zero_times_ok || many_times_ok))
2329 greedy = 0;
2330 else
2331 {
2332 zero_times_ok |= c != '+';
2333 many_times_ok |= c != '?';
2334 }
2335
2336 if (p == pend)
2337 break;
2338 else if (*p == '*'
2339 || (!(syntax & RE_BK_PLUS_QM)
2340 && (*p == '+' || *p == '?')))
2341 ;
2342 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2343 {
2344 if (p+1 == pend)
2345 FREE_STACK_RETURN (REG_EESCAPE);
2346 if (p[1] == '+' || p[1] == '?')
2347 PATFETCH (c); /* Gobble up the backslash. */
2348 else
2349 break;
2350 }
2351 else
2352 break;
2353 /* If we get here, we found another repeat character. */
2354 PATFETCH (c);
2355 }
2356
2357 /* Star, etc. applied to an empty pattern is equivalent
2358 to an empty pattern. */
2359 if (!laststart || laststart == b)
2360 break;
2361
2362 /* Now we know whether or not zero matches is allowed
2363 and also whether or not two or more matches is allowed. */
2364 if (greedy)
2365 {
2366 if (many_times_ok)
2367 {
2368 boolean simple = skip_one_char (laststart) == b;
2369 unsigned int startoffset = 0;
2370 re_opcode_t ofj =
2371 /* Check if the loop can match the empty string. */
2372 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2373 on_failure_jump : on_failure_jump_loop;
2374 assert (skip_one_char (laststart) <= b);
2375
2376 if (!zero_times_ok && simple)
2377 { /* Since simple * loops can be made faster by using
2378 on_failure_keep_string_jump, we turn simple P+
2379 into PP* if P is simple. */
2380 unsigned char *p1, *p2;
2381 startoffset = b - laststart;
2382 GET_BUFFER_SPACE (startoffset);
2383 p1 = b; p2 = laststart;
2384 while (p2 < p1)
2385 *b++ = *p2++;
2386 zero_times_ok = 1;
2387 }
2388
2389 GET_BUFFER_SPACE (6);
2390 if (!zero_times_ok)
2391 /* A + loop. */
2392 STORE_JUMP (ofj, b, b + 6);
2393 else
2394 /* Simple * loops can use on_failure_keep_string_jump
2395 depending on what follows. But since we don't know
2396 that yet, we leave the decision up to
2397 on_failure_jump_smart. */
2398 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2399 laststart + startoffset, b + 6);
2400 b += 3;
2401 STORE_JUMP (jump, b, laststart + startoffset);
2402 b += 3;
2403 }
2404 else
2405 {
2406 /* A simple ? pattern. */
2407 assert (zero_times_ok);
2408 GET_BUFFER_SPACE (3);
2409 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2410 b += 3;
2411 }
2412 }
2413 else /* not greedy */
2414 { /* I wish the greedy and non-greedy cases could be merged. */
2415
2416 GET_BUFFER_SPACE (7); /* We might use less. */
2417 if (many_times_ok)
2418 {
2419 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2420
2421 /* The non-greedy multiple match looks like a repeat..until:
2422 we only need a conditional jump at the end of the loop */
2423 if (emptyp) BUF_PUSH (no_op);
2424 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2425 : on_failure_jump, b, laststart);
2426 b += 3;
2427 if (zero_times_ok)
2428 {
2429 /* The repeat...until naturally matches one or more.
2430 To also match zero times, we need to first jump to
2431 the end of the loop (its conditional jump). */
2432 INSERT_JUMP (jump, laststart, b);
2433 b += 3;
2434 }
2435 }
2436 else
2437 {
2438 /* non-greedy a?? */
2439 INSERT_JUMP (jump, laststart, b + 3);
2440 b += 3;
2441 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2442 b += 3;
2443 }
2444 }
2445 }
2446 pending_exact = 0;
2447 break;
2448
2449
2450 case '.':
2451 laststart = b;
2452 BUF_PUSH (anychar);
2453 break;
2454
2455
2456 case '[':
2457 {
2458 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2459
2460 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2461
2462 /* Ensure that we have enough space to push a charset: the
2463 opcode, the length count, and the bitset; 34 bytes in all. */
2464 GET_BUFFER_SPACE (34);
2465
2466 laststart = b;
2467
2468 /* We test `*p == '^' twice, instead of using an if
2469 statement, so we only need one BUF_PUSH. */
2470 BUF_PUSH (*p == '^' ? charset_not : charset);
2471 if (*p == '^')
2472 p++;
2473
2474 /* Remember the first position in the bracket expression. */
2475 p1 = p;
2476
2477 /* Push the number of bytes in the bitmap. */
2478 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2479
2480 /* Clear the whole map. */
2481 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2482
2483 /* charset_not matches newline according to a syntax bit. */
2484 if ((re_opcode_t) b[-2] == charset_not
2485 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2486 SET_LIST_BIT ('\n');
2487
2488 /* Read in characters and ranges, setting map bits. */
2489 for (;;)
2490 {
2491 boolean escaped_char = false;
2492 const unsigned char *p2 = p;
2493
2494 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2495
2496 PATFETCH (c);
2497
2498 /* \ might escape characters inside [...] and [^...]. */
2499 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2500 {
2501 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2502
2503 PATFETCH (c);
2504 escaped_char = true;
2505 }
2506 else
2507 {
2508 /* Could be the end of the bracket expression. If it's
2509 not (i.e., when the bracket expression is `[]' so
2510 far), the ']' character bit gets set way below. */
2511 if (c == ']' && p2 != p1)
2512 break;
2513 }
2514
2515 /* What should we do for the character which is
2516 greater than 0x7F, but not BASE_LEADING_CODE_P?
2517 XXX */
2518
2519 /* See if we're at the beginning of a possible character
2520 class. */
2521
2522 if (!escaped_char &&
2523 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2524 {
2525 /* Leave room for the null. */
2526 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2527 const unsigned char *class_beg;
2528
2529 PATFETCH (c);
2530 c1 = 0;
2531 class_beg = p;
2532
2533 /* If pattern is `[[:'. */
2534 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2535
2536 for (;;)
2537 {
2538 PATFETCH (c);
2539 if ((c == ':' && *p == ']') || p == pend)
2540 break;
2541 if (c1 < CHAR_CLASS_MAX_LENGTH)
2542 str[c1++] = c;
2543 else
2544 /* This is in any case an invalid class name. */
2545 str[0] = '\0';
2546 }
2547 str[c1] = '\0';
2548
2549 /* If isn't a word bracketed by `[:' and `:]':
2550 undo the ending character, the letters, and
2551 leave the leading `:' and `[' (but set bits for
2552 them). */
2553 if (c == ':' && *p == ']')
2554 {
2555 int ch;
2556 re_wctype_t cc;
2557
2558 cc = re_wctype (str);
2559
2560 if (cc == 0)
2561 FREE_STACK_RETURN (REG_ECTYPE);
2562
2563 /* Throw away the ] at the end of the character
2564 class. */
2565 PATFETCH (c);
2566
2567 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2568
2569 /* Most character classes in a multibyte match
2570 just set a flag. Exceptions are is_blank,
2571 is_digit, is_cntrl, and is_xdigit, since
2572 they can only match ASCII characters. We
2573 don't need to handle them for multibyte.
2574 They are distinguished by a negative wctype. */
2575
2576 if (multibyte)
2577 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2578 re_wctype_to_bit (cc));
2579
2580 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2581 {
2582 int translated = TRANSLATE (ch);
2583 if (re_iswctype (btowc (ch), cc))
2584 SET_LIST_BIT (translated);
2585 }
2586
2587 /* Repeat the loop. */
2588 continue;
2589 }
2590 else
2591 {
2592 /* Go back to right after the "[:". */
2593 p = class_beg;
2594 SET_LIST_BIT ('[');
2595
2596 /* Because the `:' may starts the range, we
2597 can't simply set bit and repeat the loop.
2598 Instead, just set it to C and handle below. */
2599 c = ':';
2600 }
2601 }
2602
2603 if (p < pend && p[0] == '-' && p[1] != ']')
2604 {
2605
2606 /* Discard the `-'. */
2607 PATFETCH (c1);
2608
2609 /* Fetch the character which ends the range. */
2610 PATFETCH (c1);
2611
2612 if (SINGLE_BYTE_CHAR_P (c))
2613 {
2614 if (! SINGLE_BYTE_CHAR_P (c1))
2615 {
2616 /* Handle a range starting with a
2617 character of less than 256, and ending
2618 with a character of not less than 256.
2619 Split that into two ranges, the low one
2620 ending at 0377, and the high one
2621 starting at the smallest character in
2622 the charset of C1 and ending at C1. */
2623 int charset = CHAR_CHARSET (c1);
2624 int c2 = MAKE_CHAR (charset, 0, 0);
2625
2626 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2627 c2, c1);
2628 c1 = 0377;
2629 }
2630 }
2631 else if (!SAME_CHARSET_P (c, c1))
2632 FREE_STACK_RETURN (REG_ERANGE);
2633 }
2634 else
2635 /* Range from C to C. */
2636 c1 = c;
2637
2638 /* Set the range ... */
2639 if (SINGLE_BYTE_CHAR_P (c))
2640 /* ... into bitmap. */
2641 {
2642 re_wchar_t this_char;
2643 int range_start = c, range_end = c1;
2644
2645 /* If the start is after the end, the range is empty. */
2646 if (range_start > range_end)
2647 {
2648 if (syntax & RE_NO_EMPTY_RANGES)
2649 FREE_STACK_RETURN (REG_ERANGE);
2650 /* Else, repeat the loop. */
2651 }
2652 else
2653 {
2654 for (this_char = range_start; this_char <= range_end;
2655 this_char++)
2656 SET_LIST_BIT (TRANSLATE (this_char));
2657 }
2658 }
2659 else
2660 /* ... into range table. */
2661 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2662 }
2663
2664 /* Discard any (non)matching list bytes that are all 0 at the
2665 end of the map. Decrease the map-length byte too. */
2666 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2667 b[-1]--;
2668 b += b[-1];
2669
2670 /* Build real range table from work area. */
2671 if (RANGE_TABLE_WORK_USED (range_table_work)
2672 || RANGE_TABLE_WORK_BITS (range_table_work))
2673 {
2674 int i;
2675 int used = RANGE_TABLE_WORK_USED (range_table_work);
2676
2677 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2678 bytes for flags, two for COUNT, and three bytes for
2679 each character. */
2680 GET_BUFFER_SPACE (4 + used * 3);
2681
2682 /* Indicate the existence of range table. */
2683 laststart[1] |= 0x80;
2684
2685 /* Store the character class flag bits into the range table.
2686 If not in emacs, these flag bits are always 0. */
2687 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2688 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2689
2690 STORE_NUMBER_AND_INCR (b, used / 2);
2691 for (i = 0; i < used; i++)
2692 STORE_CHARACTER_AND_INCR
2693 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2694 }
2695 }
2696 break;
2697
2698
2699 case '(':
2700 if (syntax & RE_NO_BK_PARENS)
2701 goto handle_open;
2702 else
2703 goto normal_char;
2704
2705
2706 case ')':
2707 if (syntax & RE_NO_BK_PARENS)
2708 goto handle_close;
2709 else
2710 goto normal_char;
2711
2712
2713 case '\n':
2714 if (syntax & RE_NEWLINE_ALT)
2715 goto handle_alt;
2716 else
2717 goto normal_char;
2718
2719
2720 case '|':
2721 if (syntax & RE_NO_BK_VBAR)
2722 goto handle_alt;
2723 else
2724 goto normal_char;
2725
2726
2727 case '{':
2728 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2729 goto handle_interval;
2730 else
2731 goto normal_char;
2732
2733
2734 case '\\':
2735 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2736
2737 /* Do not translate the character after the \, so that we can
2738 distinguish, e.g., \B from \b, even if we normally would
2739 translate, e.g., B to b. */
2740 PATFETCH_RAW (c);
2741
2742 switch (c)
2743 {
2744 case '(':
2745 if (syntax & RE_NO_BK_PARENS)
2746 goto normal_backslash;
2747
2748 handle_open:
2749 {
2750 int shy = 0;
2751 if (p+1 < pend)
2752 {
2753 /* Look for a special (?...) construct */
2754 if ((syntax & RE_SHY_GROUPS) && *p == '?')
2755 {
2756 PATFETCH (c); /* Gobble up the '?'. */
2757 PATFETCH (c);
2758 switch (c)
2759 {
2760 case ':': shy = 1; break;
2761 default:
2762 /* Only (?:...) is supported right now. */
2763 FREE_STACK_RETURN (REG_BADPAT);
2764 }
2765 }
2766 }
2767
2768 if (!shy)
2769 {
2770 bufp->re_nsub++;
2771 regnum++;
2772 }
2773
2774 if (COMPILE_STACK_FULL)
2775 {
2776 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2777 compile_stack_elt_t);
2778 if (compile_stack.stack == NULL) return REG_ESPACE;
2779
2780 compile_stack.size <<= 1;
2781 }
2782
2783 /* These are the values to restore when we hit end of this
2784 group. They are all relative offsets, so that if the
2785 whole pattern moves because of realloc, they will still
2786 be valid. */
2787 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2788 COMPILE_STACK_TOP.fixup_alt_jump
2789 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2790 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2791 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2792
2793 /* Do not push a
2794 start_memory for groups beyond the last one we can
2795 represent in the compiled pattern. */
2796 if (regnum <= MAX_REGNUM && !shy)
2797 BUF_PUSH_2 (start_memory, regnum);
2798
2799 compile_stack.avail++;
2800
2801 fixup_alt_jump = 0;
2802 laststart = 0;
2803 begalt = b;
2804 /* If we've reached MAX_REGNUM groups, then this open
2805 won't actually generate any code, so we'll have to
2806 clear pending_exact explicitly. */
2807 pending_exact = 0;
2808 break;
2809 }
2810
2811 case ')':
2812 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2813
2814 if (COMPILE_STACK_EMPTY)
2815 {
2816 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2817 goto normal_backslash;
2818 else
2819 FREE_STACK_RETURN (REG_ERPAREN);
2820 }
2821
2822 handle_close:
2823 FIXUP_ALT_JUMP ();
2824
2825 /* See similar code for backslashed left paren above. */
2826 if (COMPILE_STACK_EMPTY)
2827 {
2828 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2829 goto normal_char;
2830 else
2831 FREE_STACK_RETURN (REG_ERPAREN);
2832 }
2833
2834 /* Since we just checked for an empty stack above, this
2835 ``can't happen''. */
2836 assert (compile_stack.avail != 0);
2837 {
2838 /* We don't just want to restore into `regnum', because
2839 later groups should continue to be numbered higher,
2840 as in `(ab)c(de)' -- the second group is #2. */
2841 regnum_t this_group_regnum;
2842
2843 compile_stack.avail--;
2844 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2845 fixup_alt_jump
2846 = COMPILE_STACK_TOP.fixup_alt_jump
2847 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2848 : 0;
2849 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2850 this_group_regnum = COMPILE_STACK_TOP.regnum;
2851 /* If we've reached MAX_REGNUM groups, then this open
2852 won't actually generate any code, so we'll have to
2853 clear pending_exact explicitly. */
2854 pending_exact = 0;
2855
2856 /* We're at the end of the group, so now we know how many
2857 groups were inside this one. */
2858 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2859 BUF_PUSH_2 (stop_memory, this_group_regnum);
2860 }
2861 break;
2862
2863
2864 case '|': /* `\|'. */
2865 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2866 goto normal_backslash;
2867 handle_alt:
2868 if (syntax & RE_LIMITED_OPS)
2869 goto normal_char;
2870
2871 /* Insert before the previous alternative a jump which
2872 jumps to this alternative if the former fails. */
2873 GET_BUFFER_SPACE (3);
2874 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2875 pending_exact = 0;
2876 b += 3;
2877
2878 /* The alternative before this one has a jump after it
2879 which gets executed if it gets matched. Adjust that
2880 jump so it will jump to this alternative's analogous
2881 jump (put in below, which in turn will jump to the next
2882 (if any) alternative's such jump, etc.). The last such
2883 jump jumps to the correct final destination. A picture:
2884 _____ _____
2885 | | | |
2886 | v | v
2887 a | b | c
2888
2889 If we are at `b', then fixup_alt_jump right now points to a
2890 three-byte space after `a'. We'll put in the jump, set
2891 fixup_alt_jump to right after `b', and leave behind three
2892 bytes which we'll fill in when we get to after `c'. */
2893
2894 FIXUP_ALT_JUMP ();
2895
2896 /* Mark and leave space for a jump after this alternative,
2897 to be filled in later either by next alternative or
2898 when know we're at the end of a series of alternatives. */
2899 fixup_alt_jump = b;
2900 GET_BUFFER_SPACE (3);
2901 b += 3;
2902
2903 laststart = 0;
2904 begalt = b;
2905 break;
2906
2907
2908 case '{':
2909 /* If \{ is a literal. */
2910 if (!(syntax & RE_INTERVALS)
2911 /* If we're at `\{' and it's not the open-interval
2912 operator. */
2913 || (syntax & RE_NO_BK_BRACES))
2914 goto normal_backslash;
2915
2916 handle_interval:
2917 {
2918 /* If got here, then the syntax allows intervals. */
2919
2920 /* At least (most) this many matches must be made. */
2921 int lower_bound = 0, upper_bound = -1;
2922
2923 beg_interval = p;
2924
2925 if (p == pend)
2926 FREE_STACK_RETURN (REG_EBRACE);
2927
2928 GET_UNSIGNED_NUMBER (lower_bound);
2929
2930 if (c == ',')
2931 GET_UNSIGNED_NUMBER (upper_bound);
2932 else
2933 /* Interval such as `{1}' => match exactly once. */
2934 upper_bound = lower_bound;
2935
2936 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2937 || (upper_bound >= 0 && lower_bound > upper_bound))
2938 FREE_STACK_RETURN (REG_BADBR);
2939
2940 if (!(syntax & RE_NO_BK_BRACES))
2941 {
2942 if (c != '\\')
2943 FREE_STACK_RETURN (REG_BADBR);
2944
2945 PATFETCH (c);
2946 }
2947
2948 if (c != '}')
2949 FREE_STACK_RETURN (REG_BADBR);
2950
2951 /* We just parsed a valid interval. */
2952
2953 /* If it's invalid to have no preceding re. */
2954 if (!laststart)
2955 {
2956 if (syntax & RE_CONTEXT_INVALID_OPS)
2957 FREE_STACK_RETURN (REG_BADRPT);
2958 else if (syntax & RE_CONTEXT_INDEP_OPS)
2959 laststart = b;
2960 else
2961 goto unfetch_interval;
2962 }
2963
2964 if (upper_bound == 0)
2965 /* If the upper bound is zero, just drop the sub pattern
2966 altogether. */
2967 b = laststart;
2968 else if (lower_bound == 1 && upper_bound == 1)
2969 /* Just match it once: nothing to do here. */
2970 ;
2971
2972 /* Otherwise, we have a nontrivial interval. When
2973 we're all done, the pattern will look like:
2974 set_number_at <jump count> <upper bound>
2975 set_number_at <succeed_n count> <lower bound>
2976 succeed_n <after jump addr> <succeed_n count>
2977 <body of loop>
2978 jump_n <succeed_n addr> <jump count>
2979 (The upper bound and `jump_n' are omitted if
2980 `upper_bound' is 1, though.) */
2981 else
2982 { /* If the upper bound is > 1, we need to insert
2983 more at the end of the loop. */
2984 unsigned int nbytes = (upper_bound < 0 ? 3
2985 : upper_bound > 1 ? 5 : 0);
2986 unsigned int startoffset = 0;
2987
2988 GET_BUFFER_SPACE (20); /* We might use less. */
2989
2990 if (lower_bound == 0)
2991 {
2992 /* A succeed_n that starts with 0 is really a
2993 a simple on_failure_jump_loop. */
2994 INSERT_JUMP (on_failure_jump_loop, laststart,
2995 b + 3 + nbytes);
2996 b += 3;
2997 }
2998 else
2999 {
3000 /* Initialize lower bound of the `succeed_n', even
3001 though it will be set during matching by its
3002 attendant `set_number_at' (inserted next),
3003 because `re_compile_fastmap' needs to know.
3004 Jump to the `jump_n' we might insert below. */
3005 INSERT_JUMP2 (succeed_n, laststart,
3006 b + 5 + nbytes,
3007 lower_bound);
3008 b += 5;
3009
3010 /* Code to initialize the lower bound. Insert
3011 before the `succeed_n'. The `5' is the last two
3012 bytes of this `set_number_at', plus 3 bytes of
3013 the following `succeed_n'. */
3014 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3015 b += 5;
3016 startoffset += 5;
3017 }
3018
3019 if (upper_bound < 0)
3020 {
3021 /* A negative upper bound stands for infinity,
3022 in which case it degenerates to a plain jump. */
3023 STORE_JUMP (jump, b, laststart + startoffset);
3024 b += 3;
3025 }
3026 else if (upper_bound > 1)
3027 { /* More than one repetition is allowed, so
3028 append a backward jump to the `succeed_n'
3029 that starts this interval.
3030
3031 When we've reached this during matching,
3032 we'll have matched the interval once, so
3033 jump back only `upper_bound - 1' times. */
3034 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3035 upper_bound - 1);
3036 b += 5;
3037
3038 /* The location we want to set is the second
3039 parameter of the `jump_n'; that is `b-2' as
3040 an absolute address. `laststart' will be
3041 the `set_number_at' we're about to insert;
3042 `laststart+3' the number to set, the source
3043 for the relative address. But we are
3044 inserting into the middle of the pattern --
3045 so everything is getting moved up by 5.
3046 Conclusion: (b - 2) - (laststart + 3) + 5,
3047 i.e., b - laststart.
3048
3049 We insert this at the beginning of the loop
3050 so that if we fail during matching, we'll
3051 reinitialize the bounds. */
3052 insert_op2 (set_number_at, laststart, b - laststart,
3053 upper_bound - 1, b);
3054 b += 5;
3055 }
3056 }
3057 pending_exact = 0;
3058 beg_interval = NULL;
3059 }
3060 break;
3061
3062 unfetch_interval:
3063 /* If an invalid interval, match the characters as literals. */
3064 assert (beg_interval);
3065 p = beg_interval;
3066 beg_interval = NULL;
3067
3068 /* normal_char and normal_backslash need `c'. */
3069 c = '{';
3070
3071 if (!(syntax & RE_NO_BK_BRACES))
3072 {
3073 assert (p > pattern && p[-1] == '\\');
3074 goto normal_backslash;
3075 }
3076 else
3077 goto normal_char;
3078
3079 #ifdef emacs
3080 /* There is no way to specify the before_dot and after_dot
3081 operators. rms says this is ok. --karl */
3082 case '=':
3083 BUF_PUSH (at_dot);
3084 break;
3085
3086 case 's':
3087 laststart = b;
3088 PATFETCH (c);
3089 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3090 break;
3091
3092 case 'S':
3093 laststart = b;
3094 PATFETCH (c);
3095 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3096 break;
3097
3098 case 'c':
3099 laststart = b;
3100 PATFETCH_RAW (c);
3101 BUF_PUSH_2 (categoryspec, c);
3102 break;
3103
3104 case 'C':
3105 laststart = b;
3106 PATFETCH_RAW (c);
3107 BUF_PUSH_2 (notcategoryspec, c);
3108 break;
3109 #endif /* emacs */
3110
3111
3112 case 'w':
3113 if (syntax & RE_NO_GNU_OPS)
3114 goto normal_char;
3115 laststart = b;
3116 BUF_PUSH_2 (syntaxspec, Sword);
3117 break;
3118
3119
3120 case 'W':
3121 if (syntax & RE_NO_GNU_OPS)
3122 goto normal_char;
3123 laststart = b;
3124 BUF_PUSH_2 (notsyntaxspec, Sword);
3125 break;
3126
3127
3128 case '<':
3129 if (syntax & RE_NO_GNU_OPS)
3130 goto normal_char;
3131 BUF_PUSH (wordbeg);
3132 break;
3133
3134 case '>':
3135 if (syntax & RE_NO_GNU_OPS)
3136 goto normal_char;
3137 BUF_PUSH (wordend);
3138 break;
3139
3140 case 'b':
3141 if (syntax & RE_NO_GNU_OPS)
3142 goto normal_char;
3143 BUF_PUSH (wordbound);
3144 break;
3145
3146 case 'B':
3147 if (syntax & RE_NO_GNU_OPS)
3148 goto normal_char;
3149 BUF_PUSH (notwordbound);
3150 break;
3151
3152 case '`':
3153 if (syntax & RE_NO_GNU_OPS)
3154 goto normal_char;
3155 BUF_PUSH (begbuf);
3156 break;
3157
3158 case '\'':
3159 if (syntax & RE_NO_GNU_OPS)
3160 goto normal_char;
3161 BUF_PUSH (endbuf);
3162 break;
3163
3164 case '1': case '2': case '3': case '4': case '5':
3165 case '6': case '7': case '8': case '9':
3166 {
3167 regnum_t reg;
3168
3169 if (syntax & RE_NO_BK_REFS)
3170 goto normal_backslash;
3171
3172 reg = c - '0';
3173
3174 /* Can't back reference to a subexpression before its end. */
3175 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3176 FREE_STACK_RETURN (REG_ESUBREG);
3177
3178 laststart = b;
3179 BUF_PUSH_2 (duplicate, reg);
3180 }
3181 break;
3182
3183
3184 case '+':
3185 case '?':
3186 if (syntax & RE_BK_PLUS_QM)
3187 goto handle_plus;
3188 else
3189 goto normal_backslash;
3190
3191 default:
3192 normal_backslash:
3193 /* You might think it would be useful for \ to mean
3194 not to translate; but if we don't translate it
3195 it will never match anything. */
3196 c = TRANSLATE (c);
3197 goto normal_char;
3198 }
3199 break;
3200
3201
3202 default:
3203 /* Expects the character in `c'. */
3204 normal_char:
3205 /* If no exactn currently being built. */
3206 if (!pending_exact
3207
3208 /* If last exactn not at current position. */
3209 || pending_exact + *pending_exact + 1 != b
3210
3211 /* We have only one byte following the exactn for the count. */
3212 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3213
3214 /* If followed by a repetition operator. */
3215 || (p != pend && (*p == '*' || *p == '^'))
3216 || ((syntax & RE_BK_PLUS_QM)
3217 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3218 : p != pend && (*p == '+' || *p == '?'))
3219 || ((syntax & RE_INTERVALS)
3220 && ((syntax & RE_NO_BK_BRACES)
3221 ? p != pend && *p == '{'
3222 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3223 {
3224 /* Start building a new exactn. */
3225
3226 laststart = b;
3227
3228 BUF_PUSH_2 (exactn, 0);
3229 pending_exact = b - 1;
3230 }
3231
3232 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3233 {
3234 int len;
3235
3236 if (multibyte)
3237 len = CHAR_STRING (c, b);
3238 else
3239 *b = c, len = 1;
3240 b += len;
3241 (*pending_exact) += len;
3242 }
3243
3244 break;
3245 } /* switch (c) */
3246 } /* while p != pend */
3247
3248
3249 /* Through the pattern now. */
3250
3251 FIXUP_ALT_JUMP ();
3252
3253 if (!COMPILE_STACK_EMPTY)
3254 FREE_STACK_RETURN (REG_EPAREN);
3255
3256 /* If we don't want backtracking, force success
3257 the first time we reach the end of the compiled pattern. */
3258 if (syntax & RE_NO_POSIX_BACKTRACKING)
3259 BUF_PUSH (succeed);
3260
3261 free (compile_stack.stack);
3262
3263 /* We have succeeded; set the length of the buffer. */
3264 bufp->used = b - bufp->buffer;
3265
3266 #ifdef DEBUG
3267 if (debug > 0)
3268 {
3269 re_compile_fastmap (bufp);
3270 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3271 print_compiled_pattern (bufp);
3272 }
3273 debug--;
3274 #endif /* DEBUG */
3275
3276 #ifndef MATCH_MAY_ALLOCATE
3277 /* Initialize the failure stack to the largest possible stack. This
3278 isn't necessary unless we're trying to avoid calling alloca in
3279 the search and match routines. */
3280 {
3281 int num_regs = bufp->re_nsub + 1;
3282
3283 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3284 {
3285 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3286
3287 if (! fail_stack.stack)
3288 fail_stack.stack
3289 = (fail_stack_elt_t *) malloc (fail_stack.size
3290 * sizeof (fail_stack_elt_t));
3291 else
3292 fail_stack.stack
3293 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3294 (fail_stack.size
3295 * sizeof (fail_stack_elt_t)));
3296 }
3297
3298 regex_grow_registers (num_regs);
3299 }
3300 #endif /* not MATCH_MAY_ALLOCATE */
3301
3302 return REG_NOERROR;
3303 } /* regex_compile */
3304 \f
3305 /* Subroutines for `regex_compile'. */
3306
3307 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3308
3309 static void
3310 store_op1 (op, loc, arg)
3311 re_opcode_t op;
3312 unsigned char *loc;
3313 int arg;
3314 {
3315 *loc = (unsigned char) op;
3316 STORE_NUMBER (loc + 1, arg);
3317 }
3318
3319
3320 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3321
3322 static void
3323 store_op2 (op, loc, arg1, arg2)
3324 re_opcode_t op;
3325 unsigned char *loc;
3326 int arg1, arg2;
3327 {
3328 *loc = (unsigned char) op;
3329 STORE_NUMBER (loc + 1, arg1);
3330 STORE_NUMBER (loc + 3, arg2);
3331 }
3332
3333
3334 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3335 for OP followed by two-byte integer parameter ARG. */
3336
3337 static void
3338 insert_op1 (op, loc, arg, end)
3339 re_opcode_t op;
3340 unsigned char *loc;
3341 int arg;
3342 unsigned char *end;
3343 {
3344 register unsigned char *pfrom = end;
3345 register unsigned char *pto = end + 3;
3346
3347 while (pfrom != loc)
3348 *--pto = *--pfrom;
3349
3350 store_op1 (op, loc, arg);
3351 }
3352
3353
3354 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3355
3356 static void
3357 insert_op2 (op, loc, arg1, arg2, end)
3358 re_opcode_t op;
3359 unsigned char *loc;
3360 int arg1, arg2;
3361 unsigned char *end;
3362 {
3363 register unsigned char *pfrom = end;
3364 register unsigned char *pto = end + 5;
3365
3366 while (pfrom != loc)
3367 *--pto = *--pfrom;
3368
3369 store_op2 (op, loc, arg1, arg2);
3370 }
3371
3372
3373 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3374 after an alternative or a begin-subexpression. We assume there is at
3375 least one character before the ^. */
3376
3377 static boolean
3378 at_begline_loc_p (pattern, p, syntax)
3379 re_char *pattern, *p;
3380 reg_syntax_t syntax;
3381 {
3382 re_char *prev = p - 2;
3383 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3384
3385 return
3386 /* After a subexpression? */
3387 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3388 /* After an alternative? */
3389 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3390 /* After a shy subexpression? */
3391 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3392 && prev[-1] == '?' && prev[-2] == '('
3393 && (syntax & RE_NO_BK_PARENS
3394 || (prev - 3 >= pattern && prev[-3] == '\\')));
3395 }
3396
3397
3398 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3399 at least one character after the $, i.e., `P < PEND'. */
3400
3401 static boolean
3402 at_endline_loc_p (p, pend, syntax)
3403 re_char *p, *pend;
3404 reg_syntax_t syntax;
3405 {
3406 re_char *next = p;
3407 boolean next_backslash = *next == '\\';
3408 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3409
3410 return
3411 /* Before a subexpression? */
3412 (syntax & RE_NO_BK_PARENS ? *next == ')'
3413 : next_backslash && next_next && *next_next == ')')
3414 /* Before an alternative? */
3415 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3416 : next_backslash && next_next && *next_next == '|');
3417 }
3418
3419
3420 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3421 false if it's not. */
3422
3423 static boolean
3424 group_in_compile_stack (compile_stack, regnum)
3425 compile_stack_type compile_stack;
3426 regnum_t regnum;
3427 {
3428 int this_element;
3429
3430 for (this_element = compile_stack.avail - 1;
3431 this_element >= 0;
3432 this_element--)
3433 if (compile_stack.stack[this_element].regnum == regnum)
3434 return true;
3435
3436 return false;
3437 }
3438 \f
3439 /* analyse_first.
3440 If fastmap is non-NULL, go through the pattern and fill fastmap
3441 with all the possible leading chars. If fastmap is NULL, don't
3442 bother filling it up (obviously) and only return whether the
3443 pattern could potentially match the empty string.
3444
3445 Return 1 if p..pend might match the empty string.
3446 Return 0 if p..pend matches at least one char.
3447 Return -1 if fastmap was not updated accurately. */
3448
3449 static int
3450 analyse_first (p, pend, fastmap, multibyte)
3451 re_char *p, *pend;
3452 char *fastmap;
3453 const int multibyte;
3454 {
3455 int j, k;
3456 boolean not;
3457
3458 /* If all elements for base leading-codes in fastmap is set, this
3459 flag is set true. */
3460 boolean match_any_multibyte_characters = false;
3461
3462 assert (p);
3463
3464 /* The loop below works as follows:
3465 - It has a working-list kept in the PATTERN_STACK and which basically
3466 starts by only containing a pointer to the first operation.
3467 - If the opcode we're looking at is a match against some set of
3468 chars, then we add those chars to the fastmap and go on to the
3469 next work element from the worklist (done via `break').
3470 - If the opcode is a control operator on the other hand, we either
3471 ignore it (if it's meaningless at this point, such as `start_memory')
3472 or execute it (if it's a jump). If the jump has several destinations
3473 (i.e. `on_failure_jump'), then we push the other destination onto the
3474 worklist.
3475 We guarantee termination by ignoring backward jumps (more or less),
3476 so that `p' is monotonically increasing. More to the point, we
3477 never set `p' (or push) anything `<= p1'. */
3478
3479 while (p < pend)
3480 {
3481 /* `p1' is used as a marker of how far back a `on_failure_jump'
3482 can go without being ignored. It is normally equal to `p'
3483 (which prevents any backward `on_failure_jump') except right
3484 after a plain `jump', to allow patterns such as:
3485 0: jump 10
3486 3..9: <body>
3487 10: on_failure_jump 3
3488 as used for the *? operator. */
3489 re_char *p1 = p;
3490
3491 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3492 {
3493 case succeed:
3494 return 1;
3495 continue;
3496
3497 case duplicate:
3498 /* If the first character has to match a backreference, that means
3499 that the group was empty (since it already matched). Since this
3500 is the only case that interests us here, we can assume that the
3501 backreference must match the empty string. */
3502 p++;
3503 continue;
3504
3505
3506 /* Following are the cases which match a character. These end
3507 with `break'. */
3508
3509 case exactn:
3510 if (fastmap)
3511 {
3512 int c = RE_STRING_CHAR (p + 1, pend - p);
3513
3514 if (SINGLE_BYTE_CHAR_P (c))
3515 fastmap[c] = 1;
3516 else
3517 fastmap[p[1]] = 1;
3518 }
3519 break;
3520
3521
3522 case anychar:
3523 /* We could put all the chars except for \n (and maybe \0)
3524 but we don't bother since it is generally not worth it. */
3525 if (!fastmap) break;
3526 return -1;
3527
3528
3529 case charset_not:
3530 /* Chars beyond end of bitmap are possible matches.
3531 All the single-byte codes can occur in multibyte buffers.
3532 So any that are not listed in the charset
3533 are possible matches, even in multibyte buffers. */
3534 if (!fastmap) break;
3535 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3536 j < (1 << BYTEWIDTH); j++)
3537 fastmap[j] = 1;
3538 /* Fallthrough */
3539 case charset:
3540 if (!fastmap) break;
3541 not = (re_opcode_t) *(p - 1) == charset_not;
3542 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3543 j >= 0; j--)
3544 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3545 fastmap[j] = 1;
3546
3547 if ((not && multibyte)
3548 /* Any character set can possibly contain a character
3549 which doesn't match the specified set of characters. */
3550 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3551 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3552 /* If we can match a character class, we can match
3553 any character set. */
3554 {
3555 set_fastmap_for_multibyte_characters:
3556 if (match_any_multibyte_characters == false)
3557 {
3558 for (j = 0x80; j < 0xA0; j++) /* XXX */
3559 if (BASE_LEADING_CODE_P (j))
3560 fastmap[j] = 1;
3561 match_any_multibyte_characters = true;
3562 }
3563 }
3564
3565 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3566 && match_any_multibyte_characters == false)
3567 {
3568 /* Set fastmap[I] 1 where I is a base leading code of each
3569 multibyte character in the range table. */
3570 int c, count;
3571
3572 /* Make P points the range table. `+ 2' is to skip flag
3573 bits for a character class. */
3574 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3575
3576 /* Extract the number of ranges in range table into COUNT. */
3577 EXTRACT_NUMBER_AND_INCR (count, p);
3578 for (; count > 0; count--, p += 2 * 3) /* XXX */
3579 {
3580 /* Extract the start of each range. */
3581 EXTRACT_CHARACTER (c, p);
3582 j = CHAR_CHARSET (c);
3583 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3584 }
3585 }
3586 break;
3587
3588 case syntaxspec:
3589 case notsyntaxspec:
3590 if (!fastmap) break;
3591 #ifndef emacs
3592 not = (re_opcode_t)p[-1] == notsyntaxspec;
3593 k = *p++;
3594 for (j = 0; j < (1 << BYTEWIDTH); j++)
3595 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3596 fastmap[j] = 1;
3597 break;
3598 #else /* emacs */
3599 /* This match depends on text properties. These end with
3600 aborting optimizations. */
3601 return -1;
3602
3603 case categoryspec:
3604 case notcategoryspec:
3605 if (!fastmap) break;
3606 not = (re_opcode_t)p[-1] == notcategoryspec;
3607 k = *p++;
3608 for (j = 0; j < (1 << BYTEWIDTH); j++)
3609 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3610 fastmap[j] = 1;
3611
3612 if (multibyte)
3613 /* Any character set can possibly contain a character
3614 whose category is K (or not). */
3615 goto set_fastmap_for_multibyte_characters;
3616 break;
3617
3618 /* All cases after this match the empty string. These end with
3619 `continue'. */
3620
3621 case before_dot:
3622 case at_dot:
3623 case after_dot:
3624 #endif /* !emacs */
3625 case no_op:
3626 case begline:
3627 case endline:
3628 case begbuf:
3629 case endbuf:
3630 case wordbound:
3631 case notwordbound:
3632 case wordbeg:
3633 case wordend:
3634 continue;
3635
3636
3637 case jump:
3638 EXTRACT_NUMBER_AND_INCR (j, p);
3639 if (j < 0)
3640 /* Backward jumps can only go back to code that we've already
3641 visited. `re_compile' should make sure this is true. */
3642 break;
3643 p += j;
3644 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3645 {
3646 case on_failure_jump:
3647 case on_failure_keep_string_jump:
3648 case on_failure_jump_loop:
3649 case on_failure_jump_nastyloop:
3650 case on_failure_jump_smart:
3651 p++;
3652 break;
3653 default:
3654 continue;
3655 };
3656 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3657 to jump back to "just after here". */
3658 /* Fallthrough */
3659
3660 case on_failure_jump:
3661 case on_failure_keep_string_jump:
3662 case on_failure_jump_nastyloop:
3663 case on_failure_jump_loop:
3664 case on_failure_jump_smart:
3665 EXTRACT_NUMBER_AND_INCR (j, p);
3666 if (p + j <= p1)
3667 ; /* Backward jump to be ignored. */
3668 else
3669 { /* We have to look down both arms.
3670 We first go down the "straight" path so as to minimize
3671 stack usage when going through alternatives. */
3672 int r = analyse_first (p, pend, fastmap, multibyte);
3673 if (r) return r;
3674 p += j;
3675 }
3676 continue;
3677
3678
3679 case jump_n:
3680 /* This code simply does not properly handle forward jump_n. */
3681 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3682 p += 4;
3683 /* jump_n can either jump or fall through. The (backward) jump
3684 case has already been handled, so we only need to look at the
3685 fallthrough case. */
3686 continue;
3687
3688 case succeed_n:
3689 /* If N == 0, it should be an on_failure_jump_loop instead. */
3690 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3691 p += 4;
3692 /* We only care about one iteration of the loop, so we don't
3693 need to consider the case where this behaves like an
3694 on_failure_jump. */
3695 continue;
3696
3697
3698 case set_number_at:
3699 p += 4;
3700 continue;
3701
3702
3703 case start_memory:
3704 case stop_memory:
3705 p += 1;
3706 continue;
3707
3708
3709 default:
3710 abort (); /* We have listed all the cases. */
3711 } /* switch *p++ */
3712
3713 /* Getting here means we have found the possible starting
3714 characters for one path of the pattern -- and that the empty
3715 string does not match. We need not follow this path further. */
3716 return 0;
3717 } /* while p */
3718
3719 /* We reached the end without matching anything. */
3720 return 1;
3721
3722 } /* analyse_first */
3723 \f
3724 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3725 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3726 characters can start a string that matches the pattern. This fastmap
3727 is used by re_search to skip quickly over impossible starting points.
3728
3729 Character codes above (1 << BYTEWIDTH) are not represented in the
3730 fastmap, but the leading codes are represented. Thus, the fastmap
3731 indicates which character sets could start a match.
3732
3733 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3734 area as BUFP->fastmap.
3735
3736 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3737 the pattern buffer.
3738
3739 Returns 0 if we succeed, -2 if an internal error. */
3740
3741 int
3742 re_compile_fastmap (bufp)
3743 struct re_pattern_buffer *bufp;
3744 {
3745 char *fastmap = bufp->fastmap;
3746 int analysis;
3747
3748 assert (fastmap && bufp->buffer);
3749
3750 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3751 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3752
3753 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
3754 fastmap, RE_MULTIBYTE_P (bufp));
3755 bufp->can_be_null = (analysis != 0);
3756 return 0;
3757 } /* re_compile_fastmap */
3758 \f
3759 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3760 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3761 this memory for recording register information. STARTS and ENDS
3762 must be allocated using the malloc library routine, and must each
3763 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3764
3765 If NUM_REGS == 0, then subsequent matches should allocate their own
3766 register data.
3767
3768 Unless this function is called, the first search or match using
3769 PATTERN_BUFFER will allocate its own register data, without
3770 freeing the old data. */
3771
3772 void
3773 re_set_registers (bufp, regs, num_regs, starts, ends)
3774 struct re_pattern_buffer *bufp;
3775 struct re_registers *regs;
3776 unsigned num_regs;
3777 regoff_t *starts, *ends;
3778 {
3779 if (num_regs)
3780 {
3781 bufp->regs_allocated = REGS_REALLOCATE;
3782 regs->num_regs = num_regs;
3783 regs->start = starts;
3784 regs->end = ends;
3785 }
3786 else
3787 {
3788 bufp->regs_allocated = REGS_UNALLOCATED;
3789 regs->num_regs = 0;
3790 regs->start = regs->end = (regoff_t *) 0;
3791 }
3792 }
3793 WEAK_ALIAS (__re_set_registers, re_set_registers)
3794 \f
3795 /* Searching routines. */
3796
3797 /* Like re_search_2, below, but only one string is specified, and
3798 doesn't let you say where to stop matching. */
3799
3800 int
3801 re_search (bufp, string, size, startpos, range, regs)
3802 struct re_pattern_buffer *bufp;
3803 const char *string;
3804 int size, startpos, range;
3805 struct re_registers *regs;
3806 {
3807 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3808 regs, size);
3809 }
3810 WEAK_ALIAS (__re_search, re_search)
3811
3812 /* End address of virtual concatenation of string. */
3813 #define STOP_ADDR_VSTRING(P) \
3814 (((P) >= size1 ? string2 + size2 : string1 + size1))
3815
3816 /* Address of POS in the concatenation of virtual string. */
3817 #define POS_ADDR_VSTRING(POS) \
3818 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3819
3820 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3821 virtual concatenation of STRING1 and STRING2, starting first at index
3822 STARTPOS, then at STARTPOS + 1, and so on.
3823
3824 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3825
3826 RANGE is how far to scan while trying to match. RANGE = 0 means try
3827 only at STARTPOS; in general, the last start tried is STARTPOS +
3828 RANGE.
3829
3830 In REGS, return the indices of the virtual concatenation of STRING1
3831 and STRING2 that matched the entire BUFP->buffer and its contained
3832 subexpressions.
3833
3834 Do not consider matching one past the index STOP in the virtual
3835 concatenation of STRING1 and STRING2.
3836
3837 We return either the position in the strings at which the match was
3838 found, -1 if no match, or -2 if error (such as failure
3839 stack overflow). */
3840
3841 int
3842 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
3843 struct re_pattern_buffer *bufp;
3844 const char *str1, *str2;
3845 int size1, size2;
3846 int startpos;
3847 int range;
3848 struct re_registers *regs;
3849 int stop;
3850 {
3851 int val;
3852 re_char *string1 = (re_char*) str1;
3853 re_char *string2 = (re_char*) str2;
3854 register char *fastmap = bufp->fastmap;
3855 register RE_TRANSLATE_TYPE translate = bufp->translate;
3856 int total_size = size1 + size2;
3857 int endpos = startpos + range;
3858 boolean anchored_start;
3859
3860 /* Nonzero if we have to concern multibyte character. */
3861 const boolean multibyte = RE_MULTIBYTE_P (bufp);
3862
3863 /* Check for out-of-range STARTPOS. */
3864 if (startpos < 0 || startpos > total_size)
3865 return -1;
3866
3867 /* Fix up RANGE if it might eventually take us outside
3868 the virtual concatenation of STRING1 and STRING2.
3869 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3870 if (endpos < 0)
3871 range = 0 - startpos;
3872 else if (endpos > total_size)
3873 range = total_size - startpos;
3874
3875 /* If the search isn't to be a backwards one, don't waste time in a
3876 search for a pattern anchored at beginning of buffer. */
3877 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3878 {
3879 if (startpos > 0)
3880 return -1;
3881 else
3882 range = 0;
3883 }
3884
3885 #ifdef emacs
3886 /* In a forward search for something that starts with \=.
3887 don't keep searching past point. */
3888 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3889 {
3890 range = PT_BYTE - BEGV_BYTE - startpos;
3891 if (range < 0)
3892 return -1;
3893 }
3894 #endif /* emacs */
3895
3896 /* Update the fastmap now if not correct already. */
3897 if (fastmap && !bufp->fastmap_accurate)
3898 re_compile_fastmap (bufp);
3899
3900 /* See whether the pattern is anchored. */
3901 anchored_start = (bufp->buffer[0] == begline);
3902
3903 #ifdef emacs
3904 gl_state.object = re_match_object;
3905 {
3906 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
3907
3908 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3909 }
3910 #endif
3911
3912 /* Loop through the string, looking for a place to start matching. */
3913 for (;;)
3914 {
3915 /* If the pattern is anchored,
3916 skip quickly past places we cannot match.
3917 We don't bother to treat startpos == 0 specially
3918 because that case doesn't repeat. */
3919 if (anchored_start && startpos > 0)
3920 {
3921 if (! ((startpos <= size1 ? string1[startpos - 1]
3922 : string2[startpos - size1 - 1])
3923 == '\n'))
3924 goto advance;
3925 }
3926
3927 /* If a fastmap is supplied, skip quickly over characters that
3928 cannot be the start of a match. If the pattern can match the
3929 null string, however, we don't need to skip characters; we want
3930 the first null string. */
3931 if (fastmap && startpos < total_size && !bufp->can_be_null)
3932 {
3933 register re_char *d;
3934 register re_wchar_t buf_ch;
3935
3936 d = POS_ADDR_VSTRING (startpos);
3937
3938 if (range > 0) /* Searching forwards. */
3939 {
3940 register int lim = 0;
3941 int irange = range;
3942
3943 if (startpos < size1 && startpos + range >= size1)
3944 lim = range - (size1 - startpos);
3945
3946 /* Written out as an if-else to avoid testing `translate'
3947 inside the loop. */
3948 if (RE_TRANSLATE_P (translate))
3949 {
3950 if (multibyte)
3951 while (range > lim)
3952 {
3953 int buf_charlen;
3954
3955 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3956 buf_charlen);
3957
3958 buf_ch = RE_TRANSLATE (translate, buf_ch);
3959 if (buf_ch >= 0400
3960 || fastmap[buf_ch])
3961 break;
3962
3963 range -= buf_charlen;
3964 d += buf_charlen;
3965 }
3966 else
3967 while (range > lim
3968 && !fastmap[RE_TRANSLATE (translate, *d)])
3969 {
3970 d++;
3971 range--;
3972 }
3973 }
3974 else
3975 while (range > lim && !fastmap[*d])
3976 {
3977 d++;
3978 range--;
3979 }
3980
3981 startpos += irange - range;
3982 }
3983 else /* Searching backwards. */
3984 {
3985 int room = (startpos >= size1
3986 ? size2 + size1 - startpos
3987 : size1 - startpos);
3988 buf_ch = RE_STRING_CHAR (d, room);
3989 buf_ch = TRANSLATE (buf_ch);
3990
3991 if (! (buf_ch >= 0400
3992 || fastmap[buf_ch]))
3993 goto advance;
3994 }
3995 }
3996
3997 /* If can't match the null string, and that's all we have left, fail. */
3998 if (range >= 0 && startpos == total_size && fastmap
3999 && !bufp->can_be_null)
4000 return -1;
4001
4002 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4003 startpos, regs, stop);
4004 #ifndef REGEX_MALLOC
4005 # ifdef C_ALLOCA
4006 alloca (0);
4007 # endif
4008 #endif
4009
4010 if (val >= 0)
4011 return startpos;
4012
4013 if (val == -2)
4014 return -2;
4015
4016 advance:
4017 if (!range)
4018 break;
4019 else if (range > 0)
4020 {
4021 /* Update STARTPOS to the next character boundary. */
4022 if (multibyte)
4023 {
4024 re_char *p = POS_ADDR_VSTRING (startpos);
4025 re_char *pend = STOP_ADDR_VSTRING (startpos);
4026 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4027
4028 range -= len;
4029 if (range < 0)
4030 break;
4031 startpos += len;
4032 }
4033 else
4034 {
4035 range--;
4036 startpos++;
4037 }
4038 }
4039 else
4040 {
4041 range++;
4042 startpos--;
4043
4044 /* Update STARTPOS to the previous character boundary. */
4045 if (multibyte)
4046 {
4047 re_char *p = POS_ADDR_VSTRING (startpos);
4048 int len = 0;
4049
4050 /* Find the head of multibyte form. */
4051 while (!CHAR_HEAD_P (*p))
4052 p--, len++;
4053
4054 /* Adjust it. */
4055 #if 0 /* XXX */
4056 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
4057 ;
4058 else
4059 #endif
4060 {
4061 range += len;
4062 if (range > 0)
4063 break;
4064
4065 startpos -= len;
4066 }
4067 }
4068 }
4069 }
4070 return -1;
4071 } /* re_search_2 */
4072 WEAK_ALIAS (__re_search_2, re_search_2)
4073 \f
4074 /* Declarations and macros for re_match_2. */
4075
4076 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4077 register int len,
4078 RE_TRANSLATE_TYPE translate,
4079 const int multibyte));
4080
4081 /* This converts PTR, a pointer into one of the search strings `string1'
4082 and `string2' into an offset from the beginning of that string. */
4083 #define POINTER_TO_OFFSET(ptr) \
4084 (FIRST_STRING_P (ptr) \
4085 ? ((regoff_t) ((ptr) - string1)) \
4086 : ((regoff_t) ((ptr) - string2 + size1)))
4087
4088 /* Call before fetching a character with *d. This switches over to
4089 string2 if necessary.
4090 Check re_match_2_internal for a discussion of why end_match_2 might
4091 not be within string2 (but be equal to end_match_1 instead). */
4092 #define PREFETCH() \
4093 while (d == dend) \
4094 { \
4095 /* End of string2 => fail. */ \
4096 if (dend == end_match_2) \
4097 goto fail; \
4098 /* End of string1 => advance to string2. */ \
4099 d = string2; \
4100 dend = end_match_2; \
4101 }
4102
4103 /* Call before fetching a char with *d if you already checked other limits.
4104 This is meant for use in lookahead operations like wordend, etc..
4105 where we might need to look at parts of the string that might be
4106 outside of the LIMITs (i.e past `stop'). */
4107 #define PREFETCH_NOLIMIT() \
4108 if (d == end1) \
4109 { \
4110 d = string2; \
4111 dend = end_match_2; \
4112 } \
4113
4114 /* Test if at very beginning or at very end of the virtual concatenation
4115 of `string1' and `string2'. If only one string, it's `string2'. */
4116 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4117 #define AT_STRINGS_END(d) ((d) == end2)
4118
4119
4120 /* Test if D points to a character which is word-constituent. We have
4121 two special cases to check for: if past the end of string1, look at
4122 the first character in string2; and if before the beginning of
4123 string2, look at the last character in string1. */
4124 #define WORDCHAR_P(d) \
4125 (SYNTAX ((d) == end1 ? *string2 \
4126 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4127 == Sword)
4128
4129 /* Disabled due to a compiler bug -- see comment at case wordbound */
4130
4131 /* The comment at case wordbound is following one, but we don't use
4132 AT_WORD_BOUNDARY anymore to support multibyte form.
4133
4134 The DEC Alpha C compiler 3.x generates incorrect code for the
4135 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4136 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4137 macro and introducing temporary variables works around the bug. */
4138
4139 #if 0
4140 /* Test if the character before D and the one at D differ with respect
4141 to being word-constituent. */
4142 #define AT_WORD_BOUNDARY(d) \
4143 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4144 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4145 #endif
4146
4147 /* Free everything we malloc. */
4148 #ifdef MATCH_MAY_ALLOCATE
4149 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4150 # define FREE_VARIABLES() \
4151 do { \
4152 REGEX_FREE_STACK (fail_stack.stack); \
4153 FREE_VAR (regstart); \
4154 FREE_VAR (regend); \
4155 FREE_VAR (best_regstart); \
4156 FREE_VAR (best_regend); \
4157 } while (0)
4158 #else
4159 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4160 #endif /* not MATCH_MAY_ALLOCATE */
4161
4162 \f
4163 /* Optimization routines. */
4164
4165 /* If the operation is a match against one or more chars,
4166 return a pointer to the next operation, else return NULL. */
4167 static re_char *
4168 skip_one_char (p)
4169 re_char *p;
4170 {
4171 switch (SWITCH_ENUM_CAST (*p++))
4172 {
4173 case anychar:
4174 break;
4175
4176 case exactn:
4177 p += *p + 1;
4178 break;
4179
4180 case charset_not:
4181 case charset:
4182 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4183 {
4184 int mcnt;
4185 p = CHARSET_RANGE_TABLE (p - 1);
4186 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4187 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4188 }
4189 else
4190 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4191 break;
4192
4193 case syntaxspec:
4194 case notsyntaxspec:
4195 #ifdef emacs
4196 case categoryspec:
4197 case notcategoryspec:
4198 #endif /* emacs */
4199 p++;
4200 break;
4201
4202 default:
4203 p = NULL;
4204 }
4205 return p;
4206 }
4207
4208
4209 /* Jump over non-matching operations. */
4210 static unsigned char *
4211 skip_noops (p, pend)
4212 unsigned char *p, *pend;
4213 {
4214 int mcnt;
4215 while (p < pend)
4216 {
4217 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4218 {
4219 case start_memory:
4220 case stop_memory:
4221 p += 2; break;
4222 case no_op:
4223 p += 1; break;
4224 case jump:
4225 p += 1;
4226 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4227 p += mcnt;
4228 break;
4229 default:
4230 return p;
4231 }
4232 }
4233 assert (p == pend);
4234 return p;
4235 }
4236
4237 /* Non-zero if "p1 matches something" implies "p2 fails". */
4238 static int
4239 mutually_exclusive_p (bufp, p1, p2)
4240 struct re_pattern_buffer *bufp;
4241 unsigned char *p1, *p2;
4242 {
4243 re_opcode_t op2;
4244 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4245 unsigned char *pend = bufp->buffer + bufp->used;
4246
4247 assert (p1 >= bufp->buffer && p1 < pend
4248 && p2 >= bufp->buffer && p2 <= pend);
4249
4250 /* Skip over open/close-group commands.
4251 If what follows this loop is a ...+ construct,
4252 look at what begins its body, since we will have to
4253 match at least one of that. */
4254 p2 = skip_noops (p2, pend);
4255 /* The same skip can be done for p1, except that this function
4256 is only used in the case where p1 is a simple match operator. */
4257 /* p1 = skip_noops (p1, pend); */
4258
4259 assert (p1 >= bufp->buffer && p1 < pend
4260 && p2 >= bufp->buffer && p2 <= pend);
4261
4262 op2 = p2 == pend ? succeed : *p2;
4263
4264 switch (SWITCH_ENUM_CAST (op2))
4265 {
4266 case succeed:
4267 case endbuf:
4268 /* If we're at the end of the pattern, we can change. */
4269 if (skip_one_char (p1))
4270 {
4271 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4272 return 1;
4273 }
4274 break;
4275
4276 case endline:
4277 case exactn:
4278 {
4279 register re_wchar_t c
4280 = (re_opcode_t) *p2 == endline ? '\n'
4281 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4282
4283 if ((re_opcode_t) *p1 == exactn)
4284 {
4285 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4286 {
4287 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4288 return 1;
4289 }
4290 }
4291
4292 else if ((re_opcode_t) *p1 == charset
4293 || (re_opcode_t) *p1 == charset_not)
4294 {
4295 int not = (re_opcode_t) *p1 == charset_not;
4296
4297 /* Test if C is listed in charset (or charset_not)
4298 at `p1'. */
4299 if (SINGLE_BYTE_CHAR_P (c))
4300 {
4301 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4302 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4303 not = !not;
4304 }
4305 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4306 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4307
4308 /* `not' is equal to 1 if c would match, which means
4309 that we can't change to pop_failure_jump. */
4310 if (!not)
4311 {
4312 DEBUG_PRINT1 (" No match => fast loop.\n");
4313 return 1;
4314 }
4315 }
4316 else if ((re_opcode_t) *p1 == anychar
4317 && c == '\n')
4318 {
4319 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4320 return 1;
4321 }
4322 }
4323 break;
4324
4325 case charset:
4326 {
4327 if ((re_opcode_t) *p1 == exactn)
4328 /* Reuse the code above. */
4329 return mutually_exclusive_p (bufp, p2, p1);
4330
4331 /* It is hard to list up all the character in charset
4332 P2 if it includes multibyte character. Give up in
4333 such case. */
4334 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4335 {
4336 /* Now, we are sure that P2 has no range table.
4337 So, for the size of bitmap in P2, `p2[1]' is
4338 enough. But P1 may have range table, so the
4339 size of bitmap table of P1 is extracted by
4340 using macro `CHARSET_BITMAP_SIZE'.
4341
4342 Since we know that all the character listed in
4343 P2 is ASCII, it is enough to test only bitmap
4344 table of P1. */
4345
4346 if ((re_opcode_t) *p1 == charset)
4347 {
4348 int idx;
4349 /* We win if the charset inside the loop
4350 has no overlap with the one after the loop. */
4351 for (idx = 0;
4352 (idx < (int) p2[1]
4353 && idx < CHARSET_BITMAP_SIZE (p1));
4354 idx++)
4355 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4356 break;
4357
4358 if (idx == p2[1]
4359 || idx == CHARSET_BITMAP_SIZE (p1))
4360 {
4361 DEBUG_PRINT1 (" No match => fast loop.\n");
4362 return 1;
4363 }
4364 }
4365 else if ((re_opcode_t) *p1 == charset_not)
4366 {
4367 int idx;
4368 /* We win if the charset_not inside the loop lists
4369 every character listed in the charset after. */
4370 for (idx = 0; idx < (int) p2[1]; idx++)
4371 if (! (p2[2 + idx] == 0
4372 || (idx < CHARSET_BITMAP_SIZE (p1)
4373 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4374 break;
4375
4376 if (idx == p2[1])
4377 {
4378 DEBUG_PRINT1 (" No match => fast loop.\n");
4379 return 1;
4380 }
4381 }
4382 }
4383 }
4384 break;
4385
4386 case charset_not:
4387 switch (SWITCH_ENUM_CAST (*p1))
4388 {
4389 case exactn:
4390 case charset:
4391 /* Reuse the code above. */
4392 return mutually_exclusive_p (bufp, p2, p1);
4393 case charset_not:
4394 /* When we have two charset_not, it's very unlikely that
4395 they don't overlap. The union of the two sets of excluded
4396 chars should cover all possible chars, which, as a matter of
4397 fact, is virtually impossible in multibyte buffers. */
4398 ;
4399 }
4400 break;
4401
4402 case wordend:
4403 case notsyntaxspec:
4404 return ((re_opcode_t) *p1 == syntaxspec
4405 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4406
4407 case wordbeg:
4408 case syntaxspec:
4409 return ((re_opcode_t) *p1 == notsyntaxspec
4410 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4411
4412 case wordbound:
4413 return (((re_opcode_t) *p1 == notsyntaxspec
4414 || (re_opcode_t) *p1 == syntaxspec)
4415 && p1[1] == Sword);
4416
4417 #ifdef emacs
4418 case categoryspec:
4419 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4420 case notcategoryspec:
4421 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4422 #endif /* emacs */
4423
4424 default:
4425 ;
4426 }
4427
4428 /* Safe default. */
4429 return 0;
4430 }
4431
4432 \f
4433 /* Matching routines. */
4434
4435 #ifndef emacs /* Emacs never uses this. */
4436 /* re_match is like re_match_2 except it takes only a single string. */
4437
4438 int
4439 re_match (bufp, string, size, pos, regs)
4440 struct re_pattern_buffer *bufp;
4441 const char *string;
4442 int size, pos;
4443 struct re_registers *regs;
4444 {
4445 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4446 pos, regs, size);
4447 # if defined C_ALLOCA && !defined REGEX_MALLOC
4448 alloca (0);
4449 # endif
4450 return result;
4451 }
4452 WEAK_ALIAS (__re_match, re_match)
4453 #endif /* not emacs */
4454
4455 #ifdef emacs
4456 /* In Emacs, this is the string or buffer in which we
4457 are matching. It is used for looking up syntax properties. */
4458 Lisp_Object re_match_object;
4459 #endif
4460
4461 /* re_match_2 matches the compiled pattern in BUFP against the
4462 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4463 and SIZE2, respectively). We start matching at POS, and stop
4464 matching at STOP.
4465
4466 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4467 store offsets for the substring each group matched in REGS. See the
4468 documentation for exactly how many groups we fill.
4469
4470 We return -1 if no match, -2 if an internal error (such as the
4471 failure stack overflowing). Otherwise, we return the length of the
4472 matched substring. */
4473
4474 int
4475 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4476 struct re_pattern_buffer *bufp;
4477 const char *string1, *string2;
4478 int size1, size2;
4479 int pos;
4480 struct re_registers *regs;
4481 int stop;
4482 {
4483 int result;
4484
4485 #ifdef emacs
4486 int charpos;
4487 gl_state.object = re_match_object;
4488 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4489 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4490 #endif
4491
4492 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4493 (re_char*) string2, size2,
4494 pos, regs, stop);
4495 #if defined C_ALLOCA && !defined REGEX_MALLOC
4496 alloca (0);
4497 #endif
4498 return result;
4499 }
4500 WEAK_ALIAS (__re_match_2, re_match_2)
4501
4502 /* This is a separate function so that we can force an alloca cleanup
4503 afterwards. */
4504 static int
4505 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4506 struct re_pattern_buffer *bufp;
4507 re_char *string1, *string2;
4508 int size1, size2;
4509 int pos;
4510 struct re_registers *regs;
4511 int stop;
4512 {
4513 /* General temporaries. */
4514 int mcnt;
4515 size_t reg;
4516 boolean not;
4517
4518 /* Just past the end of the corresponding string. */
4519 re_char *end1, *end2;
4520
4521 /* Pointers into string1 and string2, just past the last characters in
4522 each to consider matching. */
4523 re_char *end_match_1, *end_match_2;
4524
4525 /* Where we are in the data, and the end of the current string. */
4526 re_char *d, *dend;
4527
4528 /* Used sometimes to remember where we were before starting matching
4529 an operator so that we can go back in case of failure. This "atomic"
4530 behavior of matching opcodes is indispensable to the correctness
4531 of the on_failure_keep_string_jump optimization. */
4532 re_char *dfail;
4533
4534 /* Where we are in the pattern, and the end of the pattern. */
4535 re_char *p = bufp->buffer;
4536 re_char *pend = p + bufp->used;
4537
4538 /* We use this to map every character in the string. */
4539 RE_TRANSLATE_TYPE translate = bufp->translate;
4540
4541 /* Nonzero if we have to concern multibyte character. */
4542 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4543
4544 /* Failure point stack. Each place that can handle a failure further
4545 down the line pushes a failure point on this stack. It consists of
4546 regstart, and regend for all registers corresponding to
4547 the subexpressions we're currently inside, plus the number of such
4548 registers, and, finally, two char *'s. The first char * is where
4549 to resume scanning the pattern; the second one is where to resume
4550 scanning the strings. */
4551 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4552 fail_stack_type fail_stack;
4553 #endif
4554 #ifdef DEBUG
4555 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4556 #endif
4557
4558 #if defined REL_ALLOC && defined REGEX_MALLOC
4559 /* This holds the pointer to the failure stack, when
4560 it is allocated relocatably. */
4561 fail_stack_elt_t *failure_stack_ptr;
4562 #endif
4563
4564 /* We fill all the registers internally, independent of what we
4565 return, for use in backreferences. The number here includes
4566 an element for register zero. */
4567 size_t num_regs = bufp->re_nsub + 1;
4568
4569 /* Information on the contents of registers. These are pointers into
4570 the input strings; they record just what was matched (on this
4571 attempt) by a subexpression part of the pattern, that is, the
4572 regnum-th regstart pointer points to where in the pattern we began
4573 matching and the regnum-th regend points to right after where we
4574 stopped matching the regnum-th subexpression. (The zeroth register
4575 keeps track of what the whole pattern matches.) */
4576 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4577 re_char **regstart, **regend;
4578 #endif
4579
4580 /* The following record the register info as found in the above
4581 variables when we find a match better than any we've seen before.
4582 This happens as we backtrack through the failure points, which in
4583 turn happens only if we have not yet matched the entire string. */
4584 unsigned best_regs_set = false;
4585 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4586 re_char **best_regstart, **best_regend;
4587 #endif
4588
4589 /* Logically, this is `best_regend[0]'. But we don't want to have to
4590 allocate space for that if we're not allocating space for anything
4591 else (see below). Also, we never need info about register 0 for
4592 any of the other register vectors, and it seems rather a kludge to
4593 treat `best_regend' differently than the rest. So we keep track of
4594 the end of the best match so far in a separate variable. We
4595 initialize this to NULL so that when we backtrack the first time
4596 and need to test it, it's not garbage. */
4597 re_char *match_end = NULL;
4598
4599 #ifdef DEBUG
4600 /* Counts the total number of registers pushed. */
4601 unsigned num_regs_pushed = 0;
4602 #endif
4603
4604 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4605
4606 INIT_FAIL_STACK ();
4607
4608 #ifdef MATCH_MAY_ALLOCATE
4609 /* Do not bother to initialize all the register variables if there are
4610 no groups in the pattern, as it takes a fair amount of time. If
4611 there are groups, we include space for register 0 (the whole
4612 pattern), even though we never use it, since it simplifies the
4613 array indexing. We should fix this. */
4614 if (bufp->re_nsub)
4615 {
4616 regstart = REGEX_TALLOC (num_regs, re_char *);
4617 regend = REGEX_TALLOC (num_regs, re_char *);
4618 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4619 best_regend = REGEX_TALLOC (num_regs, re_char *);
4620
4621 if (!(regstart && regend && best_regstart && best_regend))
4622 {
4623 FREE_VARIABLES ();
4624 return -2;
4625 }
4626 }
4627 else
4628 {
4629 /* We must initialize all our variables to NULL, so that
4630 `FREE_VARIABLES' doesn't try to free them. */
4631 regstart = regend = best_regstart = best_regend = NULL;
4632 }
4633 #endif /* MATCH_MAY_ALLOCATE */
4634
4635 /* The starting position is bogus. */
4636 if (pos < 0 || pos > size1 + size2)
4637 {
4638 FREE_VARIABLES ();
4639 return -1;
4640 }
4641
4642 /* Initialize subexpression text positions to -1 to mark ones that no
4643 start_memory/stop_memory has been seen for. Also initialize the
4644 register information struct. */
4645 for (reg = 1; reg < num_regs; reg++)
4646 regstart[reg] = regend[reg] = NULL;
4647
4648 /* We move `string1' into `string2' if the latter's empty -- but not if
4649 `string1' is null. */
4650 if (size2 == 0 && string1 != NULL)
4651 {
4652 string2 = string1;
4653 size2 = size1;
4654 string1 = 0;
4655 size1 = 0;
4656 }
4657 end1 = string1 + size1;
4658 end2 = string2 + size2;
4659
4660 /* `p' scans through the pattern as `d' scans through the data.
4661 `dend' is the end of the input string that `d' points within. `d'
4662 is advanced into the following input string whenever necessary, but
4663 this happens before fetching; therefore, at the beginning of the
4664 loop, `d' can be pointing at the end of a string, but it cannot
4665 equal `string2'. */
4666 if (pos >= size1)
4667 {
4668 /* Only match within string2. */
4669 d = string2 + pos - size1;
4670 dend = end_match_2 = string2 + stop - size1;
4671 end_match_1 = end1; /* Just to give it a value. */
4672 }
4673 else
4674 {
4675 if (stop < size1)
4676 {
4677 /* Only match within string1. */
4678 end_match_1 = string1 + stop;
4679 /* BEWARE!
4680 When we reach end_match_1, PREFETCH normally switches to string2.
4681 But in the present case, this means that just doing a PREFETCH
4682 makes us jump from `stop' to `gap' within the string.
4683 What we really want here is for the search to stop as
4684 soon as we hit end_match_1. That's why we set end_match_2
4685 to end_match_1 (since PREFETCH fails as soon as we hit
4686 end_match_2). */
4687 end_match_2 = end_match_1;
4688 }
4689 else
4690 { /* It's important to use this code when stop == size so that
4691 moving `d' from end1 to string2 will not prevent the d == dend
4692 check from catching the end of string. */
4693 end_match_1 = end1;
4694 end_match_2 = string2 + stop - size1;
4695 }
4696 d = string1 + pos;
4697 dend = end_match_1;
4698 }
4699
4700 DEBUG_PRINT1 ("The compiled pattern is: ");
4701 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4702 DEBUG_PRINT1 ("The string to match is: `");
4703 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4704 DEBUG_PRINT1 ("'\n");
4705
4706 /* This loops over pattern commands. It exits by returning from the
4707 function if the match is complete, or it drops through if the match
4708 fails at this starting point in the input data. */
4709 for (;;)
4710 {
4711 DEBUG_PRINT2 ("\n%p: ", p);
4712
4713 if (p == pend)
4714 { /* End of pattern means we might have succeeded. */
4715 DEBUG_PRINT1 ("end of pattern ... ");
4716
4717 /* If we haven't matched the entire string, and we want the
4718 longest match, try backtracking. */
4719 if (d != end_match_2)
4720 {
4721 /* 1 if this match ends in the same string (string1 or string2)
4722 as the best previous match. */
4723 boolean same_str_p = (FIRST_STRING_P (match_end)
4724 == FIRST_STRING_P (d));
4725 /* 1 if this match is the best seen so far. */
4726 boolean best_match_p;
4727
4728 /* AIX compiler got confused when this was combined
4729 with the previous declaration. */
4730 if (same_str_p)
4731 best_match_p = d > match_end;
4732 else
4733 best_match_p = !FIRST_STRING_P (d);
4734
4735 DEBUG_PRINT1 ("backtracking.\n");
4736
4737 if (!FAIL_STACK_EMPTY ())
4738 { /* More failure points to try. */
4739
4740 /* If exceeds best match so far, save it. */
4741 if (!best_regs_set || best_match_p)
4742 {
4743 best_regs_set = true;
4744 match_end = d;
4745
4746 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4747
4748 for (reg = 1; reg < num_regs; reg++)
4749 {
4750 best_regstart[reg] = regstart[reg];
4751 best_regend[reg] = regend[reg];
4752 }
4753 }
4754 goto fail;
4755 }
4756
4757 /* If no failure points, don't restore garbage. And if
4758 last match is real best match, don't restore second
4759 best one. */
4760 else if (best_regs_set && !best_match_p)
4761 {
4762 restore_best_regs:
4763 /* Restore best match. It may happen that `dend ==
4764 end_match_1' while the restored d is in string2.
4765 For example, the pattern `x.*y.*z' against the
4766 strings `x-' and `y-z-', if the two strings are
4767 not consecutive in memory. */
4768 DEBUG_PRINT1 ("Restoring best registers.\n");
4769
4770 d = match_end;
4771 dend = ((d >= string1 && d <= end1)
4772 ? end_match_1 : end_match_2);
4773
4774 for (reg = 1; reg < num_regs; reg++)
4775 {
4776 regstart[reg] = best_regstart[reg];
4777 regend[reg] = best_regend[reg];
4778 }
4779 }
4780 } /* d != end_match_2 */
4781
4782 succeed_label:
4783 DEBUG_PRINT1 ("Accepting match.\n");
4784
4785 /* If caller wants register contents data back, do it. */
4786 if (regs && !bufp->no_sub)
4787 {
4788 /* Have the register data arrays been allocated? */
4789 if (bufp->regs_allocated == REGS_UNALLOCATED)
4790 { /* No. So allocate them with malloc. We need one
4791 extra element beyond `num_regs' for the `-1' marker
4792 GNU code uses. */
4793 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4794 regs->start = TALLOC (regs->num_regs, regoff_t);
4795 regs->end = TALLOC (regs->num_regs, regoff_t);
4796 if (regs->start == NULL || regs->end == NULL)
4797 {
4798 FREE_VARIABLES ();
4799 return -2;
4800 }
4801 bufp->regs_allocated = REGS_REALLOCATE;
4802 }
4803 else if (bufp->regs_allocated == REGS_REALLOCATE)
4804 { /* Yes. If we need more elements than were already
4805 allocated, reallocate them. If we need fewer, just
4806 leave it alone. */
4807 if (regs->num_regs < num_regs + 1)
4808 {
4809 regs->num_regs = num_regs + 1;
4810 RETALLOC (regs->start, regs->num_regs, regoff_t);
4811 RETALLOC (regs->end, regs->num_regs, regoff_t);
4812 if (regs->start == NULL || regs->end == NULL)
4813 {
4814 FREE_VARIABLES ();
4815 return -2;
4816 }
4817 }
4818 }
4819 else
4820 {
4821 /* These braces fend off a "empty body in an else-statement"
4822 warning under GCC when assert expands to nothing. */
4823 assert (bufp->regs_allocated == REGS_FIXED);
4824 }
4825
4826 /* Convert the pointer data in `regstart' and `regend' to
4827 indices. Register zero has to be set differently,
4828 since we haven't kept track of any info for it. */
4829 if (regs->num_regs > 0)
4830 {
4831 regs->start[0] = pos;
4832 regs->end[0] = POINTER_TO_OFFSET (d);
4833 }
4834
4835 /* Go through the first `min (num_regs, regs->num_regs)'
4836 registers, since that is all we initialized. */
4837 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
4838 {
4839 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
4840 regs->start[reg] = regs->end[reg] = -1;
4841 else
4842 {
4843 regs->start[reg]
4844 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
4845 regs->end[reg]
4846 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
4847 }
4848 }
4849
4850 /* If the regs structure we return has more elements than
4851 were in the pattern, set the extra elements to -1. If
4852 we (re)allocated the registers, this is the case,
4853 because we always allocate enough to have at least one
4854 -1 at the end. */
4855 for (reg = num_regs; reg < regs->num_regs; reg++)
4856 regs->start[reg] = regs->end[reg] = -1;
4857 } /* regs && !bufp->no_sub */
4858
4859 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4860 nfailure_points_pushed, nfailure_points_popped,
4861 nfailure_points_pushed - nfailure_points_popped);
4862 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4863
4864 mcnt = POINTER_TO_OFFSET (d) - pos;
4865
4866 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4867
4868 FREE_VARIABLES ();
4869 return mcnt;
4870 }
4871
4872 /* Otherwise match next pattern command. */
4873 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4874 {
4875 /* Ignore these. Used to ignore the n of succeed_n's which
4876 currently have n == 0. */
4877 case no_op:
4878 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4879 break;
4880
4881 case succeed:
4882 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4883 goto succeed_label;
4884
4885 /* Match the next n pattern characters exactly. The following
4886 byte in the pattern defines n, and the n bytes after that
4887 are the characters to match. */
4888 case exactn:
4889 mcnt = *p++;
4890 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4891
4892 /* Remember the start point to rollback upon failure. */
4893 dfail = d;
4894
4895 /* This is written out as an if-else so we don't waste time
4896 testing `translate' inside the loop. */
4897 if (RE_TRANSLATE_P (translate))
4898 {
4899 if (multibyte)
4900 do
4901 {
4902 int pat_charlen, buf_charlen;
4903 unsigned int pat_ch, buf_ch;
4904
4905 PREFETCH ();
4906 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4907 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4908
4909 if (RE_TRANSLATE (translate, buf_ch)
4910 != pat_ch)
4911 {
4912 d = dfail;
4913 goto fail;
4914 }
4915
4916 p += pat_charlen;
4917 d += buf_charlen;
4918 mcnt -= pat_charlen;
4919 }
4920 while (mcnt > 0);
4921 else
4922 do
4923 {
4924 PREFETCH ();
4925 if (RE_TRANSLATE (translate, *d) != *p++)
4926 {
4927 d = dfail;
4928 goto fail;
4929 }
4930 d++;
4931 }
4932 while (--mcnt);
4933 }
4934 else
4935 {
4936 do
4937 {
4938 PREFETCH ();
4939 if (*d++ != *p++)
4940 {
4941 d = dfail;
4942 goto fail;
4943 }
4944 }
4945 while (--mcnt);
4946 }
4947 break;
4948
4949
4950 /* Match any character except possibly a newline or a null. */
4951 case anychar:
4952 {
4953 int buf_charlen;
4954 re_wchar_t buf_ch;
4955
4956 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4957
4958 PREFETCH ();
4959 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4960 buf_ch = TRANSLATE (buf_ch);
4961
4962 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4963 && buf_ch == '\n')
4964 || ((bufp->syntax & RE_DOT_NOT_NULL)
4965 && buf_ch == '\000'))
4966 goto fail;
4967
4968 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4969 d += buf_charlen;
4970 }
4971 break;
4972
4973
4974 case charset:
4975 case charset_not:
4976 {
4977 register unsigned int c;
4978 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4979 int len;
4980
4981 /* Start of actual range_table, or end of bitmap if there is no
4982 range table. */
4983 re_char *range_table;
4984
4985 /* Nonzero if there is a range table. */
4986 int range_table_exists;
4987
4988 /* Number of ranges of range table. This is not included
4989 in the initial byte-length of the command. */
4990 int count = 0;
4991
4992 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4993
4994 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4995
4996 if (range_table_exists)
4997 {
4998 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4999 EXTRACT_NUMBER_AND_INCR (count, range_table);
5000 }
5001
5002 PREFETCH ();
5003 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5004 c = TRANSLATE (c); /* The character to match. */
5005
5006 if (SINGLE_BYTE_CHAR_P (c))
5007 { /* Lookup bitmap. */
5008 /* Cast to `unsigned' instead of `unsigned char' in
5009 case the bit list is a full 32 bytes long. */
5010 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5011 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5012 not = !not;
5013 }
5014 #ifdef emacs
5015 else if (range_table_exists)
5016 {
5017 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5018
5019 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5020 | (class_bits & BIT_MULTIBYTE)
5021 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5022 | (class_bits & BIT_SPACE && ISSPACE (c))
5023 | (class_bits & BIT_UPPER && ISUPPER (c))
5024 | (class_bits & BIT_WORD && ISWORD (c)))
5025 not = !not;
5026 else
5027 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5028 }
5029 #endif /* emacs */
5030
5031 if (range_table_exists)
5032 p = CHARSET_RANGE_TABLE_END (range_table, count);
5033 else
5034 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5035
5036 if (!not) goto fail;
5037
5038 d += len;
5039 break;
5040 }
5041
5042
5043 /* The beginning of a group is represented by start_memory.
5044 The argument is the register number. The text
5045 matched within the group is recorded (in the internal
5046 registers data structure) under the register number. */
5047 case start_memory:
5048 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5049
5050 /* In case we need to undo this operation (via backtracking). */
5051 PUSH_FAILURE_REG ((unsigned int)*p);
5052
5053 regstart[*p] = d;
5054 regend[*p] = NULL; /* probably unnecessary. -sm */
5055 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5056
5057 /* Move past the register number and inner group count. */
5058 p += 1;
5059 break;
5060
5061
5062 /* The stop_memory opcode represents the end of a group. Its
5063 argument is the same as start_memory's: the register number. */
5064 case stop_memory:
5065 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5066
5067 assert (!REG_UNSET (regstart[*p]));
5068 /* Strictly speaking, there should be code such as:
5069
5070 assert (REG_UNSET (regend[*p]));
5071 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5072
5073 But the only info to be pushed is regend[*p] and it is known to
5074 be UNSET, so there really isn't anything to push.
5075 Not pushing anything, on the other hand deprives us from the
5076 guarantee that regend[*p] is UNSET since undoing this operation
5077 will not reset its value properly. This is not important since
5078 the value will only be read on the next start_memory or at
5079 the very end and both events can only happen if this stop_memory
5080 is *not* undone. */
5081
5082 regend[*p] = d;
5083 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5084
5085 /* Move past the register number and the inner group count. */
5086 p += 1;
5087 break;
5088
5089
5090 /* \<digit> has been turned into a `duplicate' command which is
5091 followed by the numeric value of <digit> as the register number. */
5092 case duplicate:
5093 {
5094 register re_char *d2, *dend2;
5095 int regno = *p++; /* Get which register to match against. */
5096 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5097
5098 /* Can't back reference a group which we've never matched. */
5099 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5100 goto fail;
5101
5102 /* Where in input to try to start matching. */
5103 d2 = regstart[regno];
5104
5105 /* Remember the start point to rollback upon failure. */
5106 dfail = d;
5107
5108 /* Where to stop matching; if both the place to start and
5109 the place to stop matching are in the same string, then
5110 set to the place to stop, otherwise, for now have to use
5111 the end of the first string. */
5112
5113 dend2 = ((FIRST_STRING_P (regstart[regno])
5114 == FIRST_STRING_P (regend[regno]))
5115 ? regend[regno] : end_match_1);
5116 for (;;)
5117 {
5118 /* If necessary, advance to next segment in register
5119 contents. */
5120 while (d2 == dend2)
5121 {
5122 if (dend2 == end_match_2) break;
5123 if (dend2 == regend[regno]) break;
5124
5125 /* End of string1 => advance to string2. */
5126 d2 = string2;
5127 dend2 = regend[regno];
5128 }
5129 /* At end of register contents => success */
5130 if (d2 == dend2) break;
5131
5132 /* If necessary, advance to next segment in data. */
5133 PREFETCH ();
5134
5135 /* How many characters left in this segment to match. */
5136 mcnt = dend - d;
5137
5138 /* Want how many consecutive characters we can match in
5139 one shot, so, if necessary, adjust the count. */
5140 if (mcnt > dend2 - d2)
5141 mcnt = dend2 - d2;
5142
5143 /* Compare that many; failure if mismatch, else move
5144 past them. */
5145 if (RE_TRANSLATE_P (translate)
5146 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5147 : memcmp (d, d2, mcnt))
5148 {
5149 d = dfail;
5150 goto fail;
5151 }
5152 d += mcnt, d2 += mcnt;
5153 }
5154 }
5155 break;
5156
5157
5158 /* begline matches the empty string at the beginning of the string
5159 (unless `not_bol' is set in `bufp'), and after newlines. */
5160 case begline:
5161 DEBUG_PRINT1 ("EXECUTING begline.\n");
5162
5163 if (AT_STRINGS_BEG (d))
5164 {
5165 if (!bufp->not_bol) break;
5166 }
5167 else
5168 {
5169 unsigned char c;
5170 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5171 if (c == '\n')
5172 break;
5173 }
5174 /* In all other cases, we fail. */
5175 goto fail;
5176
5177
5178 /* endline is the dual of begline. */
5179 case endline:
5180 DEBUG_PRINT1 ("EXECUTING endline.\n");
5181
5182 if (AT_STRINGS_END (d))
5183 {
5184 if (!bufp->not_eol) break;
5185 }
5186 else
5187 {
5188 PREFETCH_NOLIMIT ();
5189 if (*d == '\n')
5190 break;
5191 }
5192 goto fail;
5193
5194
5195 /* Match at the very beginning of the data. */
5196 case begbuf:
5197 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5198 if (AT_STRINGS_BEG (d))
5199 break;
5200 goto fail;
5201
5202
5203 /* Match at the very end of the data. */
5204 case endbuf:
5205 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5206 if (AT_STRINGS_END (d))
5207 break;
5208 goto fail;
5209
5210
5211 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5212 pushes NULL as the value for the string on the stack. Then
5213 `POP_FAILURE_POINT' will keep the current value for the
5214 string, instead of restoring it. To see why, consider
5215 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5216 then the . fails against the \n. But the next thing we want
5217 to do is match the \n against the \n; if we restored the
5218 string value, we would be back at the foo.
5219
5220 Because this is used only in specific cases, we don't need to
5221 check all the things that `on_failure_jump' does, to make
5222 sure the right things get saved on the stack. Hence we don't
5223 share its code. The only reason to push anything on the
5224 stack at all is that otherwise we would have to change
5225 `anychar's code to do something besides goto fail in this
5226 case; that seems worse than this. */
5227 case on_failure_keep_string_jump:
5228 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5229 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5230 mcnt, p + mcnt);
5231
5232 PUSH_FAILURE_POINT (p - 3, NULL);
5233 break;
5234
5235 /* A nasty loop is introduced by the non-greedy *? and +?.
5236 With such loops, the stack only ever contains one failure point
5237 at a time, so that a plain on_failure_jump_loop kind of
5238 cycle detection cannot work. Worse yet, such a detection
5239 can not only fail to detect a cycle, but it can also wrongly
5240 detect a cycle (between different instantiations of the same
5241 loop.
5242 So the method used for those nasty loops is a little different:
5243 We use a special cycle-detection-stack-frame which is pushed
5244 when the on_failure_jump_nastyloop failure-point is *popped*.
5245 This special frame thus marks the beginning of one iteration
5246 through the loop and we can hence easily check right here
5247 whether something matched between the beginning and the end of
5248 the loop. */
5249 case on_failure_jump_nastyloop:
5250 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5251 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5252 mcnt, p + mcnt);
5253
5254 assert ((re_opcode_t)p[-4] == no_op);
5255 CHECK_INFINITE_LOOP (p - 4, d);
5256 PUSH_FAILURE_POINT (p - 3, d);
5257 break;
5258
5259
5260 /* Simple loop detecting on_failure_jump: just check on the
5261 failure stack if the same spot was already hit earlier. */
5262 case on_failure_jump_loop:
5263 on_failure:
5264 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5265 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5266 mcnt, p + mcnt);
5267
5268 CHECK_INFINITE_LOOP (p - 3, d);
5269 PUSH_FAILURE_POINT (p - 3, d);
5270 break;
5271
5272
5273 /* Uses of on_failure_jump:
5274
5275 Each alternative starts with an on_failure_jump that points
5276 to the beginning of the next alternative. Each alternative
5277 except the last ends with a jump that in effect jumps past
5278 the rest of the alternatives. (They really jump to the
5279 ending jump of the following alternative, because tensioning
5280 these jumps is a hassle.)
5281
5282 Repeats start with an on_failure_jump that points past both
5283 the repetition text and either the following jump or
5284 pop_failure_jump back to this on_failure_jump. */
5285 case on_failure_jump:
5286 IMMEDIATE_QUIT_CHECK;
5287 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5288 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5289 mcnt, p + mcnt);
5290
5291 PUSH_FAILURE_POINT (p -3, d);
5292 break;
5293
5294 /* This operation is used for greedy *.
5295 Compare the beginning of the repeat with what in the
5296 pattern follows its end. If we can establish that there
5297 is nothing that they would both match, i.e., that we
5298 would have to backtrack because of (as in, e.g., `a*a')
5299 then we can use a non-backtracking loop based on
5300 on_failure_keep_string_jump instead of on_failure_jump. */
5301 case on_failure_jump_smart:
5302 IMMEDIATE_QUIT_CHECK;
5303 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5304 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5305 mcnt, p + mcnt);
5306 {
5307 re_char *p1 = p; /* Next operation. */
5308 /* Here, we discard `const', making re_match non-reentrant. */
5309 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5310 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5311
5312 p -= 3; /* Reset so that we will re-execute the
5313 instruction once it's been changed. */
5314
5315 EXTRACT_NUMBER (mcnt, p2 - 2);
5316
5317 /* Ensure this is a indeed the trivial kind of loop
5318 we are expecting. */
5319 assert (skip_one_char (p1) == p2 - 3);
5320 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5321 DEBUG_STATEMENT (debug += 2);
5322 if (mutually_exclusive_p (bufp, p1, p2))
5323 {
5324 /* Use a fast `on_failure_keep_string_jump' loop. */
5325 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5326 *p3 = (unsigned char) on_failure_keep_string_jump;
5327 STORE_NUMBER (p2 - 2, mcnt + 3);
5328 }
5329 else
5330 {
5331 /* Default to a safe `on_failure_jump' loop. */
5332 DEBUG_PRINT1 (" smart default => slow loop.\n");
5333 *p3 = (unsigned char) on_failure_jump;
5334 }
5335 DEBUG_STATEMENT (debug -= 2);
5336 }
5337 break;
5338
5339 /* Unconditionally jump (without popping any failure points). */
5340 case jump:
5341 unconditional_jump:
5342 IMMEDIATE_QUIT_CHECK;
5343 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5344 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5345 p += mcnt; /* Do the jump. */
5346 DEBUG_PRINT2 ("(to %p).\n", p);
5347 break;
5348
5349
5350 /* Have to succeed matching what follows at least n times.
5351 After that, handle like `on_failure_jump'. */
5352 case succeed_n:
5353 /* Signedness doesn't matter since we only compare MCNT to 0. */
5354 EXTRACT_NUMBER (mcnt, p + 2);
5355 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5356
5357 /* Originally, mcnt is how many times we HAVE to succeed. */
5358 if (mcnt != 0)
5359 {
5360 /* Here, we discard `const', making re_match non-reentrant. */
5361 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5362 mcnt--;
5363 p += 4;
5364 PUSH_NUMBER (p2, mcnt);
5365 }
5366 else
5367 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5368 goto on_failure;
5369 break;
5370
5371 case jump_n:
5372 /* Signedness doesn't matter since we only compare MCNT to 0. */
5373 EXTRACT_NUMBER (mcnt, p + 2);
5374 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5375
5376 /* Originally, this is how many times we CAN jump. */
5377 if (mcnt != 0)
5378 {
5379 /* Here, we discard `const', making re_match non-reentrant. */
5380 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5381 mcnt--;
5382 PUSH_NUMBER (p2, mcnt);
5383 goto unconditional_jump;
5384 }
5385 /* If don't have to jump any more, skip over the rest of command. */
5386 else
5387 p += 4;
5388 break;
5389
5390 case set_number_at:
5391 {
5392 unsigned char *p2; /* Location of the counter. */
5393 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5394
5395 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5396 /* Here, we discard `const', making re_match non-reentrant. */
5397 p2 = (unsigned char*) p + mcnt;
5398 /* Signedness doesn't matter since we only copy MCNT's bits . */
5399 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5400 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5401 PUSH_NUMBER (p2, mcnt);
5402 break;
5403 }
5404
5405 case wordbound:
5406 case notwordbound:
5407 not = (re_opcode_t) *(p - 1) == notwordbound;
5408 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5409
5410 /* We SUCCEED (or FAIL) in one of the following cases: */
5411
5412 /* Case 1: D is at the beginning or the end of string. */
5413 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5414 not = !not;
5415 else
5416 {
5417 /* C1 is the character before D, S1 is the syntax of C1, C2
5418 is the character at D, and S2 is the syntax of C2. */
5419 re_wchar_t c1, c2;
5420 int s1, s2;
5421 #ifdef emacs
5422 int offset = PTR_TO_OFFSET (d - 1);
5423 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5424 UPDATE_SYNTAX_TABLE (charpos);
5425 #endif
5426 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5427 s1 = SYNTAX (c1);
5428 #ifdef emacs
5429 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5430 #endif
5431 PREFETCH_NOLIMIT ();
5432 c2 = RE_STRING_CHAR (d, dend - d);
5433 s2 = SYNTAX (c2);
5434
5435 if (/* Case 2: Only one of S1 and S2 is Sword. */
5436 ((s1 == Sword) != (s2 == Sword))
5437 /* Case 3: Both of S1 and S2 are Sword, and macro
5438 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5439 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5440 not = !not;
5441 }
5442 if (not)
5443 break;
5444 else
5445 goto fail;
5446
5447 case wordbeg:
5448 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5449
5450 /* We FAIL in one of the following cases: */
5451
5452 /* Case 1: D is at the end of string. */
5453 if (AT_STRINGS_END (d))
5454 goto fail;
5455 else
5456 {
5457 /* C1 is the character before D, S1 is the syntax of C1, C2
5458 is the character at D, and S2 is the syntax of C2. */
5459 re_wchar_t c1, c2;
5460 int s1, s2;
5461 #ifdef emacs
5462 int offset = PTR_TO_OFFSET (d);
5463 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5464 UPDATE_SYNTAX_TABLE (charpos);
5465 #endif
5466 PREFETCH ();
5467 c2 = RE_STRING_CHAR (d, dend - d);
5468 s2 = SYNTAX (c2);
5469
5470 /* Case 2: S2 is not Sword. */
5471 if (s2 != Sword)
5472 goto fail;
5473
5474 /* Case 3: D is not at the beginning of string ... */
5475 if (!AT_STRINGS_BEG (d))
5476 {
5477 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5478 #ifdef emacs
5479 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5480 #endif
5481 s1 = SYNTAX (c1);
5482
5483 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5484 returns 0. */
5485 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5486 goto fail;
5487 }
5488 }
5489 break;
5490
5491 case wordend:
5492 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5493
5494 /* We FAIL in one of the following cases: */
5495
5496 /* Case 1: D is at the beginning of string. */
5497 if (AT_STRINGS_BEG (d))
5498 goto fail;
5499 else
5500 {
5501 /* C1 is the character before D, S1 is the syntax of C1, C2
5502 is the character at D, and S2 is the syntax of C2. */
5503 re_wchar_t c1, c2;
5504 int s1, s2;
5505 #ifdef emacs
5506 int offset = PTR_TO_OFFSET (d) - 1;
5507 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5508 UPDATE_SYNTAX_TABLE (charpos);
5509 #endif
5510 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5511 s1 = SYNTAX (c1);
5512
5513 /* Case 2: S1 is not Sword. */
5514 if (s1 != Sword)
5515 goto fail;
5516
5517 /* Case 3: D is not at the end of string ... */
5518 if (!AT_STRINGS_END (d))
5519 {
5520 PREFETCH_NOLIMIT ();
5521 c2 = RE_STRING_CHAR (d, dend - d);
5522 #ifdef emacs
5523 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5524 #endif
5525 s2 = SYNTAX (c2);
5526
5527 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5528 returns 0. */
5529 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5530 goto fail;
5531 }
5532 }
5533 break;
5534
5535 case syntaxspec:
5536 case notsyntaxspec:
5537 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5538 mcnt = *p++;
5539 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5540 PREFETCH ();
5541 #ifdef emacs
5542 {
5543 int offset = PTR_TO_OFFSET (d);
5544 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5545 UPDATE_SYNTAX_TABLE (pos1);
5546 }
5547 #endif
5548 {
5549 int len;
5550 re_wchar_t c;
5551
5552 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5553
5554 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5555 goto fail;
5556 d += len;
5557 }
5558 break;
5559
5560 #ifdef emacs
5561 case before_dot:
5562 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5563 if (PTR_BYTE_POS (d) >= PT_BYTE)
5564 goto fail;
5565 break;
5566
5567 case at_dot:
5568 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5569 if (PTR_BYTE_POS (d) != PT_BYTE)
5570 goto fail;
5571 break;
5572
5573 case after_dot:
5574 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5575 if (PTR_BYTE_POS (d) <= PT_BYTE)
5576 goto fail;
5577 break;
5578
5579 case categoryspec:
5580 case notcategoryspec:
5581 not = (re_opcode_t) *(p - 1) == notcategoryspec;
5582 mcnt = *p++;
5583 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
5584 PREFETCH ();
5585 {
5586 int len;
5587 re_wchar_t c;
5588
5589 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5590
5591 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
5592 goto fail;
5593 d += len;
5594 }
5595 break;
5596
5597 #endif /* emacs */
5598
5599 default:
5600 abort ();
5601 }
5602 continue; /* Successfully executed one pattern command; keep going. */
5603
5604
5605 /* We goto here if a matching operation fails. */
5606 fail:
5607 IMMEDIATE_QUIT_CHECK;
5608 if (!FAIL_STACK_EMPTY ())
5609 {
5610 re_char *str, *pat;
5611 /* A restart point is known. Restore to that state. */
5612 DEBUG_PRINT1 ("\nFAIL:\n");
5613 POP_FAILURE_POINT (str, pat);
5614 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5615 {
5616 case on_failure_keep_string_jump:
5617 assert (str == NULL);
5618 goto continue_failure_jump;
5619
5620 case on_failure_jump_nastyloop:
5621 assert ((re_opcode_t)pat[-2] == no_op);
5622 PUSH_FAILURE_POINT (pat - 2, str);
5623 /* Fallthrough */
5624
5625 case on_failure_jump_loop:
5626 case on_failure_jump:
5627 case succeed_n:
5628 d = str;
5629 continue_failure_jump:
5630 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5631 p = pat + mcnt;
5632 break;
5633
5634 case no_op:
5635 /* A special frame used for nastyloops. */
5636 goto fail;
5637
5638 default:
5639 abort();
5640 }
5641
5642 assert (p >= bufp->buffer && p <= pend);
5643
5644 if (d >= string1 && d <= end1)
5645 dend = end_match_1;
5646 }
5647 else
5648 break; /* Matching at this starting point really fails. */
5649 } /* for (;;) */
5650
5651 if (best_regs_set)
5652 goto restore_best_regs;
5653
5654 FREE_VARIABLES ();
5655
5656 return -1; /* Failure to match. */
5657 } /* re_match_2 */
5658 \f
5659 /* Subroutine definitions for re_match_2. */
5660
5661 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5662 bytes; nonzero otherwise. */
5663
5664 static int
5665 bcmp_translate (s1, s2, len, translate, multibyte)
5666 re_char *s1, *s2;
5667 register int len;
5668 RE_TRANSLATE_TYPE translate;
5669 const int multibyte;
5670 {
5671 register re_char *p1 = s1, *p2 = s2;
5672 re_char *p1_end = s1 + len;
5673 re_char *p2_end = s2 + len;
5674
5675 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5676 different lengths, but relying on a single `len' would break this. -sm */
5677 while (p1 < p1_end && p2 < p2_end)
5678 {
5679 int p1_charlen, p2_charlen;
5680 re_wchar_t p1_ch, p2_ch;
5681
5682 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5683 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
5684
5685 if (RE_TRANSLATE (translate, p1_ch)
5686 != RE_TRANSLATE (translate, p2_ch))
5687 return 1;
5688
5689 p1 += p1_charlen, p2 += p2_charlen;
5690 }
5691
5692 if (p1 != p1_end || p2 != p2_end)
5693 return 1;
5694
5695 return 0;
5696 }
5697 \f
5698 /* Entry points for GNU code. */
5699
5700 /* re_compile_pattern is the GNU regular expression compiler: it
5701 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5702 Returns 0 if the pattern was valid, otherwise an error string.
5703
5704 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5705 are set in BUFP on entry.
5706
5707 We call regex_compile to do the actual compilation. */
5708
5709 const char *
5710 re_compile_pattern (pattern, length, bufp)
5711 const char *pattern;
5712 size_t length;
5713 struct re_pattern_buffer *bufp;
5714 {
5715 reg_errcode_t ret;
5716
5717 /* GNU code is written to assume at least RE_NREGS registers will be set
5718 (and at least one extra will be -1). */
5719 bufp->regs_allocated = REGS_UNALLOCATED;
5720
5721 /* And GNU code determines whether or not to get register information
5722 by passing null for the REGS argument to re_match, etc., not by
5723 setting no_sub. */
5724 bufp->no_sub = 0;
5725
5726 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
5727
5728 if (!ret)
5729 return NULL;
5730 return gettext (re_error_msgid[(int) ret]);
5731 }
5732 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
5733 \f
5734 /* Entry points compatible with 4.2 BSD regex library. We don't define
5735 them unless specifically requested. */
5736
5737 #if defined _REGEX_RE_COMP || defined _LIBC
5738
5739 /* BSD has one and only one pattern buffer. */
5740 static struct re_pattern_buffer re_comp_buf;
5741
5742 char *
5743 # ifdef _LIBC
5744 /* Make these definitions weak in libc, so POSIX programs can redefine
5745 these names if they don't use our functions, and still use
5746 regcomp/regexec below without link errors. */
5747 weak_function
5748 # endif
5749 re_comp (s)
5750 const char *s;
5751 {
5752 reg_errcode_t ret;
5753
5754 if (!s)
5755 {
5756 if (!re_comp_buf.buffer)
5757 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5758 return (char *) gettext ("No previous regular expression");
5759 return 0;
5760 }
5761
5762 if (!re_comp_buf.buffer)
5763 {
5764 re_comp_buf.buffer = (unsigned char *) malloc (200);
5765 if (re_comp_buf.buffer == NULL)
5766 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5767 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5768 re_comp_buf.allocated = 200;
5769
5770 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5771 if (re_comp_buf.fastmap == NULL)
5772 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5773 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5774 }
5775
5776 /* Since `re_exec' always passes NULL for the `regs' argument, we
5777 don't need to initialize the pattern buffer fields which affect it. */
5778
5779 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5780
5781 if (!ret)
5782 return NULL;
5783
5784 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5785 return (char *) gettext (re_error_msgid[(int) ret]);
5786 }
5787
5788
5789 int
5790 # ifdef _LIBC
5791 weak_function
5792 # endif
5793 re_exec (s)
5794 const char *s;
5795 {
5796 const int len = strlen (s);
5797 return
5798 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5799 }
5800 #endif /* _REGEX_RE_COMP */
5801 \f
5802 /* POSIX.2 functions. Don't define these for Emacs. */
5803
5804 #ifndef emacs
5805
5806 /* regcomp takes a regular expression as a string and compiles it.
5807
5808 PREG is a regex_t *. We do not expect any fields to be initialized,
5809 since POSIX says we shouldn't. Thus, we set
5810
5811 `buffer' to the compiled pattern;
5812 `used' to the length of the compiled pattern;
5813 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5814 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5815 RE_SYNTAX_POSIX_BASIC;
5816 `fastmap' to an allocated space for the fastmap;
5817 `fastmap_accurate' to zero;
5818 `re_nsub' to the number of subexpressions in PATTERN.
5819
5820 PATTERN is the address of the pattern string.
5821
5822 CFLAGS is a series of bits which affect compilation.
5823
5824 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5825 use POSIX basic syntax.
5826
5827 If REG_NEWLINE is set, then . and [^...] don't match newline.
5828 Also, regexec will try a match beginning after every newline.
5829
5830 If REG_ICASE is set, then we considers upper- and lowercase
5831 versions of letters to be equivalent when matching.
5832
5833 If REG_NOSUB is set, then when PREG is passed to regexec, that
5834 routine will report only success or failure, and nothing about the
5835 registers.
5836
5837 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5838 the return codes and their meanings.) */
5839
5840 int
5841 regcomp (preg, pattern, cflags)
5842 regex_t *__restrict preg;
5843 const char *__restrict pattern;
5844 int cflags;
5845 {
5846 reg_errcode_t ret;
5847 reg_syntax_t syntax
5848 = (cflags & REG_EXTENDED) ?
5849 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5850
5851 /* regex_compile will allocate the space for the compiled pattern. */
5852 preg->buffer = 0;
5853 preg->allocated = 0;
5854 preg->used = 0;
5855
5856 /* Try to allocate space for the fastmap. */
5857 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5858
5859 if (cflags & REG_ICASE)
5860 {
5861 unsigned i;
5862
5863 preg->translate
5864 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5865 * sizeof (*(RE_TRANSLATE_TYPE)0));
5866 if (preg->translate == NULL)
5867 return (int) REG_ESPACE;
5868
5869 /* Map uppercase characters to corresponding lowercase ones. */
5870 for (i = 0; i < CHAR_SET_SIZE; i++)
5871 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5872 }
5873 else
5874 preg->translate = NULL;
5875
5876 /* If REG_NEWLINE is set, newlines are treated differently. */
5877 if (cflags & REG_NEWLINE)
5878 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5879 syntax &= ~RE_DOT_NEWLINE;
5880 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5881 }
5882 else
5883 syntax |= RE_NO_NEWLINE_ANCHOR;
5884
5885 preg->no_sub = !!(cflags & REG_NOSUB);
5886
5887 /* POSIX says a null character in the pattern terminates it, so we
5888 can use strlen here in compiling the pattern. */
5889 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5890
5891 /* POSIX doesn't distinguish between an unmatched open-group and an
5892 unmatched close-group: both are REG_EPAREN. */
5893 if (ret == REG_ERPAREN)
5894 ret = REG_EPAREN;
5895
5896 if (ret == REG_NOERROR && preg->fastmap)
5897 { /* Compute the fastmap now, since regexec cannot modify the pattern
5898 buffer. */
5899 re_compile_fastmap (preg);
5900 if (preg->can_be_null)
5901 { /* The fastmap can't be used anyway. */
5902 free (preg->fastmap);
5903 preg->fastmap = NULL;
5904 }
5905 }
5906 return (int) ret;
5907 }
5908 WEAK_ALIAS (__regcomp, regcomp)
5909
5910
5911 /* regexec searches for a given pattern, specified by PREG, in the
5912 string STRING.
5913
5914 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5915 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5916 least NMATCH elements, and we set them to the offsets of the
5917 corresponding matched substrings.
5918
5919 EFLAGS specifies `execution flags' which affect matching: if
5920 REG_NOTBOL is set, then ^ does not match at the beginning of the
5921 string; if REG_NOTEOL is set, then $ does not match at the end.
5922
5923 We return 0 if we find a match and REG_NOMATCH if not. */
5924
5925 int
5926 regexec (preg, string, nmatch, pmatch, eflags)
5927 const regex_t *__restrict preg;
5928 const char *__restrict string;
5929 size_t nmatch;
5930 regmatch_t pmatch[];
5931 int eflags;
5932 {
5933 int ret;
5934 struct re_registers regs;
5935 regex_t private_preg;
5936 int len = strlen (string);
5937 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
5938
5939 private_preg = *preg;
5940
5941 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5942 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5943
5944 /* The user has told us exactly how many registers to return
5945 information about, via `nmatch'. We have to pass that on to the
5946 matching routines. */
5947 private_preg.regs_allocated = REGS_FIXED;
5948
5949 if (want_reg_info)
5950 {
5951 regs.num_regs = nmatch;
5952 regs.start = TALLOC (nmatch * 2, regoff_t);
5953 if (regs.start == NULL)
5954 return (int) REG_NOMATCH;
5955 regs.end = regs.start + nmatch;
5956 }
5957
5958 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
5959 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
5960 was a little bit longer but still only matching the real part.
5961 This works because the `endline' will check for a '\n' and will find a
5962 '\0', correctly deciding that this is not the end of a line.
5963 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
5964 a convenient '\0' there. For all we know, the string could be preceded
5965 by '\n' which would throw things off. */
5966
5967 /* Perform the searching operation. */
5968 ret = re_search (&private_preg, string, len,
5969 /* start: */ 0, /* range: */ len,
5970 want_reg_info ? &regs : (struct re_registers *) 0);
5971
5972 /* Copy the register information to the POSIX structure. */
5973 if (want_reg_info)
5974 {
5975 if (ret >= 0)
5976 {
5977 unsigned r;
5978
5979 for (r = 0; r < nmatch; r++)
5980 {
5981 pmatch[r].rm_so = regs.start[r];
5982 pmatch[r].rm_eo = regs.end[r];
5983 }
5984 }
5985
5986 /* If we needed the temporary register info, free the space now. */
5987 free (regs.start);
5988 }
5989
5990 /* We want zero return to mean success, unlike `re_search'. */
5991 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5992 }
5993 WEAK_ALIAS (__regexec, regexec)
5994
5995
5996 /* Returns a message corresponding to an error code, ERRCODE, returned
5997 from either regcomp or regexec. We don't use PREG here. */
5998
5999 size_t
6000 regerror (errcode, preg, errbuf, errbuf_size)
6001 int errcode;
6002 const regex_t *preg;
6003 char *errbuf;
6004 size_t errbuf_size;
6005 {
6006 const char *msg;
6007 size_t msg_size;
6008
6009 if (errcode < 0
6010 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6011 /* Only error codes returned by the rest of the code should be passed
6012 to this routine. If we are given anything else, or if other regex
6013 code generates an invalid error code, then the program has a bug.
6014 Dump core so we can fix it. */
6015 abort ();
6016
6017 msg = gettext (re_error_msgid[errcode]);
6018
6019 msg_size = strlen (msg) + 1; /* Includes the null. */
6020
6021 if (errbuf_size != 0)
6022 {
6023 if (msg_size > errbuf_size)
6024 {
6025 strncpy (errbuf, msg, errbuf_size - 1);
6026 errbuf[errbuf_size - 1] = 0;
6027 }
6028 else
6029 strcpy (errbuf, msg);
6030 }
6031
6032 return msg_size;
6033 }
6034 WEAK_ALIAS (__regerror, regerror)
6035
6036
6037 /* Free dynamically allocated space used by PREG. */
6038
6039 void
6040 regfree (preg)
6041 regex_t *preg;
6042 {
6043 if (preg->buffer != NULL)
6044 free (preg->buffer);
6045 preg->buffer = NULL;
6046
6047 preg->allocated = 0;
6048 preg->used = 0;
6049
6050 if (preg->fastmap != NULL)
6051 free (preg->fastmap);
6052 preg->fastmap = NULL;
6053 preg->fastmap_accurate = 0;
6054
6055 if (preg->translate != NULL)
6056 free (preg->translate);
6057 preg->translate = NULL;
6058 }
6059 WEAK_ALIAS (__regfree, regfree)
6060
6061 #endif /* not emacs */