* buffer.h (FETCH_MULTIBYTE_CHAR): Define as inline.
[bpt/emacs.git] / src / dispnew.c
1 /* Updating of data structures for redisplay.
2
3 Copyright (C) 1985-1988, 1993-1995, 1997-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <signal.h>
22 #include <stdio.h>
23 #include <ctype.h>
24 #include <setjmp.h>
25 #include <unistd.h>
26
27 #include "lisp.h"
28 #include "termchar.h"
29 #include "termopts.h"
30 /* cm.h must come after dispextern.h on Windows. */
31 #include "dispextern.h"
32 #include "cm.h"
33 #include "character.h"
34 #include "buffer.h"
35 #include "keyboard.h"
36 #include "frame.h"
37 #include "termhooks.h"
38 #include "window.h"
39 #include "commands.h"
40 #include "disptab.h"
41 #include "indent.h"
42 #include "intervals.h"
43 #include "blockinput.h"
44 #include "process.h"
45
46 #include "syssignal.h"
47
48 #ifdef HAVE_X_WINDOWS
49 #include "xterm.h"
50 #endif /* HAVE_X_WINDOWS */
51
52 #ifdef HAVE_NTGUI
53 #include "w32term.h"
54 #endif /* HAVE_NTGUI */
55
56 #ifdef HAVE_NS
57 #include "nsterm.h"
58 #endif
59
60 /* Include systime.h after xterm.h to avoid double inclusion of time.h. */
61
62 #include "systime.h"
63 #include <errno.h>
64
65 /* Get number of chars of output now in the buffer of a stdio stream.
66 This ought to be built in stdio, but it isn't. Some s- files
67 override this because their stdio internals differ. */
68
69 #ifdef __GNU_LIBRARY__
70
71 /* The s- file might have overridden the definition with one that
72 works for the system's C library. But we are using the GNU C
73 library, so this is the right definition for every system. */
74
75 #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
76 #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
77 #else
78 #undef PENDING_OUTPUT_COUNT
79 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
80 #endif
81 #else /* not __GNU_LIBRARY__ */
82 #if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING
83 #include <stdio_ext.h>
84 #define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE)
85 #endif
86 #ifndef PENDING_OUTPUT_COUNT
87 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
88 #endif
89 #endif /* not __GNU_LIBRARY__ */
90
91 #if defined (HAVE_TERM_H) && defined (GNU_LINUX)
92 #include <term.h> /* for tgetent */
93 #endif
94 \f
95 /* Structure to pass dimensions around. Used for character bounding
96 boxes, glyph matrix dimensions and alike. */
97
98 struct dim
99 {
100 int width;
101 int height;
102 };
103
104 \f
105 /* Function prototypes. */
106
107 static void update_frame_line (struct frame *, int);
108 static int required_matrix_height (struct window *);
109 static int required_matrix_width (struct window *);
110 static void adjust_frame_glyphs (struct frame *);
111 static void change_frame_size_1 (struct frame *, int, int, int, int, int);
112 static void increment_row_positions (struct glyph_row *, ptrdiff_t, ptrdiff_t);
113 static void fill_up_frame_row_with_spaces (struct glyph_row *, int);
114 static void build_frame_matrix_from_window_tree (struct glyph_matrix *,
115 struct window *);
116 static void build_frame_matrix_from_leaf_window (struct glyph_matrix *,
117 struct window *);
118 static void adjust_frame_message_buffer (struct frame *);
119 static void adjust_decode_mode_spec_buffer (struct frame *);
120 static void fill_up_glyph_row_with_spaces (struct glyph_row *);
121 static void clear_window_matrices (struct window *, int);
122 static void fill_up_glyph_row_area_with_spaces (struct glyph_row *, int);
123 static int scrolling_window (struct window *, int);
124 static int update_window_line (struct window *, int, int *);
125 static void mirror_make_current (struct window *, int);
126 #if GLYPH_DEBUG
127 static void check_matrix_pointers (struct glyph_matrix *,
128 struct glyph_matrix *);
129 #endif
130 static void mirror_line_dance (struct window *, int, int, int *, char *);
131 static int update_window_tree (struct window *, int);
132 static int update_window (struct window *, int);
133 static int update_frame_1 (struct frame *, int, int);
134 static int scrolling (struct frame *);
135 static void set_window_cursor_after_update (struct window *);
136 static void adjust_frame_glyphs_for_window_redisplay (struct frame *);
137 static void adjust_frame_glyphs_for_frame_redisplay (struct frame *);
138
139 \f
140 /* Define PERIODIC_PREEMPTION_CHECKING to 1, if micro-second timers
141 are supported, so we can check for input during redisplay at
142 regular intervals. */
143 #ifdef EMACS_HAS_USECS
144 #define PERIODIC_PREEMPTION_CHECKING 1
145 #else
146 #define PERIODIC_PREEMPTION_CHECKING 0
147 #endif
148
149 #if PERIODIC_PREEMPTION_CHECKING
150
151 /* Redisplay preemption timers. */
152
153 static EMACS_TIME preemption_period;
154 static EMACS_TIME preemption_next_check;
155
156 #endif
157
158 /* Nonzero upon entry to redisplay means do not assume anything about
159 current contents of actual terminal frame; clear and redraw it. */
160
161 int frame_garbaged;
162
163 /* Nonzero means last display completed. Zero means it was preempted. */
164
165 int display_completed;
166
167 Lisp_Object Qdisplay_table, Qredisplay_dont_pause;
168
169 \f
170 /* The currently selected frame. In a single-frame version, this
171 variable always equals the_only_frame. */
172
173 Lisp_Object selected_frame;
174
175 /* A frame which is not just a mini-buffer, or 0 if there are no such
176 frames. This is usually the most recent such frame that was
177 selected. In a single-frame version, this variable always holds
178 the address of the_only_frame. */
179
180 struct frame *last_nonminibuf_frame;
181
182 /* 1 means SIGWINCH happened when not safe. */
183
184 static int delayed_size_change;
185
186 /* 1 means glyph initialization has been completed at startup. */
187
188 static int glyphs_initialized_initially_p;
189
190 /* Updated window if != 0. Set by update_window. */
191
192 struct window *updated_window;
193
194 /* Glyph row updated in update_window_line, and area that is updated. */
195
196 struct glyph_row *updated_row;
197 int updated_area;
198
199 /* A glyph for a space. */
200
201 struct glyph space_glyph;
202
203 /* Counts of allocated structures. These counts serve to diagnose
204 memory leaks and double frees. */
205
206 static int glyph_matrix_count;
207 static int glyph_pool_count;
208
209 /* If non-null, the frame whose frame matrices are manipulated. If
210 null, window matrices are worked on. */
211
212 static struct frame *frame_matrix_frame;
213
214 /* Non-zero means that fonts have been loaded since the last glyph
215 matrix adjustments. Redisplay must stop, and glyph matrices must
216 be adjusted when this flag becomes non-zero during display. The
217 reason fonts can be loaded so late is that fonts of fontsets are
218 loaded on demand. Another reason is that a line contains many
219 characters displayed by zero width or very narrow glyphs of
220 variable-width fonts. */
221
222 int fonts_changed_p;
223
224 /* Convert vpos and hpos from frame to window and vice versa.
225 This may only be used for terminal frames. */
226
227 #if GLYPH_DEBUG
228
229 static int window_to_frame_vpos (struct window *, int);
230 static int window_to_frame_hpos (struct window *, int);
231 #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
232 #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
233
234 /* One element of the ring buffer containing redisplay history
235 information. */
236
237 struct redisplay_history
238 {
239 char trace[512 + 100];
240 };
241
242 /* The size of the history buffer. */
243
244 #define REDISPLAY_HISTORY_SIZE 30
245
246 /* The redisplay history buffer. */
247
248 static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE];
249
250 /* Next free entry in redisplay_history. */
251
252 static int history_idx;
253
254 /* A tick that's incremented each time something is added to the
255 history. */
256
257 static uprintmax_t history_tick;
258
259 static void add_frame_display_history (struct frame *, int);
260 \f
261 /* Add to the redisplay history how window W has been displayed.
262 MSG is a trace containing the information how W's glyph matrix
263 has been constructed. PAUSED_P non-zero means that the update
264 has been interrupted for pending input. */
265
266 static void
267 add_window_display_history (struct window *w, const char *msg, int paused_p)
268 {
269 char *buf;
270
271 if (history_idx >= REDISPLAY_HISTORY_SIZE)
272 history_idx = 0;
273 buf = redisplay_history[history_idx].trace;
274 ++history_idx;
275
276 snprintf (buf, sizeof redisplay_history[0].trace,
277 "%"pMu": window %p (`%s')%s\n%s",
278 history_tick++,
279 w,
280 ((BUFFERP (w->buffer)
281 && STRINGP (BVAR (XBUFFER (w->buffer), name)))
282 ? SSDATA (BVAR (XBUFFER (w->buffer), name))
283 : "???"),
284 paused_p ? " ***paused***" : "",
285 msg);
286 }
287
288
289 /* Add to the redisplay history that frame F has been displayed.
290 PAUSED_P non-zero means that the update has been interrupted for
291 pending input. */
292
293 static void
294 add_frame_display_history (struct frame *f, int paused_p)
295 {
296 char *buf;
297
298 if (history_idx >= REDISPLAY_HISTORY_SIZE)
299 history_idx = 0;
300 buf = redisplay_history[history_idx].trace;
301 ++history_idx;
302
303 sprintf (buf, "%"pMu": update frame %p%s",
304 history_tick++,
305 f, paused_p ? " ***paused***" : "");
306 }
307
308
309 DEFUN ("dump-redisplay-history", Fdump_redisplay_history,
310 Sdump_redisplay_history, 0, 0, "",
311 doc: /* Dump redisplay history to stderr. */)
312 (void)
313 {
314 int i;
315
316 for (i = history_idx - 1; i != history_idx; --i)
317 {
318 if (i < 0)
319 i = REDISPLAY_HISTORY_SIZE - 1;
320 fprintf (stderr, "%s\n", redisplay_history[i].trace);
321 }
322
323 return Qnil;
324 }
325
326
327 #else /* GLYPH_DEBUG == 0 */
328
329 #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + WINDOW_TOP_EDGE_LINE (W))
330 #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + WINDOW_LEFT_EDGE_COL (W))
331
332 #endif /* GLYPH_DEBUG == 0 */
333
334
335 #if (defined PROFILING \
336 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__) \
337 && !HAVE___EXECUTABLE_START)
338 /* This function comes first in the Emacs executable and is used only
339 to estimate the text start for profiling. */
340 void
341 __executable_start (void)
342 {
343 abort ();
344 }
345 #endif
346 \f
347 /***********************************************************************
348 Glyph Matrices
349 ***********************************************************************/
350
351 /* Allocate and return a glyph_matrix structure. POOL is the glyph
352 pool from which memory for the matrix should be allocated, or null
353 for window-based redisplay where no glyph pools are used. The
354 member `pool' of the glyph matrix structure returned is set to
355 POOL, the structure is otherwise zeroed. */
356
357 static struct glyph_matrix *
358 new_glyph_matrix (struct glyph_pool *pool)
359 {
360 struct glyph_matrix *result;
361
362 /* Allocate and clear. */
363 result = (struct glyph_matrix *) xmalloc (sizeof *result);
364 memset (result, 0, sizeof *result);
365
366 /* Increment number of allocated matrices. This count is used
367 to detect memory leaks. */
368 ++glyph_matrix_count;
369
370 /* Set pool and return. */
371 result->pool = pool;
372 return result;
373 }
374
375
376 /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
377
378 The global counter glyph_matrix_count is decremented when a matrix
379 is freed. If the count gets negative, more structures were freed
380 than allocated, i.e. one matrix was freed more than once or a bogus
381 pointer was passed to this function.
382
383 If MATRIX->pool is null, this means that the matrix manages its own
384 glyph memory---this is done for matrices on X frames. Freeing the
385 matrix also frees the glyph memory in this case. */
386
387 static void
388 free_glyph_matrix (struct glyph_matrix *matrix)
389 {
390 if (matrix)
391 {
392 int i;
393
394 /* Detect the case that more matrices are freed than were
395 allocated. */
396 if (--glyph_matrix_count < 0)
397 abort ();
398
399 /* Free glyph memory if MATRIX owns it. */
400 if (matrix->pool == NULL)
401 for (i = 0; i < matrix->rows_allocated; ++i)
402 xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
403
404 /* Free row structures and the matrix itself. */
405 xfree (matrix->rows);
406 xfree (matrix);
407 }
408 }
409
410
411 /* Return the number of glyphs to reserve for a marginal area of
412 window W. TOTAL_GLYPHS is the number of glyphs in a complete
413 display line of window W. MARGIN gives the width of the marginal
414 area in canonical character units. MARGIN should be an integer
415 or a float. */
416
417 static int
418 margin_glyphs_to_reserve (struct window *w, int total_glyphs, Lisp_Object margin)
419 {
420 int n;
421
422 if (NUMBERP (margin))
423 {
424 int width = XFASTINT (w->total_cols);
425 double d = max (0, XFLOATINT (margin));
426 d = min (width / 2 - 1, d);
427 n = (int) ((double) total_glyphs / width * d);
428 }
429 else
430 n = 0;
431
432 return n;
433 }
434
435 #if XASSERTS
436 /* Return non-zero if ROW's hash value is correct, zero if not. */
437 int
438 verify_row_hash (struct glyph_row *row)
439 {
440 return row->hash == row_hash (row);
441 }
442 #endif
443
444 /* Adjust glyph matrix MATRIX on window W or on a frame to changed
445 window sizes.
446
447 W is null if the function is called for a frame glyph matrix.
448 Otherwise it is the window MATRIX is a member of. X and Y are the
449 indices of the first column and row of MATRIX within the frame
450 matrix, if such a matrix exists. They are zero for purely
451 window-based redisplay. DIM is the needed size of the matrix.
452
453 In window-based redisplay, where no frame matrices exist, glyph
454 matrices manage their own glyph storage. Otherwise, they allocate
455 storage from a common frame glyph pool which can be found in
456 MATRIX->pool.
457
458 The reason for this memory management strategy is to avoid complete
459 frame redraws if possible. When we allocate from a common pool, a
460 change of the location or size of a sub-matrix within the pool
461 requires a complete redisplay of the frame because we cannot easily
462 make sure that the current matrices of all windows still agree with
463 what is displayed on the screen. While this is usually fast, it
464 leads to screen flickering. */
465
466 static void
467 adjust_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int x, int y, struct dim dim)
468 {
469 int i;
470 int new_rows;
471 int marginal_areas_changed_p = 0;
472 int header_line_changed_p = 0;
473 int header_line_p = 0;
474 int left = -1, right = -1;
475 int window_width = -1, window_height = -1;
476
477 /* See if W had a header line that has disappeared now, or vice versa.
478 Get W's size. */
479 if (w)
480 {
481 window_box (w, -1, 0, 0, &window_width, &window_height);
482
483 header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
484 header_line_changed_p = header_line_p != matrix->header_line_p;
485 }
486 matrix->header_line_p = header_line_p;
487
488 /* If POOL is null, MATRIX is a window matrix for window-based redisplay.
489 Do nothing if MATRIX' size, position, vscroll, and marginal areas
490 haven't changed. This optimization is important because preserving
491 the matrix means preventing redisplay. */
492 if (matrix->pool == NULL)
493 {
494 left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols);
495 right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols);
496 xassert (left >= 0 && right >= 0);
497 marginal_areas_changed_p = (left != matrix->left_margin_glyphs
498 || right != matrix->right_margin_glyphs);
499
500 if (!marginal_areas_changed_p
501 && !fonts_changed_p
502 && !header_line_changed_p
503 && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
504 && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
505 && matrix->window_height == window_height
506 && matrix->window_vscroll == w->vscroll
507 && matrix->window_width == window_width)
508 return;
509 }
510
511 /* Enlarge MATRIX->rows if necessary. New rows are cleared. */
512 if (matrix->rows_allocated < dim.height)
513 {
514 int old_alloc = matrix->rows_allocated;
515 new_rows = dim.height - matrix->rows_allocated;
516 matrix->rows = xpalloc (matrix->rows, &matrix->rows_allocated,
517 new_rows, INT_MAX, sizeof *matrix->rows);
518 memset (matrix->rows + old_alloc, 0,
519 (matrix->rows_allocated - old_alloc) * sizeof *matrix->rows);
520 }
521 else
522 new_rows = 0;
523
524 /* If POOL is not null, MATRIX is a frame matrix or a window matrix
525 on a frame not using window-based redisplay. Set up pointers for
526 each row into the glyph pool. */
527 if (matrix->pool)
528 {
529 xassert (matrix->pool->glyphs);
530
531 if (w)
532 {
533 left = margin_glyphs_to_reserve (w, dim.width,
534 w->left_margin_cols);
535 right = margin_glyphs_to_reserve (w, dim.width,
536 w->right_margin_cols);
537 }
538 else
539 left = right = 0;
540
541 for (i = 0; i < dim.height; ++i)
542 {
543 struct glyph_row *row = &matrix->rows[i];
544
545 row->glyphs[LEFT_MARGIN_AREA]
546 = (matrix->pool->glyphs
547 + (y + i) * matrix->pool->ncolumns
548 + x);
549
550 if (w == NULL
551 || row == matrix->rows + dim.height - 1
552 || (row == matrix->rows && matrix->header_line_p))
553 {
554 row->glyphs[TEXT_AREA]
555 = row->glyphs[LEFT_MARGIN_AREA];
556 row->glyphs[RIGHT_MARGIN_AREA]
557 = row->glyphs[TEXT_AREA] + dim.width;
558 row->glyphs[LAST_AREA]
559 = row->glyphs[RIGHT_MARGIN_AREA];
560 }
561 else
562 {
563 row->glyphs[TEXT_AREA]
564 = row->glyphs[LEFT_MARGIN_AREA] + left;
565 row->glyphs[RIGHT_MARGIN_AREA]
566 = row->glyphs[TEXT_AREA] + dim.width - left - right;
567 row->glyphs[LAST_AREA]
568 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
569 }
570 }
571
572 matrix->left_margin_glyphs = left;
573 matrix->right_margin_glyphs = right;
574 }
575 else
576 {
577 /* If MATRIX->pool is null, MATRIX is responsible for managing
578 its own memory. It is a window matrix for window-based redisplay.
579 Allocate glyph memory from the heap. */
580 if (dim.width > matrix->matrix_w
581 || new_rows
582 || header_line_changed_p
583 || marginal_areas_changed_p)
584 {
585 struct glyph_row *row = matrix->rows;
586 struct glyph_row *end = row + matrix->rows_allocated;
587
588 while (row < end)
589 {
590 row->glyphs[LEFT_MARGIN_AREA]
591 = xnrealloc (row->glyphs[LEFT_MARGIN_AREA],
592 dim.width, sizeof (struct glyph));
593
594 /* The mode line never has marginal areas. */
595 if (row == matrix->rows + dim.height - 1
596 || (row == matrix->rows && matrix->header_line_p))
597 {
598 row->glyphs[TEXT_AREA]
599 = row->glyphs[LEFT_MARGIN_AREA];
600 row->glyphs[RIGHT_MARGIN_AREA]
601 = row->glyphs[TEXT_AREA] + dim.width;
602 row->glyphs[LAST_AREA]
603 = row->glyphs[RIGHT_MARGIN_AREA];
604 }
605 else
606 {
607 row->glyphs[TEXT_AREA]
608 = row->glyphs[LEFT_MARGIN_AREA] + left;
609 row->glyphs[RIGHT_MARGIN_AREA]
610 = row->glyphs[TEXT_AREA] + dim.width - left - right;
611 row->glyphs[LAST_AREA]
612 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
613 }
614 ++row;
615 }
616 }
617
618 xassert (left >= 0 && right >= 0);
619 matrix->left_margin_glyphs = left;
620 matrix->right_margin_glyphs = right;
621 }
622
623 /* Number of rows to be used by MATRIX. */
624 matrix->nrows = dim.height;
625 xassert (matrix->nrows >= 0);
626
627 if (w)
628 {
629 if (matrix == w->current_matrix)
630 {
631 /* Mark rows in a current matrix of a window as not having
632 valid contents. It's important to not do this for
633 desired matrices. When Emacs starts, it may already be
634 building desired matrices when this function runs. */
635 if (window_width < 0)
636 window_width = window_box_width (w, -1);
637
638 /* Optimize the case that only the height has changed (C-x 2,
639 upper window). Invalidate all rows that are no longer part
640 of the window. */
641 if (!marginal_areas_changed_p
642 && !header_line_changed_p
643 && new_rows == 0
644 && dim.width == matrix->matrix_w
645 && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
646 && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
647 && matrix->window_width == window_width)
648 {
649 /* Find the last row in the window. */
650 for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i)
651 if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height)
652 {
653 ++i;
654 break;
655 }
656
657 /* Window end is invalid, if inside of the rows that
658 are invalidated below. */
659 if (INTEGERP (w->window_end_vpos)
660 && XFASTINT (w->window_end_vpos) >= i)
661 w->window_end_valid = Qnil;
662
663 while (i < matrix->nrows)
664 matrix->rows[i++].enabled_p = 0;
665 }
666 else
667 {
668 for (i = 0; i < matrix->nrows; ++i)
669 matrix->rows[i].enabled_p = 0;
670 }
671 }
672 else if (matrix == w->desired_matrix)
673 {
674 /* Rows in desired matrices always have to be cleared;
675 redisplay expects this is the case when it runs, so it
676 had better be the case when we adjust matrices between
677 redisplays. */
678 for (i = 0; i < matrix->nrows; ++i)
679 matrix->rows[i].enabled_p = 0;
680 }
681 }
682
683
684 /* Remember last values to be able to optimize frame redraws. */
685 matrix->matrix_x = x;
686 matrix->matrix_y = y;
687 matrix->matrix_w = dim.width;
688 matrix->matrix_h = dim.height;
689
690 /* Record the top y location and height of W at the time the matrix
691 was last adjusted. This is used to optimize redisplay above. */
692 if (w)
693 {
694 matrix->window_left_col = WINDOW_LEFT_EDGE_COL (w);
695 matrix->window_top_line = WINDOW_TOP_EDGE_LINE (w);
696 matrix->window_height = window_height;
697 matrix->window_width = window_width;
698 matrix->window_vscroll = w->vscroll;
699 }
700 }
701
702
703 /* Reverse the contents of rows in MATRIX between START and END. The
704 contents of the row at END - 1 end up at START, END - 2 at START +
705 1 etc. This is part of the implementation of rotate_matrix (see
706 below). */
707
708 static void
709 reverse_rows (struct glyph_matrix *matrix, int start, int end)
710 {
711 int i, j;
712
713 for (i = start, j = end - 1; i < j; ++i, --j)
714 {
715 /* Non-ISO HP/UX compiler doesn't like auto struct
716 initialization. */
717 struct glyph_row temp;
718 temp = matrix->rows[i];
719 matrix->rows[i] = matrix->rows[j];
720 matrix->rows[j] = temp;
721 }
722 }
723
724
725 /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
726 1 by BY positions. BY < 0 means rotate left, i.e. towards lower
727 indices. (Note: this does not copy glyphs, only glyph pointers in
728 row structures are moved around).
729
730 The algorithm used for rotating the vector was, I believe, first
731 described by Kernighan. See the vector R as consisting of two
732 sub-vectors AB, where A has length BY for BY >= 0. The result
733 after rotating is then BA. Reverse both sub-vectors to get ArBr
734 and reverse the result to get (ArBr)r which is BA. Similar for
735 rotating right. */
736
737 void
738 rotate_matrix (struct glyph_matrix *matrix, int first, int last, int by)
739 {
740 if (by < 0)
741 {
742 /* Up (rotate left, i.e. towards lower indices). */
743 by = -by;
744 reverse_rows (matrix, first, first + by);
745 reverse_rows (matrix, first + by, last);
746 reverse_rows (matrix, first, last);
747 }
748 else if (by > 0)
749 {
750 /* Down (rotate right, i.e. towards higher indices). */
751 reverse_rows (matrix, last - by, last);
752 reverse_rows (matrix, first, last - by);
753 reverse_rows (matrix, first, last);
754 }
755 }
756
757
758 /* Increment buffer positions in glyph rows of MATRIX. Do it for rows
759 with indices START <= index < END. Increment positions by DELTA/
760 DELTA_BYTES. */
761
762 void
763 increment_matrix_positions (struct glyph_matrix *matrix, int start, int end,
764 ptrdiff_t delta, ptrdiff_t delta_bytes)
765 {
766 /* Check that START and END are reasonable values. */
767 xassert (start >= 0 && start <= matrix->nrows);
768 xassert (end >= 0 && end <= matrix->nrows);
769 xassert (start <= end);
770
771 for (; start < end; ++start)
772 increment_row_positions (matrix->rows + start, delta, delta_bytes);
773 }
774
775
776 /* Enable a range of rows in glyph matrix MATRIX. START and END are
777 the row indices of the first and last + 1 row to enable. If
778 ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
779
780 void
781 enable_glyph_matrix_rows (struct glyph_matrix *matrix, int start, int end, int enabled_p)
782 {
783 xassert (start <= end);
784 xassert (start >= 0 && start < matrix->nrows);
785 xassert (end >= 0 && end <= matrix->nrows);
786
787 for (; start < end; ++start)
788 matrix->rows[start].enabled_p = enabled_p != 0;
789 }
790
791
792 /* Clear MATRIX.
793
794 This empties all rows in MATRIX by setting the enabled_p flag for
795 all rows of the matrix to zero. The function prepare_desired_row
796 will eventually really clear a row when it sees one with a zero
797 enabled_p flag.
798
799 Resets update hints to defaults value. The only update hint
800 currently present is the flag MATRIX->no_scrolling_p. */
801
802 void
803 clear_glyph_matrix (struct glyph_matrix *matrix)
804 {
805 if (matrix)
806 {
807 enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
808 matrix->no_scrolling_p = 0;
809 }
810 }
811
812
813 /* Shift part of the glyph matrix MATRIX of window W up or down.
814 Increment y-positions in glyph rows between START and END by DY,
815 and recompute their visible height. */
816
817 void
818 shift_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int start, int end, int dy)
819 {
820 int min_y, max_y;
821
822 xassert (start <= end);
823 xassert (start >= 0 && start < matrix->nrows);
824 xassert (end >= 0 && end <= matrix->nrows);
825
826 min_y = WINDOW_HEADER_LINE_HEIGHT (w);
827 max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
828
829 for (; start < end; ++start)
830 {
831 struct glyph_row *row = &matrix->rows[start];
832
833 row->y += dy;
834 row->visible_height = row->height;
835
836 if (row->y < min_y)
837 row->visible_height -= min_y - row->y;
838 if (row->y + row->height > max_y)
839 row->visible_height -= row->y + row->height - max_y;
840 if (row->fringe_bitmap_periodic_p)
841 row->redraw_fringe_bitmaps_p = 1;
842 }
843 }
844
845
846 /* Mark all rows in current matrices of frame F as invalid. Marking
847 invalid is done by setting enabled_p to zero for all rows in a
848 current matrix. */
849
850 void
851 clear_current_matrices (register struct frame *f)
852 {
853 /* Clear frame current matrix, if we have one. */
854 if (f->current_matrix)
855 clear_glyph_matrix (f->current_matrix);
856
857 /* Clear the matrix of the menu bar window, if such a window exists.
858 The menu bar window is currently used to display menus on X when
859 no toolkit support is compiled in. */
860 if (WINDOWP (f->menu_bar_window))
861 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
862
863 /* Clear the matrix of the tool-bar window, if any. */
864 if (WINDOWP (f->tool_bar_window))
865 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
866
867 /* Clear current window matrices. */
868 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
869 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
870 }
871
872
873 /* Clear out all display lines of F for a coming redisplay. */
874
875 void
876 clear_desired_matrices (register struct frame *f)
877 {
878 if (f->desired_matrix)
879 clear_glyph_matrix (f->desired_matrix);
880
881 if (WINDOWP (f->menu_bar_window))
882 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
883
884 if (WINDOWP (f->tool_bar_window))
885 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
886
887 /* Do it for window matrices. */
888 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
889 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
890 }
891
892
893 /* Clear matrices in window tree rooted in W. If DESIRED_P is
894 non-zero clear desired matrices, otherwise clear current matrices. */
895
896 static void
897 clear_window_matrices (struct window *w, int desired_p)
898 {
899 while (w)
900 {
901 if (!NILP (w->hchild))
902 {
903 xassert (WINDOWP (w->hchild));
904 clear_window_matrices (XWINDOW (w->hchild), desired_p);
905 }
906 else if (!NILP (w->vchild))
907 {
908 xassert (WINDOWP (w->vchild));
909 clear_window_matrices (XWINDOW (w->vchild), desired_p);
910 }
911 else
912 {
913 if (desired_p)
914 clear_glyph_matrix (w->desired_matrix);
915 else
916 {
917 clear_glyph_matrix (w->current_matrix);
918 w->window_end_valid = Qnil;
919 }
920 }
921
922 w = NILP (w->next) ? 0 : XWINDOW (w->next);
923 }
924 }
925
926
927 \f
928 /***********************************************************************
929 Glyph Rows
930
931 See dispextern.h for an overall explanation of glyph rows.
932 ***********************************************************************/
933
934 /* Clear glyph row ROW. Do it in a way that makes it robust against
935 changes in the glyph_row structure, i.e. addition or removal of
936 structure members. */
937
938 static struct glyph_row null_row;
939
940 void
941 clear_glyph_row (struct glyph_row *row)
942 {
943 struct glyph *p[1 + LAST_AREA];
944
945 /* Save pointers. */
946 p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
947 p[TEXT_AREA] = row->glyphs[TEXT_AREA];
948 p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
949 p[LAST_AREA] = row->glyphs[LAST_AREA];
950
951 /* Clear. */
952 *row = null_row;
953
954 /* Restore pointers. */
955 row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
956 row->glyphs[TEXT_AREA] = p[TEXT_AREA];
957 row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
958 row->glyphs[LAST_AREA] = p[LAST_AREA];
959
960 #if 0 /* At some point, some bit-fields of struct glyph were not set,
961 which made glyphs unequal when compared with GLYPH_EQUAL_P.
962 Redisplay outputs such glyphs, and flickering effects were
963 the result. This also depended on the contents of memory
964 returned by xmalloc. If flickering happens again, activate
965 the code below. If the flickering is gone with that, chances
966 are that the flickering has the same reason as here. */
967 memset (p[0], 0, (char *) p[LAST_AREA] - (char *) p[0]);
968 #endif
969 }
970
971
972 /* Make ROW an empty, enabled row of canonical character height,
973 in window W starting at y-position Y. */
974
975 void
976 blank_row (struct window *w, struct glyph_row *row, int y)
977 {
978 int min_y, max_y;
979
980 min_y = WINDOW_HEADER_LINE_HEIGHT (w);
981 max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
982
983 clear_glyph_row (row);
984 row->y = y;
985 row->ascent = row->phys_ascent = 0;
986 row->height = row->phys_height = FRAME_LINE_HEIGHT (XFRAME (w->frame));
987 row->visible_height = row->height;
988
989 if (row->y < min_y)
990 row->visible_height -= min_y - row->y;
991 if (row->y + row->height > max_y)
992 row->visible_height -= row->y + row->height - max_y;
993
994 row->enabled_p = 1;
995 }
996
997
998 /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
999 are the amounts by which to change positions. Note that the first
1000 glyph of the text area of a row can have a buffer position even if
1001 the used count of the text area is zero. Such rows display line
1002 ends. */
1003
1004 static void
1005 increment_row_positions (struct glyph_row *row,
1006 ptrdiff_t delta, ptrdiff_t delta_bytes)
1007 {
1008 int area, i;
1009
1010 /* Increment start and end positions. */
1011 MATRIX_ROW_START_CHARPOS (row) += delta;
1012 MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
1013 MATRIX_ROW_END_CHARPOS (row) += delta;
1014 MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
1015 CHARPOS (row->start.pos) += delta;
1016 BYTEPOS (row->start.pos) += delta_bytes;
1017 CHARPOS (row->end.pos) += delta;
1018 BYTEPOS (row->end.pos) += delta_bytes;
1019
1020 if (!row->enabled_p)
1021 return;
1022
1023 /* Increment positions in glyphs. */
1024 for (area = 0; area < LAST_AREA; ++area)
1025 for (i = 0; i < row->used[area]; ++i)
1026 if (BUFFERP (row->glyphs[area][i].object)
1027 && row->glyphs[area][i].charpos > 0)
1028 row->glyphs[area][i].charpos += delta;
1029
1030 /* Capture the case of rows displaying a line end. */
1031 if (row->used[TEXT_AREA] == 0
1032 && MATRIX_ROW_DISPLAYS_TEXT_P (row))
1033 row->glyphs[TEXT_AREA]->charpos += delta;
1034 }
1035
1036
1037 #if 0
1038 /* Swap glyphs between two glyph rows A and B. This exchanges glyph
1039 contents, i.e. glyph structure contents are exchanged between A and
1040 B without changing glyph pointers in A and B. */
1041
1042 static void
1043 swap_glyphs_in_rows (struct glyph_row *a, struct glyph_row *b)
1044 {
1045 int area;
1046
1047 for (area = 0; area < LAST_AREA; ++area)
1048 {
1049 /* Number of glyphs to swap. */
1050 int max_used = max (a->used[area], b->used[area]);
1051
1052 /* Start of glyphs in area of row A. */
1053 struct glyph *glyph_a = a->glyphs[area];
1054
1055 /* End + 1 of glyphs in area of row A. */
1056 struct glyph *glyph_a_end = a->glyphs[max_used];
1057
1058 /* Start of glyphs in area of row B. */
1059 struct glyph *glyph_b = b->glyphs[area];
1060
1061 while (glyph_a < glyph_a_end)
1062 {
1063 /* Non-ISO HP/UX compiler doesn't like auto struct
1064 initialization. */
1065 struct glyph temp;
1066 temp = *glyph_a;
1067 *glyph_a = *glyph_b;
1068 *glyph_b = temp;
1069 ++glyph_a;
1070 ++glyph_b;
1071 }
1072 }
1073 }
1074
1075 #endif /* 0 */
1076
1077 /* Exchange pointers to glyph memory between glyph rows A and B. Also
1078 exchange the used[] array and the hash values of the rows, because
1079 these should all go together for the row's hash value to be
1080 correct. */
1081
1082 static inline void
1083 swap_glyph_pointers (struct glyph_row *a, struct glyph_row *b)
1084 {
1085 int i;
1086 unsigned hash_tem = a->hash;
1087
1088 for (i = 0; i < LAST_AREA + 1; ++i)
1089 {
1090 struct glyph *temp = a->glyphs[i];
1091
1092 a->glyphs[i] = b->glyphs[i];
1093 b->glyphs[i] = temp;
1094 if (i < LAST_AREA)
1095 {
1096 short used_tem = a->used[i];
1097
1098 a->used[i] = b->used[i];
1099 b->used[i] = used_tem;
1100 }
1101 }
1102 a->hash = b->hash;
1103 b->hash = hash_tem;
1104 }
1105
1106
1107 /* Copy glyph row structure FROM to glyph row structure TO, except
1108 that glyph pointers, the `used' counts, and the hash values in the
1109 structures are left unchanged. */
1110
1111 static inline void
1112 copy_row_except_pointers (struct glyph_row *to, struct glyph_row *from)
1113 {
1114 struct glyph *pointers[1 + LAST_AREA];
1115 short used[LAST_AREA];
1116 unsigned hashval;
1117
1118 /* Save glyph pointers of TO. */
1119 memcpy (pointers, to->glyphs, sizeof to->glyphs);
1120 memcpy (used, to->used, sizeof to->used);
1121 hashval = to->hash;
1122
1123 /* Do a structure assignment. */
1124 *to = *from;
1125
1126 /* Restore original pointers of TO. */
1127 memcpy (to->glyphs, pointers, sizeof to->glyphs);
1128 memcpy (to->used, used, sizeof to->used);
1129 to->hash = hashval;
1130 }
1131
1132
1133 /* Assign glyph row FROM to glyph row TO. This works like a structure
1134 assignment TO = FROM, except that glyph pointers are not copied but
1135 exchanged between TO and FROM. Pointers must be exchanged to avoid
1136 a memory leak. */
1137
1138 static inline void
1139 assign_row (struct glyph_row *to, struct glyph_row *from)
1140 {
1141 swap_glyph_pointers (to, from);
1142 copy_row_except_pointers (to, from);
1143 }
1144
1145
1146 /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
1147 a row in a window matrix, is a slice of the glyph memory of the
1148 glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
1149 is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
1150 memory of FRAME_ROW. */
1151
1152 #if GLYPH_DEBUG
1153
1154 static int
1155 glyph_row_slice_p (struct glyph_row *window_row, struct glyph_row *frame_row)
1156 {
1157 struct glyph *window_glyph_start = window_row->glyphs[0];
1158 struct glyph *frame_glyph_start = frame_row->glyphs[0];
1159 struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
1160
1161 return (frame_glyph_start <= window_glyph_start
1162 && window_glyph_start < frame_glyph_end);
1163 }
1164
1165 #endif /* GLYPH_DEBUG */
1166
1167 #if 0
1168
1169 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
1170 of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
1171 in WINDOW_MATRIX is found satisfying the condition. */
1172
1173 static struct glyph_row *
1174 find_glyph_row_slice (struct glyph_matrix *window_matrix,
1175 struct glyph_matrix *frame_matrix, int row)
1176 {
1177 int i;
1178
1179 xassert (row >= 0 && row < frame_matrix->nrows);
1180
1181 for (i = 0; i < window_matrix->nrows; ++i)
1182 if (glyph_row_slice_p (window_matrix->rows + i,
1183 frame_matrix->rows + row))
1184 break;
1185
1186 return i < window_matrix->nrows ? window_matrix->rows + i : 0;
1187 }
1188
1189 #endif /* 0 */
1190
1191 /* Prepare ROW for display. Desired rows are cleared lazily,
1192 i.e. they are only marked as to be cleared by setting their
1193 enabled_p flag to zero. When a row is to be displayed, a prior
1194 call to this function really clears it. */
1195
1196 void
1197 prepare_desired_row (struct glyph_row *row)
1198 {
1199 if (!row->enabled_p)
1200 {
1201 int rp = row->reversed_p;
1202
1203 clear_glyph_row (row);
1204 row->enabled_p = 1;
1205 row->reversed_p = rp;
1206 }
1207 }
1208
1209
1210 /* Return a hash code for glyph row ROW. */
1211
1212 static int
1213 line_hash_code (struct glyph_row *row)
1214 {
1215 int hash = 0;
1216
1217 if (row->enabled_p)
1218 {
1219 struct glyph *glyph = row->glyphs[TEXT_AREA];
1220 struct glyph *end = glyph + row->used[TEXT_AREA];
1221
1222 while (glyph < end)
1223 {
1224 int c = glyph->u.ch;
1225 int face_id = glyph->face_id;
1226 if (FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
1227 c -= SPACEGLYPH;
1228 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c;
1229 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id;
1230 ++glyph;
1231 }
1232
1233 if (hash == 0)
1234 hash = 1;
1235 }
1236
1237 return hash;
1238 }
1239
1240
1241 /* Return the cost of drawing line VPOS in MATRIX. The cost equals
1242 the number of characters in the line. If must_write_spaces is
1243 zero, leading and trailing spaces are ignored. */
1244
1245 static int
1246 line_draw_cost (struct glyph_matrix *matrix, int vpos)
1247 {
1248 struct glyph_row *row = matrix->rows + vpos;
1249 struct glyph *beg = row->glyphs[TEXT_AREA];
1250 struct glyph *end = beg + row->used[TEXT_AREA];
1251 int len;
1252 Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
1253 ptrdiff_t glyph_table_len = GLYPH_TABLE_LENGTH;
1254
1255 /* Ignore trailing and leading spaces if we can. */
1256 if (!FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
1257 {
1258 /* Skip from the end over trailing spaces. */
1259 while (end > beg && CHAR_GLYPH_SPACE_P (*(end - 1)))
1260 --end;
1261
1262 /* All blank line. */
1263 if (end == beg)
1264 return 0;
1265
1266 /* Skip over leading spaces. */
1267 while (CHAR_GLYPH_SPACE_P (*beg))
1268 ++beg;
1269 }
1270
1271 /* If we don't have a glyph-table, each glyph is one character,
1272 so return the number of glyphs. */
1273 if (glyph_table_base == 0)
1274 len = end - beg;
1275 else
1276 {
1277 /* Otherwise, scan the glyphs and accumulate their total length
1278 in LEN. */
1279 len = 0;
1280 while (beg < end)
1281 {
1282 GLYPH g;
1283
1284 SET_GLYPH_FROM_CHAR_GLYPH (g, *beg);
1285
1286 if (GLYPH_INVALID_P (g)
1287 || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
1288 len += 1;
1289 else
1290 len += GLYPH_LENGTH (glyph_table_base, g);
1291
1292 ++beg;
1293 }
1294 }
1295
1296 return len;
1297 }
1298
1299
1300 /* Test two glyph rows A and B for equality. Value is non-zero if A
1301 and B have equal contents. MOUSE_FACE_P non-zero means compare the
1302 mouse_face_p flags of A and B, too. */
1303
1304 static inline int
1305 row_equal_p (struct glyph_row *a, struct glyph_row *b, int mouse_face_p)
1306 {
1307 xassert (verify_row_hash (a));
1308 xassert (verify_row_hash (b));
1309
1310 if (a == b)
1311 return 1;
1312 else if (a->hash != b->hash)
1313 return 0;
1314 else
1315 {
1316 struct glyph *a_glyph, *b_glyph, *a_end;
1317 int area;
1318
1319 if (mouse_face_p && a->mouse_face_p != b->mouse_face_p)
1320 return 0;
1321
1322 /* Compare glyphs. */
1323 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
1324 {
1325 if (a->used[area] != b->used[area])
1326 return 0;
1327
1328 a_glyph = a->glyphs[area];
1329 a_end = a_glyph + a->used[area];
1330 b_glyph = b->glyphs[area];
1331
1332 while (a_glyph < a_end
1333 && GLYPH_EQUAL_P (a_glyph, b_glyph))
1334 ++a_glyph, ++b_glyph;
1335
1336 if (a_glyph != a_end)
1337 return 0;
1338 }
1339
1340 if (a->fill_line_p != b->fill_line_p
1341 || a->cursor_in_fringe_p != b->cursor_in_fringe_p
1342 || a->left_fringe_bitmap != b->left_fringe_bitmap
1343 || a->left_fringe_face_id != b->left_fringe_face_id
1344 || a->left_fringe_offset != b->left_fringe_offset
1345 || a->right_fringe_bitmap != b->right_fringe_bitmap
1346 || a->right_fringe_face_id != b->right_fringe_face_id
1347 || a->right_fringe_offset != b->right_fringe_offset
1348 || a->fringe_bitmap_periodic_p != b->fringe_bitmap_periodic_p
1349 || a->overlay_arrow_bitmap != b->overlay_arrow_bitmap
1350 || a->exact_window_width_line_p != b->exact_window_width_line_p
1351 || a->overlapped_p != b->overlapped_p
1352 || (MATRIX_ROW_CONTINUATION_LINE_P (a)
1353 != MATRIX_ROW_CONTINUATION_LINE_P (b))
1354 || a->reversed_p != b->reversed_p
1355 /* Different partially visible characters on left margin. */
1356 || a->x != b->x
1357 /* Different height. */
1358 || a->ascent != b->ascent
1359 || a->phys_ascent != b->phys_ascent
1360 || a->phys_height != b->phys_height
1361 || a->visible_height != b->visible_height)
1362 return 0;
1363 }
1364
1365 return 1;
1366 }
1367
1368
1369 \f
1370 /***********************************************************************
1371 Glyph Pool
1372
1373 See dispextern.h for an overall explanation of glyph pools.
1374 ***********************************************************************/
1375
1376 /* Allocate a glyph_pool structure. The structure returned is
1377 initialized with zeros. The global variable glyph_pool_count is
1378 incremented for each pool allocated. */
1379
1380 static struct glyph_pool *
1381 new_glyph_pool (void)
1382 {
1383 struct glyph_pool *result;
1384
1385 /* Allocate a new glyph_pool and clear it. */
1386 result = (struct glyph_pool *) xmalloc (sizeof *result);
1387 memset (result, 0, sizeof *result);
1388
1389 /* For memory leak and double deletion checking. */
1390 ++glyph_pool_count;
1391
1392 return result;
1393 }
1394
1395
1396 /* Free a glyph_pool structure POOL. The function may be called with
1397 a null POOL pointer. The global variable glyph_pool_count is
1398 decremented with every pool structure freed. If this count gets
1399 negative, more structures were freed than allocated, i.e. one
1400 structure must have been freed more than once or a bogus pointer
1401 was passed to free_glyph_pool. */
1402
1403 static void
1404 free_glyph_pool (struct glyph_pool *pool)
1405 {
1406 if (pool)
1407 {
1408 /* More freed than allocated? */
1409 --glyph_pool_count;
1410 xassert (glyph_pool_count >= 0);
1411
1412 xfree (pool->glyphs);
1413 xfree (pool);
1414 }
1415 }
1416
1417
1418 /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
1419 columns we need. This function never shrinks a pool. The only
1420 case in which this would make sense, would be when a frame's size
1421 is changed from a large value to a smaller one. But, if someone
1422 does it once, we can expect that he will do it again.
1423
1424 Value is non-zero if the pool changed in a way which makes
1425 re-adjusting window glyph matrices necessary. */
1426
1427 static int
1428 realloc_glyph_pool (struct glyph_pool *pool, struct dim matrix_dim)
1429 {
1430 ptrdiff_t needed;
1431 int changed_p;
1432
1433 changed_p = (pool->glyphs == 0
1434 || matrix_dim.height != pool->nrows
1435 || matrix_dim.width != pool->ncolumns);
1436
1437 /* Enlarge the glyph pool. */
1438 needed = matrix_dim.width;
1439 if (INT_MULTIPLY_OVERFLOW (needed, matrix_dim.height))
1440 memory_full (SIZE_MAX);
1441 needed *= matrix_dim.height;
1442 if (needed > pool->nglyphs)
1443 {
1444 ptrdiff_t old_nglyphs = pool->nglyphs;
1445 pool->glyphs = xpalloc (pool->glyphs, &pool->nglyphs,
1446 needed - old_nglyphs, -1, sizeof *pool->glyphs);
1447 memset (pool->glyphs + old_nglyphs, 0,
1448 (pool->nglyphs - old_nglyphs) * sizeof *pool->glyphs);
1449 }
1450
1451 /* Remember the number of rows and columns because (a) we use them
1452 to do sanity checks, and (b) the number of columns determines
1453 where rows in the frame matrix start---this must be available to
1454 determine pointers to rows of window sub-matrices. */
1455 pool->nrows = matrix_dim.height;
1456 pool->ncolumns = matrix_dim.width;
1457
1458 return changed_p;
1459 }
1460
1461
1462 \f
1463 /***********************************************************************
1464 Debug Code
1465 ***********************************************************************/
1466
1467 #if GLYPH_DEBUG
1468
1469
1470 /* Flush standard output. This is sometimes useful to call from the debugger.
1471 XXX Maybe this should be changed to flush the current terminal instead of
1472 stdout.
1473 */
1474
1475 void flush_stdout (void) EXTERNALLY_VISIBLE;
1476
1477 void
1478 flush_stdout (void)
1479 {
1480 fflush (stdout);
1481 }
1482
1483
1484 /* Check that no glyph pointers have been lost in MATRIX. If a
1485 pointer has been lost, e.g. by using a structure assignment between
1486 rows, at least one pointer must occur more than once in the rows of
1487 MATRIX. */
1488
1489 void
1490 check_matrix_pointer_lossage (struct glyph_matrix *matrix)
1491 {
1492 int i, j;
1493
1494 for (i = 0; i < matrix->nrows; ++i)
1495 for (j = 0; j < matrix->nrows; ++j)
1496 xassert (i == j
1497 || (matrix->rows[i].glyphs[TEXT_AREA]
1498 != matrix->rows[j].glyphs[TEXT_AREA]));
1499 }
1500
1501
1502 /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
1503
1504 struct glyph_row *
1505 matrix_row (struct glyph_matrix *matrix, int row)
1506 {
1507 xassert (matrix && matrix->rows);
1508 xassert (row >= 0 && row < matrix->nrows);
1509
1510 /* That's really too slow for normal testing because this function
1511 is called almost everywhere. Although---it's still astonishingly
1512 fast, so it is valuable to have for debugging purposes. */
1513 #if 0
1514 check_matrix_pointer_lossage (matrix);
1515 #endif
1516
1517 return matrix->rows + row;
1518 }
1519
1520
1521 #if 0 /* This function makes invalid assumptions when text is
1522 partially invisible. But it might come handy for debugging
1523 nevertheless. */
1524
1525 /* Check invariants that must hold for an up to date current matrix of
1526 window W. */
1527
1528 static void
1529 check_matrix_invariants (struct window *w)
1530 {
1531 struct glyph_matrix *matrix = w->current_matrix;
1532 int yb = window_text_bottom_y (w);
1533 struct glyph_row *row = matrix->rows;
1534 struct glyph_row *last_text_row = NULL;
1535 struct buffer *saved = current_buffer;
1536 struct buffer *buffer = XBUFFER (w->buffer);
1537 int c;
1538
1539 /* This can sometimes happen for a fresh window. */
1540 if (matrix->nrows < 2)
1541 return;
1542
1543 set_buffer_temp (buffer);
1544
1545 /* Note: last row is always reserved for the mode line. */
1546 while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
1547 && MATRIX_ROW_BOTTOM_Y (row) < yb)
1548 {
1549 struct glyph_row *next = row + 1;
1550
1551 if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
1552 last_text_row = row;
1553
1554 /* Check that character and byte positions are in sync. */
1555 xassert (MATRIX_ROW_START_BYTEPOS (row)
1556 == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
1557 xassert (BYTEPOS (row->start.pos)
1558 == CHAR_TO_BYTE (CHARPOS (row->start.pos)));
1559
1560 /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
1561 have such a position temporarily in case of a minibuffer
1562 displaying something like `[Sole completion]' at its end. */
1563 if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
1564 {
1565 xassert (MATRIX_ROW_END_BYTEPOS (row)
1566 == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
1567 xassert (BYTEPOS (row->end.pos)
1568 == CHAR_TO_BYTE (CHARPOS (row->end.pos)));
1569 }
1570
1571 /* Check that end position of `row' is equal to start position
1572 of next row. */
1573 if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
1574 {
1575 xassert (MATRIX_ROW_END_CHARPOS (row)
1576 == MATRIX_ROW_START_CHARPOS (next));
1577 xassert (MATRIX_ROW_END_BYTEPOS (row)
1578 == MATRIX_ROW_START_BYTEPOS (next));
1579 xassert (CHARPOS (row->end.pos) == CHARPOS (next->start.pos));
1580 xassert (BYTEPOS (row->end.pos) == BYTEPOS (next->start.pos));
1581 }
1582 row = next;
1583 }
1584
1585 xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
1586 xassert (w->desired_matrix->rows != NULL);
1587 set_buffer_temp (saved);
1588 }
1589
1590 #endif /* 0 */
1591
1592 #endif /* GLYPH_DEBUG != 0 */
1593
1594
1595 \f
1596 /**********************************************************************
1597 Allocating/ Adjusting Glyph Matrices
1598 **********************************************************************/
1599
1600 /* Allocate glyph matrices over a window tree for a frame-based
1601 redisplay
1602
1603 X and Y are column/row within the frame glyph matrix where
1604 sub-matrices for the window tree rooted at WINDOW must be
1605 allocated. DIM_ONLY_P non-zero means that the caller of this
1606 function is only interested in the result matrix dimension, and
1607 matrix adjustments should not be performed.
1608
1609 The function returns the total width/height of the sub-matrices of
1610 the window tree. If called on a frame root window, the computation
1611 will take the mini-buffer window into account.
1612
1613 *WINDOW_CHANGE_FLAGS is set to a bit mask with bits
1614
1615 NEW_LEAF_MATRIX set if any window in the tree did not have a
1616 glyph matrices yet, and
1617
1618 CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
1619 any window in the tree will be changed or have been changed (see
1620 DIM_ONLY_P)
1621
1622 *WINDOW_CHANGE_FLAGS must be initialized by the caller of this
1623 function.
1624
1625 Windows are arranged into chains of windows on the same level
1626 through the next fields of window structures. Such a level can be
1627 either a sequence of horizontally adjacent windows from left to
1628 right, or a sequence of vertically adjacent windows from top to
1629 bottom. Each window in a horizontal sequence can be either a leaf
1630 window or a vertical sequence; a window in a vertical sequence can
1631 be either a leaf or a horizontal sequence. All windows in a
1632 horizontal sequence have the same height, and all windows in a
1633 vertical sequence have the same width.
1634
1635 This function uses, for historical reasons, a more general
1636 algorithm to determine glyph matrix dimensions that would be
1637 necessary.
1638
1639 The matrix height of a horizontal sequence is determined by the
1640 maximum height of any matrix in the sequence. The matrix width of
1641 a horizontal sequence is computed by adding up matrix widths of
1642 windows in the sequence.
1643
1644 |<------- result width ------->|
1645 +---------+----------+---------+ ---
1646 | | | | |
1647 | | | |
1648 +---------+ | | result height
1649 | +---------+
1650 | | |
1651 +----------+ ---
1652
1653 The matrix width of a vertical sequence is the maximum matrix width
1654 of any window in the sequence. Its height is computed by adding up
1655 matrix heights of windows in the sequence.
1656
1657 |<---- result width -->|
1658 +---------+ ---
1659 | | |
1660 | | |
1661 +---------+--+ |
1662 | | |
1663 | | result height
1664 | |
1665 +------------+---------+ |
1666 | | |
1667 | | |
1668 +------------+---------+ --- */
1669
1670 /* Bit indicating that a new matrix will be allocated or has been
1671 allocated. */
1672
1673 #define NEW_LEAF_MATRIX (1 << 0)
1674
1675 /* Bit indicating that a matrix will or has changed its location or
1676 size. */
1677
1678 #define CHANGED_LEAF_MATRIX (1 << 1)
1679
1680 static struct dim
1681 allocate_matrices_for_frame_redisplay (Lisp_Object window, int x, int y,
1682 int dim_only_p, int *window_change_flags)
1683 {
1684 struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
1685 int x0 = x, y0 = y;
1686 int wmax = 0, hmax = 0;
1687 struct dim total;
1688 struct dim dim;
1689 struct window *w;
1690 int in_horz_combination_p;
1691
1692 /* What combination is WINDOW part of? Compute this once since the
1693 result is the same for all windows in the `next' chain. The
1694 special case of a root window (parent equal to nil) is treated
1695 like a vertical combination because a root window's `next'
1696 points to the mini-buffer window, if any, which is arranged
1697 vertically below other windows. */
1698 in_horz_combination_p
1699 = (!NILP (XWINDOW (window)->parent)
1700 && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
1701
1702 /* For WINDOW and all windows on the same level. */
1703 do
1704 {
1705 w = XWINDOW (window);
1706
1707 /* Get the dimension of the window sub-matrix for W, depending
1708 on whether this is a combination or a leaf window. */
1709 if (!NILP (w->hchild))
1710 dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y,
1711 dim_only_p,
1712 window_change_flags);
1713 else if (!NILP (w->vchild))
1714 dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y,
1715 dim_only_p,
1716 window_change_flags);
1717 else
1718 {
1719 /* If not already done, allocate sub-matrix structures. */
1720 if (w->desired_matrix == NULL)
1721 {
1722 w->desired_matrix = new_glyph_matrix (f->desired_pool);
1723 w->current_matrix = new_glyph_matrix (f->current_pool);
1724 *window_change_flags |= NEW_LEAF_MATRIX;
1725 }
1726
1727 /* Width and height MUST be chosen so that there are no
1728 holes in the frame matrix. */
1729 dim.width = required_matrix_width (w);
1730 dim.height = required_matrix_height (w);
1731
1732 /* Will matrix be re-allocated? */
1733 if (x != w->desired_matrix->matrix_x
1734 || y != w->desired_matrix->matrix_y
1735 || dim.width != w->desired_matrix->matrix_w
1736 || dim.height != w->desired_matrix->matrix_h
1737 || (margin_glyphs_to_reserve (w, dim.width,
1738 w->left_margin_cols)
1739 != w->desired_matrix->left_margin_glyphs)
1740 || (margin_glyphs_to_reserve (w, dim.width,
1741 w->right_margin_cols)
1742 != w->desired_matrix->right_margin_glyphs))
1743 *window_change_flags |= CHANGED_LEAF_MATRIX;
1744
1745 /* Actually change matrices, if allowed. Do not consider
1746 CHANGED_LEAF_MATRIX computed above here because the pool
1747 may have been changed which we don't now here. We trust
1748 that we only will be called with DIM_ONLY_P != 0 when
1749 necessary. */
1750 if (!dim_only_p)
1751 {
1752 adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
1753 adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
1754 }
1755 }
1756
1757 /* If we are part of a horizontal combination, advance x for
1758 windows to the right of W; otherwise advance y for windows
1759 below W. */
1760 if (in_horz_combination_p)
1761 x += dim.width;
1762 else
1763 y += dim.height;
1764
1765 /* Remember maximum glyph matrix dimensions. */
1766 wmax = max (wmax, dim.width);
1767 hmax = max (hmax, dim.height);
1768
1769 /* Next window on same level. */
1770 window = w->next;
1771 }
1772 while (!NILP (window));
1773
1774 /* Set `total' to the total glyph matrix dimension of this window
1775 level. In a vertical combination, the width is the width of the
1776 widest window; the height is the y we finally reached, corrected
1777 by the y we started with. In a horizontal combination, the total
1778 height is the height of the tallest window, and the width is the
1779 x we finally reached, corrected by the x we started with. */
1780 if (in_horz_combination_p)
1781 {
1782 total.width = x - x0;
1783 total.height = hmax;
1784 }
1785 else
1786 {
1787 total.width = wmax;
1788 total.height = y - y0;
1789 }
1790
1791 return total;
1792 }
1793
1794
1795 /* Return the required height of glyph matrices for window W. */
1796
1797 static int
1798 required_matrix_height (struct window *w)
1799 {
1800 #ifdef HAVE_WINDOW_SYSTEM
1801 struct frame *f = XFRAME (w->frame);
1802
1803 if (FRAME_WINDOW_P (f))
1804 {
1805 int ch_height = FRAME_SMALLEST_FONT_HEIGHT (f);
1806 int window_pixel_height = window_box_height (w) + eabs (w->vscroll);
1807 return (((window_pixel_height + ch_height - 1)
1808 / ch_height) * w->nrows_scale_factor
1809 /* One partially visible line at the top and
1810 bottom of the window. */
1811 + 2
1812 /* 2 for header and mode line. */
1813 + 2);
1814 }
1815 #endif /* HAVE_WINDOW_SYSTEM */
1816
1817 return WINDOW_TOTAL_LINES (w);
1818 }
1819
1820
1821 /* Return the required width of glyph matrices for window W. */
1822
1823 static int
1824 required_matrix_width (struct window *w)
1825 {
1826 #ifdef HAVE_WINDOW_SYSTEM
1827 struct frame *f = XFRAME (w->frame);
1828 if (FRAME_WINDOW_P (f))
1829 {
1830 int ch_width = FRAME_SMALLEST_CHAR_WIDTH (f);
1831 int window_pixel_width = WINDOW_TOTAL_WIDTH (w);
1832
1833 /* Compute number of glyphs needed in a glyph row. */
1834 return (((window_pixel_width + ch_width - 1)
1835 / ch_width) * w->ncols_scale_factor
1836 /* 2 partially visible columns in the text area. */
1837 + 2
1838 /* One partially visible column at the right
1839 edge of each marginal area. */
1840 + 1 + 1);
1841 }
1842 #endif /* HAVE_WINDOW_SYSTEM */
1843
1844 return XINT (w->total_cols);
1845 }
1846
1847
1848 /* Allocate window matrices for window-based redisplay. W is the
1849 window whose matrices must be allocated/reallocated. */
1850
1851 static void
1852 allocate_matrices_for_window_redisplay (struct window *w)
1853 {
1854 while (w)
1855 {
1856 if (!NILP (w->vchild))
1857 allocate_matrices_for_window_redisplay (XWINDOW (w->vchild));
1858 else if (!NILP (w->hchild))
1859 allocate_matrices_for_window_redisplay (XWINDOW (w->hchild));
1860 else
1861 {
1862 /* W is a leaf window. */
1863 struct dim dim;
1864
1865 /* If matrices are not yet allocated, allocate them now. */
1866 if (w->desired_matrix == NULL)
1867 {
1868 w->desired_matrix = new_glyph_matrix (NULL);
1869 w->current_matrix = new_glyph_matrix (NULL);
1870 }
1871
1872 dim.width = required_matrix_width (w);
1873 dim.height = required_matrix_height (w);
1874 adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
1875 adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
1876 }
1877
1878 w = NILP (w->next) ? NULL : XWINDOW (w->next);
1879 }
1880 }
1881
1882
1883 /* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
1884 do it for all frames; otherwise do it just for the given frame.
1885 This function must be called when a new frame is created, its size
1886 changes, or its window configuration changes. */
1887
1888 void
1889 adjust_glyphs (struct frame *f)
1890 {
1891 /* Block input so that expose events and other events that access
1892 glyph matrices are not processed while we are changing them. */
1893 BLOCK_INPUT;
1894
1895 if (f)
1896 adjust_frame_glyphs (f);
1897 else
1898 {
1899 Lisp_Object tail, lisp_frame;
1900
1901 FOR_EACH_FRAME (tail, lisp_frame)
1902 adjust_frame_glyphs (XFRAME (lisp_frame));
1903 }
1904
1905 UNBLOCK_INPUT;
1906 }
1907
1908
1909 /* Adjust frame glyphs when Emacs is initialized.
1910
1911 To be called from init_display.
1912
1913 We need a glyph matrix because redraw will happen soon.
1914 Unfortunately, window sizes on selected_frame are not yet set to
1915 meaningful values. I believe we can assume that there are only two
1916 windows on the frame---the mini-buffer and the root window. Frame
1917 height and width seem to be correct so far. So, set the sizes of
1918 windows to estimated values. */
1919
1920 static void
1921 adjust_frame_glyphs_initially (void)
1922 {
1923 struct frame *sf = SELECTED_FRAME ();
1924 struct window *root = XWINDOW (sf->root_window);
1925 struct window *mini = XWINDOW (root->next);
1926 int frame_lines = FRAME_LINES (sf);
1927 int frame_cols = FRAME_COLS (sf);
1928 int top_margin = FRAME_TOP_MARGIN (sf);
1929
1930 /* Do it for the root window. */
1931 XSETFASTINT (root->top_line, top_margin);
1932 XSETFASTINT (root->total_lines, frame_lines - 1 - top_margin);
1933 XSETFASTINT (root->total_cols, frame_cols);
1934
1935 /* Do it for the mini-buffer window. */
1936 XSETFASTINT (mini->top_line, frame_lines - 1);
1937 XSETFASTINT (mini->total_lines, 1);
1938 XSETFASTINT (mini->total_cols, frame_cols);
1939
1940 adjust_frame_glyphs (sf);
1941 glyphs_initialized_initially_p = 1;
1942 }
1943
1944
1945 /* Allocate/reallocate glyph matrices of a single frame F. */
1946
1947 static void
1948 adjust_frame_glyphs (struct frame *f)
1949 {
1950 if (FRAME_WINDOW_P (f))
1951 adjust_frame_glyphs_for_window_redisplay (f);
1952 else
1953 adjust_frame_glyphs_for_frame_redisplay (f);
1954
1955 /* Don't forget the message buffer and the buffer for
1956 decode_mode_spec. */
1957 adjust_frame_message_buffer (f);
1958 adjust_decode_mode_spec_buffer (f);
1959
1960 f->glyphs_initialized_p = 1;
1961 }
1962
1963 /* Return 1 if any window in the tree has nonzero window margins. See
1964 the hack at the end of adjust_frame_glyphs_for_frame_redisplay. */
1965 static int
1966 showing_window_margins_p (struct window *w)
1967 {
1968 while (w)
1969 {
1970 if (!NILP (w->hchild))
1971 {
1972 if (showing_window_margins_p (XWINDOW (w->hchild)))
1973 return 1;
1974 }
1975 else if (!NILP (w->vchild))
1976 {
1977 if (showing_window_margins_p (XWINDOW (w->vchild)))
1978 return 1;
1979 }
1980 else if (!NILP (w->left_margin_cols)
1981 || !NILP (w->right_margin_cols))
1982 return 1;
1983
1984 w = NILP (w->next) ? 0 : XWINDOW (w->next);
1985 }
1986 return 0;
1987 }
1988
1989
1990 /* In the window tree with root W, build current matrices of leaf
1991 windows from the frame's current matrix. */
1992
1993 static void
1994 fake_current_matrices (Lisp_Object window)
1995 {
1996 struct window *w;
1997
1998 for (; !NILP (window); window = w->next)
1999 {
2000 w = XWINDOW (window);
2001
2002 if (!NILP (w->hchild))
2003 fake_current_matrices (w->hchild);
2004 else if (!NILP (w->vchild))
2005 fake_current_matrices (w->vchild);
2006 else
2007 {
2008 int i;
2009 struct frame *f = XFRAME (w->frame);
2010 struct glyph_matrix *m = w->current_matrix;
2011 struct glyph_matrix *fm = f->current_matrix;
2012
2013 xassert (m->matrix_h == WINDOW_TOTAL_LINES (w));
2014 xassert (m->matrix_w == WINDOW_TOTAL_COLS (w));
2015
2016 for (i = 0; i < m->matrix_h; ++i)
2017 {
2018 struct glyph_row *r = m->rows + i;
2019 struct glyph_row *fr = fm->rows + i + WINDOW_TOP_EDGE_LINE (w);
2020
2021 xassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA]
2022 && r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]);
2023
2024 r->enabled_p = fr->enabled_p;
2025 if (r->enabled_p)
2026 {
2027 r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs;
2028 r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs;
2029 r->used[TEXT_AREA] = (m->matrix_w
2030 - r->used[LEFT_MARGIN_AREA]
2031 - r->used[RIGHT_MARGIN_AREA]);
2032 r->mode_line_p = 0;
2033 }
2034 }
2035 }
2036 }
2037 }
2038
2039
2040 /* Save away the contents of frame F's current frame matrix. Value is
2041 a glyph matrix holding the contents of F's current frame matrix. */
2042
2043 static struct glyph_matrix *
2044 save_current_matrix (struct frame *f)
2045 {
2046 int i;
2047 struct glyph_matrix *saved;
2048
2049 saved = (struct glyph_matrix *) xmalloc (sizeof *saved);
2050 memset (saved, 0, sizeof *saved);
2051 saved->nrows = f->current_matrix->nrows;
2052 saved->rows = (struct glyph_row *) xmalloc (saved->nrows
2053 * sizeof *saved->rows);
2054 memset (saved->rows, 0, saved->nrows * sizeof *saved->rows);
2055
2056 for (i = 0; i < saved->nrows; ++i)
2057 {
2058 struct glyph_row *from = f->current_matrix->rows + i;
2059 struct glyph_row *to = saved->rows + i;
2060 ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2061 to->glyphs[TEXT_AREA] = (struct glyph *) xmalloc (nbytes);
2062 memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes);
2063 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2064 }
2065
2066 return saved;
2067 }
2068
2069
2070 /* Restore the contents of frame F's current frame matrix from SAVED,
2071 and free memory associated with SAVED. */
2072
2073 static void
2074 restore_current_matrix (struct frame *f, struct glyph_matrix *saved)
2075 {
2076 int i;
2077
2078 for (i = 0; i < saved->nrows; ++i)
2079 {
2080 struct glyph_row *from = saved->rows + i;
2081 struct glyph_row *to = f->current_matrix->rows + i;
2082 ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2083 memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes);
2084 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2085 xfree (from->glyphs[TEXT_AREA]);
2086 }
2087
2088 xfree (saved->rows);
2089 xfree (saved);
2090 }
2091
2092
2093
2094 /* Allocate/reallocate glyph matrices of a single frame F for
2095 frame-based redisplay. */
2096
2097 static void
2098 adjust_frame_glyphs_for_frame_redisplay (struct frame *f)
2099 {
2100 struct dim matrix_dim;
2101 int pool_changed_p;
2102 int window_change_flags;
2103 int top_window_y;
2104
2105 if (!FRAME_LIVE_P (f))
2106 return;
2107
2108 top_window_y = FRAME_TOP_MARGIN (f);
2109
2110 /* Allocate glyph pool structures if not already done. */
2111 if (f->desired_pool == NULL)
2112 {
2113 f->desired_pool = new_glyph_pool ();
2114 f->current_pool = new_glyph_pool ();
2115 }
2116
2117 /* Allocate frames matrix structures if needed. */
2118 if (f->desired_matrix == NULL)
2119 {
2120 f->desired_matrix = new_glyph_matrix (f->desired_pool);
2121 f->current_matrix = new_glyph_matrix (f->current_pool);
2122 }
2123
2124 /* Compute window glyph matrices. (This takes the mini-buffer
2125 window into account). The result is the size of the frame glyph
2126 matrix needed. The variable window_change_flags is set to a bit
2127 mask indicating whether new matrices will be allocated or
2128 existing matrices change their size or location within the frame
2129 matrix. */
2130 window_change_flags = 0;
2131 matrix_dim
2132 = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2133 0, top_window_y,
2134 1,
2135 &window_change_flags);
2136
2137 /* Add in menu bar lines, if any. */
2138 matrix_dim.height += top_window_y;
2139
2140 /* Enlarge pools as necessary. */
2141 pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
2142 realloc_glyph_pool (f->current_pool, matrix_dim);
2143
2144 /* Set up glyph pointers within window matrices. Do this only if
2145 absolutely necessary since it requires a frame redraw. */
2146 if (pool_changed_p || window_change_flags)
2147 {
2148 /* Do it for window matrices. */
2149 allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2150 0, top_window_y, 0,
2151 &window_change_flags);
2152
2153 /* Size of frame matrices must equal size of frame. Note
2154 that we are called for X frames with window widths NOT equal
2155 to the frame width (from CHANGE_FRAME_SIZE_1). */
2156 xassert (matrix_dim.width == FRAME_COLS (f)
2157 && matrix_dim.height == FRAME_LINES (f));
2158
2159 /* Pointers to glyph memory in glyph rows are exchanged during
2160 the update phase of redisplay, which means in general that a
2161 frame's current matrix consists of pointers into both the
2162 desired and current glyph pool of the frame. Adjusting a
2163 matrix sets the frame matrix up so that pointers are all into
2164 the same pool. If we want to preserve glyph contents of the
2165 current matrix over a call to adjust_glyph_matrix, we must
2166 make a copy of the current glyphs, and restore the current
2167 matrix' contents from that copy. */
2168 if (display_completed
2169 && !FRAME_GARBAGED_P (f)
2170 && matrix_dim.width == f->current_matrix->matrix_w
2171 && matrix_dim.height == f->current_matrix->matrix_h
2172 /* For some reason, the frame glyph matrix gets corrupted if
2173 any of the windows contain margins. I haven't been able
2174 to hunt down the reason, but for the moment this prevents
2175 the problem from manifesting. -- cyd */
2176 && !showing_window_margins_p (XWINDOW (FRAME_ROOT_WINDOW (f))))
2177 {
2178 struct glyph_matrix *copy = save_current_matrix (f);
2179 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2180 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2181 restore_current_matrix (f, copy);
2182 fake_current_matrices (FRAME_ROOT_WINDOW (f));
2183 }
2184 else
2185 {
2186 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2187 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2188 SET_FRAME_GARBAGED (f);
2189 }
2190 }
2191 }
2192
2193
2194 /* Allocate/reallocate glyph matrices of a single frame F for
2195 window-based redisplay. */
2196
2197 static void
2198 adjust_frame_glyphs_for_window_redisplay (struct frame *f)
2199 {
2200 xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
2201
2202 /* Allocate/reallocate window matrices. */
2203 allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)));
2204
2205 #ifdef HAVE_X_WINDOWS
2206 /* Allocate/ reallocate matrices of the dummy window used to display
2207 the menu bar under X when no X toolkit support is available. */
2208 #if ! defined (USE_X_TOOLKIT) && ! defined (USE_GTK)
2209 {
2210 /* Allocate a dummy window if not already done. */
2211 struct window *w;
2212 if (NILP (f->menu_bar_window))
2213 {
2214 f->menu_bar_window = make_window ();
2215 w = XWINDOW (f->menu_bar_window);
2216 XSETFRAME (w->frame, f);
2217 w->pseudo_window_p = 1;
2218 }
2219 else
2220 w = XWINDOW (f->menu_bar_window);
2221
2222 /* Set window dimensions to frame dimensions and allocate or
2223 adjust glyph matrices of W. */
2224 XSETFASTINT (w->top_line, 0);
2225 XSETFASTINT (w->left_col, 0);
2226 XSETFASTINT (w->total_lines, FRAME_MENU_BAR_LINES (f));
2227 XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
2228 allocate_matrices_for_window_redisplay (w);
2229 }
2230 #endif /* not USE_X_TOOLKIT && not USE_GTK */
2231 #endif /* HAVE_X_WINDOWS */
2232
2233 #ifndef USE_GTK
2234 {
2235 /* Allocate/ reallocate matrices of the tool bar window. If we
2236 don't have a tool bar window yet, make one. */
2237 struct window *w;
2238 if (NILP (f->tool_bar_window))
2239 {
2240 f->tool_bar_window = make_window ();
2241 w = XWINDOW (f->tool_bar_window);
2242 XSETFRAME (w->frame, f);
2243 w->pseudo_window_p = 1;
2244 }
2245 else
2246 w = XWINDOW (f->tool_bar_window);
2247
2248 XSETFASTINT (w->top_line, FRAME_MENU_BAR_LINES (f));
2249 XSETFASTINT (w->left_col, 0);
2250 XSETFASTINT (w->total_lines, FRAME_TOOL_BAR_LINES (f));
2251 XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
2252 allocate_matrices_for_window_redisplay (w);
2253 }
2254 #endif
2255 }
2256
2257
2258 /* Adjust/ allocate message buffer of frame F.
2259
2260 Note that the message buffer is never freed. Since I could not
2261 find a free in 19.34, I assume that freeing it would be
2262 problematic in some way and don't do it either.
2263
2264 (Implementation note: It should be checked if we can free it
2265 eventually without causing trouble). */
2266
2267 static void
2268 adjust_frame_message_buffer (struct frame *f)
2269 {
2270 ptrdiff_t size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
2271
2272 if (FRAME_MESSAGE_BUF (f))
2273 {
2274 char *buffer = FRAME_MESSAGE_BUF (f);
2275 char *new_buffer = (char *) xrealloc (buffer, size);
2276 FRAME_MESSAGE_BUF (f) = new_buffer;
2277 }
2278 else
2279 FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
2280 }
2281
2282
2283 /* Re-allocate buffer for decode_mode_spec on frame F. */
2284
2285 static void
2286 adjust_decode_mode_spec_buffer (struct frame *f)
2287 {
2288 f->decode_mode_spec_buffer
2289 = (char *) xrealloc (f->decode_mode_spec_buffer,
2290 FRAME_MESSAGE_BUF_SIZE (f) + 1);
2291 }
2292
2293
2294 \f
2295 /**********************************************************************
2296 Freeing Glyph Matrices
2297 **********************************************************************/
2298
2299 /* Free glyph memory for a frame F. F may be null. This function can
2300 be called for the same frame more than once. The root window of
2301 F may be nil when this function is called. This is the case when
2302 the function is called when F is destroyed. */
2303
2304 void
2305 free_glyphs (struct frame *f)
2306 {
2307 if (f && f->glyphs_initialized_p)
2308 {
2309 /* Block interrupt input so that we don't get surprised by an X
2310 event while we're in an inconsistent state. */
2311 BLOCK_INPUT;
2312 f->glyphs_initialized_p = 0;
2313
2314 /* Release window sub-matrices. */
2315 if (!NILP (f->root_window))
2316 free_window_matrices (XWINDOW (f->root_window));
2317
2318 /* Free the dummy window for menu bars without X toolkit and its
2319 glyph matrices. */
2320 if (!NILP (f->menu_bar_window))
2321 {
2322 struct window *w = XWINDOW (f->menu_bar_window);
2323 free_glyph_matrix (w->desired_matrix);
2324 free_glyph_matrix (w->current_matrix);
2325 w->desired_matrix = w->current_matrix = NULL;
2326 f->menu_bar_window = Qnil;
2327 }
2328
2329 /* Free the tool bar window and its glyph matrices. */
2330 if (!NILP (f->tool_bar_window))
2331 {
2332 struct window *w = XWINDOW (f->tool_bar_window);
2333 free_glyph_matrix (w->desired_matrix);
2334 free_glyph_matrix (w->current_matrix);
2335 w->desired_matrix = w->current_matrix = NULL;
2336 f->tool_bar_window = Qnil;
2337 }
2338
2339 /* Release frame glyph matrices. Reset fields to zero in
2340 case we are called a second time. */
2341 if (f->desired_matrix)
2342 {
2343 free_glyph_matrix (f->desired_matrix);
2344 free_glyph_matrix (f->current_matrix);
2345 f->desired_matrix = f->current_matrix = NULL;
2346 }
2347
2348 /* Release glyph pools. */
2349 if (f->desired_pool)
2350 {
2351 free_glyph_pool (f->desired_pool);
2352 free_glyph_pool (f->current_pool);
2353 f->desired_pool = f->current_pool = NULL;
2354 }
2355
2356 UNBLOCK_INPUT;
2357 }
2358 }
2359
2360
2361 /* Free glyph sub-matrices in the window tree rooted at W. This
2362 function may be called with a null pointer, and it may be called on
2363 the same tree more than once. */
2364
2365 void
2366 free_window_matrices (struct window *w)
2367 {
2368 while (w)
2369 {
2370 if (!NILP (w->hchild))
2371 free_window_matrices (XWINDOW (w->hchild));
2372 else if (!NILP (w->vchild))
2373 free_window_matrices (XWINDOW (w->vchild));
2374 else
2375 {
2376 /* This is a leaf window. Free its memory and reset fields
2377 to zero in case this function is called a second time for
2378 W. */
2379 free_glyph_matrix (w->current_matrix);
2380 free_glyph_matrix (w->desired_matrix);
2381 w->current_matrix = w->desired_matrix = NULL;
2382 }
2383
2384 /* Next window on same level. */
2385 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2386 }
2387 }
2388
2389
2390 /* Check glyph memory leaks. This function is called from
2391 shut_down_emacs. Note that frames are not destroyed when Emacs
2392 exits. We therefore free all glyph memory for all active frames
2393 explicitly and check that nothing is left allocated. */
2394
2395 void
2396 check_glyph_memory (void)
2397 {
2398 Lisp_Object tail, frame;
2399
2400 /* Free glyph memory for all frames. */
2401 FOR_EACH_FRAME (tail, frame)
2402 free_glyphs (XFRAME (frame));
2403
2404 /* Check that nothing is left allocated. */
2405 if (glyph_matrix_count)
2406 abort ();
2407 if (glyph_pool_count)
2408 abort ();
2409 }
2410
2411
2412 \f
2413 /**********************************************************************
2414 Building a Frame Matrix
2415 **********************************************************************/
2416
2417 /* Most of the redisplay code works on glyph matrices attached to
2418 windows. This is a good solution most of the time, but it is not
2419 suitable for terminal code. Terminal output functions cannot rely
2420 on being able to set an arbitrary terminal window. Instead they
2421 must be provided with a view of the whole frame, i.e. the whole
2422 screen. We build such a view by constructing a frame matrix from
2423 window matrices in this section.
2424
2425 Windows that must be updated have their must_be_update_p flag set.
2426 For all such windows, their desired matrix is made part of the
2427 desired frame matrix. For other windows, their current matrix is
2428 made part of the desired frame matrix.
2429
2430 +-----------------+----------------+
2431 | desired | desired |
2432 | | |
2433 +-----------------+----------------+
2434 | current |
2435 | |
2436 +----------------------------------+
2437
2438 Desired window matrices can be made part of the frame matrix in a
2439 cheap way: We exploit the fact that the desired frame matrix and
2440 desired window matrices share their glyph memory. This is not
2441 possible for current window matrices. Their glyphs are copied to
2442 the desired frame matrix. The latter is equivalent to
2443 preserve_other_columns in the old redisplay.
2444
2445 Used glyphs counters for frame matrix rows are the result of adding
2446 up glyph lengths of the window matrices. A line in the frame
2447 matrix is enabled, if a corresponding line in a window matrix is
2448 enabled.
2449
2450 After building the desired frame matrix, it will be passed to
2451 terminal code, which will manipulate both the desired and current
2452 frame matrix. Changes applied to the frame's current matrix have
2453 to be visible in current window matrices afterwards, of course.
2454
2455 This problem is solved like this:
2456
2457 1. Window and frame matrices share glyphs. Window matrices are
2458 constructed in a way that their glyph contents ARE the glyph
2459 contents needed in a frame matrix. Thus, any modification of
2460 glyphs done in terminal code will be reflected in window matrices
2461 automatically.
2462
2463 2. Exchanges of rows in a frame matrix done by terminal code are
2464 intercepted by hook functions so that corresponding row operations
2465 on window matrices can be performed. This is necessary because we
2466 use pointers to glyphs in glyph row structures. To satisfy the
2467 assumption of point 1 above that glyphs are updated implicitly in
2468 window matrices when they are manipulated via the frame matrix,
2469 window and frame matrix must of course agree where to find the
2470 glyphs for their rows. Possible manipulations that must be
2471 mirrored are assignments of rows of the desired frame matrix to the
2472 current frame matrix and scrolling the current frame matrix. */
2473
2474 /* Build frame F's desired matrix from window matrices. Only windows
2475 which have the flag must_be_updated_p set have to be updated. Menu
2476 bar lines of a frame are not covered by window matrices, so make
2477 sure not to touch them in this function. */
2478
2479 static void
2480 build_frame_matrix (struct frame *f)
2481 {
2482 int i;
2483
2484 /* F must have a frame matrix when this function is called. */
2485 xassert (!FRAME_WINDOW_P (f));
2486
2487 /* Clear all rows in the frame matrix covered by window matrices.
2488 Menu bar lines are not covered by windows. */
2489 for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
2490 clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
2491
2492 /* Build the matrix by walking the window tree. */
2493 build_frame_matrix_from_window_tree (f->desired_matrix,
2494 XWINDOW (FRAME_ROOT_WINDOW (f)));
2495 }
2496
2497
2498 /* Walk a window tree, building a frame matrix MATRIX from window
2499 matrices. W is the root of a window tree. */
2500
2501 static void
2502 build_frame_matrix_from_window_tree (struct glyph_matrix *matrix, struct window *w)
2503 {
2504 while (w)
2505 {
2506 if (!NILP (w->hchild))
2507 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
2508 else if (!NILP (w->vchild))
2509 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
2510 else
2511 build_frame_matrix_from_leaf_window (matrix, w);
2512
2513 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2514 }
2515 }
2516
2517
2518 /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
2519 desired frame matrix built. W is a leaf window whose desired or
2520 current matrix is to be added to FRAME_MATRIX. W's flag
2521 must_be_updated_p determines which matrix it contributes to
2522 FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
2523 is added to FRAME_MATRIX, otherwise W's current matrix is added.
2524 Adding a desired matrix means setting up used counters and such in
2525 frame rows, while adding a current window matrix to FRAME_MATRIX
2526 means copying glyphs. The latter case corresponds to
2527 preserve_other_columns in the old redisplay. */
2528
2529 static void
2530 build_frame_matrix_from_leaf_window (struct glyph_matrix *frame_matrix, struct window *w)
2531 {
2532 struct glyph_matrix *window_matrix;
2533 int window_y, frame_y;
2534 /* If non-zero, a glyph to insert at the right border of W. */
2535 GLYPH right_border_glyph;
2536
2537 SET_GLYPH_FROM_CHAR (right_border_glyph, 0);
2538
2539 /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
2540 if (w->must_be_updated_p)
2541 {
2542 window_matrix = w->desired_matrix;
2543
2544 /* Decide whether we want to add a vertical border glyph. */
2545 if (!WINDOW_RIGHTMOST_P (w))
2546 {
2547 struct Lisp_Char_Table *dp = window_display_table (w);
2548 Lisp_Object gc;
2549
2550 SET_GLYPH_FROM_CHAR (right_border_glyph, '|');
2551 if (dp
2552 && (gc = DISP_BORDER_GLYPH (dp), GLYPH_CODE_P (gc)))
2553 {
2554 SET_GLYPH_FROM_GLYPH_CODE (right_border_glyph, gc);
2555 spec_glyph_lookup_face (w, &right_border_glyph);
2556 }
2557
2558 if (GLYPH_FACE (right_border_glyph) <= 0)
2559 SET_GLYPH_FACE (right_border_glyph, VERTICAL_BORDER_FACE_ID);
2560 }
2561 }
2562 else
2563 window_matrix = w->current_matrix;
2564
2565 /* For all rows in the window matrix and corresponding rows in the
2566 frame matrix. */
2567 window_y = 0;
2568 frame_y = window_matrix->matrix_y;
2569 while (window_y < window_matrix->nrows)
2570 {
2571 struct glyph_row *frame_row = frame_matrix->rows + frame_y;
2572 struct glyph_row *window_row = window_matrix->rows + window_y;
2573 int current_row_p = window_matrix == w->current_matrix;
2574
2575 /* Fill up the frame row with spaces up to the left margin of the
2576 window row. */
2577 fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
2578
2579 /* Fill up areas in the window matrix row with spaces. */
2580 fill_up_glyph_row_with_spaces (window_row);
2581
2582 /* If only part of W's desired matrix has been built, and
2583 window_row wasn't displayed, use the corresponding current
2584 row instead. */
2585 if (window_matrix == w->desired_matrix
2586 && !window_row->enabled_p)
2587 {
2588 window_row = w->current_matrix->rows + window_y;
2589 current_row_p = 1;
2590 }
2591
2592 if (current_row_p)
2593 {
2594 /* Copy window row to frame row. */
2595 memcpy (frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
2596 window_row->glyphs[0],
2597 window_matrix->matrix_w * sizeof (struct glyph));
2598 }
2599 else
2600 {
2601 xassert (window_row->enabled_p);
2602
2603 /* Only when a desired row has been displayed, we want
2604 the corresponding frame row to be updated. */
2605 frame_row->enabled_p = 1;
2606
2607 /* Maybe insert a vertical border between horizontally adjacent
2608 windows. */
2609 if (GLYPH_CHAR (right_border_glyph) != 0)
2610 {
2611 struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
2612 SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
2613 }
2614
2615 #if GLYPH_DEBUG
2616 /* Window row window_y must be a slice of frame row
2617 frame_y. */
2618 xassert (glyph_row_slice_p (window_row, frame_row));
2619
2620 /* If rows are in sync, we don't have to copy glyphs because
2621 frame and window share glyphs. */
2622
2623 strcpy (w->current_matrix->method, w->desired_matrix->method);
2624 add_window_display_history (w, w->current_matrix->method, 0);
2625 #endif
2626 }
2627
2628 /* Set number of used glyphs in the frame matrix. Since we fill
2629 up with spaces, and visit leaf windows from left to right it
2630 can be done simply. */
2631 frame_row->used[TEXT_AREA]
2632 = window_matrix->matrix_x + window_matrix->matrix_w;
2633
2634 /* Next row. */
2635 ++window_y;
2636 ++frame_y;
2637 }
2638 }
2639
2640 /* Given a user-specified glyph, possibly including a Lisp-level face
2641 ID, return a glyph that has a realized face ID.
2642 This is used for glyphs displayed specially and not part of the text;
2643 for instance, vertical separators, truncation markers, etc. */
2644
2645 void
2646 spec_glyph_lookup_face (struct window *w, GLYPH *glyph)
2647 {
2648 int lface_id = GLYPH_FACE (*glyph);
2649 /* Convert the glyph's specified face to a realized (cache) face. */
2650 if (lface_id > 0)
2651 {
2652 int face_id = merge_faces (XFRAME (w->frame),
2653 Qt, lface_id, DEFAULT_FACE_ID);
2654 SET_GLYPH_FACE (*glyph, face_id);
2655 }
2656 }
2657
2658 /* Add spaces to a glyph row ROW in a window matrix.
2659
2660 Each row has the form:
2661
2662 +---------+-----------------------------+------------+
2663 | left | text | right |
2664 +---------+-----------------------------+------------+
2665
2666 Left and right marginal areas are optional. This function adds
2667 spaces to areas so that there are no empty holes between areas.
2668 In other words: If the right area is not empty, the text area
2669 is filled up with spaces up to the right area. If the text area
2670 is not empty, the left area is filled up.
2671
2672 To be called for frame-based redisplay, only. */
2673
2674 static void
2675 fill_up_glyph_row_with_spaces (struct glyph_row *row)
2676 {
2677 fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
2678 fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
2679 fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
2680 }
2681
2682
2683 /* Fill area AREA of glyph row ROW with spaces. To be called for
2684 frame-based redisplay only. */
2685
2686 static void
2687 fill_up_glyph_row_area_with_spaces (struct glyph_row *row, int area)
2688 {
2689 if (row->glyphs[area] < row->glyphs[area + 1])
2690 {
2691 struct glyph *end = row->glyphs[area + 1];
2692 struct glyph *text = row->glyphs[area] + row->used[area];
2693
2694 while (text < end)
2695 *text++ = space_glyph;
2696 row->used[area] = text - row->glyphs[area];
2697 }
2698 }
2699
2700
2701 /* Add spaces to the end of ROW in a frame matrix until index UPTO is
2702 reached. In frame matrices only one area, TEXT_AREA, is used. */
2703
2704 static void
2705 fill_up_frame_row_with_spaces (struct glyph_row *row, int upto)
2706 {
2707 int i = row->used[TEXT_AREA];
2708 struct glyph *glyph = row->glyphs[TEXT_AREA];
2709
2710 while (i < upto)
2711 glyph[i++] = space_glyph;
2712
2713 row->used[TEXT_AREA] = i;
2714 }
2715
2716
2717 \f
2718 /**********************************************************************
2719 Mirroring operations on frame matrices in window matrices
2720 **********************************************************************/
2721
2722 /* Set frame being updated via frame-based redisplay to F. This
2723 function must be called before updates to make explicit that we are
2724 working on frame matrices or not. */
2725
2726 static inline void
2727 set_frame_matrix_frame (struct frame *f)
2728 {
2729 frame_matrix_frame = f;
2730 }
2731
2732
2733 /* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
2734 DESIRED_MATRIX is the desired matrix corresponding to
2735 CURRENT_MATRIX. The update is done by exchanging glyph pointers
2736 between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
2737 frame_matrix_frame is non-null, this indicates that the exchange is
2738 done in frame matrices, and that we have to perform analogous
2739 operations in window matrices of frame_matrix_frame. */
2740
2741 static inline void
2742 make_current (struct glyph_matrix *desired_matrix, struct glyph_matrix *current_matrix, int row)
2743 {
2744 struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
2745 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
2746 int mouse_face_p = current_row->mouse_face_p;
2747
2748 /* Do current_row = desired_row. This exchanges glyph pointers
2749 between both rows, and does a structure assignment otherwise. */
2750 assign_row (current_row, desired_row);
2751
2752 /* Enable current_row to mark it as valid. */
2753 current_row->enabled_p = 1;
2754 current_row->mouse_face_p = mouse_face_p;
2755
2756 /* If we are called on frame matrices, perform analogous operations
2757 for window matrices. */
2758 if (frame_matrix_frame)
2759 mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
2760 }
2761
2762
2763 /* W is the root of a window tree. FRAME_ROW is the index of a row in
2764 W's frame which has been made current (by swapping pointers between
2765 current and desired matrix). Perform analogous operations in the
2766 matrices of leaf windows in the window tree rooted at W. */
2767
2768 static void
2769 mirror_make_current (struct window *w, int frame_row)
2770 {
2771 while (w)
2772 {
2773 if (!NILP (w->hchild))
2774 mirror_make_current (XWINDOW (w->hchild), frame_row);
2775 else if (!NILP (w->vchild))
2776 mirror_make_current (XWINDOW (w->vchild), frame_row);
2777 else
2778 {
2779 /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
2780 here because the checks performed in debug mode there
2781 will not allow the conversion. */
2782 int row = frame_row - w->desired_matrix->matrix_y;
2783
2784 /* If FRAME_ROW is within W, assign the desired row to the
2785 current row (exchanging glyph pointers). */
2786 if (row >= 0 && row < w->desired_matrix->matrix_h)
2787 {
2788 struct glyph_row *current_row
2789 = MATRIX_ROW (w->current_matrix, row);
2790 struct glyph_row *desired_row
2791 = MATRIX_ROW (w->desired_matrix, row);
2792
2793 if (desired_row->enabled_p)
2794 assign_row (current_row, desired_row);
2795 else
2796 swap_glyph_pointers (desired_row, current_row);
2797 current_row->enabled_p = 1;
2798
2799 /* Set the Y coordinate of the mode/header line's row.
2800 It is needed in draw_row_with_mouse_face to find the
2801 screen coordinates. (Window-based redisplay sets
2802 this in update_window, but no one seems to do that
2803 for frame-based redisplay.) */
2804 if (current_row->mode_line_p)
2805 current_row->y = row;
2806 }
2807 }
2808
2809 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2810 }
2811 }
2812
2813
2814 /* Perform row dance after scrolling. We are working on the range of
2815 lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
2816 including) in MATRIX. COPY_FROM is a vector containing, for each
2817 row I in the range 0 <= I < NLINES, the index of the original line
2818 to move to I. This index is relative to the row range, i.e. 0 <=
2819 index < NLINES. RETAINED_P is a vector containing zero for each
2820 row 0 <= I < NLINES which is empty.
2821
2822 This function is called from do_scrolling and do_direct_scrolling. */
2823
2824 void
2825 mirrored_line_dance (struct glyph_matrix *matrix, int unchanged_at_top, int nlines,
2826 int *copy_from, char *retained_p)
2827 {
2828 /* A copy of original rows. */
2829 struct glyph_row *old_rows;
2830
2831 /* Rows to assign to. */
2832 struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
2833
2834 int i;
2835
2836 /* Make a copy of the original rows. */
2837 old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
2838 memcpy (old_rows, new_rows, nlines * sizeof *old_rows);
2839
2840 /* Assign new rows, maybe clear lines. */
2841 for (i = 0; i < nlines; ++i)
2842 {
2843 int enabled_before_p = new_rows[i].enabled_p;
2844
2845 xassert (i + unchanged_at_top < matrix->nrows);
2846 xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
2847 new_rows[i] = old_rows[copy_from[i]];
2848 new_rows[i].enabled_p = enabled_before_p;
2849
2850 /* RETAINED_P is zero for empty lines. */
2851 if (!retained_p[copy_from[i]])
2852 new_rows[i].enabled_p = 0;
2853 }
2854
2855 /* Do the same for window matrices, if MATRIX is a frame matrix. */
2856 if (frame_matrix_frame)
2857 mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
2858 unchanged_at_top, nlines, copy_from, retained_p);
2859 }
2860
2861
2862 /* Synchronize glyph pointers in the current matrix of window W with
2863 the current frame matrix. */
2864
2865 static void
2866 sync_window_with_frame_matrix_rows (struct window *w)
2867 {
2868 struct frame *f = XFRAME (w->frame);
2869 struct glyph_row *window_row, *window_row_end, *frame_row;
2870 int left, right, x, width;
2871
2872 /* Preconditions: W must be a leaf window on a tty frame. */
2873 xassert (NILP (w->hchild) && NILP (w->vchild));
2874 xassert (!FRAME_WINDOW_P (f));
2875
2876 left = margin_glyphs_to_reserve (w, 1, w->left_margin_cols);
2877 right = margin_glyphs_to_reserve (w, 1, w->right_margin_cols);
2878 x = w->current_matrix->matrix_x;
2879 width = w->current_matrix->matrix_w;
2880
2881 window_row = w->current_matrix->rows;
2882 window_row_end = window_row + w->current_matrix->nrows;
2883 frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w);
2884
2885 for (; window_row < window_row_end; ++window_row, ++frame_row)
2886 {
2887 window_row->glyphs[LEFT_MARGIN_AREA]
2888 = frame_row->glyphs[0] + x;
2889 window_row->glyphs[TEXT_AREA]
2890 = window_row->glyphs[LEFT_MARGIN_AREA] + left;
2891 window_row->glyphs[LAST_AREA]
2892 = window_row->glyphs[LEFT_MARGIN_AREA] + width;
2893 window_row->glyphs[RIGHT_MARGIN_AREA]
2894 = window_row->glyphs[LAST_AREA] - right;
2895 }
2896 }
2897
2898
2899 /* Return the window in the window tree rooted in W containing frame
2900 row ROW. Value is null if none is found. */
2901
2902 static struct window *
2903 frame_row_to_window (struct window *w, int row)
2904 {
2905 struct window *found = NULL;
2906
2907 while (w && !found)
2908 {
2909 if (!NILP (w->hchild))
2910 found = frame_row_to_window (XWINDOW (w->hchild), row);
2911 else if (!NILP (w->vchild))
2912 found = frame_row_to_window (XWINDOW (w->vchild), row);
2913 else if (row >= WINDOW_TOP_EDGE_LINE (w)
2914 && row < WINDOW_BOTTOM_EDGE_LINE (w))
2915 found = w;
2916
2917 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2918 }
2919
2920 return found;
2921 }
2922
2923
2924 /* Perform a line dance in the window tree rooted at W, after
2925 scrolling a frame matrix in mirrored_line_dance.
2926
2927 We are working on the range of lines UNCHANGED_AT_TOP + 1 to
2928 UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
2929 COPY_FROM is a vector containing, for each row I in the range 0 <=
2930 I < NLINES, the index of the original line to move to I. This
2931 index is relative to the row range, i.e. 0 <= index < NLINES.
2932 RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
2933 which is empty. */
2934
2935 static void
2936 mirror_line_dance (struct window *w, int unchanged_at_top, int nlines, int *copy_from, char *retained_p)
2937 {
2938 while (w)
2939 {
2940 if (!NILP (w->hchild))
2941 mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
2942 nlines, copy_from, retained_p);
2943 else if (!NILP (w->vchild))
2944 mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
2945 nlines, copy_from, retained_p);
2946 else
2947 {
2948 /* W is a leaf window, and we are working on its current
2949 matrix m. */
2950 struct glyph_matrix *m = w->current_matrix;
2951 int i, sync_p = 0;
2952 struct glyph_row *old_rows;
2953
2954 /* Make a copy of the original rows of matrix m. */
2955 old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
2956 memcpy (old_rows, m->rows, m->nrows * sizeof *old_rows);
2957
2958 for (i = 0; i < nlines; ++i)
2959 {
2960 /* Frame relative line assigned to. */
2961 int frame_to = i + unchanged_at_top;
2962
2963 /* Frame relative line assigned. */
2964 int frame_from = copy_from[i] + unchanged_at_top;
2965
2966 /* Window relative line assigned to. */
2967 int window_to = frame_to - m->matrix_y;
2968
2969 /* Window relative line assigned. */
2970 int window_from = frame_from - m->matrix_y;
2971
2972 /* Is assigned line inside window? */
2973 int from_inside_window_p
2974 = window_from >= 0 && window_from < m->matrix_h;
2975
2976 /* Is assigned to line inside window? */
2977 int to_inside_window_p
2978 = window_to >= 0 && window_to < m->matrix_h;
2979
2980 if (from_inside_window_p && to_inside_window_p)
2981 {
2982 /* Enabled setting before assignment. */
2983 int enabled_before_p;
2984
2985 /* Do the assignment. The enabled_p flag is saved
2986 over the assignment because the old redisplay did
2987 that. */
2988 enabled_before_p = m->rows[window_to].enabled_p;
2989 m->rows[window_to] = old_rows[window_from];
2990 m->rows[window_to].enabled_p = enabled_before_p;
2991
2992 /* If frame line is empty, window line is empty, too. */
2993 if (!retained_p[copy_from[i]])
2994 m->rows[window_to].enabled_p = 0;
2995 }
2996 else if (to_inside_window_p)
2997 {
2998 /* A copy between windows. This is an infrequent
2999 case not worth optimizing. */
3000 struct frame *f = XFRAME (w->frame);
3001 struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f));
3002 struct window *w2;
3003 struct glyph_matrix *m2;
3004 int m2_from;
3005
3006 w2 = frame_row_to_window (root, frame_from);
3007 /* ttn@surf.glug.org: when enabling menu bar using `emacs
3008 -nw', FROM_FRAME sometimes has no associated window.
3009 This check avoids a segfault if W2 is null. */
3010 if (w2)
3011 {
3012 m2 = w2->current_matrix;
3013 m2_from = frame_from - m2->matrix_y;
3014 copy_row_except_pointers (m->rows + window_to,
3015 m2->rows + m2_from);
3016
3017 /* If frame line is empty, window line is empty, too. */
3018 if (!retained_p[copy_from[i]])
3019 m->rows[window_to].enabled_p = 0;
3020 }
3021 sync_p = 1;
3022 }
3023 else if (from_inside_window_p)
3024 sync_p = 1;
3025 }
3026
3027 /* If there was a copy between windows, make sure glyph
3028 pointers are in sync with the frame matrix. */
3029 if (sync_p)
3030 sync_window_with_frame_matrix_rows (w);
3031
3032 /* Check that no pointers are lost. */
3033 CHECK_MATRIX (m);
3034 }
3035
3036 /* Next window on same level. */
3037 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3038 }
3039 }
3040
3041
3042 #if GLYPH_DEBUG
3043
3044 /* Check that window and frame matrices agree about their
3045 understanding where glyphs of the rows are to find. For each
3046 window in the window tree rooted at W, check that rows in the
3047 matrices of leaf window agree with their frame matrices about
3048 glyph pointers. */
3049
3050 static void
3051 check_window_matrix_pointers (struct window *w)
3052 {
3053 while (w)
3054 {
3055 if (!NILP (w->hchild))
3056 check_window_matrix_pointers (XWINDOW (w->hchild));
3057 else if (!NILP (w->vchild))
3058 check_window_matrix_pointers (XWINDOW (w->vchild));
3059 else
3060 {
3061 struct frame *f = XFRAME (w->frame);
3062 check_matrix_pointers (w->desired_matrix, f->desired_matrix);
3063 check_matrix_pointers (w->current_matrix, f->current_matrix);
3064 }
3065
3066 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3067 }
3068 }
3069
3070
3071 /* Check that window rows are slices of frame rows. WINDOW_MATRIX is
3072 a window and FRAME_MATRIX is the corresponding frame matrix. For
3073 each row in WINDOW_MATRIX check that it's a slice of the
3074 corresponding frame row. If it isn't, abort. */
3075
3076 static void
3077 check_matrix_pointers (struct glyph_matrix *window_matrix,
3078 struct glyph_matrix *frame_matrix)
3079 {
3080 /* Row number in WINDOW_MATRIX. */
3081 int i = 0;
3082
3083 /* Row number corresponding to I in FRAME_MATRIX. */
3084 int j = window_matrix->matrix_y;
3085
3086 /* For all rows check that the row in the window matrix is a
3087 slice of the row in the frame matrix. If it isn't we didn't
3088 mirror an operation on the frame matrix correctly. */
3089 while (i < window_matrix->nrows)
3090 {
3091 if (!glyph_row_slice_p (window_matrix->rows + i,
3092 frame_matrix->rows + j))
3093 abort ();
3094 ++i, ++j;
3095 }
3096 }
3097
3098 #endif /* GLYPH_DEBUG != 0 */
3099
3100
3101 \f
3102 /**********************************************************************
3103 VPOS and HPOS translations
3104 **********************************************************************/
3105
3106 #if GLYPH_DEBUG
3107
3108 /* Translate vertical position VPOS which is relative to window W to a
3109 vertical position relative to W's frame. */
3110
3111 static int
3112 window_to_frame_vpos (struct window *w, int vpos)
3113 {
3114 xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
3115 xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
3116 vpos += WINDOW_TOP_EDGE_LINE (w);
3117 xassert (vpos >= 0 && vpos <= FRAME_LINES (XFRAME (w->frame)));
3118 return vpos;
3119 }
3120
3121
3122 /* Translate horizontal position HPOS which is relative to window W to
3123 a horizontal position relative to W's frame. */
3124
3125 static int
3126 window_to_frame_hpos (struct window *w, int hpos)
3127 {
3128 xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
3129 hpos += WINDOW_LEFT_EDGE_COL (w);
3130 return hpos;
3131 }
3132
3133 #endif /* GLYPH_DEBUG */
3134
3135
3136 \f
3137 /**********************************************************************
3138 Redrawing Frames
3139 **********************************************************************/
3140
3141 DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
3142 doc: /* Clear frame FRAME and output again what is supposed to appear on it. */)
3143 (Lisp_Object frame)
3144 {
3145 struct frame *f;
3146
3147 CHECK_LIVE_FRAME (frame);
3148 f = XFRAME (frame);
3149
3150 /* Ignore redraw requests, if frame has no glyphs yet.
3151 (Implementation note: It still has to be checked why we are
3152 called so early here). */
3153 if (!glyphs_initialized_initially_p)
3154 return Qnil;
3155
3156 update_begin (f);
3157 #ifdef MSDOS
3158 if (FRAME_MSDOS_P (f))
3159 FRAME_TERMINAL (f)->set_terminal_modes_hook (FRAME_TERMINAL (f));
3160 #endif
3161 clear_frame (f);
3162 clear_current_matrices (f);
3163 update_end (f);
3164 if (FRAME_TERMCAP_P (f))
3165 fflush (FRAME_TTY (f)->output);
3166 windows_or_buffers_changed++;
3167 /* Mark all windows as inaccurate, so that every window will have
3168 its redisplay done. */
3169 mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
3170 set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
3171 f->garbaged = 0;
3172 return Qnil;
3173 }
3174
3175
3176 /* Redraw frame F. This is nothing more than a call to the Lisp
3177 function redraw-frame. */
3178
3179 void
3180 redraw_frame (struct frame *f)
3181 {
3182 Lisp_Object frame;
3183 XSETFRAME (frame, f);
3184 Fredraw_frame (frame);
3185 }
3186
3187
3188 DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
3189 doc: /* Clear and redisplay all visible frames. */)
3190 (void)
3191 {
3192 Lisp_Object tail, frame;
3193
3194 FOR_EACH_FRAME (tail, frame)
3195 if (FRAME_VISIBLE_P (XFRAME (frame)))
3196 Fredraw_frame (frame);
3197
3198 return Qnil;
3199 }
3200
3201
3202 \f
3203 /***********************************************************************
3204 Frame Update
3205 ***********************************************************************/
3206
3207 /* Update frame F based on the data in desired matrices.
3208
3209 If FORCE_P is non-zero, don't let redisplay be stopped by detecting
3210 pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
3211 scrolling.
3212
3213 Value is non-zero if redisplay was stopped due to pending input. */
3214
3215 int
3216 update_frame (struct frame *f, int force_p, int inhibit_hairy_id_p)
3217 {
3218 /* 1 means display has been paused because of pending input. */
3219 int paused_p;
3220 struct window *root_window = XWINDOW (f->root_window);
3221
3222 if (redisplay_dont_pause)
3223 force_p = 1;
3224 #if PERIODIC_PREEMPTION_CHECKING
3225 else if (NILP (Vredisplay_preemption_period))
3226 force_p = 1;
3227 else if (!force_p && NUMBERP (Vredisplay_preemption_period))
3228 {
3229 EMACS_TIME tm;
3230 double p = XFLOATINT (Vredisplay_preemption_period);
3231 int sec, usec;
3232
3233 if (detect_input_pending_ignore_squeezables ())
3234 {
3235 paused_p = 1;
3236 goto do_pause;
3237 }
3238
3239 sec = (int) p;
3240 usec = (p - sec) * 1000000;
3241
3242 EMACS_GET_TIME (tm);
3243 EMACS_SET_SECS_USECS (preemption_period, sec, usec);
3244 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3245 }
3246 #endif
3247
3248 if (FRAME_WINDOW_P (f))
3249 {
3250 /* We are working on window matrix basis. All windows whose
3251 flag must_be_updated_p is set have to be updated. */
3252
3253 /* Record that we are not working on frame matrices. */
3254 set_frame_matrix_frame (NULL);
3255
3256 /* Update all windows in the window tree of F, maybe stopping
3257 when pending input is detected. */
3258 update_begin (f);
3259
3260 /* Update the menu bar on X frames that don't have toolkit
3261 support. */
3262 if (WINDOWP (f->menu_bar_window))
3263 update_window (XWINDOW (f->menu_bar_window), 1);
3264
3265 /* Update the tool-bar window, if present. */
3266 if (WINDOWP (f->tool_bar_window))
3267 {
3268 struct window *w = XWINDOW (f->tool_bar_window);
3269
3270 /* Update tool-bar window. */
3271 if (w->must_be_updated_p)
3272 {
3273 Lisp_Object tem;
3274
3275 update_window (w, 1);
3276 w->must_be_updated_p = 0;
3277
3278 /* Swap tool-bar strings. We swap because we want to
3279 reuse strings. */
3280 tem = f->current_tool_bar_string;
3281 f->current_tool_bar_string = f->desired_tool_bar_string;
3282 f->desired_tool_bar_string = tem;
3283 }
3284 }
3285
3286
3287 /* Update windows. */
3288 paused_p = update_window_tree (root_window, force_p);
3289 update_end (f);
3290
3291 /* This flush is a performance bottleneck under X,
3292 and it doesn't seem to be necessary anyway (in general).
3293 It is necessary when resizing the window with the mouse, or
3294 at least the fringes are not redrawn in a timely manner. ++kfs */
3295 if (f->force_flush_display_p)
3296 {
3297 FRAME_RIF (f)->flush_display (f);
3298 f->force_flush_display_p = 0;
3299 }
3300 }
3301 else
3302 {
3303 /* We are working on frame matrix basis. Set the frame on whose
3304 frame matrix we operate. */
3305 set_frame_matrix_frame (f);
3306
3307 /* Build F's desired matrix from window matrices. */
3308 build_frame_matrix (f);
3309
3310 /* Update the display */
3311 update_begin (f);
3312 paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
3313 update_end (f);
3314
3315 if (FRAME_TERMCAP_P (f) || FRAME_MSDOS_P (f))
3316 {
3317 if (FRAME_TTY (f)->termscript)
3318 fflush (FRAME_TTY (f)->termscript);
3319 if (FRAME_TERMCAP_P (f))
3320 fflush (FRAME_TTY (f)->output);
3321 }
3322
3323 /* Check window matrices for lost pointers. */
3324 #if GLYPH_DEBUG
3325 check_window_matrix_pointers (root_window);
3326 add_frame_display_history (f, paused_p);
3327 #endif
3328 }
3329
3330 #if PERIODIC_PREEMPTION_CHECKING
3331 do_pause:
3332 #endif
3333 /* Reset flags indicating that a window should be updated. */
3334 set_window_update_flags (root_window, 0);
3335
3336 display_completed = !paused_p;
3337 return paused_p;
3338 }
3339
3340
3341 \f
3342 /************************************************************************
3343 Window-based updates
3344 ************************************************************************/
3345
3346 /* Perform updates in window tree rooted at W. FORCE_P non-zero means
3347 don't stop updating when input is pending. */
3348
3349 static int
3350 update_window_tree (struct window *w, int force_p)
3351 {
3352 int paused_p = 0;
3353
3354 while (w && !paused_p)
3355 {
3356 if (!NILP (w->hchild))
3357 paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
3358 else if (!NILP (w->vchild))
3359 paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
3360 else if (w->must_be_updated_p)
3361 paused_p |= update_window (w, force_p);
3362
3363 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3364 }
3365
3366 return paused_p;
3367 }
3368
3369
3370 /* Update window W if its flag must_be_updated_p is non-zero. If
3371 FORCE_P is non-zero, don't stop updating if input is pending. */
3372
3373 void
3374 update_single_window (struct window *w, int force_p)
3375 {
3376 if (w->must_be_updated_p)
3377 {
3378 struct frame *f = XFRAME (WINDOW_FRAME (w));
3379
3380 /* Record that this is not a frame-based redisplay. */
3381 set_frame_matrix_frame (NULL);
3382
3383 if (redisplay_dont_pause)
3384 force_p = 1;
3385 #if PERIODIC_PREEMPTION_CHECKING
3386 else if (NILP (Vredisplay_preemption_period))
3387 force_p = 1;
3388 else if (!force_p && NUMBERP (Vredisplay_preemption_period))
3389 {
3390 EMACS_TIME tm;
3391 double p = XFLOATINT (Vredisplay_preemption_period);
3392 int sec, usec;
3393
3394 sec = (int) p;
3395 usec = (p - sec) * 1000000;
3396
3397 EMACS_GET_TIME (tm);
3398 EMACS_SET_SECS_USECS (preemption_period, sec, usec);
3399 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3400 }
3401 #endif
3402
3403 /* Update W. */
3404 update_begin (f);
3405 update_window (w, force_p);
3406 update_end (f);
3407
3408 /* Reset flag in W. */
3409 w->must_be_updated_p = 0;
3410 }
3411 }
3412
3413 #ifdef HAVE_WINDOW_SYSTEM
3414
3415 /* Redraw lines from the current matrix of window W that are
3416 overlapped by other rows. YB is bottom-most y-position in W. */
3417
3418 static void
3419 redraw_overlapped_rows (struct window *w, int yb)
3420 {
3421 int i;
3422 struct frame *f = XFRAME (WINDOW_FRAME (w));
3423
3424 /* If rows overlapping others have been changed, the rows being
3425 overlapped have to be redrawn. This won't draw lines that have
3426 already been drawn in update_window_line because overlapped_p in
3427 desired rows is 0, so after row assignment overlapped_p in
3428 current rows is 0. */
3429 for (i = 0; i < w->current_matrix->nrows; ++i)
3430 {
3431 struct glyph_row *row = w->current_matrix->rows + i;
3432
3433 if (!row->enabled_p)
3434 break;
3435 else if (row->mode_line_p)
3436 continue;
3437
3438 if (row->overlapped_p)
3439 {
3440 enum glyph_row_area area;
3441
3442 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3443 {
3444 updated_row = row;
3445 updated_area = area;
3446 FRAME_RIF (f)->cursor_to (i, 0, row->y,
3447 area == TEXT_AREA ? row->x : 0);
3448 if (row->used[area])
3449 FRAME_RIF (f)->write_glyphs (row->glyphs[area],
3450 row->used[area]);
3451 FRAME_RIF (f)->clear_end_of_line (-1);
3452 }
3453
3454 row->overlapped_p = 0;
3455 }
3456
3457 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3458 break;
3459 }
3460 }
3461
3462
3463 /* Redraw lines from the current matrix of window W that overlap
3464 others. YB is bottom-most y-position in W. */
3465
3466 static void
3467 redraw_overlapping_rows (struct window *w, int yb)
3468 {
3469 int i, bottom_y;
3470 struct glyph_row *row;
3471 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3472
3473 for (i = 0; i < w->current_matrix->nrows; ++i)
3474 {
3475 row = w->current_matrix->rows + i;
3476
3477 if (!row->enabled_p)
3478 break;
3479 else if (row->mode_line_p)
3480 continue;
3481
3482 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3483
3484 if (row->overlapping_p)
3485 {
3486 int overlaps = 0;
3487
3488 if (MATRIX_ROW_OVERLAPS_PRED_P (row) && i > 0
3489 && !MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p)
3490 overlaps |= OVERLAPS_PRED;
3491 if (MATRIX_ROW_OVERLAPS_SUCC_P (row) && bottom_y < yb
3492 && !MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p)
3493 overlaps |= OVERLAPS_SUCC;
3494
3495 if (overlaps)
3496 {
3497 if (row->used[LEFT_MARGIN_AREA])
3498 rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA, overlaps);
3499
3500 if (row->used[TEXT_AREA])
3501 rif->fix_overlapping_area (w, row, TEXT_AREA, overlaps);
3502
3503 if (row->used[RIGHT_MARGIN_AREA])
3504 rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA, overlaps);
3505
3506 /* Record in neighbor rows that ROW overwrites part of
3507 their display. */
3508 if (overlaps & OVERLAPS_PRED)
3509 MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
3510 if (overlaps & OVERLAPS_SUCC)
3511 MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
3512 }
3513 }
3514
3515 if (bottom_y >= yb)
3516 break;
3517 }
3518 }
3519
3520 #endif /* HAVE_WINDOW_SYSTEM */
3521
3522
3523 #if defined GLYPH_DEBUG && 0
3524
3525 /* Check that no row in the current matrix of window W is enabled
3526 which is below what's displayed in the window. */
3527
3528 static void
3529 check_current_matrix_flags (struct window *w)
3530 {
3531 int last_seen_p = 0;
3532 int i, yb = window_text_bottom_y (w);
3533
3534 for (i = 0; i < w->current_matrix->nrows - 1; ++i)
3535 {
3536 struct glyph_row *row = MATRIX_ROW (w->current_matrix, i);
3537 if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb)
3538 last_seen_p = 1;
3539 else if (last_seen_p && row->enabled_p)
3540 abort ();
3541 }
3542 }
3543
3544 #endif /* GLYPH_DEBUG */
3545
3546
3547 /* Update display of window W. FORCE_P non-zero means that we should
3548 not stop when detecting pending input. */
3549
3550 static int
3551 update_window (struct window *w, int force_p)
3552 {
3553 struct glyph_matrix *desired_matrix = w->desired_matrix;
3554 int paused_p;
3555 #if !PERIODIC_PREEMPTION_CHECKING
3556 int preempt_count = baud_rate / 2400 + 1;
3557 #endif
3558 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3559 #if GLYPH_DEBUG
3560 /* Check that W's frame doesn't have glyph matrices. */
3561 xassert (FRAME_WINDOW_P (XFRAME (WINDOW_FRAME (w))));
3562 #endif
3563
3564 /* Check pending input the first time so that we can quickly return. */
3565 #if !PERIODIC_PREEMPTION_CHECKING
3566 if (!force_p)
3567 detect_input_pending_ignore_squeezables ();
3568 #endif
3569
3570 /* If forced to complete the update, or if no input is pending, do
3571 the update. */
3572 if (force_p || !input_pending || !NILP (do_mouse_tracking))
3573 {
3574 struct glyph_row *row, *end;
3575 struct glyph_row *mode_line_row;
3576 struct glyph_row *header_line_row;
3577 int yb, changed_p = 0, mouse_face_overwritten_p = 0;
3578 #if ! PERIODIC_PREEMPTION_CHECKING
3579 int n_updated = 0;
3580 #endif
3581
3582 rif->update_window_begin_hook (w);
3583 yb = window_text_bottom_y (w);
3584 row = desired_matrix->rows;
3585 end = row + desired_matrix->nrows - 1;
3586
3587 /* Take note of the header line, if there is one. We will
3588 update it below, after updating all of the window's lines. */
3589 if (row->mode_line_p)
3590 {
3591 header_line_row = row;
3592 ++row;
3593 }
3594 else
3595 header_line_row = NULL;
3596
3597 /* Update the mode line, if necessary. */
3598 mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
3599 if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
3600 {
3601 mode_line_row->y = yb;
3602 update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
3603 desired_matrix),
3604 &mouse_face_overwritten_p);
3605 }
3606
3607 /* Find first enabled row. Optimizations in redisplay_internal
3608 may lead to an update with only one row enabled. There may
3609 be also completely empty matrices. */
3610 while (row < end && !row->enabled_p)
3611 ++row;
3612
3613 /* Try reusing part of the display by copying. */
3614 if (row < end && !desired_matrix->no_scrolling_p)
3615 {
3616 int rc = scrolling_window (w, header_line_row != NULL);
3617 if (rc < 0)
3618 {
3619 /* All rows were found to be equal. */
3620 paused_p = 0;
3621 goto set_cursor;
3622 }
3623 else if (rc > 0)
3624 {
3625 /* We've scrolled the display. */
3626 force_p = 1;
3627 changed_p = 1;
3628 }
3629 }
3630
3631 /* Update the rest of the lines. */
3632 for (; row < end && (force_p || !input_pending); ++row)
3633 /* scrolling_window resets the enabled_p flag of the rows it
3634 reuses from current_matrix. */
3635 if (row->enabled_p)
3636 {
3637 int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
3638 int i;
3639
3640 /* We'll have to play a little bit with when to
3641 detect_input_pending. If it's done too often,
3642 scrolling large windows with repeated scroll-up
3643 commands will too quickly pause redisplay. */
3644 #if PERIODIC_PREEMPTION_CHECKING
3645 if (!force_p)
3646 {
3647 EMACS_TIME tm, dif;
3648 EMACS_GET_TIME (tm);
3649 EMACS_SUB_TIME (dif, preemption_next_check, tm);
3650 if (EMACS_TIME_NEG_P (dif))
3651 {
3652 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3653 if (detect_input_pending_ignore_squeezables ())
3654 break;
3655 }
3656 }
3657 #else
3658 if (!force_p && ++n_updated % preempt_count == 0)
3659 detect_input_pending_ignore_squeezables ();
3660 #endif
3661 changed_p |= update_window_line (w, vpos,
3662 &mouse_face_overwritten_p);
3663
3664 /* Mark all rows below the last visible one in the current
3665 matrix as invalid. This is necessary because of
3666 variable line heights. Consider the case of three
3667 successive redisplays, where the first displays 5
3668 lines, the second 3 lines, and the third 5 lines again.
3669 If the second redisplay wouldn't mark rows in the
3670 current matrix invalid, the third redisplay might be
3671 tempted to optimize redisplay based on lines displayed
3672 in the first redisplay. */
3673 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3674 for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
3675 MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
3676 }
3677
3678 /* Was display preempted? */
3679 paused_p = row < end;
3680
3681 set_cursor:
3682
3683 /* Update the header line after scrolling because a new header
3684 line would otherwise overwrite lines at the top of the window
3685 that can be scrolled. */
3686 if (header_line_row && header_line_row->enabled_p)
3687 {
3688 header_line_row->y = 0;
3689 update_window_line (w, 0, &mouse_face_overwritten_p);
3690 }
3691
3692 /* Fix the appearance of overlapping/overlapped rows. */
3693 if (!paused_p && !w->pseudo_window_p)
3694 {
3695 #ifdef HAVE_WINDOW_SYSTEM
3696 if (changed_p && rif->fix_overlapping_area)
3697 {
3698 redraw_overlapped_rows (w, yb);
3699 redraw_overlapping_rows (w, yb);
3700 }
3701 #endif
3702
3703 /* Make cursor visible at cursor position of W. */
3704 set_window_cursor_after_update (w);
3705
3706 #if 0 /* Check that current matrix invariants are satisfied. This is
3707 for debugging only. See the comment of check_matrix_invariants. */
3708 IF_DEBUG (check_matrix_invariants (w));
3709 #endif
3710 }
3711
3712 #if GLYPH_DEBUG
3713 /* Remember the redisplay method used to display the matrix. */
3714 strcpy (w->current_matrix->method, w->desired_matrix->method);
3715 #endif
3716
3717 #ifdef HAVE_WINDOW_SYSTEM
3718 update_window_fringes (w, 0);
3719 #endif
3720
3721 /* End the update of window W. Don't set the cursor if we
3722 paused updating the display because in this case,
3723 set_window_cursor_after_update hasn't been called, and
3724 output_cursor doesn't contain the cursor location. */
3725 rif->update_window_end_hook (w, !paused_p, mouse_face_overwritten_p);
3726 }
3727 else
3728 paused_p = 1;
3729
3730 #if GLYPH_DEBUG
3731 /* check_current_matrix_flags (w); */
3732 add_window_display_history (w, w->current_matrix->method, paused_p);
3733 #endif
3734
3735 clear_glyph_matrix (desired_matrix);
3736
3737 return paused_p;
3738 }
3739
3740
3741 /* Update the display of area AREA in window W, row number VPOS.
3742 AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
3743
3744 static void
3745 update_marginal_area (struct window *w, int area, int vpos)
3746 {
3747 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3748 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3749
3750 /* Let functions in xterm.c know what area subsequent X positions
3751 will be relative to. */
3752 updated_area = area;
3753
3754 /* Set cursor to start of glyphs, write them, and clear to the end
3755 of the area. I don't think that something more sophisticated is
3756 necessary here, since marginal areas will not be the default. */
3757 rif->cursor_to (vpos, 0, desired_row->y, 0);
3758 if (desired_row->used[area])
3759 rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
3760 rif->clear_end_of_line (-1);
3761 }
3762
3763
3764 /* Update the display of the text area of row VPOS in window W.
3765 Value is non-zero if display has changed. */
3766
3767 static int
3768 update_text_area (struct window *w, int vpos)
3769 {
3770 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
3771 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3772 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3773 int changed_p = 0;
3774
3775 /* Let functions in xterm.c know what area subsequent X positions
3776 will be relative to. */
3777 updated_area = TEXT_AREA;
3778
3779 /* If rows are at different X or Y, or rows have different height,
3780 or the current row is marked invalid, write the entire line. */
3781 if (!current_row->enabled_p
3782 || desired_row->y != current_row->y
3783 || desired_row->ascent != current_row->ascent
3784 || desired_row->phys_ascent != current_row->phys_ascent
3785 || desired_row->phys_height != current_row->phys_height
3786 || desired_row->visible_height != current_row->visible_height
3787 || current_row->overlapped_p
3788 /* This next line is necessary for correctly redrawing
3789 mouse-face areas after scrolling and other operations.
3790 However, it causes excessive flickering when mouse is moved
3791 across the mode line. Luckily, turning it off for the mode
3792 line doesn't seem to hurt anything. -- cyd.
3793 But it is still needed for the header line. -- kfs. */
3794 || (current_row->mouse_face_p
3795 && !(current_row->mode_line_p && vpos > 0))
3796 || current_row->x != desired_row->x)
3797 {
3798 rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
3799
3800 if (desired_row->used[TEXT_AREA])
3801 rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
3802 desired_row->used[TEXT_AREA]);
3803
3804 /* Clear to end of window. */
3805 rif->clear_end_of_line (-1);
3806 changed_p = 1;
3807
3808 /* This erases the cursor. We do this here because
3809 notice_overwritten_cursor cannot easily check this, which
3810 might indicate that the whole functionality of
3811 notice_overwritten_cursor would better be implemented here.
3812 On the other hand, we need notice_overwritten_cursor as long
3813 as mouse highlighting is done asynchronously outside of
3814 redisplay. */
3815 if (vpos == w->phys_cursor.vpos)
3816 w->phys_cursor_on_p = 0;
3817 }
3818 else
3819 {
3820 int stop, i, x;
3821 struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
3822 struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
3823 int overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p;
3824 int desired_stop_pos = desired_row->used[TEXT_AREA];
3825 int abort_skipping = 0;
3826
3827 /* If the desired row extends its face to the text area end, and
3828 unless the current row also does so at the same position,
3829 make sure we write at least one glyph, so that the face
3830 extension actually takes place. */
3831 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row)
3832 && (desired_stop_pos < current_row->used[TEXT_AREA]
3833 || (desired_stop_pos == current_row->used[TEXT_AREA]
3834 && !MATRIX_ROW_EXTENDS_FACE_P (current_row))))
3835 --desired_stop_pos;
3836
3837 stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
3838 i = 0;
3839 x = desired_row->x;
3840
3841 /* Loop over glyphs that current and desired row may have
3842 in common. */
3843 while (i < stop)
3844 {
3845 int can_skip_p = !abort_skipping;
3846
3847 /* Skip over glyphs that both rows have in common. These
3848 don't have to be written. We can't skip if the last
3849 current glyph overlaps the glyph to its right. For
3850 example, consider a current row of `if ' with the `f' in
3851 Courier bold so that it overlaps the ` ' to its right.
3852 If the desired row is ` ', we would skip over the space
3853 after the `if' and there would remain a pixel from the
3854 `f' on the screen. */
3855 if (overlapping_glyphs_p && i > 0)
3856 {
3857 struct glyph *glyph = &current_row->glyphs[TEXT_AREA][i - 1];
3858 int left, right;
3859
3860 rif->get_glyph_overhangs (glyph, XFRAME (w->frame),
3861 &left, &right);
3862 can_skip_p = (right == 0 && !abort_skipping);
3863 }
3864
3865 if (can_skip_p)
3866 {
3867 int start_hpos = i;
3868
3869 while (i < stop
3870 && GLYPH_EQUAL_P (desired_glyph, current_glyph))
3871 {
3872 x += desired_glyph->pixel_width;
3873 ++desired_glyph, ++current_glyph, ++i;
3874 }
3875
3876 /* Consider the case that the current row contains "xxx
3877 ppp ggg" in italic Courier font, and the desired row
3878 is "xxx ggg". The character `p' has lbearing, `g'
3879 has not. The loop above will stop in front of the
3880 first `p' in the current row. If we would start
3881 writing glyphs there, we wouldn't erase the lbearing
3882 of the `p'. The rest of the lbearing problem is then
3883 taken care of by draw_glyphs. */
3884 if (overlapping_glyphs_p
3885 && i > 0
3886 && i < current_row->used[TEXT_AREA]
3887 && (current_row->used[TEXT_AREA]
3888 != desired_row->used[TEXT_AREA]))
3889 {
3890 int left, right;
3891
3892 rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
3893 &left, &right);
3894 while (left > 0 && i > 0)
3895 {
3896 --i, --desired_glyph, --current_glyph;
3897 x -= desired_glyph->pixel_width;
3898 left -= desired_glyph->pixel_width;
3899 }
3900
3901 /* Abort the skipping algorithm if we end up before
3902 our starting point, to avoid looping (bug#1070).
3903 This can happen when the lbearing is larger than
3904 the pixel width. */
3905 abort_skipping = (i < start_hpos);
3906 }
3907 }
3908
3909 /* Try to avoid writing the entire rest of the desired row
3910 by looking for a resync point. This mainly prevents
3911 mode line flickering in the case the mode line is in
3912 fixed-pitch font, which it usually will be. */
3913 if (i < desired_row->used[TEXT_AREA])
3914 {
3915 int start_x = x, start_hpos = i;
3916 struct glyph *start = desired_glyph;
3917 int current_x = x;
3918 int skip_first_p = !can_skip_p;
3919
3920 /* Find the next glyph that's equal again. */
3921 while (i < stop
3922 && (skip_first_p
3923 || !GLYPH_EQUAL_P (desired_glyph, current_glyph))
3924 && x == current_x)
3925 {
3926 x += desired_glyph->pixel_width;
3927 current_x += current_glyph->pixel_width;
3928 ++desired_glyph, ++current_glyph, ++i;
3929 skip_first_p = 0;
3930 }
3931
3932 if (i == start_hpos || x != current_x)
3933 {
3934 i = start_hpos;
3935 x = start_x;
3936 desired_glyph = start;
3937 break;
3938 }
3939
3940 rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
3941 rif->write_glyphs (start, i - start_hpos);
3942 changed_p = 1;
3943 }
3944 }
3945
3946 /* Write the rest. */
3947 if (i < desired_row->used[TEXT_AREA])
3948 {
3949 rif->cursor_to (vpos, i, desired_row->y, x);
3950 rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
3951 changed_p = 1;
3952 }
3953
3954 /* Maybe clear to end of line. */
3955 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
3956 {
3957 /* If new row extends to the end of the text area, nothing
3958 has to be cleared, if and only if we did a write_glyphs
3959 above. This is made sure by setting desired_stop_pos
3960 appropriately above. */
3961 xassert (i < desired_row->used[TEXT_AREA]
3962 || ((desired_row->used[TEXT_AREA]
3963 == current_row->used[TEXT_AREA])
3964 && MATRIX_ROW_EXTENDS_FACE_P (current_row)));
3965 }
3966 else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
3967 {
3968 /* If old row extends to the end of the text area, clear. */
3969 if (i >= desired_row->used[TEXT_AREA])
3970 rif->cursor_to (vpos, i, desired_row->y,
3971 desired_row->pixel_width);
3972 rif->clear_end_of_line (-1);
3973 changed_p = 1;
3974 }
3975 else if (desired_row->pixel_width < current_row->pixel_width)
3976 {
3977 /* Otherwise clear to the end of the old row. Everything
3978 after that position should be clear already. */
3979 int xlim;
3980
3981 if (i >= desired_row->used[TEXT_AREA])
3982 rif->cursor_to (vpos, i, desired_row->y,
3983 desired_row->pixel_width);
3984
3985 /* If cursor is displayed at the end of the line, make sure
3986 it's cleared. Nowadays we don't have a phys_cursor_glyph
3987 with which to erase the cursor (because this method
3988 doesn't work with lbearing/rbearing), so we must do it
3989 this way. */
3990 if (vpos == w->phys_cursor.vpos
3991 && (desired_row->reversed_p
3992 ? (w->phys_cursor.hpos < 0)
3993 : (w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])))
3994 {
3995 w->phys_cursor_on_p = 0;
3996 xlim = -1;
3997 }
3998 else
3999 xlim = current_row->pixel_width;
4000 rif->clear_end_of_line (xlim);
4001 changed_p = 1;
4002 }
4003 }
4004
4005 return changed_p;
4006 }
4007
4008
4009 /* Update row VPOS in window W. Value is non-zero if display has been
4010 changed. */
4011
4012 static int
4013 update_window_line (struct window *w, int vpos, int *mouse_face_overwritten_p)
4014 {
4015 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
4016 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4017 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
4018 int changed_p = 0;
4019
4020 /* Set the row being updated. This is important to let xterm.c
4021 know what line height values are in effect. */
4022 updated_row = desired_row;
4023
4024 /* A row can be completely invisible in case a desired matrix was
4025 built with a vscroll and then make_cursor_line_fully_visible shifts
4026 the matrix. Make sure to make such rows current anyway, since
4027 we need the correct y-position, for example, in the current matrix. */
4028 if (desired_row->mode_line_p
4029 || desired_row->visible_height > 0)
4030 {
4031 xassert (desired_row->enabled_p);
4032
4033 /* Update display of the left margin area, if there is one. */
4034 if (!desired_row->full_width_p
4035 && !NILP (w->left_margin_cols))
4036 {
4037 changed_p = 1;
4038 update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
4039 }
4040
4041 /* Update the display of the text area. */
4042 if (update_text_area (w, vpos))
4043 {
4044 changed_p = 1;
4045 if (current_row->mouse_face_p)
4046 *mouse_face_overwritten_p = 1;
4047 }
4048
4049 /* Update display of the right margin area, if there is one. */
4050 if (!desired_row->full_width_p
4051 && !NILP (w->right_margin_cols))
4052 {
4053 changed_p = 1;
4054 update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
4055 }
4056
4057 /* Draw truncation marks etc. */
4058 if (!current_row->enabled_p
4059 || desired_row->y != current_row->y
4060 || desired_row->visible_height != current_row->visible_height
4061 || desired_row->cursor_in_fringe_p != current_row->cursor_in_fringe_p
4062 || desired_row->overlay_arrow_bitmap != current_row->overlay_arrow_bitmap
4063 || current_row->redraw_fringe_bitmaps_p
4064 || desired_row->mode_line_p != current_row->mode_line_p
4065 || desired_row->exact_window_width_line_p != current_row->exact_window_width_line_p
4066 || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
4067 != MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
4068 rif->after_update_window_line_hook (desired_row);
4069 }
4070
4071 /* Update current_row from desired_row. */
4072 make_current (w->desired_matrix, w->current_matrix, vpos);
4073 updated_row = NULL;
4074 return changed_p;
4075 }
4076
4077
4078 /* Set the cursor after an update of window W. This function may only
4079 be called from update_window. */
4080
4081 static void
4082 set_window_cursor_after_update (struct window *w)
4083 {
4084 struct frame *f = XFRAME (w->frame);
4085 struct redisplay_interface *rif = FRAME_RIF (f);
4086 int cx, cy, vpos, hpos;
4087
4088 /* Not intended for frame matrix updates. */
4089 xassert (FRAME_WINDOW_P (f));
4090
4091 if (cursor_in_echo_area
4092 && !NILP (echo_area_buffer[0])
4093 /* If we are showing a message instead of the mini-buffer,
4094 show the cursor for the message instead. */
4095 && XWINDOW (minibuf_window) == w
4096 && EQ (minibuf_window, echo_area_window)
4097 /* These cases apply only to the frame that contains
4098 the active mini-buffer window. */
4099 && FRAME_HAS_MINIBUF_P (f)
4100 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4101 {
4102 cx = cy = vpos = hpos = 0;
4103
4104 if (cursor_in_echo_area >= 0)
4105 {
4106 /* If the mini-buffer is several lines high, find the last
4107 line that has any text on it. Note: either all lines
4108 are enabled or none. Otherwise we wouldn't be able to
4109 determine Y. */
4110 struct glyph_row *row, *last_row;
4111 struct glyph *glyph;
4112 int yb = window_text_bottom_y (w);
4113
4114 last_row = NULL;
4115 row = w->current_matrix->rows;
4116 while (row->enabled_p
4117 && (last_row == NULL
4118 || MATRIX_ROW_BOTTOM_Y (row) <= yb))
4119 {
4120 if (row->used[TEXT_AREA]
4121 && row->glyphs[TEXT_AREA][0].charpos >= 0)
4122 last_row = row;
4123 ++row;
4124 }
4125
4126 if (last_row)
4127 {
4128 struct glyph *start = last_row->glyphs[TEXT_AREA];
4129 struct glyph *last = start + last_row->used[TEXT_AREA] - 1;
4130
4131 while (last > start && last->charpos < 0)
4132 --last;
4133
4134 for (glyph = start; glyph < last; ++glyph)
4135 {
4136 cx += glyph->pixel_width;
4137 ++hpos;
4138 }
4139
4140 cy = last_row->y;
4141 vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
4142 }
4143 }
4144 }
4145 else
4146 {
4147 cx = w->cursor.x;
4148 cy = w->cursor.y;
4149 hpos = w->cursor.hpos;
4150 vpos = w->cursor.vpos;
4151 }
4152
4153 /* Window cursor can be out of sync for horizontally split windows. */
4154 hpos = max (-1, hpos); /* -1 is for when cursor is on the left fringe */
4155 hpos = min (w->current_matrix->matrix_w - 1, hpos);
4156 vpos = max (0, vpos);
4157 vpos = min (w->current_matrix->nrows - 1, vpos);
4158 rif->cursor_to (vpos, hpos, cy, cx);
4159 }
4160
4161
4162 /* Set WINDOW->must_be_updated_p to ON_P for all windows in the window
4163 tree rooted at W. */
4164
4165 void
4166 set_window_update_flags (struct window *w, int on_p)
4167 {
4168 while (w)
4169 {
4170 if (!NILP (w->hchild))
4171 set_window_update_flags (XWINDOW (w->hchild), on_p);
4172 else if (!NILP (w->vchild))
4173 set_window_update_flags (XWINDOW (w->vchild), on_p);
4174 else
4175 w->must_be_updated_p = on_p;
4176
4177 w = NILP (w->next) ? 0 : XWINDOW (w->next);
4178 }
4179 }
4180
4181
4182 \f
4183 /***********************************************************************
4184 Window-Based Scrolling
4185 ***********************************************************************/
4186
4187 /* Structure describing rows in scrolling_window. */
4188
4189 struct row_entry
4190 {
4191 /* Number of occurrences of this row in desired and current matrix. */
4192 int old_uses, new_uses;
4193
4194 /* Vpos of row in new matrix. */
4195 int new_line_number;
4196
4197 /* Bucket index of this row_entry in the hash table row_table. */
4198 ptrdiff_t bucket;
4199
4200 /* The row described by this entry. */
4201 struct glyph_row *row;
4202
4203 /* Hash collision chain. */
4204 struct row_entry *next;
4205 };
4206
4207 /* A pool to allocate row_entry structures from, and the size of the
4208 pool. The pool is reallocated in scrolling_window when we find
4209 that we need a larger one. */
4210
4211 static struct row_entry *row_entry_pool;
4212 static ptrdiff_t row_entry_pool_size;
4213
4214 /* Index of next free entry in row_entry_pool. */
4215
4216 static ptrdiff_t row_entry_idx;
4217
4218 /* The hash table used during scrolling, and the table's size. This
4219 table is used to quickly identify equal rows in the desired and
4220 current matrix. */
4221
4222 static struct row_entry **row_table;
4223 static ptrdiff_t row_table_size;
4224
4225 /* Vectors of pointers to row_entry structures belonging to the
4226 current and desired matrix, and the size of the vectors. */
4227
4228 static struct row_entry **old_lines, **new_lines;
4229 static ptrdiff_t old_lines_size, new_lines_size;
4230
4231 /* A pool to allocate run structures from, and its size. */
4232
4233 static struct run *run_pool;
4234 static ptrdiff_t runs_size;
4235
4236 /* A vector of runs of lines found during scrolling. */
4237
4238 static struct run **runs;
4239
4240 /* Add glyph row ROW to the scrolling hash table. */
4241
4242 static inline struct row_entry *
4243 add_row_entry (struct glyph_row *row)
4244 {
4245 struct row_entry *entry;
4246 ptrdiff_t i = row->hash % row_table_size;
4247
4248 entry = row_table[i];
4249 xassert (entry || verify_row_hash (row));
4250 while (entry && !row_equal_p (entry->row, row, 1))
4251 entry = entry->next;
4252
4253 if (entry == NULL)
4254 {
4255 entry = row_entry_pool + row_entry_idx++;
4256 entry->row = row;
4257 entry->old_uses = entry->new_uses = 0;
4258 entry->new_line_number = 0;
4259 entry->bucket = i;
4260 entry->next = row_table[i];
4261 row_table[i] = entry;
4262 }
4263
4264 return entry;
4265 }
4266
4267
4268 /* Try to reuse part of the current display of W by scrolling lines.
4269 HEADER_LINE_P non-zero means W has a header line.
4270
4271 The algorithm is taken from Communications of the ACM, Apr78 "A
4272 Technique for Isolating Differences Between Files." It should take
4273 O(N) time.
4274
4275 A short outline of the steps of the algorithm
4276
4277 1. Skip lines equal at the start and end of both matrices.
4278
4279 2. Enter rows in the current and desired matrix into a symbol
4280 table, counting how often they appear in both matrices.
4281
4282 3. Rows that appear exactly once in both matrices serve as anchors,
4283 i.e. we assume that such lines are likely to have been moved.
4284
4285 4. Starting from anchor lines, extend regions to be scrolled both
4286 forward and backward.
4287
4288 Value is
4289
4290 -1 if all rows were found to be equal.
4291 0 to indicate that we did not scroll the display, or
4292 1 if we did scroll. */
4293
4294 static int
4295 scrolling_window (struct window *w, int header_line_p)
4296 {
4297 struct glyph_matrix *desired_matrix = w->desired_matrix;
4298 struct glyph_matrix *current_matrix = w->current_matrix;
4299 int yb = window_text_bottom_y (w);
4300 ptrdiff_t i;
4301 int j, first_old, first_new, last_old, last_new;
4302 int nruns, run_idx;
4303 ptrdiff_t n;
4304 struct row_entry *entry;
4305 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
4306
4307 /* Skip over rows equal at the start. */
4308 for (i = header_line_p ? 1 : 0; i < current_matrix->nrows - 1; ++i)
4309 {
4310 struct glyph_row *d = MATRIX_ROW (desired_matrix, i);
4311 struct glyph_row *c = MATRIX_ROW (current_matrix, i);
4312
4313 if (c->enabled_p
4314 && d->enabled_p
4315 && !d->redraw_fringe_bitmaps_p
4316 && c->y == d->y
4317 && MATRIX_ROW_BOTTOM_Y (c) <= yb
4318 && MATRIX_ROW_BOTTOM_Y (d) <= yb
4319 && row_equal_p (c, d, 1))
4320 {
4321 assign_row (c, d);
4322 d->enabled_p = 0;
4323 }
4324 else
4325 break;
4326 }
4327
4328 /* Give up if some rows in the desired matrix are not enabled. */
4329 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4330 return -1;
4331
4332 first_old = first_new = i;
4333
4334 /* Set last_new to the index + 1 of the row that reaches the
4335 bottom boundary in the desired matrix. Give up if we find a
4336 disabled row before we reach the bottom boundary. */
4337 i = first_new + 1;
4338 while (i < desired_matrix->nrows - 1)
4339 {
4340 int bottom;
4341
4342 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4343 return 0;
4344 bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i));
4345 if (bottom <= yb)
4346 ++i;
4347 if (bottom >= yb)
4348 break;
4349 }
4350
4351 last_new = i;
4352
4353 /* Set last_old to the index + 1 of the row that reaches the bottom
4354 boundary in the current matrix. We don't look at the enabled
4355 flag here because we plan to reuse part of the display even if
4356 other parts are disabled. */
4357 i = first_old + 1;
4358 while (i < current_matrix->nrows - 1)
4359 {
4360 int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i));
4361 if (bottom <= yb)
4362 ++i;
4363 if (bottom >= yb)
4364 break;
4365 }
4366
4367 last_old = i;
4368
4369 /* Skip over rows equal at the bottom. */
4370 i = last_new;
4371 j = last_old;
4372 while (i - 1 > first_new
4373 && j - 1 > first_old
4374 && MATRIX_ROW (current_matrix, j - 1)->enabled_p
4375 && (MATRIX_ROW (current_matrix, j - 1)->y
4376 == MATRIX_ROW (desired_matrix, i - 1)->y)
4377 && !MATRIX_ROW (desired_matrix, i - 1)->redraw_fringe_bitmaps_p
4378 && row_equal_p (MATRIX_ROW (desired_matrix, i - 1),
4379 MATRIX_ROW (current_matrix, j - 1), 1))
4380 --i, --j;
4381 last_new = i;
4382 last_old = j;
4383
4384 /* Nothing to do if all rows are equal. */
4385 if (last_new == first_new)
4386 return 0;
4387
4388 /* Check for integer overflow in size calculation.
4389
4390 If next_almost_prime checks (N) for divisibility by 2..10, then
4391 it can return at most N + 10, e.g., next_almost_prime (1) == 11.
4392 So, set next_almost_prime_increment_max to 10.
4393
4394 It's just a coincidence that next_almost_prime_increment_max ==
4395 NEXT_ALMOST_PRIME_LIMIT - 1. If NEXT_ALMOST_PRIME_LIMIT were
4396 13, then next_almost_prime_increment_max would be 14, e.g.,
4397 because next_almost_prime (113) would be 127. */
4398 {
4399 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
4400 enum { next_almost_prime_increment_max = 10 };
4401 ptrdiff_t row_table_max =
4402 (min (PTRDIFF_MAX, SIZE_MAX) / (3 * sizeof *row_table)
4403 - next_almost_prime_increment_max);
4404 ptrdiff_t current_nrows_max = row_table_max - desired_matrix->nrows;
4405 if (current_nrows_max < current_matrix->nrows)
4406 memory_full (SIZE_MAX);
4407 }
4408
4409 /* Reallocate vectors, tables etc. if necessary. */
4410
4411 if (current_matrix->nrows > old_lines_size)
4412 old_lines = xpalloc (old_lines, &old_lines_size,
4413 current_matrix->nrows - old_lines_size,
4414 INT_MAX, sizeof *old_lines);
4415
4416 if (desired_matrix->nrows > new_lines_size)
4417 new_lines = xpalloc (new_lines, &new_lines_size,
4418 desired_matrix->nrows - new_lines_size,
4419 INT_MAX, sizeof *new_lines);
4420
4421 n = desired_matrix->nrows;
4422 n += current_matrix->nrows;
4423 if (row_table_size < 3 * n)
4424 {
4425 ptrdiff_t size = next_almost_prime (3 * n);
4426 row_table = xnrealloc (row_table, size, sizeof *row_table);
4427 row_table_size = size;
4428 memset (row_table, 0, size * sizeof *row_table);
4429 }
4430
4431 if (n > row_entry_pool_size)
4432 row_entry_pool = xpalloc (row_entry_pool, &row_entry_pool_size,
4433 n - row_entry_pool_size,
4434 -1, sizeof *row_entry_pool);
4435
4436 if (desired_matrix->nrows > runs_size)
4437 {
4438 runs = xnrealloc (runs, desired_matrix->nrows, sizeof *runs);
4439 run_pool = xnrealloc (run_pool, desired_matrix->nrows, sizeof *run_pool);
4440 runs_size = desired_matrix->nrows;
4441 }
4442
4443 nruns = run_idx = 0;
4444 row_entry_idx = 0;
4445
4446 /* Add rows from the current and desired matrix to the hash table
4447 row_hash_table to be able to find equal ones quickly. */
4448
4449 for (i = first_old; i < last_old; ++i)
4450 {
4451 if (MATRIX_ROW (current_matrix, i)->enabled_p)
4452 {
4453 entry = add_row_entry (MATRIX_ROW (current_matrix, i));
4454 old_lines[i] = entry;
4455 ++entry->old_uses;
4456 }
4457 else
4458 old_lines[i] = NULL;
4459 }
4460
4461 for (i = first_new; i < last_new; ++i)
4462 {
4463 xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
4464 entry = add_row_entry (MATRIX_ROW (desired_matrix, i));
4465 ++entry->new_uses;
4466 entry->new_line_number = i;
4467 new_lines[i] = entry;
4468 }
4469
4470 /* Identify moves based on lines that are unique and equal
4471 in both matrices. */
4472 for (i = first_old; i < last_old;)
4473 if (old_lines[i]
4474 && old_lines[i]->old_uses == 1
4475 && old_lines[i]->new_uses == 1)
4476 {
4477 int p, q;
4478 int new_line = old_lines[i]->new_line_number;
4479 struct run *run = run_pool + run_idx++;
4480
4481 /* Record move. */
4482 run->current_vpos = i;
4483 run->current_y = MATRIX_ROW (current_matrix, i)->y;
4484 run->desired_vpos = new_line;
4485 run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
4486 run->nrows = 1;
4487 run->height = MATRIX_ROW (current_matrix, i)->height;
4488
4489 /* Extend backward. */
4490 p = i - 1;
4491 q = new_line - 1;
4492 while (p > first_old
4493 && q > first_new
4494 && old_lines[p] == new_lines[q])
4495 {
4496 int h = MATRIX_ROW (current_matrix, p)->height;
4497 --run->current_vpos;
4498 --run->desired_vpos;
4499 ++run->nrows;
4500 run->height += h;
4501 run->desired_y -= h;
4502 run->current_y -= h;
4503 --p, --q;
4504 }
4505
4506 /* Extend forward. */
4507 p = i + 1;
4508 q = new_line + 1;
4509 while (p < last_old
4510 && q < last_new
4511 && old_lines[p] == new_lines[q])
4512 {
4513 int h = MATRIX_ROW (current_matrix, p)->height;
4514 ++run->nrows;
4515 run->height += h;
4516 ++p, ++q;
4517 }
4518
4519 /* Insert run into list of all runs. Order runs by copied
4520 pixel lines. Note that we record runs that don't have to
4521 be copied because they are already in place. This is done
4522 because we can avoid calling update_window_line in this
4523 case. */
4524 for (p = 0; p < nruns && runs[p]->height > run->height; ++p)
4525 ;
4526 for (q = nruns; q > p; --q)
4527 runs[q] = runs[q - 1];
4528 runs[p] = run;
4529 ++nruns;
4530
4531 i += run->nrows;
4532 }
4533 else
4534 ++i;
4535
4536 /* Do the moves. Do it in a way that we don't overwrite something
4537 we want to copy later on. This is not solvable in general
4538 because there is only one display and we don't have a way to
4539 exchange areas on this display. Example:
4540
4541 +-----------+ +-----------+
4542 | A | | B |
4543 +-----------+ --> +-----------+
4544 | B | | A |
4545 +-----------+ +-----------+
4546
4547 Instead, prefer bigger moves, and invalidate moves that would
4548 copy from where we copied to. */
4549
4550 for (i = 0; i < nruns; ++i)
4551 if (runs[i]->nrows > 0)
4552 {
4553 struct run *r = runs[i];
4554
4555 /* Copy on the display. */
4556 if (r->current_y != r->desired_y)
4557 {
4558 rif->clear_window_mouse_face (w);
4559 rif->scroll_run_hook (w, r);
4560 }
4561
4562 /* Truncate runs that copy to where we copied to, and
4563 invalidate runs that copy from where we copied to. */
4564 for (j = nruns - 1; j > i; --j)
4565 {
4566 struct run *p = runs[j];
4567 int truncated_p = 0;
4568
4569 if (p->nrows > 0
4570 && p->desired_y < r->desired_y + r->height
4571 && p->desired_y + p->height > r->desired_y)
4572 {
4573 if (p->desired_y < r->desired_y)
4574 {
4575 p->nrows = r->desired_vpos - p->desired_vpos;
4576 p->height = r->desired_y - p->desired_y;
4577 truncated_p = 1;
4578 }
4579 else
4580 {
4581 int nrows_copied = (r->desired_vpos + r->nrows
4582 - p->desired_vpos);
4583
4584 if (p->nrows <= nrows_copied)
4585 p->nrows = 0;
4586 else
4587 {
4588 int height_copied = (r->desired_y + r->height
4589 - p->desired_y);
4590
4591 p->current_vpos += nrows_copied;
4592 p->desired_vpos += nrows_copied;
4593 p->nrows -= nrows_copied;
4594 p->current_y += height_copied;
4595 p->desired_y += height_copied;
4596 p->height -= height_copied;
4597 truncated_p = 1;
4598 }
4599 }
4600 }
4601
4602 if (r->current_y != r->desired_y
4603 /* The condition below is equivalent to
4604 ((p->current_y >= r->desired_y
4605 && p->current_y < r->desired_y + r->height)
4606 || (p->current_y + p->height > r->desired_y
4607 && (p->current_y + p->height
4608 <= r->desired_y + r->height)))
4609 because we have 0 < p->height <= r->height. */
4610 && p->current_y < r->desired_y + r->height
4611 && p->current_y + p->height > r->desired_y)
4612 p->nrows = 0;
4613
4614 /* Reorder runs by copied pixel lines if truncated. */
4615 if (truncated_p && p->nrows > 0)
4616 {
4617 int k = nruns - 1;
4618
4619 while (runs[k]->nrows == 0 || runs[k]->height < p->height)
4620 k--;
4621 memmove (runs + j, runs + j + 1, (k - j) * sizeof (*runs));
4622 runs[k] = p;
4623 }
4624 }
4625
4626 /* Assign matrix rows. */
4627 for (j = 0; j < r->nrows; ++j)
4628 {
4629 struct glyph_row *from, *to;
4630 int to_overlapped_p;
4631
4632 to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
4633 from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
4634 to_overlapped_p = to->overlapped_p;
4635 from->redraw_fringe_bitmaps_p = from->fringe_bitmap_periodic_p;
4636 assign_row (to, from);
4637 /* The above `assign_row' actually does swap, so if we had
4638 an overlap in the copy destination of two runs, then
4639 the second run would assign a previously disabled bogus
4640 row. But thanks to the truncation code in the
4641 preceding for-loop, we no longer have such an overlap,
4642 and thus the assigned row should always be enabled. */
4643 xassert (to->enabled_p);
4644 from->enabled_p = 0;
4645 to->overlapped_p = to_overlapped_p;
4646 }
4647 }
4648
4649 /* Clear the hash table, for the next time. */
4650 for (i = 0; i < row_entry_idx; ++i)
4651 row_table[row_entry_pool[i].bucket] = NULL;
4652
4653 /* Value is 1 to indicate that we scrolled the display. */
4654 return 0 < nruns;
4655 }
4656
4657
4658 \f
4659 /************************************************************************
4660 Frame-Based Updates
4661 ************************************************************************/
4662
4663 /* Update the desired frame matrix of frame F.
4664
4665 FORCE_P non-zero means that the update should not be stopped by
4666 pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
4667 should not be tried.
4668
4669 Value is non-zero if update was stopped due to pending input. */
4670
4671 static int
4672 update_frame_1 (struct frame *f, int force_p, int inhibit_id_p)
4673 {
4674 /* Frame matrices to work on. */
4675 struct glyph_matrix *current_matrix = f->current_matrix;
4676 struct glyph_matrix *desired_matrix = f->desired_matrix;
4677 int i;
4678 int pause_p;
4679 int preempt_count = baud_rate / 2400 + 1;
4680
4681 xassert (current_matrix && desired_matrix);
4682
4683 if (baud_rate != FRAME_COST_BAUD_RATE (f))
4684 calculate_costs (f);
4685
4686 if (preempt_count <= 0)
4687 preempt_count = 1;
4688
4689 #if !PERIODIC_PREEMPTION_CHECKING
4690 if (!force_p && detect_input_pending_ignore_squeezables ())
4691 {
4692 pause_p = 1;
4693 goto do_pause;
4694 }
4695 #endif
4696
4697 /* If we cannot insert/delete lines, it's no use trying it. */
4698 if (!FRAME_LINE_INS_DEL_OK (f))
4699 inhibit_id_p = 1;
4700
4701 /* See if any of the desired lines are enabled; don't compute for
4702 i/d line if just want cursor motion. */
4703 for (i = 0; i < desired_matrix->nrows; i++)
4704 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4705 break;
4706
4707 /* Try doing i/d line, if not yet inhibited. */
4708 if (!inhibit_id_p && i < desired_matrix->nrows)
4709 force_p |= scrolling (f);
4710
4711 /* Update the individual lines as needed. Do bottom line first. */
4712 if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
4713 update_frame_line (f, desired_matrix->nrows - 1);
4714
4715 /* Now update the rest of the lines. */
4716 for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
4717 {
4718 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4719 {
4720 if (FRAME_TERMCAP_P (f))
4721 {
4722 /* Flush out every so many lines.
4723 Also flush out if likely to have more than 1k buffered
4724 otherwise. I'm told that some telnet connections get
4725 really screwed by more than 1k output at once. */
4726 FILE *display_output = FRAME_TTY (f)->output;
4727 if (display_output)
4728 {
4729 int outq = PENDING_OUTPUT_COUNT (display_output);
4730 if (outq > 900
4731 || (outq > 20 && ((i - 1) % preempt_count == 0)))
4732 {
4733 fflush (display_output);
4734 if (preempt_count == 1)
4735 {
4736 #ifdef EMACS_OUTQSIZE
4737 if (EMACS_OUTQSIZE (0, &outq) < 0)
4738 /* Probably not a tty. Ignore the error and reset
4739 the outq count. */
4740 outq = PENDING_OUTPUT_COUNT (FRAME_TTY (f->output));
4741 #endif
4742 outq *= 10;
4743 if (baud_rate <= outq && baud_rate > 0)
4744 sleep (outq / baud_rate);
4745 }
4746 }
4747 }
4748 }
4749
4750 #if PERIODIC_PREEMPTION_CHECKING
4751 if (!force_p)
4752 {
4753 EMACS_TIME tm, dif;
4754 EMACS_GET_TIME (tm);
4755 EMACS_SUB_TIME (dif, preemption_next_check, tm);
4756 if (EMACS_TIME_NEG_P (dif))
4757 {
4758 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
4759 if (detect_input_pending_ignore_squeezables ())
4760 break;
4761 }
4762 }
4763 #else
4764 if (!force_p && (i - 1) % preempt_count == 0)
4765 detect_input_pending_ignore_squeezables ();
4766 #endif
4767
4768 update_frame_line (f, i);
4769 }
4770 }
4771
4772 pause_p = (i < FRAME_LINES (f) - 1) ? i : 0;
4773
4774 /* Now just clean up termcap drivers and set cursor, etc. */
4775 if (!pause_p)
4776 {
4777 if ((cursor_in_echo_area
4778 /* If we are showing a message instead of the mini-buffer,
4779 show the cursor for the message instead of for the
4780 (now hidden) mini-buffer contents. */
4781 || (EQ (minibuf_window, selected_window)
4782 && EQ (minibuf_window, echo_area_window)
4783 && !NILP (echo_area_buffer[0])))
4784 /* These cases apply only to the frame that contains
4785 the active mini-buffer window. */
4786 && FRAME_HAS_MINIBUF_P (f)
4787 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4788 {
4789 int top = WINDOW_TOP_EDGE_LINE (XWINDOW (FRAME_MINIBUF_WINDOW (f)));
4790 int row, col;
4791
4792 if (cursor_in_echo_area < 0)
4793 {
4794 /* Negative value of cursor_in_echo_area means put
4795 cursor at beginning of line. */
4796 row = top;
4797 col = 0;
4798 }
4799 else
4800 {
4801 /* Positive value of cursor_in_echo_area means put
4802 cursor at the end of the prompt. If the mini-buffer
4803 is several lines high, find the last line that has
4804 any text on it. */
4805 row = FRAME_LINES (f);
4806 do
4807 {
4808 --row;
4809 col = 0;
4810
4811 if (MATRIX_ROW_ENABLED_P (current_matrix, row))
4812 {
4813 /* Frame rows are filled up with spaces that
4814 must be ignored here. */
4815 struct glyph_row *r = MATRIX_ROW (current_matrix,
4816 row);
4817 struct glyph *start = r->glyphs[TEXT_AREA];
4818 struct glyph *last = start + r->used[TEXT_AREA];
4819
4820 while (last > start
4821 && (last - 1)->charpos < 0)
4822 --last;
4823
4824 col = last - start;
4825 }
4826 }
4827 while (row > top && col == 0);
4828
4829 /* Make sure COL is not out of range. */
4830 if (col >= FRAME_CURSOR_X_LIMIT (f))
4831 {
4832 /* If we have another row, advance cursor into it. */
4833 if (row < FRAME_LINES (f) - 1)
4834 {
4835 col = FRAME_LEFT_SCROLL_BAR_COLS (f);
4836 row++;
4837 }
4838 /* Otherwise move it back in range. */
4839 else
4840 col = FRAME_CURSOR_X_LIMIT (f) - 1;
4841 }
4842 }
4843
4844 cursor_to (f, row, col);
4845 }
4846 else
4847 {
4848 /* We have only one cursor on terminal frames. Use it to
4849 display the cursor of the selected window. */
4850 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
4851 if (w->cursor.vpos >= 0
4852 /* The cursor vpos may be temporarily out of bounds
4853 in the following situation: There is one window,
4854 with the cursor in the lower half of it. The window
4855 is split, and a message causes a redisplay before
4856 a new cursor position has been computed. */
4857 && w->cursor.vpos < WINDOW_TOTAL_LINES (w))
4858 {
4859 int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
4860 int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
4861
4862 if (INTEGERP (w->left_margin_cols))
4863 x += XFASTINT (w->left_margin_cols);
4864
4865 /* x = max (min (x, FRAME_TOTAL_COLS (f) - 1), 0); */
4866 cursor_to (f, y, x);
4867 }
4868 }
4869 }
4870
4871 #if !PERIODIC_PREEMPTION_CHECKING
4872 do_pause:
4873 #endif
4874
4875 clear_desired_matrices (f);
4876 return pause_p;
4877 }
4878
4879
4880 /* Do line insertions/deletions on frame F for frame-based redisplay. */
4881
4882 static int
4883 scrolling (struct frame *frame)
4884 {
4885 int unchanged_at_top, unchanged_at_bottom;
4886 int window_size;
4887 int changed_lines;
4888 int *old_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4889 int *new_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4890 int *draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4891 int *old_draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4892 register int i;
4893 int free_at_end_vpos = FRAME_LINES (frame);
4894 struct glyph_matrix *current_matrix = frame->current_matrix;
4895 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4896
4897 if (!current_matrix)
4898 abort ();
4899
4900 /* Compute hash codes of all the lines. Also calculate number of
4901 changed lines, number of unchanged lines at the beginning, and
4902 number of unchanged lines at the end. */
4903 changed_lines = 0;
4904 unchanged_at_top = 0;
4905 unchanged_at_bottom = FRAME_LINES (frame);
4906 for (i = 0; i < FRAME_LINES (frame); i++)
4907 {
4908 /* Give up on this scrolling if some old lines are not enabled. */
4909 if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
4910 return 0;
4911 old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
4912 if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
4913 {
4914 /* This line cannot be redrawn, so don't let scrolling mess it. */
4915 new_hash[i] = old_hash[i];
4916 #define INFINITY 1000000 /* Taken from scroll.c */
4917 draw_cost[i] = INFINITY;
4918 }
4919 else
4920 {
4921 new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
4922 draw_cost[i] = line_draw_cost (desired_matrix, i);
4923 }
4924
4925 if (old_hash[i] != new_hash[i])
4926 {
4927 changed_lines++;
4928 unchanged_at_bottom = FRAME_LINES (frame) - i - 1;
4929 }
4930 else if (i == unchanged_at_top)
4931 unchanged_at_top++;
4932 old_draw_cost[i] = line_draw_cost (current_matrix, i);
4933 }
4934
4935 /* If changed lines are few, don't allow preemption, don't scroll. */
4936 if ((!FRAME_SCROLL_REGION_OK (frame)
4937 && changed_lines < baud_rate / 2400)
4938 || unchanged_at_bottom == FRAME_LINES (frame))
4939 return 1;
4940
4941 window_size = (FRAME_LINES (frame) - unchanged_at_top
4942 - unchanged_at_bottom);
4943
4944 if (FRAME_SCROLL_REGION_OK (frame))
4945 free_at_end_vpos -= unchanged_at_bottom;
4946 else if (FRAME_MEMORY_BELOW_FRAME (frame))
4947 free_at_end_vpos = -1;
4948
4949 /* If large window, fast terminal and few lines in common between
4950 current frame and desired frame, don't bother with i/d calc. */
4951 if (!FRAME_SCROLL_REGION_OK (frame)
4952 && window_size >= 18 && baud_rate > 2400
4953 && (window_size >=
4954 10 * scrolling_max_lines_saved (unchanged_at_top,
4955 FRAME_LINES (frame) - unchanged_at_bottom,
4956 old_hash, new_hash, draw_cost)))
4957 return 0;
4958
4959 if (window_size < 2)
4960 return 0;
4961
4962 scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
4963 draw_cost + unchanged_at_top - 1,
4964 old_draw_cost + unchanged_at_top - 1,
4965 old_hash + unchanged_at_top - 1,
4966 new_hash + unchanged_at_top - 1,
4967 free_at_end_vpos - unchanged_at_top);
4968
4969 return 0;
4970 }
4971
4972
4973 /* Count the number of blanks at the start of the vector of glyphs R
4974 which is LEN glyphs long. */
4975
4976 static int
4977 count_blanks (struct glyph *r, int len)
4978 {
4979 int i;
4980
4981 for (i = 0; i < len; ++i)
4982 if (!CHAR_GLYPH_SPACE_P (r[i]))
4983 break;
4984
4985 return i;
4986 }
4987
4988
4989 /* Count the number of glyphs in common at the start of the glyph
4990 vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
4991 of STR2. Value is the number of equal glyphs equal at the start. */
4992
4993 static int
4994 count_match (struct glyph *str1, struct glyph *end1, struct glyph *str2, struct glyph *end2)
4995 {
4996 struct glyph *p1 = str1;
4997 struct glyph *p2 = str2;
4998
4999 while (p1 < end1
5000 && p2 < end2
5001 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2))
5002 ++p1, ++p2;
5003
5004 return p1 - str1;
5005 }
5006
5007
5008 /* Char insertion/deletion cost vector, from term.c */
5009
5010 #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_TOTAL_COLS ((f))])
5011
5012
5013 /* Perform a frame-based update on line VPOS in frame FRAME. */
5014
5015 static void
5016 update_frame_line (struct frame *f, int vpos)
5017 {
5018 struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
5019 int tem;
5020 int osp, nsp, begmatch, endmatch, olen, nlen;
5021 struct glyph_matrix *current_matrix = f->current_matrix;
5022 struct glyph_matrix *desired_matrix = f->desired_matrix;
5023 struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
5024 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
5025 int must_write_whole_line_p;
5026 int write_spaces_p = FRAME_MUST_WRITE_SPACES (f);
5027 int colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background
5028 != FACE_TTY_DEFAULT_BG_COLOR);
5029
5030 if (colored_spaces_p)
5031 write_spaces_p = 1;
5032
5033 /* Current row not enabled means it has unknown contents. We must
5034 write the whole desired line in that case. */
5035 must_write_whole_line_p = !current_row->enabled_p;
5036 if (must_write_whole_line_p)
5037 {
5038 obody = 0;
5039 olen = 0;
5040 }
5041 else
5042 {
5043 obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
5044 olen = current_row->used[TEXT_AREA];
5045
5046 /* Ignore trailing spaces, if we can. */
5047 if (!write_spaces_p)
5048 while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
5049 olen--;
5050 }
5051
5052 current_row->enabled_p = 1;
5053 current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
5054
5055 /* If desired line is empty, just clear the line. */
5056 if (!desired_row->enabled_p)
5057 {
5058 nlen = 0;
5059 goto just_erase;
5060 }
5061
5062 nbody = desired_row->glyphs[TEXT_AREA];
5063 nlen = desired_row->used[TEXT_AREA];
5064 nend = nbody + nlen;
5065
5066 /* If display line has unknown contents, write the whole line. */
5067 if (must_write_whole_line_p)
5068 {
5069 /* Ignore spaces at the end, if we can. */
5070 if (!write_spaces_p)
5071 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5072 --nlen;
5073
5074 /* Write the contents of the desired line. */
5075 if (nlen)
5076 {
5077 cursor_to (f, vpos, 0);
5078 write_glyphs (f, nbody, nlen);
5079 }
5080
5081 /* Don't call clear_end_of_line if we already wrote the whole
5082 line. The cursor will not be at the right margin in that
5083 case but in the line below. */
5084 if (nlen < FRAME_TOTAL_COLS (f))
5085 {
5086 cursor_to (f, vpos, nlen);
5087 clear_end_of_line (f, FRAME_TOTAL_COLS (f));
5088 }
5089 else
5090 /* Make sure we are in the right row, otherwise cursor movement
5091 with cmgoto might use `ch' in the wrong row. */
5092 cursor_to (f, vpos, 0);
5093
5094 make_current (desired_matrix, current_matrix, vpos);
5095 return;
5096 }
5097
5098 /* Pretend trailing spaces are not there at all,
5099 unless for one reason or another we must write all spaces. */
5100 if (!write_spaces_p)
5101 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5102 nlen--;
5103
5104 /* If there's no i/d char, quickly do the best we can without it. */
5105 if (!FRAME_CHAR_INS_DEL_OK (f))
5106 {
5107 int i, j;
5108
5109 /* Find the first glyph in desired row that doesn't agree with
5110 a glyph in the current row, and write the rest from there on. */
5111 for (i = 0; i < nlen; i++)
5112 {
5113 if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
5114 {
5115 /* Find the end of the run of different glyphs. */
5116 j = i + 1;
5117 while (j < nlen
5118 && (j >= olen
5119 || !GLYPH_EQUAL_P (nbody + j, obody + j)
5120 || CHAR_GLYPH_PADDING_P (nbody[j])))
5121 ++j;
5122
5123 /* Output this run of non-matching chars. */
5124 cursor_to (f, vpos, i);
5125 write_glyphs (f, nbody + i, j - i);
5126 i = j - 1;
5127
5128 /* Now find the next non-match. */
5129 }
5130 }
5131
5132 /* Clear the rest of the line, or the non-clear part of it. */
5133 if (olen > nlen)
5134 {
5135 cursor_to (f, vpos, nlen);
5136 clear_end_of_line (f, olen);
5137 }
5138
5139 /* Make current row = desired row. */
5140 make_current (desired_matrix, current_matrix, vpos);
5141 return;
5142 }
5143
5144 /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
5145 characters in a row. */
5146
5147 if (!olen)
5148 {
5149 /* If current line is blank, skip over initial spaces, if
5150 possible, and write the rest. */
5151 if (write_spaces_p)
5152 nsp = 0;
5153 else
5154 nsp = count_blanks (nbody, nlen);
5155
5156 if (nlen > nsp)
5157 {
5158 cursor_to (f, vpos, nsp);
5159 write_glyphs (f, nbody + nsp, nlen - nsp);
5160 }
5161
5162 /* Exchange contents between current_frame and new_frame. */
5163 make_current (desired_matrix, current_matrix, vpos);
5164 return;
5165 }
5166
5167 /* Compute number of leading blanks in old and new contents. */
5168 osp = count_blanks (obody, olen);
5169 nsp = (colored_spaces_p ? 0 : count_blanks (nbody, nlen));
5170
5171 /* Compute number of matching chars starting with first non-blank. */
5172 begmatch = count_match (obody + osp, obody + olen,
5173 nbody + nsp, nbody + nlen);
5174
5175 /* Spaces in new match implicit space past the end of old. */
5176 /* A bug causing this to be a no-op was fixed in 18.29. */
5177 if (!write_spaces_p && osp + begmatch == olen)
5178 {
5179 np1 = nbody + nsp;
5180 while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
5181 ++begmatch;
5182 }
5183
5184 /* Avoid doing insert/delete char
5185 just cause number of leading spaces differs
5186 when the following text does not match. */
5187 if (begmatch == 0 && osp != nsp)
5188 osp = nsp = min (osp, nsp);
5189
5190 /* Find matching characters at end of line */
5191 op1 = obody + olen;
5192 np1 = nbody + nlen;
5193 op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
5194 while (op1 > op2
5195 && GLYPH_EQUAL_P (op1 - 1, np1 - 1))
5196 {
5197 op1--;
5198 np1--;
5199 }
5200 endmatch = obody + olen - op1;
5201
5202 /* tem gets the distance to insert or delete.
5203 endmatch is how many characters we save by doing so.
5204 Is it worth it? */
5205
5206 tem = (nlen - nsp) - (olen - osp);
5207 if (endmatch && tem
5208 && (!FRAME_CHAR_INS_DEL_OK (f)
5209 || endmatch <= char_ins_del_cost (f)[tem]))
5210 endmatch = 0;
5211
5212 /* nsp - osp is the distance to insert or delete.
5213 If that is nonzero, begmatch is known to be nonzero also.
5214 begmatch + endmatch is how much we save by doing the ins/del.
5215 Is it worth it? */
5216
5217 if (nsp != osp
5218 && (!FRAME_CHAR_INS_DEL_OK (f)
5219 || begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp]))
5220 {
5221 begmatch = 0;
5222 endmatch = 0;
5223 osp = nsp = min (osp, nsp);
5224 }
5225
5226 /* Now go through the line, inserting, writing and
5227 deleting as appropriate. */
5228
5229 if (osp > nsp)
5230 {
5231 cursor_to (f, vpos, nsp);
5232 delete_glyphs (f, osp - nsp);
5233 }
5234 else if (nsp > osp)
5235 {
5236 /* If going to delete chars later in line
5237 and insert earlier in the line,
5238 must delete first to avoid losing data in the insert */
5239 if (endmatch && nlen < olen + nsp - osp)
5240 {
5241 cursor_to (f, vpos, nlen - endmatch + osp - nsp);
5242 delete_glyphs (f, olen + nsp - osp - nlen);
5243 olen = nlen - (nsp - osp);
5244 }
5245 cursor_to (f, vpos, osp);
5246 insert_glyphs (f, 0, nsp - osp);
5247 }
5248 olen += nsp - osp;
5249
5250 tem = nsp + begmatch + endmatch;
5251 if (nlen != tem || olen != tem)
5252 {
5253 if (!endmatch || nlen == olen)
5254 {
5255 /* If new text being written reaches right margin, there is
5256 no need to do clear-to-eol at the end of this function
5257 (and it would not be safe, since cursor is not going to
5258 be "at the margin" after the text is done). */
5259 if (nlen == FRAME_TOTAL_COLS (f))
5260 olen = 0;
5261
5262 /* Function write_glyphs is prepared to do nothing
5263 if passed a length <= 0. Check it here to avoid
5264 unnecessary cursor movement. */
5265 if (nlen - tem > 0)
5266 {
5267 cursor_to (f, vpos, nsp + begmatch);
5268 write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
5269 }
5270 }
5271 else if (nlen > olen)
5272 {
5273 /* Here, we used to have the following simple code:
5274 ----------------------------------------
5275 write_glyphs (nbody + nsp + begmatch, olen - tem);
5276 insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
5277 ----------------------------------------
5278 but it doesn't work if nbody[nsp + begmatch + olen - tem]
5279 is a padding glyph. */
5280 int out = olen - tem; /* Columns to be overwritten originally. */
5281 int del;
5282
5283 cursor_to (f, vpos, nsp + begmatch);
5284
5285 /* Calculate columns we can actually overwrite. */
5286 while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out]))
5287 out--;
5288 write_glyphs (f, nbody + nsp + begmatch, out);
5289
5290 /* If we left columns to be overwritten, we must delete them. */
5291 del = olen - tem - out;
5292 if (del > 0)
5293 delete_glyphs (f, del);
5294
5295 /* At last, we insert columns not yet written out. */
5296 insert_glyphs (f, nbody + nsp + begmatch + out, nlen - olen + del);
5297 olen = nlen;
5298 }
5299 else if (olen > nlen)
5300 {
5301 cursor_to (f, vpos, nsp + begmatch);
5302 write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
5303 delete_glyphs (f, olen - nlen);
5304 olen = nlen;
5305 }
5306 }
5307
5308 just_erase:
5309 /* If any unerased characters remain after the new line, erase them. */
5310 if (olen > nlen)
5311 {
5312 cursor_to (f, vpos, nlen);
5313 clear_end_of_line (f, olen);
5314 }
5315
5316 /* Exchange contents between current_frame and new_frame. */
5317 make_current (desired_matrix, current_matrix, vpos);
5318 }
5319
5320
5321 \f
5322 /***********************************************************************
5323 X/Y Position -> Buffer Position
5324 ***********************************************************************/
5325
5326 /* Determine what's under window-relative pixel position (*X, *Y).
5327 Return the OBJECT (string or buffer) that's there.
5328 Return in *POS the position in that object.
5329 Adjust *X and *Y to character positions.
5330 Return in *DX and *DY the pixel coordinates of the click,
5331 relative to the top left corner of OBJECT, or relative to
5332 the top left corner of the character glyph at (*X, *Y)
5333 if OBJECT is nil.
5334 Return WIDTH and HEIGHT of the object at (*X, *Y), or zero
5335 if the coordinates point to an empty area of the display. */
5336
5337 Lisp_Object
5338 buffer_posn_from_coords (struct window *w, int *x, int *y, struct display_pos *pos, Lisp_Object *object, int *dx, int *dy, int *width, int *height)
5339 {
5340 struct it it;
5341 Lisp_Object old_current_buffer = Fcurrent_buffer ();
5342 struct text_pos startp;
5343 Lisp_Object string;
5344 struct glyph_row *row;
5345 #ifdef HAVE_WINDOW_SYSTEM
5346 struct image *img = 0;
5347 #endif
5348 int x0, x1, to_x;
5349 void *itdata = NULL;
5350
5351 /* We used to set current_buffer directly here, but that does the
5352 wrong thing with `face-remapping-alist' (bug#2044). */
5353 Fset_buffer (w->buffer);
5354 itdata = bidi_shelve_cache ();
5355 SET_TEXT_POS_FROM_MARKER (startp, w->start);
5356 CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
5357 BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
5358 start_display (&it, w, startp);
5359 /* start_display takes into account the header-line row, but IT's
5360 vpos still counts from the glyph row that includes the window's
5361 start position. Adjust for a possible header-line row. */
5362 it.vpos += WINDOW_WANTS_HEADER_LINE_P (w) ? 1 : 0;
5363
5364 x0 = *x;
5365
5366 /* First, move to the beginning of the row corresponding to *Y. We
5367 need to be in that row to get the correct value of base paragraph
5368 direction for the text at (*X, *Y). */
5369 move_it_to (&it, -1, 0, *y, -1, MOVE_TO_X | MOVE_TO_Y);
5370
5371 /* TO_X is the pixel position that the iterator will compute for the
5372 glyph at *X. We add it.first_visible_x because iterator
5373 positions include the hscroll. */
5374 to_x = x0 + it.first_visible_x;
5375 if (it.bidi_it.paragraph_dir == R2L)
5376 /* For lines in an R2L paragraph, we need to mirror TO_X wrt the
5377 text area. This is because the iterator, even in R2L
5378 paragraphs, delivers glyphs as if they started at the left
5379 margin of the window. (When we actually produce glyphs for
5380 display, we reverse their order in PRODUCE_GLYPHS, but the
5381 iterator doesn't know about that.) The following line adjusts
5382 the pixel position to the iterator geometry, which is what
5383 move_it_* routines use. (The -1 is because in a window whose
5384 text-area width is W, the rightmost pixel position is W-1, and
5385 it should be mirrored into zero pixel position.) */
5386 to_x = window_box_width (w, TEXT_AREA) - to_x - 1;
5387
5388 /* Now move horizontally in the row to the glyph under *X. Second
5389 argument is ZV to prevent move_it_in_display_line from matching
5390 based on buffer positions. */
5391 move_it_in_display_line (&it, ZV, to_x, MOVE_TO_X);
5392 bidi_unshelve_cache (itdata, 0);
5393
5394 Fset_buffer (old_current_buffer);
5395
5396 *dx = x0 + it.first_visible_x - it.current_x;
5397 *dy = *y - it.current_y;
5398
5399 string = w->buffer;
5400 if (STRINGP (it.string))
5401 string = it.string;
5402 *pos = it.current;
5403 if (it.what == IT_COMPOSITION
5404 && it.cmp_it.nchars > 1
5405 && it.cmp_it.reversed_p)
5406 {
5407 /* The current display element is a grapheme cluster in a
5408 composition. In that case, we need the position of the first
5409 character of the cluster. But, as it.cmp_it.reversed_p is 1,
5410 it.current points to the last character of the cluster, thus
5411 we must move back to the first character of the same
5412 cluster. */
5413 CHARPOS (pos->pos) -= it.cmp_it.nchars - 1;
5414 if (STRINGP (it.string))
5415 BYTEPOS (pos->pos) = string_char_to_byte (string, CHARPOS (pos->pos));
5416 else
5417 BYTEPOS (pos->pos) = buf_charpos_to_bytepos (XBUFFER (w->buffer),
5418 CHARPOS (pos->pos));
5419 }
5420
5421 #ifdef HAVE_WINDOW_SYSTEM
5422 if (it.what == IT_IMAGE)
5423 {
5424 if ((img = IMAGE_FROM_ID (it.f, it.image_id)) != NULL
5425 && !NILP (img->spec))
5426 *object = img->spec;
5427 }
5428 #endif
5429
5430 if (it.vpos < w->current_matrix->nrows
5431 && (row = MATRIX_ROW (w->current_matrix, it.vpos),
5432 row->enabled_p))
5433 {
5434 if (it.hpos < row->used[TEXT_AREA])
5435 {
5436 struct glyph *glyph = row->glyphs[TEXT_AREA] + it.hpos;
5437 #ifdef HAVE_WINDOW_SYSTEM
5438 if (img)
5439 {
5440 *dy -= row->ascent - glyph->ascent;
5441 *dx += glyph->slice.img.x;
5442 *dy += glyph->slice.img.y;
5443 /* Image slices positions are still relative to the entire image */
5444 *width = img->width;
5445 *height = img->height;
5446 }
5447 else
5448 #endif
5449 {
5450 *width = glyph->pixel_width;
5451 *height = glyph->ascent + glyph->descent;
5452 }
5453 }
5454 else
5455 {
5456 *width = 0;
5457 *height = row->height;
5458 }
5459 }
5460 else
5461 {
5462 *width = *height = 0;
5463 }
5464
5465 /* Add extra (default width) columns if clicked after EOL. */
5466 x1 = max (0, it.current_x + it.pixel_width - it.first_visible_x);
5467 if (x0 > x1)
5468 it.hpos += (x0 - x1) / WINDOW_FRAME_COLUMN_WIDTH (w);
5469
5470 *x = it.hpos;
5471 *y = it.vpos;
5472
5473 return string;
5474 }
5475
5476
5477 /* Value is the string under window-relative coordinates X/Y in the
5478 mode line or header line (PART says which) of window W, or nil if none.
5479 *CHARPOS is set to the position in the string returned. */
5480
5481 Lisp_Object
5482 mode_line_string (struct window *w, enum window_part part,
5483 int *x, int *y, ptrdiff_t *charpos, Lisp_Object *object,
5484 int *dx, int *dy, int *width, int *height)
5485 {
5486 struct glyph_row *row;
5487 struct glyph *glyph, *end;
5488 int x0, y0;
5489 Lisp_Object string = Qnil;
5490
5491 if (part == ON_MODE_LINE)
5492 row = MATRIX_MODE_LINE_ROW (w->current_matrix);
5493 else
5494 row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
5495 y0 = *y - row->y;
5496 *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
5497
5498 if (row->mode_line_p && row->enabled_p)
5499 {
5500 /* Find the glyph under X. If we find one with a string object,
5501 it's the one we were looking for. */
5502 glyph = row->glyphs[TEXT_AREA];
5503 end = glyph + row->used[TEXT_AREA];
5504 for (x0 = *x; glyph < end && x0 >= glyph->pixel_width; ++glyph)
5505 x0 -= glyph->pixel_width;
5506 *x = glyph - row->glyphs[TEXT_AREA];
5507 if (glyph < end)
5508 {
5509 string = glyph->object;
5510 *charpos = glyph->charpos;
5511 *width = glyph->pixel_width;
5512 *height = glyph->ascent + glyph->descent;
5513 #ifdef HAVE_WINDOW_SYSTEM
5514 if (glyph->type == IMAGE_GLYPH)
5515 {
5516 struct image *img;
5517 img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
5518 if (img != NULL)
5519 *object = img->spec;
5520 y0 -= row->ascent - glyph->ascent;
5521 }
5522 #endif
5523 }
5524 else
5525 {
5526 /* Add extra (default width) columns if clicked after EOL. */
5527 *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
5528 *width = 0;
5529 *height = row->height;
5530 }
5531 }
5532 else
5533 {
5534 *x = 0;
5535 x0 = 0;
5536 *width = *height = 0;
5537 }
5538
5539 *dx = x0;
5540 *dy = y0;
5541
5542 return string;
5543 }
5544
5545
5546 /* Value is the string under window-relative coordinates X/Y in either
5547 marginal area, or nil if none. *CHARPOS is set to the position in
5548 the string returned. */
5549
5550 Lisp_Object
5551 marginal_area_string (struct window *w, enum window_part part,
5552 int *x, int *y, ptrdiff_t *charpos, Lisp_Object *object,
5553 int *dx, int *dy, int *width, int *height)
5554 {
5555 struct glyph_row *row = w->current_matrix->rows;
5556 struct glyph *glyph, *end;
5557 int x0, y0, i, wy = *y;
5558 int area;
5559 Lisp_Object string = Qnil;
5560
5561 if (part == ON_LEFT_MARGIN)
5562 area = LEFT_MARGIN_AREA;
5563 else if (part == ON_RIGHT_MARGIN)
5564 area = RIGHT_MARGIN_AREA;
5565 else
5566 abort ();
5567
5568 for (i = 0; row->enabled_p && i < w->current_matrix->nrows; ++i, ++row)
5569 if (wy >= row->y && wy < MATRIX_ROW_BOTTOM_Y (row))
5570 break;
5571 y0 = *y - row->y;
5572 *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
5573
5574 if (row->enabled_p)
5575 {
5576 /* Find the glyph under X. If we find one with a string object,
5577 it's the one we were looking for. */
5578 if (area == RIGHT_MARGIN_AREA)
5579 x0 = ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
5580 ? WINDOW_LEFT_FRINGE_WIDTH (w)
5581 : WINDOW_TOTAL_FRINGE_WIDTH (w))
5582 + window_box_width (w, LEFT_MARGIN_AREA)
5583 + window_box_width (w, TEXT_AREA));
5584 else
5585 x0 = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
5586 ? WINDOW_LEFT_FRINGE_WIDTH (w)
5587 : 0);
5588
5589 glyph = row->glyphs[area];
5590 end = glyph + row->used[area];
5591 for (x0 = *x - x0; glyph < end && x0 >= glyph->pixel_width; ++glyph)
5592 x0 -= glyph->pixel_width;
5593 *x = glyph - row->glyphs[area];
5594 if (glyph < end)
5595 {
5596 string = glyph->object;
5597 *charpos = glyph->charpos;
5598 *width = glyph->pixel_width;
5599 *height = glyph->ascent + glyph->descent;
5600 #ifdef HAVE_WINDOW_SYSTEM
5601 if (glyph->type == IMAGE_GLYPH)
5602 {
5603 struct image *img;
5604 img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
5605 if (img != NULL)
5606 *object = img->spec;
5607 y0 -= row->ascent - glyph->ascent;
5608 x0 += glyph->slice.img.x;
5609 y0 += glyph->slice.img.y;
5610 }
5611 #endif
5612 }
5613 else
5614 {
5615 /* Add extra (default width) columns if clicked after EOL. */
5616 *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
5617 *width = 0;
5618 *height = row->height;
5619 }
5620 }
5621 else
5622 {
5623 x0 = 0;
5624 *x = 0;
5625 *width = *height = 0;
5626 }
5627
5628 *dx = x0;
5629 *dy = y0;
5630
5631 return string;
5632 }
5633
5634
5635 /***********************************************************************
5636 Changing Frame Sizes
5637 ***********************************************************************/
5638
5639 #ifdef SIGWINCH
5640
5641 static void
5642 window_change_signal (int signalnum) /* If we don't have an argument, */
5643 /* some compilers complain in signal calls. */
5644 {
5645 int width, height;
5646 int old_errno = errno;
5647
5648 struct tty_display_info *tty;
5649
5650 signal (SIGWINCH, window_change_signal);
5651 SIGNAL_THREAD_CHECK (signalnum);
5652
5653 /* The frame size change obviously applies to a single
5654 termcap-controlled terminal, but we can't decide which.
5655 Therefore, we resize the frames corresponding to each tty.
5656 */
5657 for (tty = tty_list; tty; tty = tty->next) {
5658
5659 if (! tty->term_initted)
5660 continue;
5661
5662 /* Suspended tty frames have tty->input == NULL avoid trying to
5663 use it. */
5664 if (!tty->input)
5665 continue;
5666
5667 get_tty_size (fileno (tty->input), &width, &height);
5668
5669 if (width > 5 && height > 2) {
5670 Lisp_Object tail, frame;
5671
5672 FOR_EACH_FRAME (tail, frame)
5673 if (FRAME_TERMCAP_P (XFRAME (frame)) && FRAME_TTY (XFRAME (frame)) == tty)
5674 /* Record the new sizes, but don't reallocate the data
5675 structures now. Let that be done later outside of the
5676 signal handler. */
5677 change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
5678 }
5679 }
5680
5681 errno = old_errno;
5682 }
5683 #endif /* SIGWINCH */
5684
5685
5686 /* Do any change in frame size that was requested by a signal. SAFE
5687 non-zero means this function is called from a place where it is
5688 safe to change frame sizes while a redisplay is in progress. */
5689
5690 void
5691 do_pending_window_change (int safe)
5692 {
5693 /* If window_change_signal should have run before, run it now. */
5694 if (redisplaying_p && !safe)
5695 return;
5696
5697 while (delayed_size_change)
5698 {
5699 Lisp_Object tail, frame;
5700
5701 delayed_size_change = 0;
5702
5703 FOR_EACH_FRAME (tail, frame)
5704 {
5705 struct frame *f = XFRAME (frame);
5706
5707 if (f->new_text_lines != 0 || f->new_text_cols != 0)
5708 change_frame_size (f, f->new_text_lines, f->new_text_cols,
5709 0, 0, safe);
5710 }
5711 }
5712 }
5713
5714
5715 /* Change the frame height and/or width. Values may be given as zero to
5716 indicate no change is to take place.
5717
5718 If DELAY is non-zero, then assume we're being called from a signal
5719 handler, and queue the change for later - perhaps the next
5720 redisplay. Since this tries to resize windows, we can't call it
5721 from a signal handler.
5722
5723 SAFE non-zero means this function is called from a place where it's
5724 safe to change frame sizes while a redisplay is in progress. */
5725
5726 void
5727 change_frame_size (register struct frame *f, int newheight, int newwidth, int pretend, int delay, int safe)
5728 {
5729 Lisp_Object tail, frame;
5730
5731 if (FRAME_MSDOS_P (f))
5732 {
5733 /* On MS-DOS, all frames use the same screen, so a change in
5734 size affects all frames. Termcap now supports multiple
5735 ttys. */
5736 FOR_EACH_FRAME (tail, frame)
5737 if (! FRAME_WINDOW_P (XFRAME (frame)))
5738 change_frame_size_1 (XFRAME (frame), newheight, newwidth,
5739 pretend, delay, safe);
5740 }
5741 else
5742 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
5743 }
5744
5745 static void
5746 change_frame_size_1 (register struct frame *f, int newheight, int newwidth, int pretend, int delay, int safe)
5747 {
5748 int new_frame_total_cols;
5749 ptrdiff_t count = SPECPDL_INDEX ();
5750
5751 /* If we can't deal with the change now, queue it for later. */
5752 if (delay || (redisplaying_p && !safe))
5753 {
5754 f->new_text_lines = newheight;
5755 f->new_text_cols = newwidth;
5756 delayed_size_change = 1;
5757 return;
5758 }
5759
5760 /* This size-change overrides any pending one for this frame. */
5761 f->new_text_lines = 0;
5762 f->new_text_cols = 0;
5763
5764 /* If an argument is zero, set it to the current value. */
5765 if (newheight == 0)
5766 newheight = FRAME_LINES (f);
5767 if (newwidth == 0)
5768 newwidth = FRAME_COLS (f);
5769
5770 /* Compute width of windows in F. */
5771 /* Round up to the smallest acceptable size. */
5772 check_frame_size (f, &newheight, &newwidth);
5773
5774 /* This is the width of the frame with vertical scroll bars and fringe
5775 columns. Do this after rounding - see discussion of bug#9723. */
5776 new_frame_total_cols = FRAME_TOTAL_COLS_ARG (f, newwidth);
5777
5778 /* If we're not changing the frame size, quit now. */
5779 /* Frame width may be unchanged but the text portion may change, for
5780 example, fullscreen and remove/add scroll bar. */
5781 if (newheight == FRAME_LINES (f)
5782 /* Text portion unchanged? */
5783 && newwidth == FRAME_COLS (f)
5784 /* Frame width unchanged? */
5785 && new_frame_total_cols == FRAME_TOTAL_COLS (f))
5786 return;
5787
5788 BLOCK_INPUT;
5789
5790 #ifdef MSDOS
5791 /* We only can set screen dimensions to certain values supported
5792 by our video hardware. Try to find the smallest size greater
5793 or equal to the requested dimensions. */
5794 dos_set_window_size (&newheight, &newwidth);
5795 #endif
5796
5797 if (newheight != FRAME_LINES (f))
5798 {
5799 resize_frame_windows (f, newheight, 0);
5800
5801 /* MSDOS frames cannot PRETEND, as they change frame size by
5802 manipulating video hardware. */
5803 if ((FRAME_TERMCAP_P (f) && !pretend) || FRAME_MSDOS_P (f))
5804 FrameRows (FRAME_TTY (f)) = newheight;
5805 }
5806
5807 if (new_frame_total_cols != FRAME_TOTAL_COLS (f))
5808 {
5809 resize_frame_windows (f, new_frame_total_cols, 1);
5810
5811 /* MSDOS frames cannot PRETEND, as they change frame size by
5812 manipulating video hardware. */
5813 if ((FRAME_TERMCAP_P (f) && !pretend) || FRAME_MSDOS_P (f))
5814 FrameCols (FRAME_TTY (f)) = newwidth;
5815
5816 if (WINDOWP (f->tool_bar_window))
5817 XSETFASTINT (XWINDOW (f->tool_bar_window)->total_cols, newwidth);
5818 }
5819
5820 FRAME_LINES (f) = newheight;
5821 SET_FRAME_COLS (f, newwidth);
5822
5823 {
5824 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5825 int text_area_x, text_area_y, text_area_width, text_area_height;
5826
5827 window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
5828 &text_area_height);
5829 if (w->cursor.x >= text_area_x + text_area_width)
5830 w->cursor.hpos = w->cursor.x = 0;
5831 if (w->cursor.y >= text_area_y + text_area_height)
5832 w->cursor.vpos = w->cursor.y = 0;
5833 }
5834
5835 adjust_glyphs (f);
5836 calculate_costs (f);
5837 SET_FRAME_GARBAGED (f);
5838 f->resized_p = 1;
5839
5840 UNBLOCK_INPUT;
5841
5842 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5843
5844 run_window_configuration_change_hook (f);
5845
5846 unbind_to (count, Qnil);
5847 }
5848
5849
5850 \f
5851 /***********************************************************************
5852 Terminal Related Lisp Functions
5853 ***********************************************************************/
5854
5855 DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
5856 1, 1, "FOpen termscript file: ",
5857 doc: /* Start writing all terminal output to FILE as well as the terminal.
5858 FILE = nil means just close any termscript file currently open. */)
5859 (Lisp_Object file)
5860 {
5861 struct tty_display_info *tty;
5862
5863 if (! FRAME_TERMCAP_P (SELECTED_FRAME ())
5864 && ! FRAME_MSDOS_P (SELECTED_FRAME ()))
5865 error ("Current frame is not on a tty device");
5866
5867 tty = CURTTY ();
5868
5869 if (tty->termscript != 0)
5870 {
5871 BLOCK_INPUT;
5872 fclose (tty->termscript);
5873 UNBLOCK_INPUT;
5874 }
5875 tty->termscript = 0;
5876
5877 if (! NILP (file))
5878 {
5879 file = Fexpand_file_name (file, Qnil);
5880 tty->termscript = fopen (SSDATA (file), "w");
5881 if (tty->termscript == 0)
5882 report_file_error ("Opening termscript", Fcons (file, Qnil));
5883 }
5884 return Qnil;
5885 }
5886
5887
5888 DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
5889 Ssend_string_to_terminal, 1, 2, 0,
5890 doc: /* Send STRING to the terminal without alteration.
5891 Control characters in STRING will have terminal-dependent effects.
5892
5893 Optional parameter TERMINAL specifies the tty terminal device to use.
5894 It may be a terminal object, a frame, or nil for the terminal used by
5895 the currently selected frame. In batch mode, STRING is sent to stdout
5896 when TERMINAL is nil. */)
5897 (Lisp_Object string, Lisp_Object terminal)
5898 {
5899 struct terminal *t = get_terminal (terminal, 1);
5900 FILE *out;
5901
5902 /* ??? Perhaps we should do something special for multibyte strings here. */
5903 CHECK_STRING (string);
5904 BLOCK_INPUT;
5905
5906 if (!t)
5907 error ("Unknown terminal device");
5908
5909 if (t->type == output_initial)
5910 out = stdout;
5911 else if (t->type != output_termcap && t->type != output_msdos_raw)
5912 error ("Device %d is not a termcap terminal device", t->id);
5913 else
5914 {
5915 struct tty_display_info *tty = t->display_info.tty;
5916
5917 if (! tty->output)
5918 error ("Terminal is currently suspended");
5919
5920 if (tty->termscript)
5921 {
5922 fwrite (SDATA (string), 1, SBYTES (string), tty->termscript);
5923 fflush (tty->termscript);
5924 }
5925 out = tty->output;
5926 }
5927 fwrite (SDATA (string), 1, SBYTES (string), out);
5928 fflush (out);
5929 UNBLOCK_INPUT;
5930 return Qnil;
5931 }
5932
5933
5934 DEFUN ("ding", Fding, Sding, 0, 1, 0,
5935 doc: /* Beep, or flash the screen.
5936 Also, unless an argument is given,
5937 terminate any keyboard macro currently executing. */)
5938 (Lisp_Object arg)
5939 {
5940 if (!NILP (arg))
5941 {
5942 if (noninteractive)
5943 putchar (07);
5944 else
5945 ring_bell (XFRAME (selected_frame));
5946 }
5947 else
5948 bitch_at_user ();
5949
5950 return Qnil;
5951 }
5952
5953 void
5954 bitch_at_user (void)
5955 {
5956 if (noninteractive)
5957 putchar (07);
5958 else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
5959 error ("Keyboard macro terminated by a command ringing the bell");
5960 else
5961 ring_bell (XFRAME (selected_frame));
5962 }
5963
5964
5965 \f
5966 /***********************************************************************
5967 Sleeping, Waiting
5968 ***********************************************************************/
5969
5970 /* Convert a positive value DURATION to a seconds count *PSEC plus a
5971 microseconds count *PUSEC, rounding up. On overflow return the
5972 maximal value. */
5973 void
5974 duration_to_sec_usec (double duration, int *psec, int *pusec)
5975 {
5976 int MILLION = 1000000;
5977 int sec = INT_MAX, usec = MILLION - 1;
5978
5979 if (duration < INT_MAX + 1.0)
5980 {
5981 int s = duration;
5982 double usdouble = (duration - s) * MILLION;
5983 int usfloor = usdouble;
5984 int usceil = usfloor + (usfloor < usdouble);
5985
5986 if (usceil < MILLION)
5987 {
5988 sec = s;
5989 usec = usceil;
5990 }
5991 else if (sec < INT_MAX)
5992 {
5993 sec = s + 1;
5994 usec = 0;
5995 }
5996 }
5997
5998 *psec = sec;
5999 *pusec = usec;
6000 }
6001
6002 DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
6003 doc: /* Pause, without updating display, for SECONDS seconds.
6004 SECONDS may be a floating-point value, meaning that you can wait for a
6005 fraction of a second. Optional second arg MILLISECONDS specifies an
6006 additional wait period, in milliseconds; this may be useful if your
6007 Emacs was built without floating point support.
6008 \(Not all operating systems support waiting for a fraction of a second.) */)
6009 (Lisp_Object seconds, Lisp_Object milliseconds)
6010 {
6011 int sec, usec;
6012 double duration = extract_float (seconds);
6013
6014 if (!NILP (milliseconds))
6015 {
6016 CHECK_NUMBER (milliseconds);
6017 duration += XINT (milliseconds) / 1000.0;
6018 }
6019
6020 if (! (0 < duration))
6021 return Qnil;
6022
6023 duration_to_sec_usec (duration, &sec, &usec);
6024
6025 #ifndef EMACS_HAS_USECS
6026 if (sec == 0 && usec != 0)
6027 error ("Millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
6028 #endif
6029
6030 wait_reading_process_output (sec, usec, 0, 0, Qnil, NULL, 0);
6031
6032 return Qnil;
6033 }
6034
6035
6036 /* This is just like wait_reading_process_output, except that
6037 it does redisplay.
6038
6039 TIMEOUT is number of seconds to wait (float or integer),
6040 or t to wait forever.
6041 READING is 1 if reading input.
6042 If DO_DISPLAY is >0 display process output while waiting.
6043 If DO_DISPLAY is >1 perform an initial redisplay before waiting.
6044 */
6045
6046 Lisp_Object
6047 sit_for (Lisp_Object timeout, int reading, int do_display)
6048 {
6049 int sec, usec;
6050
6051 swallow_events (do_display);
6052
6053 if ((detect_input_pending_run_timers (do_display))
6054 || !NILP (Vexecuting_kbd_macro))
6055 return Qnil;
6056
6057 if (do_display >= 2)
6058 redisplay_preserve_echo_area (2);
6059
6060 if (EQ (timeout, Qt))
6061 {
6062 sec = 0;
6063 usec = 0;
6064 }
6065 else
6066 {
6067 double duration = extract_float (timeout);
6068
6069 if (! (0 < duration))
6070 return Qt;
6071
6072 duration_to_sec_usec (duration, &sec, &usec);
6073 }
6074
6075 #ifdef SIGIO
6076 gobble_input (0);
6077 #endif
6078
6079 wait_reading_process_output (sec, usec, reading ? -1 : 1, do_display,
6080 Qnil, NULL, 0);
6081
6082 return detect_input_pending () ? Qnil : Qt;
6083 }
6084
6085
6086 DEFUN ("redisplay", Fredisplay, Sredisplay, 0, 1, 0,
6087 doc: /* Perform redisplay.
6088 Optional arg FORCE, if non-nil, prevents redisplay from being
6089 preempted by arriving input, even if `redisplay-dont-pause' is nil.
6090 If `redisplay-dont-pause' is non-nil (the default), redisplay is never
6091 preempted by arriving input, so FORCE does nothing.
6092
6093 Return t if redisplay was performed, nil if redisplay was preempted
6094 immediately by pending input. */)
6095 (Lisp_Object force)
6096 {
6097 ptrdiff_t count;
6098
6099 swallow_events (1);
6100 if ((detect_input_pending_run_timers (1)
6101 && NILP (force) && !redisplay_dont_pause)
6102 || !NILP (Vexecuting_kbd_macro))
6103 return Qnil;
6104
6105 count = SPECPDL_INDEX ();
6106 if (!NILP (force) && !redisplay_dont_pause)
6107 specbind (Qredisplay_dont_pause, Qt);
6108 redisplay_preserve_echo_area (2);
6109 unbind_to (count, Qnil);
6110 return Qt;
6111 }
6112
6113
6114 \f
6115 /***********************************************************************
6116 Other Lisp Functions
6117 ***********************************************************************/
6118
6119 /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
6120 session's frames, frame names, buffers, buffer-read-only flags, and
6121 buffer-modified-flags. */
6122
6123 static Lisp_Object frame_and_buffer_state;
6124
6125
6126 DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
6127 Sframe_or_buffer_changed_p, 0, 1, 0,
6128 doc: /* Return non-nil if the frame and buffer state appears to have changed.
6129 VARIABLE is a variable name whose value is either nil or a state vector
6130 that will be updated to contain all frames and buffers,
6131 aside from buffers whose names start with space,
6132 along with the buffers' read-only and modified flags. This allows a fast
6133 check to see whether buffer menus might need to be recomputed.
6134 If this function returns non-nil, it updates the internal vector to reflect
6135 the current state.
6136
6137 If VARIABLE is nil, an internal variable is used. Users should not
6138 pass nil for VARIABLE. */)
6139 (Lisp_Object variable)
6140 {
6141 Lisp_Object state, tail, frame, buf;
6142 Lisp_Object *vecp, *end;
6143 ptrdiff_t n;
6144
6145 if (! NILP (variable))
6146 {
6147 CHECK_SYMBOL (variable);
6148 state = Fsymbol_value (variable);
6149 if (! VECTORP (state))
6150 goto changed;
6151 }
6152 else
6153 state = frame_and_buffer_state;
6154
6155 vecp = XVECTOR (state)->contents;
6156 end = vecp + ASIZE (state);
6157
6158 FOR_EACH_FRAME (tail, frame)
6159 {
6160 if (vecp == end)
6161 goto changed;
6162 if (!EQ (*vecp++, frame))
6163 goto changed;
6164 if (vecp == end)
6165 goto changed;
6166 if (!EQ (*vecp++, XFRAME (frame)->name))
6167 goto changed;
6168 }
6169 /* Check that the buffer info matches. */
6170 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6171 {
6172 buf = XCDR (XCAR (tail));
6173 /* Ignore buffers that aren't included in buffer lists. */
6174 if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ')
6175 continue;
6176 if (vecp == end)
6177 goto changed;
6178 if (!EQ (*vecp++, buf))
6179 goto changed;
6180 if (vecp == end)
6181 goto changed;
6182 if (!EQ (*vecp++, BVAR (XBUFFER (buf), read_only)))
6183 goto changed;
6184 if (vecp == end)
6185 goto changed;
6186 if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
6187 goto changed;
6188 }
6189 if (vecp == end)
6190 goto changed;
6191 /* Detect deletion of a buffer at the end of the list. */
6192 if (EQ (*vecp, Qlambda))
6193 return Qnil;
6194
6195 /* Come here if we decide the data has changed. */
6196 changed:
6197 /* Count the size we will need.
6198 Start with 1 so there is room for at least one lambda at the end. */
6199 n = 1;
6200 FOR_EACH_FRAME (tail, frame)
6201 n += 2;
6202 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6203 n += 3;
6204 /* Reallocate the vector if data has grown to need it,
6205 or if it has shrunk a lot. */
6206 if (! VECTORP (state)
6207 || n > ASIZE (state)
6208 || n + 20 < ASIZE (state) / 2)
6209 /* Add 20 extra so we grow it less often. */
6210 {
6211 state = Fmake_vector (make_number (n + 20), Qlambda);
6212 if (! NILP (variable))
6213 Fset (variable, state);
6214 else
6215 frame_and_buffer_state = state;
6216 }
6217
6218 /* Record the new data in the (possibly reallocated) vector. */
6219 vecp = XVECTOR (state)->contents;
6220 FOR_EACH_FRAME (tail, frame)
6221 {
6222 *vecp++ = frame;
6223 *vecp++ = XFRAME (frame)->name;
6224 }
6225 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6226 {
6227 buf = XCDR (XCAR (tail));
6228 /* Ignore buffers that aren't included in buffer lists. */
6229 if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ')
6230 continue;
6231 *vecp++ = buf;
6232 *vecp++ = BVAR (XBUFFER (buf), read_only);
6233 *vecp++ = Fbuffer_modified_p (buf);
6234 }
6235 /* Fill up the vector with lambdas (always at least one). */
6236 *vecp++ = Qlambda;
6237 while (vecp - XVECTOR (state)->contents
6238 < ASIZE (state))
6239 *vecp++ = Qlambda;
6240 /* Make sure we didn't overflow the vector. */
6241 if (vecp - XVECTOR (state)->contents
6242 > ASIZE (state))
6243 abort ();
6244 return Qt;
6245 }
6246
6247
6248 \f
6249 /***********************************************************************
6250 Initialization
6251 ***********************************************************************/
6252
6253 /* Initialization done when Emacs fork is started, before doing stty.
6254 Determine terminal type and set terminal_driver. Then invoke its
6255 decoding routine to set up variables in the terminal package. */
6256
6257 void
6258 init_display (void)
6259 {
6260 char *terminal_type;
6261
6262 /* Construct the space glyph. */
6263 space_glyph.type = CHAR_GLYPH;
6264 SET_CHAR_GLYPH (space_glyph, ' ', DEFAULT_FACE_ID, 0);
6265 space_glyph.charpos = -1;
6266
6267 inverse_video = 0;
6268 cursor_in_echo_area = 0;
6269 terminal_type = (char *) 0;
6270
6271 /* Now is the time to initialize this; it's used by init_sys_modes
6272 during startup. */
6273 Vinitial_window_system = Qnil;
6274
6275 /* SIGWINCH needs to be handled no matter what display we start
6276 with. Otherwise newly opened tty frames will not resize
6277 automatically. */
6278 #ifdef SIGWINCH
6279 #ifndef CANNOT_DUMP
6280 if (initialized)
6281 #endif /* CANNOT_DUMP */
6282 signal (SIGWINCH, window_change_signal);
6283 #endif /* SIGWINCH */
6284
6285 /* If running as a daemon, no need to initialize any frames/terminal. */
6286 if (IS_DAEMON)
6287 return;
6288
6289 /* If the user wants to use a window system, we shouldn't bother
6290 initializing the terminal. This is especially important when the
6291 terminal is so dumb that emacs gives up before and doesn't bother
6292 using the window system.
6293
6294 If the DISPLAY environment variable is set and nonempty,
6295 try to use X, and die with an error message if that doesn't work. */
6296
6297 #ifdef HAVE_X_WINDOWS
6298 if (! inhibit_window_system && ! display_arg)
6299 {
6300 char *display;
6301 display = getenv ("DISPLAY");
6302 display_arg = (display != 0 && *display != 0);
6303
6304 if (display_arg && !x_display_ok (display))
6305 {
6306 fprintf (stderr, "Display %s unavailable, simulating -nw\n",
6307 display);
6308 inhibit_window_system = 1;
6309 }
6310 }
6311
6312 if (!inhibit_window_system && display_arg)
6313 {
6314 Vinitial_window_system = Qx;
6315 #ifdef HAVE_X11
6316 Vwindow_system_version = make_number (11);
6317 #endif
6318 #ifdef GNU_LINUX
6319 /* In some versions of ncurses,
6320 tputs crashes if we have not called tgetent.
6321 So call tgetent. */
6322 { char b[2044]; tgetent (b, "xterm");}
6323 #endif
6324 adjust_frame_glyphs_initially ();
6325 return;
6326 }
6327 #endif /* HAVE_X_WINDOWS */
6328
6329 #ifdef HAVE_NTGUI
6330 if (!inhibit_window_system)
6331 {
6332 Vinitial_window_system = Qw32;
6333 Vwindow_system_version = make_number (1);
6334 adjust_frame_glyphs_initially ();
6335 return;
6336 }
6337 #endif /* HAVE_NTGUI */
6338
6339 #ifdef HAVE_NS
6340 if (!inhibit_window_system
6341 #ifndef CANNOT_DUMP
6342 && initialized
6343 #endif
6344 )
6345 {
6346 Vinitial_window_system = Qns;
6347 Vwindow_system_version = make_number (10);
6348 adjust_frame_glyphs_initially ();
6349 return;
6350 }
6351 #endif
6352
6353 /* If no window system has been specified, try to use the terminal. */
6354 if (! isatty (0))
6355 {
6356 fatal ("standard input is not a tty");
6357 exit (1);
6358 }
6359
6360 #ifdef WINDOWSNT
6361 terminal_type = "w32console";
6362 #else
6363 /* Look at the TERM variable. */
6364 terminal_type = (char *) getenv ("TERM");
6365 #endif
6366 if (!terminal_type)
6367 {
6368 #ifdef HAVE_WINDOW_SYSTEM
6369 if (! inhibit_window_system)
6370 fprintf (stderr, "Please set the environment variable DISPLAY or TERM (see `tset').\n");
6371 else
6372 #endif /* HAVE_WINDOW_SYSTEM */
6373 fprintf (stderr, "Please set the environment variable TERM; see `tset'.\n");
6374 exit (1);
6375 }
6376
6377 {
6378 struct terminal *t;
6379 struct frame *f = XFRAME (selected_frame);
6380
6381 /* Open a display on the controlling tty. */
6382 t = init_tty (0, terminal_type, 1); /* Errors are fatal. */
6383
6384 /* Convert the initial frame to use the new display. */
6385 if (f->output_method != output_initial)
6386 abort ();
6387 f->output_method = t->type;
6388 f->terminal = t;
6389
6390 t->reference_count++;
6391 #ifdef MSDOS
6392 f->output_data.tty->display_info = &the_only_display_info;
6393 #else
6394 if (f->output_method == output_termcap)
6395 create_tty_output (f);
6396 #endif
6397 t->display_info.tty->top_frame = selected_frame;
6398 change_frame_size (XFRAME (selected_frame),
6399 FrameRows (t->display_info.tty),
6400 FrameCols (t->display_info.tty), 0, 0, 1);
6401
6402 /* Delete the initial terminal. */
6403 if (--initial_terminal->reference_count == 0
6404 && initial_terminal->delete_terminal_hook)
6405 (*initial_terminal->delete_terminal_hook) (initial_terminal);
6406
6407 /* Update frame parameters to reflect the new type. */
6408 Fmodify_frame_parameters
6409 (selected_frame, Fcons (Fcons (Qtty_type,
6410 Ftty_type (selected_frame)), Qnil));
6411 if (t->display_info.tty->name)
6412 Fmodify_frame_parameters (selected_frame,
6413 Fcons (Fcons (Qtty, build_string (t->display_info.tty->name)),
6414 Qnil));
6415 else
6416 Fmodify_frame_parameters (selected_frame, Fcons (Fcons (Qtty, Qnil),
6417 Qnil));
6418 }
6419
6420 {
6421 struct frame *sf = SELECTED_FRAME ();
6422 int width = FRAME_TOTAL_COLS (sf);
6423 int height = FRAME_LINES (sf);
6424
6425 /* If these sizes are so big they cause overflow, just ignore the
6426 change. It's not clear what better we could do. The rest of
6427 the code assumes that (width + 2) * height * sizeof (struct glyph)
6428 does not overflow and does not exceed PTRDIFF_MAX or SIZE_MAX. */
6429 if (INT_ADD_RANGE_OVERFLOW (width, 2, INT_MIN, INT_MAX)
6430 || INT_MULTIPLY_RANGE_OVERFLOW (width + 2, height, INT_MIN, INT_MAX)
6431 || (min (PTRDIFF_MAX, SIZE_MAX) / sizeof (struct glyph)
6432 < (width + 2) * height))
6433 fatal ("screen size %dx%d too big", width, height);
6434 }
6435
6436 adjust_frame_glyphs_initially ();
6437 calculate_costs (XFRAME (selected_frame));
6438
6439 /* Set up faces of the initial terminal frame of a dumped Emacs. */
6440 if (initialized
6441 && !noninteractive
6442 && NILP (Vinitial_window_system))
6443 {
6444 /* For the initial frame, we don't have any way of knowing what
6445 are the foreground and background colors of the terminal. */
6446 struct frame *sf = SELECTED_FRAME ();
6447
6448 FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR;
6449 FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR;
6450 call0 (intern ("tty-set-up-initial-frame-faces"));
6451 }
6452 }
6453
6454
6455 \f
6456 /***********************************************************************
6457 Blinking cursor
6458 ***********************************************************************/
6459
6460 DEFUN ("internal-show-cursor", Finternal_show_cursor,
6461 Sinternal_show_cursor, 2, 2, 0,
6462 doc: /* Set the cursor-visibility flag of WINDOW to SHOW.
6463 WINDOW nil means use the selected window. SHOW non-nil means
6464 show a cursor in WINDOW in the next redisplay. SHOW nil means
6465 don't show a cursor. */)
6466 (Lisp_Object window, Lisp_Object show)
6467 {
6468 /* Don't change cursor state while redisplaying. This could confuse
6469 output routines. */
6470 if (!redisplaying_p)
6471 {
6472 if (NILP (window))
6473 window = selected_window;
6474 else
6475 CHECK_WINDOW (window);
6476
6477 XWINDOW (window)->cursor_off_p = NILP (show);
6478 }
6479
6480 return Qnil;
6481 }
6482
6483
6484 DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p,
6485 Sinternal_show_cursor_p, 0, 1, 0,
6486 doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW.
6487 WINDOW nil or omitted means report on the selected window. */)
6488 (Lisp_Object window)
6489 {
6490 struct window *w;
6491
6492 if (NILP (window))
6493 window = selected_window;
6494 else
6495 CHECK_WINDOW (window);
6496
6497 w = XWINDOW (window);
6498 return w->cursor_off_p ? Qnil : Qt;
6499 }
6500
6501 DEFUN ("last-nonminibuffer-frame", Flast_nonminibuf_frame,
6502 Slast_nonminibuf_frame, 0, 0, 0,
6503 doc: /* Value is last nonminibuffer frame. */)
6504 (void)
6505 {
6506 Lisp_Object frame = Qnil;
6507
6508 if (last_nonminibuf_frame)
6509 XSETFRAME (frame, last_nonminibuf_frame);
6510
6511 return frame;
6512 }
6513 \f
6514 /***********************************************************************
6515 Initialization
6516 ***********************************************************************/
6517
6518 void
6519 syms_of_display (void)
6520 {
6521 defsubr (&Sredraw_frame);
6522 defsubr (&Sredraw_display);
6523 defsubr (&Sframe_or_buffer_changed_p);
6524 defsubr (&Sopen_termscript);
6525 defsubr (&Sding);
6526 defsubr (&Sredisplay);
6527 defsubr (&Ssleep_for);
6528 defsubr (&Ssend_string_to_terminal);
6529 defsubr (&Sinternal_show_cursor);
6530 defsubr (&Sinternal_show_cursor_p);
6531 defsubr (&Slast_nonminibuf_frame);
6532
6533 #if GLYPH_DEBUG
6534 defsubr (&Sdump_redisplay_history);
6535 #endif
6536
6537 frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
6538 staticpro (&frame_and_buffer_state);
6539
6540 DEFSYM (Qdisplay_table, "display-table");
6541 DEFSYM (Qredisplay_dont_pause, "redisplay-dont-pause");
6542
6543 DEFVAR_INT ("baud-rate", baud_rate,
6544 doc: /* The output baud rate of the terminal.
6545 On most systems, changing this value will affect the amount of padding
6546 and the other strategic decisions made during redisplay. */);
6547
6548 DEFVAR_BOOL ("inverse-video", inverse_video,
6549 doc: /* Non-nil means invert the entire frame display.
6550 This means everything is in inverse video which otherwise would not be. */);
6551
6552 DEFVAR_BOOL ("visible-bell", visible_bell,
6553 doc: /* Non-nil means try to flash the frame to represent a bell.
6554
6555 See also `ring-bell-function'. */);
6556
6557 DEFVAR_BOOL ("no-redraw-on-reenter", no_redraw_on_reenter,
6558 doc: /* Non-nil means no need to redraw entire frame after suspending.
6559 A non-nil value is useful if the terminal can automatically preserve
6560 Emacs's frame display when you reenter Emacs.
6561 It is up to you to set this variable if your terminal can do that. */);
6562
6563 DEFVAR_LISP ("initial-window-system", Vinitial_window_system,
6564 doc: /* Name of the window system that Emacs uses for the first frame.
6565 The value is a symbol:
6566 nil for a termcap frame (a character-only terminal),
6567 'x' for an Emacs frame that is really an X window,
6568 'w32' for an Emacs frame that is a window on MS-Windows display,
6569 'ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display,
6570 'pc' for a direct-write MS-DOS frame.
6571
6572 Use of this variable as a boolean is deprecated. Instead,
6573 use `display-graphic-p' or any of the other `display-*-p'
6574 predicates which report frame's specific UI-related capabilities. */);
6575
6576 DEFVAR_KBOARD ("window-system", Vwindow_system,
6577 doc: /* Name of window system through which the selected frame is displayed.
6578 The value is a symbol:
6579 nil for a termcap frame (a character-only terminal),
6580 'x' for an Emacs frame that is really an X window,
6581 'w32' for an Emacs frame that is a window on MS-Windows display,
6582 'ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display,
6583 'pc' for a direct-write MS-DOS frame.
6584
6585 Use of this variable as a boolean is deprecated. Instead,
6586 use `display-graphic-p' or any of the other `display-*-p'
6587 predicates which report frame's specific UI-related capabilities. */);
6588
6589 DEFVAR_LISP ("window-system-version", Vwindow_system_version,
6590 doc: /* The version number of the window system in use.
6591 For X windows, this is 11. */);
6592
6593 DEFVAR_BOOL ("cursor-in-echo-area", cursor_in_echo_area,
6594 doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */);
6595
6596 DEFVAR_LISP ("glyph-table", Vglyph_table,
6597 doc: /* Table defining how to output a glyph code to the frame.
6598 If not nil, this is a vector indexed by glyph code to define the glyph.
6599 Each element can be:
6600 integer: a glyph code which this glyph is an alias for.
6601 string: output this glyph using that string (not impl. in X windows).
6602 nil: this glyph mod 524288 is the code of a character to output,
6603 and this glyph / 524288 is the face number (see `face-id') to use
6604 while outputting it. */);
6605 Vglyph_table = Qnil;
6606
6607 DEFVAR_LISP ("standard-display-table", Vstandard_display_table,
6608 doc: /* Display table to use for buffers that specify none.
6609 See `buffer-display-table' for more information. */);
6610 Vstandard_display_table = Qnil;
6611
6612 DEFVAR_BOOL ("redisplay-dont-pause", redisplay_dont_pause,
6613 doc: /* Non-nil means display update isn't paused when input is detected. */);
6614 redisplay_dont_pause = 1;
6615
6616 #if PERIODIC_PREEMPTION_CHECKING
6617 DEFVAR_LISP ("redisplay-preemption-period", Vredisplay_preemption_period,
6618 doc: /* Period in seconds between checking for input during redisplay.
6619 This has an effect only if `redisplay-dont-pause' is nil; in that
6620 case, arriving input preempts redisplay until the input is processed.
6621 If the value is nil, redisplay is never preempted. */);
6622 Vredisplay_preemption_period = make_float (0.10);
6623 #endif
6624
6625 #ifdef CANNOT_DUMP
6626 if (noninteractive)
6627 #endif
6628 {
6629 Vinitial_window_system = Qnil;
6630 Vwindow_system_version = Qnil;
6631 }
6632 }