Conflate Qnil and Qunbound for `symbol-function'.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef USE_GTK
73 # include "gtkutil.h"
74 #endif
75 #ifdef WINDOWSNT
76 #include "w32.h"
77 #include "w32heap.h" /* for sbrk */
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83
84 /* Specify maximum number of areas to mmap. It would be nice to use a
85 value that explicitly means "no limit". */
86
87 #define MMAP_MAX_AREAS 100000000
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
92 to a struct Lisp_String. */
93
94 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
95 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
96 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
97
98 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
99 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
100 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
101
102 /* Default value of gc_cons_threshold (see below). */
103
104 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
105
106 /* Global variables. */
107 struct emacs_globals globals;
108
109 /* Number of bytes of consing done since the last gc. */
110
111 EMACS_INT consing_since_gc;
112
113 /* Similar minimum, computed from Vgc_cons_percentage. */
114
115 EMACS_INT gc_relative_threshold;
116
117 /* Minimum number of bytes of consing since GC before next GC,
118 when memory is full. */
119
120 EMACS_INT memory_full_cons_threshold;
121
122 /* True during GC. */
123
124 bool gc_in_progress;
125
126 /* True means abort if try to GC.
127 This is for code which is written on the assumption that
128 no GC will happen, so as to verify that assumption. */
129
130 bool abort_on_gc;
131
132 /* Number of live and free conses etc. */
133
134 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
135 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
136 static EMACS_INT total_free_floats, total_floats;
137
138 /* Points to memory space allocated as "spare", to be freed if we run
139 out of memory. We keep one large block, four cons-blocks, and
140 two string blocks. */
141
142 static char *spare_memory[7];
143
144 /* Amount of spare memory to keep in large reserve block, or to see
145 whether this much is available when malloc fails on a larger request. */
146
147 #define SPARE_MEMORY (1 << 14)
148
149 /* Initialize it to a nonzero value to force it into data space
150 (rather than bss space). That way unexec will remap it into text
151 space (pure), on some systems. We have not implemented the
152 remapping on more recent systems because this is less important
153 nowadays than in the days of small memories and timesharing. */
154
155 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
156 #define PUREBEG (char *) pure
157
158 /* Pointer to the pure area, and its size. */
159
160 static char *purebeg;
161 static ptrdiff_t pure_size;
162
163 /* Number of bytes of pure storage used before pure storage overflowed.
164 If this is non-zero, this implies that an overflow occurred. */
165
166 static ptrdiff_t pure_bytes_used_before_overflow;
167
168 /* True if P points into pure space. */
169
170 #define PURE_POINTER_P(P) \
171 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
172
173 /* Index in pure at which next pure Lisp object will be allocated.. */
174
175 static ptrdiff_t pure_bytes_used_lisp;
176
177 /* Number of bytes allocated for non-Lisp objects in pure storage. */
178
179 static ptrdiff_t pure_bytes_used_non_lisp;
180
181 /* If nonzero, this is a warning delivered by malloc and not yet
182 displayed. */
183
184 const char *pending_malloc_warning;
185
186 /* Maximum amount of C stack to save when a GC happens. */
187
188 #ifndef MAX_SAVE_STACK
189 #define MAX_SAVE_STACK 16000
190 #endif
191
192 /* Buffer in which we save a copy of the C stack at each GC. */
193
194 #if MAX_SAVE_STACK > 0
195 static char *stack_copy;
196 static ptrdiff_t stack_copy_size;
197 #endif
198
199 static Lisp_Object Qconses;
200 static Lisp_Object Qsymbols;
201 static Lisp_Object Qmiscs;
202 static Lisp_Object Qstrings;
203 static Lisp_Object Qvectors;
204 static Lisp_Object Qfloats;
205 static Lisp_Object Qintervals;
206 static Lisp_Object Qbuffers;
207 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
208 static Lisp_Object Qgc_cons_threshold;
209 Lisp_Object Qautomatic_gc;
210 Lisp_Object Qchar_table_extra_slots;
211
212 /* Hook run after GC has finished. */
213
214 static Lisp_Object Qpost_gc_hook;
215
216 static void mark_terminals (void);
217 static void gc_sweep (void);
218 static Lisp_Object make_pure_vector (ptrdiff_t);
219 static void mark_buffer (struct buffer *);
220
221 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
222 static void refill_memory_reserve (void);
223 #endif
224 static void compact_small_strings (void);
225 static void free_large_strings (void);
226 static void free_misc (Lisp_Object);
227 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
228
229 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
230 what memory allocated via lisp_malloc and lisp_align_malloc is intended
231 for what purpose. This enumeration specifies the type of memory. */
232
233 enum mem_type
234 {
235 MEM_TYPE_NON_LISP,
236 MEM_TYPE_BUFFER,
237 MEM_TYPE_CONS,
238 MEM_TYPE_STRING,
239 MEM_TYPE_MISC,
240 MEM_TYPE_SYMBOL,
241 MEM_TYPE_FLOAT,
242 /* Since all non-bool pseudovectors are small enough to be
243 allocated from vector blocks, this memory type denotes
244 large regular vectors and large bool pseudovectors. */
245 MEM_TYPE_VECTORLIKE,
246 /* Special type to denote vector blocks. */
247 MEM_TYPE_VECTOR_BLOCK,
248 /* Special type to denote reserved memory. */
249 MEM_TYPE_SPARE
250 };
251
252 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
253
254 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
255 #include <stdio.h> /* For fprintf. */
256 #endif
257
258 /* A unique object in pure space used to make some Lisp objects
259 on free lists recognizable in O(1). */
260
261 static Lisp_Object Vdead;
262 #define DEADP(x) EQ (x, Vdead)
263
264 #ifdef GC_MALLOC_CHECK
265
266 enum mem_type allocated_mem_type;
267
268 #endif /* GC_MALLOC_CHECK */
269
270 /* A node in the red-black tree describing allocated memory containing
271 Lisp data. Each such block is recorded with its start and end
272 address when it is allocated, and removed from the tree when it
273 is freed.
274
275 A red-black tree is a balanced binary tree with the following
276 properties:
277
278 1. Every node is either red or black.
279 2. Every leaf is black.
280 3. If a node is red, then both of its children are black.
281 4. Every simple path from a node to a descendant leaf contains
282 the same number of black nodes.
283 5. The root is always black.
284
285 When nodes are inserted into the tree, or deleted from the tree,
286 the tree is "fixed" so that these properties are always true.
287
288 A red-black tree with N internal nodes has height at most 2
289 log(N+1). Searches, insertions and deletions are done in O(log N).
290 Please see a text book about data structures for a detailed
291 description of red-black trees. Any book worth its salt should
292 describe them. */
293
294 struct mem_node
295 {
296 /* Children of this node. These pointers are never NULL. When there
297 is no child, the value is MEM_NIL, which points to a dummy node. */
298 struct mem_node *left, *right;
299
300 /* The parent of this node. In the root node, this is NULL. */
301 struct mem_node *parent;
302
303 /* Start and end of allocated region. */
304 void *start, *end;
305
306 /* Node color. */
307 enum {MEM_BLACK, MEM_RED} color;
308
309 /* Memory type. */
310 enum mem_type type;
311 };
312
313 /* Base address of stack. Set in main. */
314
315 Lisp_Object *stack_base;
316
317 /* Root of the tree describing allocated Lisp memory. */
318
319 static struct mem_node *mem_root;
320
321 /* Lowest and highest known address in the heap. */
322
323 static void *min_heap_address, *max_heap_address;
324
325 /* Sentinel node of the tree. */
326
327 static struct mem_node mem_z;
328 #define MEM_NIL &mem_z
329
330 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
331 static void lisp_free (void *);
332 static void mark_stack (void);
333 static bool live_vector_p (struct mem_node *, void *);
334 static bool live_buffer_p (struct mem_node *, void *);
335 static bool live_string_p (struct mem_node *, void *);
336 static bool live_cons_p (struct mem_node *, void *);
337 static bool live_symbol_p (struct mem_node *, void *);
338 static bool live_float_p (struct mem_node *, void *);
339 static bool live_misc_p (struct mem_node *, void *);
340 static void mark_maybe_object (Lisp_Object);
341 static void mark_memory (void *, void *);
342 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
343 static void mem_init (void);
344 static struct mem_node *mem_insert (void *, void *, enum mem_type);
345 static void mem_insert_fixup (struct mem_node *);
346 static void mem_rotate_left (struct mem_node *);
347 static void mem_rotate_right (struct mem_node *);
348 static void mem_delete (struct mem_node *);
349 static void mem_delete_fixup (struct mem_node *);
350 static struct mem_node *mem_find (void *);
351 #endif
352
353
354 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
355 static void check_gcpros (void);
356 #endif
357
358 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
359
360 #ifndef DEADP
361 # define DEADP(x) 0
362 #endif
363
364 /* Recording what needs to be marked for gc. */
365
366 struct gcpro *gcprolist;
367
368 /* Addresses of staticpro'd variables. Initialize it to a nonzero
369 value; otherwise some compilers put it into BSS. */
370
371 #define NSTATICS 0x800
372 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
373
374 /* Index of next unused slot in staticvec. */
375
376 static int staticidx;
377
378 static void *pure_alloc (size_t, int);
379
380
381 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
382 ALIGNMENT must be a power of 2. */
383
384 #define ALIGN(ptr, ALIGNMENT) \
385 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
386 & ~ ((ALIGNMENT) - 1)))
387
388
389 \f
390 /************************************************************************
391 Malloc
392 ************************************************************************/
393
394 /* Function malloc calls this if it finds we are near exhausting storage. */
395
396 void
397 malloc_warning (const char *str)
398 {
399 pending_malloc_warning = str;
400 }
401
402
403 /* Display an already-pending malloc warning. */
404
405 void
406 display_malloc_warning (void)
407 {
408 call3 (intern ("display-warning"),
409 intern ("alloc"),
410 build_string (pending_malloc_warning),
411 intern ("emergency"));
412 pending_malloc_warning = 0;
413 }
414 \f
415 /* Called if we can't allocate relocatable space for a buffer. */
416
417 void
418 buffer_memory_full (ptrdiff_t nbytes)
419 {
420 /* If buffers use the relocating allocator, no need to free
421 spare_memory, because we may have plenty of malloc space left
422 that we could get, and if we don't, the malloc that fails will
423 itself cause spare_memory to be freed. If buffers don't use the
424 relocating allocator, treat this like any other failing
425 malloc. */
426
427 #ifndef REL_ALLOC
428 memory_full (nbytes);
429 #endif
430
431 /* This used to call error, but if we've run out of memory, we could
432 get infinite recursion trying to build the string. */
433 xsignal (Qnil, Vmemory_signal_data);
434 }
435
436 /* A common multiple of the positive integers A and B. Ideally this
437 would be the least common multiple, but there's no way to do that
438 as a constant expression in C, so do the best that we can easily do. */
439 #define COMMON_MULTIPLE(a, b) \
440 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
441
442 #ifndef XMALLOC_OVERRUN_CHECK
443 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
444 #else
445
446 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
447 around each block.
448
449 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
450 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
451 block size in little-endian order. The trailer consists of
452 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
453
454 The header is used to detect whether this block has been allocated
455 through these functions, as some low-level libc functions may
456 bypass the malloc hooks. */
457
458 #define XMALLOC_OVERRUN_CHECK_SIZE 16
459 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
460 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
461
462 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
463 hold a size_t value and (2) the header size is a multiple of the
464 alignment that Emacs needs for C types and for USE_LSB_TAG. */
465 #define XMALLOC_BASE_ALIGNMENT \
466 alignof (union { long double d; intmax_t i; void *p; })
467
468 #if USE_LSB_TAG
469 # define XMALLOC_HEADER_ALIGNMENT \
470 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
471 #else
472 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
473 #endif
474 #define XMALLOC_OVERRUN_SIZE_SIZE \
475 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
476 + XMALLOC_HEADER_ALIGNMENT - 1) \
477 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
478 - XMALLOC_OVERRUN_CHECK_SIZE)
479
480 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
481 { '\x9a', '\x9b', '\xae', '\xaf',
482 '\xbf', '\xbe', '\xce', '\xcf',
483 '\xea', '\xeb', '\xec', '\xed',
484 '\xdf', '\xde', '\x9c', '\x9d' };
485
486 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
487 { '\xaa', '\xab', '\xac', '\xad',
488 '\xba', '\xbb', '\xbc', '\xbd',
489 '\xca', '\xcb', '\xcc', '\xcd',
490 '\xda', '\xdb', '\xdc', '\xdd' };
491
492 /* Insert and extract the block size in the header. */
493
494 static void
495 xmalloc_put_size (unsigned char *ptr, size_t size)
496 {
497 int i;
498 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
499 {
500 *--ptr = size & ((1 << CHAR_BIT) - 1);
501 size >>= CHAR_BIT;
502 }
503 }
504
505 static size_t
506 xmalloc_get_size (unsigned char *ptr)
507 {
508 size_t size = 0;
509 int i;
510 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
511 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
512 {
513 size <<= CHAR_BIT;
514 size += *ptr++;
515 }
516 return size;
517 }
518
519
520 /* Like malloc, but wraps allocated block with header and trailer. */
521
522 static void *
523 overrun_check_malloc (size_t size)
524 {
525 register unsigned char *val;
526 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
527 emacs_abort ();
528
529 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
530 if (val)
531 {
532 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
533 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
534 xmalloc_put_size (val, size);
535 memcpy (val + size, xmalloc_overrun_check_trailer,
536 XMALLOC_OVERRUN_CHECK_SIZE);
537 }
538 return val;
539 }
540
541
542 /* Like realloc, but checks old block for overrun, and wraps new block
543 with header and trailer. */
544
545 static void *
546 overrun_check_realloc (void *block, size_t size)
547 {
548 register unsigned char *val = (unsigned char *) block;
549 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
550 emacs_abort ();
551
552 if (val
553 && memcmp (xmalloc_overrun_check_header,
554 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
555 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
556 {
557 size_t osize = xmalloc_get_size (val);
558 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
559 XMALLOC_OVERRUN_CHECK_SIZE))
560 emacs_abort ();
561 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
562 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
563 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
564 }
565
566 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
567
568 if (val)
569 {
570 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
571 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
572 xmalloc_put_size (val, size);
573 memcpy (val + size, xmalloc_overrun_check_trailer,
574 XMALLOC_OVERRUN_CHECK_SIZE);
575 }
576 return val;
577 }
578
579 /* Like free, but checks block for overrun. */
580
581 static void
582 overrun_check_free (void *block)
583 {
584 unsigned char *val = (unsigned char *) block;
585
586 if (val
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
590 {
591 size_t osize = xmalloc_get_size (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 emacs_abort ();
595 #ifdef XMALLOC_CLEAR_FREE_MEMORY
596 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
598 #else
599 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
600 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
601 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
602 #endif
603 }
604
605 free (val);
606 }
607
608 #undef malloc
609 #undef realloc
610 #undef free
611 #define malloc overrun_check_malloc
612 #define realloc overrun_check_realloc
613 #define free overrun_check_free
614 #endif
615
616 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
617 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
618 If that variable is set, block input while in one of Emacs's memory
619 allocation functions. There should be no need for this debugging
620 option, since signal handlers do not allocate memory, but Emacs
621 formerly allocated memory in signal handlers and this compile-time
622 option remains as a way to help debug the issue should it rear its
623 ugly head again. */
624 #ifdef XMALLOC_BLOCK_INPUT_CHECK
625 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
626 static void
627 malloc_block_input (void)
628 {
629 if (block_input_in_memory_allocators)
630 block_input ();
631 }
632 static void
633 malloc_unblock_input (void)
634 {
635 if (block_input_in_memory_allocators)
636 unblock_input ();
637 }
638 # define MALLOC_BLOCK_INPUT malloc_block_input ()
639 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
640 #else
641 # define MALLOC_BLOCK_INPUT ((void) 0)
642 # define MALLOC_UNBLOCK_INPUT ((void) 0)
643 #endif
644
645 #define MALLOC_PROBE(size) \
646 do { \
647 if (profiler_memory_running) \
648 malloc_probe (size); \
649 } while (0)
650
651
652 /* Like malloc but check for no memory and block interrupt input.. */
653
654 void *
655 xmalloc (size_t size)
656 {
657 void *val;
658
659 MALLOC_BLOCK_INPUT;
660 val = malloc (size);
661 MALLOC_UNBLOCK_INPUT;
662
663 if (!val && size)
664 memory_full (size);
665 MALLOC_PROBE (size);
666 return val;
667 }
668
669 /* Like the above, but zeroes out the memory just allocated. */
670
671 void *
672 xzalloc (size_t size)
673 {
674 void *val;
675
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
679
680 if (!val && size)
681 memory_full (size);
682 memset (val, 0, size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687 /* Like realloc but check for no memory and block interrupt input.. */
688
689 void *
690 xrealloc (void *block, size_t size)
691 {
692 void *val;
693
694 MALLOC_BLOCK_INPUT;
695 /* We must call malloc explicitly when BLOCK is 0, since some
696 reallocs don't do this. */
697 if (! block)
698 val = malloc (size);
699 else
700 val = realloc (block, size);
701 MALLOC_UNBLOCK_INPUT;
702
703 if (!val && size)
704 memory_full (size);
705 MALLOC_PROBE (size);
706 return val;
707 }
708
709
710 /* Like free but block interrupt input. */
711
712 void
713 xfree (void *block)
714 {
715 if (!block)
716 return;
717 MALLOC_BLOCK_INPUT;
718 free (block);
719 MALLOC_UNBLOCK_INPUT;
720 /* We don't call refill_memory_reserve here
721 because in practice the call in r_alloc_free seems to suffice. */
722 }
723
724
725 /* Other parts of Emacs pass large int values to allocator functions
726 expecting ptrdiff_t. This is portable in practice, but check it to
727 be safe. */
728 verify (INT_MAX <= PTRDIFF_MAX);
729
730
731 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
732 Signal an error on memory exhaustion, and block interrupt input. */
733
734 void *
735 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
736 {
737 eassert (0 <= nitems && 0 < item_size);
738 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
739 memory_full (SIZE_MAX);
740 return xmalloc (nitems * item_size);
741 }
742
743
744 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
745 Signal an error on memory exhaustion, and block interrupt input. */
746
747 void *
748 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
749 {
750 eassert (0 <= nitems && 0 < item_size);
751 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
752 memory_full (SIZE_MAX);
753 return xrealloc (pa, nitems * item_size);
754 }
755
756
757 /* Grow PA, which points to an array of *NITEMS items, and return the
758 location of the reallocated array, updating *NITEMS to reflect its
759 new size. The new array will contain at least NITEMS_INCR_MIN more
760 items, but will not contain more than NITEMS_MAX items total.
761 ITEM_SIZE is the size of each item, in bytes.
762
763 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
764 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
765 infinity.
766
767 If PA is null, then allocate a new array instead of reallocating
768 the old one. Thus, to grow an array A without saving its old
769 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
770 &NITEMS, ...).
771
772 Block interrupt input as needed. If memory exhaustion occurs, set
773 *NITEMS to zero if PA is null, and signal an error (i.e., do not
774 return). */
775
776 void *
777 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
778 ptrdiff_t nitems_max, ptrdiff_t item_size)
779 {
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
782 library malloc. */
783 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
784
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n = *nitems;
788 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
789 ptrdiff_t half_again = n >> 1;
790 ptrdiff_t incr_estimate = max (tiny_max, half_again);
791
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
795 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
796 ? nitems_max : C_language_max);
797 ptrdiff_t nitems_incr_max = n_max - n;
798 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
799
800 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
801 if (! pa)
802 *nitems = 0;
803 if (nitems_incr_max < incr)
804 memory_full (SIZE_MAX);
805 n += incr;
806 pa = xrealloc (pa, n * item_size);
807 *nitems = n;
808 return pa;
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (const char *s)
816 {
817 size_t len = strlen (s) + 1;
818 char *p = xmalloc (len);
819 memcpy (p, s, len);
820 return p;
821 }
822
823
824 /* Unwind for SAFE_ALLOCA */
825
826 Lisp_Object
827 safe_alloca_unwind (Lisp_Object arg)
828 {
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
830
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
836 }
837
838 /* Return a newly allocated memory block of SIZE bytes, remembering
839 to free it when unwinding. */
840 void *
841 record_xmalloc (size_t size)
842 {
843 void *p = xmalloc (size);
844 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
845 return p;
846 }
847
848
849 /* Like malloc but used for allocating Lisp data. NBYTES is the
850 number of bytes to allocate, TYPE describes the intended use of the
851 allocated memory block (for strings, for conses, ...). */
852
853 #if ! USE_LSB_TAG
854 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
855 #endif
856
857 static void *
858 lisp_malloc (size_t nbytes, enum mem_type type)
859 {
860 register void *val;
861
862 MALLOC_BLOCK_INPUT;
863
864 #ifdef GC_MALLOC_CHECK
865 allocated_mem_type = type;
866 #endif
867
868 val = malloc (nbytes);
869
870 #if ! USE_LSB_TAG
871 /* If the memory just allocated cannot be addressed thru a Lisp
872 object's pointer, and it needs to be,
873 that's equivalent to running out of memory. */
874 if (val && type != MEM_TYPE_NON_LISP)
875 {
876 Lisp_Object tem;
877 XSETCONS (tem, (char *) val + nbytes - 1);
878 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
879 {
880 lisp_malloc_loser = val;
881 free (val);
882 val = 0;
883 }
884 }
885 #endif
886
887 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
888 if (val && type != MEM_TYPE_NON_LISP)
889 mem_insert (val, (char *) val + nbytes, type);
890 #endif
891
892 MALLOC_UNBLOCK_INPUT;
893 if (!val && nbytes)
894 memory_full (nbytes);
895 MALLOC_PROBE (nbytes);
896 return val;
897 }
898
899 /* Free BLOCK. This must be called to free memory allocated with a
900 call to lisp_malloc. */
901
902 static void
903 lisp_free (void *block)
904 {
905 MALLOC_BLOCK_INPUT;
906 free (block);
907 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
908 mem_delete (mem_find (block));
909 #endif
910 MALLOC_UNBLOCK_INPUT;
911 }
912
913 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
914
915 /* The entry point is lisp_align_malloc which returns blocks of at most
916 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
917
918 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
919 #define USE_POSIX_MEMALIGN 1
920 #endif
921
922 /* BLOCK_ALIGN has to be a power of 2. */
923 #define BLOCK_ALIGN (1 << 10)
924
925 /* Padding to leave at the end of a malloc'd block. This is to give
926 malloc a chance to minimize the amount of memory wasted to alignment.
927 It should be tuned to the particular malloc library used.
928 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
929 posix_memalign on the other hand would ideally prefer a value of 4
930 because otherwise, there's 1020 bytes wasted between each ablocks.
931 In Emacs, testing shows that those 1020 can most of the time be
932 efficiently used by malloc to place other objects, so a value of 0 can
933 still preferable unless you have a lot of aligned blocks and virtually
934 nothing else. */
935 #define BLOCK_PADDING 0
936 #define BLOCK_BYTES \
937 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
938
939 /* Internal data structures and constants. */
940
941 #define ABLOCKS_SIZE 16
942
943 /* An aligned block of memory. */
944 struct ablock
945 {
946 union
947 {
948 char payload[BLOCK_BYTES];
949 struct ablock *next_free;
950 } x;
951 /* `abase' is the aligned base of the ablocks. */
952 /* It is overloaded to hold the virtual `busy' field that counts
953 the number of used ablock in the parent ablocks.
954 The first ablock has the `busy' field, the others have the `abase'
955 field. To tell the difference, we assume that pointers will have
956 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
957 is used to tell whether the real base of the parent ablocks is `abase'
958 (if not, the word before the first ablock holds a pointer to the
959 real base). */
960 struct ablocks *abase;
961 /* The padding of all but the last ablock is unused. The padding of
962 the last ablock in an ablocks is not allocated. */
963 #if BLOCK_PADDING
964 char padding[BLOCK_PADDING];
965 #endif
966 };
967
968 /* A bunch of consecutive aligned blocks. */
969 struct ablocks
970 {
971 struct ablock blocks[ABLOCKS_SIZE];
972 };
973
974 /* Size of the block requested from malloc or posix_memalign. */
975 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
976
977 #define ABLOCK_ABASE(block) \
978 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
979 ? (struct ablocks *)(block) \
980 : (block)->abase)
981
982 /* Virtual `busy' field. */
983 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
984
985 /* Pointer to the (not necessarily aligned) malloc block. */
986 #ifdef USE_POSIX_MEMALIGN
987 #define ABLOCKS_BASE(abase) (abase)
988 #else
989 #define ABLOCKS_BASE(abase) \
990 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
991 #endif
992
993 /* The list of free ablock. */
994 static struct ablock *free_ablock;
995
996 /* Allocate an aligned block of nbytes.
997 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
998 smaller or equal to BLOCK_BYTES. */
999 static void *
1000 lisp_align_malloc (size_t nbytes, enum mem_type type)
1001 {
1002 void *base, *val;
1003 struct ablocks *abase;
1004
1005 eassert (nbytes <= BLOCK_BYTES);
1006
1007 MALLOC_BLOCK_INPUT;
1008
1009 #ifdef GC_MALLOC_CHECK
1010 allocated_mem_type = type;
1011 #endif
1012
1013 if (!free_ablock)
1014 {
1015 int i;
1016 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1017
1018 #ifdef DOUG_LEA_MALLOC
1019 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1020 because mapped region contents are not preserved in
1021 a dumped Emacs. */
1022 mallopt (M_MMAP_MAX, 0);
1023 #endif
1024
1025 #ifdef USE_POSIX_MEMALIGN
1026 {
1027 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1028 if (err)
1029 base = NULL;
1030 abase = base;
1031 }
1032 #else
1033 base = malloc (ABLOCKS_BYTES);
1034 abase = ALIGN (base, BLOCK_ALIGN);
1035 #endif
1036
1037 if (base == 0)
1038 {
1039 MALLOC_UNBLOCK_INPUT;
1040 memory_full (ABLOCKS_BYTES);
1041 }
1042
1043 aligned = (base == abase);
1044 if (!aligned)
1045 ((void**)abase)[-1] = base;
1046
1047 #ifdef DOUG_LEA_MALLOC
1048 /* Back to a reasonable maximum of mmap'ed areas. */
1049 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1050 #endif
1051
1052 #if ! USE_LSB_TAG
1053 /* If the memory just allocated cannot be addressed thru a Lisp
1054 object's pointer, and it needs to be, that's equivalent to
1055 running out of memory. */
1056 if (type != MEM_TYPE_NON_LISP)
1057 {
1058 Lisp_Object tem;
1059 char *end = (char *) base + ABLOCKS_BYTES - 1;
1060 XSETCONS (tem, end);
1061 if ((char *) XCONS (tem) != end)
1062 {
1063 lisp_malloc_loser = base;
1064 free (base);
1065 MALLOC_UNBLOCK_INPUT;
1066 memory_full (SIZE_MAX);
1067 }
1068 }
1069 #endif
1070
1071 /* Initialize the blocks and put them on the free list.
1072 If `base' was not properly aligned, we can't use the last block. */
1073 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1074 {
1075 abase->blocks[i].abase = abase;
1076 abase->blocks[i].x.next_free = free_ablock;
1077 free_ablock = &abase->blocks[i];
1078 }
1079 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1080
1081 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1082 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1083 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1084 eassert (ABLOCKS_BASE (abase) == base);
1085 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1086 }
1087
1088 abase = ABLOCK_ABASE (free_ablock);
1089 ABLOCKS_BUSY (abase) =
1090 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1091 val = free_ablock;
1092 free_ablock = free_ablock->x.next_free;
1093
1094 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1095 if (type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1098
1099 MALLOC_UNBLOCK_INPUT;
1100
1101 MALLOC_PROBE (nbytes);
1102
1103 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1104 return val;
1105 }
1106
1107 static void
1108 lisp_align_free (void *block)
1109 {
1110 struct ablock *ablock = block;
1111 struct ablocks *abase = ABLOCK_ABASE (ablock);
1112
1113 MALLOC_BLOCK_INPUT;
1114 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 /* Put on free list. */
1118 ablock->x.next_free = free_ablock;
1119 free_ablock = ablock;
1120 /* Update busy count. */
1121 ABLOCKS_BUSY (abase)
1122 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1123
1124 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1125 { /* All the blocks are free. */
1126 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1127 struct ablock **tem = &free_ablock;
1128 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1129
1130 while (*tem)
1131 {
1132 if (*tem >= (struct ablock *) abase && *tem < atop)
1133 {
1134 i++;
1135 *tem = (*tem)->x.next_free;
1136 }
1137 else
1138 tem = &(*tem)->x.next_free;
1139 }
1140 eassert ((aligned & 1) == aligned);
1141 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1142 #ifdef USE_POSIX_MEMALIGN
1143 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1144 #endif
1145 free (ABLOCKS_BASE (abase));
1146 }
1147 MALLOC_UNBLOCK_INPUT;
1148 }
1149
1150 \f
1151 /***********************************************************************
1152 Interval Allocation
1153 ***********************************************************************/
1154
1155 /* Number of intervals allocated in an interval_block structure.
1156 The 1020 is 1024 minus malloc overhead. */
1157
1158 #define INTERVAL_BLOCK_SIZE \
1159 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1160
1161 /* Intervals are allocated in chunks in form of an interval_block
1162 structure. */
1163
1164 struct interval_block
1165 {
1166 /* Place `intervals' first, to preserve alignment. */
1167 struct interval intervals[INTERVAL_BLOCK_SIZE];
1168 struct interval_block *next;
1169 };
1170
1171 /* Current interval block. Its `next' pointer points to older
1172 blocks. */
1173
1174 static struct interval_block *interval_block;
1175
1176 /* Index in interval_block above of the next unused interval
1177 structure. */
1178
1179 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1180
1181 /* Number of free and live intervals. */
1182
1183 static EMACS_INT total_free_intervals, total_intervals;
1184
1185 /* List of free intervals. */
1186
1187 static INTERVAL interval_free_list;
1188
1189 /* Return a new interval. */
1190
1191 INTERVAL
1192 make_interval (void)
1193 {
1194 INTERVAL val;
1195
1196 MALLOC_BLOCK_INPUT;
1197
1198 if (interval_free_list)
1199 {
1200 val = interval_free_list;
1201 interval_free_list = INTERVAL_PARENT (interval_free_list);
1202 }
1203 else
1204 {
1205 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1206 {
1207 struct interval_block *newi
1208 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1209
1210 newi->next = interval_block;
1211 interval_block = newi;
1212 interval_block_index = 0;
1213 total_free_intervals += INTERVAL_BLOCK_SIZE;
1214 }
1215 val = &interval_block->intervals[interval_block_index++];
1216 }
1217
1218 MALLOC_UNBLOCK_INPUT;
1219
1220 consing_since_gc += sizeof (struct interval);
1221 intervals_consed++;
1222 total_free_intervals--;
1223 RESET_INTERVAL (val);
1224 val->gcmarkbit = 0;
1225 return val;
1226 }
1227
1228
1229 /* Mark Lisp objects in interval I. */
1230
1231 static void
1232 mark_interval (register INTERVAL i, Lisp_Object dummy)
1233 {
1234 /* Intervals should never be shared. So, if extra internal checking is
1235 enabled, GC aborts if it seems to have visited an interval twice. */
1236 eassert (!i->gcmarkbit);
1237 i->gcmarkbit = 1;
1238 mark_object (i->plist);
1239 }
1240
1241 /* Mark the interval tree rooted in I. */
1242
1243 #define MARK_INTERVAL_TREE(i) \
1244 do { \
1245 if (i && !i->gcmarkbit) \
1246 traverse_intervals_noorder (i, mark_interval, Qnil); \
1247 } while (0)
1248
1249 /***********************************************************************
1250 String Allocation
1251 ***********************************************************************/
1252
1253 /* Lisp_Strings are allocated in string_block structures. When a new
1254 string_block is allocated, all the Lisp_Strings it contains are
1255 added to a free-list string_free_list. When a new Lisp_String is
1256 needed, it is taken from that list. During the sweep phase of GC,
1257 string_blocks that are entirely free are freed, except two which
1258 we keep.
1259
1260 String data is allocated from sblock structures. Strings larger
1261 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1262 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1263
1264 Sblocks consist internally of sdata structures, one for each
1265 Lisp_String. The sdata structure points to the Lisp_String it
1266 belongs to. The Lisp_String points back to the `u.data' member of
1267 its sdata structure.
1268
1269 When a Lisp_String is freed during GC, it is put back on
1270 string_free_list, and its `data' member and its sdata's `string'
1271 pointer is set to null. The size of the string is recorded in the
1272 `u.nbytes' member of the sdata. So, sdata structures that are no
1273 longer used, can be easily recognized, and it's easy to compact the
1274 sblocks of small strings which we do in compact_small_strings. */
1275
1276 /* Size in bytes of an sblock structure used for small strings. This
1277 is 8192 minus malloc overhead. */
1278
1279 #define SBLOCK_SIZE 8188
1280
1281 /* Strings larger than this are considered large strings. String data
1282 for large strings is allocated from individual sblocks. */
1283
1284 #define LARGE_STRING_BYTES 1024
1285
1286 /* Structure describing string memory sub-allocated from an sblock.
1287 This is where the contents of Lisp strings are stored. */
1288
1289 struct sdata
1290 {
1291 /* Back-pointer to the string this sdata belongs to. If null, this
1292 structure is free, and the NBYTES member of the union below
1293 contains the string's byte size (the same value that STRING_BYTES
1294 would return if STRING were non-null). If non-null, STRING_BYTES
1295 (STRING) is the size of the data, and DATA contains the string's
1296 contents. */
1297 struct Lisp_String *string;
1298
1299 #ifdef GC_CHECK_STRING_BYTES
1300
1301 ptrdiff_t nbytes;
1302 unsigned char data[1];
1303
1304 #define SDATA_NBYTES(S) (S)->nbytes
1305 #define SDATA_DATA(S) (S)->data
1306 #define SDATA_SELECTOR(member) member
1307
1308 #else /* not GC_CHECK_STRING_BYTES */
1309
1310 union
1311 {
1312 /* When STRING is non-null. */
1313 unsigned char data[1];
1314
1315 /* When STRING is null. */
1316 ptrdiff_t nbytes;
1317 } u;
1318
1319 #define SDATA_NBYTES(S) (S)->u.nbytes
1320 #define SDATA_DATA(S) (S)->u.data
1321 #define SDATA_SELECTOR(member) u.member
1322
1323 #endif /* not GC_CHECK_STRING_BYTES */
1324
1325 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1326 };
1327
1328
1329 /* Structure describing a block of memory which is sub-allocated to
1330 obtain string data memory for strings. Blocks for small strings
1331 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1332 as large as needed. */
1333
1334 struct sblock
1335 {
1336 /* Next in list. */
1337 struct sblock *next;
1338
1339 /* Pointer to the next free sdata block. This points past the end
1340 of the sblock if there isn't any space left in this block. */
1341 struct sdata *next_free;
1342
1343 /* Start of data. */
1344 struct sdata first_data;
1345 };
1346
1347 /* Number of Lisp strings in a string_block structure. The 1020 is
1348 1024 minus malloc overhead. */
1349
1350 #define STRING_BLOCK_SIZE \
1351 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1352
1353 /* Structure describing a block from which Lisp_String structures
1354 are allocated. */
1355
1356 struct string_block
1357 {
1358 /* Place `strings' first, to preserve alignment. */
1359 struct Lisp_String strings[STRING_BLOCK_SIZE];
1360 struct string_block *next;
1361 };
1362
1363 /* Head and tail of the list of sblock structures holding Lisp string
1364 data. We always allocate from current_sblock. The NEXT pointers
1365 in the sblock structures go from oldest_sblock to current_sblock. */
1366
1367 static struct sblock *oldest_sblock, *current_sblock;
1368
1369 /* List of sblocks for large strings. */
1370
1371 static struct sblock *large_sblocks;
1372
1373 /* List of string_block structures. */
1374
1375 static struct string_block *string_blocks;
1376
1377 /* Free-list of Lisp_Strings. */
1378
1379 static struct Lisp_String *string_free_list;
1380
1381 /* Number of live and free Lisp_Strings. */
1382
1383 static EMACS_INT total_strings, total_free_strings;
1384
1385 /* Number of bytes used by live strings. */
1386
1387 static EMACS_INT total_string_bytes;
1388
1389 /* Given a pointer to a Lisp_String S which is on the free-list
1390 string_free_list, return a pointer to its successor in the
1391 free-list. */
1392
1393 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1394
1395 /* Return a pointer to the sdata structure belonging to Lisp string S.
1396 S must be live, i.e. S->data must not be null. S->data is actually
1397 a pointer to the `u.data' member of its sdata structure; the
1398 structure starts at a constant offset in front of that. */
1399
1400 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1401
1402
1403 #ifdef GC_CHECK_STRING_OVERRUN
1404
1405 /* We check for overrun in string data blocks by appending a small
1406 "cookie" after each allocated string data block, and check for the
1407 presence of this cookie during GC. */
1408
1409 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1410 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1411 { '\xde', '\xad', '\xbe', '\xef' };
1412
1413 #else
1414 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1415 #endif
1416
1417 /* Value is the size of an sdata structure large enough to hold NBYTES
1418 bytes of string data. The value returned includes a terminating
1419 NUL byte, the size of the sdata structure, and padding. */
1420
1421 #ifdef GC_CHECK_STRING_BYTES
1422
1423 #define SDATA_SIZE(NBYTES) \
1424 ((SDATA_DATA_OFFSET \
1425 + (NBYTES) + 1 \
1426 + sizeof (ptrdiff_t) - 1) \
1427 & ~(sizeof (ptrdiff_t) - 1))
1428
1429 #else /* not GC_CHECK_STRING_BYTES */
1430
1431 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1432 less than the size of that member. The 'max' is not needed when
1433 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1434 alignment code reserves enough space. */
1435
1436 #define SDATA_SIZE(NBYTES) \
1437 ((SDATA_DATA_OFFSET \
1438 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1439 ? NBYTES \
1440 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1441 + 1 \
1442 + sizeof (ptrdiff_t) - 1) \
1443 & ~(sizeof (ptrdiff_t) - 1))
1444
1445 #endif /* not GC_CHECK_STRING_BYTES */
1446
1447 /* Extra bytes to allocate for each string. */
1448
1449 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1450
1451 /* Exact bound on the number of bytes in a string, not counting the
1452 terminating null. A string cannot contain more bytes than
1453 STRING_BYTES_BOUND, nor can it be so long that the size_t
1454 arithmetic in allocate_string_data would overflow while it is
1455 calculating a value to be passed to malloc. */
1456 static ptrdiff_t const STRING_BYTES_MAX =
1457 min (STRING_BYTES_BOUND,
1458 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1459 - GC_STRING_EXTRA
1460 - offsetof (struct sblock, first_data)
1461 - SDATA_DATA_OFFSET)
1462 & ~(sizeof (EMACS_INT) - 1)));
1463
1464 /* Initialize string allocation. Called from init_alloc_once. */
1465
1466 static void
1467 init_strings (void)
1468 {
1469 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1470 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1471 }
1472
1473
1474 #ifdef GC_CHECK_STRING_BYTES
1475
1476 static int check_string_bytes_count;
1477
1478 /* Like STRING_BYTES, but with debugging check. Can be
1479 called during GC, so pay attention to the mark bit. */
1480
1481 ptrdiff_t
1482 string_bytes (struct Lisp_String *s)
1483 {
1484 ptrdiff_t nbytes =
1485 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1486
1487 if (!PURE_POINTER_P (s)
1488 && s->data
1489 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1490 emacs_abort ();
1491 return nbytes;
1492 }
1493
1494 /* Check validity of Lisp strings' string_bytes member in B. */
1495
1496 static void
1497 check_sblock (struct sblock *b)
1498 {
1499 struct sdata *from, *end, *from_end;
1500
1501 end = b->next_free;
1502
1503 for (from = &b->first_data; from < end; from = from_end)
1504 {
1505 /* Compute the next FROM here because copying below may
1506 overwrite data we need to compute it. */
1507 ptrdiff_t nbytes;
1508
1509 /* Check that the string size recorded in the string is the
1510 same as the one recorded in the sdata structure. */
1511 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1512 : SDATA_NBYTES (from));
1513 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1514 }
1515 }
1516
1517
1518 /* Check validity of Lisp strings' string_bytes member. ALL_P
1519 means check all strings, otherwise check only most
1520 recently allocated strings. Used for hunting a bug. */
1521
1522 static void
1523 check_string_bytes (bool all_p)
1524 {
1525 if (all_p)
1526 {
1527 struct sblock *b;
1528
1529 for (b = large_sblocks; b; b = b->next)
1530 {
1531 struct Lisp_String *s = b->first_data.string;
1532 if (s)
1533 string_bytes (s);
1534 }
1535
1536 for (b = oldest_sblock; b; b = b->next)
1537 check_sblock (b);
1538 }
1539 else if (current_sblock)
1540 check_sblock (current_sblock);
1541 }
1542
1543 #else /* not GC_CHECK_STRING_BYTES */
1544
1545 #define check_string_bytes(all) ((void) 0)
1546
1547 #endif /* GC_CHECK_STRING_BYTES */
1548
1549 #ifdef GC_CHECK_STRING_FREE_LIST
1550
1551 /* Walk through the string free list looking for bogus next pointers.
1552 This may catch buffer overrun from a previous string. */
1553
1554 static void
1555 check_string_free_list (void)
1556 {
1557 struct Lisp_String *s;
1558
1559 /* Pop a Lisp_String off the free-list. */
1560 s = string_free_list;
1561 while (s != NULL)
1562 {
1563 if ((uintptr_t) s < 1024)
1564 emacs_abort ();
1565 s = NEXT_FREE_LISP_STRING (s);
1566 }
1567 }
1568 #else
1569 #define check_string_free_list()
1570 #endif
1571
1572 /* Return a new Lisp_String. */
1573
1574 static struct Lisp_String *
1575 allocate_string (void)
1576 {
1577 struct Lisp_String *s;
1578
1579 MALLOC_BLOCK_INPUT;
1580
1581 /* If the free-list is empty, allocate a new string_block, and
1582 add all the Lisp_Strings in it to the free-list. */
1583 if (string_free_list == NULL)
1584 {
1585 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1586 int i;
1587
1588 b->next = string_blocks;
1589 string_blocks = b;
1590
1591 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1592 {
1593 s = b->strings + i;
1594 /* Every string on a free list should have NULL data pointer. */
1595 s->data = NULL;
1596 NEXT_FREE_LISP_STRING (s) = string_free_list;
1597 string_free_list = s;
1598 }
1599
1600 total_free_strings += STRING_BLOCK_SIZE;
1601 }
1602
1603 check_string_free_list ();
1604
1605 /* Pop a Lisp_String off the free-list. */
1606 s = string_free_list;
1607 string_free_list = NEXT_FREE_LISP_STRING (s);
1608
1609 MALLOC_UNBLOCK_INPUT;
1610
1611 --total_free_strings;
1612 ++total_strings;
1613 ++strings_consed;
1614 consing_since_gc += sizeof *s;
1615
1616 #ifdef GC_CHECK_STRING_BYTES
1617 if (!noninteractive)
1618 {
1619 if (++check_string_bytes_count == 200)
1620 {
1621 check_string_bytes_count = 0;
1622 check_string_bytes (1);
1623 }
1624 else
1625 check_string_bytes (0);
1626 }
1627 #endif /* GC_CHECK_STRING_BYTES */
1628
1629 return s;
1630 }
1631
1632
1633 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1634 plus a NUL byte at the end. Allocate an sdata structure for S, and
1635 set S->data to its `u.data' member. Store a NUL byte at the end of
1636 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1637 S->data if it was initially non-null. */
1638
1639 void
1640 allocate_string_data (struct Lisp_String *s,
1641 EMACS_INT nchars, EMACS_INT nbytes)
1642 {
1643 struct sdata *data, *old_data;
1644 struct sblock *b;
1645 ptrdiff_t needed, old_nbytes;
1646
1647 if (STRING_BYTES_MAX < nbytes)
1648 string_overflow ();
1649
1650 /* Determine the number of bytes needed to store NBYTES bytes
1651 of string data. */
1652 needed = SDATA_SIZE (nbytes);
1653 if (s->data)
1654 {
1655 old_data = SDATA_OF_STRING (s);
1656 old_nbytes = STRING_BYTES (s);
1657 }
1658 else
1659 old_data = NULL;
1660
1661 MALLOC_BLOCK_INPUT;
1662
1663 if (nbytes > LARGE_STRING_BYTES)
1664 {
1665 size_t size = offsetof (struct sblock, first_data) + needed;
1666
1667 #ifdef DOUG_LEA_MALLOC
1668 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1669 because mapped region contents are not preserved in
1670 a dumped Emacs.
1671
1672 In case you think of allowing it in a dumped Emacs at the
1673 cost of not being able to re-dump, there's another reason:
1674 mmap'ed data typically have an address towards the top of the
1675 address space, which won't fit into an EMACS_INT (at least on
1676 32-bit systems with the current tagging scheme). --fx */
1677 mallopt (M_MMAP_MAX, 0);
1678 #endif
1679
1680 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1681
1682 #ifdef DOUG_LEA_MALLOC
1683 /* Back to a reasonable maximum of mmap'ed areas. */
1684 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1685 #endif
1686
1687 b->next_free = &b->first_data;
1688 b->first_data.string = NULL;
1689 b->next = large_sblocks;
1690 large_sblocks = b;
1691 }
1692 else if (current_sblock == NULL
1693 || (((char *) current_sblock + SBLOCK_SIZE
1694 - (char *) current_sblock->next_free)
1695 < (needed + GC_STRING_EXTRA)))
1696 {
1697 /* Not enough room in the current sblock. */
1698 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1699 b->next_free = &b->first_data;
1700 b->first_data.string = NULL;
1701 b->next = NULL;
1702
1703 if (current_sblock)
1704 current_sblock->next = b;
1705 else
1706 oldest_sblock = b;
1707 current_sblock = b;
1708 }
1709 else
1710 b = current_sblock;
1711
1712 data = b->next_free;
1713 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1714
1715 MALLOC_UNBLOCK_INPUT;
1716
1717 data->string = s;
1718 s->data = SDATA_DATA (data);
1719 #ifdef GC_CHECK_STRING_BYTES
1720 SDATA_NBYTES (data) = nbytes;
1721 #endif
1722 s->size = nchars;
1723 s->size_byte = nbytes;
1724 s->data[nbytes] = '\0';
1725 #ifdef GC_CHECK_STRING_OVERRUN
1726 memcpy ((char *) data + needed, string_overrun_cookie,
1727 GC_STRING_OVERRUN_COOKIE_SIZE);
1728 #endif
1729
1730 /* Note that Faset may call to this function when S has already data
1731 assigned. In this case, mark data as free by setting it's string
1732 back-pointer to null, and record the size of the data in it. */
1733 if (old_data)
1734 {
1735 SDATA_NBYTES (old_data) = old_nbytes;
1736 old_data->string = NULL;
1737 }
1738
1739 consing_since_gc += needed;
1740 }
1741
1742
1743 /* Sweep and compact strings. */
1744
1745 static void
1746 sweep_strings (void)
1747 {
1748 struct string_block *b, *next;
1749 struct string_block *live_blocks = NULL;
1750
1751 string_free_list = NULL;
1752 total_strings = total_free_strings = 0;
1753 total_string_bytes = 0;
1754
1755 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1756 for (b = string_blocks; b; b = next)
1757 {
1758 int i, nfree = 0;
1759 struct Lisp_String *free_list_before = string_free_list;
1760
1761 next = b->next;
1762
1763 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1764 {
1765 struct Lisp_String *s = b->strings + i;
1766
1767 if (s->data)
1768 {
1769 /* String was not on free-list before. */
1770 if (STRING_MARKED_P (s))
1771 {
1772 /* String is live; unmark it and its intervals. */
1773 UNMARK_STRING (s);
1774
1775 /* Do not use string_(set|get)_intervals here. */
1776 s->intervals = balance_intervals (s->intervals);
1777
1778 ++total_strings;
1779 total_string_bytes += STRING_BYTES (s);
1780 }
1781 else
1782 {
1783 /* String is dead. Put it on the free-list. */
1784 struct sdata *data = SDATA_OF_STRING (s);
1785
1786 /* Save the size of S in its sdata so that we know
1787 how large that is. Reset the sdata's string
1788 back-pointer so that we know it's free. */
1789 #ifdef GC_CHECK_STRING_BYTES
1790 if (string_bytes (s) != SDATA_NBYTES (data))
1791 emacs_abort ();
1792 #else
1793 data->u.nbytes = STRING_BYTES (s);
1794 #endif
1795 data->string = NULL;
1796
1797 /* Reset the strings's `data' member so that we
1798 know it's free. */
1799 s->data = NULL;
1800
1801 /* Put the string on the free-list. */
1802 NEXT_FREE_LISP_STRING (s) = string_free_list;
1803 string_free_list = s;
1804 ++nfree;
1805 }
1806 }
1807 else
1808 {
1809 /* S was on the free-list before. Put it there again. */
1810 NEXT_FREE_LISP_STRING (s) = string_free_list;
1811 string_free_list = s;
1812 ++nfree;
1813 }
1814 }
1815
1816 /* Free blocks that contain free Lisp_Strings only, except
1817 the first two of them. */
1818 if (nfree == STRING_BLOCK_SIZE
1819 && total_free_strings > STRING_BLOCK_SIZE)
1820 {
1821 lisp_free (b);
1822 string_free_list = free_list_before;
1823 }
1824 else
1825 {
1826 total_free_strings += nfree;
1827 b->next = live_blocks;
1828 live_blocks = b;
1829 }
1830 }
1831
1832 check_string_free_list ();
1833
1834 string_blocks = live_blocks;
1835 free_large_strings ();
1836 compact_small_strings ();
1837
1838 check_string_free_list ();
1839 }
1840
1841
1842 /* Free dead large strings. */
1843
1844 static void
1845 free_large_strings (void)
1846 {
1847 struct sblock *b, *next;
1848 struct sblock *live_blocks = NULL;
1849
1850 for (b = large_sblocks; b; b = next)
1851 {
1852 next = b->next;
1853
1854 if (b->first_data.string == NULL)
1855 lisp_free (b);
1856 else
1857 {
1858 b->next = live_blocks;
1859 live_blocks = b;
1860 }
1861 }
1862
1863 large_sblocks = live_blocks;
1864 }
1865
1866
1867 /* Compact data of small strings. Free sblocks that don't contain
1868 data of live strings after compaction. */
1869
1870 static void
1871 compact_small_strings (void)
1872 {
1873 struct sblock *b, *tb, *next;
1874 struct sdata *from, *to, *end, *tb_end;
1875 struct sdata *to_end, *from_end;
1876
1877 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1878 to, and TB_END is the end of TB. */
1879 tb = oldest_sblock;
1880 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1881 to = &tb->first_data;
1882
1883 /* Step through the blocks from the oldest to the youngest. We
1884 expect that old blocks will stabilize over time, so that less
1885 copying will happen this way. */
1886 for (b = oldest_sblock; b; b = b->next)
1887 {
1888 end = b->next_free;
1889 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1890
1891 for (from = &b->first_data; from < end; from = from_end)
1892 {
1893 /* Compute the next FROM here because copying below may
1894 overwrite data we need to compute it. */
1895 ptrdiff_t nbytes;
1896 struct Lisp_String *s = from->string;
1897
1898 #ifdef GC_CHECK_STRING_BYTES
1899 /* Check that the string size recorded in the string is the
1900 same as the one recorded in the sdata structure. */
1901 if (s && string_bytes (s) != SDATA_NBYTES (from))
1902 emacs_abort ();
1903 #endif /* GC_CHECK_STRING_BYTES */
1904
1905 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1906 eassert (nbytes <= LARGE_STRING_BYTES);
1907
1908 nbytes = SDATA_SIZE (nbytes);
1909 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1910
1911 #ifdef GC_CHECK_STRING_OVERRUN
1912 if (memcmp (string_overrun_cookie,
1913 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1914 GC_STRING_OVERRUN_COOKIE_SIZE))
1915 emacs_abort ();
1916 #endif
1917
1918 /* Non-NULL S means it's alive. Copy its data. */
1919 if (s)
1920 {
1921 /* If TB is full, proceed with the next sblock. */
1922 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1923 if (to_end > tb_end)
1924 {
1925 tb->next_free = to;
1926 tb = tb->next;
1927 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1928 to = &tb->first_data;
1929 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1930 }
1931
1932 /* Copy, and update the string's `data' pointer. */
1933 if (from != to)
1934 {
1935 eassert (tb != b || to < from);
1936 memmove (to, from, nbytes + GC_STRING_EXTRA);
1937 to->string->data = SDATA_DATA (to);
1938 }
1939
1940 /* Advance past the sdata we copied to. */
1941 to = to_end;
1942 }
1943 }
1944 }
1945
1946 /* The rest of the sblocks following TB don't contain live data, so
1947 we can free them. */
1948 for (b = tb->next; b; b = next)
1949 {
1950 next = b->next;
1951 lisp_free (b);
1952 }
1953
1954 tb->next_free = to;
1955 tb->next = NULL;
1956 current_sblock = tb;
1957 }
1958
1959 void
1960 string_overflow (void)
1961 {
1962 error ("Maximum string size exceeded");
1963 }
1964
1965 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1966 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1967 LENGTH must be an integer.
1968 INIT must be an integer that represents a character. */)
1969 (Lisp_Object length, Lisp_Object init)
1970 {
1971 register Lisp_Object val;
1972 register unsigned char *p, *end;
1973 int c;
1974 EMACS_INT nbytes;
1975
1976 CHECK_NATNUM (length);
1977 CHECK_CHARACTER (init);
1978
1979 c = XFASTINT (init);
1980 if (ASCII_CHAR_P (c))
1981 {
1982 nbytes = XINT (length);
1983 val = make_uninit_string (nbytes);
1984 p = SDATA (val);
1985 end = p + SCHARS (val);
1986 while (p != end)
1987 *p++ = c;
1988 }
1989 else
1990 {
1991 unsigned char str[MAX_MULTIBYTE_LENGTH];
1992 int len = CHAR_STRING (c, str);
1993 EMACS_INT string_len = XINT (length);
1994
1995 if (string_len > STRING_BYTES_MAX / len)
1996 string_overflow ();
1997 nbytes = len * string_len;
1998 val = make_uninit_multibyte_string (string_len, nbytes);
1999 p = SDATA (val);
2000 end = p + nbytes;
2001 while (p != end)
2002 {
2003 memcpy (p, str, len);
2004 p += len;
2005 }
2006 }
2007
2008 *p = 0;
2009 return val;
2010 }
2011
2012
2013 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2014 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2015 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2016 (Lisp_Object length, Lisp_Object init)
2017 {
2018 register Lisp_Object val;
2019 struct Lisp_Bool_Vector *p;
2020 ptrdiff_t length_in_chars;
2021 EMACS_INT length_in_elts;
2022 int bits_per_value;
2023 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2024 / word_size);
2025
2026 CHECK_NATNUM (length);
2027
2028 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2029
2030 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2031
2032 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2033
2034 /* No Lisp_Object to trace in there. */
2035 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2036
2037 p = XBOOL_VECTOR (val);
2038 p->size = XFASTINT (length);
2039
2040 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2041 / BOOL_VECTOR_BITS_PER_CHAR);
2042 if (length_in_chars)
2043 {
2044 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2045
2046 /* Clear any extraneous bits in the last byte. */
2047 p->data[length_in_chars - 1]
2048 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2049 }
2050
2051 return val;
2052 }
2053
2054
2055 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2056 of characters from the contents. This string may be unibyte or
2057 multibyte, depending on the contents. */
2058
2059 Lisp_Object
2060 make_string (const char *contents, ptrdiff_t nbytes)
2061 {
2062 register Lisp_Object val;
2063 ptrdiff_t nchars, multibyte_nbytes;
2064
2065 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2066 &nchars, &multibyte_nbytes);
2067 if (nbytes == nchars || nbytes != multibyte_nbytes)
2068 /* CONTENTS contains no multibyte sequences or contains an invalid
2069 multibyte sequence. We must make unibyte string. */
2070 val = make_unibyte_string (contents, nbytes);
2071 else
2072 val = make_multibyte_string (contents, nchars, nbytes);
2073 return val;
2074 }
2075
2076
2077 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2078
2079 Lisp_Object
2080 make_unibyte_string (const char *contents, ptrdiff_t length)
2081 {
2082 register Lisp_Object val;
2083 val = make_uninit_string (length);
2084 memcpy (SDATA (val), contents, length);
2085 return val;
2086 }
2087
2088
2089 /* Make a multibyte string from NCHARS characters occupying NBYTES
2090 bytes at CONTENTS. */
2091
2092 Lisp_Object
2093 make_multibyte_string (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2095 {
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 return val;
2100 }
2101
2102
2103 /* Make a string from NCHARS characters occupying NBYTES bytes at
2104 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2105
2106 Lisp_Object
2107 make_string_from_bytes (const char *contents,
2108 ptrdiff_t nchars, ptrdiff_t nbytes)
2109 {
2110 register Lisp_Object val;
2111 val = make_uninit_multibyte_string (nchars, nbytes);
2112 memcpy (SDATA (val), contents, nbytes);
2113 if (SBYTES (val) == SCHARS (val))
2114 STRING_SET_UNIBYTE (val);
2115 return val;
2116 }
2117
2118
2119 /* Make a string from NCHARS characters occupying NBYTES bytes at
2120 CONTENTS. The argument MULTIBYTE controls whether to label the
2121 string as multibyte. If NCHARS is negative, it counts the number of
2122 characters by itself. */
2123
2124 Lisp_Object
2125 make_specified_string (const char *contents,
2126 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2127 {
2128 Lisp_Object val;
2129
2130 if (nchars < 0)
2131 {
2132 if (multibyte)
2133 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2134 nbytes);
2135 else
2136 nchars = nbytes;
2137 }
2138 val = make_uninit_multibyte_string (nchars, nbytes);
2139 memcpy (SDATA (val), contents, nbytes);
2140 if (!multibyte)
2141 STRING_SET_UNIBYTE (val);
2142 return val;
2143 }
2144
2145
2146 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2147 occupying LENGTH bytes. */
2148
2149 Lisp_Object
2150 make_uninit_string (EMACS_INT length)
2151 {
2152 Lisp_Object val;
2153
2154 if (!length)
2155 return empty_unibyte_string;
2156 val = make_uninit_multibyte_string (length, length);
2157 STRING_SET_UNIBYTE (val);
2158 return val;
2159 }
2160
2161
2162 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2163 which occupy NBYTES bytes. */
2164
2165 Lisp_Object
2166 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2167 {
2168 Lisp_Object string;
2169 struct Lisp_String *s;
2170
2171 if (nchars < 0)
2172 emacs_abort ();
2173 if (!nbytes)
2174 return empty_multibyte_string;
2175
2176 s = allocate_string ();
2177 s->intervals = NULL;
2178 allocate_string_data (s, nchars, nbytes);
2179 XSETSTRING (string, s);
2180 string_chars_consed += nbytes;
2181 return string;
2182 }
2183
2184 /* Print arguments to BUF according to a FORMAT, then return
2185 a Lisp_String initialized with the data from BUF. */
2186
2187 Lisp_Object
2188 make_formatted_string (char *buf, const char *format, ...)
2189 {
2190 va_list ap;
2191 int length;
2192
2193 va_start (ap, format);
2194 length = vsprintf (buf, format, ap);
2195 va_end (ap);
2196 return make_string (buf, length);
2197 }
2198
2199 \f
2200 /***********************************************************************
2201 Float Allocation
2202 ***********************************************************************/
2203
2204 /* We store float cells inside of float_blocks, allocating a new
2205 float_block with malloc whenever necessary. Float cells reclaimed
2206 by GC are put on a free list to be reallocated before allocating
2207 any new float cells from the latest float_block. */
2208
2209 #define FLOAT_BLOCK_SIZE \
2210 (((BLOCK_BYTES - sizeof (struct float_block *) \
2211 /* The compiler might add padding at the end. */ \
2212 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2213 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2214
2215 #define GETMARKBIT(block,n) \
2216 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2217 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2218 & 1)
2219
2220 #define SETMARKBIT(block,n) \
2221 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2222 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2223
2224 #define UNSETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2227
2228 #define FLOAT_BLOCK(fptr) \
2229 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2230
2231 #define FLOAT_INDEX(fptr) \
2232 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2233
2234 struct float_block
2235 {
2236 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2237 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2238 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2239 struct float_block *next;
2240 };
2241
2242 #define FLOAT_MARKED_P(fptr) \
2243 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2244
2245 #define FLOAT_MARK(fptr) \
2246 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2247
2248 #define FLOAT_UNMARK(fptr) \
2249 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2250
2251 /* Current float_block. */
2252
2253 static struct float_block *float_block;
2254
2255 /* Index of first unused Lisp_Float in the current float_block. */
2256
2257 static int float_block_index = FLOAT_BLOCK_SIZE;
2258
2259 /* Free-list of Lisp_Floats. */
2260
2261 static struct Lisp_Float *float_free_list;
2262
2263 /* Return a new float object with value FLOAT_VALUE. */
2264
2265 Lisp_Object
2266 make_float (double float_value)
2267 {
2268 register Lisp_Object val;
2269
2270 MALLOC_BLOCK_INPUT;
2271
2272 if (float_free_list)
2273 {
2274 /* We use the data field for chaining the free list
2275 so that we won't use the same field that has the mark bit. */
2276 XSETFLOAT (val, float_free_list);
2277 float_free_list = float_free_list->u.chain;
2278 }
2279 else
2280 {
2281 if (float_block_index == FLOAT_BLOCK_SIZE)
2282 {
2283 struct float_block *new
2284 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2285 new->next = float_block;
2286 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2287 float_block = new;
2288 float_block_index = 0;
2289 total_free_floats += FLOAT_BLOCK_SIZE;
2290 }
2291 XSETFLOAT (val, &float_block->floats[float_block_index]);
2292 float_block_index++;
2293 }
2294
2295 MALLOC_UNBLOCK_INPUT;
2296
2297 XFLOAT_INIT (val, float_value);
2298 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2299 consing_since_gc += sizeof (struct Lisp_Float);
2300 floats_consed++;
2301 total_free_floats--;
2302 return val;
2303 }
2304
2305
2306 \f
2307 /***********************************************************************
2308 Cons Allocation
2309 ***********************************************************************/
2310
2311 /* We store cons cells inside of cons_blocks, allocating a new
2312 cons_block with malloc whenever necessary. Cons cells reclaimed by
2313 GC are put on a free list to be reallocated before allocating
2314 any new cons cells from the latest cons_block. */
2315
2316 #define CONS_BLOCK_SIZE \
2317 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2318 /* The compiler might add padding at the end. */ \
2319 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2320 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2321
2322 #define CONS_BLOCK(fptr) \
2323 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2324
2325 #define CONS_INDEX(fptr) \
2326 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2327
2328 struct cons_block
2329 {
2330 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2331 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2332 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2333 struct cons_block *next;
2334 };
2335
2336 #define CONS_MARKED_P(fptr) \
2337 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2338
2339 #define CONS_MARK(fptr) \
2340 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2341
2342 #define CONS_UNMARK(fptr) \
2343 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2344
2345 /* Current cons_block. */
2346
2347 static struct cons_block *cons_block;
2348
2349 /* Index of first unused Lisp_Cons in the current block. */
2350
2351 static int cons_block_index = CONS_BLOCK_SIZE;
2352
2353 /* Free-list of Lisp_Cons structures. */
2354
2355 static struct Lisp_Cons *cons_free_list;
2356
2357 /* Explicitly free a cons cell by putting it on the free-list. */
2358
2359 void
2360 free_cons (struct Lisp_Cons *ptr)
2361 {
2362 ptr->u.chain = cons_free_list;
2363 #if GC_MARK_STACK
2364 ptr->car = Vdead;
2365 #endif
2366 cons_free_list = ptr;
2367 consing_since_gc -= sizeof *ptr;
2368 total_free_conses++;
2369 }
2370
2371 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2372 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2373 (Lisp_Object car, Lisp_Object cdr)
2374 {
2375 register Lisp_Object val;
2376
2377 MALLOC_BLOCK_INPUT;
2378
2379 if (cons_free_list)
2380 {
2381 /* We use the cdr for chaining the free list
2382 so that we won't use the same field that has the mark bit. */
2383 XSETCONS (val, cons_free_list);
2384 cons_free_list = cons_free_list->u.chain;
2385 }
2386 else
2387 {
2388 if (cons_block_index == CONS_BLOCK_SIZE)
2389 {
2390 struct cons_block *new
2391 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2392 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2393 new->next = cons_block;
2394 cons_block = new;
2395 cons_block_index = 0;
2396 total_free_conses += CONS_BLOCK_SIZE;
2397 }
2398 XSETCONS (val, &cons_block->conses[cons_block_index]);
2399 cons_block_index++;
2400 }
2401
2402 MALLOC_UNBLOCK_INPUT;
2403
2404 XSETCAR (val, car);
2405 XSETCDR (val, cdr);
2406 eassert (!CONS_MARKED_P (XCONS (val)));
2407 consing_since_gc += sizeof (struct Lisp_Cons);
2408 total_free_conses--;
2409 cons_cells_consed++;
2410 return val;
2411 }
2412
2413 #ifdef GC_CHECK_CONS_LIST
2414 /* Get an error now if there's any junk in the cons free list. */
2415 void
2416 check_cons_list (void)
2417 {
2418 struct Lisp_Cons *tail = cons_free_list;
2419
2420 while (tail)
2421 tail = tail->u.chain;
2422 }
2423 #endif
2424
2425 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2426
2427 Lisp_Object
2428 list1 (Lisp_Object arg1)
2429 {
2430 return Fcons (arg1, Qnil);
2431 }
2432
2433 Lisp_Object
2434 list2 (Lisp_Object arg1, Lisp_Object arg2)
2435 {
2436 return Fcons (arg1, Fcons (arg2, Qnil));
2437 }
2438
2439
2440 Lisp_Object
2441 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2444 }
2445
2446
2447 Lisp_Object
2448 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2449 {
2450 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2451 }
2452
2453
2454 Lisp_Object
2455 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2456 {
2457 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2458 Fcons (arg5, Qnil)))));
2459 }
2460
2461 /* Make a list of COUNT Lisp_Objects, where ARG is the
2462 first one. Allocate conses from pure space if TYPE
2463 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2464
2465 Lisp_Object
2466 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2467 {
2468 va_list ap;
2469 ptrdiff_t i;
2470 Lisp_Object val, *objp;
2471
2472 /* Change to SAFE_ALLOCA if you hit this eassert. */
2473 eassert (count <= MAX_ALLOCA / word_size);
2474
2475 objp = alloca (count * word_size);
2476 objp[0] = arg;
2477 va_start (ap, arg);
2478 for (i = 1; i < count; i++)
2479 objp[i] = va_arg (ap, Lisp_Object);
2480 va_end (ap);
2481
2482 for (val = Qnil, i = count - 1; i >= 0; i--)
2483 {
2484 if (type == CONSTYPE_PURE)
2485 val = pure_cons (objp[i], val);
2486 else if (type == CONSTYPE_HEAP)
2487 val = Fcons (objp[i], val);
2488 else
2489 emacs_abort ();
2490 }
2491 return val;
2492 }
2493
2494 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2495 doc: /* Return a newly created list with specified arguments as elements.
2496 Any number of arguments, even zero arguments, are allowed.
2497 usage: (list &rest OBJECTS) */)
2498 (ptrdiff_t nargs, Lisp_Object *args)
2499 {
2500 register Lisp_Object val;
2501 val = Qnil;
2502
2503 while (nargs > 0)
2504 {
2505 nargs--;
2506 val = Fcons (args[nargs], val);
2507 }
2508 return val;
2509 }
2510
2511
2512 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2513 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2514 (register Lisp_Object length, Lisp_Object init)
2515 {
2516 register Lisp_Object val;
2517 register EMACS_INT size;
2518
2519 CHECK_NATNUM (length);
2520 size = XFASTINT (length);
2521
2522 val = Qnil;
2523 while (size > 0)
2524 {
2525 val = Fcons (init, val);
2526 --size;
2527
2528 if (size > 0)
2529 {
2530 val = Fcons (init, val);
2531 --size;
2532
2533 if (size > 0)
2534 {
2535 val = Fcons (init, val);
2536 --size;
2537
2538 if (size > 0)
2539 {
2540 val = Fcons (init, val);
2541 --size;
2542
2543 if (size > 0)
2544 {
2545 val = Fcons (init, val);
2546 --size;
2547 }
2548 }
2549 }
2550 }
2551
2552 QUIT;
2553 }
2554
2555 return val;
2556 }
2557
2558
2559 \f
2560 /***********************************************************************
2561 Vector Allocation
2562 ***********************************************************************/
2563
2564 /* This value is balanced well enough to avoid too much internal overhead
2565 for the most common cases; it's not required to be a power of two, but
2566 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2567
2568 #define VECTOR_BLOCK_SIZE 4096
2569
2570 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2571 enum
2572 {
2573 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2574 };
2575
2576 /* ROUNDUP_SIZE must be a power of 2. */
2577 verify ((roundup_size & (roundup_size - 1)) == 0);
2578
2579 /* Verify assumptions described above. */
2580 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2581 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2582
2583 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2584
2585 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2586
2587 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2588
2589 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2590
2591 /* Size of the minimal vector allocated from block. */
2592
2593 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2594
2595 /* Size of the largest vector allocated from block. */
2596
2597 #define VBLOCK_BYTES_MAX \
2598 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2599
2600 /* We maintain one free list for each possible block-allocated
2601 vector size, and this is the number of free lists we have. */
2602
2603 #define VECTOR_MAX_FREE_LIST_INDEX \
2604 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2605
2606 /* Common shortcut to advance vector pointer over a block data. */
2607
2608 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2609
2610 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2611
2612 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2613
2614 /* Get and set the next field in block-allocated vectorlike objects on
2615 the free list. Doing it this way respects C's aliasing rules.
2616 We could instead make 'contents' a union, but that would mean
2617 changes everywhere that the code uses 'contents'. */
2618 static struct Lisp_Vector *
2619 next_in_free_list (struct Lisp_Vector *v)
2620 {
2621 intptr_t i = XLI (v->contents[0]);
2622 return (struct Lisp_Vector *) i;
2623 }
2624 static void
2625 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2626 {
2627 v->contents[0] = XIL ((intptr_t) next);
2628 }
2629
2630 /* Common shortcut to setup vector on a free list. */
2631
2632 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2633 do { \
2634 (tmp) = ((nbytes - header_size) / word_size); \
2635 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2636 eassert ((nbytes) % roundup_size == 0); \
2637 (tmp) = VINDEX (nbytes); \
2638 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2639 set_next_in_free_list (v, vector_free_lists[tmp]); \
2640 vector_free_lists[tmp] = (v); \
2641 total_free_vector_slots += (nbytes) / word_size; \
2642 } while (0)
2643
2644 /* This internal type is used to maintain the list of large vectors
2645 which are allocated at their own, e.g. outside of vector blocks. */
2646
2647 struct large_vector
2648 {
2649 union {
2650 struct large_vector *vector;
2651 #if USE_LSB_TAG
2652 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2653 unsigned char c[vroundup (sizeof (struct large_vector *))];
2654 #endif
2655 } next;
2656 struct Lisp_Vector v;
2657 };
2658
2659 /* This internal type is used to maintain an underlying storage
2660 for small vectors. */
2661
2662 struct vector_block
2663 {
2664 char data[VECTOR_BLOCK_BYTES];
2665 struct vector_block *next;
2666 };
2667
2668 /* Chain of vector blocks. */
2669
2670 static struct vector_block *vector_blocks;
2671
2672 /* Vector free lists, where NTH item points to a chain of free
2673 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2674
2675 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2676
2677 /* Singly-linked list of large vectors. */
2678
2679 static struct large_vector *large_vectors;
2680
2681 /* The only vector with 0 slots, allocated from pure space. */
2682
2683 Lisp_Object zero_vector;
2684
2685 /* Number of live vectors. */
2686
2687 static EMACS_INT total_vectors;
2688
2689 /* Total size of live and free vectors, in Lisp_Object units. */
2690
2691 static EMACS_INT total_vector_slots, total_free_vector_slots;
2692
2693 /* Get a new vector block. */
2694
2695 static struct vector_block *
2696 allocate_vector_block (void)
2697 {
2698 struct vector_block *block = xmalloc (sizeof *block);
2699
2700 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2701 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2702 MEM_TYPE_VECTOR_BLOCK);
2703 #endif
2704
2705 block->next = vector_blocks;
2706 vector_blocks = block;
2707 return block;
2708 }
2709
2710 /* Called once to initialize vector allocation. */
2711
2712 static void
2713 init_vectors (void)
2714 {
2715 zero_vector = make_pure_vector (0);
2716 }
2717
2718 /* Allocate vector from a vector block. */
2719
2720 static struct Lisp_Vector *
2721 allocate_vector_from_block (size_t nbytes)
2722 {
2723 struct Lisp_Vector *vector;
2724 struct vector_block *block;
2725 size_t index, restbytes;
2726
2727 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2728 eassert (nbytes % roundup_size == 0);
2729
2730 /* First, try to allocate from a free list
2731 containing vectors of the requested size. */
2732 index = VINDEX (nbytes);
2733 if (vector_free_lists[index])
2734 {
2735 vector = vector_free_lists[index];
2736 vector_free_lists[index] = next_in_free_list (vector);
2737 total_free_vector_slots -= nbytes / word_size;
2738 return vector;
2739 }
2740
2741 /* Next, check free lists containing larger vectors. Since
2742 we will split the result, we should have remaining space
2743 large enough to use for one-slot vector at least. */
2744 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2745 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2746 if (vector_free_lists[index])
2747 {
2748 /* This vector is larger than requested. */
2749 vector = vector_free_lists[index];
2750 vector_free_lists[index] = next_in_free_list (vector);
2751 total_free_vector_slots -= nbytes / word_size;
2752
2753 /* Excess bytes are used for the smaller vector,
2754 which should be set on an appropriate free list. */
2755 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2756 eassert (restbytes % roundup_size == 0);
2757 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2758 return vector;
2759 }
2760
2761 /* Finally, need a new vector block. */
2762 block = allocate_vector_block ();
2763
2764 /* New vector will be at the beginning of this block. */
2765 vector = (struct Lisp_Vector *) block->data;
2766
2767 /* If the rest of space from this block is large enough
2768 for one-slot vector at least, set up it on a free list. */
2769 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2770 if (restbytes >= VBLOCK_BYTES_MIN)
2771 {
2772 eassert (restbytes % roundup_size == 0);
2773 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2774 }
2775 return vector;
2776 }
2777
2778 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2779
2780 #define VECTOR_IN_BLOCK(vector, block) \
2781 ((char *) (vector) <= (block)->data \
2782 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2783
2784 /* Return the memory footprint of V in bytes. */
2785
2786 static ptrdiff_t
2787 vector_nbytes (struct Lisp_Vector *v)
2788 {
2789 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2790
2791 if (size & PSEUDOVECTOR_FLAG)
2792 {
2793 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2794 size = (bool_header_size
2795 + (((struct Lisp_Bool_Vector *) v)->size
2796 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2797 / BOOL_VECTOR_BITS_PER_CHAR);
2798 else
2799 size = (header_size
2800 + ((size & PSEUDOVECTOR_SIZE_MASK)
2801 + ((size & PSEUDOVECTOR_REST_MASK)
2802 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2803 }
2804 else
2805 size = header_size + size * word_size;
2806 return vroundup (size);
2807 }
2808
2809 /* Reclaim space used by unmarked vectors. */
2810
2811 static void
2812 sweep_vectors (void)
2813 {
2814 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2815 struct large_vector *lv, **lvprev = &large_vectors;
2816 struct Lisp_Vector *vector, *next;
2817
2818 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2819 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2820
2821 /* Looking through vector blocks. */
2822
2823 for (block = vector_blocks; block; block = *bprev)
2824 {
2825 bool free_this_block = 0;
2826 ptrdiff_t nbytes;
2827
2828 for (vector = (struct Lisp_Vector *) block->data;
2829 VECTOR_IN_BLOCK (vector, block); vector = next)
2830 {
2831 if (VECTOR_MARKED_P (vector))
2832 {
2833 VECTOR_UNMARK (vector);
2834 total_vectors++;
2835 nbytes = vector_nbytes (vector);
2836 total_vector_slots += nbytes / word_size;
2837 next = ADVANCE (vector, nbytes);
2838 }
2839 else
2840 {
2841 ptrdiff_t total_bytes;
2842
2843 nbytes = vector_nbytes (vector);
2844 total_bytes = nbytes;
2845 next = ADVANCE (vector, nbytes);
2846
2847 /* While NEXT is not marked, try to coalesce with VECTOR,
2848 thus making VECTOR of the largest possible size. */
2849
2850 while (VECTOR_IN_BLOCK (next, block))
2851 {
2852 if (VECTOR_MARKED_P (next))
2853 break;
2854 nbytes = vector_nbytes (next);
2855 total_bytes += nbytes;
2856 next = ADVANCE (next, nbytes);
2857 }
2858
2859 eassert (total_bytes % roundup_size == 0);
2860
2861 if (vector == (struct Lisp_Vector *) block->data
2862 && !VECTOR_IN_BLOCK (next, block))
2863 /* This block should be freed because all of it's
2864 space was coalesced into the only free vector. */
2865 free_this_block = 1;
2866 else
2867 {
2868 int tmp;
2869 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2870 }
2871 }
2872 }
2873
2874 if (free_this_block)
2875 {
2876 *bprev = block->next;
2877 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2878 mem_delete (mem_find (block->data));
2879 #endif
2880 xfree (block);
2881 }
2882 else
2883 bprev = &block->next;
2884 }
2885
2886 /* Sweep large vectors. */
2887
2888 for (lv = large_vectors; lv; lv = *lvprev)
2889 {
2890 vector = &lv->v;
2891 if (VECTOR_MARKED_P (vector))
2892 {
2893 VECTOR_UNMARK (vector);
2894 total_vectors++;
2895 if (vector->header.size & PSEUDOVECTOR_FLAG)
2896 {
2897 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2898
2899 /* All non-bool pseudovectors are small enough to be allocated
2900 from vector blocks. This code should be redesigned if some
2901 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2902 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2903
2904 total_vector_slots
2905 += (bool_header_size
2906 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2907 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2908 }
2909 else
2910 total_vector_slots
2911 += header_size / word_size + vector->header.size;
2912 lvprev = &lv->next.vector;
2913 }
2914 else
2915 {
2916 *lvprev = lv->next.vector;
2917 lisp_free (lv);
2918 }
2919 }
2920 }
2921
2922 /* Value is a pointer to a newly allocated Lisp_Vector structure
2923 with room for LEN Lisp_Objects. */
2924
2925 static struct Lisp_Vector *
2926 allocate_vectorlike (ptrdiff_t len)
2927 {
2928 struct Lisp_Vector *p;
2929
2930 MALLOC_BLOCK_INPUT;
2931
2932 if (len == 0)
2933 p = XVECTOR (zero_vector);
2934 else
2935 {
2936 size_t nbytes = header_size + len * word_size;
2937
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2940 because mapped region contents are not preserved in
2941 a dumped Emacs. */
2942 mallopt (M_MMAP_MAX, 0);
2943 #endif
2944
2945 if (nbytes <= VBLOCK_BYTES_MAX)
2946 p = allocate_vector_from_block (vroundup (nbytes));
2947 else
2948 {
2949 struct large_vector *lv
2950 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2951 MEM_TYPE_VECTORLIKE);
2952 lv->next.vector = large_vectors;
2953 large_vectors = lv;
2954 p = &lv->v;
2955 }
2956
2957 #ifdef DOUG_LEA_MALLOC
2958 /* Back to a reasonable maximum of mmap'ed areas. */
2959 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2960 #endif
2961
2962 consing_since_gc += nbytes;
2963 vector_cells_consed += len;
2964 }
2965
2966 MALLOC_UNBLOCK_INPUT;
2967
2968 return p;
2969 }
2970
2971
2972 /* Allocate a vector with LEN slots. */
2973
2974 struct Lisp_Vector *
2975 allocate_vector (EMACS_INT len)
2976 {
2977 struct Lisp_Vector *v;
2978 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2979
2980 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2981 memory_full (SIZE_MAX);
2982 v = allocate_vectorlike (len);
2983 v->header.size = len;
2984 return v;
2985 }
2986
2987
2988 /* Allocate other vector-like structures. */
2989
2990 struct Lisp_Vector *
2991 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2992 {
2993 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2994 int i;
2995
2996 /* Catch bogus values. */
2997 eassert (tag <= PVEC_FONT);
2998 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2999 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3000
3001 /* Only the first lisplen slots will be traced normally by the GC. */
3002 for (i = 0; i < lisplen; ++i)
3003 v->contents[i] = Qnil;
3004
3005 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3006 return v;
3007 }
3008
3009 struct buffer *
3010 allocate_buffer (void)
3011 {
3012 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3013
3014 BUFFER_PVEC_INIT (b);
3015 /* Put B on the chain of all buffers including killed ones. */
3016 b->next = all_buffers;
3017 all_buffers = b;
3018 /* Note that the rest fields of B are not initialized. */
3019 return b;
3020 }
3021
3022 struct Lisp_Hash_Table *
3023 allocate_hash_table (void)
3024 {
3025 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3026 }
3027
3028 struct window *
3029 allocate_window (void)
3030 {
3031 struct window *w;
3032
3033 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3034 /* Users assumes that non-Lisp data is zeroed. */
3035 memset (&w->current_matrix, 0,
3036 sizeof (*w) - offsetof (struct window, current_matrix));
3037 return w;
3038 }
3039
3040 struct terminal *
3041 allocate_terminal (void)
3042 {
3043 struct terminal *t;
3044
3045 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3046 /* Users assumes that non-Lisp data is zeroed. */
3047 memset (&t->next_terminal, 0,
3048 sizeof (*t) - offsetof (struct terminal, next_terminal));
3049 return t;
3050 }
3051
3052 struct frame *
3053 allocate_frame (void)
3054 {
3055 struct frame *f;
3056
3057 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3058 /* Users assumes that non-Lisp data is zeroed. */
3059 memset (&f->face_cache, 0,
3060 sizeof (*f) - offsetof (struct frame, face_cache));
3061 return f;
3062 }
3063
3064 struct Lisp_Process *
3065 allocate_process (void)
3066 {
3067 struct Lisp_Process *p;
3068
3069 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3070 /* Users assumes that non-Lisp data is zeroed. */
3071 memset (&p->pid, 0,
3072 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3073 return p;
3074 }
3075
3076 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3077 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3078 See also the function `vector'. */)
3079 (register Lisp_Object length, Lisp_Object init)
3080 {
3081 Lisp_Object vector;
3082 register ptrdiff_t sizei;
3083 register ptrdiff_t i;
3084 register struct Lisp_Vector *p;
3085
3086 CHECK_NATNUM (length);
3087
3088 p = allocate_vector (XFASTINT (length));
3089 sizei = XFASTINT (length);
3090 for (i = 0; i < sizei; i++)
3091 p->contents[i] = init;
3092
3093 XSETVECTOR (vector, p);
3094 return vector;
3095 }
3096
3097
3098 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3099 doc: /* Return a newly created vector with specified arguments as elements.
3100 Any number of arguments, even zero arguments, are allowed.
3101 usage: (vector &rest OBJECTS) */)
3102 (ptrdiff_t nargs, Lisp_Object *args)
3103 {
3104 register Lisp_Object len, val;
3105 ptrdiff_t i;
3106 register struct Lisp_Vector *p;
3107
3108 XSETFASTINT (len, nargs);
3109 val = Fmake_vector (len, Qnil);
3110 p = XVECTOR (val);
3111 for (i = 0; i < nargs; i++)
3112 p->contents[i] = args[i];
3113 return val;
3114 }
3115
3116 void
3117 make_byte_code (struct Lisp_Vector *v)
3118 {
3119 if (v->header.size > 1 && STRINGP (v->contents[1])
3120 && STRING_MULTIBYTE (v->contents[1]))
3121 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3122 earlier because they produced a raw 8-bit string for byte-code
3123 and now such a byte-code string is loaded as multibyte while
3124 raw 8-bit characters converted to multibyte form. Thus, now we
3125 must convert them back to the original unibyte form. */
3126 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3127 XSETPVECTYPE (v, PVEC_COMPILED);
3128 }
3129
3130 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3131 doc: /* Create a byte-code object with specified arguments as elements.
3132 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3133 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3134 and (optional) INTERACTIVE-SPEC.
3135 The first four arguments are required; at most six have any
3136 significance.
3137 The ARGLIST can be either like the one of `lambda', in which case the arguments
3138 will be dynamically bound before executing the byte code, or it can be an
3139 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3140 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3141 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3142 argument to catch the left-over arguments. If such an integer is used, the
3143 arguments will not be dynamically bound but will be instead pushed on the
3144 stack before executing the byte-code.
3145 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3146 (ptrdiff_t nargs, Lisp_Object *args)
3147 {
3148 register Lisp_Object len, val;
3149 ptrdiff_t i;
3150 register struct Lisp_Vector *p;
3151
3152 /* We used to purecopy everything here, if purify-flag was set. This worked
3153 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3154 dangerous, since make-byte-code is used during execution to build
3155 closures, so any closure built during the preload phase would end up
3156 copied into pure space, including its free variables, which is sometimes
3157 just wasteful and other times plainly wrong (e.g. those free vars may want
3158 to be setcar'd). */
3159
3160 XSETFASTINT (len, nargs);
3161 val = Fmake_vector (len, Qnil);
3162
3163 p = XVECTOR (val);
3164 for (i = 0; i < nargs; i++)
3165 p->contents[i] = args[i];
3166 make_byte_code (p);
3167 XSETCOMPILED (val, p);
3168 return val;
3169 }
3170
3171
3172 \f
3173 /***********************************************************************
3174 Symbol Allocation
3175 ***********************************************************************/
3176
3177 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3178 of the required alignment if LSB tags are used. */
3179
3180 union aligned_Lisp_Symbol
3181 {
3182 struct Lisp_Symbol s;
3183 #if USE_LSB_TAG
3184 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3185 & -GCALIGNMENT];
3186 #endif
3187 };
3188
3189 /* Each symbol_block is just under 1020 bytes long, since malloc
3190 really allocates in units of powers of two and uses 4 bytes for its
3191 own overhead. */
3192
3193 #define SYMBOL_BLOCK_SIZE \
3194 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3195
3196 struct symbol_block
3197 {
3198 /* Place `symbols' first, to preserve alignment. */
3199 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3200 struct symbol_block *next;
3201 };
3202
3203 /* Current symbol block and index of first unused Lisp_Symbol
3204 structure in it. */
3205
3206 static struct symbol_block *symbol_block;
3207 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3208
3209 /* List of free symbols. */
3210
3211 static struct Lisp_Symbol *symbol_free_list;
3212
3213 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3214 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3215 Its value is void, and its function definition and property list are nil. */)
3216 (Lisp_Object name)
3217 {
3218 register Lisp_Object val;
3219 register struct Lisp_Symbol *p;
3220
3221 CHECK_STRING (name);
3222
3223 MALLOC_BLOCK_INPUT;
3224
3225 if (symbol_free_list)
3226 {
3227 XSETSYMBOL (val, symbol_free_list);
3228 symbol_free_list = symbol_free_list->next;
3229 }
3230 else
3231 {
3232 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3233 {
3234 struct symbol_block *new
3235 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3236 new->next = symbol_block;
3237 symbol_block = new;
3238 symbol_block_index = 0;
3239 total_free_symbols += SYMBOL_BLOCK_SIZE;
3240 }
3241 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3242 symbol_block_index++;
3243 }
3244
3245 MALLOC_UNBLOCK_INPUT;
3246
3247 p = XSYMBOL (val);
3248 set_symbol_name (val, name);
3249 set_symbol_plist (val, Qnil);
3250 p->redirect = SYMBOL_PLAINVAL;
3251 SET_SYMBOL_VAL (p, Qunbound);
3252 set_symbol_function (val, Qnil);
3253 set_symbol_next (val, NULL);
3254 p->gcmarkbit = 0;
3255 p->interned = SYMBOL_UNINTERNED;
3256 p->constant = 0;
3257 p->declared_special = 0;
3258 consing_since_gc += sizeof (struct Lisp_Symbol);
3259 symbols_consed++;
3260 total_free_symbols--;
3261 return val;
3262 }
3263
3264
3265 \f
3266 /***********************************************************************
3267 Marker (Misc) Allocation
3268 ***********************************************************************/
3269
3270 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3271 the required alignment when LSB tags are used. */
3272
3273 union aligned_Lisp_Misc
3274 {
3275 union Lisp_Misc m;
3276 #if USE_LSB_TAG
3277 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3278 & -GCALIGNMENT];
3279 #endif
3280 };
3281
3282 /* Allocation of markers and other objects that share that structure.
3283 Works like allocation of conses. */
3284
3285 #define MARKER_BLOCK_SIZE \
3286 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3287
3288 struct marker_block
3289 {
3290 /* Place `markers' first, to preserve alignment. */
3291 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3292 struct marker_block *next;
3293 };
3294
3295 static struct marker_block *marker_block;
3296 static int marker_block_index = MARKER_BLOCK_SIZE;
3297
3298 static union Lisp_Misc *marker_free_list;
3299
3300 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3301
3302 static Lisp_Object
3303 allocate_misc (enum Lisp_Misc_Type type)
3304 {
3305 Lisp_Object val;
3306
3307 MALLOC_BLOCK_INPUT;
3308
3309 if (marker_free_list)
3310 {
3311 XSETMISC (val, marker_free_list);
3312 marker_free_list = marker_free_list->u_free.chain;
3313 }
3314 else
3315 {
3316 if (marker_block_index == MARKER_BLOCK_SIZE)
3317 {
3318 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3319 new->next = marker_block;
3320 marker_block = new;
3321 marker_block_index = 0;
3322 total_free_markers += MARKER_BLOCK_SIZE;
3323 }
3324 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3325 marker_block_index++;
3326 }
3327
3328 MALLOC_UNBLOCK_INPUT;
3329
3330 --total_free_markers;
3331 consing_since_gc += sizeof (union Lisp_Misc);
3332 misc_objects_consed++;
3333 XMISCTYPE (val) = type;
3334 XMISCANY (val)->gcmarkbit = 0;
3335 return val;
3336 }
3337
3338 /* Free a Lisp_Misc object */
3339
3340 static void
3341 free_misc (Lisp_Object misc)
3342 {
3343 XMISCTYPE (misc) = Lisp_Misc_Free;
3344 XMISC (misc)->u_free.chain = marker_free_list;
3345 marker_free_list = XMISC (misc);
3346 consing_since_gc -= sizeof (union Lisp_Misc);
3347 total_free_markers++;
3348 }
3349
3350 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3351 INTEGER. This is used to package C values to call record_unwind_protect.
3352 The unwind function can get the C values back using XSAVE_VALUE. */
3353
3354 Lisp_Object
3355 make_save_value (void *pointer, ptrdiff_t integer)
3356 {
3357 register Lisp_Object val;
3358 register struct Lisp_Save_Value *p;
3359
3360 val = allocate_misc (Lisp_Misc_Save_Value);
3361 p = XSAVE_VALUE (val);
3362 p->pointer = pointer;
3363 p->integer = integer;
3364 p->dogc = 0;
3365 return val;
3366 }
3367
3368 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3369
3370 Lisp_Object
3371 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3372 {
3373 register Lisp_Object overlay;
3374
3375 overlay = allocate_misc (Lisp_Misc_Overlay);
3376 OVERLAY_START (overlay) = start;
3377 OVERLAY_END (overlay) = end;
3378 set_overlay_plist (overlay, plist);
3379 XOVERLAY (overlay)->next = NULL;
3380 return overlay;
3381 }
3382
3383 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3384 doc: /* Return a newly allocated marker which does not point at any place. */)
3385 (void)
3386 {
3387 register Lisp_Object val;
3388 register struct Lisp_Marker *p;
3389
3390 val = allocate_misc (Lisp_Misc_Marker);
3391 p = XMARKER (val);
3392 p->buffer = 0;
3393 p->bytepos = 0;
3394 p->charpos = 0;
3395 p->next = NULL;
3396 p->insertion_type = 0;
3397 return val;
3398 }
3399
3400 /* Return a newly allocated marker which points into BUF
3401 at character position CHARPOS and byte position BYTEPOS. */
3402
3403 Lisp_Object
3404 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3405 {
3406 Lisp_Object obj;
3407 struct Lisp_Marker *m;
3408
3409 /* No dead buffers here. */
3410 eassert (BUFFER_LIVE_P (buf));
3411
3412 /* Every character is at least one byte. */
3413 eassert (charpos <= bytepos);
3414
3415 obj = allocate_misc (Lisp_Misc_Marker);
3416 m = XMARKER (obj);
3417 m->buffer = buf;
3418 m->charpos = charpos;
3419 m->bytepos = bytepos;
3420 m->insertion_type = 0;
3421 m->next = BUF_MARKERS (buf);
3422 BUF_MARKERS (buf) = m;
3423 return obj;
3424 }
3425
3426 /* Put MARKER back on the free list after using it temporarily. */
3427
3428 void
3429 free_marker (Lisp_Object marker)
3430 {
3431 unchain_marker (XMARKER (marker));
3432 free_misc (marker);
3433 }
3434
3435 \f
3436 /* Return a newly created vector or string with specified arguments as
3437 elements. If all the arguments are characters that can fit
3438 in a string of events, make a string; otherwise, make a vector.
3439
3440 Any number of arguments, even zero arguments, are allowed. */
3441
3442 Lisp_Object
3443 make_event_array (register int nargs, Lisp_Object *args)
3444 {
3445 int i;
3446
3447 for (i = 0; i < nargs; i++)
3448 /* The things that fit in a string
3449 are characters that are in 0...127,
3450 after discarding the meta bit and all the bits above it. */
3451 if (!INTEGERP (args[i])
3452 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3453 return Fvector (nargs, args);
3454
3455 /* Since the loop exited, we know that all the things in it are
3456 characters, so we can make a string. */
3457 {
3458 Lisp_Object result;
3459
3460 result = Fmake_string (make_number (nargs), make_number (0));
3461 for (i = 0; i < nargs; i++)
3462 {
3463 SSET (result, i, XINT (args[i]));
3464 /* Move the meta bit to the right place for a string char. */
3465 if (XINT (args[i]) & CHAR_META)
3466 SSET (result, i, SREF (result, i) | 0x80);
3467 }
3468
3469 return result;
3470 }
3471 }
3472
3473
3474 \f
3475 /************************************************************************
3476 Memory Full Handling
3477 ************************************************************************/
3478
3479
3480 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3481 there may have been size_t overflow so that malloc was never
3482 called, or perhaps malloc was invoked successfully but the
3483 resulting pointer had problems fitting into a tagged EMACS_INT. In
3484 either case this counts as memory being full even though malloc did
3485 not fail. */
3486
3487 void
3488 memory_full (size_t nbytes)
3489 {
3490 /* Do not go into hysterics merely because a large request failed. */
3491 bool enough_free_memory = 0;
3492 if (SPARE_MEMORY < nbytes)
3493 {
3494 void *p;
3495
3496 MALLOC_BLOCK_INPUT;
3497 p = malloc (SPARE_MEMORY);
3498 if (p)
3499 {
3500 free (p);
3501 enough_free_memory = 1;
3502 }
3503 MALLOC_UNBLOCK_INPUT;
3504 }
3505
3506 if (! enough_free_memory)
3507 {
3508 int i;
3509
3510 Vmemory_full = Qt;
3511
3512 memory_full_cons_threshold = sizeof (struct cons_block);
3513
3514 /* The first time we get here, free the spare memory. */
3515 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3516 if (spare_memory[i])
3517 {
3518 if (i == 0)
3519 free (spare_memory[i]);
3520 else if (i >= 1 && i <= 4)
3521 lisp_align_free (spare_memory[i]);
3522 else
3523 lisp_free (spare_memory[i]);
3524 spare_memory[i] = 0;
3525 }
3526 }
3527
3528 /* This used to call error, but if we've run out of memory, we could
3529 get infinite recursion trying to build the string. */
3530 xsignal (Qnil, Vmemory_signal_data);
3531 }
3532
3533 /* If we released our reserve (due to running out of memory),
3534 and we have a fair amount free once again,
3535 try to set aside another reserve in case we run out once more.
3536
3537 This is called when a relocatable block is freed in ralloc.c,
3538 and also directly from this file, in case we're not using ralloc.c. */
3539
3540 void
3541 refill_memory_reserve (void)
3542 {
3543 #ifndef SYSTEM_MALLOC
3544 if (spare_memory[0] == 0)
3545 spare_memory[0] = malloc (SPARE_MEMORY);
3546 if (spare_memory[1] == 0)
3547 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3548 MEM_TYPE_SPARE);
3549 if (spare_memory[2] == 0)
3550 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3551 MEM_TYPE_SPARE);
3552 if (spare_memory[3] == 0)
3553 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3554 MEM_TYPE_SPARE);
3555 if (spare_memory[4] == 0)
3556 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3557 MEM_TYPE_SPARE);
3558 if (spare_memory[5] == 0)
3559 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3560 MEM_TYPE_SPARE);
3561 if (spare_memory[6] == 0)
3562 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3563 MEM_TYPE_SPARE);
3564 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3565 Vmemory_full = Qnil;
3566 #endif
3567 }
3568 \f
3569 /************************************************************************
3570 C Stack Marking
3571 ************************************************************************/
3572
3573 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3574
3575 /* Conservative C stack marking requires a method to identify possibly
3576 live Lisp objects given a pointer value. We do this by keeping
3577 track of blocks of Lisp data that are allocated in a red-black tree
3578 (see also the comment of mem_node which is the type of nodes in
3579 that tree). Function lisp_malloc adds information for an allocated
3580 block to the red-black tree with calls to mem_insert, and function
3581 lisp_free removes it with mem_delete. Functions live_string_p etc
3582 call mem_find to lookup information about a given pointer in the
3583 tree, and use that to determine if the pointer points to a Lisp
3584 object or not. */
3585
3586 /* Initialize this part of alloc.c. */
3587
3588 static void
3589 mem_init (void)
3590 {
3591 mem_z.left = mem_z.right = MEM_NIL;
3592 mem_z.parent = NULL;
3593 mem_z.color = MEM_BLACK;
3594 mem_z.start = mem_z.end = NULL;
3595 mem_root = MEM_NIL;
3596 }
3597
3598
3599 /* Value is a pointer to the mem_node containing START. Value is
3600 MEM_NIL if there is no node in the tree containing START. */
3601
3602 static struct mem_node *
3603 mem_find (void *start)
3604 {
3605 struct mem_node *p;
3606
3607 if (start < min_heap_address || start > max_heap_address)
3608 return MEM_NIL;
3609
3610 /* Make the search always successful to speed up the loop below. */
3611 mem_z.start = start;
3612 mem_z.end = (char *) start + 1;
3613
3614 p = mem_root;
3615 while (start < p->start || start >= p->end)
3616 p = start < p->start ? p->left : p->right;
3617 return p;
3618 }
3619
3620
3621 /* Insert a new node into the tree for a block of memory with start
3622 address START, end address END, and type TYPE. Value is a
3623 pointer to the node that was inserted. */
3624
3625 static struct mem_node *
3626 mem_insert (void *start, void *end, enum mem_type type)
3627 {
3628 struct mem_node *c, *parent, *x;
3629
3630 if (min_heap_address == NULL || start < min_heap_address)
3631 min_heap_address = start;
3632 if (max_heap_address == NULL || end > max_heap_address)
3633 max_heap_address = end;
3634
3635 /* See where in the tree a node for START belongs. In this
3636 particular application, it shouldn't happen that a node is already
3637 present. For debugging purposes, let's check that. */
3638 c = mem_root;
3639 parent = NULL;
3640
3641 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3642
3643 while (c != MEM_NIL)
3644 {
3645 if (start >= c->start && start < c->end)
3646 emacs_abort ();
3647 parent = c;
3648 c = start < c->start ? c->left : c->right;
3649 }
3650
3651 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3652
3653 while (c != MEM_NIL)
3654 {
3655 parent = c;
3656 c = start < c->start ? c->left : c->right;
3657 }
3658
3659 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3660
3661 /* Create a new node. */
3662 #ifdef GC_MALLOC_CHECK
3663 x = malloc (sizeof *x);
3664 if (x == NULL)
3665 emacs_abort ();
3666 #else
3667 x = xmalloc (sizeof *x);
3668 #endif
3669 x->start = start;
3670 x->end = end;
3671 x->type = type;
3672 x->parent = parent;
3673 x->left = x->right = MEM_NIL;
3674 x->color = MEM_RED;
3675
3676 /* Insert it as child of PARENT or install it as root. */
3677 if (parent)
3678 {
3679 if (start < parent->start)
3680 parent->left = x;
3681 else
3682 parent->right = x;
3683 }
3684 else
3685 mem_root = x;
3686
3687 /* Re-establish red-black tree properties. */
3688 mem_insert_fixup (x);
3689
3690 return x;
3691 }
3692
3693
3694 /* Re-establish the red-black properties of the tree, and thereby
3695 balance the tree, after node X has been inserted; X is always red. */
3696
3697 static void
3698 mem_insert_fixup (struct mem_node *x)
3699 {
3700 while (x != mem_root && x->parent->color == MEM_RED)
3701 {
3702 /* X is red and its parent is red. This is a violation of
3703 red-black tree property #3. */
3704
3705 if (x->parent == x->parent->parent->left)
3706 {
3707 /* We're on the left side of our grandparent, and Y is our
3708 "uncle". */
3709 struct mem_node *y = x->parent->parent->right;
3710
3711 if (y->color == MEM_RED)
3712 {
3713 /* Uncle and parent are red but should be black because
3714 X is red. Change the colors accordingly and proceed
3715 with the grandparent. */
3716 x->parent->color = MEM_BLACK;
3717 y->color = MEM_BLACK;
3718 x->parent->parent->color = MEM_RED;
3719 x = x->parent->parent;
3720 }
3721 else
3722 {
3723 /* Parent and uncle have different colors; parent is
3724 red, uncle is black. */
3725 if (x == x->parent->right)
3726 {
3727 x = x->parent;
3728 mem_rotate_left (x);
3729 }
3730
3731 x->parent->color = MEM_BLACK;
3732 x->parent->parent->color = MEM_RED;
3733 mem_rotate_right (x->parent->parent);
3734 }
3735 }
3736 else
3737 {
3738 /* This is the symmetrical case of above. */
3739 struct mem_node *y = x->parent->parent->left;
3740
3741 if (y->color == MEM_RED)
3742 {
3743 x->parent->color = MEM_BLACK;
3744 y->color = MEM_BLACK;
3745 x->parent->parent->color = MEM_RED;
3746 x = x->parent->parent;
3747 }
3748 else
3749 {
3750 if (x == x->parent->left)
3751 {
3752 x = x->parent;
3753 mem_rotate_right (x);
3754 }
3755
3756 x->parent->color = MEM_BLACK;
3757 x->parent->parent->color = MEM_RED;
3758 mem_rotate_left (x->parent->parent);
3759 }
3760 }
3761 }
3762
3763 /* The root may have been changed to red due to the algorithm. Set
3764 it to black so that property #5 is satisfied. */
3765 mem_root->color = MEM_BLACK;
3766 }
3767
3768
3769 /* (x) (y)
3770 / \ / \
3771 a (y) ===> (x) c
3772 / \ / \
3773 b c a b */
3774
3775 static void
3776 mem_rotate_left (struct mem_node *x)
3777 {
3778 struct mem_node *y;
3779
3780 /* Turn y's left sub-tree into x's right sub-tree. */
3781 y = x->right;
3782 x->right = y->left;
3783 if (y->left != MEM_NIL)
3784 y->left->parent = x;
3785
3786 /* Y's parent was x's parent. */
3787 if (y != MEM_NIL)
3788 y->parent = x->parent;
3789
3790 /* Get the parent to point to y instead of x. */
3791 if (x->parent)
3792 {
3793 if (x == x->parent->left)
3794 x->parent->left = y;
3795 else
3796 x->parent->right = y;
3797 }
3798 else
3799 mem_root = y;
3800
3801 /* Put x on y's left. */
3802 y->left = x;
3803 if (x != MEM_NIL)
3804 x->parent = y;
3805 }
3806
3807
3808 /* (x) (Y)
3809 / \ / \
3810 (y) c ===> a (x)
3811 / \ / \
3812 a b b c */
3813
3814 static void
3815 mem_rotate_right (struct mem_node *x)
3816 {
3817 struct mem_node *y = x->left;
3818
3819 x->left = y->right;
3820 if (y->right != MEM_NIL)
3821 y->right->parent = x;
3822
3823 if (y != MEM_NIL)
3824 y->parent = x->parent;
3825 if (x->parent)
3826 {
3827 if (x == x->parent->right)
3828 x->parent->right = y;
3829 else
3830 x->parent->left = y;
3831 }
3832 else
3833 mem_root = y;
3834
3835 y->right = x;
3836 if (x != MEM_NIL)
3837 x->parent = y;
3838 }
3839
3840
3841 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3842
3843 static void
3844 mem_delete (struct mem_node *z)
3845 {
3846 struct mem_node *x, *y;
3847
3848 if (!z || z == MEM_NIL)
3849 return;
3850
3851 if (z->left == MEM_NIL || z->right == MEM_NIL)
3852 y = z;
3853 else
3854 {
3855 y = z->right;
3856 while (y->left != MEM_NIL)
3857 y = y->left;
3858 }
3859
3860 if (y->left != MEM_NIL)
3861 x = y->left;
3862 else
3863 x = y->right;
3864
3865 x->parent = y->parent;
3866 if (y->parent)
3867 {
3868 if (y == y->parent->left)
3869 y->parent->left = x;
3870 else
3871 y->parent->right = x;
3872 }
3873 else
3874 mem_root = x;
3875
3876 if (y != z)
3877 {
3878 z->start = y->start;
3879 z->end = y->end;
3880 z->type = y->type;
3881 }
3882
3883 if (y->color == MEM_BLACK)
3884 mem_delete_fixup (x);
3885
3886 #ifdef GC_MALLOC_CHECK
3887 free (y);
3888 #else
3889 xfree (y);
3890 #endif
3891 }
3892
3893
3894 /* Re-establish the red-black properties of the tree, after a
3895 deletion. */
3896
3897 static void
3898 mem_delete_fixup (struct mem_node *x)
3899 {
3900 while (x != mem_root && x->color == MEM_BLACK)
3901 {
3902 if (x == x->parent->left)
3903 {
3904 struct mem_node *w = x->parent->right;
3905
3906 if (w->color == MEM_RED)
3907 {
3908 w->color = MEM_BLACK;
3909 x->parent->color = MEM_RED;
3910 mem_rotate_left (x->parent);
3911 w = x->parent->right;
3912 }
3913
3914 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3915 {
3916 w->color = MEM_RED;
3917 x = x->parent;
3918 }
3919 else
3920 {
3921 if (w->right->color == MEM_BLACK)
3922 {
3923 w->left->color = MEM_BLACK;
3924 w->color = MEM_RED;
3925 mem_rotate_right (w);
3926 w = x->parent->right;
3927 }
3928 w->color = x->parent->color;
3929 x->parent->color = MEM_BLACK;
3930 w->right->color = MEM_BLACK;
3931 mem_rotate_left (x->parent);
3932 x = mem_root;
3933 }
3934 }
3935 else
3936 {
3937 struct mem_node *w = x->parent->left;
3938
3939 if (w->color == MEM_RED)
3940 {
3941 w->color = MEM_BLACK;
3942 x->parent->color = MEM_RED;
3943 mem_rotate_right (x->parent);
3944 w = x->parent->left;
3945 }
3946
3947 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3948 {
3949 w->color = MEM_RED;
3950 x = x->parent;
3951 }
3952 else
3953 {
3954 if (w->left->color == MEM_BLACK)
3955 {
3956 w->right->color = MEM_BLACK;
3957 w->color = MEM_RED;
3958 mem_rotate_left (w);
3959 w = x->parent->left;
3960 }
3961
3962 w->color = x->parent->color;
3963 x->parent->color = MEM_BLACK;
3964 w->left->color = MEM_BLACK;
3965 mem_rotate_right (x->parent);
3966 x = mem_root;
3967 }
3968 }
3969 }
3970
3971 x->color = MEM_BLACK;
3972 }
3973
3974
3975 /* Value is non-zero if P is a pointer to a live Lisp string on
3976 the heap. M is a pointer to the mem_block for P. */
3977
3978 static bool
3979 live_string_p (struct mem_node *m, void *p)
3980 {
3981 if (m->type == MEM_TYPE_STRING)
3982 {
3983 struct string_block *b = (struct string_block *) m->start;
3984 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3985
3986 /* P must point to the start of a Lisp_String structure, and it
3987 must not be on the free-list. */
3988 return (offset >= 0
3989 && offset % sizeof b->strings[0] == 0
3990 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3991 && ((struct Lisp_String *) p)->data != NULL);
3992 }
3993 else
3994 return 0;
3995 }
3996
3997
3998 /* Value is non-zero if P is a pointer to a live Lisp cons on
3999 the heap. M is a pointer to the mem_block for P. */
4000
4001 static bool
4002 live_cons_p (struct mem_node *m, void *p)
4003 {
4004 if (m->type == MEM_TYPE_CONS)
4005 {
4006 struct cons_block *b = (struct cons_block *) m->start;
4007 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4008
4009 /* P must point to the start of a Lisp_Cons, not be
4010 one of the unused cells in the current cons block,
4011 and not be on the free-list. */
4012 return (offset >= 0
4013 && offset % sizeof b->conses[0] == 0
4014 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4015 && (b != cons_block
4016 || offset / sizeof b->conses[0] < cons_block_index)
4017 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4018 }
4019 else
4020 return 0;
4021 }
4022
4023
4024 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4025 the heap. M is a pointer to the mem_block for P. */
4026
4027 static bool
4028 live_symbol_p (struct mem_node *m, void *p)
4029 {
4030 if (m->type == MEM_TYPE_SYMBOL)
4031 {
4032 struct symbol_block *b = (struct symbol_block *) m->start;
4033 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4034
4035 /* P must point to the start of a Lisp_Symbol, not be
4036 one of the unused cells in the current symbol block,
4037 and not be on the free-list. */
4038 return (offset >= 0
4039 && offset % sizeof b->symbols[0] == 0
4040 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4041 && (b != symbol_block
4042 || offset / sizeof b->symbols[0] < symbol_block_index)
4043 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4044 }
4045 else
4046 return 0;
4047 }
4048
4049
4050 /* Value is non-zero if P is a pointer to a live Lisp float on
4051 the heap. M is a pointer to the mem_block for P. */
4052
4053 static bool
4054 live_float_p (struct mem_node *m, void *p)
4055 {
4056 if (m->type == MEM_TYPE_FLOAT)
4057 {
4058 struct float_block *b = (struct float_block *) m->start;
4059 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4060
4061 /* P must point to the start of a Lisp_Float and not be
4062 one of the unused cells in the current float block. */
4063 return (offset >= 0
4064 && offset % sizeof b->floats[0] == 0
4065 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4066 && (b != float_block
4067 || offset / sizeof b->floats[0] < float_block_index));
4068 }
4069 else
4070 return 0;
4071 }
4072
4073
4074 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4075 the heap. M is a pointer to the mem_block for P. */
4076
4077 static bool
4078 live_misc_p (struct mem_node *m, void *p)
4079 {
4080 if (m->type == MEM_TYPE_MISC)
4081 {
4082 struct marker_block *b = (struct marker_block *) m->start;
4083 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4084
4085 /* P must point to the start of a Lisp_Misc, not be
4086 one of the unused cells in the current misc block,
4087 and not be on the free-list. */
4088 return (offset >= 0
4089 && offset % sizeof b->markers[0] == 0
4090 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4091 && (b != marker_block
4092 || offset / sizeof b->markers[0] < marker_block_index)
4093 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4094 }
4095 else
4096 return 0;
4097 }
4098
4099
4100 /* Value is non-zero if P is a pointer to a live vector-like object.
4101 M is a pointer to the mem_block for P. */
4102
4103 static bool
4104 live_vector_p (struct mem_node *m, void *p)
4105 {
4106 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4107 {
4108 /* This memory node corresponds to a vector block. */
4109 struct vector_block *block = (struct vector_block *) m->start;
4110 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4111
4112 /* P is in the block's allocation range. Scan the block
4113 up to P and see whether P points to the start of some
4114 vector which is not on a free list. FIXME: check whether
4115 some allocation patterns (probably a lot of short vectors)
4116 may cause a substantial overhead of this loop. */
4117 while (VECTOR_IN_BLOCK (vector, block)
4118 && vector <= (struct Lisp_Vector *) p)
4119 {
4120 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4121 return 1;
4122 else
4123 vector = ADVANCE (vector, vector_nbytes (vector));
4124 }
4125 }
4126 else if (m->type == MEM_TYPE_VECTORLIKE
4127 && (char *) p == ((char *) m->start
4128 + offsetof (struct large_vector, v)))
4129 /* This memory node corresponds to a large vector. */
4130 return 1;
4131 return 0;
4132 }
4133
4134
4135 /* Value is non-zero if P is a pointer to a live buffer. M is a
4136 pointer to the mem_block for P. */
4137
4138 static bool
4139 live_buffer_p (struct mem_node *m, void *p)
4140 {
4141 /* P must point to the start of the block, and the buffer
4142 must not have been killed. */
4143 return (m->type == MEM_TYPE_BUFFER
4144 && p == m->start
4145 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4146 }
4147
4148 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4149
4150 #if GC_MARK_STACK
4151
4152 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4153
4154 /* Array of objects that are kept alive because the C stack contains
4155 a pattern that looks like a reference to them . */
4156
4157 #define MAX_ZOMBIES 10
4158 static Lisp_Object zombies[MAX_ZOMBIES];
4159
4160 /* Number of zombie objects. */
4161
4162 static EMACS_INT nzombies;
4163
4164 /* Number of garbage collections. */
4165
4166 static EMACS_INT ngcs;
4167
4168 /* Average percentage of zombies per collection. */
4169
4170 static double avg_zombies;
4171
4172 /* Max. number of live and zombie objects. */
4173
4174 static EMACS_INT max_live, max_zombies;
4175
4176 /* Average number of live objects per GC. */
4177
4178 static double avg_live;
4179
4180 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4181 doc: /* Show information about live and zombie objects. */)
4182 (void)
4183 {
4184 Lisp_Object args[8], zombie_list = Qnil;
4185 EMACS_INT i;
4186 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4187 zombie_list = Fcons (zombies[i], zombie_list);
4188 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4189 args[1] = make_number (ngcs);
4190 args[2] = make_float (avg_live);
4191 args[3] = make_float (avg_zombies);
4192 args[4] = make_float (avg_zombies / avg_live / 100);
4193 args[5] = make_number (max_live);
4194 args[6] = make_number (max_zombies);
4195 args[7] = zombie_list;
4196 return Fmessage (8, args);
4197 }
4198
4199 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4200
4201
4202 /* Mark OBJ if we can prove it's a Lisp_Object. */
4203
4204 static void
4205 mark_maybe_object (Lisp_Object obj)
4206 {
4207 void *po;
4208 struct mem_node *m;
4209
4210 if (INTEGERP (obj))
4211 return;
4212
4213 po = (void *) XPNTR (obj);
4214 m = mem_find (po);
4215
4216 if (m != MEM_NIL)
4217 {
4218 bool mark_p = 0;
4219
4220 switch (XTYPE (obj))
4221 {
4222 case Lisp_String:
4223 mark_p = (live_string_p (m, po)
4224 && !STRING_MARKED_P ((struct Lisp_String *) po));
4225 break;
4226
4227 case Lisp_Cons:
4228 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4229 break;
4230
4231 case Lisp_Symbol:
4232 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4233 break;
4234
4235 case Lisp_Float:
4236 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4237 break;
4238
4239 case Lisp_Vectorlike:
4240 /* Note: can't check BUFFERP before we know it's a
4241 buffer because checking that dereferences the pointer
4242 PO which might point anywhere. */
4243 if (live_vector_p (m, po))
4244 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4245 else if (live_buffer_p (m, po))
4246 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4247 break;
4248
4249 case Lisp_Misc:
4250 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4251 break;
4252
4253 default:
4254 break;
4255 }
4256
4257 if (mark_p)
4258 {
4259 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260 if (nzombies < MAX_ZOMBIES)
4261 zombies[nzombies] = obj;
4262 ++nzombies;
4263 #endif
4264 mark_object (obj);
4265 }
4266 }
4267 }
4268
4269
4270 /* If P points to Lisp data, mark that as live if it isn't already
4271 marked. */
4272
4273 static void
4274 mark_maybe_pointer (void *p)
4275 {
4276 struct mem_node *m;
4277
4278 /* Quickly rule out some values which can't point to Lisp data.
4279 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4280 Otherwise, assume that Lisp data is aligned on even addresses. */
4281 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4282 return;
4283
4284 m = mem_find (p);
4285 if (m != MEM_NIL)
4286 {
4287 Lisp_Object obj = Qnil;
4288
4289 switch (m->type)
4290 {
4291 case MEM_TYPE_NON_LISP:
4292 case MEM_TYPE_SPARE:
4293 /* Nothing to do; not a pointer to Lisp memory. */
4294 break;
4295
4296 case MEM_TYPE_BUFFER:
4297 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4298 XSETVECTOR (obj, p);
4299 break;
4300
4301 case MEM_TYPE_CONS:
4302 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4303 XSETCONS (obj, p);
4304 break;
4305
4306 case MEM_TYPE_STRING:
4307 if (live_string_p (m, p)
4308 && !STRING_MARKED_P ((struct Lisp_String *) p))
4309 XSETSTRING (obj, p);
4310 break;
4311
4312 case MEM_TYPE_MISC:
4313 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4314 XSETMISC (obj, p);
4315 break;
4316
4317 case MEM_TYPE_SYMBOL:
4318 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4319 XSETSYMBOL (obj, p);
4320 break;
4321
4322 case MEM_TYPE_FLOAT:
4323 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4324 XSETFLOAT (obj, p);
4325 break;
4326
4327 case MEM_TYPE_VECTORLIKE:
4328 case MEM_TYPE_VECTOR_BLOCK:
4329 if (live_vector_p (m, p))
4330 {
4331 Lisp_Object tem;
4332 XSETVECTOR (tem, p);
4333 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4334 obj = tem;
4335 }
4336 break;
4337
4338 default:
4339 emacs_abort ();
4340 }
4341
4342 if (!NILP (obj))
4343 mark_object (obj);
4344 }
4345 }
4346
4347
4348 /* Alignment of pointer values. Use alignof, as it sometimes returns
4349 a smaller alignment than GCC's __alignof__ and mark_memory might
4350 miss objects if __alignof__ were used. */
4351 #define GC_POINTER_ALIGNMENT alignof (void *)
4352
4353 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4354 not suffice, which is the typical case. A host where a Lisp_Object is
4355 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4356 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4357 suffice to widen it to to a Lisp_Object and check it that way. */
4358 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4359 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4360 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4361 nor mark_maybe_object can follow the pointers. This should not occur on
4362 any practical porting target. */
4363 # error "MSB type bits straddle pointer-word boundaries"
4364 # endif
4365 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4366 pointer words that hold pointers ORed with type bits. */
4367 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4368 #else
4369 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4370 words that hold unmodified pointers. */
4371 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4372 #endif
4373
4374 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4375 or END+OFFSET..START. */
4376
4377 static void
4378 mark_memory (void *start, void *end)
4379 #if defined (__clang__) && defined (__has_feature)
4380 #if __has_feature(address_sanitizer)
4381 /* Do not allow -faddress-sanitizer to check this function, since it
4382 crosses the function stack boundary, and thus would yield many
4383 false positives. */
4384 __attribute__((no_address_safety_analysis))
4385 #endif
4386 #endif
4387 {
4388 void **pp;
4389 int i;
4390
4391 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4392 nzombies = 0;
4393 #endif
4394
4395 /* Make START the pointer to the start of the memory region,
4396 if it isn't already. */
4397 if (end < start)
4398 {
4399 void *tem = start;
4400 start = end;
4401 end = tem;
4402 }
4403
4404 /* Mark Lisp data pointed to. This is necessary because, in some
4405 situations, the C compiler optimizes Lisp objects away, so that
4406 only a pointer to them remains. Example:
4407
4408 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4409 ()
4410 {
4411 Lisp_Object obj = build_string ("test");
4412 struct Lisp_String *s = XSTRING (obj);
4413 Fgarbage_collect ();
4414 fprintf (stderr, "test `%s'\n", s->data);
4415 return Qnil;
4416 }
4417
4418 Here, `obj' isn't really used, and the compiler optimizes it
4419 away. The only reference to the life string is through the
4420 pointer `s'. */
4421
4422 for (pp = start; (void *) pp < end; pp++)
4423 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4424 {
4425 void *p = *(void **) ((char *) pp + i);
4426 mark_maybe_pointer (p);
4427 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4428 mark_maybe_object (XIL ((intptr_t) p));
4429 }
4430 }
4431
4432 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4433 the GCC system configuration. In gcc 3.2, the only systems for
4434 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4435 by others?) and ns32k-pc532-min. */
4436
4437 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4438
4439 static bool setjmp_tested_p;
4440 static int longjmps_done;
4441
4442 #define SETJMP_WILL_LIKELY_WORK "\
4443 \n\
4444 Emacs garbage collector has been changed to use conservative stack\n\
4445 marking. Emacs has determined that the method it uses to do the\n\
4446 marking will likely work on your system, but this isn't sure.\n\
4447 \n\
4448 If you are a system-programmer, or can get the help of a local wizard\n\
4449 who is, please take a look at the function mark_stack in alloc.c, and\n\
4450 verify that the methods used are appropriate for your system.\n\
4451 \n\
4452 Please mail the result to <emacs-devel@gnu.org>.\n\
4453 "
4454
4455 #define SETJMP_WILL_NOT_WORK "\
4456 \n\
4457 Emacs garbage collector has been changed to use conservative stack\n\
4458 marking. Emacs has determined that the default method it uses to do the\n\
4459 marking will not work on your system. We will need a system-dependent\n\
4460 solution for your system.\n\
4461 \n\
4462 Please take a look at the function mark_stack in alloc.c, and\n\
4463 try to find a way to make it work on your system.\n\
4464 \n\
4465 Note that you may get false negatives, depending on the compiler.\n\
4466 In particular, you need to use -O with GCC for this test.\n\
4467 \n\
4468 Please mail the result to <emacs-devel@gnu.org>.\n\
4469 "
4470
4471
4472 /* Perform a quick check if it looks like setjmp saves registers in a
4473 jmp_buf. Print a message to stderr saying so. When this test
4474 succeeds, this is _not_ a proof that setjmp is sufficient for
4475 conservative stack marking. Only the sources or a disassembly
4476 can prove that. */
4477
4478 static void
4479 test_setjmp (void)
4480 {
4481 char buf[10];
4482 register int x;
4483 sys_jmp_buf jbuf;
4484
4485 /* Arrange for X to be put in a register. */
4486 sprintf (buf, "1");
4487 x = strlen (buf);
4488 x = 2 * x - 1;
4489
4490 sys_setjmp (jbuf);
4491 if (longjmps_done == 1)
4492 {
4493 /* Came here after the longjmp at the end of the function.
4494
4495 If x == 1, the longjmp has restored the register to its
4496 value before the setjmp, and we can hope that setjmp
4497 saves all such registers in the jmp_buf, although that
4498 isn't sure.
4499
4500 For other values of X, either something really strange is
4501 taking place, or the setjmp just didn't save the register. */
4502
4503 if (x == 1)
4504 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4505 else
4506 {
4507 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4508 exit (1);
4509 }
4510 }
4511
4512 ++longjmps_done;
4513 x = 2;
4514 if (longjmps_done == 1)
4515 sys_longjmp (jbuf, 1);
4516 }
4517
4518 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4519
4520
4521 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4522
4523 /* Abort if anything GCPRO'd doesn't survive the GC. */
4524
4525 static void
4526 check_gcpros (void)
4527 {
4528 struct gcpro *p;
4529 ptrdiff_t i;
4530
4531 for (p = gcprolist; p; p = p->next)
4532 for (i = 0; i < p->nvars; ++i)
4533 if (!survives_gc_p (p->var[i]))
4534 /* FIXME: It's not necessarily a bug. It might just be that the
4535 GCPRO is unnecessary or should release the object sooner. */
4536 emacs_abort ();
4537 }
4538
4539 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4540
4541 static void
4542 dump_zombies (void)
4543 {
4544 int i;
4545
4546 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4547 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4548 {
4549 fprintf (stderr, " %d = ", i);
4550 debug_print (zombies[i]);
4551 }
4552 }
4553
4554 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4555
4556
4557 /* Mark live Lisp objects on the C stack.
4558
4559 There are several system-dependent problems to consider when
4560 porting this to new architectures:
4561
4562 Processor Registers
4563
4564 We have to mark Lisp objects in CPU registers that can hold local
4565 variables or are used to pass parameters.
4566
4567 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4568 something that either saves relevant registers on the stack, or
4569 calls mark_maybe_object passing it each register's contents.
4570
4571 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4572 implementation assumes that calling setjmp saves registers we need
4573 to see in a jmp_buf which itself lies on the stack. This doesn't
4574 have to be true! It must be verified for each system, possibly
4575 by taking a look at the source code of setjmp.
4576
4577 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4578 can use it as a machine independent method to store all registers
4579 to the stack. In this case the macros described in the previous
4580 two paragraphs are not used.
4581
4582 Stack Layout
4583
4584 Architectures differ in the way their processor stack is organized.
4585 For example, the stack might look like this
4586
4587 +----------------+
4588 | Lisp_Object | size = 4
4589 +----------------+
4590 | something else | size = 2
4591 +----------------+
4592 | Lisp_Object | size = 4
4593 +----------------+
4594 | ... |
4595
4596 In such a case, not every Lisp_Object will be aligned equally. To
4597 find all Lisp_Object on the stack it won't be sufficient to walk
4598 the stack in steps of 4 bytes. Instead, two passes will be
4599 necessary, one starting at the start of the stack, and a second
4600 pass starting at the start of the stack + 2. Likewise, if the
4601 minimal alignment of Lisp_Objects on the stack is 1, four passes
4602 would be necessary, each one starting with one byte more offset
4603 from the stack start. */
4604
4605 static void
4606 mark_stack (void)
4607 {
4608 void *end;
4609
4610 #ifdef HAVE___BUILTIN_UNWIND_INIT
4611 /* Force callee-saved registers and register windows onto the stack.
4612 This is the preferred method if available, obviating the need for
4613 machine dependent methods. */
4614 __builtin_unwind_init ();
4615 end = &end;
4616 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4617 #ifndef GC_SAVE_REGISTERS_ON_STACK
4618 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4619 union aligned_jmpbuf {
4620 Lisp_Object o;
4621 sys_jmp_buf j;
4622 } j;
4623 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4624 #endif
4625 /* This trick flushes the register windows so that all the state of
4626 the process is contained in the stack. */
4627 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4628 needed on ia64 too. See mach_dep.c, where it also says inline
4629 assembler doesn't work with relevant proprietary compilers. */
4630 #ifdef __sparc__
4631 #if defined (__sparc64__) && defined (__FreeBSD__)
4632 /* FreeBSD does not have a ta 3 handler. */
4633 asm ("flushw");
4634 #else
4635 asm ("ta 3");
4636 #endif
4637 #endif
4638
4639 /* Save registers that we need to see on the stack. We need to see
4640 registers used to hold register variables and registers used to
4641 pass parameters. */
4642 #ifdef GC_SAVE_REGISTERS_ON_STACK
4643 GC_SAVE_REGISTERS_ON_STACK (end);
4644 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4645
4646 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4647 setjmp will definitely work, test it
4648 and print a message with the result
4649 of the test. */
4650 if (!setjmp_tested_p)
4651 {
4652 setjmp_tested_p = 1;
4653 test_setjmp ();
4654 }
4655 #endif /* GC_SETJMP_WORKS */
4656
4657 sys_setjmp (j.j);
4658 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4659 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4660 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4661
4662 /* This assumes that the stack is a contiguous region in memory. If
4663 that's not the case, something has to be done here to iterate
4664 over the stack segments. */
4665 mark_memory (stack_base, end);
4666
4667 /* Allow for marking a secondary stack, like the register stack on the
4668 ia64. */
4669 #ifdef GC_MARK_SECONDARY_STACK
4670 GC_MARK_SECONDARY_STACK ();
4671 #endif
4672
4673 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4674 check_gcpros ();
4675 #endif
4676 }
4677
4678 #endif /* GC_MARK_STACK != 0 */
4679
4680
4681 /* Determine whether it is safe to access memory at address P. */
4682 static int
4683 valid_pointer_p (void *p)
4684 {
4685 #ifdef WINDOWSNT
4686 return w32_valid_pointer_p (p, 16);
4687 #else
4688 int fd[2];
4689
4690 /* Obviously, we cannot just access it (we would SEGV trying), so we
4691 trick the o/s to tell us whether p is a valid pointer.
4692 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4693 not validate p in that case. */
4694
4695 if (pipe (fd) == 0)
4696 {
4697 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4698 emacs_close (fd[1]);
4699 emacs_close (fd[0]);
4700 return valid;
4701 }
4702
4703 return -1;
4704 #endif
4705 }
4706
4707 /* Return 2 if OBJ is a killed or special buffer object.
4708 Return 1 if OBJ is a valid lisp object.
4709 Return 0 if OBJ is NOT a valid lisp object.
4710 Return -1 if we cannot validate OBJ.
4711 This function can be quite slow,
4712 so it should only be used in code for manual debugging. */
4713
4714 int
4715 valid_lisp_object_p (Lisp_Object obj)
4716 {
4717 void *p;
4718 #if GC_MARK_STACK
4719 struct mem_node *m;
4720 #endif
4721
4722 if (INTEGERP (obj))
4723 return 1;
4724
4725 p = (void *) XPNTR (obj);
4726 if (PURE_POINTER_P (p))
4727 return 1;
4728
4729 if (p == &buffer_defaults || p == &buffer_local_symbols)
4730 return 2;
4731
4732 #if !GC_MARK_STACK
4733 return valid_pointer_p (p);
4734 #else
4735
4736 m = mem_find (p);
4737
4738 if (m == MEM_NIL)
4739 {
4740 int valid = valid_pointer_p (p);
4741 if (valid <= 0)
4742 return valid;
4743
4744 if (SUBRP (obj))
4745 return 1;
4746
4747 return 0;
4748 }
4749
4750 switch (m->type)
4751 {
4752 case MEM_TYPE_NON_LISP:
4753 case MEM_TYPE_SPARE:
4754 return 0;
4755
4756 case MEM_TYPE_BUFFER:
4757 return live_buffer_p (m, p) ? 1 : 2;
4758
4759 case MEM_TYPE_CONS:
4760 return live_cons_p (m, p);
4761
4762 case MEM_TYPE_STRING:
4763 return live_string_p (m, p);
4764
4765 case MEM_TYPE_MISC:
4766 return live_misc_p (m, p);
4767
4768 case MEM_TYPE_SYMBOL:
4769 return live_symbol_p (m, p);
4770
4771 case MEM_TYPE_FLOAT:
4772 return live_float_p (m, p);
4773
4774 case MEM_TYPE_VECTORLIKE:
4775 case MEM_TYPE_VECTOR_BLOCK:
4776 return live_vector_p (m, p);
4777
4778 default:
4779 break;
4780 }
4781
4782 return 0;
4783 #endif
4784 }
4785
4786
4787
4788 \f
4789 /***********************************************************************
4790 Pure Storage Management
4791 ***********************************************************************/
4792
4793 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4794 pointer to it. TYPE is the Lisp type for which the memory is
4795 allocated. TYPE < 0 means it's not used for a Lisp object. */
4796
4797 static void *
4798 pure_alloc (size_t size, int type)
4799 {
4800 void *result;
4801 #if USE_LSB_TAG
4802 size_t alignment = GCALIGNMENT;
4803 #else
4804 size_t alignment = alignof (EMACS_INT);
4805
4806 /* Give Lisp_Floats an extra alignment. */
4807 if (type == Lisp_Float)
4808 alignment = alignof (struct Lisp_Float);
4809 #endif
4810
4811 again:
4812 if (type >= 0)
4813 {
4814 /* Allocate space for a Lisp object from the beginning of the free
4815 space with taking account of alignment. */
4816 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4817 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4818 }
4819 else
4820 {
4821 /* Allocate space for a non-Lisp object from the end of the free
4822 space. */
4823 pure_bytes_used_non_lisp += size;
4824 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4825 }
4826 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4827
4828 if (pure_bytes_used <= pure_size)
4829 return result;
4830
4831 /* Don't allocate a large amount here,
4832 because it might get mmap'd and then its address
4833 might not be usable. */
4834 purebeg = xmalloc (10000);
4835 pure_size = 10000;
4836 pure_bytes_used_before_overflow += pure_bytes_used - size;
4837 pure_bytes_used = 0;
4838 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4839 goto again;
4840 }
4841
4842
4843 /* Print a warning if PURESIZE is too small. */
4844
4845 void
4846 check_pure_size (void)
4847 {
4848 if (pure_bytes_used_before_overflow)
4849 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4850 " bytes needed)"),
4851 pure_bytes_used + pure_bytes_used_before_overflow);
4852 }
4853
4854
4855 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4856 the non-Lisp data pool of the pure storage, and return its start
4857 address. Return NULL if not found. */
4858
4859 static char *
4860 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4861 {
4862 int i;
4863 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4864 const unsigned char *p;
4865 char *non_lisp_beg;
4866
4867 if (pure_bytes_used_non_lisp <= nbytes)
4868 return NULL;
4869
4870 /* Set up the Boyer-Moore table. */
4871 skip = nbytes + 1;
4872 for (i = 0; i < 256; i++)
4873 bm_skip[i] = skip;
4874
4875 p = (const unsigned char *) data;
4876 while (--skip > 0)
4877 bm_skip[*p++] = skip;
4878
4879 last_char_skip = bm_skip['\0'];
4880
4881 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4882 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4883
4884 /* See the comments in the function `boyer_moore' (search.c) for the
4885 use of `infinity'. */
4886 infinity = pure_bytes_used_non_lisp + 1;
4887 bm_skip['\0'] = infinity;
4888
4889 p = (const unsigned char *) non_lisp_beg + nbytes;
4890 start = 0;
4891 do
4892 {
4893 /* Check the last character (== '\0'). */
4894 do
4895 {
4896 start += bm_skip[*(p + start)];
4897 }
4898 while (start <= start_max);
4899
4900 if (start < infinity)
4901 /* Couldn't find the last character. */
4902 return NULL;
4903
4904 /* No less than `infinity' means we could find the last
4905 character at `p[start - infinity]'. */
4906 start -= infinity;
4907
4908 /* Check the remaining characters. */
4909 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4910 /* Found. */
4911 return non_lisp_beg + start;
4912
4913 start += last_char_skip;
4914 }
4915 while (start <= start_max);
4916
4917 return NULL;
4918 }
4919
4920
4921 /* Return a string allocated in pure space. DATA is a buffer holding
4922 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4923 means make the result string multibyte.
4924
4925 Must get an error if pure storage is full, since if it cannot hold
4926 a large string it may be able to hold conses that point to that
4927 string; then the string is not protected from gc. */
4928
4929 Lisp_Object
4930 make_pure_string (const char *data,
4931 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4932 {
4933 Lisp_Object string;
4934 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4935 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4936 if (s->data == NULL)
4937 {
4938 s->data = pure_alloc (nbytes + 1, -1);
4939 memcpy (s->data, data, nbytes);
4940 s->data[nbytes] = '\0';
4941 }
4942 s->size = nchars;
4943 s->size_byte = multibyte ? nbytes : -1;
4944 s->intervals = NULL;
4945 XSETSTRING (string, s);
4946 return string;
4947 }
4948
4949 /* Return a string allocated in pure space. Do not
4950 allocate the string data, just point to DATA. */
4951
4952 Lisp_Object
4953 make_pure_c_string (const char *data, ptrdiff_t nchars)
4954 {
4955 Lisp_Object string;
4956 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4957 s->size = nchars;
4958 s->size_byte = -1;
4959 s->data = (unsigned char *) data;
4960 s->intervals = NULL;
4961 XSETSTRING (string, s);
4962 return string;
4963 }
4964
4965 /* Return a cons allocated from pure space. Give it pure copies
4966 of CAR as car and CDR as cdr. */
4967
4968 Lisp_Object
4969 pure_cons (Lisp_Object car, Lisp_Object cdr)
4970 {
4971 Lisp_Object new;
4972 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4973 XSETCONS (new, p);
4974 XSETCAR (new, Fpurecopy (car));
4975 XSETCDR (new, Fpurecopy (cdr));
4976 return new;
4977 }
4978
4979
4980 /* Value is a float object with value NUM allocated from pure space. */
4981
4982 static Lisp_Object
4983 make_pure_float (double num)
4984 {
4985 Lisp_Object new;
4986 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
4987 XSETFLOAT (new, p);
4988 XFLOAT_INIT (new, num);
4989 return new;
4990 }
4991
4992
4993 /* Return a vector with room for LEN Lisp_Objects allocated from
4994 pure space. */
4995
4996 static Lisp_Object
4997 make_pure_vector (ptrdiff_t len)
4998 {
4999 Lisp_Object new;
5000 size_t size = header_size + len * word_size;
5001 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5002 XSETVECTOR (new, p);
5003 XVECTOR (new)->header.size = len;
5004 return new;
5005 }
5006
5007
5008 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5009 doc: /* Make a copy of object OBJ in pure storage.
5010 Recursively copies contents of vectors and cons cells.
5011 Does not copy symbols. Copies strings without text properties. */)
5012 (register Lisp_Object obj)
5013 {
5014 if (NILP (Vpurify_flag))
5015 return obj;
5016
5017 if (PURE_POINTER_P (XPNTR (obj)))
5018 return obj;
5019
5020 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5021 {
5022 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5023 if (!NILP (tmp))
5024 return tmp;
5025 }
5026
5027 if (CONSP (obj))
5028 obj = pure_cons (XCAR (obj), XCDR (obj));
5029 else if (FLOATP (obj))
5030 obj = make_pure_float (XFLOAT_DATA (obj));
5031 else if (STRINGP (obj))
5032 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5033 SBYTES (obj),
5034 STRING_MULTIBYTE (obj));
5035 else if (COMPILEDP (obj) || VECTORP (obj))
5036 {
5037 register struct Lisp_Vector *vec;
5038 register ptrdiff_t i;
5039 ptrdiff_t size;
5040
5041 size = ASIZE (obj);
5042 if (size & PSEUDOVECTOR_FLAG)
5043 size &= PSEUDOVECTOR_SIZE_MASK;
5044 vec = XVECTOR (make_pure_vector (size));
5045 for (i = 0; i < size; i++)
5046 vec->contents[i] = Fpurecopy (AREF (obj, i));
5047 if (COMPILEDP (obj))
5048 {
5049 XSETPVECTYPE (vec, PVEC_COMPILED);
5050 XSETCOMPILED (obj, vec);
5051 }
5052 else
5053 XSETVECTOR (obj, vec);
5054 }
5055 else if (MARKERP (obj))
5056 error ("Attempt to copy a marker to pure storage");
5057 else
5058 /* Not purified, don't hash-cons. */
5059 return obj;
5060
5061 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5062 Fputhash (obj, obj, Vpurify_flag);
5063
5064 return obj;
5065 }
5066
5067
5068 \f
5069 /***********************************************************************
5070 Protection from GC
5071 ***********************************************************************/
5072
5073 /* Put an entry in staticvec, pointing at the variable with address
5074 VARADDRESS. */
5075
5076 void
5077 staticpro (Lisp_Object *varaddress)
5078 {
5079 staticvec[staticidx++] = varaddress;
5080 if (staticidx >= NSTATICS)
5081 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5082 }
5083
5084 \f
5085 /***********************************************************************
5086 Protection from GC
5087 ***********************************************************************/
5088
5089 /* Temporarily prevent garbage collection. */
5090
5091 ptrdiff_t
5092 inhibit_garbage_collection (void)
5093 {
5094 ptrdiff_t count = SPECPDL_INDEX ();
5095
5096 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5097 return count;
5098 }
5099
5100 /* Used to avoid possible overflows when
5101 converting from C to Lisp integers. */
5102
5103 static Lisp_Object
5104 bounded_number (EMACS_INT number)
5105 {
5106 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5107 }
5108
5109 /* Calculate total bytes of live objects. */
5110
5111 static size_t
5112 total_bytes_of_live_objects (void)
5113 {
5114 size_t tot = 0;
5115 tot += total_conses * sizeof (struct Lisp_Cons);
5116 tot += total_symbols * sizeof (struct Lisp_Symbol);
5117 tot += total_markers * sizeof (union Lisp_Misc);
5118 tot += total_string_bytes;
5119 tot += total_vector_slots * word_size;
5120 tot += total_floats * sizeof (struct Lisp_Float);
5121 tot += total_intervals * sizeof (struct interval);
5122 tot += total_strings * sizeof (struct Lisp_String);
5123 return tot;
5124 }
5125
5126 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5127 doc: /* Reclaim storage for Lisp objects no longer needed.
5128 Garbage collection happens automatically if you cons more than
5129 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5130 `garbage-collect' normally returns a list with info on amount of space in use,
5131 where each entry has the form (NAME SIZE USED FREE), where:
5132 - NAME is a symbol describing the kind of objects this entry represents,
5133 - SIZE is the number of bytes used by each one,
5134 - USED is the number of those objects that were found live in the heap,
5135 - FREE is the number of those objects that are not live but that Emacs
5136 keeps around for future allocations (maybe because it does not know how
5137 to return them to the OS).
5138 However, if there was overflow in pure space, `garbage-collect'
5139 returns nil, because real GC can't be done.
5140 See Info node `(elisp)Garbage Collection'. */)
5141 (void)
5142 {
5143 struct specbinding *bind;
5144 struct buffer *nextb;
5145 char stack_top_variable;
5146 ptrdiff_t i;
5147 bool message_p;
5148 ptrdiff_t count = SPECPDL_INDEX ();
5149 EMACS_TIME start;
5150 Lisp_Object retval = Qnil;
5151 size_t tot_before = 0;
5152 struct backtrace backtrace;
5153
5154 if (abort_on_gc)
5155 emacs_abort ();
5156
5157 /* Can't GC if pure storage overflowed because we can't determine
5158 if something is a pure object or not. */
5159 if (pure_bytes_used_before_overflow)
5160 return Qnil;
5161
5162 /* Record this function, so it appears on the profiler's backtraces. */
5163 backtrace.next = backtrace_list;
5164 backtrace.function = Qautomatic_gc;
5165 backtrace.args = &Qnil;
5166 backtrace.nargs = 0;
5167 backtrace.debug_on_exit = 0;
5168 backtrace_list = &backtrace;
5169
5170 check_cons_list ();
5171
5172 /* Don't keep undo information around forever.
5173 Do this early on, so it is no problem if the user quits. */
5174 FOR_EACH_BUFFER (nextb)
5175 compact_buffer (nextb);
5176
5177 if (profiler_memory_running)
5178 tot_before = total_bytes_of_live_objects ();
5179
5180 start = current_emacs_time ();
5181
5182 /* In case user calls debug_print during GC,
5183 don't let that cause a recursive GC. */
5184 consing_since_gc = 0;
5185
5186 /* Save what's currently displayed in the echo area. */
5187 message_p = push_message ();
5188 record_unwind_protect (pop_message_unwind, Qnil);
5189
5190 /* Save a copy of the contents of the stack, for debugging. */
5191 #if MAX_SAVE_STACK > 0
5192 if (NILP (Vpurify_flag))
5193 {
5194 char *stack;
5195 ptrdiff_t stack_size;
5196 if (&stack_top_variable < stack_bottom)
5197 {
5198 stack = &stack_top_variable;
5199 stack_size = stack_bottom - &stack_top_variable;
5200 }
5201 else
5202 {
5203 stack = stack_bottom;
5204 stack_size = &stack_top_variable - stack_bottom;
5205 }
5206 if (stack_size <= MAX_SAVE_STACK)
5207 {
5208 if (stack_copy_size < stack_size)
5209 {
5210 stack_copy = xrealloc (stack_copy, stack_size);
5211 stack_copy_size = stack_size;
5212 }
5213 memcpy (stack_copy, stack, stack_size);
5214 }
5215 }
5216 #endif /* MAX_SAVE_STACK > 0 */
5217
5218 if (garbage_collection_messages)
5219 message1_nolog ("Garbage collecting...");
5220
5221 block_input ();
5222
5223 shrink_regexp_cache ();
5224
5225 gc_in_progress = 1;
5226
5227 /* Mark all the special slots that serve as the roots of accessibility. */
5228
5229 mark_buffer (&buffer_defaults);
5230 mark_buffer (&buffer_local_symbols);
5231
5232 for (i = 0; i < staticidx; i++)
5233 mark_object (*staticvec[i]);
5234
5235 for (bind = specpdl; bind != specpdl_ptr; bind++)
5236 {
5237 mark_object (bind->symbol);
5238 mark_object (bind->old_value);
5239 }
5240 mark_terminals ();
5241 mark_kboards ();
5242
5243 #ifdef USE_GTK
5244 xg_mark_data ();
5245 #endif
5246
5247 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5248 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5249 mark_stack ();
5250 #else
5251 {
5252 register struct gcpro *tail;
5253 for (tail = gcprolist; tail; tail = tail->next)
5254 for (i = 0; i < tail->nvars; i++)
5255 mark_object (tail->var[i]);
5256 }
5257 mark_byte_stack ();
5258 {
5259 struct catchtag *catch;
5260 struct handler *handler;
5261
5262 for (catch = catchlist; catch; catch = catch->next)
5263 {
5264 mark_object (catch->tag);
5265 mark_object (catch->val);
5266 }
5267 for (handler = handlerlist; handler; handler = handler->next)
5268 {
5269 mark_object (handler->handler);
5270 mark_object (handler->var);
5271 }
5272 }
5273 mark_backtrace ();
5274 #endif
5275
5276 #ifdef HAVE_WINDOW_SYSTEM
5277 mark_fringe_data ();
5278 #endif
5279
5280 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5281 mark_stack ();
5282 #endif
5283
5284 /* Everything is now marked, except for the things that require special
5285 finalization, i.e. the undo_list.
5286 Look thru every buffer's undo list
5287 for elements that update markers that were not marked,
5288 and delete them. */
5289 FOR_EACH_BUFFER (nextb)
5290 {
5291 /* If a buffer's undo list is Qt, that means that undo is
5292 turned off in that buffer. Calling truncate_undo_list on
5293 Qt tends to return NULL, which effectively turns undo back on.
5294 So don't call truncate_undo_list if undo_list is Qt. */
5295 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5296 {
5297 Lisp_Object tail, prev;
5298 tail = nextb->INTERNAL_FIELD (undo_list);
5299 prev = Qnil;
5300 while (CONSP (tail))
5301 {
5302 if (CONSP (XCAR (tail))
5303 && MARKERP (XCAR (XCAR (tail)))
5304 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5305 {
5306 if (NILP (prev))
5307 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5308 else
5309 {
5310 tail = XCDR (tail);
5311 XSETCDR (prev, tail);
5312 }
5313 }
5314 else
5315 {
5316 prev = tail;
5317 tail = XCDR (tail);
5318 }
5319 }
5320 }
5321 /* Now that we have stripped the elements that need not be in the
5322 undo_list any more, we can finally mark the list. */
5323 mark_object (nextb->INTERNAL_FIELD (undo_list));
5324 }
5325
5326 gc_sweep ();
5327
5328 /* Clear the mark bits that we set in certain root slots. */
5329
5330 unmark_byte_stack ();
5331 VECTOR_UNMARK (&buffer_defaults);
5332 VECTOR_UNMARK (&buffer_local_symbols);
5333
5334 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5335 dump_zombies ();
5336 #endif
5337
5338 unblock_input ();
5339
5340 check_cons_list ();
5341
5342 gc_in_progress = 0;
5343
5344 consing_since_gc = 0;
5345 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5346 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5347
5348 gc_relative_threshold = 0;
5349 if (FLOATP (Vgc_cons_percentage))
5350 { /* Set gc_cons_combined_threshold. */
5351 double tot = total_bytes_of_live_objects ();
5352
5353 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5354 if (0 < tot)
5355 {
5356 if (tot < TYPE_MAXIMUM (EMACS_INT))
5357 gc_relative_threshold = tot;
5358 else
5359 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5360 }
5361 }
5362
5363 if (garbage_collection_messages)
5364 {
5365 if (message_p || minibuf_level > 0)
5366 restore_message ();
5367 else
5368 message1_nolog ("Garbage collecting...done");
5369 }
5370
5371 unbind_to (count, Qnil);
5372 {
5373 Lisp_Object total[11];
5374 int total_size = 10;
5375
5376 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5377 bounded_number (total_conses),
5378 bounded_number (total_free_conses));
5379
5380 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5381 bounded_number (total_symbols),
5382 bounded_number (total_free_symbols));
5383
5384 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5385 bounded_number (total_markers),
5386 bounded_number (total_free_markers));
5387
5388 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5389 bounded_number (total_strings),
5390 bounded_number (total_free_strings));
5391
5392 total[4] = list3 (Qstring_bytes, make_number (1),
5393 bounded_number (total_string_bytes));
5394
5395 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5396 bounded_number (total_vectors));
5397
5398 total[6] = list4 (Qvector_slots, make_number (word_size),
5399 bounded_number (total_vector_slots),
5400 bounded_number (total_free_vector_slots));
5401
5402 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5403 bounded_number (total_floats),
5404 bounded_number (total_free_floats));
5405
5406 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5407 bounded_number (total_intervals),
5408 bounded_number (total_free_intervals));
5409
5410 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5411 bounded_number (total_buffers));
5412
5413 #ifdef DOUG_LEA_MALLOC
5414 total_size++;
5415 total[10] = list4 (Qheap, make_number (1024),
5416 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5417 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5418 #endif
5419 retval = Flist (total_size, total);
5420 }
5421
5422 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5423 {
5424 /* Compute average percentage of zombies. */
5425 double nlive
5426 = (total_conses + total_symbols + total_markers + total_strings
5427 + total_vectors + total_floats + total_intervals + total_buffers);
5428
5429 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5430 max_live = max (nlive, max_live);
5431 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5432 max_zombies = max (nzombies, max_zombies);
5433 ++ngcs;
5434 }
5435 #endif
5436
5437 if (!NILP (Vpost_gc_hook))
5438 {
5439 ptrdiff_t gc_count = inhibit_garbage_collection ();
5440 safe_run_hooks (Qpost_gc_hook);
5441 unbind_to (gc_count, Qnil);
5442 }
5443
5444 /* Accumulate statistics. */
5445 if (FLOATP (Vgc_elapsed))
5446 {
5447 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5448 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5449 + EMACS_TIME_TO_DOUBLE (since_start));
5450 }
5451
5452 gcs_done++;
5453
5454 /* Collect profiling data. */
5455 if (profiler_memory_running)
5456 {
5457 size_t swept = 0;
5458 size_t tot_after = total_bytes_of_live_objects ();
5459 if (tot_before > tot_after)
5460 swept = tot_before - tot_after;
5461 malloc_probe (swept);
5462 }
5463
5464 backtrace_list = backtrace.next;
5465 return retval;
5466 }
5467
5468
5469 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5470 only interesting objects referenced from glyphs are strings. */
5471
5472 static void
5473 mark_glyph_matrix (struct glyph_matrix *matrix)
5474 {
5475 struct glyph_row *row = matrix->rows;
5476 struct glyph_row *end = row + matrix->nrows;
5477
5478 for (; row < end; ++row)
5479 if (row->enabled_p)
5480 {
5481 int area;
5482 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5483 {
5484 struct glyph *glyph = row->glyphs[area];
5485 struct glyph *end_glyph = glyph + row->used[area];
5486
5487 for (; glyph < end_glyph; ++glyph)
5488 if (STRINGP (glyph->object)
5489 && !STRING_MARKED_P (XSTRING (glyph->object)))
5490 mark_object (glyph->object);
5491 }
5492 }
5493 }
5494
5495
5496 /* Mark Lisp faces in the face cache C. */
5497
5498 static void
5499 mark_face_cache (struct face_cache *c)
5500 {
5501 if (c)
5502 {
5503 int i, j;
5504 for (i = 0; i < c->used; ++i)
5505 {
5506 struct face *face = FACE_FROM_ID (c->f, i);
5507
5508 if (face)
5509 {
5510 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5511 mark_object (face->lface[j]);
5512 }
5513 }
5514 }
5515 }
5516
5517
5518 \f
5519 /* Mark reference to a Lisp_Object.
5520 If the object referred to has not been seen yet, recursively mark
5521 all the references contained in it. */
5522
5523 #define LAST_MARKED_SIZE 500
5524 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5525 static int last_marked_index;
5526
5527 /* For debugging--call abort when we cdr down this many
5528 links of a list, in mark_object. In debugging,
5529 the call to abort will hit a breakpoint.
5530 Normally this is zero and the check never goes off. */
5531 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5532
5533 static void
5534 mark_vectorlike (struct Lisp_Vector *ptr)
5535 {
5536 ptrdiff_t size = ptr->header.size;
5537 ptrdiff_t i;
5538
5539 eassert (!VECTOR_MARKED_P (ptr));
5540 VECTOR_MARK (ptr); /* Else mark it. */
5541 if (size & PSEUDOVECTOR_FLAG)
5542 size &= PSEUDOVECTOR_SIZE_MASK;
5543
5544 /* Note that this size is not the memory-footprint size, but only
5545 the number of Lisp_Object fields that we should trace.
5546 The distinction is used e.g. by Lisp_Process which places extra
5547 non-Lisp_Object fields at the end of the structure... */
5548 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5549 mark_object (ptr->contents[i]);
5550 }
5551
5552 /* Like mark_vectorlike but optimized for char-tables (and
5553 sub-char-tables) assuming that the contents are mostly integers or
5554 symbols. */
5555
5556 static void
5557 mark_char_table (struct Lisp_Vector *ptr)
5558 {
5559 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5560 int i;
5561
5562 eassert (!VECTOR_MARKED_P (ptr));
5563 VECTOR_MARK (ptr);
5564 for (i = 0; i < size; i++)
5565 {
5566 Lisp_Object val = ptr->contents[i];
5567
5568 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5569 continue;
5570 if (SUB_CHAR_TABLE_P (val))
5571 {
5572 if (! VECTOR_MARKED_P (XVECTOR (val)))
5573 mark_char_table (XVECTOR (val));
5574 }
5575 else
5576 mark_object (val);
5577 }
5578 }
5579
5580 /* Mark the chain of overlays starting at PTR. */
5581
5582 static void
5583 mark_overlay (struct Lisp_Overlay *ptr)
5584 {
5585 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5586 {
5587 ptr->gcmarkbit = 1;
5588 mark_object (ptr->start);
5589 mark_object (ptr->end);
5590 mark_object (ptr->plist);
5591 }
5592 }
5593
5594 /* Mark Lisp_Objects and special pointers in BUFFER. */
5595
5596 static void
5597 mark_buffer (struct buffer *buffer)
5598 {
5599 /* This is handled much like other pseudovectors... */
5600 mark_vectorlike ((struct Lisp_Vector *) buffer);
5601
5602 /* ...but there are some buffer-specific things. */
5603
5604 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5605
5606 /* For now, we just don't mark the undo_list. It's done later in
5607 a special way just before the sweep phase, and after stripping
5608 some of its elements that are not needed any more. */
5609
5610 mark_overlay (buffer->overlays_before);
5611 mark_overlay (buffer->overlays_after);
5612
5613 /* If this is an indirect buffer, mark its base buffer. */
5614 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5615 mark_buffer (buffer->base_buffer);
5616 }
5617
5618 /* Remove killed buffers or items whose car is a killed buffer from
5619 LIST, and mark other items. Return changed LIST, which is marked. */
5620
5621 static Lisp_Object
5622 mark_discard_killed_buffers (Lisp_Object list)
5623 {
5624 Lisp_Object tail, *prev = &list;
5625
5626 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5627 tail = XCDR (tail))
5628 {
5629 Lisp_Object tem = XCAR (tail);
5630 if (CONSP (tem))
5631 tem = XCAR (tem);
5632 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5633 *prev = XCDR (tail);
5634 else
5635 {
5636 CONS_MARK (XCONS (tail));
5637 mark_object (XCAR (tail));
5638 prev = &XCDR_AS_LVALUE (tail);
5639 }
5640 }
5641 mark_object (tail);
5642 return list;
5643 }
5644
5645 /* Determine type of generic Lisp_Object and mark it accordingly. */
5646
5647 void
5648 mark_object (Lisp_Object arg)
5649 {
5650 register Lisp_Object obj = arg;
5651 #ifdef GC_CHECK_MARKED_OBJECTS
5652 void *po;
5653 struct mem_node *m;
5654 #endif
5655 ptrdiff_t cdr_count = 0;
5656
5657 loop:
5658
5659 if (PURE_POINTER_P (XPNTR (obj)))
5660 return;
5661
5662 last_marked[last_marked_index++] = obj;
5663 if (last_marked_index == LAST_MARKED_SIZE)
5664 last_marked_index = 0;
5665
5666 /* Perform some sanity checks on the objects marked here. Abort if
5667 we encounter an object we know is bogus. This increases GC time
5668 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5669 #ifdef GC_CHECK_MARKED_OBJECTS
5670
5671 po = (void *) XPNTR (obj);
5672
5673 /* Check that the object pointed to by PO is known to be a Lisp
5674 structure allocated from the heap. */
5675 #define CHECK_ALLOCATED() \
5676 do { \
5677 m = mem_find (po); \
5678 if (m == MEM_NIL) \
5679 emacs_abort (); \
5680 } while (0)
5681
5682 /* Check that the object pointed to by PO is live, using predicate
5683 function LIVEP. */
5684 #define CHECK_LIVE(LIVEP) \
5685 do { \
5686 if (!LIVEP (m, po)) \
5687 emacs_abort (); \
5688 } while (0)
5689
5690 /* Check both of the above conditions. */
5691 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5692 do { \
5693 CHECK_ALLOCATED (); \
5694 CHECK_LIVE (LIVEP); \
5695 } while (0) \
5696
5697 #else /* not GC_CHECK_MARKED_OBJECTS */
5698
5699 #define CHECK_LIVE(LIVEP) (void) 0
5700 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5701
5702 #endif /* not GC_CHECK_MARKED_OBJECTS */
5703
5704 switch (XTYPE (obj))
5705 {
5706 case Lisp_String:
5707 {
5708 register struct Lisp_String *ptr = XSTRING (obj);
5709 if (STRING_MARKED_P (ptr))
5710 break;
5711 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5712 MARK_STRING (ptr);
5713 MARK_INTERVAL_TREE (ptr->intervals);
5714 #ifdef GC_CHECK_STRING_BYTES
5715 /* Check that the string size recorded in the string is the
5716 same as the one recorded in the sdata structure. */
5717 string_bytes (ptr);
5718 #endif /* GC_CHECK_STRING_BYTES */
5719 }
5720 break;
5721
5722 case Lisp_Vectorlike:
5723 {
5724 register struct Lisp_Vector *ptr = XVECTOR (obj);
5725 register ptrdiff_t pvectype;
5726
5727 if (VECTOR_MARKED_P (ptr))
5728 break;
5729
5730 #ifdef GC_CHECK_MARKED_OBJECTS
5731 m = mem_find (po);
5732 if (m == MEM_NIL && !SUBRP (obj))
5733 emacs_abort ();
5734 #endif /* GC_CHECK_MARKED_OBJECTS */
5735
5736 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5737 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5738 >> PSEUDOVECTOR_AREA_BITS);
5739 else
5740 pvectype = PVEC_NORMAL_VECTOR;
5741
5742 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5743 CHECK_LIVE (live_vector_p);
5744
5745 switch (pvectype)
5746 {
5747 case PVEC_BUFFER:
5748 #ifdef GC_CHECK_MARKED_OBJECTS
5749 {
5750 struct buffer *b;
5751 FOR_EACH_BUFFER (b)
5752 if (b == po)
5753 break;
5754 if (b == NULL)
5755 emacs_abort ();
5756 }
5757 #endif /* GC_CHECK_MARKED_OBJECTS */
5758 mark_buffer ((struct buffer *) ptr);
5759 break;
5760
5761 case PVEC_COMPILED:
5762 { /* We could treat this just like a vector, but it is better
5763 to save the COMPILED_CONSTANTS element for last and avoid
5764 recursion there. */
5765 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5766 int i;
5767
5768 VECTOR_MARK (ptr);
5769 for (i = 0; i < size; i++)
5770 if (i != COMPILED_CONSTANTS)
5771 mark_object (ptr->contents[i]);
5772 if (size > COMPILED_CONSTANTS)
5773 {
5774 obj = ptr->contents[COMPILED_CONSTANTS];
5775 goto loop;
5776 }
5777 }
5778 break;
5779
5780 case PVEC_FRAME:
5781 mark_vectorlike (ptr);
5782 mark_face_cache (((struct frame *) ptr)->face_cache);
5783 break;
5784
5785 case PVEC_WINDOW:
5786 {
5787 struct window *w = (struct window *) ptr;
5788 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5789
5790 mark_vectorlike (ptr);
5791
5792 /* Mark glyphs for leaf windows. Marking window
5793 matrices is sufficient because frame matrices
5794 use the same glyph memory. */
5795 if (leaf && w->current_matrix)
5796 {
5797 mark_glyph_matrix (w->current_matrix);
5798 mark_glyph_matrix (w->desired_matrix);
5799 }
5800
5801 /* Filter out killed buffers from both buffer lists
5802 in attempt to help GC to reclaim killed buffers faster.
5803 We can do it elsewhere for live windows, but this is the
5804 best place to do it for dead windows. */
5805 wset_prev_buffers
5806 (w, mark_discard_killed_buffers (w->prev_buffers));
5807 wset_next_buffers
5808 (w, mark_discard_killed_buffers (w->next_buffers));
5809 }
5810 break;
5811
5812 case PVEC_HASH_TABLE:
5813 {
5814 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5815
5816 mark_vectorlike (ptr);
5817 mark_object (h->test.name);
5818 mark_object (h->test.user_hash_function);
5819 mark_object (h->test.user_cmp_function);
5820 /* If hash table is not weak, mark all keys and values.
5821 For weak tables, mark only the vector. */
5822 if (NILP (h->weak))
5823 mark_object (h->key_and_value);
5824 else
5825 VECTOR_MARK (XVECTOR (h->key_and_value));
5826 }
5827 break;
5828
5829 case PVEC_CHAR_TABLE:
5830 mark_char_table (ptr);
5831 break;
5832
5833 case PVEC_BOOL_VECTOR:
5834 /* No Lisp_Objects to mark in a bool vector. */
5835 VECTOR_MARK (ptr);
5836 break;
5837
5838 case PVEC_SUBR:
5839 break;
5840
5841 case PVEC_FREE:
5842 emacs_abort ();
5843
5844 default:
5845 mark_vectorlike (ptr);
5846 }
5847 }
5848 break;
5849
5850 case Lisp_Symbol:
5851 {
5852 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5853 struct Lisp_Symbol *ptrx;
5854
5855 if (ptr->gcmarkbit)
5856 break;
5857 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5858 ptr->gcmarkbit = 1;
5859 mark_object (ptr->function);
5860 mark_object (ptr->plist);
5861 switch (ptr->redirect)
5862 {
5863 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5864 case SYMBOL_VARALIAS:
5865 {
5866 Lisp_Object tem;
5867 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5868 mark_object (tem);
5869 break;
5870 }
5871 case SYMBOL_LOCALIZED:
5872 {
5873 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5874 Lisp_Object where = blv->where;
5875 /* If the value is set up for a killed buffer or deleted
5876 frame, restore it's global binding. If the value is
5877 forwarded to a C variable, either it's not a Lisp_Object
5878 var, or it's staticpro'd already. */
5879 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5880 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5881 swap_in_global_binding (ptr);
5882 mark_object (blv->where);
5883 mark_object (blv->valcell);
5884 mark_object (blv->defcell);
5885 break;
5886 }
5887 case SYMBOL_FORWARDED:
5888 /* If the value is forwarded to a buffer or keyboard field,
5889 these are marked when we see the corresponding object.
5890 And if it's forwarded to a C variable, either it's not
5891 a Lisp_Object var, or it's staticpro'd already. */
5892 break;
5893 default: emacs_abort ();
5894 }
5895 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5896 MARK_STRING (XSTRING (ptr->name));
5897 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5898
5899 ptr = ptr->next;
5900 if (ptr)
5901 {
5902 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5903 XSETSYMBOL (obj, ptrx);
5904 goto loop;
5905 }
5906 }
5907 break;
5908
5909 case Lisp_Misc:
5910 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5911
5912 if (XMISCANY (obj)->gcmarkbit)
5913 break;
5914
5915 switch (XMISCTYPE (obj))
5916 {
5917 case Lisp_Misc_Marker:
5918 /* DO NOT mark thru the marker's chain.
5919 The buffer's markers chain does not preserve markers from gc;
5920 instead, markers are removed from the chain when freed by gc. */
5921 XMISCANY (obj)->gcmarkbit = 1;
5922 break;
5923
5924 case Lisp_Misc_Save_Value:
5925 XMISCANY (obj)->gcmarkbit = 1;
5926 #if GC_MARK_STACK
5927 {
5928 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5929 /* If DOGC is set, POINTER is the address of a memory
5930 area containing INTEGER potential Lisp_Objects. */
5931 if (ptr->dogc)
5932 {
5933 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5934 ptrdiff_t nelt;
5935 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5936 mark_maybe_object (*p);
5937 }
5938 }
5939 #endif
5940 break;
5941
5942 case Lisp_Misc_Overlay:
5943 mark_overlay (XOVERLAY (obj));
5944 break;
5945
5946 default:
5947 emacs_abort ();
5948 }
5949 break;
5950
5951 case Lisp_Cons:
5952 {
5953 register struct Lisp_Cons *ptr = XCONS (obj);
5954 if (CONS_MARKED_P (ptr))
5955 break;
5956 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5957 CONS_MARK (ptr);
5958 /* If the cdr is nil, avoid recursion for the car. */
5959 if (EQ (ptr->u.cdr, Qnil))
5960 {
5961 obj = ptr->car;
5962 cdr_count = 0;
5963 goto loop;
5964 }
5965 mark_object (ptr->car);
5966 obj = ptr->u.cdr;
5967 cdr_count++;
5968 if (cdr_count == mark_object_loop_halt)
5969 emacs_abort ();
5970 goto loop;
5971 }
5972
5973 case Lisp_Float:
5974 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5975 FLOAT_MARK (XFLOAT (obj));
5976 break;
5977
5978 case_Lisp_Int:
5979 break;
5980
5981 default:
5982 emacs_abort ();
5983 }
5984
5985 #undef CHECK_LIVE
5986 #undef CHECK_ALLOCATED
5987 #undef CHECK_ALLOCATED_AND_LIVE
5988 }
5989 /* Mark the Lisp pointers in the terminal objects.
5990 Called by Fgarbage_collect. */
5991
5992 static void
5993 mark_terminals (void)
5994 {
5995 struct terminal *t;
5996 for (t = terminal_list; t; t = t->next_terminal)
5997 {
5998 eassert (t->name != NULL);
5999 #ifdef HAVE_WINDOW_SYSTEM
6000 /* If a terminal object is reachable from a stacpro'ed object,
6001 it might have been marked already. Make sure the image cache
6002 gets marked. */
6003 mark_image_cache (t->image_cache);
6004 #endif /* HAVE_WINDOW_SYSTEM */
6005 if (!VECTOR_MARKED_P (t))
6006 mark_vectorlike ((struct Lisp_Vector *)t);
6007 }
6008 }
6009
6010
6011
6012 /* Value is non-zero if OBJ will survive the current GC because it's
6013 either marked or does not need to be marked to survive. */
6014
6015 bool
6016 survives_gc_p (Lisp_Object obj)
6017 {
6018 bool survives_p;
6019
6020 switch (XTYPE (obj))
6021 {
6022 case_Lisp_Int:
6023 survives_p = 1;
6024 break;
6025
6026 case Lisp_Symbol:
6027 survives_p = XSYMBOL (obj)->gcmarkbit;
6028 break;
6029
6030 case Lisp_Misc:
6031 survives_p = XMISCANY (obj)->gcmarkbit;
6032 break;
6033
6034 case Lisp_String:
6035 survives_p = STRING_MARKED_P (XSTRING (obj));
6036 break;
6037
6038 case Lisp_Vectorlike:
6039 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6040 break;
6041
6042 case Lisp_Cons:
6043 survives_p = CONS_MARKED_P (XCONS (obj));
6044 break;
6045
6046 case Lisp_Float:
6047 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6048 break;
6049
6050 default:
6051 emacs_abort ();
6052 }
6053
6054 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6055 }
6056
6057
6058 \f
6059 /* Sweep: find all structures not marked, and free them. */
6060
6061 static void
6062 gc_sweep (void)
6063 {
6064 /* Remove or mark entries in weak hash tables.
6065 This must be done before any object is unmarked. */
6066 sweep_weak_hash_tables ();
6067
6068 sweep_strings ();
6069 check_string_bytes (!noninteractive);
6070
6071 /* Put all unmarked conses on free list */
6072 {
6073 register struct cons_block *cblk;
6074 struct cons_block **cprev = &cons_block;
6075 register int lim = cons_block_index;
6076 EMACS_INT num_free = 0, num_used = 0;
6077
6078 cons_free_list = 0;
6079
6080 for (cblk = cons_block; cblk; cblk = *cprev)
6081 {
6082 register int i = 0;
6083 int this_free = 0;
6084 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6085
6086 /* Scan the mark bits an int at a time. */
6087 for (i = 0; i < ilim; i++)
6088 {
6089 if (cblk->gcmarkbits[i] == -1)
6090 {
6091 /* Fast path - all cons cells for this int are marked. */
6092 cblk->gcmarkbits[i] = 0;
6093 num_used += BITS_PER_INT;
6094 }
6095 else
6096 {
6097 /* Some cons cells for this int are not marked.
6098 Find which ones, and free them. */
6099 int start, pos, stop;
6100
6101 start = i * BITS_PER_INT;
6102 stop = lim - start;
6103 if (stop > BITS_PER_INT)
6104 stop = BITS_PER_INT;
6105 stop += start;
6106
6107 for (pos = start; pos < stop; pos++)
6108 {
6109 if (!CONS_MARKED_P (&cblk->conses[pos]))
6110 {
6111 this_free++;
6112 cblk->conses[pos].u.chain = cons_free_list;
6113 cons_free_list = &cblk->conses[pos];
6114 #if GC_MARK_STACK
6115 cons_free_list->car = Vdead;
6116 #endif
6117 }
6118 else
6119 {
6120 num_used++;
6121 CONS_UNMARK (&cblk->conses[pos]);
6122 }
6123 }
6124 }
6125 }
6126
6127 lim = CONS_BLOCK_SIZE;
6128 /* If this block contains only free conses and we have already
6129 seen more than two blocks worth of free conses then deallocate
6130 this block. */
6131 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6132 {
6133 *cprev = cblk->next;
6134 /* Unhook from the free list. */
6135 cons_free_list = cblk->conses[0].u.chain;
6136 lisp_align_free (cblk);
6137 }
6138 else
6139 {
6140 num_free += this_free;
6141 cprev = &cblk->next;
6142 }
6143 }
6144 total_conses = num_used;
6145 total_free_conses = num_free;
6146 }
6147
6148 /* Put all unmarked floats on free list */
6149 {
6150 register struct float_block *fblk;
6151 struct float_block **fprev = &float_block;
6152 register int lim = float_block_index;
6153 EMACS_INT num_free = 0, num_used = 0;
6154
6155 float_free_list = 0;
6156
6157 for (fblk = float_block; fblk; fblk = *fprev)
6158 {
6159 register int i;
6160 int this_free = 0;
6161 for (i = 0; i < lim; i++)
6162 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6163 {
6164 this_free++;
6165 fblk->floats[i].u.chain = float_free_list;
6166 float_free_list = &fblk->floats[i];
6167 }
6168 else
6169 {
6170 num_used++;
6171 FLOAT_UNMARK (&fblk->floats[i]);
6172 }
6173 lim = FLOAT_BLOCK_SIZE;
6174 /* If this block contains only free floats and we have already
6175 seen more than two blocks worth of free floats then deallocate
6176 this block. */
6177 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6178 {
6179 *fprev = fblk->next;
6180 /* Unhook from the free list. */
6181 float_free_list = fblk->floats[0].u.chain;
6182 lisp_align_free (fblk);
6183 }
6184 else
6185 {
6186 num_free += this_free;
6187 fprev = &fblk->next;
6188 }
6189 }
6190 total_floats = num_used;
6191 total_free_floats = num_free;
6192 }
6193
6194 /* Put all unmarked intervals on free list */
6195 {
6196 register struct interval_block *iblk;
6197 struct interval_block **iprev = &interval_block;
6198 register int lim = interval_block_index;
6199 EMACS_INT num_free = 0, num_used = 0;
6200
6201 interval_free_list = 0;
6202
6203 for (iblk = interval_block; iblk; iblk = *iprev)
6204 {
6205 register int i;
6206 int this_free = 0;
6207
6208 for (i = 0; i < lim; i++)
6209 {
6210 if (!iblk->intervals[i].gcmarkbit)
6211 {
6212 set_interval_parent (&iblk->intervals[i], interval_free_list);
6213 interval_free_list = &iblk->intervals[i];
6214 this_free++;
6215 }
6216 else
6217 {
6218 num_used++;
6219 iblk->intervals[i].gcmarkbit = 0;
6220 }
6221 }
6222 lim = INTERVAL_BLOCK_SIZE;
6223 /* If this block contains only free intervals and we have already
6224 seen more than two blocks worth of free intervals then
6225 deallocate this block. */
6226 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6227 {
6228 *iprev = iblk->next;
6229 /* Unhook from the free list. */
6230 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6231 lisp_free (iblk);
6232 }
6233 else
6234 {
6235 num_free += this_free;
6236 iprev = &iblk->next;
6237 }
6238 }
6239 total_intervals = num_used;
6240 total_free_intervals = num_free;
6241 }
6242
6243 /* Put all unmarked symbols on free list */
6244 {
6245 register struct symbol_block *sblk;
6246 struct symbol_block **sprev = &symbol_block;
6247 register int lim = symbol_block_index;
6248 EMACS_INT num_free = 0, num_used = 0;
6249
6250 symbol_free_list = NULL;
6251
6252 for (sblk = symbol_block; sblk; sblk = *sprev)
6253 {
6254 int this_free = 0;
6255 union aligned_Lisp_Symbol *sym = sblk->symbols;
6256 union aligned_Lisp_Symbol *end = sym + lim;
6257
6258 for (; sym < end; ++sym)
6259 {
6260 /* Check if the symbol was created during loadup. In such a case
6261 it might be pointed to by pure bytecode which we don't trace,
6262 so we conservatively assume that it is live. */
6263 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6264
6265 if (!sym->s.gcmarkbit && !pure_p)
6266 {
6267 if (sym->s.redirect == SYMBOL_LOCALIZED)
6268 xfree (SYMBOL_BLV (&sym->s));
6269 sym->s.next = symbol_free_list;
6270 symbol_free_list = &sym->s;
6271 #if GC_MARK_STACK
6272 symbol_free_list->function = Vdead;
6273 #endif
6274 ++this_free;
6275 }
6276 else
6277 {
6278 ++num_used;
6279 if (!pure_p)
6280 UNMARK_STRING (XSTRING (sym->s.name));
6281 sym->s.gcmarkbit = 0;
6282 }
6283 }
6284
6285 lim = SYMBOL_BLOCK_SIZE;
6286 /* If this block contains only free symbols and we have already
6287 seen more than two blocks worth of free symbols then deallocate
6288 this block. */
6289 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6290 {
6291 *sprev = sblk->next;
6292 /* Unhook from the free list. */
6293 symbol_free_list = sblk->symbols[0].s.next;
6294 lisp_free (sblk);
6295 }
6296 else
6297 {
6298 num_free += this_free;
6299 sprev = &sblk->next;
6300 }
6301 }
6302 total_symbols = num_used;
6303 total_free_symbols = num_free;
6304 }
6305
6306 /* Put all unmarked misc's on free list.
6307 For a marker, first unchain it from the buffer it points into. */
6308 {
6309 register struct marker_block *mblk;
6310 struct marker_block **mprev = &marker_block;
6311 register int lim = marker_block_index;
6312 EMACS_INT num_free = 0, num_used = 0;
6313
6314 marker_free_list = 0;
6315
6316 for (mblk = marker_block; mblk; mblk = *mprev)
6317 {
6318 register int i;
6319 int this_free = 0;
6320
6321 for (i = 0; i < lim; i++)
6322 {
6323 if (!mblk->markers[i].m.u_any.gcmarkbit)
6324 {
6325 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6326 unchain_marker (&mblk->markers[i].m.u_marker);
6327 /* Set the type of the freed object to Lisp_Misc_Free.
6328 We could leave the type alone, since nobody checks it,
6329 but this might catch bugs faster. */
6330 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6331 mblk->markers[i].m.u_free.chain = marker_free_list;
6332 marker_free_list = &mblk->markers[i].m;
6333 this_free++;
6334 }
6335 else
6336 {
6337 num_used++;
6338 mblk->markers[i].m.u_any.gcmarkbit = 0;
6339 }
6340 }
6341 lim = MARKER_BLOCK_SIZE;
6342 /* If this block contains only free markers and we have already
6343 seen more than two blocks worth of free markers then deallocate
6344 this block. */
6345 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6346 {
6347 *mprev = mblk->next;
6348 /* Unhook from the free list. */
6349 marker_free_list = mblk->markers[0].m.u_free.chain;
6350 lisp_free (mblk);
6351 }
6352 else
6353 {
6354 num_free += this_free;
6355 mprev = &mblk->next;
6356 }
6357 }
6358
6359 total_markers = num_used;
6360 total_free_markers = num_free;
6361 }
6362
6363 /* Free all unmarked buffers */
6364 {
6365 register struct buffer *buffer, **bprev = &all_buffers;
6366
6367 total_buffers = 0;
6368 for (buffer = all_buffers; buffer; buffer = *bprev)
6369 if (!VECTOR_MARKED_P (buffer))
6370 {
6371 *bprev = buffer->next;
6372 lisp_free (buffer);
6373 }
6374 else
6375 {
6376 VECTOR_UNMARK (buffer);
6377 /* Do not use buffer_(set|get)_intervals here. */
6378 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6379 total_buffers++;
6380 bprev = &buffer->next;
6381 }
6382 }
6383
6384 sweep_vectors ();
6385 check_string_bytes (!noninteractive);
6386 }
6387
6388
6389
6390 \f
6391 /* Debugging aids. */
6392
6393 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6394 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6395 This may be helpful in debugging Emacs's memory usage.
6396 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6397 (void)
6398 {
6399 Lisp_Object end;
6400
6401 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6402
6403 return end;
6404 }
6405
6406 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6407 doc: /* Return a list of counters that measure how much consing there has been.
6408 Each of these counters increments for a certain kind of object.
6409 The counters wrap around from the largest positive integer to zero.
6410 Garbage collection does not decrease them.
6411 The elements of the value are as follows:
6412 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6413 All are in units of 1 = one object consed
6414 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6415 objects consed.
6416 MISCS include overlays, markers, and some internal types.
6417 Frames, windows, buffers, and subprocesses count as vectors
6418 (but the contents of a buffer's text do not count here). */)
6419 (void)
6420 {
6421 return listn (CONSTYPE_HEAP, 8,
6422 bounded_number (cons_cells_consed),
6423 bounded_number (floats_consed),
6424 bounded_number (vector_cells_consed),
6425 bounded_number (symbols_consed),
6426 bounded_number (string_chars_consed),
6427 bounded_number (misc_objects_consed),
6428 bounded_number (intervals_consed),
6429 bounded_number (strings_consed));
6430 }
6431
6432 /* Find at most FIND_MAX symbols which have OBJ as their value or
6433 function. This is used in gdbinit's `xwhichsymbols' command. */
6434
6435 Lisp_Object
6436 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6437 {
6438 struct symbol_block *sblk;
6439 ptrdiff_t gc_count = inhibit_garbage_collection ();
6440 Lisp_Object found = Qnil;
6441
6442 if (! DEADP (obj))
6443 {
6444 for (sblk = symbol_block; sblk; sblk = sblk->next)
6445 {
6446 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6447 int bn;
6448
6449 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6450 {
6451 struct Lisp_Symbol *sym = &aligned_sym->s;
6452 Lisp_Object val;
6453 Lisp_Object tem;
6454
6455 if (sblk == symbol_block && bn >= symbol_block_index)
6456 break;
6457
6458 XSETSYMBOL (tem, sym);
6459 val = find_symbol_value (tem);
6460 if (EQ (val, obj)
6461 || EQ (sym->function, obj)
6462 || (!NILP (sym->function)
6463 && COMPILEDP (sym->function)
6464 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6465 || (!NILP (val)
6466 && COMPILEDP (val)
6467 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6468 {
6469 found = Fcons (tem, found);
6470 if (--find_max == 0)
6471 goto out;
6472 }
6473 }
6474 }
6475 }
6476
6477 out:
6478 unbind_to (gc_count, Qnil);
6479 return found;
6480 }
6481
6482 #ifdef ENABLE_CHECKING
6483
6484 bool suppress_checking;
6485
6486 void
6487 die (const char *msg, const char *file, int line)
6488 {
6489 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6490 file, line, msg);
6491 terminate_due_to_signal (SIGABRT, INT_MAX);
6492 }
6493 #endif
6494 \f
6495 /* Initialization */
6496
6497 void
6498 init_alloc_once (void)
6499 {
6500 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6501 purebeg = PUREBEG;
6502 pure_size = PURESIZE;
6503
6504 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6505 mem_init ();
6506 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6507 #endif
6508
6509 #ifdef DOUG_LEA_MALLOC
6510 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6511 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6512 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6513 #endif
6514 init_strings ();
6515 init_vectors ();
6516
6517 refill_memory_reserve ();
6518 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6519 }
6520
6521 void
6522 init_alloc (void)
6523 {
6524 gcprolist = 0;
6525 byte_stack_list = 0;
6526 #if GC_MARK_STACK
6527 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6528 setjmp_tested_p = longjmps_done = 0;
6529 #endif
6530 #endif
6531 Vgc_elapsed = make_float (0.0);
6532 gcs_done = 0;
6533 }
6534
6535 void
6536 syms_of_alloc (void)
6537 {
6538 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6539 doc: /* Number of bytes of consing between garbage collections.
6540 Garbage collection can happen automatically once this many bytes have been
6541 allocated since the last garbage collection. All data types count.
6542
6543 Garbage collection happens automatically only when `eval' is called.
6544
6545 By binding this temporarily to a large number, you can effectively
6546 prevent garbage collection during a part of the program.
6547 See also `gc-cons-percentage'. */);
6548
6549 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6550 doc: /* Portion of the heap used for allocation.
6551 Garbage collection can happen automatically once this portion of the heap
6552 has been allocated since the last garbage collection.
6553 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6554 Vgc_cons_percentage = make_float (0.1);
6555
6556 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6557 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6558
6559 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6560 doc: /* Number of cons cells that have been consed so far. */);
6561
6562 DEFVAR_INT ("floats-consed", floats_consed,
6563 doc: /* Number of floats that have been consed so far. */);
6564
6565 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6566 doc: /* Number of vector cells that have been consed so far. */);
6567
6568 DEFVAR_INT ("symbols-consed", symbols_consed,
6569 doc: /* Number of symbols that have been consed so far. */);
6570
6571 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6572 doc: /* Number of string characters that have been consed so far. */);
6573
6574 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6575 doc: /* Number of miscellaneous objects that have been consed so far.
6576 These include markers and overlays, plus certain objects not visible
6577 to users. */);
6578
6579 DEFVAR_INT ("intervals-consed", intervals_consed,
6580 doc: /* Number of intervals that have been consed so far. */);
6581
6582 DEFVAR_INT ("strings-consed", strings_consed,
6583 doc: /* Number of strings that have been consed so far. */);
6584
6585 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6586 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6587 This means that certain objects should be allocated in shared (pure) space.
6588 It can also be set to a hash-table, in which case this table is used to
6589 do hash-consing of the objects allocated to pure space. */);
6590
6591 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6592 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6593 garbage_collection_messages = 0;
6594
6595 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6596 doc: /* Hook run after garbage collection has finished. */);
6597 Vpost_gc_hook = Qnil;
6598 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6599
6600 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6601 doc: /* Precomputed `signal' argument for memory-full error. */);
6602 /* We build this in advance because if we wait until we need it, we might
6603 not be able to allocate the memory to hold it. */
6604 Vmemory_signal_data
6605 = listn (CONSTYPE_PURE, 2, Qerror,
6606 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6607
6608 DEFVAR_LISP ("memory-full", Vmemory_full,
6609 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6610 Vmemory_full = Qnil;
6611
6612 DEFSYM (Qconses, "conses");
6613 DEFSYM (Qsymbols, "symbols");
6614 DEFSYM (Qmiscs, "miscs");
6615 DEFSYM (Qstrings, "strings");
6616 DEFSYM (Qvectors, "vectors");
6617 DEFSYM (Qfloats, "floats");
6618 DEFSYM (Qintervals, "intervals");
6619 DEFSYM (Qbuffers, "buffers");
6620 DEFSYM (Qstring_bytes, "string-bytes");
6621 DEFSYM (Qvector_slots, "vector-slots");
6622 DEFSYM (Qheap, "heap");
6623 DEFSYM (Qautomatic_gc, "Automatic GC");
6624
6625 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6626 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6627
6628 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6629 doc: /* Accumulated time elapsed in garbage collections.
6630 The time is in seconds as a floating point value. */);
6631 DEFVAR_INT ("gcs-done", gcs_done,
6632 doc: /* Accumulated number of garbage collections done. */);
6633
6634 defsubr (&Scons);
6635 defsubr (&Slist);
6636 defsubr (&Svector);
6637 defsubr (&Smake_byte_code);
6638 defsubr (&Smake_list);
6639 defsubr (&Smake_vector);
6640 defsubr (&Smake_string);
6641 defsubr (&Smake_bool_vector);
6642 defsubr (&Smake_symbol);
6643 defsubr (&Smake_marker);
6644 defsubr (&Spurecopy);
6645 defsubr (&Sgarbage_collect);
6646 defsubr (&Smemory_limit);
6647 defsubr (&Smemory_use_counts);
6648
6649 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6650 defsubr (&Sgc_status);
6651 #endif
6652 }
6653
6654 /* When compiled with GCC, GDB might say "No enum type named
6655 pvec_type" if we don't have at least one symbol with that type, and
6656 then xbacktrace could fail. Similarly for the other enums and
6657 their values. Some non-GCC compilers don't like these constructs. */
6658 #ifdef __GNUC__
6659 union
6660 {
6661 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6662 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6663 enum char_bits char_bits;
6664 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6665 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6666 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6667 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6668 enum Lisp_Bits Lisp_Bits;
6669 enum Lisp_Compiled Lisp_Compiled;
6670 enum maxargs maxargs;
6671 enum MAX_ALLOCA MAX_ALLOCA;
6672 enum More_Lisp_Bits More_Lisp_Bits;
6673 enum pvec_type pvec_type;
6674 #if USE_LSB_TAG
6675 enum lsb_bits lsb_bits;
6676 #endif
6677 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6678 #endif /* __GNUC__ */