lisp.h: Fix a problem with aliasing and vector headers.
[bpt/emacs.git] / src / bytecode.c
1 /* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985-1988, 1993, 2000-2011 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /*
20 hacked on by jwz@lucid.com 17-jun-91
21 o added a compile-time switch to turn on simple sanity checking;
22 o put back the obsolete byte-codes for error-detection;
23 o added a new instruction, unbind_all, which I will use for
24 tail-recursion elimination;
25 o made temp_output_buffer_show be called with the right number
26 of args;
27 o made the new bytecodes be called with args in the right order;
28 o added metering support.
29
30 by Hallvard:
31 o added relative jump instructions;
32 o all conditionals now only do QUIT if they jump.
33 */
34
35 #include <config.h>
36 #include <setjmp.h>
37 #include "lisp.h"
38 #include "buffer.h"
39 #include "character.h"
40 #include "syntax.h"
41 #include "window.h"
42
43 #ifdef CHECK_FRAME_FONT
44 #include "frame.h"
45 #include "xterm.h"
46 #endif
47
48 /*
49 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
50 * debugging the byte compiler...)
51 *
52 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
53 */
54 /* #define BYTE_CODE_SAFE */
55 /* #define BYTE_CODE_METER */
56
57 \f
58 #ifdef BYTE_CODE_METER
59
60 Lisp_Object Qbyte_code_meter;
61 #define METER_2(code1, code2) \
62 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
63 ->contents[(code2)])
64
65 #define METER_1(code) METER_2 (0, (code))
66
67 #define METER_CODE(last_code, this_code) \
68 { \
69 if (byte_metering_on) \
70 { \
71 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
72 METER_1 (this_code)++; \
73 if (last_code \
74 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
75 METER_2 (last_code, this_code)++; \
76 } \
77 }
78
79 #endif /* BYTE_CODE_METER */
80 \f
81
82 Lisp_Object Qbytecode;
83
84 /* Byte codes: */
85
86 #define Bstack_ref 0 /* Actually, Bstack_ref+0 is not implemented: use dup. */
87 #define Bvarref 010
88 #define Bvarset 020
89 #define Bvarbind 030
90 #define Bcall 040
91 #define Bunbind 050
92
93 #define Bnth 070
94 #define Bsymbolp 071
95 #define Bconsp 072
96 #define Bstringp 073
97 #define Blistp 074
98 #define Beq 075
99 #define Bmemq 076
100 #define Bnot 077
101 #define Bcar 0100
102 #define Bcdr 0101
103 #define Bcons 0102
104 #define Blist1 0103
105 #define Blist2 0104
106 #define Blist3 0105
107 #define Blist4 0106
108 #define Blength 0107
109 #define Baref 0110
110 #define Baset 0111
111 #define Bsymbol_value 0112
112 #define Bsymbol_function 0113
113 #define Bset 0114
114 #define Bfset 0115
115 #define Bget 0116
116 #define Bsubstring 0117
117 #define Bconcat2 0120
118 #define Bconcat3 0121
119 #define Bconcat4 0122
120 #define Bsub1 0123
121 #define Badd1 0124
122 #define Beqlsign 0125
123 #define Bgtr 0126
124 #define Blss 0127
125 #define Bleq 0130
126 #define Bgeq 0131
127 #define Bdiff 0132
128 #define Bnegate 0133
129 #define Bplus 0134
130 #define Bmax 0135
131 #define Bmin 0136
132 #define Bmult 0137
133
134 #define Bpoint 0140
135 /* Was Bmark in v17. */
136 #define Bsave_current_buffer 0141 /* Obsolete. */
137 #define Bgoto_char 0142
138 #define Binsert 0143
139 #define Bpoint_max 0144
140 #define Bpoint_min 0145
141 #define Bchar_after 0146
142 #define Bfollowing_char 0147
143 #define Bpreceding_char 0150
144 #define Bcurrent_column 0151
145 #define Bindent_to 0152
146 #ifdef BYTE_CODE_SAFE
147 #define Bscan_buffer 0153 /* No longer generated as of v18 */
148 #endif
149 #define Beolp 0154
150 #define Beobp 0155
151 #define Bbolp 0156
152 #define Bbobp 0157
153 #define Bcurrent_buffer 0160
154 #define Bset_buffer 0161
155 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
156 #if 0
157 #define Bread_char 0162 /* No longer generated as of v19 */
158 #endif
159 #ifdef BYTE_CODE_SAFE
160 #define Bset_mark 0163 /* this loser is no longer generated as of v18 */
161 #endif
162 #define Binteractive_p 0164 /* Obsolete since Emacs-24.1. */
163
164 #define Bforward_char 0165
165 #define Bforward_word 0166
166 #define Bskip_chars_forward 0167
167 #define Bskip_chars_backward 0170
168 #define Bforward_line 0171
169 #define Bchar_syntax 0172
170 #define Bbuffer_substring 0173
171 #define Bdelete_region 0174
172 #define Bnarrow_to_region 0175
173 #define Bwiden 0176
174 #define Bend_of_line 0177
175
176 #define Bconstant2 0201
177 #define Bgoto 0202
178 #define Bgotoifnil 0203
179 #define Bgotoifnonnil 0204
180 #define Bgotoifnilelsepop 0205
181 #define Bgotoifnonnilelsepop 0206
182 #define Breturn 0207
183 #define Bdiscard 0210
184 #define Bdup 0211
185
186 #define Bsave_excursion 0212
187 #define Bsave_window_excursion 0213 /* Obsolete since Emacs-24.1. */
188 #define Bsave_restriction 0214
189 #define Bcatch 0215
190
191 #define Bunwind_protect 0216
192 #define Bcondition_case 0217
193 #define Btemp_output_buffer_setup 0220 /* Obsolete since Emacs-24.1. */
194 #define Btemp_output_buffer_show 0221 /* Obsolete since Emacs-24.1. */
195
196 #define Bunbind_all 0222 /* Obsolete. Never used. */
197
198 #define Bset_marker 0223
199 #define Bmatch_beginning 0224
200 #define Bmatch_end 0225
201 #define Bupcase 0226
202 #define Bdowncase 0227
203
204 #define Bstringeqlsign 0230
205 #define Bstringlss 0231
206 #define Bequal 0232
207 #define Bnthcdr 0233
208 #define Belt 0234
209 #define Bmember 0235
210 #define Bassq 0236
211 #define Bnreverse 0237
212 #define Bsetcar 0240
213 #define Bsetcdr 0241
214 #define Bcar_safe 0242
215 #define Bcdr_safe 0243
216 #define Bnconc 0244
217 #define Bquo 0245
218 #define Brem 0246
219 #define Bnumberp 0247
220 #define Bintegerp 0250
221
222 #define BRgoto 0252
223 #define BRgotoifnil 0253
224 #define BRgotoifnonnil 0254
225 #define BRgotoifnilelsepop 0255
226 #define BRgotoifnonnilelsepop 0256
227
228 #define BlistN 0257
229 #define BconcatN 0260
230 #define BinsertN 0261
231
232 /* Bstack_ref is code 0. */
233 #define Bstack_set 0262
234 #define Bstack_set2 0263
235 #define BdiscardN 0266
236
237 #define Bconstant 0300
238
239 /* Whether to maintain a `top' and `bottom' field in the stack frame. */
240 #define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK)
241 \f
242 /* Structure describing a value stack used during byte-code execution
243 in Fbyte_code. */
244
245 struct byte_stack
246 {
247 /* Program counter. This points into the byte_string below
248 and is relocated when that string is relocated. */
249 const unsigned char *pc;
250
251 /* Top and bottom of stack. The bottom points to an area of memory
252 allocated with alloca in Fbyte_code. */
253 #if BYTE_MAINTAIN_TOP
254 Lisp_Object *top, *bottom;
255 #endif
256
257 /* The string containing the byte-code, and its current address.
258 Storing this here protects it from GC because mark_byte_stack
259 marks it. */
260 Lisp_Object byte_string;
261 const unsigned char *byte_string_start;
262
263 /* The vector of constants used during byte-code execution. Storing
264 this here protects it from GC because mark_byte_stack marks it. */
265 Lisp_Object constants;
266
267 /* Next entry in byte_stack_list. */
268 struct byte_stack *next;
269 };
270
271 /* A list of currently active byte-code execution value stacks.
272 Fbyte_code adds an entry to the head of this list before it starts
273 processing byte-code, and it removed the entry again when it is
274 done. Signalling an error truncates the list analoguous to
275 gcprolist. */
276
277 struct byte_stack *byte_stack_list;
278
279 \f
280 /* Mark objects on byte_stack_list. Called during GC. */
281
282 #if BYTE_MARK_STACK
283 void
284 mark_byte_stack (void)
285 {
286 struct byte_stack *stack;
287 Lisp_Object *obj;
288
289 for (stack = byte_stack_list; stack; stack = stack->next)
290 {
291 /* If STACK->top is null here, this means there's an opcode in
292 Fbyte_code that wasn't expected to GC, but did. To find out
293 which opcode this is, record the value of `stack', and walk
294 up the stack in a debugger, stopping in frames of Fbyte_code.
295 The culprit is found in the frame of Fbyte_code where the
296 address of its local variable `stack' is equal to the
297 recorded value of `stack' here. */
298 eassert (stack->top);
299
300 for (obj = stack->bottom; obj <= stack->top; ++obj)
301 mark_object (*obj);
302
303 mark_object (stack->byte_string);
304 mark_object (stack->constants);
305 }
306 }
307 #endif
308
309 /* Unmark objects in the stacks on byte_stack_list. Relocate program
310 counters. Called when GC has completed. */
311
312 void
313 unmark_byte_stack (void)
314 {
315 struct byte_stack *stack;
316
317 for (stack = byte_stack_list; stack; stack = stack->next)
318 {
319 if (stack->byte_string_start != SDATA (stack->byte_string))
320 {
321 int offset = stack->pc - stack->byte_string_start;
322 stack->byte_string_start = SDATA (stack->byte_string);
323 stack->pc = stack->byte_string_start + offset;
324 }
325 }
326 }
327
328 \f
329 /* Fetch the next byte from the bytecode stream */
330
331 #define FETCH *stack.pc++
332
333 /* Fetch two bytes from the bytecode stream and make a 16-bit number
334 out of them */
335
336 #define FETCH2 (op = FETCH, op + (FETCH << 8))
337
338 /* Push x onto the execution stack. This used to be #define PUSH(x)
339 (*++stackp = (x)) This oddity is necessary because Alliant can't be
340 bothered to compile the preincrement operator properly, as of 4/91.
341 -JimB */
342
343 #define PUSH(x) (top++, *top = (x))
344
345 /* Pop a value off the execution stack. */
346
347 #define POP (*top--)
348
349 /* Discard n values from the execution stack. */
350
351 #define DISCARD(n) (top -= (n))
352
353 /* Get the value which is at the top of the execution stack, but don't
354 pop it. */
355
356 #define TOP (*top)
357
358 /* Actions that must be performed before and after calling a function
359 that might GC. */
360
361 #if !BYTE_MAINTAIN_TOP
362 #define BEFORE_POTENTIAL_GC() ((void)0)
363 #define AFTER_POTENTIAL_GC() ((void)0)
364 #else
365 #define BEFORE_POTENTIAL_GC() stack.top = top
366 #define AFTER_POTENTIAL_GC() stack.top = NULL
367 #endif
368
369 /* Garbage collect if we have consed enough since the last time.
370 We do this at every branch, to avoid loops that never GC. */
371
372 #define MAYBE_GC() \
373 do { \
374 if (consing_since_gc > gc_cons_threshold \
375 && consing_since_gc > gc_relative_threshold) \
376 { \
377 BEFORE_POTENTIAL_GC (); \
378 Fgarbage_collect (); \
379 AFTER_POTENTIAL_GC (); \
380 } \
381 } while (0)
382
383 /* Check for jumping out of range. */
384
385 #ifdef BYTE_CODE_SAFE
386
387 #define CHECK_RANGE(ARG) \
388 if (ARG >= bytestr_length) abort ()
389
390 #else /* not BYTE_CODE_SAFE */
391
392 #define CHECK_RANGE(ARG)
393
394 #endif /* not BYTE_CODE_SAFE */
395
396 /* A version of the QUIT macro which makes sure that the stack top is
397 set before signaling `quit'. */
398
399 #define BYTE_CODE_QUIT \
400 do { \
401 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
402 { \
403 Lisp_Object flag = Vquit_flag; \
404 Vquit_flag = Qnil; \
405 BEFORE_POTENTIAL_GC (); \
406 if (EQ (Vthrow_on_input, flag)) \
407 Fthrow (Vthrow_on_input, Qt); \
408 Fsignal (Qquit, Qnil); \
409 AFTER_POTENTIAL_GC (); \
410 } \
411 ELSE_PENDING_SIGNALS \
412 } while (0)
413
414
415 DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
416 doc: /* Function used internally in byte-compiled code.
417 The first argument, BYTESTR, is a string of byte code;
418 the second, VECTOR, a vector of constants;
419 the third, MAXDEPTH, the maximum stack depth used in this function.
420 If the third argument is incorrect, Emacs may crash. */)
421 (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
422 {
423 return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL);
424 }
425
426 /* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and
427 MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect,
428 emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp
429 argument list (including &rest, &optional, etc.), and ARGS, of size
430 NARGS, should be a vector of the actual arguments. The arguments in
431 ARGS are pushed on the stack according to ARGS_TEMPLATE before
432 executing BYTESTR. */
433
434 Lisp_Object
435 exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth,
436 Lisp_Object args_template, int nargs, Lisp_Object *args)
437 {
438 int count = SPECPDL_INDEX ();
439 #ifdef BYTE_CODE_METER
440 int this_op = 0;
441 int prev_op;
442 #endif
443 int op;
444 /* Lisp_Object v1, v2; */
445 Lisp_Object *vectorp;
446 #ifdef BYTE_CODE_SAFE
447 int const_length;
448 Lisp_Object *stacke;
449 int bytestr_length;
450 #endif
451 struct byte_stack stack;
452 Lisp_Object *top;
453 Lisp_Object result;
454
455 #if 0 /* CHECK_FRAME_FONT */
456 {
457 struct frame *f = SELECTED_FRAME ();
458 if (FRAME_X_P (f)
459 && FRAME_FONT (f)->direction != 0
460 && FRAME_FONT (f)->direction != 1)
461 abort ();
462 }
463 #endif
464
465 CHECK_STRING (bytestr);
466 CHECK_VECTOR (vector);
467 CHECK_NUMBER (maxdepth);
468
469 #ifdef BYTE_CODE_SAFE
470 const_length = XVECTOR_SIZE (vector);
471 #endif
472
473 if (STRING_MULTIBYTE (bytestr))
474 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
475 because they produced a raw 8-bit string for byte-code and now
476 such a byte-code string is loaded as multibyte while raw 8-bit
477 characters converted to multibyte form. Thus, now we must
478 convert them back to the originally intended unibyte form. */
479 bytestr = Fstring_as_unibyte (bytestr);
480
481 #ifdef BYTE_CODE_SAFE
482 bytestr_length = SBYTES (bytestr);
483 #endif
484 vectorp = XVECTOR (vector)->contents;
485
486 stack.byte_string = bytestr;
487 stack.pc = stack.byte_string_start = SDATA (bytestr);
488 stack.constants = vector;
489 top = (Lisp_Object *) alloca (XFASTINT (maxdepth)
490 * sizeof (Lisp_Object));
491 #if BYTE_MAINTAIN_TOP
492 stack.bottom = top;
493 stack.top = NULL;
494 #endif
495 top -= 1;
496 stack.next = byte_stack_list;
497 byte_stack_list = &stack;
498
499 #ifdef BYTE_CODE_SAFE
500 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
501 #endif
502
503 if (INTEGERP (args_template))
504 {
505 int at = XINT (args_template);
506 int rest = at & 128;
507 int mandatory = at & 127;
508 int nonrest = at >> 8;
509 eassert (mandatory <= nonrest);
510 if (nargs <= nonrest)
511 {
512 int i;
513 for (i = 0 ; i < nargs; i++, args++)
514 PUSH (*args);
515 if (nargs < mandatory)
516 /* Too few arguments. */
517 Fsignal (Qwrong_number_of_arguments,
518 Fcons (Fcons (make_number (mandatory),
519 rest ? Qand_rest : make_number (nonrest)),
520 Fcons (make_number (nargs), Qnil)));
521 else
522 {
523 for (; i < nonrest; i++)
524 PUSH (Qnil);
525 if (rest)
526 PUSH (Qnil);
527 }
528 }
529 else if (rest)
530 {
531 int i;
532 for (i = 0 ; i < nonrest; i++, args++)
533 PUSH (*args);
534 PUSH (Flist (nargs - nonrest, args));
535 }
536 else
537 /* Too many arguments. */
538 Fsignal (Qwrong_number_of_arguments,
539 Fcons (Fcons (make_number (mandatory),
540 make_number (nonrest)),
541 Fcons (make_number (nargs), Qnil)));
542 }
543 else if (! NILP (args_template))
544 /* We should push some arguments on the stack. */
545 {
546 error ("Unknown args template!");
547 }
548
549 while (1)
550 {
551 #ifdef BYTE_CODE_SAFE
552 if (top > stacke)
553 abort ();
554 else if (top < stack.bottom - 1)
555 abort ();
556 #endif
557
558 #ifdef BYTE_CODE_METER
559 prev_op = this_op;
560 this_op = op = FETCH;
561 METER_CODE (prev_op, op);
562 #else
563 op = FETCH;
564 #endif
565
566 switch (op)
567 {
568 case Bvarref + 7:
569 op = FETCH2;
570 goto varref;
571
572 case Bvarref:
573 case Bvarref + 1:
574 case Bvarref + 2:
575 case Bvarref + 3:
576 case Bvarref + 4:
577 case Bvarref + 5:
578 op = op - Bvarref;
579 goto varref;
580
581 /* This seems to be the most frequently executed byte-code
582 among the Bvarref's, so avoid a goto here. */
583 case Bvarref+6:
584 op = FETCH;
585 varref:
586 {
587 Lisp_Object v1, v2;
588
589 v1 = vectorp[op];
590 if (SYMBOLP (v1))
591 {
592 if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
593 || (v2 = SYMBOL_VAL (XSYMBOL (v1)),
594 EQ (v2, Qunbound)))
595 {
596 BEFORE_POTENTIAL_GC ();
597 v2 = Fsymbol_value (v1);
598 AFTER_POTENTIAL_GC ();
599 }
600 }
601 else
602 {
603 BEFORE_POTENTIAL_GC ();
604 v2 = Fsymbol_value (v1);
605 AFTER_POTENTIAL_GC ();
606 }
607 PUSH (v2);
608 break;
609 }
610
611 case Bgotoifnil:
612 {
613 Lisp_Object v1;
614 MAYBE_GC ();
615 op = FETCH2;
616 v1 = POP;
617 if (NILP (v1))
618 {
619 BYTE_CODE_QUIT;
620 CHECK_RANGE (op);
621 stack.pc = stack.byte_string_start + op;
622 }
623 break;
624 }
625
626 case Bcar:
627 {
628 Lisp_Object v1;
629 v1 = TOP;
630 if (CONSP (v1))
631 TOP = XCAR (v1);
632 else if (NILP (v1))
633 TOP = Qnil;
634 else
635 {
636 BEFORE_POTENTIAL_GC ();
637 wrong_type_argument (Qlistp, v1);
638 AFTER_POTENTIAL_GC ();
639 }
640 break;
641 }
642
643 case Beq:
644 {
645 Lisp_Object v1;
646 v1 = POP;
647 TOP = EQ (v1, TOP) ? Qt : Qnil;
648 break;
649 }
650
651 case Bmemq:
652 {
653 Lisp_Object v1;
654 BEFORE_POTENTIAL_GC ();
655 v1 = POP;
656 TOP = Fmemq (TOP, v1);
657 AFTER_POTENTIAL_GC ();
658 break;
659 }
660
661 case Bcdr:
662 {
663 Lisp_Object v1;
664 v1 = TOP;
665 if (CONSP (v1))
666 TOP = XCDR (v1);
667 else if (NILP (v1))
668 TOP = Qnil;
669 else
670 {
671 BEFORE_POTENTIAL_GC ();
672 wrong_type_argument (Qlistp, v1);
673 AFTER_POTENTIAL_GC ();
674 }
675 break;
676 break;
677 }
678
679 case Bvarset:
680 case Bvarset+1:
681 case Bvarset+2:
682 case Bvarset+3:
683 case Bvarset+4:
684 case Bvarset+5:
685 op -= Bvarset;
686 goto varset;
687
688 case Bvarset+7:
689 op = FETCH2;
690 goto varset;
691
692 case Bvarset+6:
693 op = FETCH;
694 varset:
695 {
696 Lisp_Object sym, val;
697
698 sym = vectorp[op];
699 val = TOP;
700
701 /* Inline the most common case. */
702 if (SYMBOLP (sym)
703 && !EQ (val, Qunbound)
704 && !XSYMBOL (sym)->redirect
705 && !SYMBOL_CONSTANT_P (sym))
706 XSYMBOL (sym)->val.value = val;
707 else
708 {
709 BEFORE_POTENTIAL_GC ();
710 set_internal (sym, val, Qnil, 0);
711 AFTER_POTENTIAL_GC ();
712 }
713 }
714 (void) POP;
715 break;
716
717 case Bdup:
718 {
719 Lisp_Object v1;
720 v1 = TOP;
721 PUSH (v1);
722 break;
723 }
724
725 /* ------------------ */
726
727 case Bvarbind+6:
728 op = FETCH;
729 goto varbind;
730
731 case Bvarbind+7:
732 op = FETCH2;
733 goto varbind;
734
735 case Bvarbind:
736 case Bvarbind+1:
737 case Bvarbind+2:
738 case Bvarbind+3:
739 case Bvarbind+4:
740 case Bvarbind+5:
741 op -= Bvarbind;
742 varbind:
743 /* Specbind can signal and thus GC. */
744 BEFORE_POTENTIAL_GC ();
745 specbind (vectorp[op], POP);
746 AFTER_POTENTIAL_GC ();
747 break;
748
749 case Bcall+6:
750 op = FETCH;
751 goto docall;
752
753 case Bcall+7:
754 op = FETCH2;
755 goto docall;
756
757 case Bcall:
758 case Bcall+1:
759 case Bcall+2:
760 case Bcall+3:
761 case Bcall+4:
762 case Bcall+5:
763 op -= Bcall;
764 docall:
765 {
766 BEFORE_POTENTIAL_GC ();
767 DISCARD (op);
768 #ifdef BYTE_CODE_METER
769 if (byte_metering_on && SYMBOLP (TOP))
770 {
771 Lisp_Object v1, v2;
772
773 v1 = TOP;
774 v2 = Fget (v1, Qbyte_code_meter);
775 if (INTEGERP (v2)
776 && XINT (v2) < MOST_POSITIVE_FIXNUM)
777 {
778 XSETINT (v2, XINT (v2) + 1);
779 Fput (v1, Qbyte_code_meter, v2);
780 }
781 }
782 #endif
783 TOP = Ffuncall (op + 1, &TOP);
784 AFTER_POTENTIAL_GC ();
785 break;
786 }
787
788 case Bunbind+6:
789 op = FETCH;
790 goto dounbind;
791
792 case Bunbind+7:
793 op = FETCH2;
794 goto dounbind;
795
796 case Bunbind:
797 case Bunbind+1:
798 case Bunbind+2:
799 case Bunbind+3:
800 case Bunbind+4:
801 case Bunbind+5:
802 op -= Bunbind;
803 dounbind:
804 BEFORE_POTENTIAL_GC ();
805 unbind_to (SPECPDL_INDEX () - op, Qnil);
806 AFTER_POTENTIAL_GC ();
807 break;
808
809 case Bunbind_all: /* Obsolete. Never used. */
810 /* To unbind back to the beginning of this frame. Not used yet,
811 but will be needed for tail-recursion elimination. */
812 BEFORE_POTENTIAL_GC ();
813 unbind_to (count, Qnil);
814 AFTER_POTENTIAL_GC ();
815 break;
816
817 case Bgoto:
818 MAYBE_GC ();
819 BYTE_CODE_QUIT;
820 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
821 CHECK_RANGE (op);
822 stack.pc = stack.byte_string_start + op;
823 break;
824
825 case Bgotoifnonnil:
826 {
827 Lisp_Object v1;
828 MAYBE_GC ();
829 op = FETCH2;
830 v1 = POP;
831 if (!NILP (v1))
832 {
833 BYTE_CODE_QUIT;
834 CHECK_RANGE (op);
835 stack.pc = stack.byte_string_start + op;
836 }
837 break;
838 }
839
840 case Bgotoifnilelsepop:
841 MAYBE_GC ();
842 op = FETCH2;
843 if (NILP (TOP))
844 {
845 BYTE_CODE_QUIT;
846 CHECK_RANGE (op);
847 stack.pc = stack.byte_string_start + op;
848 }
849 else DISCARD (1);
850 break;
851
852 case Bgotoifnonnilelsepop:
853 MAYBE_GC ();
854 op = FETCH2;
855 if (!NILP (TOP))
856 {
857 BYTE_CODE_QUIT;
858 CHECK_RANGE (op);
859 stack.pc = stack.byte_string_start + op;
860 }
861 else DISCARD (1);
862 break;
863
864 case BRgoto:
865 MAYBE_GC ();
866 BYTE_CODE_QUIT;
867 stack.pc += (int) *stack.pc - 127;
868 break;
869
870 case BRgotoifnil:
871 {
872 Lisp_Object v1;
873 MAYBE_GC ();
874 v1 = POP;
875 if (NILP (v1))
876 {
877 BYTE_CODE_QUIT;
878 stack.pc += (int) *stack.pc - 128;
879 }
880 stack.pc++;
881 break;
882 }
883
884 case BRgotoifnonnil:
885 {
886 Lisp_Object v1;
887 MAYBE_GC ();
888 v1 = POP;
889 if (!NILP (v1))
890 {
891 BYTE_CODE_QUIT;
892 stack.pc += (int) *stack.pc - 128;
893 }
894 stack.pc++;
895 break;
896 }
897
898 case BRgotoifnilelsepop:
899 MAYBE_GC ();
900 op = *stack.pc++;
901 if (NILP (TOP))
902 {
903 BYTE_CODE_QUIT;
904 stack.pc += op - 128;
905 }
906 else DISCARD (1);
907 break;
908
909 case BRgotoifnonnilelsepop:
910 MAYBE_GC ();
911 op = *stack.pc++;
912 if (!NILP (TOP))
913 {
914 BYTE_CODE_QUIT;
915 stack.pc += op - 128;
916 }
917 else DISCARD (1);
918 break;
919
920 case Breturn:
921 result = POP;
922 goto exit;
923
924 case Bdiscard:
925 DISCARD (1);
926 break;
927
928 case Bconstant2:
929 PUSH (vectorp[FETCH2]);
930 break;
931
932 case Bsave_excursion:
933 record_unwind_protect (save_excursion_restore,
934 save_excursion_save ());
935 break;
936
937 case Bsave_current_buffer: /* Obsolete since ??. */
938 case Bsave_current_buffer_1:
939 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
940 break;
941
942 case Bsave_window_excursion: /* Obsolete since 24.1. */
943 {
944 register int count1 = SPECPDL_INDEX ();
945 record_unwind_protect (Fset_window_configuration,
946 Fcurrent_window_configuration (Qnil));
947 BEFORE_POTENTIAL_GC ();
948 TOP = Fprogn (TOP);
949 unbind_to (count1, TOP);
950 AFTER_POTENTIAL_GC ();
951 break;
952 }
953
954 case Bsave_restriction:
955 record_unwind_protect (save_restriction_restore,
956 save_restriction_save ());
957 break;
958
959 case Bcatch: /* FIXME: ill-suited for lexbind */
960 {
961 Lisp_Object v1;
962 BEFORE_POTENTIAL_GC ();
963 v1 = POP;
964 TOP = internal_catch (TOP, eval_sub, v1);
965 AFTER_POTENTIAL_GC ();
966 break;
967 }
968
969 case Bunwind_protect: /* FIXME: avoid closure for lexbind */
970 record_unwind_protect (Fprogn, POP);
971 break;
972
973 case Bcondition_case: /* FIXME: ill-suited for lexbind */
974 {
975 Lisp_Object handlers, body;
976 handlers = POP;
977 body = POP;
978 BEFORE_POTENTIAL_GC ();
979 TOP = internal_lisp_condition_case (TOP, body, handlers);
980 AFTER_POTENTIAL_GC ();
981 break;
982 }
983
984 case Btemp_output_buffer_setup: /* Obsolete since 24.1. */
985 BEFORE_POTENTIAL_GC ();
986 CHECK_STRING (TOP);
987 temp_output_buffer_setup (SSDATA (TOP));
988 AFTER_POTENTIAL_GC ();
989 TOP = Vstandard_output;
990 break;
991
992 case Btemp_output_buffer_show: /* Obsolete since 24.1. */
993 {
994 Lisp_Object v1;
995 BEFORE_POTENTIAL_GC ();
996 v1 = POP;
997 temp_output_buffer_show (TOP);
998 TOP = v1;
999 /* pop binding of standard-output */
1000 unbind_to (SPECPDL_INDEX () - 1, Qnil);
1001 AFTER_POTENTIAL_GC ();
1002 break;
1003 }
1004
1005 case Bnth:
1006 {
1007 Lisp_Object v1, v2;
1008 BEFORE_POTENTIAL_GC ();
1009 v1 = POP;
1010 v2 = TOP;
1011 CHECK_NUMBER (v2);
1012 op = XINT (v2);
1013 immediate_quit = 1;
1014 while (--op >= 0 && CONSP (v1))
1015 v1 = XCDR (v1);
1016 immediate_quit = 0;
1017 TOP = CAR (v1);
1018 AFTER_POTENTIAL_GC ();
1019 break;
1020 }
1021
1022 case Bsymbolp:
1023 TOP = SYMBOLP (TOP) ? Qt : Qnil;
1024 break;
1025
1026 case Bconsp:
1027 TOP = CONSP (TOP) ? Qt : Qnil;
1028 break;
1029
1030 case Bstringp:
1031 TOP = STRINGP (TOP) ? Qt : Qnil;
1032 break;
1033
1034 case Blistp:
1035 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
1036 break;
1037
1038 case Bnot:
1039 TOP = NILP (TOP) ? Qt : Qnil;
1040 break;
1041
1042 case Bcons:
1043 {
1044 Lisp_Object v1;
1045 v1 = POP;
1046 TOP = Fcons (TOP, v1);
1047 break;
1048 }
1049
1050 case Blist1:
1051 TOP = Fcons (TOP, Qnil);
1052 break;
1053
1054 case Blist2:
1055 {
1056 Lisp_Object v1;
1057 v1 = POP;
1058 TOP = Fcons (TOP, Fcons (v1, Qnil));
1059 break;
1060 }
1061
1062 case Blist3:
1063 DISCARD (2);
1064 TOP = Flist (3, &TOP);
1065 break;
1066
1067 case Blist4:
1068 DISCARD (3);
1069 TOP = Flist (4, &TOP);
1070 break;
1071
1072 case BlistN:
1073 op = FETCH;
1074 DISCARD (op - 1);
1075 TOP = Flist (op, &TOP);
1076 break;
1077
1078 case Blength:
1079 BEFORE_POTENTIAL_GC ();
1080 TOP = Flength (TOP);
1081 AFTER_POTENTIAL_GC ();
1082 break;
1083
1084 case Baref:
1085 {
1086 Lisp_Object v1;
1087 BEFORE_POTENTIAL_GC ();
1088 v1 = POP;
1089 TOP = Faref (TOP, v1);
1090 AFTER_POTENTIAL_GC ();
1091 break;
1092 }
1093
1094 case Baset:
1095 {
1096 Lisp_Object v1, v2;
1097 BEFORE_POTENTIAL_GC ();
1098 v2 = POP; v1 = POP;
1099 TOP = Faset (TOP, v1, v2);
1100 AFTER_POTENTIAL_GC ();
1101 break;
1102 }
1103
1104 case Bsymbol_value:
1105 BEFORE_POTENTIAL_GC ();
1106 TOP = Fsymbol_value (TOP);
1107 AFTER_POTENTIAL_GC ();
1108 break;
1109
1110 case Bsymbol_function:
1111 BEFORE_POTENTIAL_GC ();
1112 TOP = Fsymbol_function (TOP);
1113 AFTER_POTENTIAL_GC ();
1114 break;
1115
1116 case Bset:
1117 {
1118 Lisp_Object v1;
1119 BEFORE_POTENTIAL_GC ();
1120 v1 = POP;
1121 TOP = Fset (TOP, v1);
1122 AFTER_POTENTIAL_GC ();
1123 break;
1124 }
1125
1126 case Bfset:
1127 {
1128 Lisp_Object v1;
1129 BEFORE_POTENTIAL_GC ();
1130 v1 = POP;
1131 TOP = Ffset (TOP, v1);
1132 AFTER_POTENTIAL_GC ();
1133 break;
1134 }
1135
1136 case Bget:
1137 {
1138 Lisp_Object v1;
1139 BEFORE_POTENTIAL_GC ();
1140 v1 = POP;
1141 TOP = Fget (TOP, v1);
1142 AFTER_POTENTIAL_GC ();
1143 break;
1144 }
1145
1146 case Bsubstring:
1147 {
1148 Lisp_Object v1, v2;
1149 BEFORE_POTENTIAL_GC ();
1150 v2 = POP; v1 = POP;
1151 TOP = Fsubstring (TOP, v1, v2);
1152 AFTER_POTENTIAL_GC ();
1153 break;
1154 }
1155
1156 case Bconcat2:
1157 BEFORE_POTENTIAL_GC ();
1158 DISCARD (1);
1159 TOP = Fconcat (2, &TOP);
1160 AFTER_POTENTIAL_GC ();
1161 break;
1162
1163 case Bconcat3:
1164 BEFORE_POTENTIAL_GC ();
1165 DISCARD (2);
1166 TOP = Fconcat (3, &TOP);
1167 AFTER_POTENTIAL_GC ();
1168 break;
1169
1170 case Bconcat4:
1171 BEFORE_POTENTIAL_GC ();
1172 DISCARD (3);
1173 TOP = Fconcat (4, &TOP);
1174 AFTER_POTENTIAL_GC ();
1175 break;
1176
1177 case BconcatN:
1178 op = FETCH;
1179 BEFORE_POTENTIAL_GC ();
1180 DISCARD (op - 1);
1181 TOP = Fconcat (op, &TOP);
1182 AFTER_POTENTIAL_GC ();
1183 break;
1184
1185 case Bsub1:
1186 {
1187 Lisp_Object v1;
1188 v1 = TOP;
1189 if (INTEGERP (v1))
1190 {
1191 XSETINT (v1, XINT (v1) - 1);
1192 TOP = v1;
1193 }
1194 else
1195 {
1196 BEFORE_POTENTIAL_GC ();
1197 TOP = Fsub1 (v1);
1198 AFTER_POTENTIAL_GC ();
1199 }
1200 break;
1201 }
1202
1203 case Badd1:
1204 {
1205 Lisp_Object v1;
1206 v1 = TOP;
1207 if (INTEGERP (v1))
1208 {
1209 XSETINT (v1, XINT (v1) + 1);
1210 TOP = v1;
1211 }
1212 else
1213 {
1214 BEFORE_POTENTIAL_GC ();
1215 TOP = Fadd1 (v1);
1216 AFTER_POTENTIAL_GC ();
1217 }
1218 break;
1219 }
1220
1221 case Beqlsign:
1222 {
1223 Lisp_Object v1, v2;
1224 BEFORE_POTENTIAL_GC ();
1225 v2 = POP; v1 = TOP;
1226 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1227 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1228 AFTER_POTENTIAL_GC ();
1229 if (FLOATP (v1) || FLOATP (v2))
1230 {
1231 double f1, f2;
1232
1233 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1234 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1235 TOP = (f1 == f2 ? Qt : Qnil);
1236 }
1237 else
1238 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1239 break;
1240 }
1241
1242 case Bgtr:
1243 {
1244 Lisp_Object v1;
1245 BEFORE_POTENTIAL_GC ();
1246 v1 = POP;
1247 TOP = Fgtr (TOP, v1);
1248 AFTER_POTENTIAL_GC ();
1249 break;
1250 }
1251
1252 case Blss:
1253 {
1254 Lisp_Object v1;
1255 BEFORE_POTENTIAL_GC ();
1256 v1 = POP;
1257 TOP = Flss (TOP, v1);
1258 AFTER_POTENTIAL_GC ();
1259 break;
1260 }
1261
1262 case Bleq:
1263 {
1264 Lisp_Object v1;
1265 BEFORE_POTENTIAL_GC ();
1266 v1 = POP;
1267 TOP = Fleq (TOP, v1);
1268 AFTER_POTENTIAL_GC ();
1269 break;
1270 }
1271
1272 case Bgeq:
1273 {
1274 Lisp_Object v1;
1275 BEFORE_POTENTIAL_GC ();
1276 v1 = POP;
1277 TOP = Fgeq (TOP, v1);
1278 AFTER_POTENTIAL_GC ();
1279 break;
1280 }
1281
1282 case Bdiff:
1283 BEFORE_POTENTIAL_GC ();
1284 DISCARD (1);
1285 TOP = Fminus (2, &TOP);
1286 AFTER_POTENTIAL_GC ();
1287 break;
1288
1289 case Bnegate:
1290 {
1291 Lisp_Object v1;
1292 v1 = TOP;
1293 if (INTEGERP (v1))
1294 {
1295 XSETINT (v1, - XINT (v1));
1296 TOP = v1;
1297 }
1298 else
1299 {
1300 BEFORE_POTENTIAL_GC ();
1301 TOP = Fminus (1, &TOP);
1302 AFTER_POTENTIAL_GC ();
1303 }
1304 break;
1305 }
1306
1307 case Bplus:
1308 BEFORE_POTENTIAL_GC ();
1309 DISCARD (1);
1310 TOP = Fplus (2, &TOP);
1311 AFTER_POTENTIAL_GC ();
1312 break;
1313
1314 case Bmax:
1315 BEFORE_POTENTIAL_GC ();
1316 DISCARD (1);
1317 TOP = Fmax (2, &TOP);
1318 AFTER_POTENTIAL_GC ();
1319 break;
1320
1321 case Bmin:
1322 BEFORE_POTENTIAL_GC ();
1323 DISCARD (1);
1324 TOP = Fmin (2, &TOP);
1325 AFTER_POTENTIAL_GC ();
1326 break;
1327
1328 case Bmult:
1329 BEFORE_POTENTIAL_GC ();
1330 DISCARD (1);
1331 TOP = Ftimes (2, &TOP);
1332 AFTER_POTENTIAL_GC ();
1333 break;
1334
1335 case Bquo:
1336 BEFORE_POTENTIAL_GC ();
1337 DISCARD (1);
1338 TOP = Fquo (2, &TOP);
1339 AFTER_POTENTIAL_GC ();
1340 break;
1341
1342 case Brem:
1343 {
1344 Lisp_Object v1;
1345 BEFORE_POTENTIAL_GC ();
1346 v1 = POP;
1347 TOP = Frem (TOP, v1);
1348 AFTER_POTENTIAL_GC ();
1349 break;
1350 }
1351
1352 case Bpoint:
1353 {
1354 Lisp_Object v1;
1355 XSETFASTINT (v1, PT);
1356 PUSH (v1);
1357 break;
1358 }
1359
1360 case Bgoto_char:
1361 BEFORE_POTENTIAL_GC ();
1362 TOP = Fgoto_char (TOP);
1363 AFTER_POTENTIAL_GC ();
1364 break;
1365
1366 case Binsert:
1367 BEFORE_POTENTIAL_GC ();
1368 TOP = Finsert (1, &TOP);
1369 AFTER_POTENTIAL_GC ();
1370 break;
1371
1372 case BinsertN:
1373 op = FETCH;
1374 BEFORE_POTENTIAL_GC ();
1375 DISCARD (op - 1);
1376 TOP = Finsert (op, &TOP);
1377 AFTER_POTENTIAL_GC ();
1378 break;
1379
1380 case Bpoint_max:
1381 {
1382 Lisp_Object v1;
1383 XSETFASTINT (v1, ZV);
1384 PUSH (v1);
1385 break;
1386 }
1387
1388 case Bpoint_min:
1389 {
1390 Lisp_Object v1;
1391 XSETFASTINT (v1, BEGV);
1392 PUSH (v1);
1393 break;
1394 }
1395
1396 case Bchar_after:
1397 BEFORE_POTENTIAL_GC ();
1398 TOP = Fchar_after (TOP);
1399 AFTER_POTENTIAL_GC ();
1400 break;
1401
1402 case Bfollowing_char:
1403 {
1404 Lisp_Object v1;
1405 BEFORE_POTENTIAL_GC ();
1406 v1 = Ffollowing_char ();
1407 AFTER_POTENTIAL_GC ();
1408 PUSH (v1);
1409 break;
1410 }
1411
1412 case Bpreceding_char:
1413 {
1414 Lisp_Object v1;
1415 BEFORE_POTENTIAL_GC ();
1416 v1 = Fprevious_char ();
1417 AFTER_POTENTIAL_GC ();
1418 PUSH (v1);
1419 break;
1420 }
1421
1422 case Bcurrent_column:
1423 {
1424 Lisp_Object v1;
1425 BEFORE_POTENTIAL_GC ();
1426 XSETFASTINT (v1, current_column ());
1427 AFTER_POTENTIAL_GC ();
1428 PUSH (v1);
1429 break;
1430 }
1431
1432 case Bindent_to:
1433 BEFORE_POTENTIAL_GC ();
1434 TOP = Findent_to (TOP, Qnil);
1435 AFTER_POTENTIAL_GC ();
1436 break;
1437
1438 case Beolp:
1439 PUSH (Feolp ());
1440 break;
1441
1442 case Beobp:
1443 PUSH (Feobp ());
1444 break;
1445
1446 case Bbolp:
1447 PUSH (Fbolp ());
1448 break;
1449
1450 case Bbobp:
1451 PUSH (Fbobp ());
1452 break;
1453
1454 case Bcurrent_buffer:
1455 PUSH (Fcurrent_buffer ());
1456 break;
1457
1458 case Bset_buffer:
1459 BEFORE_POTENTIAL_GC ();
1460 TOP = Fset_buffer (TOP);
1461 AFTER_POTENTIAL_GC ();
1462 break;
1463
1464 case Binteractive_p: /* Obsolete since 24.1. */
1465 PUSH (Finteractive_p ());
1466 break;
1467
1468 case Bforward_char:
1469 BEFORE_POTENTIAL_GC ();
1470 TOP = Fforward_char (TOP);
1471 AFTER_POTENTIAL_GC ();
1472 break;
1473
1474 case Bforward_word:
1475 BEFORE_POTENTIAL_GC ();
1476 TOP = Fforward_word (TOP);
1477 AFTER_POTENTIAL_GC ();
1478 break;
1479
1480 case Bskip_chars_forward:
1481 {
1482 Lisp_Object v1;
1483 BEFORE_POTENTIAL_GC ();
1484 v1 = POP;
1485 TOP = Fskip_chars_forward (TOP, v1);
1486 AFTER_POTENTIAL_GC ();
1487 break;
1488 }
1489
1490 case Bskip_chars_backward:
1491 {
1492 Lisp_Object v1;
1493 BEFORE_POTENTIAL_GC ();
1494 v1 = POP;
1495 TOP = Fskip_chars_backward (TOP, v1);
1496 AFTER_POTENTIAL_GC ();
1497 break;
1498 }
1499
1500 case Bforward_line:
1501 BEFORE_POTENTIAL_GC ();
1502 TOP = Fforward_line (TOP);
1503 AFTER_POTENTIAL_GC ();
1504 break;
1505
1506 case Bchar_syntax:
1507 {
1508 int c;
1509
1510 BEFORE_POTENTIAL_GC ();
1511 CHECK_CHARACTER (TOP);
1512 AFTER_POTENTIAL_GC ();
1513 c = XFASTINT (TOP);
1514 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
1515 MAKE_CHAR_MULTIBYTE (c);
1516 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]);
1517 }
1518 break;
1519
1520 case Bbuffer_substring:
1521 {
1522 Lisp_Object v1;
1523 BEFORE_POTENTIAL_GC ();
1524 v1 = POP;
1525 TOP = Fbuffer_substring (TOP, v1);
1526 AFTER_POTENTIAL_GC ();
1527 break;
1528 }
1529
1530 case Bdelete_region:
1531 {
1532 Lisp_Object v1;
1533 BEFORE_POTENTIAL_GC ();
1534 v1 = POP;
1535 TOP = Fdelete_region (TOP, v1);
1536 AFTER_POTENTIAL_GC ();
1537 break;
1538 }
1539
1540 case Bnarrow_to_region:
1541 {
1542 Lisp_Object v1;
1543 BEFORE_POTENTIAL_GC ();
1544 v1 = POP;
1545 TOP = Fnarrow_to_region (TOP, v1);
1546 AFTER_POTENTIAL_GC ();
1547 break;
1548 }
1549
1550 case Bwiden:
1551 BEFORE_POTENTIAL_GC ();
1552 PUSH (Fwiden ());
1553 AFTER_POTENTIAL_GC ();
1554 break;
1555
1556 case Bend_of_line:
1557 BEFORE_POTENTIAL_GC ();
1558 TOP = Fend_of_line (TOP);
1559 AFTER_POTENTIAL_GC ();
1560 break;
1561
1562 case Bset_marker:
1563 {
1564 Lisp_Object v1, v2;
1565 BEFORE_POTENTIAL_GC ();
1566 v1 = POP;
1567 v2 = POP;
1568 TOP = Fset_marker (TOP, v2, v1);
1569 AFTER_POTENTIAL_GC ();
1570 break;
1571 }
1572
1573 case Bmatch_beginning:
1574 BEFORE_POTENTIAL_GC ();
1575 TOP = Fmatch_beginning (TOP);
1576 AFTER_POTENTIAL_GC ();
1577 break;
1578
1579 case Bmatch_end:
1580 BEFORE_POTENTIAL_GC ();
1581 TOP = Fmatch_end (TOP);
1582 AFTER_POTENTIAL_GC ();
1583 break;
1584
1585 case Bupcase:
1586 BEFORE_POTENTIAL_GC ();
1587 TOP = Fupcase (TOP);
1588 AFTER_POTENTIAL_GC ();
1589 break;
1590
1591 case Bdowncase:
1592 BEFORE_POTENTIAL_GC ();
1593 TOP = Fdowncase (TOP);
1594 AFTER_POTENTIAL_GC ();
1595 break;
1596
1597 case Bstringeqlsign:
1598 {
1599 Lisp_Object v1;
1600 BEFORE_POTENTIAL_GC ();
1601 v1 = POP;
1602 TOP = Fstring_equal (TOP, v1);
1603 AFTER_POTENTIAL_GC ();
1604 break;
1605 }
1606
1607 case Bstringlss:
1608 {
1609 Lisp_Object v1;
1610 BEFORE_POTENTIAL_GC ();
1611 v1 = POP;
1612 TOP = Fstring_lessp (TOP, v1);
1613 AFTER_POTENTIAL_GC ();
1614 break;
1615 }
1616
1617 case Bequal:
1618 {
1619 Lisp_Object v1;
1620 v1 = POP;
1621 TOP = Fequal (TOP, v1);
1622 break;
1623 }
1624
1625 case Bnthcdr:
1626 {
1627 Lisp_Object v1;
1628 BEFORE_POTENTIAL_GC ();
1629 v1 = POP;
1630 TOP = Fnthcdr (TOP, v1);
1631 AFTER_POTENTIAL_GC ();
1632 break;
1633 }
1634
1635 case Belt:
1636 {
1637 Lisp_Object v1, v2;
1638 if (CONSP (TOP))
1639 {
1640 /* Exchange args and then do nth. */
1641 BEFORE_POTENTIAL_GC ();
1642 v2 = POP;
1643 v1 = TOP;
1644 CHECK_NUMBER (v2);
1645 AFTER_POTENTIAL_GC ();
1646 op = XINT (v2);
1647 immediate_quit = 1;
1648 while (--op >= 0 && CONSP (v1))
1649 v1 = XCDR (v1);
1650 immediate_quit = 0;
1651 TOP = CAR (v1);
1652 }
1653 else
1654 {
1655 BEFORE_POTENTIAL_GC ();
1656 v1 = POP;
1657 TOP = Felt (TOP, v1);
1658 AFTER_POTENTIAL_GC ();
1659 }
1660 break;
1661 }
1662
1663 case Bmember:
1664 {
1665 Lisp_Object v1;
1666 BEFORE_POTENTIAL_GC ();
1667 v1 = POP;
1668 TOP = Fmember (TOP, v1);
1669 AFTER_POTENTIAL_GC ();
1670 break;
1671 }
1672
1673 case Bassq:
1674 {
1675 Lisp_Object v1;
1676 BEFORE_POTENTIAL_GC ();
1677 v1 = POP;
1678 TOP = Fassq (TOP, v1);
1679 AFTER_POTENTIAL_GC ();
1680 break;
1681 }
1682
1683 case Bnreverse:
1684 BEFORE_POTENTIAL_GC ();
1685 TOP = Fnreverse (TOP);
1686 AFTER_POTENTIAL_GC ();
1687 break;
1688
1689 case Bsetcar:
1690 {
1691 Lisp_Object v1;
1692 BEFORE_POTENTIAL_GC ();
1693 v1 = POP;
1694 TOP = Fsetcar (TOP, v1);
1695 AFTER_POTENTIAL_GC ();
1696 break;
1697 }
1698
1699 case Bsetcdr:
1700 {
1701 Lisp_Object v1;
1702 BEFORE_POTENTIAL_GC ();
1703 v1 = POP;
1704 TOP = Fsetcdr (TOP, v1);
1705 AFTER_POTENTIAL_GC ();
1706 break;
1707 }
1708
1709 case Bcar_safe:
1710 {
1711 Lisp_Object v1;
1712 v1 = TOP;
1713 TOP = CAR_SAFE (v1);
1714 break;
1715 }
1716
1717 case Bcdr_safe:
1718 {
1719 Lisp_Object v1;
1720 v1 = TOP;
1721 TOP = CDR_SAFE (v1);
1722 break;
1723 }
1724
1725 case Bnconc:
1726 BEFORE_POTENTIAL_GC ();
1727 DISCARD (1);
1728 TOP = Fnconc (2, &TOP);
1729 AFTER_POTENTIAL_GC ();
1730 break;
1731
1732 case Bnumberp:
1733 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1734 break;
1735
1736 case Bintegerp:
1737 TOP = INTEGERP (TOP) ? Qt : Qnil;
1738 break;
1739
1740 #ifdef BYTE_CODE_SAFE
1741 case Bset_mark:
1742 BEFORE_POTENTIAL_GC ();
1743 error ("set-mark is an obsolete bytecode");
1744 AFTER_POTENTIAL_GC ();
1745 break;
1746 case Bscan_buffer:
1747 BEFORE_POTENTIAL_GC ();
1748 error ("scan-buffer is an obsolete bytecode");
1749 AFTER_POTENTIAL_GC ();
1750 break;
1751 #endif
1752
1753 case 0:
1754 /* Actually this is Bstack_ref with offset 0, but we use Bdup
1755 for that instead. */
1756 /* case Bstack_ref: */
1757 abort ();
1758
1759 /* Handy byte-codes for lexical binding. */
1760 case Bstack_ref+1:
1761 case Bstack_ref+2:
1762 case Bstack_ref+3:
1763 case Bstack_ref+4:
1764 case Bstack_ref+5:
1765 {
1766 Lisp_Object *ptr = top - (op - Bstack_ref);
1767 PUSH (*ptr);
1768 break;
1769 }
1770 case Bstack_ref+6:
1771 {
1772 Lisp_Object *ptr = top - (FETCH);
1773 PUSH (*ptr);
1774 break;
1775 }
1776 case Bstack_ref+7:
1777 {
1778 Lisp_Object *ptr = top - (FETCH2);
1779 PUSH (*ptr);
1780 break;
1781 }
1782 /* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
1783 case Bstack_set:
1784 {
1785 Lisp_Object *ptr = top - (FETCH);
1786 *ptr = POP;
1787 break;
1788 }
1789 case Bstack_set2:
1790 {
1791 Lisp_Object *ptr = top - (FETCH2);
1792 *ptr = POP;
1793 break;
1794 }
1795 case BdiscardN:
1796 op = FETCH;
1797 if (op & 0x80)
1798 {
1799 op &= 0x7F;
1800 top[-op] = TOP;
1801 }
1802 DISCARD (op);
1803 break;
1804
1805 case 255:
1806 default:
1807 #ifdef BYTE_CODE_SAFE
1808 if (op < Bconstant)
1809 {
1810 abort ();
1811 }
1812 if ((op -= Bconstant) >= const_length)
1813 {
1814 abort ();
1815 }
1816 PUSH (vectorp[op]);
1817 #else
1818 PUSH (vectorp[op - Bconstant]);
1819 #endif
1820 }
1821 }
1822
1823 exit:
1824
1825 byte_stack_list = byte_stack_list->next;
1826
1827 /* Binds and unbinds are supposed to be compiled balanced. */
1828 if (SPECPDL_INDEX () != count)
1829 #ifdef BYTE_CODE_SAFE
1830 error ("binding stack not balanced (serious byte compiler bug)");
1831 #else
1832 abort ();
1833 #endif
1834
1835 return result;
1836 }
1837
1838 void
1839 syms_of_bytecode (void)
1840 {
1841 Qbytecode = intern_c_string ("byte-code");
1842 staticpro (&Qbytecode);
1843
1844 defsubr (&Sbyte_code);
1845
1846 #ifdef BYTE_CODE_METER
1847
1848 DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
1849 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1850 \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1851 opcode CODE has been executed.
1852 \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1853 indicates how many times the byte opcodes CODE1 and CODE2 have been
1854 executed in succession. */);
1855
1856 DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
1857 doc: /* If non-nil, keep profiling information on byte code usage.
1858 The variable byte-code-meter indicates how often each byte opcode is used.
1859 If a symbol has a property named `byte-code-meter' whose value is an
1860 integer, it is incremented each time that symbol's function is called. */);
1861
1862 byte_metering_on = 0;
1863 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1864 Qbyte_code_meter = intern_c_string ("byte-code-meter");
1865 staticpro (&Qbyte_code_meter);
1866 {
1867 int i = 256;
1868 while (i--)
1869 XVECTOR (Vbyte_code_meter)->contents[i] =
1870 Fmake_vector (make_number (256), make_number (0));
1871 }
1872 #endif
1873 }