lisp.h: Fix a problem with aliasing and vector headers.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
143 to a struct Lisp_String. */
144
145 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
146 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
147 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
148
149 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
150 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
151 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
152
153 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
154 Be careful during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158
159 /* Global variables. */
160 struct emacs_globals globals;
161
162 /* Number of bytes of consing done since the last gc. */
163
164 int consing_since_gc;
165
166 /* Similar minimum, computed from Vgc_cons_percentage. */
167
168 EMACS_INT gc_relative_threshold;
169
170 /* Minimum number of bytes of consing since GC before next GC,
171 when memory is full. */
172
173 EMACS_INT memory_full_cons_threshold;
174
175 /* Nonzero during GC. */
176
177 int gc_in_progress;
178
179 /* Nonzero means abort if try to GC.
180 This is for code which is written on the assumption that
181 no GC will happen, so as to verify that assumption. */
182
183 int abort_on_gc;
184
185 /* Number of live and free conses etc. */
186
187 static int total_conses, total_markers, total_symbols, total_vector_size;
188 static int total_free_conses, total_free_markers, total_free_symbols;
189 static int total_free_floats, total_floats;
190
191 /* Points to memory space allocated as "spare", to be freed if we run
192 out of memory. We keep one large block, four cons-blocks, and
193 two string blocks. */
194
195 static char *spare_memory[7];
196
197 #ifndef SYSTEM_MALLOC
198 /* Amount of spare memory to keep in large reserve block. */
199
200 #define SPARE_MEMORY (1 << 14)
201 #endif
202
203 /* Number of extra blocks malloc should get when it needs more core. */
204
205 static int malloc_hysteresis;
206
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
212
213 #ifndef VIRT_ADDR_VARIES
214 static
215 #endif
216 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
217 #define PUREBEG (char *) pure
218
219 /* Pointer to the pure area, and its size. */
220
221 static char *purebeg;
222 static size_t pure_size;
223
224 /* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
226
227 static size_t pure_bytes_used_before_overflow;
228
229 /* Value is non-zero if P points into pure space. */
230
231 #define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
234 && ((PNTR_COMPARISON_TYPE) (P) \
235 >= (PNTR_COMPARISON_TYPE) purebeg))
236
237 /* Index in pure at which next pure Lisp object will be allocated.. */
238
239 static EMACS_INT pure_bytes_used_lisp;
240
241 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242
243 static EMACS_INT pure_bytes_used_non_lisp;
244
245 /* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
247
248 const char *pending_malloc_warning;
249
250 /* Maximum amount of C stack to save when a GC happens. */
251
252 #ifndef MAX_SAVE_STACK
253 #define MAX_SAVE_STACK 16000
254 #endif
255
256 /* Buffer in which we save a copy of the C stack at each GC. */
257
258 #if MAX_SAVE_STACK > 0
259 static char *stack_copy;
260 static size_t stack_copy_size;
261 #endif
262
263 /* Non-zero means ignore malloc warnings. Set during initialization.
264 Currently not used. */
265
266 static int ignore_warnings;
267
268 static Lisp_Object Qgc_cons_threshold;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_buffer (Lisp_Object);
276 static void mark_terminals (void);
277 static void gc_sweep (void);
278 static void mark_glyph_matrix (struct glyph_matrix *);
279 static void mark_face_cache (struct face_cache *);
280
281 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
282 static void refill_memory_reserve (void);
283 #endif
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288 static void free_misc (Lisp_Object);
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE
308 };
309
310 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
311 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
312
313
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
315
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324
325 #ifdef GC_MALLOC_CHECK
326
327 enum mem_type allocated_mem_type;
328 static int dont_register_blocks;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
393 static void lisp_free (POINTER_TYPE *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *, int);
404 static void mem_init (void);
405 static struct mem_node *mem_insert (void *, void *, enum mem_type);
406 static void mem_insert_fixup (struct mem_node *);
407 static void mem_rotate_left (struct mem_node *);
408 static void mem_rotate_right (struct mem_node *);
409 static void mem_delete (struct mem_node *);
410 static void mem_delete_fixup (struct mem_node *);
411 static INLINE struct mem_node *mem_find (void *);
412
413
414 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
415 static void check_gcpros (void);
416 #endif
417
418 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
419
420 /* Recording what needs to be marked for gc. */
421
422 struct gcpro *gcprolist;
423
424 /* Addresses of staticpro'd variables. Initialize it to a nonzero
425 value; otherwise some compilers put it into BSS. */
426
427 #define NSTATICS 0x640
428 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
429
430 /* Index of next unused slot in staticvec. */
431
432 static int staticidx = 0;
433
434 static POINTER_TYPE *pure_alloc (size_t, int);
435
436
437 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
438 ALIGNMENT must be a power of 2. */
439
440 #define ALIGN(ptr, ALIGNMENT) \
441 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
442 & ~((ALIGNMENT) - 1)))
443
444
445 \f
446 /************************************************************************
447 Malloc
448 ************************************************************************/
449
450 /* Function malloc calls this if it finds we are near exhausting storage. */
451
452 void
453 malloc_warning (const char *str)
454 {
455 pending_malloc_warning = str;
456 }
457
458
459 /* Display an already-pending malloc warning. */
460
461 void
462 display_malloc_warning (void)
463 {
464 call3 (intern ("display-warning"),
465 intern ("alloc"),
466 build_string (pending_malloc_warning),
467 intern ("emergency"));
468 pending_malloc_warning = 0;
469 }
470 \f
471 /* Called if we can't allocate relocatable space for a buffer. */
472
473 void
474 buffer_memory_full (void)
475 {
476 /* If buffers use the relocating allocator, no need to free
477 spare_memory, because we may have plenty of malloc space left
478 that we could get, and if we don't, the malloc that fails will
479 itself cause spare_memory to be freed. If buffers don't use the
480 relocating allocator, treat this like any other failing
481 malloc. */
482
483 #ifndef REL_ALLOC
484 memory_full ();
485 #endif
486
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
489 xsignal (Qnil, Vmemory_signal_data);
490 }
491
492
493 #ifdef XMALLOC_OVERRUN_CHECK
494
495 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
496 and a 16 byte trailer around each block.
497
498 The header consists of 12 fixed bytes + a 4 byte integer contaning the
499 original block size, while the trailer consists of 16 fixed bytes.
500
501 The header is used to detect whether this block has been allocated
502 through these functions -- as it seems that some low-level libc
503 functions may bypass the malloc hooks.
504 */
505
506
507 #define XMALLOC_OVERRUN_CHECK_SIZE 16
508
509 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
510 { 0x9a, 0x9b, 0xae, 0xaf,
511 0xbf, 0xbe, 0xce, 0xcf,
512 0xea, 0xeb, 0xec, 0xed };
513
514 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
515 { 0xaa, 0xab, 0xac, 0xad,
516 0xba, 0xbb, 0xbc, 0xbd,
517 0xca, 0xcb, 0xcc, 0xcd,
518 0xda, 0xdb, 0xdc, 0xdd };
519
520 /* Macros to insert and extract the block size in the header. */
521
522 #define XMALLOC_PUT_SIZE(ptr, size) \
523 (ptr[-1] = (size & 0xff), \
524 ptr[-2] = ((size >> 8) & 0xff), \
525 ptr[-3] = ((size >> 16) & 0xff), \
526 ptr[-4] = ((size >> 24) & 0xff))
527
528 #define XMALLOC_GET_SIZE(ptr) \
529 (size_t)((unsigned)(ptr[-1]) | \
530 ((unsigned)(ptr[-2]) << 8) | \
531 ((unsigned)(ptr[-3]) << 16) | \
532 ((unsigned)(ptr[-4]) << 24))
533
534
535 /* The call depth in overrun_check functions. For example, this might happen:
536 xmalloc()
537 overrun_check_malloc()
538 -> malloc -> (via hook)_-> emacs_blocked_malloc
539 -> overrun_check_malloc
540 call malloc (hooks are NULL, so real malloc is called).
541 malloc returns 10000.
542 add overhead, return 10016.
543 <- (back in overrun_check_malloc)
544 add overhead again, return 10032
545 xmalloc returns 10032.
546
547 (time passes).
548
549 xfree(10032)
550 overrun_check_free(10032)
551 decrease overhed
552 free(10016) <- crash, because 10000 is the original pointer. */
553
554 static int check_depth;
555
556 /* Like malloc, but wraps allocated block with header and trailer. */
557
558 static POINTER_TYPE *
559 overrun_check_malloc (size_t size)
560 {
561 register unsigned char *val;
562 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
563
564 val = (unsigned char *) malloc (size + overhead);
565 if (val && check_depth == 1)
566 {
567 memcpy (val, xmalloc_overrun_check_header,
568 XMALLOC_OVERRUN_CHECK_SIZE - 4);
569 val += XMALLOC_OVERRUN_CHECK_SIZE;
570 XMALLOC_PUT_SIZE(val, size);
571 memcpy (val + size, xmalloc_overrun_check_trailer,
572 XMALLOC_OVERRUN_CHECK_SIZE);
573 }
574 --check_depth;
575 return (POINTER_TYPE *)val;
576 }
577
578
579 /* Like realloc, but checks old block for overrun, and wraps new block
580 with header and trailer. */
581
582 static POINTER_TYPE *
583 overrun_check_realloc (POINTER_TYPE *block, size_t size)
584 {
585 register unsigned char *val = (unsigned char *) block;
586 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
587
588 if (val
589 && check_depth == 1
590 && memcmp (xmalloc_overrun_check_header,
591 val - XMALLOC_OVERRUN_CHECK_SIZE,
592 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
593 {
594 size_t osize = XMALLOC_GET_SIZE (val);
595 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
596 XMALLOC_OVERRUN_CHECK_SIZE))
597 abort ();
598 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
599 val -= XMALLOC_OVERRUN_CHECK_SIZE;
600 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602
603 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
604
605 if (val && check_depth == 1)
606 {
607 memcpy (val, xmalloc_overrun_check_header,
608 XMALLOC_OVERRUN_CHECK_SIZE - 4);
609 val += XMALLOC_OVERRUN_CHECK_SIZE;
610 XMALLOC_PUT_SIZE(val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614 --check_depth;
615 return (POINTER_TYPE *)val;
616 }
617
618 /* Like free, but checks block for overrun. */
619
620 static void
621 overrun_check_free (POINTER_TYPE *block)
622 {
623 unsigned char *val = (unsigned char *) block;
624
625 ++check_depth;
626 if (val
627 && check_depth == 1
628 && memcmp (xmalloc_overrun_check_header,
629 val - XMALLOC_OVERRUN_CHECK_SIZE,
630 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
631 {
632 size_t osize = XMALLOC_GET_SIZE (val);
633 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
635 abort ();
636 #ifdef XMALLOC_CLEAR_FREE_MEMORY
637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
638 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
639 #else
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
643 #endif
644 }
645
646 free (val);
647 --check_depth;
648 }
649
650 #undef malloc
651 #undef realloc
652 #undef free
653 #define malloc overrun_check_malloc
654 #define realloc overrun_check_realloc
655 #define free overrun_check_free
656 #endif
657
658 #ifdef SYNC_INPUT
659 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
660 there's no need to block input around malloc. */
661 #define MALLOC_BLOCK_INPUT ((void)0)
662 #define MALLOC_UNBLOCK_INPUT ((void)0)
663 #else
664 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
665 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
666 #endif
667
668 /* Like malloc but check for no memory and block interrupt input.. */
669
670 POINTER_TYPE *
671 xmalloc (size_t size)
672 {
673 register POINTER_TYPE *val;
674
675 MALLOC_BLOCK_INPUT;
676 val = (POINTER_TYPE *) malloc (size);
677 MALLOC_UNBLOCK_INPUT;
678
679 if (!val && size)
680 memory_full ();
681 return val;
682 }
683
684
685 /* Like realloc but check for no memory and block interrupt input.. */
686
687 POINTER_TYPE *
688 xrealloc (POINTER_TYPE *block, size_t size)
689 {
690 register POINTER_TYPE *val;
691
692 MALLOC_BLOCK_INPUT;
693 /* We must call malloc explicitly when BLOCK is 0, since some
694 reallocs don't do this. */
695 if (! block)
696 val = (POINTER_TYPE *) malloc (size);
697 else
698 val = (POINTER_TYPE *) realloc (block, size);
699 MALLOC_UNBLOCK_INPUT;
700
701 if (!val && size) memory_full ();
702 return val;
703 }
704
705
706 /* Like free but block interrupt input. */
707
708 void
709 xfree (POINTER_TYPE *block)
710 {
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because that duplicates doing so in emacs_blocked_free
718 and the criterion should go there. */
719 }
720
721
722 /* Like strdup, but uses xmalloc. */
723
724 char *
725 xstrdup (const char *s)
726 {
727 size_t len = strlen (s) + 1;
728 char *p = (char *) xmalloc (len);
729 memcpy (p, s, len);
730 return p;
731 }
732
733
734 /* Unwind for SAFE_ALLOCA */
735
736 Lisp_Object
737 safe_alloca_unwind (Lisp_Object arg)
738 {
739 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
740
741 p->dogc = 0;
742 xfree (p->pointer);
743 p->pointer = 0;
744 free_misc (arg);
745 return Qnil;
746 }
747
748
749 /* Like malloc but used for allocating Lisp data. NBYTES is the
750 number of bytes to allocate, TYPE describes the intended use of the
751 allcated memory block (for strings, for conses, ...). */
752
753 #ifndef USE_LSB_TAG
754 static void *lisp_malloc_loser;
755 #endif
756
757 static POINTER_TYPE *
758 lisp_malloc (size_t nbytes, enum mem_type type)
759 {
760 register void *val;
761
762 MALLOC_BLOCK_INPUT;
763
764 #ifdef GC_MALLOC_CHECK
765 allocated_mem_type = type;
766 #endif
767
768 val = (void *) malloc (nbytes);
769
770 #ifndef USE_LSB_TAG
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
775 {
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
779 {
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
783 }
784 }
785 #endif
786
787 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
788 if (val && type != MEM_TYPE_NON_LISP)
789 mem_insert (val, (char *) val + nbytes, type);
790 #endif
791
792 MALLOC_UNBLOCK_INPUT;
793 if (!val && nbytes)
794 memory_full ();
795 return val;
796 }
797
798 /* Free BLOCK. This must be called to free memory allocated with a
799 call to lisp_malloc. */
800
801 static void
802 lisp_free (POINTER_TYPE *block)
803 {
804 MALLOC_BLOCK_INPUT;
805 free (block);
806 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 mem_delete (mem_find (block));
808 #endif
809 MALLOC_UNBLOCK_INPUT;
810 }
811
812 /* Allocation of aligned blocks of memory to store Lisp data. */
813 /* The entry point is lisp_align_malloc which returns blocks of at most */
814 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
815
816 /* Use posix_memalloc if the system has it and we're using the system's
817 malloc (because our gmalloc.c routines don't have posix_memalign although
818 its memalloc could be used). */
819 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
820 #define USE_POSIX_MEMALIGN 1
821 #endif
822
823 /* BLOCK_ALIGN has to be a power of 2. */
824 #define BLOCK_ALIGN (1 << 10)
825
826 /* Padding to leave at the end of a malloc'd block. This is to give
827 malloc a chance to minimize the amount of memory wasted to alignment.
828 It should be tuned to the particular malloc library used.
829 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
830 posix_memalign on the other hand would ideally prefer a value of 4
831 because otherwise, there's 1020 bytes wasted between each ablocks.
832 In Emacs, testing shows that those 1020 can most of the time be
833 efficiently used by malloc to place other objects, so a value of 0 can
834 still preferable unless you have a lot of aligned blocks and virtually
835 nothing else. */
836 #define BLOCK_PADDING 0
837 #define BLOCK_BYTES \
838 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
839
840 /* Internal data structures and constants. */
841
842 #define ABLOCKS_SIZE 16
843
844 /* An aligned block of memory. */
845 struct ablock
846 {
847 union
848 {
849 char payload[BLOCK_BYTES];
850 struct ablock *next_free;
851 } x;
852 /* `abase' is the aligned base of the ablocks. */
853 /* It is overloaded to hold the virtual `busy' field that counts
854 the number of used ablock in the parent ablocks.
855 The first ablock has the `busy' field, the others have the `abase'
856 field. To tell the difference, we assume that pointers will have
857 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
858 is used to tell whether the real base of the parent ablocks is `abase'
859 (if not, the word before the first ablock holds a pointer to the
860 real base). */
861 struct ablocks *abase;
862 /* The padding of all but the last ablock is unused. The padding of
863 the last ablock in an ablocks is not allocated. */
864 #if BLOCK_PADDING
865 char padding[BLOCK_PADDING];
866 #endif
867 };
868
869 /* A bunch of consecutive aligned blocks. */
870 struct ablocks
871 {
872 struct ablock blocks[ABLOCKS_SIZE];
873 };
874
875 /* Size of the block requested from malloc or memalign. */
876 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
877
878 #define ABLOCK_ABASE(block) \
879 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
880 ? (struct ablocks *)(block) \
881 : (block)->abase)
882
883 /* Virtual `busy' field. */
884 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
885
886 /* Pointer to the (not necessarily aligned) malloc block. */
887 #ifdef USE_POSIX_MEMALIGN
888 #define ABLOCKS_BASE(abase) (abase)
889 #else
890 #define ABLOCKS_BASE(abase) \
891 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
892 #endif
893
894 /* The list of free ablock. */
895 static struct ablock *free_ablock;
896
897 /* Allocate an aligned block of nbytes.
898 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
899 smaller or equal to BLOCK_BYTES. */
900 static POINTER_TYPE *
901 lisp_align_malloc (size_t nbytes, enum mem_type type)
902 {
903 void *base, *val;
904 struct ablocks *abase;
905
906 eassert (nbytes <= BLOCK_BYTES);
907
908 MALLOC_BLOCK_INPUT;
909
910 #ifdef GC_MALLOC_CHECK
911 allocated_mem_type = type;
912 #endif
913
914 if (!free_ablock)
915 {
916 int i;
917 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
918
919 #ifdef DOUG_LEA_MALLOC
920 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
921 because mapped region contents are not preserved in
922 a dumped Emacs. */
923 mallopt (M_MMAP_MAX, 0);
924 #endif
925
926 #ifdef USE_POSIX_MEMALIGN
927 {
928 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
929 if (err)
930 base = NULL;
931 abase = base;
932 }
933 #else
934 base = malloc (ABLOCKS_BYTES);
935 abase = ALIGN (base, BLOCK_ALIGN);
936 #endif
937
938 if (base == 0)
939 {
940 MALLOC_UNBLOCK_INPUT;
941 memory_full ();
942 }
943
944 aligned = (base == abase);
945 if (!aligned)
946 ((void**)abase)[-1] = base;
947
948 #ifdef DOUG_LEA_MALLOC
949 /* Back to a reasonable maximum of mmap'ed areas. */
950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
951 #endif
952
953 #ifndef USE_LSB_TAG
954 /* If the memory just allocated cannot be addressed thru a Lisp
955 object's pointer, and it needs to be, that's equivalent to
956 running out of memory. */
957 if (type != MEM_TYPE_NON_LISP)
958 {
959 Lisp_Object tem;
960 char *end = (char *) base + ABLOCKS_BYTES - 1;
961 XSETCONS (tem, end);
962 if ((char *) XCONS (tem) != end)
963 {
964 lisp_malloc_loser = base;
965 free (base);
966 MALLOC_UNBLOCK_INPUT;
967 memory_full ();
968 }
969 }
970 #endif
971
972 /* Initialize the blocks and put them on the free list.
973 Is `base' was not properly aligned, we can't use the last block. */
974 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
975 {
976 abase->blocks[i].abase = abase;
977 abase->blocks[i].x.next_free = free_ablock;
978 free_ablock = &abase->blocks[i];
979 }
980 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
981
982 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
983 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
984 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
985 eassert (ABLOCKS_BASE (abase) == base);
986 eassert (aligned == (long) ABLOCKS_BUSY (abase));
987 }
988
989 abase = ABLOCK_ABASE (free_ablock);
990 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
991 val = free_ablock;
992 free_ablock = free_ablock->x.next_free;
993
994 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
995 if (val && type != MEM_TYPE_NON_LISP)
996 mem_insert (val, (char *) val + nbytes, type);
997 #endif
998
999 MALLOC_UNBLOCK_INPUT;
1000 if (!val && nbytes)
1001 memory_full ();
1002
1003 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1004 return val;
1005 }
1006
1007 static void
1008 lisp_align_free (POINTER_TYPE *block)
1009 {
1010 struct ablock *ablock = block;
1011 struct ablocks *abase = ABLOCK_ABASE (ablock);
1012
1013 MALLOC_BLOCK_INPUT;
1014 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1015 mem_delete (mem_find (block));
1016 #endif
1017 /* Put on free list. */
1018 ablock->x.next_free = free_ablock;
1019 free_ablock = ablock;
1020 /* Update busy count. */
1021 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1022
1023 if (2 > (long) ABLOCKS_BUSY (abase))
1024 { /* All the blocks are free. */
1025 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1026 struct ablock **tem = &free_ablock;
1027 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1028
1029 while (*tem)
1030 {
1031 if (*tem >= (struct ablock *) abase && *tem < atop)
1032 {
1033 i++;
1034 *tem = (*tem)->x.next_free;
1035 }
1036 else
1037 tem = &(*tem)->x.next_free;
1038 }
1039 eassert ((aligned & 1) == aligned);
1040 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1041 #ifdef USE_POSIX_MEMALIGN
1042 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1043 #endif
1044 free (ABLOCKS_BASE (abase));
1045 }
1046 MALLOC_UNBLOCK_INPUT;
1047 }
1048
1049 /* Return a new buffer structure allocated from the heap with
1050 a call to lisp_malloc. */
1051
1052 struct buffer *
1053 allocate_buffer (void)
1054 {
1055 struct buffer *b
1056 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1057 MEM_TYPE_BUFFER);
1058 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1059 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1060 / sizeof (EMACS_INT)));
1061 return b;
1062 }
1063
1064 \f
1065 #ifndef SYSTEM_MALLOC
1066
1067 /* Arranging to disable input signals while we're in malloc.
1068
1069 This only works with GNU malloc. To help out systems which can't
1070 use GNU malloc, all the calls to malloc, realloc, and free
1071 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1072 pair; unfortunately, we have no idea what C library functions
1073 might call malloc, so we can't really protect them unless you're
1074 using GNU malloc. Fortunately, most of the major operating systems
1075 can use GNU malloc. */
1076
1077 #ifndef SYNC_INPUT
1078 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1079 there's no need to block input around malloc. */
1080
1081 #ifndef DOUG_LEA_MALLOC
1082 extern void * (*__malloc_hook) (size_t, const void *);
1083 extern void * (*__realloc_hook) (void *, size_t, const void *);
1084 extern void (*__free_hook) (void *, const void *);
1085 /* Else declared in malloc.h, perhaps with an extra arg. */
1086 #endif /* DOUG_LEA_MALLOC */
1087 static void * (*old_malloc_hook) (size_t, const void *);
1088 static void * (*old_realloc_hook) (void *, size_t, const void*);
1089 static void (*old_free_hook) (void*, const void*);
1090
1091 #ifdef DOUG_LEA_MALLOC
1092 # define BYTES_USED (mallinfo ().uordblks)
1093 #else
1094 # define BYTES_USED _bytes_used
1095 #endif
1096
1097 static __malloc_size_t bytes_used_when_reconsidered;
1098
1099 /* Value of _bytes_used, when spare_memory was freed. */
1100
1101 static __malloc_size_t bytes_used_when_full;
1102
1103 /* This function is used as the hook for free to call. */
1104
1105 static void
1106 emacs_blocked_free (void *ptr, const void *ptr2)
1107 {
1108 BLOCK_INPUT_ALLOC;
1109
1110 #ifdef GC_MALLOC_CHECK
1111 if (ptr)
1112 {
1113 struct mem_node *m;
1114
1115 m = mem_find (ptr);
1116 if (m == MEM_NIL || m->start != ptr)
1117 {
1118 fprintf (stderr,
1119 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1120 abort ();
1121 }
1122 else
1123 {
1124 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1125 mem_delete (m);
1126 }
1127 }
1128 #endif /* GC_MALLOC_CHECK */
1129
1130 __free_hook = old_free_hook;
1131 free (ptr);
1132
1133 /* If we released our reserve (due to running out of memory),
1134 and we have a fair amount free once again,
1135 try to set aside another reserve in case we run out once more. */
1136 if (! NILP (Vmemory_full)
1137 /* Verify there is enough space that even with the malloc
1138 hysteresis this call won't run out again.
1139 The code here is correct as long as SPARE_MEMORY
1140 is substantially larger than the block size malloc uses. */
1141 && (bytes_used_when_full
1142 > ((bytes_used_when_reconsidered = BYTES_USED)
1143 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1144 refill_memory_reserve ();
1145
1146 __free_hook = emacs_blocked_free;
1147 UNBLOCK_INPUT_ALLOC;
1148 }
1149
1150
1151 /* This function is the malloc hook that Emacs uses. */
1152
1153 static void *
1154 emacs_blocked_malloc (size_t size, const void *ptr)
1155 {
1156 void *value;
1157
1158 BLOCK_INPUT_ALLOC;
1159 __malloc_hook = old_malloc_hook;
1160 #ifdef DOUG_LEA_MALLOC
1161 /* Segfaults on my system. --lorentey */
1162 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1163 #else
1164 __malloc_extra_blocks = malloc_hysteresis;
1165 #endif
1166
1167 value = (void *) malloc (size);
1168
1169 #ifdef GC_MALLOC_CHECK
1170 {
1171 struct mem_node *m = mem_find (value);
1172 if (m != MEM_NIL)
1173 {
1174 fprintf (stderr, "Malloc returned %p which is already in use\n",
1175 value);
1176 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1177 m->start, m->end, (char *) m->end - (char *) m->start,
1178 m->type);
1179 abort ();
1180 }
1181
1182 if (!dont_register_blocks)
1183 {
1184 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1185 allocated_mem_type = MEM_TYPE_NON_LISP;
1186 }
1187 }
1188 #endif /* GC_MALLOC_CHECK */
1189
1190 __malloc_hook = emacs_blocked_malloc;
1191 UNBLOCK_INPUT_ALLOC;
1192
1193 /* fprintf (stderr, "%p malloc\n", value); */
1194 return value;
1195 }
1196
1197
1198 /* This function is the realloc hook that Emacs uses. */
1199
1200 static void *
1201 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1202 {
1203 void *value;
1204
1205 BLOCK_INPUT_ALLOC;
1206 __realloc_hook = old_realloc_hook;
1207
1208 #ifdef GC_MALLOC_CHECK
1209 if (ptr)
1210 {
1211 struct mem_node *m = mem_find (ptr);
1212 if (m == MEM_NIL || m->start != ptr)
1213 {
1214 fprintf (stderr,
1215 "Realloc of %p which wasn't allocated with malloc\n",
1216 ptr);
1217 abort ();
1218 }
1219
1220 mem_delete (m);
1221 }
1222
1223 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1224
1225 /* Prevent malloc from registering blocks. */
1226 dont_register_blocks = 1;
1227 #endif /* GC_MALLOC_CHECK */
1228
1229 value = (void *) realloc (ptr, size);
1230
1231 #ifdef GC_MALLOC_CHECK
1232 dont_register_blocks = 0;
1233
1234 {
1235 struct mem_node *m = mem_find (value);
1236 if (m != MEM_NIL)
1237 {
1238 fprintf (stderr, "Realloc returns memory that is already in use\n");
1239 abort ();
1240 }
1241
1242 /* Can't handle zero size regions in the red-black tree. */
1243 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1244 }
1245
1246 /* fprintf (stderr, "%p <- realloc\n", value); */
1247 #endif /* GC_MALLOC_CHECK */
1248
1249 __realloc_hook = emacs_blocked_realloc;
1250 UNBLOCK_INPUT_ALLOC;
1251
1252 return value;
1253 }
1254
1255
1256 #ifdef HAVE_GTK_AND_PTHREAD
1257 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1258 normal malloc. Some thread implementations need this as they call
1259 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1260 calls malloc because it is the first call, and we have an endless loop. */
1261
1262 void
1263 reset_malloc_hooks ()
1264 {
1265 __free_hook = old_free_hook;
1266 __malloc_hook = old_malloc_hook;
1267 __realloc_hook = old_realloc_hook;
1268 }
1269 #endif /* HAVE_GTK_AND_PTHREAD */
1270
1271
1272 /* Called from main to set up malloc to use our hooks. */
1273
1274 void
1275 uninterrupt_malloc (void)
1276 {
1277 #ifdef HAVE_GTK_AND_PTHREAD
1278 #ifdef DOUG_LEA_MALLOC
1279 pthread_mutexattr_t attr;
1280
1281 /* GLIBC has a faster way to do this, but lets keep it portable.
1282 This is according to the Single UNIX Specification. */
1283 pthread_mutexattr_init (&attr);
1284 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1285 pthread_mutex_init (&alloc_mutex, &attr);
1286 #else /* !DOUG_LEA_MALLOC */
1287 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1288 and the bundled gmalloc.c doesn't require it. */
1289 pthread_mutex_init (&alloc_mutex, NULL);
1290 #endif /* !DOUG_LEA_MALLOC */
1291 #endif /* HAVE_GTK_AND_PTHREAD */
1292
1293 if (__free_hook != emacs_blocked_free)
1294 old_free_hook = __free_hook;
1295 __free_hook = emacs_blocked_free;
1296
1297 if (__malloc_hook != emacs_blocked_malloc)
1298 old_malloc_hook = __malloc_hook;
1299 __malloc_hook = emacs_blocked_malloc;
1300
1301 if (__realloc_hook != emacs_blocked_realloc)
1302 old_realloc_hook = __realloc_hook;
1303 __realloc_hook = emacs_blocked_realloc;
1304 }
1305
1306 #endif /* not SYNC_INPUT */
1307 #endif /* not SYSTEM_MALLOC */
1308
1309
1310 \f
1311 /***********************************************************************
1312 Interval Allocation
1313 ***********************************************************************/
1314
1315 /* Number of intervals allocated in an interval_block structure.
1316 The 1020 is 1024 minus malloc overhead. */
1317
1318 #define INTERVAL_BLOCK_SIZE \
1319 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1320
1321 /* Intervals are allocated in chunks in form of an interval_block
1322 structure. */
1323
1324 struct interval_block
1325 {
1326 /* Place `intervals' first, to preserve alignment. */
1327 struct interval intervals[INTERVAL_BLOCK_SIZE];
1328 struct interval_block *next;
1329 };
1330
1331 /* Current interval block. Its `next' pointer points to older
1332 blocks. */
1333
1334 static struct interval_block *interval_block;
1335
1336 /* Index in interval_block above of the next unused interval
1337 structure. */
1338
1339 static int interval_block_index;
1340
1341 /* Number of free and live intervals. */
1342
1343 static int total_free_intervals, total_intervals;
1344
1345 /* List of free intervals. */
1346
1347 static INTERVAL interval_free_list;
1348
1349 /* Total number of interval blocks now in use. */
1350
1351 static int n_interval_blocks;
1352
1353
1354 /* Initialize interval allocation. */
1355
1356 static void
1357 init_intervals (void)
1358 {
1359 interval_block = NULL;
1360 interval_block_index = INTERVAL_BLOCK_SIZE;
1361 interval_free_list = 0;
1362 n_interval_blocks = 0;
1363 }
1364
1365
1366 /* Return a new interval. */
1367
1368 INTERVAL
1369 make_interval (void)
1370 {
1371 INTERVAL val;
1372
1373 /* eassert (!handling_signal); */
1374
1375 MALLOC_BLOCK_INPUT;
1376
1377 if (interval_free_list)
1378 {
1379 val = interval_free_list;
1380 interval_free_list = INTERVAL_PARENT (interval_free_list);
1381 }
1382 else
1383 {
1384 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1385 {
1386 register struct interval_block *newi;
1387
1388 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1389 MEM_TYPE_NON_LISP);
1390
1391 newi->next = interval_block;
1392 interval_block = newi;
1393 interval_block_index = 0;
1394 n_interval_blocks++;
1395 }
1396 val = &interval_block->intervals[interval_block_index++];
1397 }
1398
1399 MALLOC_UNBLOCK_INPUT;
1400
1401 consing_since_gc += sizeof (struct interval);
1402 intervals_consed++;
1403 RESET_INTERVAL (val);
1404 val->gcmarkbit = 0;
1405 return val;
1406 }
1407
1408
1409 /* Mark Lisp objects in interval I. */
1410
1411 static void
1412 mark_interval (register INTERVAL i, Lisp_Object dummy)
1413 {
1414 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1415 i->gcmarkbit = 1;
1416 mark_object (i->plist);
1417 }
1418
1419
1420 /* Mark the interval tree rooted in TREE. Don't call this directly;
1421 use the macro MARK_INTERVAL_TREE instead. */
1422
1423 static void
1424 mark_interval_tree (register INTERVAL tree)
1425 {
1426 /* No need to test if this tree has been marked already; this
1427 function is always called through the MARK_INTERVAL_TREE macro,
1428 which takes care of that. */
1429
1430 traverse_intervals_noorder (tree, mark_interval, Qnil);
1431 }
1432
1433
1434 /* Mark the interval tree rooted in I. */
1435
1436 #define MARK_INTERVAL_TREE(i) \
1437 do { \
1438 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1439 mark_interval_tree (i); \
1440 } while (0)
1441
1442
1443 #define UNMARK_BALANCE_INTERVALS(i) \
1444 do { \
1445 if (! NULL_INTERVAL_P (i)) \
1446 (i) = balance_intervals (i); \
1447 } while (0)
1448
1449 \f
1450 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1451 can't create number objects in macros. */
1452 #ifndef make_number
1453 Lisp_Object
1454 make_number (EMACS_INT n)
1455 {
1456 Lisp_Object obj;
1457 obj.s.val = n;
1458 obj.s.type = Lisp_Int;
1459 return obj;
1460 }
1461 #endif
1462 \f
1463 /***********************************************************************
1464 String Allocation
1465 ***********************************************************************/
1466
1467 /* Lisp_Strings are allocated in string_block structures. When a new
1468 string_block is allocated, all the Lisp_Strings it contains are
1469 added to a free-list string_free_list. When a new Lisp_String is
1470 needed, it is taken from that list. During the sweep phase of GC,
1471 string_blocks that are entirely free are freed, except two which
1472 we keep.
1473
1474 String data is allocated from sblock structures. Strings larger
1475 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1476 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1477
1478 Sblocks consist internally of sdata structures, one for each
1479 Lisp_String. The sdata structure points to the Lisp_String it
1480 belongs to. The Lisp_String points back to the `u.data' member of
1481 its sdata structure.
1482
1483 When a Lisp_String is freed during GC, it is put back on
1484 string_free_list, and its `data' member and its sdata's `string'
1485 pointer is set to null. The size of the string is recorded in the
1486 `u.nbytes' member of the sdata. So, sdata structures that are no
1487 longer used, can be easily recognized, and it's easy to compact the
1488 sblocks of small strings which we do in compact_small_strings. */
1489
1490 /* Size in bytes of an sblock structure used for small strings. This
1491 is 8192 minus malloc overhead. */
1492
1493 #define SBLOCK_SIZE 8188
1494
1495 /* Strings larger than this are considered large strings. String data
1496 for large strings is allocated from individual sblocks. */
1497
1498 #define LARGE_STRING_BYTES 1024
1499
1500 /* Structure describing string memory sub-allocated from an sblock.
1501 This is where the contents of Lisp strings are stored. */
1502
1503 struct sdata
1504 {
1505 /* Back-pointer to the string this sdata belongs to. If null, this
1506 structure is free, and the NBYTES member of the union below
1507 contains the string's byte size (the same value that STRING_BYTES
1508 would return if STRING were non-null). If non-null, STRING_BYTES
1509 (STRING) is the size of the data, and DATA contains the string's
1510 contents. */
1511 struct Lisp_String *string;
1512
1513 #ifdef GC_CHECK_STRING_BYTES
1514
1515 EMACS_INT nbytes;
1516 unsigned char data[1];
1517
1518 #define SDATA_NBYTES(S) (S)->nbytes
1519 #define SDATA_DATA(S) (S)->data
1520 #define SDATA_SELECTOR(member) member
1521
1522 #else /* not GC_CHECK_STRING_BYTES */
1523
1524 union
1525 {
1526 /* When STRING is non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1532
1533 #define SDATA_NBYTES(S) (S)->u.nbytes
1534 #define SDATA_DATA(S) (S)->u.data
1535 #define SDATA_SELECTOR(member) u.member
1536
1537 #endif /* not GC_CHECK_STRING_BYTES */
1538
1539 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1540 };
1541
1542
1543 /* Structure describing a block of memory which is sub-allocated to
1544 obtain string data memory for strings. Blocks for small strings
1545 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1546 as large as needed. */
1547
1548 struct sblock
1549 {
1550 /* Next in list. */
1551 struct sblock *next;
1552
1553 /* Pointer to the next free sdata block. This points past the end
1554 of the sblock if there isn't any space left in this block. */
1555 struct sdata *next_free;
1556
1557 /* Start of data. */
1558 struct sdata first_data;
1559 };
1560
1561 /* Number of Lisp strings in a string_block structure. The 1020 is
1562 1024 minus malloc overhead. */
1563
1564 #define STRING_BLOCK_SIZE \
1565 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1566
1567 /* Structure describing a block from which Lisp_String structures
1568 are allocated. */
1569
1570 struct string_block
1571 {
1572 /* Place `strings' first, to preserve alignment. */
1573 struct Lisp_String strings[STRING_BLOCK_SIZE];
1574 struct string_block *next;
1575 };
1576
1577 /* Head and tail of the list of sblock structures holding Lisp string
1578 data. We always allocate from current_sblock. The NEXT pointers
1579 in the sblock structures go from oldest_sblock to current_sblock. */
1580
1581 static struct sblock *oldest_sblock, *current_sblock;
1582
1583 /* List of sblocks for large strings. */
1584
1585 static struct sblock *large_sblocks;
1586
1587 /* List of string_block structures, and how many there are. */
1588
1589 static struct string_block *string_blocks;
1590 static int n_string_blocks;
1591
1592 /* Free-list of Lisp_Strings. */
1593
1594 static struct Lisp_String *string_free_list;
1595
1596 /* Number of live and free Lisp_Strings. */
1597
1598 static int total_strings, total_free_strings;
1599
1600 /* Number of bytes used by live strings. */
1601
1602 static EMACS_INT total_string_size;
1603
1604 /* Given a pointer to a Lisp_String S which is on the free-list
1605 string_free_list, return a pointer to its successor in the
1606 free-list. */
1607
1608 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1609
1610 /* Return a pointer to the sdata structure belonging to Lisp string S.
1611 S must be live, i.e. S->data must not be null. S->data is actually
1612 a pointer to the `u.data' member of its sdata structure; the
1613 structure starts at a constant offset in front of that. */
1614
1615 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1616
1617
1618 #ifdef GC_CHECK_STRING_OVERRUN
1619
1620 /* We check for overrun in string data blocks by appending a small
1621 "cookie" after each allocated string data block, and check for the
1622 presence of this cookie during GC. */
1623
1624 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1625 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1626 { '\xde', '\xad', '\xbe', '\xef' };
1627
1628 #else
1629 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1630 #endif
1631
1632 /* Value is the size of an sdata structure large enough to hold NBYTES
1633 bytes of string data. The value returned includes a terminating
1634 NUL byte, the size of the sdata structure, and padding. */
1635
1636 #ifdef GC_CHECK_STRING_BYTES
1637
1638 #define SDATA_SIZE(NBYTES) \
1639 ((SDATA_DATA_OFFSET \
1640 + (NBYTES) + 1 \
1641 + sizeof (EMACS_INT) - 1) \
1642 & ~(sizeof (EMACS_INT) - 1))
1643
1644 #else /* not GC_CHECK_STRING_BYTES */
1645
1646 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1647 less than the size of that member. The 'max' is not needed when
1648 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1649 alignment code reserves enough space. */
1650
1651 #define SDATA_SIZE(NBYTES) \
1652 ((SDATA_DATA_OFFSET \
1653 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1654 ? NBYTES \
1655 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1656 + 1 \
1657 + sizeof (EMACS_INT) - 1) \
1658 & ~(sizeof (EMACS_INT) - 1))
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 /* Extra bytes to allocate for each string. */
1663
1664 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1665
1666 /* Initialize string allocation. Called from init_alloc_once. */
1667
1668 static void
1669 init_strings (void)
1670 {
1671 total_strings = total_free_strings = total_string_size = 0;
1672 oldest_sblock = current_sblock = large_sblocks = NULL;
1673 string_blocks = NULL;
1674 n_string_blocks = 0;
1675 string_free_list = NULL;
1676 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1677 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1678 }
1679
1680
1681 #ifdef GC_CHECK_STRING_BYTES
1682
1683 static int check_string_bytes_count;
1684
1685 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1686
1687
1688 /* Like GC_STRING_BYTES, but with debugging check. */
1689
1690 EMACS_INT
1691 string_bytes (struct Lisp_String *s)
1692 {
1693 EMACS_INT nbytes =
1694 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1695
1696 if (!PURE_POINTER_P (s)
1697 && s->data
1698 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1699 abort ();
1700 return nbytes;
1701 }
1702
1703 /* Check validity of Lisp strings' string_bytes member in B. */
1704
1705 static void
1706 check_sblock (struct sblock *b)
1707 {
1708 struct sdata *from, *end, *from_end;
1709
1710 end = b->next_free;
1711
1712 for (from = &b->first_data; from < end; from = from_end)
1713 {
1714 /* Compute the next FROM here because copying below may
1715 overwrite data we need to compute it. */
1716 EMACS_INT nbytes;
1717
1718 /* Check that the string size recorded in the string is the
1719 same as the one recorded in the sdata structure. */
1720 if (from->string)
1721 CHECK_STRING_BYTES (from->string);
1722
1723 if (from->string)
1724 nbytes = GC_STRING_BYTES (from->string);
1725 else
1726 nbytes = SDATA_NBYTES (from);
1727
1728 nbytes = SDATA_SIZE (nbytes);
1729 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1730 }
1731 }
1732
1733
1734 /* Check validity of Lisp strings' string_bytes member. ALL_P
1735 non-zero means check all strings, otherwise check only most
1736 recently allocated strings. Used for hunting a bug. */
1737
1738 static void
1739 check_string_bytes (int all_p)
1740 {
1741 if (all_p)
1742 {
1743 struct sblock *b;
1744
1745 for (b = large_sblocks; b; b = b->next)
1746 {
1747 struct Lisp_String *s = b->first_data.string;
1748 if (s)
1749 CHECK_STRING_BYTES (s);
1750 }
1751
1752 for (b = oldest_sblock; b; b = b->next)
1753 check_sblock (b);
1754 }
1755 else
1756 check_sblock (current_sblock);
1757 }
1758
1759 #endif /* GC_CHECK_STRING_BYTES */
1760
1761 #ifdef GC_CHECK_STRING_FREE_LIST
1762
1763 /* Walk through the string free list looking for bogus next pointers.
1764 This may catch buffer overrun from a previous string. */
1765
1766 static void
1767 check_string_free_list (void)
1768 {
1769 struct Lisp_String *s;
1770
1771 /* Pop a Lisp_String off the free-list. */
1772 s = string_free_list;
1773 while (s != NULL)
1774 {
1775 if ((unsigned long)s < 1024)
1776 abort();
1777 s = NEXT_FREE_LISP_STRING (s);
1778 }
1779 }
1780 #else
1781 #define check_string_free_list()
1782 #endif
1783
1784 /* Return a new Lisp_String. */
1785
1786 static struct Lisp_String *
1787 allocate_string (void)
1788 {
1789 struct Lisp_String *s;
1790
1791 /* eassert (!handling_signal); */
1792
1793 MALLOC_BLOCK_INPUT;
1794
1795 /* If the free-list is empty, allocate a new string_block, and
1796 add all the Lisp_Strings in it to the free-list. */
1797 if (string_free_list == NULL)
1798 {
1799 struct string_block *b;
1800 int i;
1801
1802 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1803 memset (b, 0, sizeof *b);
1804 b->next = string_blocks;
1805 string_blocks = b;
1806 ++n_string_blocks;
1807
1808 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1809 {
1810 s = b->strings + i;
1811 NEXT_FREE_LISP_STRING (s) = string_free_list;
1812 string_free_list = s;
1813 }
1814
1815 total_free_strings += STRING_BLOCK_SIZE;
1816 }
1817
1818 check_string_free_list ();
1819
1820 /* Pop a Lisp_String off the free-list. */
1821 s = string_free_list;
1822 string_free_list = NEXT_FREE_LISP_STRING (s);
1823
1824 MALLOC_UNBLOCK_INPUT;
1825
1826 /* Probably not strictly necessary, but play it safe. */
1827 memset (s, 0, sizeof *s);
1828
1829 --total_free_strings;
1830 ++total_strings;
1831 ++strings_consed;
1832 consing_since_gc += sizeof *s;
1833
1834 #ifdef GC_CHECK_STRING_BYTES
1835 if (!noninteractive)
1836 {
1837 if (++check_string_bytes_count == 200)
1838 {
1839 check_string_bytes_count = 0;
1840 check_string_bytes (1);
1841 }
1842 else
1843 check_string_bytes (0);
1844 }
1845 #endif /* GC_CHECK_STRING_BYTES */
1846
1847 return s;
1848 }
1849
1850
1851 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1852 plus a NUL byte at the end. Allocate an sdata structure for S, and
1853 set S->data to its `u.data' member. Store a NUL byte at the end of
1854 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1855 S->data if it was initially non-null. */
1856
1857 void
1858 allocate_string_data (struct Lisp_String *s,
1859 EMACS_INT nchars, EMACS_INT nbytes)
1860 {
1861 struct sdata *data, *old_data;
1862 struct sblock *b;
1863 EMACS_INT needed, old_nbytes;
1864
1865 /* Determine the number of bytes needed to store NBYTES bytes
1866 of string data. */
1867 needed = SDATA_SIZE (nbytes);
1868 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1869 old_nbytes = GC_STRING_BYTES (s);
1870
1871 MALLOC_BLOCK_INPUT;
1872
1873 if (nbytes > LARGE_STRING_BYTES)
1874 {
1875 size_t size = offsetof (struct sblock, first_data) + needed;
1876
1877 #ifdef DOUG_LEA_MALLOC
1878 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1879 because mapped region contents are not preserved in
1880 a dumped Emacs.
1881
1882 In case you think of allowing it in a dumped Emacs at the
1883 cost of not being able to re-dump, there's another reason:
1884 mmap'ed data typically have an address towards the top of the
1885 address space, which won't fit into an EMACS_INT (at least on
1886 32-bit systems with the current tagging scheme). --fx */
1887 mallopt (M_MMAP_MAX, 0);
1888 #endif
1889
1890 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1891
1892 #ifdef DOUG_LEA_MALLOC
1893 /* Back to a reasonable maximum of mmap'ed areas. */
1894 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1895 #endif
1896
1897 b->next_free = &b->first_data;
1898 b->first_data.string = NULL;
1899 b->next = large_sblocks;
1900 large_sblocks = b;
1901 }
1902 else if (current_sblock == NULL
1903 || (((char *) current_sblock + SBLOCK_SIZE
1904 - (char *) current_sblock->next_free)
1905 < (needed + GC_STRING_EXTRA)))
1906 {
1907 /* Not enough room in the current sblock. */
1908 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1909 b->next_free = &b->first_data;
1910 b->first_data.string = NULL;
1911 b->next = NULL;
1912
1913 if (current_sblock)
1914 current_sblock->next = b;
1915 else
1916 oldest_sblock = b;
1917 current_sblock = b;
1918 }
1919 else
1920 b = current_sblock;
1921
1922 data = b->next_free;
1923 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1924
1925 MALLOC_UNBLOCK_INPUT;
1926
1927 data->string = s;
1928 s->data = SDATA_DATA (data);
1929 #ifdef GC_CHECK_STRING_BYTES
1930 SDATA_NBYTES (data) = nbytes;
1931 #endif
1932 s->size = nchars;
1933 s->size_byte = nbytes;
1934 s->data[nbytes] = '\0';
1935 #ifdef GC_CHECK_STRING_OVERRUN
1936 memcpy ((char *) data + needed, string_overrun_cookie,
1937 GC_STRING_OVERRUN_COOKIE_SIZE);
1938 #endif
1939
1940 /* If S had already data assigned, mark that as free by setting its
1941 string back-pointer to null, and recording the size of the data
1942 in it. */
1943 if (old_data)
1944 {
1945 SDATA_NBYTES (old_data) = old_nbytes;
1946 old_data->string = NULL;
1947 }
1948
1949 consing_since_gc += needed;
1950 }
1951
1952
1953 /* Sweep and compact strings. */
1954
1955 static void
1956 sweep_strings (void)
1957 {
1958 struct string_block *b, *next;
1959 struct string_block *live_blocks = NULL;
1960
1961 string_free_list = NULL;
1962 total_strings = total_free_strings = 0;
1963 total_string_size = 0;
1964
1965 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1966 for (b = string_blocks; b; b = next)
1967 {
1968 int i, nfree = 0;
1969 struct Lisp_String *free_list_before = string_free_list;
1970
1971 next = b->next;
1972
1973 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1974 {
1975 struct Lisp_String *s = b->strings + i;
1976
1977 if (s->data)
1978 {
1979 /* String was not on free-list before. */
1980 if (STRING_MARKED_P (s))
1981 {
1982 /* String is live; unmark it and its intervals. */
1983 UNMARK_STRING (s);
1984
1985 if (!NULL_INTERVAL_P (s->intervals))
1986 UNMARK_BALANCE_INTERVALS (s->intervals);
1987
1988 ++total_strings;
1989 total_string_size += STRING_BYTES (s);
1990 }
1991 else
1992 {
1993 /* String is dead. Put it on the free-list. */
1994 struct sdata *data = SDATA_OF_STRING (s);
1995
1996 /* Save the size of S in its sdata so that we know
1997 how large that is. Reset the sdata's string
1998 back-pointer so that we know it's free. */
1999 #ifdef GC_CHECK_STRING_BYTES
2000 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2001 abort ();
2002 #else
2003 data->u.nbytes = GC_STRING_BYTES (s);
2004 #endif
2005 data->string = NULL;
2006
2007 /* Reset the strings's `data' member so that we
2008 know it's free. */
2009 s->data = NULL;
2010
2011 /* Put the string on the free-list. */
2012 NEXT_FREE_LISP_STRING (s) = string_free_list;
2013 string_free_list = s;
2014 ++nfree;
2015 }
2016 }
2017 else
2018 {
2019 /* S was on the free-list before. Put it there again. */
2020 NEXT_FREE_LISP_STRING (s) = string_free_list;
2021 string_free_list = s;
2022 ++nfree;
2023 }
2024 }
2025
2026 /* Free blocks that contain free Lisp_Strings only, except
2027 the first two of them. */
2028 if (nfree == STRING_BLOCK_SIZE
2029 && total_free_strings > STRING_BLOCK_SIZE)
2030 {
2031 lisp_free (b);
2032 --n_string_blocks;
2033 string_free_list = free_list_before;
2034 }
2035 else
2036 {
2037 total_free_strings += nfree;
2038 b->next = live_blocks;
2039 live_blocks = b;
2040 }
2041 }
2042
2043 check_string_free_list ();
2044
2045 string_blocks = live_blocks;
2046 free_large_strings ();
2047 compact_small_strings ();
2048
2049 check_string_free_list ();
2050 }
2051
2052
2053 /* Free dead large strings. */
2054
2055 static void
2056 free_large_strings (void)
2057 {
2058 struct sblock *b, *next;
2059 struct sblock *live_blocks = NULL;
2060
2061 for (b = large_sblocks; b; b = next)
2062 {
2063 next = b->next;
2064
2065 if (b->first_data.string == NULL)
2066 lisp_free (b);
2067 else
2068 {
2069 b->next = live_blocks;
2070 live_blocks = b;
2071 }
2072 }
2073
2074 large_sblocks = live_blocks;
2075 }
2076
2077
2078 /* Compact data of small strings. Free sblocks that don't contain
2079 data of live strings after compaction. */
2080
2081 static void
2082 compact_small_strings (void)
2083 {
2084 struct sblock *b, *tb, *next;
2085 struct sdata *from, *to, *end, *tb_end;
2086 struct sdata *to_end, *from_end;
2087
2088 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2089 to, and TB_END is the end of TB. */
2090 tb = oldest_sblock;
2091 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2092 to = &tb->first_data;
2093
2094 /* Step through the blocks from the oldest to the youngest. We
2095 expect that old blocks will stabilize over time, so that less
2096 copying will happen this way. */
2097 for (b = oldest_sblock; b; b = b->next)
2098 {
2099 end = b->next_free;
2100 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2101
2102 for (from = &b->first_data; from < end; from = from_end)
2103 {
2104 /* Compute the next FROM here because copying below may
2105 overwrite data we need to compute it. */
2106 EMACS_INT nbytes;
2107
2108 #ifdef GC_CHECK_STRING_BYTES
2109 /* Check that the string size recorded in the string is the
2110 same as the one recorded in the sdata structure. */
2111 if (from->string
2112 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2113 abort ();
2114 #endif /* GC_CHECK_STRING_BYTES */
2115
2116 if (from->string)
2117 nbytes = GC_STRING_BYTES (from->string);
2118 else
2119 nbytes = SDATA_NBYTES (from);
2120
2121 if (nbytes > LARGE_STRING_BYTES)
2122 abort ();
2123
2124 nbytes = SDATA_SIZE (nbytes);
2125 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2126
2127 #ifdef GC_CHECK_STRING_OVERRUN
2128 if (memcmp (string_overrun_cookie,
2129 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2130 GC_STRING_OVERRUN_COOKIE_SIZE))
2131 abort ();
2132 #endif
2133
2134 /* FROM->string non-null means it's alive. Copy its data. */
2135 if (from->string)
2136 {
2137 /* If TB is full, proceed with the next sblock. */
2138 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2139 if (to_end > tb_end)
2140 {
2141 tb->next_free = to;
2142 tb = tb->next;
2143 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2144 to = &tb->first_data;
2145 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 }
2147
2148 /* Copy, and update the string's `data' pointer. */
2149 if (from != to)
2150 {
2151 xassert (tb != b || to < from);
2152 memmove (to, from, nbytes + GC_STRING_EXTRA);
2153 to->string->data = SDATA_DATA (to);
2154 }
2155
2156 /* Advance past the sdata we copied to. */
2157 to = to_end;
2158 }
2159 }
2160 }
2161
2162 /* The rest of the sblocks following TB don't contain live data, so
2163 we can free them. */
2164 for (b = tb->next; b; b = next)
2165 {
2166 next = b->next;
2167 lisp_free (b);
2168 }
2169
2170 tb->next_free = to;
2171 tb->next = NULL;
2172 current_sblock = tb;
2173 }
2174
2175
2176 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2177 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2178 LENGTH must be an integer.
2179 INIT must be an integer that represents a character. */)
2180 (Lisp_Object length, Lisp_Object init)
2181 {
2182 register Lisp_Object val;
2183 register unsigned char *p, *end;
2184 int c;
2185 EMACS_INT nbytes;
2186
2187 CHECK_NATNUM (length);
2188 CHECK_NUMBER (init);
2189
2190 c = XINT (init);
2191 if (ASCII_CHAR_P (c))
2192 {
2193 nbytes = XINT (length);
2194 val = make_uninit_string (nbytes);
2195 p = SDATA (val);
2196 end = p + SCHARS (val);
2197 while (p != end)
2198 *p++ = c;
2199 }
2200 else
2201 {
2202 unsigned char str[MAX_MULTIBYTE_LENGTH];
2203 int len = CHAR_STRING (c, str);
2204 EMACS_INT string_len = XINT (length);
2205
2206 if (string_len > MOST_POSITIVE_FIXNUM / len)
2207 error ("Maximum string size exceeded");
2208 nbytes = len * string_len;
2209 val = make_uninit_multibyte_string (string_len, nbytes);
2210 p = SDATA (val);
2211 end = p + nbytes;
2212 while (p != end)
2213 {
2214 memcpy (p, str, len);
2215 p += len;
2216 }
2217 }
2218
2219 *p = 0;
2220 return val;
2221 }
2222
2223
2224 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2225 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2226 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2227 (Lisp_Object length, Lisp_Object init)
2228 {
2229 register Lisp_Object val;
2230 struct Lisp_Bool_Vector *p;
2231 int real_init, i;
2232 EMACS_INT length_in_chars, length_in_elts;
2233 int bits_per_value;
2234
2235 CHECK_NATNUM (length);
2236
2237 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2238
2239 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2240 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2241 / BOOL_VECTOR_BITS_PER_CHAR);
2242
2243 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2244 slot `size' of the struct Lisp_Bool_Vector. */
2245 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2246
2247 /* No Lisp_Object to trace in there. */
2248 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2249
2250 p = XBOOL_VECTOR (val);
2251 p->size = XFASTINT (length);
2252
2253 real_init = (NILP (init) ? 0 : -1);
2254 for (i = 0; i < length_in_chars ; i++)
2255 p->data[i] = real_init;
2256
2257 /* Clear the extraneous bits in the last byte. */
2258 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2259 p->data[length_in_chars - 1]
2260 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2261
2262 return val;
2263 }
2264
2265
2266 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2267 of characters from the contents. This string may be unibyte or
2268 multibyte, depending on the contents. */
2269
2270 Lisp_Object
2271 make_string (const char *contents, EMACS_INT nbytes)
2272 {
2273 register Lisp_Object val;
2274 EMACS_INT nchars, multibyte_nbytes;
2275
2276 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2277 &nchars, &multibyte_nbytes);
2278 if (nbytes == nchars || nbytes != multibyte_nbytes)
2279 /* CONTENTS contains no multibyte sequences or contains an invalid
2280 multibyte sequence. We must make unibyte string. */
2281 val = make_unibyte_string (contents, nbytes);
2282 else
2283 val = make_multibyte_string (contents, nchars, nbytes);
2284 return val;
2285 }
2286
2287
2288 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2289
2290 Lisp_Object
2291 make_unibyte_string (const char *contents, EMACS_INT length)
2292 {
2293 register Lisp_Object val;
2294 val = make_uninit_string (length);
2295 memcpy (SDATA (val), contents, length);
2296 return val;
2297 }
2298
2299
2300 /* Make a multibyte string from NCHARS characters occupying NBYTES
2301 bytes at CONTENTS. */
2302
2303 Lisp_Object
2304 make_multibyte_string (const char *contents,
2305 EMACS_INT nchars, EMACS_INT nbytes)
2306 {
2307 register Lisp_Object val;
2308 val = make_uninit_multibyte_string (nchars, nbytes);
2309 memcpy (SDATA (val), contents, nbytes);
2310 return val;
2311 }
2312
2313
2314 /* Make a string from NCHARS characters occupying NBYTES bytes at
2315 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2316
2317 Lisp_Object
2318 make_string_from_bytes (const char *contents,
2319 EMACS_INT nchars, EMACS_INT nbytes)
2320 {
2321 register Lisp_Object val;
2322 val = make_uninit_multibyte_string (nchars, nbytes);
2323 memcpy (SDATA (val), contents, nbytes);
2324 if (SBYTES (val) == SCHARS (val))
2325 STRING_SET_UNIBYTE (val);
2326 return val;
2327 }
2328
2329
2330 /* Make a string from NCHARS characters occupying NBYTES bytes at
2331 CONTENTS. The argument MULTIBYTE controls whether to label the
2332 string as multibyte. If NCHARS is negative, it counts the number of
2333 characters by itself. */
2334
2335 Lisp_Object
2336 make_specified_string (const char *contents,
2337 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2338 {
2339 register Lisp_Object val;
2340
2341 if (nchars < 0)
2342 {
2343 if (multibyte)
2344 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2345 nbytes);
2346 else
2347 nchars = nbytes;
2348 }
2349 val = make_uninit_multibyte_string (nchars, nbytes);
2350 memcpy (SDATA (val), contents, nbytes);
2351 if (!multibyte)
2352 STRING_SET_UNIBYTE (val);
2353 return val;
2354 }
2355
2356
2357 /* Make a string from the data at STR, treating it as multibyte if the
2358 data warrants. */
2359
2360 Lisp_Object
2361 build_string (const char *str)
2362 {
2363 return make_string (str, strlen (str));
2364 }
2365
2366
2367 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2368 occupying LENGTH bytes. */
2369
2370 Lisp_Object
2371 make_uninit_string (EMACS_INT length)
2372 {
2373 Lisp_Object val;
2374
2375 if (!length)
2376 return empty_unibyte_string;
2377 val = make_uninit_multibyte_string (length, length);
2378 STRING_SET_UNIBYTE (val);
2379 return val;
2380 }
2381
2382
2383 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2384 which occupy NBYTES bytes. */
2385
2386 Lisp_Object
2387 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2388 {
2389 Lisp_Object string;
2390 struct Lisp_String *s;
2391
2392 if (nchars < 0)
2393 abort ();
2394 if (!nbytes)
2395 return empty_multibyte_string;
2396
2397 s = allocate_string ();
2398 allocate_string_data (s, nchars, nbytes);
2399 XSETSTRING (string, s);
2400 string_chars_consed += nbytes;
2401 return string;
2402 }
2403
2404
2405 \f
2406 /***********************************************************************
2407 Float Allocation
2408 ***********************************************************************/
2409
2410 /* We store float cells inside of float_blocks, allocating a new
2411 float_block with malloc whenever necessary. Float cells reclaimed
2412 by GC are put on a free list to be reallocated before allocating
2413 any new float cells from the latest float_block. */
2414
2415 #define FLOAT_BLOCK_SIZE \
2416 (((BLOCK_BYTES - sizeof (struct float_block *) \
2417 /* The compiler might add padding at the end. */ \
2418 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2419 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2420
2421 #define GETMARKBIT(block,n) \
2422 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2423 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2424 & 1)
2425
2426 #define SETMARKBIT(block,n) \
2427 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2428 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2429
2430 #define UNSETMARKBIT(block,n) \
2431 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2432 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2433
2434 #define FLOAT_BLOCK(fptr) \
2435 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2436
2437 #define FLOAT_INDEX(fptr) \
2438 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2439
2440 struct float_block
2441 {
2442 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2443 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2444 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2445 struct float_block *next;
2446 };
2447
2448 #define FLOAT_MARKED_P(fptr) \
2449 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2450
2451 #define FLOAT_MARK(fptr) \
2452 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2453
2454 #define FLOAT_UNMARK(fptr) \
2455 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456
2457 /* Current float_block. */
2458
2459 static struct float_block *float_block;
2460
2461 /* Index of first unused Lisp_Float in the current float_block. */
2462
2463 static int float_block_index;
2464
2465 /* Total number of float blocks now in use. */
2466
2467 static int n_float_blocks;
2468
2469 /* Free-list of Lisp_Floats. */
2470
2471 static struct Lisp_Float *float_free_list;
2472
2473
2474 /* Initialize float allocation. */
2475
2476 static void
2477 init_float (void)
2478 {
2479 float_block = NULL;
2480 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2481 float_free_list = 0;
2482 n_float_blocks = 0;
2483 }
2484
2485
2486 /* Return a new float object with value FLOAT_VALUE. */
2487
2488 Lisp_Object
2489 make_float (double float_value)
2490 {
2491 register Lisp_Object val;
2492
2493 /* eassert (!handling_signal); */
2494
2495 MALLOC_BLOCK_INPUT;
2496
2497 if (float_free_list)
2498 {
2499 /* We use the data field for chaining the free list
2500 so that we won't use the same field that has the mark bit. */
2501 XSETFLOAT (val, float_free_list);
2502 float_free_list = float_free_list->u.chain;
2503 }
2504 else
2505 {
2506 if (float_block_index == FLOAT_BLOCK_SIZE)
2507 {
2508 register struct float_block *new;
2509
2510 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2511 MEM_TYPE_FLOAT);
2512 new->next = float_block;
2513 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2514 float_block = new;
2515 float_block_index = 0;
2516 n_float_blocks++;
2517 }
2518 XSETFLOAT (val, &float_block->floats[float_block_index]);
2519 float_block_index++;
2520 }
2521
2522 MALLOC_UNBLOCK_INPUT;
2523
2524 XFLOAT_INIT (val, float_value);
2525 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2526 consing_since_gc += sizeof (struct Lisp_Float);
2527 floats_consed++;
2528 return val;
2529 }
2530
2531
2532 \f
2533 /***********************************************************************
2534 Cons Allocation
2535 ***********************************************************************/
2536
2537 /* We store cons cells inside of cons_blocks, allocating a new
2538 cons_block with malloc whenever necessary. Cons cells reclaimed by
2539 GC are put on a free list to be reallocated before allocating
2540 any new cons cells from the latest cons_block. */
2541
2542 #define CONS_BLOCK_SIZE \
2543 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2544 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2545
2546 #define CONS_BLOCK(fptr) \
2547 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2548
2549 #define CONS_INDEX(fptr) \
2550 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2551
2552 struct cons_block
2553 {
2554 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2555 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2556 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2557 struct cons_block *next;
2558 };
2559
2560 #define CONS_MARKED_P(fptr) \
2561 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2562
2563 #define CONS_MARK(fptr) \
2564 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2565
2566 #define CONS_UNMARK(fptr) \
2567 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568
2569 /* Current cons_block. */
2570
2571 static struct cons_block *cons_block;
2572
2573 /* Index of first unused Lisp_Cons in the current block. */
2574
2575 static int cons_block_index;
2576
2577 /* Free-list of Lisp_Cons structures. */
2578
2579 static struct Lisp_Cons *cons_free_list;
2580
2581 /* Total number of cons blocks now in use. */
2582
2583 static int n_cons_blocks;
2584
2585
2586 /* Initialize cons allocation. */
2587
2588 static void
2589 init_cons (void)
2590 {
2591 cons_block = NULL;
2592 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2593 cons_free_list = 0;
2594 n_cons_blocks = 0;
2595 }
2596
2597
2598 /* Explicitly free a cons cell by putting it on the free-list. */
2599
2600 void
2601 free_cons (struct Lisp_Cons *ptr)
2602 {
2603 ptr->u.chain = cons_free_list;
2604 #if GC_MARK_STACK
2605 ptr->car = Vdead;
2606 #endif
2607 cons_free_list = ptr;
2608 }
2609
2610 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2611 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2612 (Lisp_Object car, Lisp_Object cdr)
2613 {
2614 register Lisp_Object val;
2615
2616 /* eassert (!handling_signal); */
2617
2618 MALLOC_BLOCK_INPUT;
2619
2620 if (cons_free_list)
2621 {
2622 /* We use the cdr for chaining the free list
2623 so that we won't use the same field that has the mark bit. */
2624 XSETCONS (val, cons_free_list);
2625 cons_free_list = cons_free_list->u.chain;
2626 }
2627 else
2628 {
2629 if (cons_block_index == CONS_BLOCK_SIZE)
2630 {
2631 register struct cons_block *new;
2632 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2633 MEM_TYPE_CONS);
2634 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2635 new->next = cons_block;
2636 cons_block = new;
2637 cons_block_index = 0;
2638 n_cons_blocks++;
2639 }
2640 XSETCONS (val, &cons_block->conses[cons_block_index]);
2641 cons_block_index++;
2642 }
2643
2644 MALLOC_UNBLOCK_INPUT;
2645
2646 XSETCAR (val, car);
2647 XSETCDR (val, cdr);
2648 eassert (!CONS_MARKED_P (XCONS (val)));
2649 consing_since_gc += sizeof (struct Lisp_Cons);
2650 cons_cells_consed++;
2651 return val;
2652 }
2653
2654 #ifdef GC_CHECK_CONS_LIST
2655 /* Get an error now if there's any junk in the cons free list. */
2656 void
2657 check_cons_list (void)
2658 {
2659 struct Lisp_Cons *tail = cons_free_list;
2660
2661 while (tail)
2662 tail = tail->u.chain;
2663 }
2664 #endif
2665
2666 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2667
2668 Lisp_Object
2669 list1 (Lisp_Object arg1)
2670 {
2671 return Fcons (arg1, Qnil);
2672 }
2673
2674 Lisp_Object
2675 list2 (Lisp_Object arg1, Lisp_Object arg2)
2676 {
2677 return Fcons (arg1, Fcons (arg2, Qnil));
2678 }
2679
2680
2681 Lisp_Object
2682 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2683 {
2684 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2685 }
2686
2687
2688 Lisp_Object
2689 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2692 }
2693
2694
2695 Lisp_Object
2696 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2697 {
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2699 Fcons (arg5, Qnil)))));
2700 }
2701
2702
2703 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2704 doc: /* Return a newly created list with specified arguments as elements.
2705 Any number of arguments, even zero arguments, are allowed.
2706 usage: (list &rest OBJECTS) */)
2707 (size_t nargs, register Lisp_Object *args)
2708 {
2709 register Lisp_Object val;
2710 val = Qnil;
2711
2712 while (nargs > 0)
2713 {
2714 nargs--;
2715 val = Fcons (args[nargs], val);
2716 }
2717 return val;
2718 }
2719
2720
2721 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2722 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2723 (register Lisp_Object length, Lisp_Object init)
2724 {
2725 register Lisp_Object val;
2726 register EMACS_INT size;
2727
2728 CHECK_NATNUM (length);
2729 size = XFASTINT (length);
2730
2731 val = Qnil;
2732 while (size > 0)
2733 {
2734 val = Fcons (init, val);
2735 --size;
2736
2737 if (size > 0)
2738 {
2739 val = Fcons (init, val);
2740 --size;
2741
2742 if (size > 0)
2743 {
2744 val = Fcons (init, val);
2745 --size;
2746
2747 if (size > 0)
2748 {
2749 val = Fcons (init, val);
2750 --size;
2751
2752 if (size > 0)
2753 {
2754 val = Fcons (init, val);
2755 --size;
2756 }
2757 }
2758 }
2759 }
2760
2761 QUIT;
2762 }
2763
2764 return val;
2765 }
2766
2767
2768 \f
2769 /***********************************************************************
2770 Vector Allocation
2771 ***********************************************************************/
2772
2773 /* Singly-linked list of all vectors. */
2774
2775 static struct Lisp_Vector *all_vectors;
2776
2777 /* Total number of vector-like objects now in use. */
2778
2779 static int n_vectors;
2780
2781
2782 /* Value is a pointer to a newly allocated Lisp_Vector structure
2783 with room for LEN Lisp_Objects. */
2784
2785 static struct Lisp_Vector *
2786 allocate_vectorlike (EMACS_INT len)
2787 {
2788 struct Lisp_Vector *p;
2789 size_t nbytes;
2790
2791 MALLOC_BLOCK_INPUT;
2792
2793 #ifdef DOUG_LEA_MALLOC
2794 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2795 because mapped region contents are not preserved in
2796 a dumped Emacs. */
2797 mallopt (M_MMAP_MAX, 0);
2798 #endif
2799
2800 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2801 /* eassert (!handling_signal); */
2802
2803 nbytes = (offsetof (struct Lisp_Vector, contents)
2804 + len * sizeof p->contents[0]);
2805 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2806
2807 #ifdef DOUG_LEA_MALLOC
2808 /* Back to a reasonable maximum of mmap'ed areas. */
2809 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2810 #endif
2811
2812 consing_since_gc += nbytes;
2813 vector_cells_consed += len;
2814
2815 p->header.next.vector = all_vectors;
2816 all_vectors = p;
2817
2818 MALLOC_UNBLOCK_INPUT;
2819
2820 ++n_vectors;
2821 return p;
2822 }
2823
2824
2825 /* Allocate a vector with NSLOTS slots. */
2826
2827 struct Lisp_Vector *
2828 allocate_vector (EMACS_INT nslots)
2829 {
2830 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2831 v->header.size = nslots;
2832 return v;
2833 }
2834
2835
2836 /* Allocate other vector-like structures. */
2837
2838 struct Lisp_Vector *
2839 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2840 {
2841 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2842 EMACS_INT i;
2843
2844 /* Only the first lisplen slots will be traced normally by the GC. */
2845 for (i = 0; i < lisplen; ++i)
2846 v->contents[i] = Qnil;
2847
2848 XSETPVECTYPESIZE (v, tag, lisplen);
2849 return v;
2850 }
2851
2852 struct Lisp_Hash_Table *
2853 allocate_hash_table (void)
2854 {
2855 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2856 }
2857
2858
2859 struct window *
2860 allocate_window (void)
2861 {
2862 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2863 }
2864
2865
2866 struct terminal *
2867 allocate_terminal (void)
2868 {
2869 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2870 next_terminal, PVEC_TERMINAL);
2871 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2872 memset (&t->next_terminal, 0,
2873 (char*) (t + 1) - (char*) &t->next_terminal);
2874
2875 return t;
2876 }
2877
2878 struct frame *
2879 allocate_frame (void)
2880 {
2881 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2882 face_cache, PVEC_FRAME);
2883 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2884 memset (&f->face_cache, 0,
2885 (char *) (f + 1) - (char *) &f->face_cache);
2886 return f;
2887 }
2888
2889
2890 struct Lisp_Process *
2891 allocate_process (void)
2892 {
2893 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2894 }
2895
2896
2897 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2898 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2899 See also the function `vector'. */)
2900 (register Lisp_Object length, Lisp_Object init)
2901 {
2902 Lisp_Object vector;
2903 register EMACS_INT sizei;
2904 register EMACS_INT i;
2905 register struct Lisp_Vector *p;
2906
2907 CHECK_NATNUM (length);
2908 sizei = XFASTINT (length);
2909
2910 p = allocate_vector (sizei);
2911 for (i = 0; i < sizei; i++)
2912 p->contents[i] = init;
2913
2914 XSETVECTOR (vector, p);
2915 return vector;
2916 }
2917
2918
2919 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2920 doc: /* Return a newly created vector with specified arguments as elements.
2921 Any number of arguments, even zero arguments, are allowed.
2922 usage: (vector &rest OBJECTS) */)
2923 (register size_t nargs, Lisp_Object *args)
2924 {
2925 register Lisp_Object len, val;
2926 register size_t i;
2927 register struct Lisp_Vector *p;
2928
2929 XSETFASTINT (len, nargs);
2930 val = Fmake_vector (len, Qnil);
2931 p = XVECTOR (val);
2932 for (i = 0; i < nargs; i++)
2933 p->contents[i] = args[i];
2934 return val;
2935 }
2936
2937
2938 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2939 doc: /* Create a byte-code object with specified arguments as elements.
2940 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2941 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2942 and (optional) INTERACTIVE-SPEC.
2943 The first four arguments are required; at most six have any
2944 significance.
2945 The ARGLIST can be either like the one of `lambda', in which case the arguments
2946 will be dynamically bound before executing the byte code, or it can be an
2947 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2948 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2949 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2950 argument to catch the left-over arguments. If such an integer is used, the
2951 arguments will not be dynamically bound but will be instead pushed on the
2952 stack before executing the byte-code.
2953 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2954 (register size_t nargs, Lisp_Object *args)
2955 {
2956 register Lisp_Object len, val;
2957 register size_t i;
2958 register struct Lisp_Vector *p;
2959
2960 XSETFASTINT (len, nargs);
2961 if (!NILP (Vpurify_flag))
2962 val = make_pure_vector ((EMACS_INT) nargs);
2963 else
2964 val = Fmake_vector (len, Qnil);
2965
2966 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2967 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2968 earlier because they produced a raw 8-bit string for byte-code
2969 and now such a byte-code string is loaded as multibyte while
2970 raw 8-bit characters converted to multibyte form. Thus, now we
2971 must convert them back to the original unibyte form. */
2972 args[1] = Fstring_as_unibyte (args[1]);
2973
2974 p = XVECTOR (val);
2975 for (i = 0; i < nargs; i++)
2976 {
2977 if (!NILP (Vpurify_flag))
2978 args[i] = Fpurecopy (args[i]);
2979 p->contents[i] = args[i];
2980 }
2981 XSETPVECTYPE (p, PVEC_COMPILED);
2982 XSETCOMPILED (val, p);
2983 return val;
2984 }
2985
2986
2987 \f
2988 /***********************************************************************
2989 Symbol Allocation
2990 ***********************************************************************/
2991
2992 /* Each symbol_block is just under 1020 bytes long, since malloc
2993 really allocates in units of powers of two and uses 4 bytes for its
2994 own overhead. */
2995
2996 #define SYMBOL_BLOCK_SIZE \
2997 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2998
2999 struct symbol_block
3000 {
3001 /* Place `symbols' first, to preserve alignment. */
3002 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3003 struct symbol_block *next;
3004 };
3005
3006 /* Current symbol block and index of first unused Lisp_Symbol
3007 structure in it. */
3008
3009 static struct symbol_block *symbol_block;
3010 static int symbol_block_index;
3011
3012 /* List of free symbols. */
3013
3014 static struct Lisp_Symbol *symbol_free_list;
3015
3016 /* Total number of symbol blocks now in use. */
3017
3018 static int n_symbol_blocks;
3019
3020
3021 /* Initialize symbol allocation. */
3022
3023 static void
3024 init_symbol (void)
3025 {
3026 symbol_block = NULL;
3027 symbol_block_index = SYMBOL_BLOCK_SIZE;
3028 symbol_free_list = 0;
3029 n_symbol_blocks = 0;
3030 }
3031
3032
3033 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3034 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3035 Its value and function definition are void, and its property list is nil. */)
3036 (Lisp_Object name)
3037 {
3038 register Lisp_Object val;
3039 register struct Lisp_Symbol *p;
3040
3041 CHECK_STRING (name);
3042
3043 /* eassert (!handling_signal); */
3044
3045 MALLOC_BLOCK_INPUT;
3046
3047 if (symbol_free_list)
3048 {
3049 XSETSYMBOL (val, symbol_free_list);
3050 symbol_free_list = symbol_free_list->next;
3051 }
3052 else
3053 {
3054 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3055 {
3056 struct symbol_block *new;
3057 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3058 MEM_TYPE_SYMBOL);
3059 new->next = symbol_block;
3060 symbol_block = new;
3061 symbol_block_index = 0;
3062 n_symbol_blocks++;
3063 }
3064 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3065 symbol_block_index++;
3066 }
3067
3068 MALLOC_UNBLOCK_INPUT;
3069
3070 p = XSYMBOL (val);
3071 p->xname = name;
3072 p->plist = Qnil;
3073 p->redirect = SYMBOL_PLAINVAL;
3074 SET_SYMBOL_VAL (p, Qunbound);
3075 p->function = Qunbound;
3076 p->next = NULL;
3077 p->gcmarkbit = 0;
3078 p->interned = SYMBOL_UNINTERNED;
3079 p->constant = 0;
3080 p->declared_special = 0;
3081 consing_since_gc += sizeof (struct Lisp_Symbol);
3082 symbols_consed++;
3083 return val;
3084 }
3085
3086
3087 \f
3088 /***********************************************************************
3089 Marker (Misc) Allocation
3090 ***********************************************************************/
3091
3092 /* Allocation of markers and other objects that share that structure.
3093 Works like allocation of conses. */
3094
3095 #define MARKER_BLOCK_SIZE \
3096 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3097
3098 struct marker_block
3099 {
3100 /* Place `markers' first, to preserve alignment. */
3101 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3102 struct marker_block *next;
3103 };
3104
3105 static struct marker_block *marker_block;
3106 static int marker_block_index;
3107
3108 static union Lisp_Misc *marker_free_list;
3109
3110 /* Total number of marker blocks now in use. */
3111
3112 static int n_marker_blocks;
3113
3114 static void
3115 init_marker (void)
3116 {
3117 marker_block = NULL;
3118 marker_block_index = MARKER_BLOCK_SIZE;
3119 marker_free_list = 0;
3120 n_marker_blocks = 0;
3121 }
3122
3123 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3124
3125 Lisp_Object
3126 allocate_misc (void)
3127 {
3128 Lisp_Object val;
3129
3130 /* eassert (!handling_signal); */
3131
3132 MALLOC_BLOCK_INPUT;
3133
3134 if (marker_free_list)
3135 {
3136 XSETMISC (val, marker_free_list);
3137 marker_free_list = marker_free_list->u_free.chain;
3138 }
3139 else
3140 {
3141 if (marker_block_index == MARKER_BLOCK_SIZE)
3142 {
3143 struct marker_block *new;
3144 new = (struct marker_block *) lisp_malloc (sizeof *new,
3145 MEM_TYPE_MISC);
3146 new->next = marker_block;
3147 marker_block = new;
3148 marker_block_index = 0;
3149 n_marker_blocks++;
3150 total_free_markers += MARKER_BLOCK_SIZE;
3151 }
3152 XSETMISC (val, &marker_block->markers[marker_block_index]);
3153 marker_block_index++;
3154 }
3155
3156 MALLOC_UNBLOCK_INPUT;
3157
3158 --total_free_markers;
3159 consing_since_gc += sizeof (union Lisp_Misc);
3160 misc_objects_consed++;
3161 XMISCANY (val)->gcmarkbit = 0;
3162 return val;
3163 }
3164
3165 /* Free a Lisp_Misc object */
3166
3167 static void
3168 free_misc (Lisp_Object misc)
3169 {
3170 XMISCTYPE (misc) = Lisp_Misc_Free;
3171 XMISC (misc)->u_free.chain = marker_free_list;
3172 marker_free_list = XMISC (misc);
3173
3174 total_free_markers++;
3175 }
3176
3177 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3178 INTEGER. This is used to package C values to call record_unwind_protect.
3179 The unwind function can get the C values back using XSAVE_VALUE. */
3180
3181 Lisp_Object
3182 make_save_value (void *pointer, int integer)
3183 {
3184 register Lisp_Object val;
3185 register struct Lisp_Save_Value *p;
3186
3187 val = allocate_misc ();
3188 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3189 p = XSAVE_VALUE (val);
3190 p->pointer = pointer;
3191 p->integer = integer;
3192 p->dogc = 0;
3193 return val;
3194 }
3195
3196 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3197 doc: /* Return a newly allocated marker which does not point at any place. */)
3198 (void)
3199 {
3200 register Lisp_Object val;
3201 register struct Lisp_Marker *p;
3202
3203 val = allocate_misc ();
3204 XMISCTYPE (val) = Lisp_Misc_Marker;
3205 p = XMARKER (val);
3206 p->buffer = 0;
3207 p->bytepos = 0;
3208 p->charpos = 0;
3209 p->next = NULL;
3210 p->insertion_type = 0;
3211 return val;
3212 }
3213
3214 /* Put MARKER back on the free list after using it temporarily. */
3215
3216 void
3217 free_marker (Lisp_Object marker)
3218 {
3219 unchain_marker (XMARKER (marker));
3220 free_misc (marker);
3221 }
3222
3223 \f
3224 /* Return a newly created vector or string with specified arguments as
3225 elements. If all the arguments are characters that can fit
3226 in a string of events, make a string; otherwise, make a vector.
3227
3228 Any number of arguments, even zero arguments, are allowed. */
3229
3230 Lisp_Object
3231 make_event_array (register int nargs, Lisp_Object *args)
3232 {
3233 int i;
3234
3235 for (i = 0; i < nargs; i++)
3236 /* The things that fit in a string
3237 are characters that are in 0...127,
3238 after discarding the meta bit and all the bits above it. */
3239 if (!INTEGERP (args[i])
3240 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3241 return Fvector (nargs, args);
3242
3243 /* Since the loop exited, we know that all the things in it are
3244 characters, so we can make a string. */
3245 {
3246 Lisp_Object result;
3247
3248 result = Fmake_string (make_number (nargs), make_number (0));
3249 for (i = 0; i < nargs; i++)
3250 {
3251 SSET (result, i, XINT (args[i]));
3252 /* Move the meta bit to the right place for a string char. */
3253 if (XINT (args[i]) & CHAR_META)
3254 SSET (result, i, SREF (result, i) | 0x80);
3255 }
3256
3257 return result;
3258 }
3259 }
3260
3261
3262 \f
3263 /************************************************************************
3264 Memory Full Handling
3265 ************************************************************************/
3266
3267
3268 /* Called if malloc returns zero. */
3269
3270 void
3271 memory_full (void)
3272 {
3273 int i;
3274
3275 Vmemory_full = Qt;
3276
3277 memory_full_cons_threshold = sizeof (struct cons_block);
3278
3279 /* The first time we get here, free the spare memory. */
3280 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3281 if (spare_memory[i])
3282 {
3283 if (i == 0)
3284 free (spare_memory[i]);
3285 else if (i >= 1 && i <= 4)
3286 lisp_align_free (spare_memory[i]);
3287 else
3288 lisp_free (spare_memory[i]);
3289 spare_memory[i] = 0;
3290 }
3291
3292 /* Record the space now used. When it decreases substantially,
3293 we can refill the memory reserve. */
3294 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3295 bytes_used_when_full = BYTES_USED;
3296 #endif
3297
3298 /* This used to call error, but if we've run out of memory, we could
3299 get infinite recursion trying to build the string. */
3300 xsignal (Qnil, Vmemory_signal_data);
3301 }
3302
3303 /* If we released our reserve (due to running out of memory),
3304 and we have a fair amount free once again,
3305 try to set aside another reserve in case we run out once more.
3306
3307 This is called when a relocatable block is freed in ralloc.c,
3308 and also directly from this file, in case we're not using ralloc.c. */
3309
3310 void
3311 refill_memory_reserve (void)
3312 {
3313 #ifndef SYSTEM_MALLOC
3314 if (spare_memory[0] == 0)
3315 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3316 if (spare_memory[1] == 0)
3317 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3318 MEM_TYPE_CONS);
3319 if (spare_memory[2] == 0)
3320 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3321 MEM_TYPE_CONS);
3322 if (spare_memory[3] == 0)
3323 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3324 MEM_TYPE_CONS);
3325 if (spare_memory[4] == 0)
3326 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3327 MEM_TYPE_CONS);
3328 if (spare_memory[5] == 0)
3329 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3330 MEM_TYPE_STRING);
3331 if (spare_memory[6] == 0)
3332 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3333 MEM_TYPE_STRING);
3334 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3335 Vmemory_full = Qnil;
3336 #endif
3337 }
3338 \f
3339 /************************************************************************
3340 C Stack Marking
3341 ************************************************************************/
3342
3343 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3344
3345 /* Conservative C stack marking requires a method to identify possibly
3346 live Lisp objects given a pointer value. We do this by keeping
3347 track of blocks of Lisp data that are allocated in a red-black tree
3348 (see also the comment of mem_node which is the type of nodes in
3349 that tree). Function lisp_malloc adds information for an allocated
3350 block to the red-black tree with calls to mem_insert, and function
3351 lisp_free removes it with mem_delete. Functions live_string_p etc
3352 call mem_find to lookup information about a given pointer in the
3353 tree, and use that to determine if the pointer points to a Lisp
3354 object or not. */
3355
3356 /* Initialize this part of alloc.c. */
3357
3358 static void
3359 mem_init (void)
3360 {
3361 mem_z.left = mem_z.right = MEM_NIL;
3362 mem_z.parent = NULL;
3363 mem_z.color = MEM_BLACK;
3364 mem_z.start = mem_z.end = NULL;
3365 mem_root = MEM_NIL;
3366 }
3367
3368
3369 /* Value is a pointer to the mem_node containing START. Value is
3370 MEM_NIL if there is no node in the tree containing START. */
3371
3372 static INLINE struct mem_node *
3373 mem_find (void *start)
3374 {
3375 struct mem_node *p;
3376
3377 if (start < min_heap_address || start > max_heap_address)
3378 return MEM_NIL;
3379
3380 /* Make the search always successful to speed up the loop below. */
3381 mem_z.start = start;
3382 mem_z.end = (char *) start + 1;
3383
3384 p = mem_root;
3385 while (start < p->start || start >= p->end)
3386 p = start < p->start ? p->left : p->right;
3387 return p;
3388 }
3389
3390
3391 /* Insert a new node into the tree for a block of memory with start
3392 address START, end address END, and type TYPE. Value is a
3393 pointer to the node that was inserted. */
3394
3395 static struct mem_node *
3396 mem_insert (void *start, void *end, enum mem_type type)
3397 {
3398 struct mem_node *c, *parent, *x;
3399
3400 if (min_heap_address == NULL || start < min_heap_address)
3401 min_heap_address = start;
3402 if (max_heap_address == NULL || end > max_heap_address)
3403 max_heap_address = end;
3404
3405 /* See where in the tree a node for START belongs. In this
3406 particular application, it shouldn't happen that a node is already
3407 present. For debugging purposes, let's check that. */
3408 c = mem_root;
3409 parent = NULL;
3410
3411 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3412
3413 while (c != MEM_NIL)
3414 {
3415 if (start >= c->start && start < c->end)
3416 abort ();
3417 parent = c;
3418 c = start < c->start ? c->left : c->right;
3419 }
3420
3421 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3422
3423 while (c != MEM_NIL)
3424 {
3425 parent = c;
3426 c = start < c->start ? c->left : c->right;
3427 }
3428
3429 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3430
3431 /* Create a new node. */
3432 #ifdef GC_MALLOC_CHECK
3433 x = (struct mem_node *) _malloc_internal (sizeof *x);
3434 if (x == NULL)
3435 abort ();
3436 #else
3437 x = (struct mem_node *) xmalloc (sizeof *x);
3438 #endif
3439 x->start = start;
3440 x->end = end;
3441 x->type = type;
3442 x->parent = parent;
3443 x->left = x->right = MEM_NIL;
3444 x->color = MEM_RED;
3445
3446 /* Insert it as child of PARENT or install it as root. */
3447 if (parent)
3448 {
3449 if (start < parent->start)
3450 parent->left = x;
3451 else
3452 parent->right = x;
3453 }
3454 else
3455 mem_root = x;
3456
3457 /* Re-establish red-black tree properties. */
3458 mem_insert_fixup (x);
3459
3460 return x;
3461 }
3462
3463
3464 /* Re-establish the red-black properties of the tree, and thereby
3465 balance the tree, after node X has been inserted; X is always red. */
3466
3467 static void
3468 mem_insert_fixup (struct mem_node *x)
3469 {
3470 while (x != mem_root && x->parent->color == MEM_RED)
3471 {
3472 /* X is red and its parent is red. This is a violation of
3473 red-black tree property #3. */
3474
3475 if (x->parent == x->parent->parent->left)
3476 {
3477 /* We're on the left side of our grandparent, and Y is our
3478 "uncle". */
3479 struct mem_node *y = x->parent->parent->right;
3480
3481 if (y->color == MEM_RED)
3482 {
3483 /* Uncle and parent are red but should be black because
3484 X is red. Change the colors accordingly and proceed
3485 with the grandparent. */
3486 x->parent->color = MEM_BLACK;
3487 y->color = MEM_BLACK;
3488 x->parent->parent->color = MEM_RED;
3489 x = x->parent->parent;
3490 }
3491 else
3492 {
3493 /* Parent and uncle have different colors; parent is
3494 red, uncle is black. */
3495 if (x == x->parent->right)
3496 {
3497 x = x->parent;
3498 mem_rotate_left (x);
3499 }
3500
3501 x->parent->color = MEM_BLACK;
3502 x->parent->parent->color = MEM_RED;
3503 mem_rotate_right (x->parent->parent);
3504 }
3505 }
3506 else
3507 {
3508 /* This is the symmetrical case of above. */
3509 struct mem_node *y = x->parent->parent->left;
3510
3511 if (y->color == MEM_RED)
3512 {
3513 x->parent->color = MEM_BLACK;
3514 y->color = MEM_BLACK;
3515 x->parent->parent->color = MEM_RED;
3516 x = x->parent->parent;
3517 }
3518 else
3519 {
3520 if (x == x->parent->left)
3521 {
3522 x = x->parent;
3523 mem_rotate_right (x);
3524 }
3525
3526 x->parent->color = MEM_BLACK;
3527 x->parent->parent->color = MEM_RED;
3528 mem_rotate_left (x->parent->parent);
3529 }
3530 }
3531 }
3532
3533 /* The root may have been changed to red due to the algorithm. Set
3534 it to black so that property #5 is satisfied. */
3535 mem_root->color = MEM_BLACK;
3536 }
3537
3538
3539 /* (x) (y)
3540 / \ / \
3541 a (y) ===> (x) c
3542 / \ / \
3543 b c a b */
3544
3545 static void
3546 mem_rotate_left (struct mem_node *x)
3547 {
3548 struct mem_node *y;
3549
3550 /* Turn y's left sub-tree into x's right sub-tree. */
3551 y = x->right;
3552 x->right = y->left;
3553 if (y->left != MEM_NIL)
3554 y->left->parent = x;
3555
3556 /* Y's parent was x's parent. */
3557 if (y != MEM_NIL)
3558 y->parent = x->parent;
3559
3560 /* Get the parent to point to y instead of x. */
3561 if (x->parent)
3562 {
3563 if (x == x->parent->left)
3564 x->parent->left = y;
3565 else
3566 x->parent->right = y;
3567 }
3568 else
3569 mem_root = y;
3570
3571 /* Put x on y's left. */
3572 y->left = x;
3573 if (x != MEM_NIL)
3574 x->parent = y;
3575 }
3576
3577
3578 /* (x) (Y)
3579 / \ / \
3580 (y) c ===> a (x)
3581 / \ / \
3582 a b b c */
3583
3584 static void
3585 mem_rotate_right (struct mem_node *x)
3586 {
3587 struct mem_node *y = x->left;
3588
3589 x->left = y->right;
3590 if (y->right != MEM_NIL)
3591 y->right->parent = x;
3592
3593 if (y != MEM_NIL)
3594 y->parent = x->parent;
3595 if (x->parent)
3596 {
3597 if (x == x->parent->right)
3598 x->parent->right = y;
3599 else
3600 x->parent->left = y;
3601 }
3602 else
3603 mem_root = y;
3604
3605 y->right = x;
3606 if (x != MEM_NIL)
3607 x->parent = y;
3608 }
3609
3610
3611 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3612
3613 static void
3614 mem_delete (struct mem_node *z)
3615 {
3616 struct mem_node *x, *y;
3617
3618 if (!z || z == MEM_NIL)
3619 return;
3620
3621 if (z->left == MEM_NIL || z->right == MEM_NIL)
3622 y = z;
3623 else
3624 {
3625 y = z->right;
3626 while (y->left != MEM_NIL)
3627 y = y->left;
3628 }
3629
3630 if (y->left != MEM_NIL)
3631 x = y->left;
3632 else
3633 x = y->right;
3634
3635 x->parent = y->parent;
3636 if (y->parent)
3637 {
3638 if (y == y->parent->left)
3639 y->parent->left = x;
3640 else
3641 y->parent->right = x;
3642 }
3643 else
3644 mem_root = x;
3645
3646 if (y != z)
3647 {
3648 z->start = y->start;
3649 z->end = y->end;
3650 z->type = y->type;
3651 }
3652
3653 if (y->color == MEM_BLACK)
3654 mem_delete_fixup (x);
3655
3656 #ifdef GC_MALLOC_CHECK
3657 _free_internal (y);
3658 #else
3659 xfree (y);
3660 #endif
3661 }
3662
3663
3664 /* Re-establish the red-black properties of the tree, after a
3665 deletion. */
3666
3667 static void
3668 mem_delete_fixup (struct mem_node *x)
3669 {
3670 while (x != mem_root && x->color == MEM_BLACK)
3671 {
3672 if (x == x->parent->left)
3673 {
3674 struct mem_node *w = x->parent->right;
3675
3676 if (w->color == MEM_RED)
3677 {
3678 w->color = MEM_BLACK;
3679 x->parent->color = MEM_RED;
3680 mem_rotate_left (x->parent);
3681 w = x->parent->right;
3682 }
3683
3684 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3685 {
3686 w->color = MEM_RED;
3687 x = x->parent;
3688 }
3689 else
3690 {
3691 if (w->right->color == MEM_BLACK)
3692 {
3693 w->left->color = MEM_BLACK;
3694 w->color = MEM_RED;
3695 mem_rotate_right (w);
3696 w = x->parent->right;
3697 }
3698 w->color = x->parent->color;
3699 x->parent->color = MEM_BLACK;
3700 w->right->color = MEM_BLACK;
3701 mem_rotate_left (x->parent);
3702 x = mem_root;
3703 }
3704 }
3705 else
3706 {
3707 struct mem_node *w = x->parent->left;
3708
3709 if (w->color == MEM_RED)
3710 {
3711 w->color = MEM_BLACK;
3712 x->parent->color = MEM_RED;
3713 mem_rotate_right (x->parent);
3714 w = x->parent->left;
3715 }
3716
3717 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3718 {
3719 w->color = MEM_RED;
3720 x = x->parent;
3721 }
3722 else
3723 {
3724 if (w->left->color == MEM_BLACK)
3725 {
3726 w->right->color = MEM_BLACK;
3727 w->color = MEM_RED;
3728 mem_rotate_left (w);
3729 w = x->parent->left;
3730 }
3731
3732 w->color = x->parent->color;
3733 x->parent->color = MEM_BLACK;
3734 w->left->color = MEM_BLACK;
3735 mem_rotate_right (x->parent);
3736 x = mem_root;
3737 }
3738 }
3739 }
3740
3741 x->color = MEM_BLACK;
3742 }
3743
3744
3745 /* Value is non-zero if P is a pointer to a live Lisp string on
3746 the heap. M is a pointer to the mem_block for P. */
3747
3748 static INLINE int
3749 live_string_p (struct mem_node *m, void *p)
3750 {
3751 if (m->type == MEM_TYPE_STRING)
3752 {
3753 struct string_block *b = (struct string_block *) m->start;
3754 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3755
3756 /* P must point to the start of a Lisp_String structure, and it
3757 must not be on the free-list. */
3758 return (offset >= 0
3759 && offset % sizeof b->strings[0] == 0
3760 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3761 && ((struct Lisp_String *) p)->data != NULL);
3762 }
3763 else
3764 return 0;
3765 }
3766
3767
3768 /* Value is non-zero if P is a pointer to a live Lisp cons on
3769 the heap. M is a pointer to the mem_block for P. */
3770
3771 static INLINE int
3772 live_cons_p (struct mem_node *m, void *p)
3773 {
3774 if (m->type == MEM_TYPE_CONS)
3775 {
3776 struct cons_block *b = (struct cons_block *) m->start;
3777 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3778
3779 /* P must point to the start of a Lisp_Cons, not be
3780 one of the unused cells in the current cons block,
3781 and not be on the free-list. */
3782 return (offset >= 0
3783 && offset % sizeof b->conses[0] == 0
3784 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3785 && (b != cons_block
3786 || offset / sizeof b->conses[0] < cons_block_index)
3787 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3788 }
3789 else
3790 return 0;
3791 }
3792
3793
3794 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3795 the heap. M is a pointer to the mem_block for P. */
3796
3797 static INLINE int
3798 live_symbol_p (struct mem_node *m, void *p)
3799 {
3800 if (m->type == MEM_TYPE_SYMBOL)
3801 {
3802 struct symbol_block *b = (struct symbol_block *) m->start;
3803 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3804
3805 /* P must point to the start of a Lisp_Symbol, not be
3806 one of the unused cells in the current symbol block,
3807 and not be on the free-list. */
3808 return (offset >= 0
3809 && offset % sizeof b->symbols[0] == 0
3810 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3811 && (b != symbol_block
3812 || offset / sizeof b->symbols[0] < symbol_block_index)
3813 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3814 }
3815 else
3816 return 0;
3817 }
3818
3819
3820 /* Value is non-zero if P is a pointer to a live Lisp float on
3821 the heap. M is a pointer to the mem_block for P. */
3822
3823 static INLINE int
3824 live_float_p (struct mem_node *m, void *p)
3825 {
3826 if (m->type == MEM_TYPE_FLOAT)
3827 {
3828 struct float_block *b = (struct float_block *) m->start;
3829 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3830
3831 /* P must point to the start of a Lisp_Float and not be
3832 one of the unused cells in the current float block. */
3833 return (offset >= 0
3834 && offset % sizeof b->floats[0] == 0
3835 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3836 && (b != float_block
3837 || offset / sizeof b->floats[0] < float_block_index));
3838 }
3839 else
3840 return 0;
3841 }
3842
3843
3844 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3845 the heap. M is a pointer to the mem_block for P. */
3846
3847 static INLINE int
3848 live_misc_p (struct mem_node *m, void *p)
3849 {
3850 if (m->type == MEM_TYPE_MISC)
3851 {
3852 struct marker_block *b = (struct marker_block *) m->start;
3853 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3854
3855 /* P must point to the start of a Lisp_Misc, not be
3856 one of the unused cells in the current misc block,
3857 and not be on the free-list. */
3858 return (offset >= 0
3859 && offset % sizeof b->markers[0] == 0
3860 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3861 && (b != marker_block
3862 || offset / sizeof b->markers[0] < marker_block_index)
3863 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3864 }
3865 else
3866 return 0;
3867 }
3868
3869
3870 /* Value is non-zero if P is a pointer to a live vector-like object.
3871 M is a pointer to the mem_block for P. */
3872
3873 static INLINE int
3874 live_vector_p (struct mem_node *m, void *p)
3875 {
3876 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3877 }
3878
3879
3880 /* Value is non-zero if P is a pointer to a live buffer. M is a
3881 pointer to the mem_block for P. */
3882
3883 static INLINE int
3884 live_buffer_p (struct mem_node *m, void *p)
3885 {
3886 /* P must point to the start of the block, and the buffer
3887 must not have been killed. */
3888 return (m->type == MEM_TYPE_BUFFER
3889 && p == m->start
3890 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3891 }
3892
3893 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3894
3895 #if GC_MARK_STACK
3896
3897 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3898
3899 /* Array of objects that are kept alive because the C stack contains
3900 a pattern that looks like a reference to them . */
3901
3902 #define MAX_ZOMBIES 10
3903 static Lisp_Object zombies[MAX_ZOMBIES];
3904
3905 /* Number of zombie objects. */
3906
3907 static int nzombies;
3908
3909 /* Number of garbage collections. */
3910
3911 static int ngcs;
3912
3913 /* Average percentage of zombies per collection. */
3914
3915 static double avg_zombies;
3916
3917 /* Max. number of live and zombie objects. */
3918
3919 static int max_live, max_zombies;
3920
3921 /* Average number of live objects per GC. */
3922
3923 static double avg_live;
3924
3925 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3926 doc: /* Show information about live and zombie objects. */)
3927 (void)
3928 {
3929 Lisp_Object args[8], zombie_list = Qnil;
3930 int i;
3931 for (i = 0; i < nzombies; i++)
3932 zombie_list = Fcons (zombies[i], zombie_list);
3933 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3934 args[1] = make_number (ngcs);
3935 args[2] = make_float (avg_live);
3936 args[3] = make_float (avg_zombies);
3937 args[4] = make_float (avg_zombies / avg_live / 100);
3938 args[5] = make_number (max_live);
3939 args[6] = make_number (max_zombies);
3940 args[7] = zombie_list;
3941 return Fmessage (8, args);
3942 }
3943
3944 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3945
3946
3947 /* Mark OBJ if we can prove it's a Lisp_Object. */
3948
3949 static INLINE void
3950 mark_maybe_object (Lisp_Object obj)
3951 {
3952 void *po;
3953 struct mem_node *m;
3954
3955 if (INTEGERP (obj))
3956 return;
3957
3958 po = (void *) XPNTR (obj);
3959 m = mem_find (po);
3960
3961 if (m != MEM_NIL)
3962 {
3963 int mark_p = 0;
3964
3965 switch (XTYPE (obj))
3966 {
3967 case Lisp_String:
3968 mark_p = (live_string_p (m, po)
3969 && !STRING_MARKED_P ((struct Lisp_String *) po));
3970 break;
3971
3972 case Lisp_Cons:
3973 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3974 break;
3975
3976 case Lisp_Symbol:
3977 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3978 break;
3979
3980 case Lisp_Float:
3981 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3982 break;
3983
3984 case Lisp_Vectorlike:
3985 /* Note: can't check BUFFERP before we know it's a
3986 buffer because checking that dereferences the pointer
3987 PO which might point anywhere. */
3988 if (live_vector_p (m, po))
3989 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3990 else if (live_buffer_p (m, po))
3991 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3992 break;
3993
3994 case Lisp_Misc:
3995 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3996 break;
3997
3998 default:
3999 break;
4000 }
4001
4002 if (mark_p)
4003 {
4004 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4005 if (nzombies < MAX_ZOMBIES)
4006 zombies[nzombies] = obj;
4007 ++nzombies;
4008 #endif
4009 mark_object (obj);
4010 }
4011 }
4012 }
4013
4014
4015 /* If P points to Lisp data, mark that as live if it isn't already
4016 marked. */
4017
4018 static INLINE void
4019 mark_maybe_pointer (void *p)
4020 {
4021 struct mem_node *m;
4022
4023 /* Quickly rule out some values which can't point to Lisp data. */
4024 if ((EMACS_INT) p %
4025 #ifdef USE_LSB_TAG
4026 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4027 #else
4028 2 /* We assume that Lisp data is aligned on even addresses. */
4029 #endif
4030 )
4031 return;
4032
4033 m = mem_find (p);
4034 if (m != MEM_NIL)
4035 {
4036 Lisp_Object obj = Qnil;
4037
4038 switch (m->type)
4039 {
4040 case MEM_TYPE_NON_LISP:
4041 /* Nothing to do; not a pointer to Lisp memory. */
4042 break;
4043
4044 case MEM_TYPE_BUFFER:
4045 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4046 XSETVECTOR (obj, p);
4047 break;
4048
4049 case MEM_TYPE_CONS:
4050 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4051 XSETCONS (obj, p);
4052 break;
4053
4054 case MEM_TYPE_STRING:
4055 if (live_string_p (m, p)
4056 && !STRING_MARKED_P ((struct Lisp_String *) p))
4057 XSETSTRING (obj, p);
4058 break;
4059
4060 case MEM_TYPE_MISC:
4061 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4062 XSETMISC (obj, p);
4063 break;
4064
4065 case MEM_TYPE_SYMBOL:
4066 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4067 XSETSYMBOL (obj, p);
4068 break;
4069
4070 case MEM_TYPE_FLOAT:
4071 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4072 XSETFLOAT (obj, p);
4073 break;
4074
4075 case MEM_TYPE_VECTORLIKE:
4076 if (live_vector_p (m, p))
4077 {
4078 Lisp_Object tem;
4079 XSETVECTOR (tem, p);
4080 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4081 obj = tem;
4082 }
4083 break;
4084
4085 default:
4086 abort ();
4087 }
4088
4089 if (!NILP (obj))
4090 mark_object (obj);
4091 }
4092 }
4093
4094
4095 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4096 or END+OFFSET..START. */
4097
4098 static void
4099 mark_memory (void *start, void *end, int offset)
4100 {
4101 Lisp_Object *p;
4102 void **pp;
4103
4104 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4105 nzombies = 0;
4106 #endif
4107
4108 /* Make START the pointer to the start of the memory region,
4109 if it isn't already. */
4110 if (end < start)
4111 {
4112 void *tem = start;
4113 start = end;
4114 end = tem;
4115 }
4116
4117 /* Mark Lisp_Objects. */
4118 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4119 mark_maybe_object (*p);
4120
4121 /* Mark Lisp data pointed to. This is necessary because, in some
4122 situations, the C compiler optimizes Lisp objects away, so that
4123 only a pointer to them remains. Example:
4124
4125 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4126 ()
4127 {
4128 Lisp_Object obj = build_string ("test");
4129 struct Lisp_String *s = XSTRING (obj);
4130 Fgarbage_collect ();
4131 fprintf (stderr, "test `%s'\n", s->data);
4132 return Qnil;
4133 }
4134
4135 Here, `obj' isn't really used, and the compiler optimizes it
4136 away. The only reference to the life string is through the
4137 pointer `s'. */
4138
4139 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4140 mark_maybe_pointer (*pp);
4141 }
4142
4143 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4144 the GCC system configuration. In gcc 3.2, the only systems for
4145 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4146 by others?) and ns32k-pc532-min. */
4147
4148 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4149
4150 static int setjmp_tested_p, longjmps_done;
4151
4152 #define SETJMP_WILL_LIKELY_WORK "\
4153 \n\
4154 Emacs garbage collector has been changed to use conservative stack\n\
4155 marking. Emacs has determined that the method it uses to do the\n\
4156 marking will likely work on your system, but this isn't sure.\n\
4157 \n\
4158 If you are a system-programmer, or can get the help of a local wizard\n\
4159 who is, please take a look at the function mark_stack in alloc.c, and\n\
4160 verify that the methods used are appropriate for your system.\n\
4161 \n\
4162 Please mail the result to <emacs-devel@gnu.org>.\n\
4163 "
4164
4165 #define SETJMP_WILL_NOT_WORK "\
4166 \n\
4167 Emacs garbage collector has been changed to use conservative stack\n\
4168 marking. Emacs has determined that the default method it uses to do the\n\
4169 marking will not work on your system. We will need a system-dependent\n\
4170 solution for your system.\n\
4171 \n\
4172 Please take a look at the function mark_stack in alloc.c, and\n\
4173 try to find a way to make it work on your system.\n\
4174 \n\
4175 Note that you may get false negatives, depending on the compiler.\n\
4176 In particular, you need to use -O with GCC for this test.\n\
4177 \n\
4178 Please mail the result to <emacs-devel@gnu.org>.\n\
4179 "
4180
4181
4182 /* Perform a quick check if it looks like setjmp saves registers in a
4183 jmp_buf. Print a message to stderr saying so. When this test
4184 succeeds, this is _not_ a proof that setjmp is sufficient for
4185 conservative stack marking. Only the sources or a disassembly
4186 can prove that. */
4187
4188 static void
4189 test_setjmp (void)
4190 {
4191 char buf[10];
4192 register int x;
4193 jmp_buf jbuf;
4194 int result = 0;
4195
4196 /* Arrange for X to be put in a register. */
4197 sprintf (buf, "1");
4198 x = strlen (buf);
4199 x = 2 * x - 1;
4200
4201 setjmp (jbuf);
4202 if (longjmps_done == 1)
4203 {
4204 /* Came here after the longjmp at the end of the function.
4205
4206 If x == 1, the longjmp has restored the register to its
4207 value before the setjmp, and we can hope that setjmp
4208 saves all such registers in the jmp_buf, although that
4209 isn't sure.
4210
4211 For other values of X, either something really strange is
4212 taking place, or the setjmp just didn't save the register. */
4213
4214 if (x == 1)
4215 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4216 else
4217 {
4218 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4219 exit (1);
4220 }
4221 }
4222
4223 ++longjmps_done;
4224 x = 2;
4225 if (longjmps_done == 1)
4226 longjmp (jbuf, 1);
4227 }
4228
4229 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4230
4231
4232 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4233
4234 /* Abort if anything GCPRO'd doesn't survive the GC. */
4235
4236 static void
4237 check_gcpros (void)
4238 {
4239 struct gcpro *p;
4240 size_t i;
4241
4242 for (p = gcprolist; p; p = p->next)
4243 for (i = 0; i < p->nvars; ++i)
4244 if (!survives_gc_p (p->var[i]))
4245 /* FIXME: It's not necessarily a bug. It might just be that the
4246 GCPRO is unnecessary or should release the object sooner. */
4247 abort ();
4248 }
4249
4250 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4251
4252 static void
4253 dump_zombies (void)
4254 {
4255 int i;
4256
4257 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4258 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4259 {
4260 fprintf (stderr, " %d = ", i);
4261 debug_print (zombies[i]);
4262 }
4263 }
4264
4265 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4266
4267
4268 /* Mark live Lisp objects on the C stack.
4269
4270 There are several system-dependent problems to consider when
4271 porting this to new architectures:
4272
4273 Processor Registers
4274
4275 We have to mark Lisp objects in CPU registers that can hold local
4276 variables or are used to pass parameters.
4277
4278 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4279 something that either saves relevant registers on the stack, or
4280 calls mark_maybe_object passing it each register's contents.
4281
4282 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4283 implementation assumes that calling setjmp saves registers we need
4284 to see in a jmp_buf which itself lies on the stack. This doesn't
4285 have to be true! It must be verified for each system, possibly
4286 by taking a look at the source code of setjmp.
4287
4288 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4289 can use it as a machine independent method to store all registers
4290 to the stack. In this case the macros described in the previous
4291 two paragraphs are not used.
4292
4293 Stack Layout
4294
4295 Architectures differ in the way their processor stack is organized.
4296 For example, the stack might look like this
4297
4298 +----------------+
4299 | Lisp_Object | size = 4
4300 +----------------+
4301 | something else | size = 2
4302 +----------------+
4303 | Lisp_Object | size = 4
4304 +----------------+
4305 | ... |
4306
4307 In such a case, not every Lisp_Object will be aligned equally. To
4308 find all Lisp_Object on the stack it won't be sufficient to walk
4309 the stack in steps of 4 bytes. Instead, two passes will be
4310 necessary, one starting at the start of the stack, and a second
4311 pass starting at the start of the stack + 2. Likewise, if the
4312 minimal alignment of Lisp_Objects on the stack is 1, four passes
4313 would be necessary, each one starting with one byte more offset
4314 from the stack start.
4315
4316 The current code assumes by default that Lisp_Objects are aligned
4317 equally on the stack. */
4318
4319 static void
4320 mark_stack (void)
4321 {
4322 int i;
4323 void *end;
4324
4325 #ifdef HAVE___BUILTIN_UNWIND_INIT
4326 /* Force callee-saved registers and register windows onto the stack.
4327 This is the preferred method if available, obviating the need for
4328 machine dependent methods. */
4329 __builtin_unwind_init ();
4330 end = &end;
4331 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4332 #ifndef GC_SAVE_REGISTERS_ON_STACK
4333 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4334 union aligned_jmpbuf {
4335 Lisp_Object o;
4336 jmp_buf j;
4337 } j;
4338 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4339 #endif
4340 /* This trick flushes the register windows so that all the state of
4341 the process is contained in the stack. */
4342 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4343 needed on ia64 too. See mach_dep.c, where it also says inline
4344 assembler doesn't work with relevant proprietary compilers. */
4345 #ifdef __sparc__
4346 #if defined (__sparc64__) && defined (__FreeBSD__)
4347 /* FreeBSD does not have a ta 3 handler. */
4348 asm ("flushw");
4349 #else
4350 asm ("ta 3");
4351 #endif
4352 #endif
4353
4354 /* Save registers that we need to see on the stack. We need to see
4355 registers used to hold register variables and registers used to
4356 pass parameters. */
4357 #ifdef GC_SAVE_REGISTERS_ON_STACK
4358 GC_SAVE_REGISTERS_ON_STACK (end);
4359 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4360
4361 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4362 setjmp will definitely work, test it
4363 and print a message with the result
4364 of the test. */
4365 if (!setjmp_tested_p)
4366 {
4367 setjmp_tested_p = 1;
4368 test_setjmp ();
4369 }
4370 #endif /* GC_SETJMP_WORKS */
4371
4372 setjmp (j.j);
4373 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4374 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4375 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4376
4377 /* This assumes that the stack is a contiguous region in memory. If
4378 that's not the case, something has to be done here to iterate
4379 over the stack segments. */
4380 #ifndef GC_LISP_OBJECT_ALIGNMENT
4381 #ifdef __GNUC__
4382 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4383 #else
4384 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4385 #endif
4386 #endif
4387 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4388 mark_memory (stack_base, end, i);
4389 /* Allow for marking a secondary stack, like the register stack on the
4390 ia64. */
4391 #ifdef GC_MARK_SECONDARY_STACK
4392 GC_MARK_SECONDARY_STACK ();
4393 #endif
4394
4395 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4396 check_gcpros ();
4397 #endif
4398 }
4399
4400 #endif /* GC_MARK_STACK != 0 */
4401
4402
4403 /* Determine whether it is safe to access memory at address P. */
4404 static int
4405 valid_pointer_p (void *p)
4406 {
4407 #ifdef WINDOWSNT
4408 return w32_valid_pointer_p (p, 16);
4409 #else
4410 int fd;
4411
4412 /* Obviously, we cannot just access it (we would SEGV trying), so we
4413 trick the o/s to tell us whether p is a valid pointer.
4414 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4415 not validate p in that case. */
4416
4417 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4418 {
4419 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4420 emacs_close (fd);
4421 unlink ("__Valid__Lisp__Object__");
4422 return valid;
4423 }
4424
4425 return -1;
4426 #endif
4427 }
4428
4429 /* Return 1 if OBJ is a valid lisp object.
4430 Return 0 if OBJ is NOT a valid lisp object.
4431 Return -1 if we cannot validate OBJ.
4432 This function can be quite slow,
4433 so it should only be used in code for manual debugging. */
4434
4435 int
4436 valid_lisp_object_p (Lisp_Object obj)
4437 {
4438 void *p;
4439 #if GC_MARK_STACK
4440 struct mem_node *m;
4441 #endif
4442
4443 if (INTEGERP (obj))
4444 return 1;
4445
4446 p = (void *) XPNTR (obj);
4447 if (PURE_POINTER_P (p))
4448 return 1;
4449
4450 #if !GC_MARK_STACK
4451 return valid_pointer_p (p);
4452 #else
4453
4454 m = mem_find (p);
4455
4456 if (m == MEM_NIL)
4457 {
4458 int valid = valid_pointer_p (p);
4459 if (valid <= 0)
4460 return valid;
4461
4462 if (SUBRP (obj))
4463 return 1;
4464
4465 return 0;
4466 }
4467
4468 switch (m->type)
4469 {
4470 case MEM_TYPE_NON_LISP:
4471 return 0;
4472
4473 case MEM_TYPE_BUFFER:
4474 return live_buffer_p (m, p);
4475
4476 case MEM_TYPE_CONS:
4477 return live_cons_p (m, p);
4478
4479 case MEM_TYPE_STRING:
4480 return live_string_p (m, p);
4481
4482 case MEM_TYPE_MISC:
4483 return live_misc_p (m, p);
4484
4485 case MEM_TYPE_SYMBOL:
4486 return live_symbol_p (m, p);
4487
4488 case MEM_TYPE_FLOAT:
4489 return live_float_p (m, p);
4490
4491 case MEM_TYPE_VECTORLIKE:
4492 return live_vector_p (m, p);
4493
4494 default:
4495 break;
4496 }
4497
4498 return 0;
4499 #endif
4500 }
4501
4502
4503
4504 \f
4505 /***********************************************************************
4506 Pure Storage Management
4507 ***********************************************************************/
4508
4509 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4510 pointer to it. TYPE is the Lisp type for which the memory is
4511 allocated. TYPE < 0 means it's not used for a Lisp object. */
4512
4513 static POINTER_TYPE *
4514 pure_alloc (size_t size, int type)
4515 {
4516 POINTER_TYPE *result;
4517 #ifdef USE_LSB_TAG
4518 size_t alignment = (1 << GCTYPEBITS);
4519 #else
4520 size_t alignment = sizeof (EMACS_INT);
4521
4522 /* Give Lisp_Floats an extra alignment. */
4523 if (type == Lisp_Float)
4524 {
4525 #if defined __GNUC__ && __GNUC__ >= 2
4526 alignment = __alignof (struct Lisp_Float);
4527 #else
4528 alignment = sizeof (struct Lisp_Float);
4529 #endif
4530 }
4531 #endif
4532
4533 again:
4534 if (type >= 0)
4535 {
4536 /* Allocate space for a Lisp object from the beginning of the free
4537 space with taking account of alignment. */
4538 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4539 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4540 }
4541 else
4542 {
4543 /* Allocate space for a non-Lisp object from the end of the free
4544 space. */
4545 pure_bytes_used_non_lisp += size;
4546 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4547 }
4548 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4549
4550 if (pure_bytes_used <= pure_size)
4551 return result;
4552
4553 /* Don't allocate a large amount here,
4554 because it might get mmap'd and then its address
4555 might not be usable. */
4556 purebeg = (char *) xmalloc (10000);
4557 pure_size = 10000;
4558 pure_bytes_used_before_overflow += pure_bytes_used - size;
4559 pure_bytes_used = 0;
4560 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4561 goto again;
4562 }
4563
4564
4565 /* Print a warning if PURESIZE is too small. */
4566
4567 void
4568 check_pure_size (void)
4569 {
4570 if (pure_bytes_used_before_overflow)
4571 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4572 " bytes needed)"),
4573 pure_bytes_used + pure_bytes_used_before_overflow);
4574 }
4575
4576
4577 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4578 the non-Lisp data pool of the pure storage, and return its start
4579 address. Return NULL if not found. */
4580
4581 static char *
4582 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4583 {
4584 int i;
4585 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4586 const unsigned char *p;
4587 char *non_lisp_beg;
4588
4589 if (pure_bytes_used_non_lisp < nbytes + 1)
4590 return NULL;
4591
4592 /* Set up the Boyer-Moore table. */
4593 skip = nbytes + 1;
4594 for (i = 0; i < 256; i++)
4595 bm_skip[i] = skip;
4596
4597 p = (const unsigned char *) data;
4598 while (--skip > 0)
4599 bm_skip[*p++] = skip;
4600
4601 last_char_skip = bm_skip['\0'];
4602
4603 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4604 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4605
4606 /* See the comments in the function `boyer_moore' (search.c) for the
4607 use of `infinity'. */
4608 infinity = pure_bytes_used_non_lisp + 1;
4609 bm_skip['\0'] = infinity;
4610
4611 p = (const unsigned char *) non_lisp_beg + nbytes;
4612 start = 0;
4613 do
4614 {
4615 /* Check the last character (== '\0'). */
4616 do
4617 {
4618 start += bm_skip[*(p + start)];
4619 }
4620 while (start <= start_max);
4621
4622 if (start < infinity)
4623 /* Couldn't find the last character. */
4624 return NULL;
4625
4626 /* No less than `infinity' means we could find the last
4627 character at `p[start - infinity]'. */
4628 start -= infinity;
4629
4630 /* Check the remaining characters. */
4631 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4632 /* Found. */
4633 return non_lisp_beg + start;
4634
4635 start += last_char_skip;
4636 }
4637 while (start <= start_max);
4638
4639 return NULL;
4640 }
4641
4642
4643 /* Return a string allocated in pure space. DATA is a buffer holding
4644 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4645 non-zero means make the result string multibyte.
4646
4647 Must get an error if pure storage is full, since if it cannot hold
4648 a large string it may be able to hold conses that point to that
4649 string; then the string is not protected from gc. */
4650
4651 Lisp_Object
4652 make_pure_string (const char *data,
4653 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4654 {
4655 Lisp_Object string;
4656 struct Lisp_String *s;
4657
4658 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4659 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4660 if (s->data == NULL)
4661 {
4662 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4663 memcpy (s->data, data, nbytes);
4664 s->data[nbytes] = '\0';
4665 }
4666 s->size = nchars;
4667 s->size_byte = multibyte ? nbytes : -1;
4668 s->intervals = NULL_INTERVAL;
4669 XSETSTRING (string, s);
4670 return string;
4671 }
4672
4673 /* Return a string a string allocated in pure space. Do not allocate
4674 the string data, just point to DATA. */
4675
4676 Lisp_Object
4677 make_pure_c_string (const char *data)
4678 {
4679 Lisp_Object string;
4680 struct Lisp_String *s;
4681 EMACS_INT nchars = strlen (data);
4682
4683 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4684 s->size = nchars;
4685 s->size_byte = -1;
4686 s->data = (unsigned char *) data;
4687 s->intervals = NULL_INTERVAL;
4688 XSETSTRING (string, s);
4689 return string;
4690 }
4691
4692 /* Return a cons allocated from pure space. Give it pure copies
4693 of CAR as car and CDR as cdr. */
4694
4695 Lisp_Object
4696 pure_cons (Lisp_Object car, Lisp_Object cdr)
4697 {
4698 register Lisp_Object new;
4699 struct Lisp_Cons *p;
4700
4701 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4702 XSETCONS (new, p);
4703 XSETCAR (new, Fpurecopy (car));
4704 XSETCDR (new, Fpurecopy (cdr));
4705 return new;
4706 }
4707
4708
4709 /* Value is a float object with value NUM allocated from pure space. */
4710
4711 static Lisp_Object
4712 make_pure_float (double num)
4713 {
4714 register Lisp_Object new;
4715 struct Lisp_Float *p;
4716
4717 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4718 XSETFLOAT (new, p);
4719 XFLOAT_INIT (new, num);
4720 return new;
4721 }
4722
4723
4724 /* Return a vector with room for LEN Lisp_Objects allocated from
4725 pure space. */
4726
4727 Lisp_Object
4728 make_pure_vector (EMACS_INT len)
4729 {
4730 Lisp_Object new;
4731 struct Lisp_Vector *p;
4732 size_t size = (offsetof (struct Lisp_Vector, contents)
4733 + len * sizeof (Lisp_Object));
4734
4735 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4736 XSETVECTOR (new, p);
4737 XVECTOR (new)->header.size = len;
4738 return new;
4739 }
4740
4741
4742 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4743 doc: /* Make a copy of object OBJ in pure storage.
4744 Recursively copies contents of vectors and cons cells.
4745 Does not copy symbols. Copies strings without text properties. */)
4746 (register Lisp_Object obj)
4747 {
4748 if (NILP (Vpurify_flag))
4749 return obj;
4750
4751 if (PURE_POINTER_P (XPNTR (obj)))
4752 return obj;
4753
4754 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4755 {
4756 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4757 if (!NILP (tmp))
4758 return tmp;
4759 }
4760
4761 if (CONSP (obj))
4762 obj = pure_cons (XCAR (obj), XCDR (obj));
4763 else if (FLOATP (obj))
4764 obj = make_pure_float (XFLOAT_DATA (obj));
4765 else if (STRINGP (obj))
4766 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4767 SBYTES (obj),
4768 STRING_MULTIBYTE (obj));
4769 else if (COMPILEDP (obj) || VECTORP (obj))
4770 {
4771 register struct Lisp_Vector *vec;
4772 register EMACS_INT i;
4773 EMACS_INT size;
4774
4775 size = XVECTOR_SIZE (obj);
4776 if (size & PSEUDOVECTOR_FLAG)
4777 size &= PSEUDOVECTOR_SIZE_MASK;
4778 vec = XVECTOR (make_pure_vector (size));
4779 for (i = 0; i < size; i++)
4780 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4781 if (COMPILEDP (obj))
4782 {
4783 XSETPVECTYPE (vec, PVEC_COMPILED);
4784 XSETCOMPILED (obj, vec);
4785 }
4786 else
4787 XSETVECTOR (obj, vec);
4788 }
4789 else if (MARKERP (obj))
4790 error ("Attempt to copy a marker to pure storage");
4791 else
4792 /* Not purified, don't hash-cons. */
4793 return obj;
4794
4795 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4796 Fputhash (obj, obj, Vpurify_flag);
4797
4798 return obj;
4799 }
4800
4801
4802 \f
4803 /***********************************************************************
4804 Protection from GC
4805 ***********************************************************************/
4806
4807 /* Put an entry in staticvec, pointing at the variable with address
4808 VARADDRESS. */
4809
4810 void
4811 staticpro (Lisp_Object *varaddress)
4812 {
4813 staticvec[staticidx++] = varaddress;
4814 if (staticidx >= NSTATICS)
4815 abort ();
4816 }
4817
4818 \f
4819 /***********************************************************************
4820 Protection from GC
4821 ***********************************************************************/
4822
4823 /* Temporarily prevent garbage collection. */
4824
4825 int
4826 inhibit_garbage_collection (void)
4827 {
4828 int count = SPECPDL_INDEX ();
4829 int nbits = min (VALBITS, BITS_PER_INT);
4830
4831 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4832 return count;
4833 }
4834
4835
4836 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4837 doc: /* Reclaim storage for Lisp objects no longer needed.
4838 Garbage collection happens automatically if you cons more than
4839 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4840 `garbage-collect' normally returns a list with info on amount of space in use:
4841 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4842 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4843 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4844 (USED-STRINGS . FREE-STRINGS))
4845 However, if there was overflow in pure space, `garbage-collect'
4846 returns nil, because real GC can't be done. */)
4847 (void)
4848 {
4849 register struct specbinding *bind;
4850 char stack_top_variable;
4851 register size_t i;
4852 int message_p;
4853 Lisp_Object total[8];
4854 int count = SPECPDL_INDEX ();
4855 EMACS_TIME t1, t2, t3;
4856
4857 if (abort_on_gc)
4858 abort ();
4859
4860 /* Can't GC if pure storage overflowed because we can't determine
4861 if something is a pure object or not. */
4862 if (pure_bytes_used_before_overflow)
4863 return Qnil;
4864
4865 CHECK_CONS_LIST ();
4866
4867 /* Don't keep undo information around forever.
4868 Do this early on, so it is no problem if the user quits. */
4869 {
4870 register struct buffer *nextb = all_buffers;
4871
4872 while (nextb)
4873 {
4874 /* If a buffer's undo list is Qt, that means that undo is
4875 turned off in that buffer. Calling truncate_undo_list on
4876 Qt tends to return NULL, which effectively turns undo back on.
4877 So don't call truncate_undo_list if undo_list is Qt. */
4878 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4879 truncate_undo_list (nextb);
4880
4881 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4882 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4883 && ! nextb->text->inhibit_shrinking)
4884 {
4885 /* If a buffer's gap size is more than 10% of the buffer
4886 size, or larger than 2000 bytes, then shrink it
4887 accordingly. Keep a minimum size of 20 bytes. */
4888 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4889
4890 if (nextb->text->gap_size > size)
4891 {
4892 struct buffer *save_current = current_buffer;
4893 current_buffer = nextb;
4894 make_gap (-(nextb->text->gap_size - size));
4895 current_buffer = save_current;
4896 }
4897 }
4898
4899 nextb = nextb->header.next.buffer;
4900 }
4901 }
4902
4903 EMACS_GET_TIME (t1);
4904
4905 /* In case user calls debug_print during GC,
4906 don't let that cause a recursive GC. */
4907 consing_since_gc = 0;
4908
4909 /* Save what's currently displayed in the echo area. */
4910 message_p = push_message ();
4911 record_unwind_protect (pop_message_unwind, Qnil);
4912
4913 /* Save a copy of the contents of the stack, for debugging. */
4914 #if MAX_SAVE_STACK > 0
4915 if (NILP (Vpurify_flag))
4916 {
4917 char *stack;
4918 size_t stack_size;
4919 if (&stack_top_variable < stack_bottom)
4920 {
4921 stack = &stack_top_variable;
4922 stack_size = stack_bottom - &stack_top_variable;
4923 }
4924 else
4925 {
4926 stack = stack_bottom;
4927 stack_size = &stack_top_variable - stack_bottom;
4928 }
4929 if (stack_size <= MAX_SAVE_STACK)
4930 {
4931 if (stack_copy_size < stack_size)
4932 {
4933 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4934 stack_copy_size = stack_size;
4935 }
4936 memcpy (stack_copy, stack, stack_size);
4937 }
4938 }
4939 #endif /* MAX_SAVE_STACK > 0 */
4940
4941 if (garbage_collection_messages)
4942 message1_nolog ("Garbage collecting...");
4943
4944 BLOCK_INPUT;
4945
4946 shrink_regexp_cache ();
4947
4948 gc_in_progress = 1;
4949
4950 /* clear_marks (); */
4951
4952 /* Mark all the special slots that serve as the roots of accessibility. */
4953
4954 for (i = 0; i < staticidx; i++)
4955 mark_object (*staticvec[i]);
4956
4957 for (bind = specpdl; bind != specpdl_ptr; bind++)
4958 {
4959 mark_object (bind->symbol);
4960 mark_object (bind->old_value);
4961 }
4962 mark_terminals ();
4963 mark_kboards ();
4964 mark_ttys ();
4965
4966 #ifdef USE_GTK
4967 {
4968 extern void xg_mark_data (void);
4969 xg_mark_data ();
4970 }
4971 #endif
4972
4973 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4974 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4975 mark_stack ();
4976 #else
4977 {
4978 register struct gcpro *tail;
4979 for (tail = gcprolist; tail; tail = tail->next)
4980 for (i = 0; i < tail->nvars; i++)
4981 mark_object (tail->var[i]);
4982 }
4983 mark_byte_stack ();
4984 {
4985 struct catchtag *catch;
4986 struct handler *handler;
4987
4988 for (catch = catchlist; catch; catch = catch->next)
4989 {
4990 mark_object (catch->tag);
4991 mark_object (catch->val);
4992 }
4993 for (handler = handlerlist; handler; handler = handler->next)
4994 {
4995 mark_object (handler->handler);
4996 mark_object (handler->var);
4997 }
4998 }
4999 mark_backtrace ();
5000 #endif
5001
5002 #ifdef HAVE_WINDOW_SYSTEM
5003 mark_fringe_data ();
5004 #endif
5005
5006 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5007 mark_stack ();
5008 #endif
5009
5010 /* Everything is now marked, except for the things that require special
5011 finalization, i.e. the undo_list.
5012 Look thru every buffer's undo list
5013 for elements that update markers that were not marked,
5014 and delete them. */
5015 {
5016 register struct buffer *nextb = all_buffers;
5017
5018 while (nextb)
5019 {
5020 /* If a buffer's undo list is Qt, that means that undo is
5021 turned off in that buffer. Calling truncate_undo_list on
5022 Qt tends to return NULL, which effectively turns undo back on.
5023 So don't call truncate_undo_list if undo_list is Qt. */
5024 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5025 {
5026 Lisp_Object tail, prev;
5027 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5028 prev = Qnil;
5029 while (CONSP (tail))
5030 {
5031 if (CONSP (XCAR (tail))
5032 && MARKERP (XCAR (XCAR (tail)))
5033 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5034 {
5035 if (NILP (prev))
5036 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5037 else
5038 {
5039 tail = XCDR (tail);
5040 XSETCDR (prev, tail);
5041 }
5042 }
5043 else
5044 {
5045 prev = tail;
5046 tail = XCDR (tail);
5047 }
5048 }
5049 }
5050 /* Now that we have stripped the elements that need not be in the
5051 undo_list any more, we can finally mark the list. */
5052 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5053
5054 nextb = nextb->header.next.buffer;
5055 }
5056 }
5057
5058 gc_sweep ();
5059
5060 /* Clear the mark bits that we set in certain root slots. */
5061
5062 unmark_byte_stack ();
5063 VECTOR_UNMARK (&buffer_defaults);
5064 VECTOR_UNMARK (&buffer_local_symbols);
5065
5066 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5067 dump_zombies ();
5068 #endif
5069
5070 UNBLOCK_INPUT;
5071
5072 CHECK_CONS_LIST ();
5073
5074 /* clear_marks (); */
5075 gc_in_progress = 0;
5076
5077 consing_since_gc = 0;
5078 if (gc_cons_threshold < 10000)
5079 gc_cons_threshold = 10000;
5080
5081 if (FLOATP (Vgc_cons_percentage))
5082 { /* Set gc_cons_combined_threshold. */
5083 EMACS_INT tot = 0;
5084
5085 tot += total_conses * sizeof (struct Lisp_Cons);
5086 tot += total_symbols * sizeof (struct Lisp_Symbol);
5087 tot += total_markers * sizeof (union Lisp_Misc);
5088 tot += total_string_size;
5089 tot += total_vector_size * sizeof (Lisp_Object);
5090 tot += total_floats * sizeof (struct Lisp_Float);
5091 tot += total_intervals * sizeof (struct interval);
5092 tot += total_strings * sizeof (struct Lisp_String);
5093
5094 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5095 }
5096 else
5097 gc_relative_threshold = 0;
5098
5099 if (garbage_collection_messages)
5100 {
5101 if (message_p || minibuf_level > 0)
5102 restore_message ();
5103 else
5104 message1_nolog ("Garbage collecting...done");
5105 }
5106
5107 unbind_to (count, Qnil);
5108
5109 total[0] = Fcons (make_number (total_conses),
5110 make_number (total_free_conses));
5111 total[1] = Fcons (make_number (total_symbols),
5112 make_number (total_free_symbols));
5113 total[2] = Fcons (make_number (total_markers),
5114 make_number (total_free_markers));
5115 total[3] = make_number (total_string_size);
5116 total[4] = make_number (total_vector_size);
5117 total[5] = Fcons (make_number (total_floats),
5118 make_number (total_free_floats));
5119 total[6] = Fcons (make_number (total_intervals),
5120 make_number (total_free_intervals));
5121 total[7] = Fcons (make_number (total_strings),
5122 make_number (total_free_strings));
5123
5124 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5125 {
5126 /* Compute average percentage of zombies. */
5127 double nlive = 0;
5128
5129 for (i = 0; i < 7; ++i)
5130 if (CONSP (total[i]))
5131 nlive += XFASTINT (XCAR (total[i]));
5132
5133 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5134 max_live = max (nlive, max_live);
5135 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5136 max_zombies = max (nzombies, max_zombies);
5137 ++ngcs;
5138 }
5139 #endif
5140
5141 if (!NILP (Vpost_gc_hook))
5142 {
5143 int gc_count = inhibit_garbage_collection ();
5144 safe_run_hooks (Qpost_gc_hook);
5145 unbind_to (gc_count, Qnil);
5146 }
5147
5148 /* Accumulate statistics. */
5149 EMACS_GET_TIME (t2);
5150 EMACS_SUB_TIME (t3, t2, t1);
5151 if (FLOATP (Vgc_elapsed))
5152 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5153 EMACS_SECS (t3) +
5154 EMACS_USECS (t3) * 1.0e-6);
5155 gcs_done++;
5156
5157 return Flist (sizeof total / sizeof *total, total);
5158 }
5159
5160
5161 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5162 only interesting objects referenced from glyphs are strings. */
5163
5164 static void
5165 mark_glyph_matrix (struct glyph_matrix *matrix)
5166 {
5167 struct glyph_row *row = matrix->rows;
5168 struct glyph_row *end = row + matrix->nrows;
5169
5170 for (; row < end; ++row)
5171 if (row->enabled_p)
5172 {
5173 int area;
5174 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5175 {
5176 struct glyph *glyph = row->glyphs[area];
5177 struct glyph *end_glyph = glyph + row->used[area];
5178
5179 for (; glyph < end_glyph; ++glyph)
5180 if (STRINGP (glyph->object)
5181 && !STRING_MARKED_P (XSTRING (glyph->object)))
5182 mark_object (glyph->object);
5183 }
5184 }
5185 }
5186
5187
5188 /* Mark Lisp faces in the face cache C. */
5189
5190 static void
5191 mark_face_cache (struct face_cache *c)
5192 {
5193 if (c)
5194 {
5195 int i, j;
5196 for (i = 0; i < c->used; ++i)
5197 {
5198 struct face *face = FACE_FROM_ID (c->f, i);
5199
5200 if (face)
5201 {
5202 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5203 mark_object (face->lface[j]);
5204 }
5205 }
5206 }
5207 }
5208
5209
5210 \f
5211 /* Mark reference to a Lisp_Object.
5212 If the object referred to has not been seen yet, recursively mark
5213 all the references contained in it. */
5214
5215 #define LAST_MARKED_SIZE 500
5216 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5217 static int last_marked_index;
5218
5219 /* For debugging--call abort when we cdr down this many
5220 links of a list, in mark_object. In debugging,
5221 the call to abort will hit a breakpoint.
5222 Normally this is zero and the check never goes off. */
5223 static size_t mark_object_loop_halt;
5224
5225 static void
5226 mark_vectorlike (struct Lisp_Vector *ptr)
5227 {
5228 register EMACS_UINT size = ptr->header.size;
5229 register EMACS_UINT i;
5230
5231 eassert (!VECTOR_MARKED_P (ptr));
5232 VECTOR_MARK (ptr); /* Else mark it */
5233 if (size & PSEUDOVECTOR_FLAG)
5234 size &= PSEUDOVECTOR_SIZE_MASK;
5235
5236 /* Note that this size is not the memory-footprint size, but only
5237 the number of Lisp_Object fields that we should trace.
5238 The distinction is used e.g. by Lisp_Process which places extra
5239 non-Lisp_Object fields at the end of the structure. */
5240 for (i = 0; i < size; i++) /* and then mark its elements */
5241 mark_object (ptr->contents[i]);
5242 }
5243
5244 /* Like mark_vectorlike but optimized for char-tables (and
5245 sub-char-tables) assuming that the contents are mostly integers or
5246 symbols. */
5247
5248 static void
5249 mark_char_table (struct Lisp_Vector *ptr)
5250 {
5251 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5252 register EMACS_UINT i;
5253
5254 eassert (!VECTOR_MARKED_P (ptr));
5255 VECTOR_MARK (ptr);
5256 for (i = 0; i < size; i++)
5257 {
5258 Lisp_Object val = ptr->contents[i];
5259
5260 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5261 continue;
5262 if (SUB_CHAR_TABLE_P (val))
5263 {
5264 if (! VECTOR_MARKED_P (XVECTOR (val)))
5265 mark_char_table (XVECTOR (val));
5266 }
5267 else
5268 mark_object (val);
5269 }
5270 }
5271
5272 void
5273 mark_object (Lisp_Object arg)
5274 {
5275 register Lisp_Object obj = arg;
5276 #ifdef GC_CHECK_MARKED_OBJECTS
5277 void *po;
5278 struct mem_node *m;
5279 #endif
5280 size_t cdr_count = 0;
5281
5282 loop:
5283
5284 if (PURE_POINTER_P (XPNTR (obj)))
5285 return;
5286
5287 last_marked[last_marked_index++] = obj;
5288 if (last_marked_index == LAST_MARKED_SIZE)
5289 last_marked_index = 0;
5290
5291 /* Perform some sanity checks on the objects marked here. Abort if
5292 we encounter an object we know is bogus. This increases GC time
5293 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5294 #ifdef GC_CHECK_MARKED_OBJECTS
5295
5296 po = (void *) XPNTR (obj);
5297
5298 /* Check that the object pointed to by PO is known to be a Lisp
5299 structure allocated from the heap. */
5300 #define CHECK_ALLOCATED() \
5301 do { \
5302 m = mem_find (po); \
5303 if (m == MEM_NIL) \
5304 abort (); \
5305 } while (0)
5306
5307 /* Check that the object pointed to by PO is live, using predicate
5308 function LIVEP. */
5309 #define CHECK_LIVE(LIVEP) \
5310 do { \
5311 if (!LIVEP (m, po)) \
5312 abort (); \
5313 } while (0)
5314
5315 /* Check both of the above conditions. */
5316 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5317 do { \
5318 CHECK_ALLOCATED (); \
5319 CHECK_LIVE (LIVEP); \
5320 } while (0) \
5321
5322 #else /* not GC_CHECK_MARKED_OBJECTS */
5323
5324 #define CHECK_LIVE(LIVEP) (void) 0
5325 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5326
5327 #endif /* not GC_CHECK_MARKED_OBJECTS */
5328
5329 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5330 {
5331 case Lisp_String:
5332 {
5333 register struct Lisp_String *ptr = XSTRING (obj);
5334 if (STRING_MARKED_P (ptr))
5335 break;
5336 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5337 MARK_INTERVAL_TREE (ptr->intervals);
5338 MARK_STRING (ptr);
5339 #ifdef GC_CHECK_STRING_BYTES
5340 /* Check that the string size recorded in the string is the
5341 same as the one recorded in the sdata structure. */
5342 CHECK_STRING_BYTES (ptr);
5343 #endif /* GC_CHECK_STRING_BYTES */
5344 }
5345 break;
5346
5347 case Lisp_Vectorlike:
5348 if (VECTOR_MARKED_P (XVECTOR (obj)))
5349 break;
5350 #ifdef GC_CHECK_MARKED_OBJECTS
5351 m = mem_find (po);
5352 if (m == MEM_NIL && !SUBRP (obj)
5353 && po != &buffer_defaults
5354 && po != &buffer_local_symbols)
5355 abort ();
5356 #endif /* GC_CHECK_MARKED_OBJECTS */
5357
5358 if (BUFFERP (obj))
5359 {
5360 #ifdef GC_CHECK_MARKED_OBJECTS
5361 if (po != &buffer_defaults && po != &buffer_local_symbols)
5362 {
5363 struct buffer *b;
5364 for (b = all_buffers; b && b != po; b = b->header.next)
5365 ;
5366 if (b == NULL)
5367 abort ();
5368 }
5369 #endif /* GC_CHECK_MARKED_OBJECTS */
5370 mark_buffer (obj);
5371 }
5372 else if (SUBRP (obj))
5373 break;
5374 else if (COMPILEDP (obj))
5375 /* We could treat this just like a vector, but it is better to
5376 save the COMPILED_CONSTANTS element for last and avoid
5377 recursion there. */
5378 {
5379 register struct Lisp_Vector *ptr = XVECTOR (obj);
5380 register EMACS_UINT size = ptr->header.size;
5381 register EMACS_UINT i;
5382
5383 CHECK_LIVE (live_vector_p);
5384 VECTOR_MARK (ptr); /* Else mark it */
5385 size &= PSEUDOVECTOR_SIZE_MASK;
5386 for (i = 0; i < size; i++) /* and then mark its elements */
5387 {
5388 if (i != COMPILED_CONSTANTS)
5389 mark_object (ptr->contents[i]);
5390 }
5391 obj = ptr->contents[COMPILED_CONSTANTS];
5392 goto loop;
5393 }
5394 else if (FRAMEP (obj))
5395 {
5396 register struct frame *ptr = XFRAME (obj);
5397 mark_vectorlike (XVECTOR (obj));
5398 mark_face_cache (ptr->face_cache);
5399 }
5400 else if (WINDOWP (obj))
5401 {
5402 register struct Lisp_Vector *ptr = XVECTOR (obj);
5403 struct window *w = XWINDOW (obj);
5404 mark_vectorlike (ptr);
5405 /* Mark glyphs for leaf windows. Marking window matrices is
5406 sufficient because frame matrices use the same glyph
5407 memory. */
5408 if (NILP (w->hchild)
5409 && NILP (w->vchild)
5410 && w->current_matrix)
5411 {
5412 mark_glyph_matrix (w->current_matrix);
5413 mark_glyph_matrix (w->desired_matrix);
5414 }
5415 }
5416 else if (HASH_TABLE_P (obj))
5417 {
5418 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5419 mark_vectorlike ((struct Lisp_Vector *)h);
5420 /* If hash table is not weak, mark all keys and values.
5421 For weak tables, mark only the vector. */
5422 if (NILP (h->weak))
5423 mark_object (h->key_and_value);
5424 else
5425 VECTOR_MARK (XVECTOR (h->key_and_value));
5426 }
5427 else if (CHAR_TABLE_P (obj))
5428 mark_char_table (XVECTOR (obj));
5429 else
5430 mark_vectorlike (XVECTOR (obj));
5431 break;
5432
5433 case Lisp_Symbol:
5434 {
5435 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5436 struct Lisp_Symbol *ptrx;
5437
5438 if (ptr->gcmarkbit)
5439 break;
5440 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5441 ptr->gcmarkbit = 1;
5442 mark_object (ptr->function);
5443 mark_object (ptr->plist);
5444 switch (ptr->redirect)
5445 {
5446 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5447 case SYMBOL_VARALIAS:
5448 {
5449 Lisp_Object tem;
5450 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5451 mark_object (tem);
5452 break;
5453 }
5454 case SYMBOL_LOCALIZED:
5455 {
5456 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5457 /* If the value is forwarded to a buffer or keyboard field,
5458 these are marked when we see the corresponding object.
5459 And if it's forwarded to a C variable, either it's not
5460 a Lisp_Object var, or it's staticpro'd already. */
5461 mark_object (blv->where);
5462 mark_object (blv->valcell);
5463 mark_object (blv->defcell);
5464 break;
5465 }
5466 case SYMBOL_FORWARDED:
5467 /* If the value is forwarded to a buffer or keyboard field,
5468 these are marked when we see the corresponding object.
5469 And if it's forwarded to a C variable, either it's not
5470 a Lisp_Object var, or it's staticpro'd already. */
5471 break;
5472 default: abort ();
5473 }
5474 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5475 MARK_STRING (XSTRING (ptr->xname));
5476 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5477
5478 ptr = ptr->next;
5479 if (ptr)
5480 {
5481 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5482 XSETSYMBOL (obj, ptrx);
5483 goto loop;
5484 }
5485 }
5486 break;
5487
5488 case Lisp_Misc:
5489 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5490 if (XMISCANY (obj)->gcmarkbit)
5491 break;
5492 XMISCANY (obj)->gcmarkbit = 1;
5493
5494 switch (XMISCTYPE (obj))
5495 {
5496
5497 case Lisp_Misc_Marker:
5498 /* DO NOT mark thru the marker's chain.
5499 The buffer's markers chain does not preserve markers from gc;
5500 instead, markers are removed from the chain when freed by gc. */
5501 break;
5502
5503 case Lisp_Misc_Save_Value:
5504 #if GC_MARK_STACK
5505 {
5506 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5507 /* If DOGC is set, POINTER is the address of a memory
5508 area containing INTEGER potential Lisp_Objects. */
5509 if (ptr->dogc)
5510 {
5511 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5512 int nelt;
5513 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5514 mark_maybe_object (*p);
5515 }
5516 }
5517 #endif
5518 break;
5519
5520 case Lisp_Misc_Overlay:
5521 {
5522 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5523 mark_object (ptr->start);
5524 mark_object (ptr->end);
5525 mark_object (ptr->plist);
5526 if (ptr->next)
5527 {
5528 XSETMISC (obj, ptr->next);
5529 goto loop;
5530 }
5531 }
5532 break;
5533
5534 default:
5535 abort ();
5536 }
5537 break;
5538
5539 case Lisp_Cons:
5540 {
5541 register struct Lisp_Cons *ptr = XCONS (obj);
5542 if (CONS_MARKED_P (ptr))
5543 break;
5544 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5545 CONS_MARK (ptr);
5546 /* If the cdr is nil, avoid recursion for the car. */
5547 if (EQ (ptr->u.cdr, Qnil))
5548 {
5549 obj = ptr->car;
5550 cdr_count = 0;
5551 goto loop;
5552 }
5553 mark_object (ptr->car);
5554 obj = ptr->u.cdr;
5555 cdr_count++;
5556 if (cdr_count == mark_object_loop_halt)
5557 abort ();
5558 goto loop;
5559 }
5560
5561 case Lisp_Float:
5562 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5563 FLOAT_MARK (XFLOAT (obj));
5564 break;
5565
5566 case_Lisp_Int:
5567 break;
5568
5569 default:
5570 abort ();
5571 }
5572
5573 #undef CHECK_LIVE
5574 #undef CHECK_ALLOCATED
5575 #undef CHECK_ALLOCATED_AND_LIVE
5576 }
5577
5578 /* Mark the pointers in a buffer structure. */
5579
5580 static void
5581 mark_buffer (Lisp_Object buf)
5582 {
5583 register struct buffer *buffer = XBUFFER (buf);
5584 register Lisp_Object *ptr, tmp;
5585 Lisp_Object base_buffer;
5586
5587 eassert (!VECTOR_MARKED_P (buffer));
5588 VECTOR_MARK (buffer);
5589
5590 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5591
5592 /* For now, we just don't mark the undo_list. It's done later in
5593 a special way just before the sweep phase, and after stripping
5594 some of its elements that are not needed any more. */
5595
5596 if (buffer->overlays_before)
5597 {
5598 XSETMISC (tmp, buffer->overlays_before);
5599 mark_object (tmp);
5600 }
5601 if (buffer->overlays_after)
5602 {
5603 XSETMISC (tmp, buffer->overlays_after);
5604 mark_object (tmp);
5605 }
5606
5607 /* buffer-local Lisp variables start at `undo_list',
5608 tho only the ones from `name' on are GC'd normally. */
5609 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5610 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5611 ptr++)
5612 mark_object (*ptr);
5613
5614 /* If this is an indirect buffer, mark its base buffer. */
5615 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5616 {
5617 XSETBUFFER (base_buffer, buffer->base_buffer);
5618 mark_buffer (base_buffer);
5619 }
5620 }
5621
5622 /* Mark the Lisp pointers in the terminal objects.
5623 Called by the Fgarbage_collector. */
5624
5625 static void
5626 mark_terminals (void)
5627 {
5628 struct terminal *t;
5629 for (t = terminal_list; t; t = t->next_terminal)
5630 {
5631 eassert (t->name != NULL);
5632 #ifdef HAVE_WINDOW_SYSTEM
5633 /* If a terminal object is reachable from a stacpro'ed object,
5634 it might have been marked already. Make sure the image cache
5635 gets marked. */
5636 mark_image_cache (t->image_cache);
5637 #endif /* HAVE_WINDOW_SYSTEM */
5638 if (!VECTOR_MARKED_P (t))
5639 mark_vectorlike ((struct Lisp_Vector *)t);
5640 }
5641 }
5642
5643
5644
5645 /* Value is non-zero if OBJ will survive the current GC because it's
5646 either marked or does not need to be marked to survive. */
5647
5648 int
5649 survives_gc_p (Lisp_Object obj)
5650 {
5651 int survives_p;
5652
5653 switch (XTYPE (obj))
5654 {
5655 case_Lisp_Int:
5656 survives_p = 1;
5657 break;
5658
5659 case Lisp_Symbol:
5660 survives_p = XSYMBOL (obj)->gcmarkbit;
5661 break;
5662
5663 case Lisp_Misc:
5664 survives_p = XMISCANY (obj)->gcmarkbit;
5665 break;
5666
5667 case Lisp_String:
5668 survives_p = STRING_MARKED_P (XSTRING (obj));
5669 break;
5670
5671 case Lisp_Vectorlike:
5672 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5673 break;
5674
5675 case Lisp_Cons:
5676 survives_p = CONS_MARKED_P (XCONS (obj));
5677 break;
5678
5679 case Lisp_Float:
5680 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5681 break;
5682
5683 default:
5684 abort ();
5685 }
5686
5687 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5688 }
5689
5690
5691 \f
5692 /* Sweep: find all structures not marked, and free them. */
5693
5694 static void
5695 gc_sweep (void)
5696 {
5697 /* Remove or mark entries in weak hash tables.
5698 This must be done before any object is unmarked. */
5699 sweep_weak_hash_tables ();
5700
5701 sweep_strings ();
5702 #ifdef GC_CHECK_STRING_BYTES
5703 if (!noninteractive)
5704 check_string_bytes (1);
5705 #endif
5706
5707 /* Put all unmarked conses on free list */
5708 {
5709 register struct cons_block *cblk;
5710 struct cons_block **cprev = &cons_block;
5711 register int lim = cons_block_index;
5712 register int num_free = 0, num_used = 0;
5713
5714 cons_free_list = 0;
5715
5716 for (cblk = cons_block; cblk; cblk = *cprev)
5717 {
5718 register int i = 0;
5719 int this_free = 0;
5720 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5721
5722 /* Scan the mark bits an int at a time. */
5723 for (i = 0; i <= ilim; i++)
5724 {
5725 if (cblk->gcmarkbits[i] == -1)
5726 {
5727 /* Fast path - all cons cells for this int are marked. */
5728 cblk->gcmarkbits[i] = 0;
5729 num_used += BITS_PER_INT;
5730 }
5731 else
5732 {
5733 /* Some cons cells for this int are not marked.
5734 Find which ones, and free them. */
5735 int start, pos, stop;
5736
5737 start = i * BITS_PER_INT;
5738 stop = lim - start;
5739 if (stop > BITS_PER_INT)
5740 stop = BITS_PER_INT;
5741 stop += start;
5742
5743 for (pos = start; pos < stop; pos++)
5744 {
5745 if (!CONS_MARKED_P (&cblk->conses[pos]))
5746 {
5747 this_free++;
5748 cblk->conses[pos].u.chain = cons_free_list;
5749 cons_free_list = &cblk->conses[pos];
5750 #if GC_MARK_STACK
5751 cons_free_list->car = Vdead;
5752 #endif
5753 }
5754 else
5755 {
5756 num_used++;
5757 CONS_UNMARK (&cblk->conses[pos]);
5758 }
5759 }
5760 }
5761 }
5762
5763 lim = CONS_BLOCK_SIZE;
5764 /* If this block contains only free conses and we have already
5765 seen more than two blocks worth of free conses then deallocate
5766 this block. */
5767 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5768 {
5769 *cprev = cblk->next;
5770 /* Unhook from the free list. */
5771 cons_free_list = cblk->conses[0].u.chain;
5772 lisp_align_free (cblk);
5773 n_cons_blocks--;
5774 }
5775 else
5776 {
5777 num_free += this_free;
5778 cprev = &cblk->next;
5779 }
5780 }
5781 total_conses = num_used;
5782 total_free_conses = num_free;
5783 }
5784
5785 /* Put all unmarked floats on free list */
5786 {
5787 register struct float_block *fblk;
5788 struct float_block **fprev = &float_block;
5789 register int lim = float_block_index;
5790 register int num_free = 0, num_used = 0;
5791
5792 float_free_list = 0;
5793
5794 for (fblk = float_block; fblk; fblk = *fprev)
5795 {
5796 register int i;
5797 int this_free = 0;
5798 for (i = 0; i < lim; i++)
5799 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5800 {
5801 this_free++;
5802 fblk->floats[i].u.chain = float_free_list;
5803 float_free_list = &fblk->floats[i];
5804 }
5805 else
5806 {
5807 num_used++;
5808 FLOAT_UNMARK (&fblk->floats[i]);
5809 }
5810 lim = FLOAT_BLOCK_SIZE;
5811 /* If this block contains only free floats and we have already
5812 seen more than two blocks worth of free floats then deallocate
5813 this block. */
5814 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5815 {
5816 *fprev = fblk->next;
5817 /* Unhook from the free list. */
5818 float_free_list = fblk->floats[0].u.chain;
5819 lisp_align_free (fblk);
5820 n_float_blocks--;
5821 }
5822 else
5823 {
5824 num_free += this_free;
5825 fprev = &fblk->next;
5826 }
5827 }
5828 total_floats = num_used;
5829 total_free_floats = num_free;
5830 }
5831
5832 /* Put all unmarked intervals on free list */
5833 {
5834 register struct interval_block *iblk;
5835 struct interval_block **iprev = &interval_block;
5836 register int lim = interval_block_index;
5837 register int num_free = 0, num_used = 0;
5838
5839 interval_free_list = 0;
5840
5841 for (iblk = interval_block; iblk; iblk = *iprev)
5842 {
5843 register int i;
5844 int this_free = 0;
5845
5846 for (i = 0; i < lim; i++)
5847 {
5848 if (!iblk->intervals[i].gcmarkbit)
5849 {
5850 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5851 interval_free_list = &iblk->intervals[i];
5852 this_free++;
5853 }
5854 else
5855 {
5856 num_used++;
5857 iblk->intervals[i].gcmarkbit = 0;
5858 }
5859 }
5860 lim = INTERVAL_BLOCK_SIZE;
5861 /* If this block contains only free intervals and we have already
5862 seen more than two blocks worth of free intervals then
5863 deallocate this block. */
5864 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5865 {
5866 *iprev = iblk->next;
5867 /* Unhook from the free list. */
5868 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5869 lisp_free (iblk);
5870 n_interval_blocks--;
5871 }
5872 else
5873 {
5874 num_free += this_free;
5875 iprev = &iblk->next;
5876 }
5877 }
5878 total_intervals = num_used;
5879 total_free_intervals = num_free;
5880 }
5881
5882 /* Put all unmarked symbols on free list */
5883 {
5884 register struct symbol_block *sblk;
5885 struct symbol_block **sprev = &symbol_block;
5886 register int lim = symbol_block_index;
5887 register int num_free = 0, num_used = 0;
5888
5889 symbol_free_list = NULL;
5890
5891 for (sblk = symbol_block; sblk; sblk = *sprev)
5892 {
5893 int this_free = 0;
5894 struct Lisp_Symbol *sym = sblk->symbols;
5895 struct Lisp_Symbol *end = sym + lim;
5896
5897 for (; sym < end; ++sym)
5898 {
5899 /* Check if the symbol was created during loadup. In such a case
5900 it might be pointed to by pure bytecode which we don't trace,
5901 so we conservatively assume that it is live. */
5902 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5903
5904 if (!sym->gcmarkbit && !pure_p)
5905 {
5906 if (sym->redirect == SYMBOL_LOCALIZED)
5907 xfree (SYMBOL_BLV (sym));
5908 sym->next = symbol_free_list;
5909 symbol_free_list = sym;
5910 #if GC_MARK_STACK
5911 symbol_free_list->function = Vdead;
5912 #endif
5913 ++this_free;
5914 }
5915 else
5916 {
5917 ++num_used;
5918 if (!pure_p)
5919 UNMARK_STRING (XSTRING (sym->xname));
5920 sym->gcmarkbit = 0;
5921 }
5922 }
5923
5924 lim = SYMBOL_BLOCK_SIZE;
5925 /* If this block contains only free symbols and we have already
5926 seen more than two blocks worth of free symbols then deallocate
5927 this block. */
5928 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5929 {
5930 *sprev = sblk->next;
5931 /* Unhook from the free list. */
5932 symbol_free_list = sblk->symbols[0].next;
5933 lisp_free (sblk);
5934 n_symbol_blocks--;
5935 }
5936 else
5937 {
5938 num_free += this_free;
5939 sprev = &sblk->next;
5940 }
5941 }
5942 total_symbols = num_used;
5943 total_free_symbols = num_free;
5944 }
5945
5946 /* Put all unmarked misc's on free list.
5947 For a marker, first unchain it from the buffer it points into. */
5948 {
5949 register struct marker_block *mblk;
5950 struct marker_block **mprev = &marker_block;
5951 register int lim = marker_block_index;
5952 register int num_free = 0, num_used = 0;
5953
5954 marker_free_list = 0;
5955
5956 for (mblk = marker_block; mblk; mblk = *mprev)
5957 {
5958 register int i;
5959 int this_free = 0;
5960
5961 for (i = 0; i < lim; i++)
5962 {
5963 if (!mblk->markers[i].u_any.gcmarkbit)
5964 {
5965 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5966 unchain_marker (&mblk->markers[i].u_marker);
5967 /* Set the type of the freed object to Lisp_Misc_Free.
5968 We could leave the type alone, since nobody checks it,
5969 but this might catch bugs faster. */
5970 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5971 mblk->markers[i].u_free.chain = marker_free_list;
5972 marker_free_list = &mblk->markers[i];
5973 this_free++;
5974 }
5975 else
5976 {
5977 num_used++;
5978 mblk->markers[i].u_any.gcmarkbit = 0;
5979 }
5980 }
5981 lim = MARKER_BLOCK_SIZE;
5982 /* If this block contains only free markers and we have already
5983 seen more than two blocks worth of free markers then deallocate
5984 this block. */
5985 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5986 {
5987 *mprev = mblk->next;
5988 /* Unhook from the free list. */
5989 marker_free_list = mblk->markers[0].u_free.chain;
5990 lisp_free (mblk);
5991 n_marker_blocks--;
5992 }
5993 else
5994 {
5995 num_free += this_free;
5996 mprev = &mblk->next;
5997 }
5998 }
5999
6000 total_markers = num_used;
6001 total_free_markers = num_free;
6002 }
6003
6004 /* Free all unmarked buffers */
6005 {
6006 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6007
6008 while (buffer)
6009 if (!VECTOR_MARKED_P (buffer))
6010 {
6011 if (prev)
6012 prev->header.next = buffer->header.next;
6013 else
6014 all_buffers = buffer->header.next.buffer;
6015 next = buffer->header.next.buffer;
6016 lisp_free (buffer);
6017 buffer = next;
6018 }
6019 else
6020 {
6021 VECTOR_UNMARK (buffer);
6022 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6023 prev = buffer, buffer = buffer->header.next.buffer;
6024 }
6025 }
6026
6027 /* Free all unmarked vectors */
6028 {
6029 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6030 total_vector_size = 0;
6031
6032 while (vector)
6033 if (!VECTOR_MARKED_P (vector))
6034 {
6035 if (prev)
6036 prev->header.next = vector->header.next;
6037 else
6038 all_vectors = vector->header.next.vector;
6039 next = vector->header.next.vector;
6040 lisp_free (vector);
6041 n_vectors--;
6042 vector = next;
6043
6044 }
6045 else
6046 {
6047 VECTOR_UNMARK (vector);
6048 if (vector->header.size & PSEUDOVECTOR_FLAG)
6049 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6050 else
6051 total_vector_size += vector->header.size;
6052 prev = vector, vector = vector->header.next.vector;
6053 }
6054 }
6055
6056 #ifdef GC_CHECK_STRING_BYTES
6057 if (!noninteractive)
6058 check_string_bytes (1);
6059 #endif
6060 }
6061
6062
6063
6064 \f
6065 /* Debugging aids. */
6066
6067 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6068 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6069 This may be helpful in debugging Emacs's memory usage.
6070 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6071 (void)
6072 {
6073 Lisp_Object end;
6074
6075 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6076
6077 return end;
6078 }
6079
6080 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6081 doc: /* Return a list of counters that measure how much consing there has been.
6082 Each of these counters increments for a certain kind of object.
6083 The counters wrap around from the largest positive integer to zero.
6084 Garbage collection does not decrease them.
6085 The elements of the value are as follows:
6086 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6087 All are in units of 1 = one object consed
6088 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6089 objects consed.
6090 MISCS include overlays, markers, and some internal types.
6091 Frames, windows, buffers, and subprocesses count as vectors
6092 (but the contents of a buffer's text do not count here). */)
6093 (void)
6094 {
6095 Lisp_Object consed[8];
6096
6097 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6098 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6099 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6100 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6101 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6102 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6103 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6104 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6105
6106 return Flist (8, consed);
6107 }
6108
6109 #ifdef ENABLE_CHECKING
6110 int suppress_checking;
6111
6112 void
6113 die (const char *msg, const char *file, int line)
6114 {
6115 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6116 file, line, msg);
6117 abort ();
6118 }
6119 #endif
6120 \f
6121 /* Initialization */
6122
6123 void
6124 init_alloc_once (void)
6125 {
6126 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6127 purebeg = PUREBEG;
6128 pure_size = PURESIZE;
6129 pure_bytes_used = 0;
6130 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6131 pure_bytes_used_before_overflow = 0;
6132
6133 /* Initialize the list of free aligned blocks. */
6134 free_ablock = NULL;
6135
6136 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6137 mem_init ();
6138 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6139 #endif
6140
6141 all_vectors = 0;
6142 ignore_warnings = 1;
6143 #ifdef DOUG_LEA_MALLOC
6144 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6145 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6147 #endif
6148 init_strings ();
6149 init_cons ();
6150 init_symbol ();
6151 init_marker ();
6152 init_float ();
6153 init_intervals ();
6154 init_weak_hash_tables ();
6155
6156 #ifdef REL_ALLOC
6157 malloc_hysteresis = 32;
6158 #else
6159 malloc_hysteresis = 0;
6160 #endif
6161
6162 refill_memory_reserve ();
6163
6164 ignore_warnings = 0;
6165 gcprolist = 0;
6166 byte_stack_list = 0;
6167 staticidx = 0;
6168 consing_since_gc = 0;
6169 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6170 gc_relative_threshold = 0;
6171 }
6172
6173 void
6174 init_alloc (void)
6175 {
6176 gcprolist = 0;
6177 byte_stack_list = 0;
6178 #if GC_MARK_STACK
6179 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6180 setjmp_tested_p = longjmps_done = 0;
6181 #endif
6182 #endif
6183 Vgc_elapsed = make_float (0.0);
6184 gcs_done = 0;
6185 }
6186
6187 void
6188 syms_of_alloc (void)
6189 {
6190 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6191 doc: /* *Number of bytes of consing between garbage collections.
6192 Garbage collection can happen automatically once this many bytes have been
6193 allocated since the last garbage collection. All data types count.
6194
6195 Garbage collection happens automatically only when `eval' is called.
6196
6197 By binding this temporarily to a large number, you can effectively
6198 prevent garbage collection during a part of the program.
6199 See also `gc-cons-percentage'. */);
6200
6201 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6202 doc: /* *Portion of the heap used for allocation.
6203 Garbage collection can happen automatically once this portion of the heap
6204 has been allocated since the last garbage collection.
6205 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6206 Vgc_cons_percentage = make_float (0.1);
6207
6208 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6209 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6210
6211 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6212 doc: /* Number of cons cells that have been consed so far. */);
6213
6214 DEFVAR_INT ("floats-consed", floats_consed,
6215 doc: /* Number of floats that have been consed so far. */);
6216
6217 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6218 doc: /* Number of vector cells that have been consed so far. */);
6219
6220 DEFVAR_INT ("symbols-consed", symbols_consed,
6221 doc: /* Number of symbols that have been consed so far. */);
6222
6223 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6224 doc: /* Number of string characters that have been consed so far. */);
6225
6226 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6227 doc: /* Number of miscellaneous objects that have been consed so far. */);
6228
6229 DEFVAR_INT ("intervals-consed", intervals_consed,
6230 doc: /* Number of intervals that have been consed so far. */);
6231
6232 DEFVAR_INT ("strings-consed", strings_consed,
6233 doc: /* Number of strings that have been consed so far. */);
6234
6235 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6236 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6237 This means that certain objects should be allocated in shared (pure) space.
6238 It can also be set to a hash-table, in which case this table is used to
6239 do hash-consing of the objects allocated to pure space. */);
6240
6241 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6242 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6243 garbage_collection_messages = 0;
6244
6245 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6246 doc: /* Hook run after garbage collection has finished. */);
6247 Vpost_gc_hook = Qnil;
6248 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6249 staticpro (&Qpost_gc_hook);
6250
6251 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6252 doc: /* Precomputed `signal' argument for memory-full error. */);
6253 /* We build this in advance because if we wait until we need it, we might
6254 not be able to allocate the memory to hold it. */
6255 Vmemory_signal_data
6256 = pure_cons (Qerror,
6257 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6258
6259 DEFVAR_LISP ("memory-full", Vmemory_full,
6260 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6261 Vmemory_full = Qnil;
6262
6263 staticpro (&Qgc_cons_threshold);
6264 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6265
6266 staticpro (&Qchar_table_extra_slots);
6267 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6268
6269 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6270 doc: /* Accumulated time elapsed in garbage collections.
6271 The time is in seconds as a floating point value. */);
6272 DEFVAR_INT ("gcs-done", gcs_done,
6273 doc: /* Accumulated number of garbage collections done. */);
6274
6275 defsubr (&Scons);
6276 defsubr (&Slist);
6277 defsubr (&Svector);
6278 defsubr (&Smake_byte_code);
6279 defsubr (&Smake_list);
6280 defsubr (&Smake_vector);
6281 defsubr (&Smake_string);
6282 defsubr (&Smake_bool_vector);
6283 defsubr (&Smake_symbol);
6284 defsubr (&Smake_marker);
6285 defsubr (&Spurecopy);
6286 defsubr (&Sgarbage_collect);
6287 defsubr (&Smemory_limit);
6288 defsubr (&Smemory_use_counts);
6289
6290 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6291 defsubr (&Sgc_status);
6292 #endif
6293 }