* lisp/net/rcirc.el (defun-rcirc-join): Accept multiple channels.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
96
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
101
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
108
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
113
114 static pthread_mutex_t alloc_mutex;
115
116 #define BLOCK_INPUT_ALLOC \
117 do \
118 { \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
122 } \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
126 { \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
130 } \
131 while (0)
132
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
134
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
137
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 /* Value of _bytes_used, when spare_memory was freed. */
141
142 static __malloc_size_t bytes_used_when_full;
143
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
146
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
150
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
154
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
159
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 static char *stack_copy;
258 static int stack_copy_size;
259
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
263 static int ignore_warnings;
264
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
266
267 /* Hook run after GC has finished. */
268
269 Lisp_Object Qpost_gc_hook;
270
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
283
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288
289 extern int message_enable_multibyte;
290
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
294
295 enum mem_type
296 {
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
309 };
310
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
413
414
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
418
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
420
421 /* Recording what needs to be marked for gc. */
422
423 struct gcpro *gcprolist;
424
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
427
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
430
431 /* Index of next unused slot in staticvec. */
432
433 static int staticidx = 0;
434
435 static POINTER_TYPE *pure_alloc (size_t, int);
436
437
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
444
445
446 \f
447 /************************************************************************
448 Malloc
449 ************************************************************************/
450
451 /* Function malloc calls this if it finds we are near exhausting storage. */
452
453 void
454 malloc_warning (const char *str)
455 {
456 pending_malloc_warning = str;
457 }
458
459
460 /* Display an already-pending malloc warning. */
461
462 void
463 display_malloc_warning (void)
464 {
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
470 }
471
472
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (void)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
494
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
498 }
499
500
501 #ifdef XMALLOC_OVERRUN_CHECK
502
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
505
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
512 */
513
514
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
516
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
521
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
527
528 /* Macros to insert and extract the block size in the header. */
529
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
535
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
541
542
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
554
555 (time passes).
556
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
561
562 static int check_depth;
563
564 /* Like malloc, but wraps allocated block with header and trailer. */
565
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
569 {
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
572
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
575 {
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
582 }
583 --check_depth;
584 return (POINTER_TYPE *)val;
585 }
586
587
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
590
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
595 {
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
598
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
604 {
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
615
616 if (val && check_depth == 1)
617 {
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
624 }
625 --check_depth;
626 return (POINTER_TYPE *)val;
627 }
628
629 /* Like free, but checks block for overrun. */
630
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
634 {
635 unsigned char *val = (unsigned char *)block;
636
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
643 {
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
656 }
657
658 free (val);
659 --check_depth;
660 }
661
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
669
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
679
680 /* Like malloc but check for no memory and block interrupt input.. */
681
682 POINTER_TYPE *
683 xmalloc (size_t size)
684 {
685 register POINTER_TYPE *val;
686
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
690
691 if (!val && size)
692 memory_full ();
693 return val;
694 }
695
696
697 /* Like realloc but check for no memory and block interrupt input.. */
698
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
701 {
702 register POINTER_TYPE *val;
703
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
712
713 if (!val && size) memory_full ();
714 return val;
715 }
716
717
718 /* Like free but block interrupt input. */
719
720 void
721 xfree (POINTER_TYPE *block)
722 {
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
731 }
732
733
734 /* Like strdup, but uses xmalloc. */
735
736 char *
737 xstrdup (const char *s)
738 {
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
743 }
744
745
746 /* Unwind for SAFE_ALLOCA */
747
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
750 {
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
752
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
758 }
759
760
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
764
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
768
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
771 {
772 register void *val;
773
774 MALLOC_BLOCK_INPUT;
775
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
779
780 val = (void *) malloc (nbytes);
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
791 {
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
795 }
796 }
797 #endif
798
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
803
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
808 }
809
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
812
813 static void
814 lisp_free (POINTER_TYPE *block)
815 {
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
822 }
823
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
827
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
834
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
837
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
851
852 /* Internal data structures and constants. */
853
854 #define ABLOCKS_SIZE 16
855
856 /* An aligned block of memory. */
857 struct ablock
858 {
859 union
860 {
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
879 };
880
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
883 {
884 struct ablock blocks[ABLOCKS_SIZE];
885 };
886
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
889
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
894
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
897
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
905
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
908
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
914 {
915 void *base, *val;
916 struct ablocks *abase;
917
918 eassert (nbytes <= BLOCK_BYTES);
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 if (!free_ablock)
927 {
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
930
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
937
938 #ifdef USE_POSIX_MEMALIGN
939 {
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
944 }
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
949
950 if (base == 0)
951 {
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
954 }
955
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
959
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
964
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
970 {
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
975 {
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
980 }
981 }
982 #endif
983
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
987 {
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
991 }
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
993
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
999 }
1000
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1005
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1010
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1014
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1017 }
1018
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1021 {
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1024
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1034
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1040
1041 while (*tem)
1042 {
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1044 {
1045 i++;
1046 *tem = (*tem)->x.next_free;
1047 }
1048 else
1049 tem = &(*tem)->x.next_free;
1050 }
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1057 }
1058 MALLOC_UNBLOCK_INPUT;
1059 }
1060
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1063
1064 struct buffer *
1065 allocate_buffer (void)
1066 {
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1073 }
1074
1075 \f
1076 #ifndef SYSTEM_MALLOC
1077
1078 /* Arranging to disable input signals while we're in malloc.
1079
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1087
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1091
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1101
1102 static __malloc_size_t bytes_used_when_reconsidered;
1103
1104 /* This function is used as the hook for free to call. */
1105
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1108 {
1109 BLOCK_INPUT_ALLOC;
1110
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1113 {
1114 struct mem_node *m;
1115
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1118 {
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1122 }
1123 else
1124 {
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1127 }
1128 }
1129 #endif /* GC_MALLOC_CHECK */
1130
1131 __free_hook = old_free_hook;
1132 free (ptr);
1133
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1146
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1149 }
1150
1151
1152 /* This function is the malloc hook that Emacs uses. */
1153
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1156 {
1157 void *value;
1158
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1167
1168 value = (void *) malloc (size);
1169
1170 #ifdef GC_MALLOC_CHECK
1171 {
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1174 {
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1181 }
1182
1183 if (!dont_register_blocks)
1184 {
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 }
1188 }
1189 #endif /* GC_MALLOC_CHECK */
1190
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1193
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1196 }
1197
1198
1199 /* This function is the realloc hook that Emacs uses. */
1200
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1203 {
1204 void *value;
1205
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1208
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1211 {
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1214 {
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1219 }
1220
1221 mem_delete (m);
1222 }
1223
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1225
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 value = (void *) realloc (ptr, size);
1231
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1234
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1241 }
1242
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 }
1246
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1249
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1252
1253 return value;
1254 }
1255
1256
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1262
1263 void
1264 reset_malloc_hooks ()
1265 {
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1269 }
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1271
1272
1273 /* Called from main to set up malloc to use our hooks. */
1274
1275 void
1276 uninterrupt_malloc (void)
1277 {
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1281
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1293
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1297
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1301
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1305 }
1306
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1309
1310
1311 \f
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1315
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1318
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1321
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1324
1325 struct interval_block
1326 {
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1330 };
1331
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1334
1335 static struct interval_block *interval_block;
1336
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1339
1340 static int interval_block_index;
1341
1342 /* Number of free and live intervals. */
1343
1344 static int total_free_intervals, total_intervals;
1345
1346 /* List of free intervals. */
1347
1348 INTERVAL interval_free_list;
1349
1350 /* Total number of interval blocks now in use. */
1351
1352 static int n_interval_blocks;
1353
1354
1355 /* Initialize interval allocation. */
1356
1357 static void
1358 init_intervals (void)
1359 {
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1364 }
1365
1366
1367 /* Return a new interval. */
1368
1369 INTERVAL
1370 make_interval (void)
1371 {
1372 INTERVAL val;
1373
1374 /* eassert (!handling_signal); */
1375
1376 MALLOC_BLOCK_INPUT;
1377
1378 if (interval_free_list)
1379 {
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1382 }
1383 else
1384 {
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1386 {
1387 register struct interval_block *newi;
1388
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1391
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1396 }
1397 val = &interval_block->intervals[interval_block_index++];
1398 }
1399
1400 MALLOC_UNBLOCK_INPUT;
1401
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1407 }
1408
1409
1410 /* Mark Lisp objects in interval I. */
1411
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1414 {
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1418 }
1419
1420
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1423
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1426 {
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1430
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1432 }
1433
1434
1435 /* Mark the interval tree rooted in I. */
1436
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1442
1443
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1449
1450 \f
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1456 {
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1461 }
1462 #endif
1463 \f
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1467
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1474
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1478
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1483
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1490
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1493
1494 #define SBLOCK_SIZE 8188
1495
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1498
1499 #define LARGE_STRING_BYTES 1024
1500
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1503
1504 struct sdata
1505 {
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1513
1514 #ifdef GC_CHECK_STRING_BYTES
1515
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1518
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1521
1522 #else /* not GC_CHECK_STRING_BYTES */
1523
1524 union
1525 {
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1532
1533
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1536
1537 #endif /* not GC_CHECK_STRING_BYTES */
1538 };
1539
1540
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1545
1546 struct sblock
1547 {
1548 /* Next in list. */
1549 struct sblock *next;
1550
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1554
1555 /* Start of data. */
1556 struct sdata first_data;
1557 };
1558
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1561
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1564
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1567
1568 struct string_block
1569 {
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1573 };
1574
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1578
1579 static struct sblock *oldest_sblock, *current_sblock;
1580
1581 /* List of sblocks for large strings. */
1582
1583 static struct sblock *large_sblocks;
1584
1585 /* List of string_block structures, and how many there are. */
1586
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1589
1590 /* Free-list of Lisp_Strings. */
1591
1592 static struct Lisp_String *string_free_list;
1593
1594 /* Number of live and free Lisp_Strings. */
1595
1596 static int total_strings, total_free_strings;
1597
1598 /* Number of bytes used by live strings. */
1599
1600 static EMACS_INT total_string_size;
1601
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1605
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1607
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1618
1619 #else /* not GC_CHECK_STRING_BYTES */
1620
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1623
1624 #endif /* not GC_CHECK_STRING_BYTES */
1625
1626
1627 #ifdef GC_CHECK_STRING_OVERRUN
1628
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1632
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1636
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1640
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1644
1645 #ifdef GC_CHECK_STRING_BYTES
1646
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
1654 #else /* not GC_CHECK_STRING_BYTES */
1655
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1689
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691
1692
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1694
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1697 {
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1700
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1706 }
1707
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1709
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1713 {
1714 struct sdata *from, *end, *from_end;
1715
1716 end = b->next_free;
1717
1718 for (from = &b->first_data; from < end; from = from_end)
1719 {
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1723
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1728
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1733
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 }
1737 }
1738
1739
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1743
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1747 {
1748 if (all_p)
1749 {
1750 struct sblock *b;
1751
1752 for (b = large_sblocks; b; b = b->next)
1753 {
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1757 }
1758
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1761 }
1762 else
1763 check_sblock (current_sblock);
1764 }
1765
1766 #endif /* GC_CHECK_STRING_BYTES */
1767
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1769
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1772
1773 static void
1774 check_string_free_list ()
1775 {
1776 struct Lisp_String *s;
1777
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1781 {
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1785 }
1786 }
1787 #else
1788 #define check_string_free_list()
1789 #endif
1790
1791 /* Return a new Lisp_String. */
1792
1793 static struct Lisp_String *
1794 allocate_string (void)
1795 {
1796 struct Lisp_String *s;
1797
1798 /* eassert (!handling_signal); */
1799
1800 MALLOC_BLOCK_INPUT;
1801
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1805 {
1806 struct string_block *b;
1807 int i;
1808
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1814
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1816 {
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1820 }
1821
1822 total_free_strings += STRING_BLOCK_SIZE;
1823 }
1824
1825 check_string_free_list ();
1826
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1830
1831 MALLOC_UNBLOCK_INPUT;
1832
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1835
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1840
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1843 {
1844 if (++check_string_bytes_count == 200)
1845 {
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1848 }
1849 else
1850 check_string_bytes (0);
1851 }
1852 #endif /* GC_CHECK_STRING_BYTES */
1853
1854 return s;
1855 }
1856
1857
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1863
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1867 {
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1871
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1877
1878 MALLOC_BLOCK_INPUT;
1879
1880 if (nbytes > LARGE_STRING_BYTES)
1881 {
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1883
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1888
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1896
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1898
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1903
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1908 }
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1913 {
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1919
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1925 }
1926 else
1927 b = current_sblock;
1928
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1931
1932 MALLOC_UNBLOCK_INPUT;
1933
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1945
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1950 {
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1953 }
1954
1955 consing_since_gc += needed;
1956 }
1957
1958
1959 /* Sweep and compact strings. */
1960
1961 static void
1962 sweep_strings (void)
1963 {
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1966
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1970
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1973 {
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1976
1977 next = b->next;
1978
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1980 {
1981 struct Lisp_String *s = b->strings + i;
1982
1983 if (s->data)
1984 {
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1987 {
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1990
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1993
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1996 }
1997 else
1998 {
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2001
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2012
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2016
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2021 }
2022 }
2023 else
2024 {
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2029 }
2030 }
2031
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2036 {
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2040 }
2041 else
2042 {
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2046 }
2047 }
2048
2049 check_string_free_list ();
2050
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2054
2055 check_string_free_list ();
2056 }
2057
2058
2059 /* Free dead large strings. */
2060
2061 static void
2062 free_large_strings (void)
2063 {
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2066
2067 for (b = large_sblocks; b; b = next)
2068 {
2069 next = b->next;
2070
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2074 {
2075 b->next = live_blocks;
2076 live_blocks = b;
2077 }
2078 }
2079
2080 large_sblocks = live_blocks;
2081 }
2082
2083
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2086
2087 static void
2088 compact_small_strings (void)
2089 {
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2093
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2099
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2104 {
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2107
2108 for (from = &b->first_data; from < end; from = from_end)
2109 {
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2113
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2121
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2126
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2129
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2132
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2139
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2142 {
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2146 {
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2152 }
2153
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2156 {
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2160 }
2161
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2164 }
2165 }
2166 }
2167
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2171 {
2172 next = b->next;
2173 lisp_free (b);
2174 }
2175
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2179 }
2180
2181
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2187 {
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2192
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2195
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2198 {
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2205 }
2206 else
2207 {
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2211
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2219 {
2220 memcpy (p, str, len);
2221 p += len;
2222 }
2223 }
2224
2225 *p = 0;
2226 return val;
2227 }
2228
2229
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2234 {
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2240
2241 CHECK_NATNUM (length);
2242
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2244
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2248
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2252
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2257
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2260
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2264
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269
2270 return val;
2271 }
2272
2273
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2280 {
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2283
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2300 {
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 STRING_SET_UNIBYTE (val);
2305 return val;
2306 }
2307
2308
2309 /* Make a multibyte string from NCHARS characters occupying NBYTES
2310 bytes at CONTENTS. */
2311
2312 Lisp_Object
2313 make_multibyte_string (const char *contents,
2314 EMACS_INT nchars, EMACS_INT nbytes)
2315 {
2316 register Lisp_Object val;
2317 val = make_uninit_multibyte_string (nchars, nbytes);
2318 memcpy (SDATA (val), contents, nbytes);
2319 return val;
2320 }
2321
2322
2323 /* Make a string from NCHARS characters occupying NBYTES bytes at
2324 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325
2326 Lisp_Object
2327 make_string_from_bytes (const char *contents,
2328 EMACS_INT nchars, EMACS_INT nbytes)
2329 {
2330 register Lisp_Object val;
2331 val = make_uninit_multibyte_string (nchars, nbytes);
2332 memcpy (SDATA (val), contents, nbytes);
2333 if (SBYTES (val) == SCHARS (val))
2334 STRING_SET_UNIBYTE (val);
2335 return val;
2336 }
2337
2338
2339 /* Make a string from NCHARS characters occupying NBYTES bytes at
2340 CONTENTS. The argument MULTIBYTE controls whether to label the
2341 string as multibyte. If NCHARS is negative, it counts the number of
2342 characters by itself. */
2343
2344 Lisp_Object
2345 make_specified_string (const char *contents,
2346 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 {
2348 register Lisp_Object val;
2349
2350 if (nchars < 0)
2351 {
2352 if (multibyte)
2353 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2354 nbytes);
2355 else
2356 nchars = nbytes;
2357 }
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 memcpy (SDATA (val), contents, nbytes);
2360 if (!multibyte)
2361 STRING_SET_UNIBYTE (val);
2362 return val;
2363 }
2364
2365
2366 /* Make a string from the data at STR, treating it as multibyte if the
2367 data warrants. */
2368
2369 Lisp_Object
2370 build_string (const char *str)
2371 {
2372 return make_string (str, strlen (str));
2373 }
2374
2375
2376 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2377 occupying LENGTH bytes. */
2378
2379 Lisp_Object
2380 make_uninit_string (EMACS_INT length)
2381 {
2382 Lisp_Object val;
2383
2384 if (!length)
2385 return empty_unibyte_string;
2386 val = make_uninit_multibyte_string (length, length);
2387 STRING_SET_UNIBYTE (val);
2388 return val;
2389 }
2390
2391
2392 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2393 which occupy NBYTES bytes. */
2394
2395 Lisp_Object
2396 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2397 {
2398 Lisp_Object string;
2399 struct Lisp_String *s;
2400
2401 if (nchars < 0)
2402 abort ();
2403 if (!nbytes)
2404 return empty_multibyte_string;
2405
2406 s = allocate_string ();
2407 allocate_string_data (s, nchars, nbytes);
2408 XSETSTRING (string, s);
2409 string_chars_consed += nbytes;
2410 return string;
2411 }
2412
2413
2414 \f
2415 /***********************************************************************
2416 Float Allocation
2417 ***********************************************************************/
2418
2419 /* We store float cells inside of float_blocks, allocating a new
2420 float_block with malloc whenever necessary. Float cells reclaimed
2421 by GC are put on a free list to be reallocated before allocating
2422 any new float cells from the latest float_block. */
2423
2424 #define FLOAT_BLOCK_SIZE \
2425 (((BLOCK_BYTES - sizeof (struct float_block *) \
2426 /* The compiler might add padding at the end. */ \
2427 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2428 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2429
2430 #define GETMARKBIT(block,n) \
2431 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2432 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2433 & 1)
2434
2435 #define SETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2438
2439 #define UNSETMARKBIT(block,n) \
2440 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2441 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2442
2443 #define FLOAT_BLOCK(fptr) \
2444 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2445
2446 #define FLOAT_INDEX(fptr) \
2447 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2448
2449 struct float_block
2450 {
2451 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2452 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2453 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2454 struct float_block *next;
2455 };
2456
2457 #define FLOAT_MARKED_P(fptr) \
2458 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459
2460 #define FLOAT_MARK(fptr) \
2461 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462
2463 #define FLOAT_UNMARK(fptr) \
2464 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2465
2466 /* Current float_block. */
2467
2468 struct float_block *float_block;
2469
2470 /* Index of first unused Lisp_Float in the current float_block. */
2471
2472 int float_block_index;
2473
2474 /* Total number of float blocks now in use. */
2475
2476 int n_float_blocks;
2477
2478 /* Free-list of Lisp_Floats. */
2479
2480 struct Lisp_Float *float_free_list;
2481
2482
2483 /* Initialize float allocation. */
2484
2485 static void
2486 init_float (void)
2487 {
2488 float_block = NULL;
2489 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2490 float_free_list = 0;
2491 n_float_blocks = 0;
2492 }
2493
2494
2495 /* Return a new float object with value FLOAT_VALUE. */
2496
2497 Lisp_Object
2498 make_float (double float_value)
2499 {
2500 register Lisp_Object val;
2501
2502 /* eassert (!handling_signal); */
2503
2504 MALLOC_BLOCK_INPUT;
2505
2506 if (float_free_list)
2507 {
2508 /* We use the data field for chaining the free list
2509 so that we won't use the same field that has the mark bit. */
2510 XSETFLOAT (val, float_free_list);
2511 float_free_list = float_free_list->u.chain;
2512 }
2513 else
2514 {
2515 if (float_block_index == FLOAT_BLOCK_SIZE)
2516 {
2517 register struct float_block *new;
2518
2519 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2520 MEM_TYPE_FLOAT);
2521 new->next = float_block;
2522 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2523 float_block = new;
2524 float_block_index = 0;
2525 n_float_blocks++;
2526 }
2527 XSETFLOAT (val, &float_block->floats[float_block_index]);
2528 float_block_index++;
2529 }
2530
2531 MALLOC_UNBLOCK_INPUT;
2532
2533 XFLOAT_INIT (val, float_value);
2534 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2535 consing_since_gc += sizeof (struct Lisp_Float);
2536 floats_consed++;
2537 return val;
2538 }
2539
2540
2541 \f
2542 /***********************************************************************
2543 Cons Allocation
2544 ***********************************************************************/
2545
2546 /* We store cons cells inside of cons_blocks, allocating a new
2547 cons_block with malloc whenever necessary. Cons cells reclaimed by
2548 GC are put on a free list to be reallocated before allocating
2549 any new cons cells from the latest cons_block. */
2550
2551 #define CONS_BLOCK_SIZE \
2552 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2553 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2554
2555 #define CONS_BLOCK(fptr) \
2556 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2557
2558 #define CONS_INDEX(fptr) \
2559 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2560
2561 struct cons_block
2562 {
2563 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2564 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2565 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2566 struct cons_block *next;
2567 };
2568
2569 #define CONS_MARKED_P(fptr) \
2570 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571
2572 #define CONS_MARK(fptr) \
2573 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574
2575 #define CONS_UNMARK(fptr) \
2576 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2577
2578 /* Current cons_block. */
2579
2580 struct cons_block *cons_block;
2581
2582 /* Index of first unused Lisp_Cons in the current block. */
2583
2584 int cons_block_index;
2585
2586 /* Free-list of Lisp_Cons structures. */
2587
2588 struct Lisp_Cons *cons_free_list;
2589
2590 /* Total number of cons blocks now in use. */
2591
2592 static int n_cons_blocks;
2593
2594
2595 /* Initialize cons allocation. */
2596
2597 static void
2598 init_cons (void)
2599 {
2600 cons_block = NULL;
2601 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2602 cons_free_list = 0;
2603 n_cons_blocks = 0;
2604 }
2605
2606
2607 /* Explicitly free a cons cell by putting it on the free-list. */
2608
2609 void
2610 free_cons (struct Lisp_Cons *ptr)
2611 {
2612 ptr->u.chain = cons_free_list;
2613 #if GC_MARK_STACK
2614 ptr->car = Vdead;
2615 #endif
2616 cons_free_list = ptr;
2617 }
2618
2619 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2620 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2621 (Lisp_Object car, Lisp_Object cdr)
2622 {
2623 register Lisp_Object val;
2624
2625 /* eassert (!handling_signal); */
2626
2627 MALLOC_BLOCK_INPUT;
2628
2629 if (cons_free_list)
2630 {
2631 /* We use the cdr for chaining the free list
2632 so that we won't use the same field that has the mark bit. */
2633 XSETCONS (val, cons_free_list);
2634 cons_free_list = cons_free_list->u.chain;
2635 }
2636 else
2637 {
2638 if (cons_block_index == CONS_BLOCK_SIZE)
2639 {
2640 register struct cons_block *new;
2641 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2642 MEM_TYPE_CONS);
2643 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2644 new->next = cons_block;
2645 cons_block = new;
2646 cons_block_index = 0;
2647 n_cons_blocks++;
2648 }
2649 XSETCONS (val, &cons_block->conses[cons_block_index]);
2650 cons_block_index++;
2651 }
2652
2653 MALLOC_UNBLOCK_INPUT;
2654
2655 XSETCAR (val, car);
2656 XSETCDR (val, cdr);
2657 eassert (!CONS_MARKED_P (XCONS (val)));
2658 consing_since_gc += sizeof (struct Lisp_Cons);
2659 cons_cells_consed++;
2660 return val;
2661 }
2662
2663 /* Get an error now if there's any junk in the cons free list. */
2664 void
2665 check_cons_list (void)
2666 {
2667 #ifdef GC_CHECK_CONS_LIST
2668 struct Lisp_Cons *tail = cons_free_list;
2669
2670 while (tail)
2671 tail = tail->u.chain;
2672 #endif
2673 }
2674
2675 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2676
2677 Lisp_Object
2678 list1 (Lisp_Object arg1)
2679 {
2680 return Fcons (arg1, Qnil);
2681 }
2682
2683 Lisp_Object
2684 list2 (Lisp_Object arg1, Lisp_Object arg2)
2685 {
2686 return Fcons (arg1, Fcons (arg2, Qnil));
2687 }
2688
2689
2690 Lisp_Object
2691 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2692 {
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2694 }
2695
2696
2697 Lisp_Object
2698 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2699 {
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2701 }
2702
2703
2704 Lisp_Object
2705 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2706 {
2707 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2708 Fcons (arg5, Qnil)))));
2709 }
2710
2711
2712 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2713 doc: /* Return a newly created list with specified arguments as elements.
2714 Any number of arguments, even zero arguments, are allowed.
2715 usage: (list &rest OBJECTS) */)
2716 (int nargs, register Lisp_Object *args)
2717 {
2718 register Lisp_Object val;
2719 val = Qnil;
2720
2721 while (nargs > 0)
2722 {
2723 nargs--;
2724 val = Fcons (args[nargs], val);
2725 }
2726 return val;
2727 }
2728
2729
2730 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2731 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2732 (register Lisp_Object length, Lisp_Object init)
2733 {
2734 register Lisp_Object val;
2735 register EMACS_INT size;
2736
2737 CHECK_NATNUM (length);
2738 size = XFASTINT (length);
2739
2740 val = Qnil;
2741 while (size > 0)
2742 {
2743 val = Fcons (init, val);
2744 --size;
2745
2746 if (size > 0)
2747 {
2748 val = Fcons (init, val);
2749 --size;
2750
2751 if (size > 0)
2752 {
2753 val = Fcons (init, val);
2754 --size;
2755
2756 if (size > 0)
2757 {
2758 val = Fcons (init, val);
2759 --size;
2760
2761 if (size > 0)
2762 {
2763 val = Fcons (init, val);
2764 --size;
2765 }
2766 }
2767 }
2768 }
2769
2770 QUIT;
2771 }
2772
2773 return val;
2774 }
2775
2776
2777 \f
2778 /***********************************************************************
2779 Vector Allocation
2780 ***********************************************************************/
2781
2782 /* Singly-linked list of all vectors. */
2783
2784 static struct Lisp_Vector *all_vectors;
2785
2786 /* Total number of vector-like objects now in use. */
2787
2788 static int n_vectors;
2789
2790
2791 /* Value is a pointer to a newly allocated Lisp_Vector structure
2792 with room for LEN Lisp_Objects. */
2793
2794 static struct Lisp_Vector *
2795 allocate_vectorlike (EMACS_INT len)
2796 {
2797 struct Lisp_Vector *p;
2798 size_t nbytes;
2799
2800 MALLOC_BLOCK_INPUT;
2801
2802 #ifdef DOUG_LEA_MALLOC
2803 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2804 because mapped region contents are not preserved in
2805 a dumped Emacs. */
2806 mallopt (M_MMAP_MAX, 0);
2807 #endif
2808
2809 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2810 /* eassert (!handling_signal); */
2811
2812 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2813 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2814
2815 #ifdef DOUG_LEA_MALLOC
2816 /* Back to a reasonable maximum of mmap'ed areas. */
2817 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2818 #endif
2819
2820 consing_since_gc += nbytes;
2821 vector_cells_consed += len;
2822
2823 p->next = all_vectors;
2824 all_vectors = p;
2825
2826 MALLOC_UNBLOCK_INPUT;
2827
2828 ++n_vectors;
2829 return p;
2830 }
2831
2832
2833 /* Allocate a vector with NSLOTS slots. */
2834
2835 struct Lisp_Vector *
2836 allocate_vector (EMACS_INT nslots)
2837 {
2838 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2839 v->size = nslots;
2840 return v;
2841 }
2842
2843
2844 /* Allocate other vector-like structures. */
2845
2846 struct Lisp_Vector *
2847 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2848 {
2849 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2850 EMACS_INT i;
2851
2852 /* Only the first lisplen slots will be traced normally by the GC. */
2853 v->size = lisplen;
2854 for (i = 0; i < lisplen; ++i)
2855 v->contents[i] = Qnil;
2856
2857 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2858 return v;
2859 }
2860
2861 struct Lisp_Hash_Table *
2862 allocate_hash_table (void)
2863 {
2864 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2865 }
2866
2867
2868 struct window *
2869 allocate_window (void)
2870 {
2871 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2872 }
2873
2874
2875 struct terminal *
2876 allocate_terminal (void)
2877 {
2878 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2879 next_terminal, PVEC_TERMINAL);
2880 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2881 memset (&t->next_terminal, 0,
2882 (char*) (t + 1) - (char*) &t->next_terminal);
2883
2884 return t;
2885 }
2886
2887 struct frame *
2888 allocate_frame (void)
2889 {
2890 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2891 face_cache, PVEC_FRAME);
2892 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2893 memset (&f->face_cache, 0,
2894 (char *) (f + 1) - (char *) &f->face_cache);
2895 return f;
2896 }
2897
2898
2899 struct Lisp_Process *
2900 allocate_process (void)
2901 {
2902 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2903 }
2904
2905
2906 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2907 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2908 See also the function `vector'. */)
2909 (register Lisp_Object length, Lisp_Object init)
2910 {
2911 Lisp_Object vector;
2912 register EMACS_INT sizei;
2913 register EMACS_INT index;
2914 register struct Lisp_Vector *p;
2915
2916 CHECK_NATNUM (length);
2917 sizei = XFASTINT (length);
2918
2919 p = allocate_vector (sizei);
2920 for (index = 0; index < sizei; index++)
2921 p->contents[index] = init;
2922
2923 XSETVECTOR (vector, p);
2924 return vector;
2925 }
2926
2927
2928 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2929 doc: /* Return a newly created vector with specified arguments as elements.
2930 Any number of arguments, even zero arguments, are allowed.
2931 usage: (vector &rest OBJECTS) */)
2932 (register int nargs, Lisp_Object *args)
2933 {
2934 register Lisp_Object len, val;
2935 register int index;
2936 register struct Lisp_Vector *p;
2937
2938 XSETFASTINT (len, nargs);
2939 val = Fmake_vector (len, Qnil);
2940 p = XVECTOR (val);
2941 for (index = 0; index < nargs; index++)
2942 p->contents[index] = args[index];
2943 return val;
2944 }
2945
2946
2947 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2948 doc: /* Create a byte-code object with specified arguments as elements.
2949 The arguments should be the arglist, bytecode-string, constant vector,
2950 stack size, (optional) doc string, and (optional) interactive spec.
2951 The first four arguments are required; at most six have any
2952 significance.
2953 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2954 (register int nargs, Lisp_Object *args)
2955 {
2956 register Lisp_Object len, val;
2957 register int index;
2958 register struct Lisp_Vector *p;
2959
2960 XSETFASTINT (len, nargs);
2961 if (!NILP (Vpurify_flag))
2962 val = make_pure_vector ((EMACS_INT) nargs);
2963 else
2964 val = Fmake_vector (len, Qnil);
2965
2966 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2967 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2968 earlier because they produced a raw 8-bit string for byte-code
2969 and now such a byte-code string is loaded as multibyte while
2970 raw 8-bit characters converted to multibyte form. Thus, now we
2971 must convert them back to the original unibyte form. */
2972 args[1] = Fstring_as_unibyte (args[1]);
2973
2974 p = XVECTOR (val);
2975 for (index = 0; index < nargs; index++)
2976 {
2977 if (!NILP (Vpurify_flag))
2978 args[index] = Fpurecopy (args[index]);
2979 p->contents[index] = args[index];
2980 }
2981 XSETPVECTYPE (p, PVEC_COMPILED);
2982 XSETCOMPILED (val, p);
2983 return val;
2984 }
2985
2986
2987 \f
2988 /***********************************************************************
2989 Symbol Allocation
2990 ***********************************************************************/
2991
2992 /* Each symbol_block is just under 1020 bytes long, since malloc
2993 really allocates in units of powers of two and uses 4 bytes for its
2994 own overhead. */
2995
2996 #define SYMBOL_BLOCK_SIZE \
2997 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2998
2999 struct symbol_block
3000 {
3001 /* Place `symbols' first, to preserve alignment. */
3002 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3003 struct symbol_block *next;
3004 };
3005
3006 /* Current symbol block and index of first unused Lisp_Symbol
3007 structure in it. */
3008
3009 static struct symbol_block *symbol_block;
3010 static int symbol_block_index;
3011
3012 /* List of free symbols. */
3013
3014 static struct Lisp_Symbol *symbol_free_list;
3015
3016 /* Total number of symbol blocks now in use. */
3017
3018 static int n_symbol_blocks;
3019
3020
3021 /* Initialize symbol allocation. */
3022
3023 static void
3024 init_symbol (void)
3025 {
3026 symbol_block = NULL;
3027 symbol_block_index = SYMBOL_BLOCK_SIZE;
3028 symbol_free_list = 0;
3029 n_symbol_blocks = 0;
3030 }
3031
3032
3033 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3034 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3035 Its value and function definition are void, and its property list is nil. */)
3036 (Lisp_Object name)
3037 {
3038 register Lisp_Object val;
3039 register struct Lisp_Symbol *p;
3040
3041 CHECK_STRING (name);
3042
3043 /* eassert (!handling_signal); */
3044
3045 MALLOC_BLOCK_INPUT;
3046
3047 if (symbol_free_list)
3048 {
3049 XSETSYMBOL (val, symbol_free_list);
3050 symbol_free_list = symbol_free_list->next;
3051 }
3052 else
3053 {
3054 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3055 {
3056 struct symbol_block *new;
3057 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3058 MEM_TYPE_SYMBOL);
3059 new->next = symbol_block;
3060 symbol_block = new;
3061 symbol_block_index = 0;
3062 n_symbol_blocks++;
3063 }
3064 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3065 symbol_block_index++;
3066 }
3067
3068 MALLOC_UNBLOCK_INPUT;
3069
3070 p = XSYMBOL (val);
3071 p->xname = name;
3072 p->plist = Qnil;
3073 p->redirect = SYMBOL_PLAINVAL;
3074 SET_SYMBOL_VAL (p, Qunbound);
3075 p->function = Qunbound;
3076 p->next = NULL;
3077 p->gcmarkbit = 0;
3078 p->interned = SYMBOL_UNINTERNED;
3079 p->constant = 0;
3080 consing_since_gc += sizeof (struct Lisp_Symbol);
3081 symbols_consed++;
3082 return val;
3083 }
3084
3085
3086 \f
3087 /***********************************************************************
3088 Marker (Misc) Allocation
3089 ***********************************************************************/
3090
3091 /* Allocation of markers and other objects that share that structure.
3092 Works like allocation of conses. */
3093
3094 #define MARKER_BLOCK_SIZE \
3095 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3096
3097 struct marker_block
3098 {
3099 /* Place `markers' first, to preserve alignment. */
3100 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3101 struct marker_block *next;
3102 };
3103
3104 static struct marker_block *marker_block;
3105 static int marker_block_index;
3106
3107 static union Lisp_Misc *marker_free_list;
3108
3109 /* Total number of marker blocks now in use. */
3110
3111 static int n_marker_blocks;
3112
3113 static void
3114 init_marker (void)
3115 {
3116 marker_block = NULL;
3117 marker_block_index = MARKER_BLOCK_SIZE;
3118 marker_free_list = 0;
3119 n_marker_blocks = 0;
3120 }
3121
3122 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3123
3124 Lisp_Object
3125 allocate_misc (void)
3126 {
3127 Lisp_Object val;
3128
3129 /* eassert (!handling_signal); */
3130
3131 MALLOC_BLOCK_INPUT;
3132
3133 if (marker_free_list)
3134 {
3135 XSETMISC (val, marker_free_list);
3136 marker_free_list = marker_free_list->u_free.chain;
3137 }
3138 else
3139 {
3140 if (marker_block_index == MARKER_BLOCK_SIZE)
3141 {
3142 struct marker_block *new;
3143 new = (struct marker_block *) lisp_malloc (sizeof *new,
3144 MEM_TYPE_MISC);
3145 new->next = marker_block;
3146 marker_block = new;
3147 marker_block_index = 0;
3148 n_marker_blocks++;
3149 total_free_markers += MARKER_BLOCK_SIZE;
3150 }
3151 XSETMISC (val, &marker_block->markers[marker_block_index]);
3152 marker_block_index++;
3153 }
3154
3155 MALLOC_UNBLOCK_INPUT;
3156
3157 --total_free_markers;
3158 consing_since_gc += sizeof (union Lisp_Misc);
3159 misc_objects_consed++;
3160 XMISCANY (val)->gcmarkbit = 0;
3161 return val;
3162 }
3163
3164 /* Free a Lisp_Misc object */
3165
3166 void
3167 free_misc (Lisp_Object misc)
3168 {
3169 XMISCTYPE (misc) = Lisp_Misc_Free;
3170 XMISC (misc)->u_free.chain = marker_free_list;
3171 marker_free_list = XMISC (misc);
3172
3173 total_free_markers++;
3174 }
3175
3176 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3177 INTEGER. This is used to package C values to call record_unwind_protect.
3178 The unwind function can get the C values back using XSAVE_VALUE. */
3179
3180 Lisp_Object
3181 make_save_value (void *pointer, int integer)
3182 {
3183 register Lisp_Object val;
3184 register struct Lisp_Save_Value *p;
3185
3186 val = allocate_misc ();
3187 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3188 p = XSAVE_VALUE (val);
3189 p->pointer = pointer;
3190 p->integer = integer;
3191 p->dogc = 0;
3192 return val;
3193 }
3194
3195 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3196 doc: /* Return a newly allocated marker which does not point at any place. */)
3197 (void)
3198 {
3199 register Lisp_Object val;
3200 register struct Lisp_Marker *p;
3201
3202 val = allocate_misc ();
3203 XMISCTYPE (val) = Lisp_Misc_Marker;
3204 p = XMARKER (val);
3205 p->buffer = 0;
3206 p->bytepos = 0;
3207 p->charpos = 0;
3208 p->next = NULL;
3209 p->insertion_type = 0;
3210 return val;
3211 }
3212
3213 /* Put MARKER back on the free list after using it temporarily. */
3214
3215 void
3216 free_marker (Lisp_Object marker)
3217 {
3218 unchain_marker (XMARKER (marker));
3219 free_misc (marker);
3220 }
3221
3222 \f
3223 /* Return a newly created vector or string with specified arguments as
3224 elements. If all the arguments are characters that can fit
3225 in a string of events, make a string; otherwise, make a vector.
3226
3227 Any number of arguments, even zero arguments, are allowed. */
3228
3229 Lisp_Object
3230 make_event_array (register int nargs, Lisp_Object *args)
3231 {
3232 int i;
3233
3234 for (i = 0; i < nargs; i++)
3235 /* The things that fit in a string
3236 are characters that are in 0...127,
3237 after discarding the meta bit and all the bits above it. */
3238 if (!INTEGERP (args[i])
3239 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3240 return Fvector (nargs, args);
3241
3242 /* Since the loop exited, we know that all the things in it are
3243 characters, so we can make a string. */
3244 {
3245 Lisp_Object result;
3246
3247 result = Fmake_string (make_number (nargs), make_number (0));
3248 for (i = 0; i < nargs; i++)
3249 {
3250 SSET (result, i, XINT (args[i]));
3251 /* Move the meta bit to the right place for a string char. */
3252 if (XINT (args[i]) & CHAR_META)
3253 SSET (result, i, SREF (result, i) | 0x80);
3254 }
3255
3256 return result;
3257 }
3258 }
3259
3260
3261 \f
3262 /************************************************************************
3263 Memory Full Handling
3264 ************************************************************************/
3265
3266
3267 /* Called if malloc returns zero. */
3268
3269 void
3270 memory_full (void)
3271 {
3272 int i;
3273
3274 Vmemory_full = Qt;
3275
3276 memory_full_cons_threshold = sizeof (struct cons_block);
3277
3278 /* The first time we get here, free the spare memory. */
3279 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3280 if (spare_memory[i])
3281 {
3282 if (i == 0)
3283 free (spare_memory[i]);
3284 else if (i >= 1 && i <= 4)
3285 lisp_align_free (spare_memory[i]);
3286 else
3287 lisp_free (spare_memory[i]);
3288 spare_memory[i] = 0;
3289 }
3290
3291 /* Record the space now used. When it decreases substantially,
3292 we can refill the memory reserve. */
3293 #ifndef SYSTEM_MALLOC
3294 bytes_used_when_full = BYTES_USED;
3295 #endif
3296
3297 /* This used to call error, but if we've run out of memory, we could
3298 get infinite recursion trying to build the string. */
3299 xsignal (Qnil, Vmemory_signal_data);
3300 }
3301
3302 /* If we released our reserve (due to running out of memory),
3303 and we have a fair amount free once again,
3304 try to set aside another reserve in case we run out once more.
3305
3306 This is called when a relocatable block is freed in ralloc.c,
3307 and also directly from this file, in case we're not using ralloc.c. */
3308
3309 void
3310 refill_memory_reserve (void)
3311 {
3312 #ifndef SYSTEM_MALLOC
3313 if (spare_memory[0] == 0)
3314 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3315 if (spare_memory[1] == 0)
3316 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3317 MEM_TYPE_CONS);
3318 if (spare_memory[2] == 0)
3319 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3320 MEM_TYPE_CONS);
3321 if (spare_memory[3] == 0)
3322 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3323 MEM_TYPE_CONS);
3324 if (spare_memory[4] == 0)
3325 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[5] == 0)
3328 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3329 MEM_TYPE_STRING);
3330 if (spare_memory[6] == 0)
3331 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3332 MEM_TYPE_STRING);
3333 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3334 Vmemory_full = Qnil;
3335 #endif
3336 }
3337 \f
3338 /************************************************************************
3339 C Stack Marking
3340 ************************************************************************/
3341
3342 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3343
3344 /* Conservative C stack marking requires a method to identify possibly
3345 live Lisp objects given a pointer value. We do this by keeping
3346 track of blocks of Lisp data that are allocated in a red-black tree
3347 (see also the comment of mem_node which is the type of nodes in
3348 that tree). Function lisp_malloc adds information for an allocated
3349 block to the red-black tree with calls to mem_insert, and function
3350 lisp_free removes it with mem_delete. Functions live_string_p etc
3351 call mem_find to lookup information about a given pointer in the
3352 tree, and use that to determine if the pointer points to a Lisp
3353 object or not. */
3354
3355 /* Initialize this part of alloc.c. */
3356
3357 static void
3358 mem_init (void)
3359 {
3360 mem_z.left = mem_z.right = MEM_NIL;
3361 mem_z.parent = NULL;
3362 mem_z.color = MEM_BLACK;
3363 mem_z.start = mem_z.end = NULL;
3364 mem_root = MEM_NIL;
3365 }
3366
3367
3368 /* Value is a pointer to the mem_node containing START. Value is
3369 MEM_NIL if there is no node in the tree containing START. */
3370
3371 static INLINE struct mem_node *
3372 mem_find (void *start)
3373 {
3374 struct mem_node *p;
3375
3376 if (start < min_heap_address || start > max_heap_address)
3377 return MEM_NIL;
3378
3379 /* Make the search always successful to speed up the loop below. */
3380 mem_z.start = start;
3381 mem_z.end = (char *) start + 1;
3382
3383 p = mem_root;
3384 while (start < p->start || start >= p->end)
3385 p = start < p->start ? p->left : p->right;
3386 return p;
3387 }
3388
3389
3390 /* Insert a new node into the tree for a block of memory with start
3391 address START, end address END, and type TYPE. Value is a
3392 pointer to the node that was inserted. */
3393
3394 static struct mem_node *
3395 mem_insert (void *start, void *end, enum mem_type type)
3396 {
3397 struct mem_node *c, *parent, *x;
3398
3399 if (min_heap_address == NULL || start < min_heap_address)
3400 min_heap_address = start;
3401 if (max_heap_address == NULL || end > max_heap_address)
3402 max_heap_address = end;
3403
3404 /* See where in the tree a node for START belongs. In this
3405 particular application, it shouldn't happen that a node is already
3406 present. For debugging purposes, let's check that. */
3407 c = mem_root;
3408 parent = NULL;
3409
3410 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3411
3412 while (c != MEM_NIL)
3413 {
3414 if (start >= c->start && start < c->end)
3415 abort ();
3416 parent = c;
3417 c = start < c->start ? c->left : c->right;
3418 }
3419
3420 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3421
3422 while (c != MEM_NIL)
3423 {
3424 parent = c;
3425 c = start < c->start ? c->left : c->right;
3426 }
3427
3428 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3429
3430 /* Create a new node. */
3431 #ifdef GC_MALLOC_CHECK
3432 x = (struct mem_node *) _malloc_internal (sizeof *x);
3433 if (x == NULL)
3434 abort ();
3435 #else
3436 x = (struct mem_node *) xmalloc (sizeof *x);
3437 #endif
3438 x->start = start;
3439 x->end = end;
3440 x->type = type;
3441 x->parent = parent;
3442 x->left = x->right = MEM_NIL;
3443 x->color = MEM_RED;
3444
3445 /* Insert it as child of PARENT or install it as root. */
3446 if (parent)
3447 {
3448 if (start < parent->start)
3449 parent->left = x;
3450 else
3451 parent->right = x;
3452 }
3453 else
3454 mem_root = x;
3455
3456 /* Re-establish red-black tree properties. */
3457 mem_insert_fixup (x);
3458
3459 return x;
3460 }
3461
3462
3463 /* Re-establish the red-black properties of the tree, and thereby
3464 balance the tree, after node X has been inserted; X is always red. */
3465
3466 static void
3467 mem_insert_fixup (struct mem_node *x)
3468 {
3469 while (x != mem_root && x->parent->color == MEM_RED)
3470 {
3471 /* X is red and its parent is red. This is a violation of
3472 red-black tree property #3. */
3473
3474 if (x->parent == x->parent->parent->left)
3475 {
3476 /* We're on the left side of our grandparent, and Y is our
3477 "uncle". */
3478 struct mem_node *y = x->parent->parent->right;
3479
3480 if (y->color == MEM_RED)
3481 {
3482 /* Uncle and parent are red but should be black because
3483 X is red. Change the colors accordingly and proceed
3484 with the grandparent. */
3485 x->parent->color = MEM_BLACK;
3486 y->color = MEM_BLACK;
3487 x->parent->parent->color = MEM_RED;
3488 x = x->parent->parent;
3489 }
3490 else
3491 {
3492 /* Parent and uncle have different colors; parent is
3493 red, uncle is black. */
3494 if (x == x->parent->right)
3495 {
3496 x = x->parent;
3497 mem_rotate_left (x);
3498 }
3499
3500 x->parent->color = MEM_BLACK;
3501 x->parent->parent->color = MEM_RED;
3502 mem_rotate_right (x->parent->parent);
3503 }
3504 }
3505 else
3506 {
3507 /* This is the symmetrical case of above. */
3508 struct mem_node *y = x->parent->parent->left;
3509
3510 if (y->color == MEM_RED)
3511 {
3512 x->parent->color = MEM_BLACK;
3513 y->color = MEM_BLACK;
3514 x->parent->parent->color = MEM_RED;
3515 x = x->parent->parent;
3516 }
3517 else
3518 {
3519 if (x == x->parent->left)
3520 {
3521 x = x->parent;
3522 mem_rotate_right (x);
3523 }
3524
3525 x->parent->color = MEM_BLACK;
3526 x->parent->parent->color = MEM_RED;
3527 mem_rotate_left (x->parent->parent);
3528 }
3529 }
3530 }
3531
3532 /* The root may have been changed to red due to the algorithm. Set
3533 it to black so that property #5 is satisfied. */
3534 mem_root->color = MEM_BLACK;
3535 }
3536
3537
3538 /* (x) (y)
3539 / \ / \
3540 a (y) ===> (x) c
3541 / \ / \
3542 b c a b */
3543
3544 static void
3545 mem_rotate_left (struct mem_node *x)
3546 {
3547 struct mem_node *y;
3548
3549 /* Turn y's left sub-tree into x's right sub-tree. */
3550 y = x->right;
3551 x->right = y->left;
3552 if (y->left != MEM_NIL)
3553 y->left->parent = x;
3554
3555 /* Y's parent was x's parent. */
3556 if (y != MEM_NIL)
3557 y->parent = x->parent;
3558
3559 /* Get the parent to point to y instead of x. */
3560 if (x->parent)
3561 {
3562 if (x == x->parent->left)
3563 x->parent->left = y;
3564 else
3565 x->parent->right = y;
3566 }
3567 else
3568 mem_root = y;
3569
3570 /* Put x on y's left. */
3571 y->left = x;
3572 if (x != MEM_NIL)
3573 x->parent = y;
3574 }
3575
3576
3577 /* (x) (Y)
3578 / \ / \
3579 (y) c ===> a (x)
3580 / \ / \
3581 a b b c */
3582
3583 static void
3584 mem_rotate_right (struct mem_node *x)
3585 {
3586 struct mem_node *y = x->left;
3587
3588 x->left = y->right;
3589 if (y->right != MEM_NIL)
3590 y->right->parent = x;
3591
3592 if (y != MEM_NIL)
3593 y->parent = x->parent;
3594 if (x->parent)
3595 {
3596 if (x == x->parent->right)
3597 x->parent->right = y;
3598 else
3599 x->parent->left = y;
3600 }
3601 else
3602 mem_root = y;
3603
3604 y->right = x;
3605 if (x != MEM_NIL)
3606 x->parent = y;
3607 }
3608
3609
3610 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3611
3612 static void
3613 mem_delete (struct mem_node *z)
3614 {
3615 struct mem_node *x, *y;
3616
3617 if (!z || z == MEM_NIL)
3618 return;
3619
3620 if (z->left == MEM_NIL || z->right == MEM_NIL)
3621 y = z;
3622 else
3623 {
3624 y = z->right;
3625 while (y->left != MEM_NIL)
3626 y = y->left;
3627 }
3628
3629 if (y->left != MEM_NIL)
3630 x = y->left;
3631 else
3632 x = y->right;
3633
3634 x->parent = y->parent;
3635 if (y->parent)
3636 {
3637 if (y == y->parent->left)
3638 y->parent->left = x;
3639 else
3640 y->parent->right = x;
3641 }
3642 else
3643 mem_root = x;
3644
3645 if (y != z)
3646 {
3647 z->start = y->start;
3648 z->end = y->end;
3649 z->type = y->type;
3650 }
3651
3652 if (y->color == MEM_BLACK)
3653 mem_delete_fixup (x);
3654
3655 #ifdef GC_MALLOC_CHECK
3656 _free_internal (y);
3657 #else
3658 xfree (y);
3659 #endif
3660 }
3661
3662
3663 /* Re-establish the red-black properties of the tree, after a
3664 deletion. */
3665
3666 static void
3667 mem_delete_fixup (struct mem_node *x)
3668 {
3669 while (x != mem_root && x->color == MEM_BLACK)
3670 {
3671 if (x == x->parent->left)
3672 {
3673 struct mem_node *w = x->parent->right;
3674
3675 if (w->color == MEM_RED)
3676 {
3677 w->color = MEM_BLACK;
3678 x->parent->color = MEM_RED;
3679 mem_rotate_left (x->parent);
3680 w = x->parent->right;
3681 }
3682
3683 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3684 {
3685 w->color = MEM_RED;
3686 x = x->parent;
3687 }
3688 else
3689 {
3690 if (w->right->color == MEM_BLACK)
3691 {
3692 w->left->color = MEM_BLACK;
3693 w->color = MEM_RED;
3694 mem_rotate_right (w);
3695 w = x->parent->right;
3696 }
3697 w->color = x->parent->color;
3698 x->parent->color = MEM_BLACK;
3699 w->right->color = MEM_BLACK;
3700 mem_rotate_left (x->parent);
3701 x = mem_root;
3702 }
3703 }
3704 else
3705 {
3706 struct mem_node *w = x->parent->left;
3707
3708 if (w->color == MEM_RED)
3709 {
3710 w->color = MEM_BLACK;
3711 x->parent->color = MEM_RED;
3712 mem_rotate_right (x->parent);
3713 w = x->parent->left;
3714 }
3715
3716 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3717 {
3718 w->color = MEM_RED;
3719 x = x->parent;
3720 }
3721 else
3722 {
3723 if (w->left->color == MEM_BLACK)
3724 {
3725 w->right->color = MEM_BLACK;
3726 w->color = MEM_RED;
3727 mem_rotate_left (w);
3728 w = x->parent->left;
3729 }
3730
3731 w->color = x->parent->color;
3732 x->parent->color = MEM_BLACK;
3733 w->left->color = MEM_BLACK;
3734 mem_rotate_right (x->parent);
3735 x = mem_root;
3736 }
3737 }
3738 }
3739
3740 x->color = MEM_BLACK;
3741 }
3742
3743
3744 /* Value is non-zero if P is a pointer to a live Lisp string on
3745 the heap. M is a pointer to the mem_block for P. */
3746
3747 static INLINE int
3748 live_string_p (struct mem_node *m, void *p)
3749 {
3750 if (m->type == MEM_TYPE_STRING)
3751 {
3752 struct string_block *b = (struct string_block *) m->start;
3753 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3754
3755 /* P must point to the start of a Lisp_String structure, and it
3756 must not be on the free-list. */
3757 return (offset >= 0
3758 && offset % sizeof b->strings[0] == 0
3759 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3760 && ((struct Lisp_String *) p)->data != NULL);
3761 }
3762 else
3763 return 0;
3764 }
3765
3766
3767 /* Value is non-zero if P is a pointer to a live Lisp cons on
3768 the heap. M is a pointer to the mem_block for P. */
3769
3770 static INLINE int
3771 live_cons_p (struct mem_node *m, void *p)
3772 {
3773 if (m->type == MEM_TYPE_CONS)
3774 {
3775 struct cons_block *b = (struct cons_block *) m->start;
3776 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3777
3778 /* P must point to the start of a Lisp_Cons, not be
3779 one of the unused cells in the current cons block,
3780 and not be on the free-list. */
3781 return (offset >= 0
3782 && offset % sizeof b->conses[0] == 0
3783 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3784 && (b != cons_block
3785 || offset / sizeof b->conses[0] < cons_block_index)
3786 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3787 }
3788 else
3789 return 0;
3790 }
3791
3792
3793 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3794 the heap. M is a pointer to the mem_block for P. */
3795
3796 static INLINE int
3797 live_symbol_p (struct mem_node *m, void *p)
3798 {
3799 if (m->type == MEM_TYPE_SYMBOL)
3800 {
3801 struct symbol_block *b = (struct symbol_block *) m->start;
3802 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3803
3804 /* P must point to the start of a Lisp_Symbol, not be
3805 one of the unused cells in the current symbol block,
3806 and not be on the free-list. */
3807 return (offset >= 0
3808 && offset % sizeof b->symbols[0] == 0
3809 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3810 && (b != symbol_block
3811 || offset / sizeof b->symbols[0] < symbol_block_index)
3812 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3813 }
3814 else
3815 return 0;
3816 }
3817
3818
3819 /* Value is non-zero if P is a pointer to a live Lisp float on
3820 the heap. M is a pointer to the mem_block for P. */
3821
3822 static INLINE int
3823 live_float_p (struct mem_node *m, void *p)
3824 {
3825 if (m->type == MEM_TYPE_FLOAT)
3826 {
3827 struct float_block *b = (struct float_block *) m->start;
3828 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3829
3830 /* P must point to the start of a Lisp_Float and not be
3831 one of the unused cells in the current float block. */
3832 return (offset >= 0
3833 && offset % sizeof b->floats[0] == 0
3834 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3835 && (b != float_block
3836 || offset / sizeof b->floats[0] < float_block_index));
3837 }
3838 else
3839 return 0;
3840 }
3841
3842
3843 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3844 the heap. M is a pointer to the mem_block for P. */
3845
3846 static INLINE int
3847 live_misc_p (struct mem_node *m, void *p)
3848 {
3849 if (m->type == MEM_TYPE_MISC)
3850 {
3851 struct marker_block *b = (struct marker_block *) m->start;
3852 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3853
3854 /* P must point to the start of a Lisp_Misc, not be
3855 one of the unused cells in the current misc block,
3856 and not be on the free-list. */
3857 return (offset >= 0
3858 && offset % sizeof b->markers[0] == 0
3859 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3860 && (b != marker_block
3861 || offset / sizeof b->markers[0] < marker_block_index)
3862 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3863 }
3864 else
3865 return 0;
3866 }
3867
3868
3869 /* Value is non-zero if P is a pointer to a live vector-like object.
3870 M is a pointer to the mem_block for P. */
3871
3872 static INLINE int
3873 live_vector_p (struct mem_node *m, void *p)
3874 {
3875 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3876 }
3877
3878
3879 /* Value is non-zero if P is a pointer to a live buffer. M is a
3880 pointer to the mem_block for P. */
3881
3882 static INLINE int
3883 live_buffer_p (struct mem_node *m, void *p)
3884 {
3885 /* P must point to the start of the block, and the buffer
3886 must not have been killed. */
3887 return (m->type == MEM_TYPE_BUFFER
3888 && p == m->start
3889 && !NILP (((struct buffer *) p)->name));
3890 }
3891
3892 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3893
3894 #if GC_MARK_STACK
3895
3896 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3897
3898 /* Array of objects that are kept alive because the C stack contains
3899 a pattern that looks like a reference to them . */
3900
3901 #define MAX_ZOMBIES 10
3902 static Lisp_Object zombies[MAX_ZOMBIES];
3903
3904 /* Number of zombie objects. */
3905
3906 static int nzombies;
3907
3908 /* Number of garbage collections. */
3909
3910 static int ngcs;
3911
3912 /* Average percentage of zombies per collection. */
3913
3914 static double avg_zombies;
3915
3916 /* Max. number of live and zombie objects. */
3917
3918 static int max_live, max_zombies;
3919
3920 /* Average number of live objects per GC. */
3921
3922 static double avg_live;
3923
3924 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3925 doc: /* Show information about live and zombie objects. */)
3926 (void)
3927 {
3928 Lisp_Object args[8], zombie_list = Qnil;
3929 int i;
3930 for (i = 0; i < nzombies; i++)
3931 zombie_list = Fcons (zombies[i], zombie_list);
3932 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3933 args[1] = make_number (ngcs);
3934 args[2] = make_float (avg_live);
3935 args[3] = make_float (avg_zombies);
3936 args[4] = make_float (avg_zombies / avg_live / 100);
3937 args[5] = make_number (max_live);
3938 args[6] = make_number (max_zombies);
3939 args[7] = zombie_list;
3940 return Fmessage (8, args);
3941 }
3942
3943 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3944
3945
3946 /* Mark OBJ if we can prove it's a Lisp_Object. */
3947
3948 static INLINE void
3949 mark_maybe_object (Lisp_Object obj)
3950 {
3951 void *po;
3952 struct mem_node *m;
3953
3954 if (INTEGERP (obj))
3955 return;
3956
3957 po = (void *) XPNTR (obj);
3958 m = mem_find (po);
3959
3960 if (m != MEM_NIL)
3961 {
3962 int mark_p = 0;
3963
3964 switch (XTYPE (obj))
3965 {
3966 case Lisp_String:
3967 mark_p = (live_string_p (m, po)
3968 && !STRING_MARKED_P ((struct Lisp_String *) po));
3969 break;
3970
3971 case Lisp_Cons:
3972 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3973 break;
3974
3975 case Lisp_Symbol:
3976 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3977 break;
3978
3979 case Lisp_Float:
3980 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3981 break;
3982
3983 case Lisp_Vectorlike:
3984 /* Note: can't check BUFFERP before we know it's a
3985 buffer because checking that dereferences the pointer
3986 PO which might point anywhere. */
3987 if (live_vector_p (m, po))
3988 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3989 else if (live_buffer_p (m, po))
3990 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3991 break;
3992
3993 case Lisp_Misc:
3994 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3995 break;
3996
3997 default:
3998 break;
3999 }
4000
4001 if (mark_p)
4002 {
4003 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4004 if (nzombies < MAX_ZOMBIES)
4005 zombies[nzombies] = obj;
4006 ++nzombies;
4007 #endif
4008 mark_object (obj);
4009 }
4010 }
4011 }
4012
4013
4014 /* If P points to Lisp data, mark that as live if it isn't already
4015 marked. */
4016
4017 static INLINE void
4018 mark_maybe_pointer (void *p)
4019 {
4020 struct mem_node *m;
4021
4022 /* Quickly rule out some values which can't point to Lisp data. */
4023 if ((EMACS_INT) p %
4024 #ifdef USE_LSB_TAG
4025 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4026 #else
4027 2 /* We assume that Lisp data is aligned on even addresses. */
4028 #endif
4029 )
4030 return;
4031
4032 m = mem_find (p);
4033 if (m != MEM_NIL)
4034 {
4035 Lisp_Object obj = Qnil;
4036
4037 switch (m->type)
4038 {
4039 case MEM_TYPE_NON_LISP:
4040 /* Nothing to do; not a pointer to Lisp memory. */
4041 break;
4042
4043 case MEM_TYPE_BUFFER:
4044 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4045 XSETVECTOR (obj, p);
4046 break;
4047
4048 case MEM_TYPE_CONS:
4049 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4050 XSETCONS (obj, p);
4051 break;
4052
4053 case MEM_TYPE_STRING:
4054 if (live_string_p (m, p)
4055 && !STRING_MARKED_P ((struct Lisp_String *) p))
4056 XSETSTRING (obj, p);
4057 break;
4058
4059 case MEM_TYPE_MISC:
4060 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4061 XSETMISC (obj, p);
4062 break;
4063
4064 case MEM_TYPE_SYMBOL:
4065 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4066 XSETSYMBOL (obj, p);
4067 break;
4068
4069 case MEM_TYPE_FLOAT:
4070 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4071 XSETFLOAT (obj, p);
4072 break;
4073
4074 case MEM_TYPE_VECTORLIKE:
4075 if (live_vector_p (m, p))
4076 {
4077 Lisp_Object tem;
4078 XSETVECTOR (tem, p);
4079 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4080 obj = tem;
4081 }
4082 break;
4083
4084 default:
4085 abort ();
4086 }
4087
4088 if (!NILP (obj))
4089 mark_object (obj);
4090 }
4091 }
4092
4093
4094 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4095 or END+OFFSET..START. */
4096
4097 static void
4098 mark_memory (void *start, void *end, int offset)
4099 {
4100 Lisp_Object *p;
4101 void **pp;
4102
4103 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4104 nzombies = 0;
4105 #endif
4106
4107 /* Make START the pointer to the start of the memory region,
4108 if it isn't already. */
4109 if (end < start)
4110 {
4111 void *tem = start;
4112 start = end;
4113 end = tem;
4114 }
4115
4116 /* Mark Lisp_Objects. */
4117 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4118 mark_maybe_object (*p);
4119
4120 /* Mark Lisp data pointed to. This is necessary because, in some
4121 situations, the C compiler optimizes Lisp objects away, so that
4122 only a pointer to them remains. Example:
4123
4124 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4125 ()
4126 {
4127 Lisp_Object obj = build_string ("test");
4128 struct Lisp_String *s = XSTRING (obj);
4129 Fgarbage_collect ();
4130 fprintf (stderr, "test `%s'\n", s->data);
4131 return Qnil;
4132 }
4133
4134 Here, `obj' isn't really used, and the compiler optimizes it
4135 away. The only reference to the life string is through the
4136 pointer `s'. */
4137
4138 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4139 mark_maybe_pointer (*pp);
4140 }
4141
4142 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4143 the GCC system configuration. In gcc 3.2, the only systems for
4144 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4145 by others?) and ns32k-pc532-min. */
4146
4147 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4148
4149 static int setjmp_tested_p, longjmps_done;
4150
4151 #define SETJMP_WILL_LIKELY_WORK "\
4152 \n\
4153 Emacs garbage collector has been changed to use conservative stack\n\
4154 marking. Emacs has determined that the method it uses to do the\n\
4155 marking will likely work on your system, but this isn't sure.\n\
4156 \n\
4157 If you are a system-programmer, or can get the help of a local wizard\n\
4158 who is, please take a look at the function mark_stack in alloc.c, and\n\
4159 verify that the methods used are appropriate for your system.\n\
4160 \n\
4161 Please mail the result to <emacs-devel@gnu.org>.\n\
4162 "
4163
4164 #define SETJMP_WILL_NOT_WORK "\
4165 \n\
4166 Emacs garbage collector has been changed to use conservative stack\n\
4167 marking. Emacs has determined that the default method it uses to do the\n\
4168 marking will not work on your system. We will need a system-dependent\n\
4169 solution for your system.\n\
4170 \n\
4171 Please take a look at the function mark_stack in alloc.c, and\n\
4172 try to find a way to make it work on your system.\n\
4173 \n\
4174 Note that you may get false negatives, depending on the compiler.\n\
4175 In particular, you need to use -O with GCC for this test.\n\
4176 \n\
4177 Please mail the result to <emacs-devel@gnu.org>.\n\
4178 "
4179
4180
4181 /* Perform a quick check if it looks like setjmp saves registers in a
4182 jmp_buf. Print a message to stderr saying so. When this test
4183 succeeds, this is _not_ a proof that setjmp is sufficient for
4184 conservative stack marking. Only the sources or a disassembly
4185 can prove that. */
4186
4187 static void
4188 test_setjmp (void)
4189 {
4190 char buf[10];
4191 register int x;
4192 jmp_buf jbuf;
4193 int result = 0;
4194
4195 /* Arrange for X to be put in a register. */
4196 sprintf (buf, "1");
4197 x = strlen (buf);
4198 x = 2 * x - 1;
4199
4200 setjmp (jbuf);
4201 if (longjmps_done == 1)
4202 {
4203 /* Came here after the longjmp at the end of the function.
4204
4205 If x == 1, the longjmp has restored the register to its
4206 value before the setjmp, and we can hope that setjmp
4207 saves all such registers in the jmp_buf, although that
4208 isn't sure.
4209
4210 For other values of X, either something really strange is
4211 taking place, or the setjmp just didn't save the register. */
4212
4213 if (x == 1)
4214 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4215 else
4216 {
4217 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4218 exit (1);
4219 }
4220 }
4221
4222 ++longjmps_done;
4223 x = 2;
4224 if (longjmps_done == 1)
4225 longjmp (jbuf, 1);
4226 }
4227
4228 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4229
4230
4231 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4232
4233 /* Abort if anything GCPRO'd doesn't survive the GC. */
4234
4235 static void
4236 check_gcpros (void)
4237 {
4238 struct gcpro *p;
4239 int i;
4240
4241 for (p = gcprolist; p; p = p->next)
4242 for (i = 0; i < p->nvars; ++i)
4243 if (!survives_gc_p (p->var[i]))
4244 /* FIXME: It's not necessarily a bug. It might just be that the
4245 GCPRO is unnecessary or should release the object sooner. */
4246 abort ();
4247 }
4248
4249 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4250
4251 static void
4252 dump_zombies (void)
4253 {
4254 int i;
4255
4256 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4257 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4258 {
4259 fprintf (stderr, " %d = ", i);
4260 debug_print (zombies[i]);
4261 }
4262 }
4263
4264 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4265
4266
4267 /* Mark live Lisp objects on the C stack.
4268
4269 There are several system-dependent problems to consider when
4270 porting this to new architectures:
4271
4272 Processor Registers
4273
4274 We have to mark Lisp objects in CPU registers that can hold local
4275 variables or are used to pass parameters.
4276
4277 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4278 something that either saves relevant registers on the stack, or
4279 calls mark_maybe_object passing it each register's contents.
4280
4281 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4282 implementation assumes that calling setjmp saves registers we need
4283 to see in a jmp_buf which itself lies on the stack. This doesn't
4284 have to be true! It must be verified for each system, possibly
4285 by taking a look at the source code of setjmp.
4286
4287 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4288 can use it as a machine independent method to store all registers
4289 to the stack. In this case the macros described in the previous
4290 two paragraphs are not used.
4291
4292 Stack Layout
4293
4294 Architectures differ in the way their processor stack is organized.
4295 For example, the stack might look like this
4296
4297 +----------------+
4298 | Lisp_Object | size = 4
4299 +----------------+
4300 | something else | size = 2
4301 +----------------+
4302 | Lisp_Object | size = 4
4303 +----------------+
4304 | ... |
4305
4306 In such a case, not every Lisp_Object will be aligned equally. To
4307 find all Lisp_Object on the stack it won't be sufficient to walk
4308 the stack in steps of 4 bytes. Instead, two passes will be
4309 necessary, one starting at the start of the stack, and a second
4310 pass starting at the start of the stack + 2. Likewise, if the
4311 minimal alignment of Lisp_Objects on the stack is 1, four passes
4312 would be necessary, each one starting with one byte more offset
4313 from the stack start.
4314
4315 The current code assumes by default that Lisp_Objects are aligned
4316 equally on the stack. */
4317
4318 static void
4319 mark_stack (void)
4320 {
4321 int i;
4322 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4323 union aligned_jmpbuf {
4324 Lisp_Object o;
4325 jmp_buf j;
4326 } j;
4327 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4328 void *end;
4329
4330 #ifdef HAVE___BUILTIN_UNWIND_INIT
4331 /* Force callee-saved registers and register windows onto the stack.
4332 This is the preferred method if available, obviating the need for
4333 machine dependent methods. */
4334 __builtin_unwind_init ();
4335 end = &end;
4336 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4337 /* This trick flushes the register windows so that all the state of
4338 the process is contained in the stack. */
4339 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4340 needed on ia64 too. See mach_dep.c, where it also says inline
4341 assembler doesn't work with relevant proprietary compilers. */
4342 #ifdef __sparc__
4343 #if defined (__sparc64__) && defined (__FreeBSD__)
4344 /* FreeBSD does not have a ta 3 handler. */
4345 asm ("flushw");
4346 #else
4347 asm ("ta 3");
4348 #endif
4349 #endif
4350
4351 /* Save registers that we need to see on the stack. We need to see
4352 registers used to hold register variables and registers used to
4353 pass parameters. */
4354 #ifdef GC_SAVE_REGISTERS_ON_STACK
4355 GC_SAVE_REGISTERS_ON_STACK (end);
4356 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4357
4358 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4359 setjmp will definitely work, test it
4360 and print a message with the result
4361 of the test. */
4362 if (!setjmp_tested_p)
4363 {
4364 setjmp_tested_p = 1;
4365 test_setjmp ();
4366 }
4367 #endif /* GC_SETJMP_WORKS */
4368
4369 setjmp (j.j);
4370 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4371 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4372 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4373
4374 /* This assumes that the stack is a contiguous region in memory. If
4375 that's not the case, something has to be done here to iterate
4376 over the stack segments. */
4377 #ifndef GC_LISP_OBJECT_ALIGNMENT
4378 #ifdef __GNUC__
4379 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4380 #else
4381 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4382 #endif
4383 #endif
4384 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4385 mark_memory (stack_base, end, i);
4386 /* Allow for marking a secondary stack, like the register stack on the
4387 ia64. */
4388 #ifdef GC_MARK_SECONDARY_STACK
4389 GC_MARK_SECONDARY_STACK ();
4390 #endif
4391
4392 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4393 check_gcpros ();
4394 #endif
4395 }
4396
4397 #endif /* GC_MARK_STACK != 0 */
4398
4399
4400 /* Determine whether it is safe to access memory at address P. */
4401 static int
4402 valid_pointer_p (void *p)
4403 {
4404 #ifdef WINDOWSNT
4405 return w32_valid_pointer_p (p, 16);
4406 #else
4407 int fd;
4408
4409 /* Obviously, we cannot just access it (we would SEGV trying), so we
4410 trick the o/s to tell us whether p is a valid pointer.
4411 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4412 not validate p in that case. */
4413
4414 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4415 {
4416 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4417 emacs_close (fd);
4418 unlink ("__Valid__Lisp__Object__");
4419 return valid;
4420 }
4421
4422 return -1;
4423 #endif
4424 }
4425
4426 /* Return 1 if OBJ is a valid lisp object.
4427 Return 0 if OBJ is NOT a valid lisp object.
4428 Return -1 if we cannot validate OBJ.
4429 This function can be quite slow,
4430 so it should only be used in code for manual debugging. */
4431
4432 int
4433 valid_lisp_object_p (Lisp_Object obj)
4434 {
4435 void *p;
4436 #if GC_MARK_STACK
4437 struct mem_node *m;
4438 #endif
4439
4440 if (INTEGERP (obj))
4441 return 1;
4442
4443 p = (void *) XPNTR (obj);
4444 if (PURE_POINTER_P (p))
4445 return 1;
4446
4447 #if !GC_MARK_STACK
4448 return valid_pointer_p (p);
4449 #else
4450
4451 m = mem_find (p);
4452
4453 if (m == MEM_NIL)
4454 {
4455 int valid = valid_pointer_p (p);
4456 if (valid <= 0)
4457 return valid;
4458
4459 if (SUBRP (obj))
4460 return 1;
4461
4462 return 0;
4463 }
4464
4465 switch (m->type)
4466 {
4467 case MEM_TYPE_NON_LISP:
4468 return 0;
4469
4470 case MEM_TYPE_BUFFER:
4471 return live_buffer_p (m, p);
4472
4473 case MEM_TYPE_CONS:
4474 return live_cons_p (m, p);
4475
4476 case MEM_TYPE_STRING:
4477 return live_string_p (m, p);
4478
4479 case MEM_TYPE_MISC:
4480 return live_misc_p (m, p);
4481
4482 case MEM_TYPE_SYMBOL:
4483 return live_symbol_p (m, p);
4484
4485 case MEM_TYPE_FLOAT:
4486 return live_float_p (m, p);
4487
4488 case MEM_TYPE_VECTORLIKE:
4489 return live_vector_p (m, p);
4490
4491 default:
4492 break;
4493 }
4494
4495 return 0;
4496 #endif
4497 }
4498
4499
4500
4501 \f
4502 /***********************************************************************
4503 Pure Storage Management
4504 ***********************************************************************/
4505
4506 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4507 pointer to it. TYPE is the Lisp type for which the memory is
4508 allocated. TYPE < 0 means it's not used for a Lisp object. */
4509
4510 static POINTER_TYPE *
4511 pure_alloc (size_t size, int type)
4512 {
4513 POINTER_TYPE *result;
4514 #ifdef USE_LSB_TAG
4515 size_t alignment = (1 << GCTYPEBITS);
4516 #else
4517 size_t alignment = sizeof (EMACS_INT);
4518
4519 /* Give Lisp_Floats an extra alignment. */
4520 if (type == Lisp_Float)
4521 {
4522 #if defined __GNUC__ && __GNUC__ >= 2
4523 alignment = __alignof (struct Lisp_Float);
4524 #else
4525 alignment = sizeof (struct Lisp_Float);
4526 #endif
4527 }
4528 #endif
4529
4530 again:
4531 if (type >= 0)
4532 {
4533 /* Allocate space for a Lisp object from the beginning of the free
4534 space with taking account of alignment. */
4535 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4536 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4537 }
4538 else
4539 {
4540 /* Allocate space for a non-Lisp object from the end of the free
4541 space. */
4542 pure_bytes_used_non_lisp += size;
4543 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4544 }
4545 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4546
4547 if (pure_bytes_used <= pure_size)
4548 return result;
4549
4550 /* Don't allocate a large amount here,
4551 because it might get mmap'd and then its address
4552 might not be usable. */
4553 purebeg = (char *) xmalloc (10000);
4554 pure_size = 10000;
4555 pure_bytes_used_before_overflow += pure_bytes_used - size;
4556 pure_bytes_used = 0;
4557 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4558 goto again;
4559 }
4560
4561
4562 /* Print a warning if PURESIZE is too small. */
4563
4564 void
4565 check_pure_size (void)
4566 {
4567 if (pure_bytes_used_before_overflow)
4568 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4569 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4570 }
4571
4572
4573 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4574 the non-Lisp data pool of the pure storage, and return its start
4575 address. Return NULL if not found. */
4576
4577 static char *
4578 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4579 {
4580 int i;
4581 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4582 const unsigned char *p;
4583 char *non_lisp_beg;
4584
4585 if (pure_bytes_used_non_lisp < nbytes + 1)
4586 return NULL;
4587
4588 /* Set up the Boyer-Moore table. */
4589 skip = nbytes + 1;
4590 for (i = 0; i < 256; i++)
4591 bm_skip[i] = skip;
4592
4593 p = (const unsigned char *) data;
4594 while (--skip > 0)
4595 bm_skip[*p++] = skip;
4596
4597 last_char_skip = bm_skip['\0'];
4598
4599 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4600 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4601
4602 /* See the comments in the function `boyer_moore' (search.c) for the
4603 use of `infinity'. */
4604 infinity = pure_bytes_used_non_lisp + 1;
4605 bm_skip['\0'] = infinity;
4606
4607 p = (const unsigned char *) non_lisp_beg + nbytes;
4608 start = 0;
4609 do
4610 {
4611 /* Check the last character (== '\0'). */
4612 do
4613 {
4614 start += bm_skip[*(p + start)];
4615 }
4616 while (start <= start_max);
4617
4618 if (start < infinity)
4619 /* Couldn't find the last character. */
4620 return NULL;
4621
4622 /* No less than `infinity' means we could find the last
4623 character at `p[start - infinity]'. */
4624 start -= infinity;
4625
4626 /* Check the remaining characters. */
4627 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4628 /* Found. */
4629 return non_lisp_beg + start;
4630
4631 start += last_char_skip;
4632 }
4633 while (start <= start_max);
4634
4635 return NULL;
4636 }
4637
4638
4639 /* Return a string allocated in pure space. DATA is a buffer holding
4640 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4641 non-zero means make the result string multibyte.
4642
4643 Must get an error if pure storage is full, since if it cannot hold
4644 a large string it may be able to hold conses that point to that
4645 string; then the string is not protected from gc. */
4646
4647 Lisp_Object
4648 make_pure_string (const char *data,
4649 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4650 {
4651 Lisp_Object string;
4652 struct Lisp_String *s;
4653
4654 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4655 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4656 if (s->data == NULL)
4657 {
4658 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4659 memcpy (s->data, data, nbytes);
4660 s->data[nbytes] = '\0';
4661 }
4662 s->size = nchars;
4663 s->size_byte = multibyte ? nbytes : -1;
4664 s->intervals = NULL_INTERVAL;
4665 XSETSTRING (string, s);
4666 return string;
4667 }
4668
4669 /* Return a string a string allocated in pure space. Do not allocate
4670 the string data, just point to DATA. */
4671
4672 Lisp_Object
4673 make_pure_c_string (const char *data)
4674 {
4675 Lisp_Object string;
4676 struct Lisp_String *s;
4677 EMACS_INT nchars = strlen (data);
4678
4679 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4680 s->size = nchars;
4681 s->size_byte = -1;
4682 s->data = (unsigned char *) data;
4683 s->intervals = NULL_INTERVAL;
4684 XSETSTRING (string, s);
4685 return string;
4686 }
4687
4688 /* Return a cons allocated from pure space. Give it pure copies
4689 of CAR as car and CDR as cdr. */
4690
4691 Lisp_Object
4692 pure_cons (Lisp_Object car, Lisp_Object cdr)
4693 {
4694 register Lisp_Object new;
4695 struct Lisp_Cons *p;
4696
4697 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4698 XSETCONS (new, p);
4699 XSETCAR (new, Fpurecopy (car));
4700 XSETCDR (new, Fpurecopy (cdr));
4701 return new;
4702 }
4703
4704
4705 /* Value is a float object with value NUM allocated from pure space. */
4706
4707 static Lisp_Object
4708 make_pure_float (double num)
4709 {
4710 register Lisp_Object new;
4711 struct Lisp_Float *p;
4712
4713 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4714 XSETFLOAT (new, p);
4715 XFLOAT_INIT (new, num);
4716 return new;
4717 }
4718
4719
4720 /* Return a vector with room for LEN Lisp_Objects allocated from
4721 pure space. */
4722
4723 Lisp_Object
4724 make_pure_vector (EMACS_INT len)
4725 {
4726 Lisp_Object new;
4727 struct Lisp_Vector *p;
4728 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4729
4730 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4731 XSETVECTOR (new, p);
4732 XVECTOR (new)->size = len;
4733 return new;
4734 }
4735
4736
4737 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4738 doc: /* Make a copy of object OBJ in pure storage.
4739 Recursively copies contents of vectors and cons cells.
4740 Does not copy symbols. Copies strings without text properties. */)
4741 (register Lisp_Object obj)
4742 {
4743 if (NILP (Vpurify_flag))
4744 return obj;
4745
4746 if (PURE_POINTER_P (XPNTR (obj)))
4747 return obj;
4748
4749 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4750 {
4751 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4752 if (!NILP (tmp))
4753 return tmp;
4754 }
4755
4756 if (CONSP (obj))
4757 obj = pure_cons (XCAR (obj), XCDR (obj));
4758 else if (FLOATP (obj))
4759 obj = make_pure_float (XFLOAT_DATA (obj));
4760 else if (STRINGP (obj))
4761 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4762 SBYTES (obj),
4763 STRING_MULTIBYTE (obj));
4764 else if (COMPILEDP (obj) || VECTORP (obj))
4765 {
4766 register struct Lisp_Vector *vec;
4767 register EMACS_INT i;
4768 EMACS_INT size;
4769
4770 size = XVECTOR (obj)->size;
4771 if (size & PSEUDOVECTOR_FLAG)
4772 size &= PSEUDOVECTOR_SIZE_MASK;
4773 vec = XVECTOR (make_pure_vector (size));
4774 for (i = 0; i < size; i++)
4775 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4776 if (COMPILEDP (obj))
4777 {
4778 XSETPVECTYPE (vec, PVEC_COMPILED);
4779 XSETCOMPILED (obj, vec);
4780 }
4781 else
4782 XSETVECTOR (obj, vec);
4783 }
4784 else if (MARKERP (obj))
4785 error ("Attempt to copy a marker to pure storage");
4786 else
4787 /* Not purified, don't hash-cons. */
4788 return obj;
4789
4790 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4791 Fputhash (obj, obj, Vpurify_flag);
4792
4793 return obj;
4794 }
4795
4796
4797 \f
4798 /***********************************************************************
4799 Protection from GC
4800 ***********************************************************************/
4801
4802 /* Put an entry in staticvec, pointing at the variable with address
4803 VARADDRESS. */
4804
4805 void
4806 staticpro (Lisp_Object *varaddress)
4807 {
4808 staticvec[staticidx++] = varaddress;
4809 if (staticidx >= NSTATICS)
4810 abort ();
4811 }
4812
4813 \f
4814 /***********************************************************************
4815 Protection from GC
4816 ***********************************************************************/
4817
4818 /* Temporarily prevent garbage collection. */
4819
4820 int
4821 inhibit_garbage_collection (void)
4822 {
4823 int count = SPECPDL_INDEX ();
4824 int nbits = min (VALBITS, BITS_PER_INT);
4825
4826 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4827 return count;
4828 }
4829
4830
4831 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4832 doc: /* Reclaim storage for Lisp objects no longer needed.
4833 Garbage collection happens automatically if you cons more than
4834 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4835 `garbage-collect' normally returns a list with info on amount of space in use:
4836 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4837 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4838 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4839 (USED-STRINGS . FREE-STRINGS))
4840 However, if there was overflow in pure space, `garbage-collect'
4841 returns nil, because real GC can't be done. */)
4842 (void)
4843 {
4844 register struct specbinding *bind;
4845 struct catchtag *catch;
4846 struct handler *handler;
4847 char stack_top_variable;
4848 register int i;
4849 int message_p;
4850 Lisp_Object total[8];
4851 int count = SPECPDL_INDEX ();
4852 EMACS_TIME t1, t2, t3;
4853
4854 if (abort_on_gc)
4855 abort ();
4856
4857 /* Can't GC if pure storage overflowed because we can't determine
4858 if something is a pure object or not. */
4859 if (pure_bytes_used_before_overflow)
4860 return Qnil;
4861
4862 CHECK_CONS_LIST ();
4863
4864 /* Don't keep undo information around forever.
4865 Do this early on, so it is no problem if the user quits. */
4866 {
4867 register struct buffer *nextb = all_buffers;
4868
4869 while (nextb)
4870 {
4871 /* If a buffer's undo list is Qt, that means that undo is
4872 turned off in that buffer. Calling truncate_undo_list on
4873 Qt tends to return NULL, which effectively turns undo back on.
4874 So don't call truncate_undo_list if undo_list is Qt. */
4875 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4876 truncate_undo_list (nextb);
4877
4878 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4879 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4880 && ! nextb->text->inhibit_shrinking)
4881 {
4882 /* If a buffer's gap size is more than 10% of the buffer
4883 size, or larger than 2000 bytes, then shrink it
4884 accordingly. Keep a minimum size of 20 bytes. */
4885 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4886
4887 if (nextb->text->gap_size > size)
4888 {
4889 struct buffer *save_current = current_buffer;
4890 current_buffer = nextb;
4891 make_gap (-(nextb->text->gap_size - size));
4892 current_buffer = save_current;
4893 }
4894 }
4895
4896 nextb = nextb->next;
4897 }
4898 }
4899
4900 EMACS_GET_TIME (t1);
4901
4902 /* In case user calls debug_print during GC,
4903 don't let that cause a recursive GC. */
4904 consing_since_gc = 0;
4905
4906 /* Save what's currently displayed in the echo area. */
4907 message_p = push_message ();
4908 record_unwind_protect (pop_message_unwind, Qnil);
4909
4910 /* Save a copy of the contents of the stack, for debugging. */
4911 #if MAX_SAVE_STACK > 0
4912 if (NILP (Vpurify_flag))
4913 {
4914 i = &stack_top_variable - stack_bottom;
4915 if (i < 0) i = -i;
4916 if (i < MAX_SAVE_STACK)
4917 {
4918 if (stack_copy == 0)
4919 stack_copy = (char *) xmalloc (stack_copy_size = i);
4920 else if (stack_copy_size < i)
4921 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4922 if (stack_copy)
4923 {
4924 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4925 memcpy (stack_copy, stack_bottom, i);
4926 else
4927 memcpy (stack_copy, &stack_top_variable, i);
4928 }
4929 }
4930 }
4931 #endif /* MAX_SAVE_STACK > 0 */
4932
4933 if (garbage_collection_messages)
4934 message1_nolog ("Garbage collecting...");
4935
4936 BLOCK_INPUT;
4937
4938 shrink_regexp_cache ();
4939
4940 gc_in_progress = 1;
4941
4942 /* clear_marks (); */
4943
4944 /* Mark all the special slots that serve as the roots of accessibility. */
4945
4946 for (i = 0; i < staticidx; i++)
4947 mark_object (*staticvec[i]);
4948
4949 for (bind = specpdl; bind != specpdl_ptr; bind++)
4950 {
4951 mark_object (bind->symbol);
4952 mark_object (bind->old_value);
4953 }
4954 mark_terminals ();
4955 mark_kboards ();
4956 mark_ttys ();
4957
4958 #ifdef USE_GTK
4959 {
4960 extern void xg_mark_data (void);
4961 xg_mark_data ();
4962 }
4963 #endif
4964
4965 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4966 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4967 mark_stack ();
4968 #else
4969 {
4970 register struct gcpro *tail;
4971 for (tail = gcprolist; tail; tail = tail->next)
4972 for (i = 0; i < tail->nvars; i++)
4973 mark_object (tail->var[i]);
4974 }
4975 #endif
4976
4977 mark_byte_stack ();
4978 for (catch = catchlist; catch; catch = catch->next)
4979 {
4980 mark_object (catch->tag);
4981 mark_object (catch->val);
4982 }
4983 for (handler = handlerlist; handler; handler = handler->next)
4984 {
4985 mark_object (handler->handler);
4986 mark_object (handler->var);
4987 }
4988 mark_backtrace ();
4989
4990 #ifdef HAVE_WINDOW_SYSTEM
4991 mark_fringe_data ();
4992 #endif
4993
4994 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4995 mark_stack ();
4996 #endif
4997
4998 /* Everything is now marked, except for the things that require special
4999 finalization, i.e. the undo_list.
5000 Look thru every buffer's undo list
5001 for elements that update markers that were not marked,
5002 and delete them. */
5003 {
5004 register struct buffer *nextb = all_buffers;
5005
5006 while (nextb)
5007 {
5008 /* If a buffer's undo list is Qt, that means that undo is
5009 turned off in that buffer. Calling truncate_undo_list on
5010 Qt tends to return NULL, which effectively turns undo back on.
5011 So don't call truncate_undo_list if undo_list is Qt. */
5012 if (! EQ (nextb->undo_list, Qt))
5013 {
5014 Lisp_Object tail, prev;
5015 tail = nextb->undo_list;
5016 prev = Qnil;
5017 while (CONSP (tail))
5018 {
5019 if (CONSP (XCAR (tail))
5020 && MARKERP (XCAR (XCAR (tail)))
5021 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5022 {
5023 if (NILP (prev))
5024 nextb->undo_list = tail = XCDR (tail);
5025 else
5026 {
5027 tail = XCDR (tail);
5028 XSETCDR (prev, tail);
5029 }
5030 }
5031 else
5032 {
5033 prev = tail;
5034 tail = XCDR (tail);
5035 }
5036 }
5037 }
5038 /* Now that we have stripped the elements that need not be in the
5039 undo_list any more, we can finally mark the list. */
5040 mark_object (nextb->undo_list);
5041
5042 nextb = nextb->next;
5043 }
5044 }
5045
5046 gc_sweep ();
5047
5048 /* Clear the mark bits that we set in certain root slots. */
5049
5050 unmark_byte_stack ();
5051 VECTOR_UNMARK (&buffer_defaults);
5052 VECTOR_UNMARK (&buffer_local_symbols);
5053
5054 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5055 dump_zombies ();
5056 #endif
5057
5058 UNBLOCK_INPUT;
5059
5060 CHECK_CONS_LIST ();
5061
5062 /* clear_marks (); */
5063 gc_in_progress = 0;
5064
5065 consing_since_gc = 0;
5066 if (gc_cons_threshold < 10000)
5067 gc_cons_threshold = 10000;
5068
5069 if (FLOATP (Vgc_cons_percentage))
5070 { /* Set gc_cons_combined_threshold. */
5071 EMACS_INT total = 0;
5072
5073 total += total_conses * sizeof (struct Lisp_Cons);
5074 total += total_symbols * sizeof (struct Lisp_Symbol);
5075 total += total_markers * sizeof (union Lisp_Misc);
5076 total += total_string_size;
5077 total += total_vector_size * sizeof (Lisp_Object);
5078 total += total_floats * sizeof (struct Lisp_Float);
5079 total += total_intervals * sizeof (struct interval);
5080 total += total_strings * sizeof (struct Lisp_String);
5081
5082 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5083 }
5084 else
5085 gc_relative_threshold = 0;
5086
5087 if (garbage_collection_messages)
5088 {
5089 if (message_p || minibuf_level > 0)
5090 restore_message ();
5091 else
5092 message1_nolog ("Garbage collecting...done");
5093 }
5094
5095 unbind_to (count, Qnil);
5096
5097 total[0] = Fcons (make_number (total_conses),
5098 make_number (total_free_conses));
5099 total[1] = Fcons (make_number (total_symbols),
5100 make_number (total_free_symbols));
5101 total[2] = Fcons (make_number (total_markers),
5102 make_number (total_free_markers));
5103 total[3] = make_number (total_string_size);
5104 total[4] = make_number (total_vector_size);
5105 total[5] = Fcons (make_number (total_floats),
5106 make_number (total_free_floats));
5107 total[6] = Fcons (make_number (total_intervals),
5108 make_number (total_free_intervals));
5109 total[7] = Fcons (make_number (total_strings),
5110 make_number (total_free_strings));
5111
5112 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5113 {
5114 /* Compute average percentage of zombies. */
5115 double nlive = 0;
5116
5117 for (i = 0; i < 7; ++i)
5118 if (CONSP (total[i]))
5119 nlive += XFASTINT (XCAR (total[i]));
5120
5121 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5122 max_live = max (nlive, max_live);
5123 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5124 max_zombies = max (nzombies, max_zombies);
5125 ++ngcs;
5126 }
5127 #endif
5128
5129 if (!NILP (Vpost_gc_hook))
5130 {
5131 int count = inhibit_garbage_collection ();
5132 safe_run_hooks (Qpost_gc_hook);
5133 unbind_to (count, Qnil);
5134 }
5135
5136 /* Accumulate statistics. */
5137 EMACS_GET_TIME (t2);
5138 EMACS_SUB_TIME (t3, t2, t1);
5139 if (FLOATP (Vgc_elapsed))
5140 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5141 EMACS_SECS (t3) +
5142 EMACS_USECS (t3) * 1.0e-6);
5143 gcs_done++;
5144
5145 return Flist (sizeof total / sizeof *total, total);
5146 }
5147
5148
5149 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5150 only interesting objects referenced from glyphs are strings. */
5151
5152 static void
5153 mark_glyph_matrix (struct glyph_matrix *matrix)
5154 {
5155 struct glyph_row *row = matrix->rows;
5156 struct glyph_row *end = row + matrix->nrows;
5157
5158 for (; row < end; ++row)
5159 if (row->enabled_p)
5160 {
5161 int area;
5162 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5163 {
5164 struct glyph *glyph = row->glyphs[area];
5165 struct glyph *end_glyph = glyph + row->used[area];
5166
5167 for (; glyph < end_glyph; ++glyph)
5168 if (STRINGP (glyph->object)
5169 && !STRING_MARKED_P (XSTRING (glyph->object)))
5170 mark_object (glyph->object);
5171 }
5172 }
5173 }
5174
5175
5176 /* Mark Lisp faces in the face cache C. */
5177
5178 static void
5179 mark_face_cache (struct face_cache *c)
5180 {
5181 if (c)
5182 {
5183 int i, j;
5184 for (i = 0; i < c->used; ++i)
5185 {
5186 struct face *face = FACE_FROM_ID (c->f, i);
5187
5188 if (face)
5189 {
5190 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5191 mark_object (face->lface[j]);
5192 }
5193 }
5194 }
5195 }
5196
5197
5198 \f
5199 /* Mark reference to a Lisp_Object.
5200 If the object referred to has not been seen yet, recursively mark
5201 all the references contained in it. */
5202
5203 #define LAST_MARKED_SIZE 500
5204 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5205 int last_marked_index;
5206
5207 /* For debugging--call abort when we cdr down this many
5208 links of a list, in mark_object. In debugging,
5209 the call to abort will hit a breakpoint.
5210 Normally this is zero and the check never goes off. */
5211 static int mark_object_loop_halt;
5212
5213 static void
5214 mark_vectorlike (struct Lisp_Vector *ptr)
5215 {
5216 register EMACS_UINT size = ptr->size;
5217 register EMACS_UINT i;
5218
5219 eassert (!VECTOR_MARKED_P (ptr));
5220 VECTOR_MARK (ptr); /* Else mark it */
5221 if (size & PSEUDOVECTOR_FLAG)
5222 size &= PSEUDOVECTOR_SIZE_MASK;
5223
5224 /* Note that this size is not the memory-footprint size, but only
5225 the number of Lisp_Object fields that we should trace.
5226 The distinction is used e.g. by Lisp_Process which places extra
5227 non-Lisp_Object fields at the end of the structure. */
5228 for (i = 0; i < size; i++) /* and then mark its elements */
5229 mark_object (ptr->contents[i]);
5230 }
5231
5232 /* Like mark_vectorlike but optimized for char-tables (and
5233 sub-char-tables) assuming that the contents are mostly integers or
5234 symbols. */
5235
5236 static void
5237 mark_char_table (struct Lisp_Vector *ptr)
5238 {
5239 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5240 register EMACS_UINT i;
5241
5242 eassert (!VECTOR_MARKED_P (ptr));
5243 VECTOR_MARK (ptr);
5244 for (i = 0; i < size; i++)
5245 {
5246 Lisp_Object val = ptr->contents[i];
5247
5248 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5249 continue;
5250 if (SUB_CHAR_TABLE_P (val))
5251 {
5252 if (! VECTOR_MARKED_P (XVECTOR (val)))
5253 mark_char_table (XVECTOR (val));
5254 }
5255 else
5256 mark_object (val);
5257 }
5258 }
5259
5260 void
5261 mark_object (Lisp_Object arg)
5262 {
5263 register Lisp_Object obj = arg;
5264 #ifdef GC_CHECK_MARKED_OBJECTS
5265 void *po;
5266 struct mem_node *m;
5267 #endif
5268 int cdr_count = 0;
5269
5270 loop:
5271
5272 if (PURE_POINTER_P (XPNTR (obj)))
5273 return;
5274
5275 last_marked[last_marked_index++] = obj;
5276 if (last_marked_index == LAST_MARKED_SIZE)
5277 last_marked_index = 0;
5278
5279 /* Perform some sanity checks on the objects marked here. Abort if
5280 we encounter an object we know is bogus. This increases GC time
5281 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5282 #ifdef GC_CHECK_MARKED_OBJECTS
5283
5284 po = (void *) XPNTR (obj);
5285
5286 /* Check that the object pointed to by PO is known to be a Lisp
5287 structure allocated from the heap. */
5288 #define CHECK_ALLOCATED() \
5289 do { \
5290 m = mem_find (po); \
5291 if (m == MEM_NIL) \
5292 abort (); \
5293 } while (0)
5294
5295 /* Check that the object pointed to by PO is live, using predicate
5296 function LIVEP. */
5297 #define CHECK_LIVE(LIVEP) \
5298 do { \
5299 if (!LIVEP (m, po)) \
5300 abort (); \
5301 } while (0)
5302
5303 /* Check both of the above conditions. */
5304 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5305 do { \
5306 CHECK_ALLOCATED (); \
5307 CHECK_LIVE (LIVEP); \
5308 } while (0) \
5309
5310 #else /* not GC_CHECK_MARKED_OBJECTS */
5311
5312 #define CHECK_ALLOCATED() (void) 0
5313 #define CHECK_LIVE(LIVEP) (void) 0
5314 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5315
5316 #endif /* not GC_CHECK_MARKED_OBJECTS */
5317
5318 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5319 {
5320 case Lisp_String:
5321 {
5322 register struct Lisp_String *ptr = XSTRING (obj);
5323 if (STRING_MARKED_P (ptr))
5324 break;
5325 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5326 MARK_INTERVAL_TREE (ptr->intervals);
5327 MARK_STRING (ptr);
5328 #ifdef GC_CHECK_STRING_BYTES
5329 /* Check that the string size recorded in the string is the
5330 same as the one recorded in the sdata structure. */
5331 CHECK_STRING_BYTES (ptr);
5332 #endif /* GC_CHECK_STRING_BYTES */
5333 }
5334 break;
5335
5336 case Lisp_Vectorlike:
5337 if (VECTOR_MARKED_P (XVECTOR (obj)))
5338 break;
5339 #ifdef GC_CHECK_MARKED_OBJECTS
5340 m = mem_find (po);
5341 if (m == MEM_NIL && !SUBRP (obj)
5342 && po != &buffer_defaults
5343 && po != &buffer_local_symbols)
5344 abort ();
5345 #endif /* GC_CHECK_MARKED_OBJECTS */
5346
5347 if (BUFFERP (obj))
5348 {
5349 #ifdef GC_CHECK_MARKED_OBJECTS
5350 if (po != &buffer_defaults && po != &buffer_local_symbols)
5351 {
5352 struct buffer *b;
5353 for (b = all_buffers; b && b != po; b = b->next)
5354 ;
5355 if (b == NULL)
5356 abort ();
5357 }
5358 #endif /* GC_CHECK_MARKED_OBJECTS */
5359 mark_buffer (obj);
5360 }
5361 else if (SUBRP (obj))
5362 break;
5363 else if (COMPILEDP (obj))
5364 /* We could treat this just like a vector, but it is better to
5365 save the COMPILED_CONSTANTS element for last and avoid
5366 recursion there. */
5367 {
5368 register struct Lisp_Vector *ptr = XVECTOR (obj);
5369 register EMACS_UINT size = ptr->size;
5370 register EMACS_UINT i;
5371
5372 CHECK_LIVE (live_vector_p);
5373 VECTOR_MARK (ptr); /* Else mark it */
5374 size &= PSEUDOVECTOR_SIZE_MASK;
5375 for (i = 0; i < size; i++) /* and then mark its elements */
5376 {
5377 if (i != COMPILED_CONSTANTS)
5378 mark_object (ptr->contents[i]);
5379 }
5380 obj = ptr->contents[COMPILED_CONSTANTS];
5381 goto loop;
5382 }
5383 else if (FRAMEP (obj))
5384 {
5385 register struct frame *ptr = XFRAME (obj);
5386 mark_vectorlike (XVECTOR (obj));
5387 mark_face_cache (ptr->face_cache);
5388 }
5389 else if (WINDOWP (obj))
5390 {
5391 register struct Lisp_Vector *ptr = XVECTOR (obj);
5392 struct window *w = XWINDOW (obj);
5393 mark_vectorlike (ptr);
5394 /* Mark glyphs for leaf windows. Marking window matrices is
5395 sufficient because frame matrices use the same glyph
5396 memory. */
5397 if (NILP (w->hchild)
5398 && NILP (w->vchild)
5399 && w->current_matrix)
5400 {
5401 mark_glyph_matrix (w->current_matrix);
5402 mark_glyph_matrix (w->desired_matrix);
5403 }
5404 }
5405 else if (HASH_TABLE_P (obj))
5406 {
5407 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5408 mark_vectorlike ((struct Lisp_Vector *)h);
5409 /* If hash table is not weak, mark all keys and values.
5410 For weak tables, mark only the vector. */
5411 if (NILP (h->weak))
5412 mark_object (h->key_and_value);
5413 else
5414 VECTOR_MARK (XVECTOR (h->key_and_value));
5415 }
5416 else if (CHAR_TABLE_P (obj))
5417 mark_char_table (XVECTOR (obj));
5418 else
5419 mark_vectorlike (XVECTOR (obj));
5420 break;
5421
5422 case Lisp_Symbol:
5423 {
5424 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5425 struct Lisp_Symbol *ptrx;
5426
5427 if (ptr->gcmarkbit)
5428 break;
5429 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5430 ptr->gcmarkbit = 1;
5431 mark_object (ptr->function);
5432 mark_object (ptr->plist);
5433 switch (ptr->redirect)
5434 {
5435 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5436 case SYMBOL_VARALIAS:
5437 {
5438 Lisp_Object tem;
5439 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5440 mark_object (tem);
5441 break;
5442 }
5443 case SYMBOL_LOCALIZED:
5444 {
5445 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5446 /* If the value is forwarded to a buffer or keyboard field,
5447 these are marked when we see the corresponding object.
5448 And if it's forwarded to a C variable, either it's not
5449 a Lisp_Object var, or it's staticpro'd already. */
5450 mark_object (blv->where);
5451 mark_object (blv->valcell);
5452 mark_object (blv->defcell);
5453 break;
5454 }
5455 case SYMBOL_FORWARDED:
5456 /* If the value is forwarded to a buffer or keyboard field,
5457 these are marked when we see the corresponding object.
5458 And if it's forwarded to a C variable, either it's not
5459 a Lisp_Object var, or it's staticpro'd already. */
5460 break;
5461 default: abort ();
5462 }
5463 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5464 MARK_STRING (XSTRING (ptr->xname));
5465 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5466
5467 ptr = ptr->next;
5468 if (ptr)
5469 {
5470 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5471 XSETSYMBOL (obj, ptrx);
5472 goto loop;
5473 }
5474 }
5475 break;
5476
5477 case Lisp_Misc:
5478 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5479 if (XMISCANY (obj)->gcmarkbit)
5480 break;
5481 XMISCANY (obj)->gcmarkbit = 1;
5482
5483 switch (XMISCTYPE (obj))
5484 {
5485
5486 case Lisp_Misc_Marker:
5487 /* DO NOT mark thru the marker's chain.
5488 The buffer's markers chain does not preserve markers from gc;
5489 instead, markers are removed from the chain when freed by gc. */
5490 break;
5491
5492 case Lisp_Misc_Save_Value:
5493 #if GC_MARK_STACK
5494 {
5495 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5496 /* If DOGC is set, POINTER is the address of a memory
5497 area containing INTEGER potential Lisp_Objects. */
5498 if (ptr->dogc)
5499 {
5500 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5501 int nelt;
5502 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5503 mark_maybe_object (*p);
5504 }
5505 }
5506 #endif
5507 break;
5508
5509 case Lisp_Misc_Overlay:
5510 {
5511 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5512 mark_object (ptr->start);
5513 mark_object (ptr->end);
5514 mark_object (ptr->plist);
5515 if (ptr->next)
5516 {
5517 XSETMISC (obj, ptr->next);
5518 goto loop;
5519 }
5520 }
5521 break;
5522
5523 default:
5524 abort ();
5525 }
5526 break;
5527
5528 case Lisp_Cons:
5529 {
5530 register struct Lisp_Cons *ptr = XCONS (obj);
5531 if (CONS_MARKED_P (ptr))
5532 break;
5533 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5534 CONS_MARK (ptr);
5535 /* If the cdr is nil, avoid recursion for the car. */
5536 if (EQ (ptr->u.cdr, Qnil))
5537 {
5538 obj = ptr->car;
5539 cdr_count = 0;
5540 goto loop;
5541 }
5542 mark_object (ptr->car);
5543 obj = ptr->u.cdr;
5544 cdr_count++;
5545 if (cdr_count == mark_object_loop_halt)
5546 abort ();
5547 goto loop;
5548 }
5549
5550 case Lisp_Float:
5551 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5552 FLOAT_MARK (XFLOAT (obj));
5553 break;
5554
5555 case_Lisp_Int:
5556 break;
5557
5558 default:
5559 abort ();
5560 }
5561
5562 #undef CHECK_LIVE
5563 #undef CHECK_ALLOCATED
5564 #undef CHECK_ALLOCATED_AND_LIVE
5565 }
5566
5567 /* Mark the pointers in a buffer structure. */
5568
5569 static void
5570 mark_buffer (Lisp_Object buf)
5571 {
5572 register struct buffer *buffer = XBUFFER (buf);
5573 register Lisp_Object *ptr, tmp;
5574 Lisp_Object base_buffer;
5575
5576 eassert (!VECTOR_MARKED_P (buffer));
5577 VECTOR_MARK (buffer);
5578
5579 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5580
5581 /* For now, we just don't mark the undo_list. It's done later in
5582 a special way just before the sweep phase, and after stripping
5583 some of its elements that are not needed any more. */
5584
5585 if (buffer->overlays_before)
5586 {
5587 XSETMISC (tmp, buffer->overlays_before);
5588 mark_object (tmp);
5589 }
5590 if (buffer->overlays_after)
5591 {
5592 XSETMISC (tmp, buffer->overlays_after);
5593 mark_object (tmp);
5594 }
5595
5596 /* buffer-local Lisp variables start at `undo_list',
5597 tho only the ones from `name' on are GC'd normally. */
5598 for (ptr = &buffer->name;
5599 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5600 ptr++)
5601 mark_object (*ptr);
5602
5603 /* If this is an indirect buffer, mark its base buffer. */
5604 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5605 {
5606 XSETBUFFER (base_buffer, buffer->base_buffer);
5607 mark_buffer (base_buffer);
5608 }
5609 }
5610
5611 /* Mark the Lisp pointers in the terminal objects.
5612 Called by the Fgarbage_collector. */
5613
5614 static void
5615 mark_terminals (void)
5616 {
5617 struct terminal *t;
5618 for (t = terminal_list; t; t = t->next_terminal)
5619 {
5620 eassert (t->name != NULL);
5621 #ifdef HAVE_WINDOW_SYSTEM
5622 /* If a terminal object is reachable from a stacpro'ed object,
5623 it might have been marked already. Make sure the image cache
5624 gets marked. */
5625 mark_image_cache (t->image_cache);
5626 #endif /* HAVE_WINDOW_SYSTEM */
5627 if (!VECTOR_MARKED_P (t))
5628 mark_vectorlike ((struct Lisp_Vector *)t);
5629 }
5630 }
5631
5632
5633
5634 /* Value is non-zero if OBJ will survive the current GC because it's
5635 either marked or does not need to be marked to survive. */
5636
5637 int
5638 survives_gc_p (Lisp_Object obj)
5639 {
5640 int survives_p;
5641
5642 switch (XTYPE (obj))
5643 {
5644 case_Lisp_Int:
5645 survives_p = 1;
5646 break;
5647
5648 case Lisp_Symbol:
5649 survives_p = XSYMBOL (obj)->gcmarkbit;
5650 break;
5651
5652 case Lisp_Misc:
5653 survives_p = XMISCANY (obj)->gcmarkbit;
5654 break;
5655
5656 case Lisp_String:
5657 survives_p = STRING_MARKED_P (XSTRING (obj));
5658 break;
5659
5660 case Lisp_Vectorlike:
5661 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5662 break;
5663
5664 case Lisp_Cons:
5665 survives_p = CONS_MARKED_P (XCONS (obj));
5666 break;
5667
5668 case Lisp_Float:
5669 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5670 break;
5671
5672 default:
5673 abort ();
5674 }
5675
5676 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5677 }
5678
5679
5680 \f
5681 /* Sweep: find all structures not marked, and free them. */
5682
5683 static void
5684 gc_sweep (void)
5685 {
5686 /* Remove or mark entries in weak hash tables.
5687 This must be done before any object is unmarked. */
5688 sweep_weak_hash_tables ();
5689
5690 sweep_strings ();
5691 #ifdef GC_CHECK_STRING_BYTES
5692 if (!noninteractive)
5693 check_string_bytes (1);
5694 #endif
5695
5696 /* Put all unmarked conses on free list */
5697 {
5698 register struct cons_block *cblk;
5699 struct cons_block **cprev = &cons_block;
5700 register int lim = cons_block_index;
5701 register int num_free = 0, num_used = 0;
5702
5703 cons_free_list = 0;
5704
5705 for (cblk = cons_block; cblk; cblk = *cprev)
5706 {
5707 register int i = 0;
5708 int this_free = 0;
5709 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5710
5711 /* Scan the mark bits an int at a time. */
5712 for (i = 0; i <= ilim; i++)
5713 {
5714 if (cblk->gcmarkbits[i] == -1)
5715 {
5716 /* Fast path - all cons cells for this int are marked. */
5717 cblk->gcmarkbits[i] = 0;
5718 num_used += BITS_PER_INT;
5719 }
5720 else
5721 {
5722 /* Some cons cells for this int are not marked.
5723 Find which ones, and free them. */
5724 int start, pos, stop;
5725
5726 start = i * BITS_PER_INT;
5727 stop = lim - start;
5728 if (stop > BITS_PER_INT)
5729 stop = BITS_PER_INT;
5730 stop += start;
5731
5732 for (pos = start; pos < stop; pos++)
5733 {
5734 if (!CONS_MARKED_P (&cblk->conses[pos]))
5735 {
5736 this_free++;
5737 cblk->conses[pos].u.chain = cons_free_list;
5738 cons_free_list = &cblk->conses[pos];
5739 #if GC_MARK_STACK
5740 cons_free_list->car = Vdead;
5741 #endif
5742 }
5743 else
5744 {
5745 num_used++;
5746 CONS_UNMARK (&cblk->conses[pos]);
5747 }
5748 }
5749 }
5750 }
5751
5752 lim = CONS_BLOCK_SIZE;
5753 /* If this block contains only free conses and we have already
5754 seen more than two blocks worth of free conses then deallocate
5755 this block. */
5756 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5757 {
5758 *cprev = cblk->next;
5759 /* Unhook from the free list. */
5760 cons_free_list = cblk->conses[0].u.chain;
5761 lisp_align_free (cblk);
5762 n_cons_blocks--;
5763 }
5764 else
5765 {
5766 num_free += this_free;
5767 cprev = &cblk->next;
5768 }
5769 }
5770 total_conses = num_used;
5771 total_free_conses = num_free;
5772 }
5773
5774 /* Put all unmarked floats on free list */
5775 {
5776 register struct float_block *fblk;
5777 struct float_block **fprev = &float_block;
5778 register int lim = float_block_index;
5779 register int num_free = 0, num_used = 0;
5780
5781 float_free_list = 0;
5782
5783 for (fblk = float_block; fblk; fblk = *fprev)
5784 {
5785 register int i;
5786 int this_free = 0;
5787 for (i = 0; i < lim; i++)
5788 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5789 {
5790 this_free++;
5791 fblk->floats[i].u.chain = float_free_list;
5792 float_free_list = &fblk->floats[i];
5793 }
5794 else
5795 {
5796 num_used++;
5797 FLOAT_UNMARK (&fblk->floats[i]);
5798 }
5799 lim = FLOAT_BLOCK_SIZE;
5800 /* If this block contains only free floats and we have already
5801 seen more than two blocks worth of free floats then deallocate
5802 this block. */
5803 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5804 {
5805 *fprev = fblk->next;
5806 /* Unhook from the free list. */
5807 float_free_list = fblk->floats[0].u.chain;
5808 lisp_align_free (fblk);
5809 n_float_blocks--;
5810 }
5811 else
5812 {
5813 num_free += this_free;
5814 fprev = &fblk->next;
5815 }
5816 }
5817 total_floats = num_used;
5818 total_free_floats = num_free;
5819 }
5820
5821 /* Put all unmarked intervals on free list */
5822 {
5823 register struct interval_block *iblk;
5824 struct interval_block **iprev = &interval_block;
5825 register int lim = interval_block_index;
5826 register int num_free = 0, num_used = 0;
5827
5828 interval_free_list = 0;
5829
5830 for (iblk = interval_block; iblk; iblk = *iprev)
5831 {
5832 register int i;
5833 int this_free = 0;
5834
5835 for (i = 0; i < lim; i++)
5836 {
5837 if (!iblk->intervals[i].gcmarkbit)
5838 {
5839 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5840 interval_free_list = &iblk->intervals[i];
5841 this_free++;
5842 }
5843 else
5844 {
5845 num_used++;
5846 iblk->intervals[i].gcmarkbit = 0;
5847 }
5848 }
5849 lim = INTERVAL_BLOCK_SIZE;
5850 /* If this block contains only free intervals and we have already
5851 seen more than two blocks worth of free intervals then
5852 deallocate this block. */
5853 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5854 {
5855 *iprev = iblk->next;
5856 /* Unhook from the free list. */
5857 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5858 lisp_free (iblk);
5859 n_interval_blocks--;
5860 }
5861 else
5862 {
5863 num_free += this_free;
5864 iprev = &iblk->next;
5865 }
5866 }
5867 total_intervals = num_used;
5868 total_free_intervals = num_free;
5869 }
5870
5871 /* Put all unmarked symbols on free list */
5872 {
5873 register struct symbol_block *sblk;
5874 struct symbol_block **sprev = &symbol_block;
5875 register int lim = symbol_block_index;
5876 register int num_free = 0, num_used = 0;
5877
5878 symbol_free_list = NULL;
5879
5880 for (sblk = symbol_block; sblk; sblk = *sprev)
5881 {
5882 int this_free = 0;
5883 struct Lisp_Symbol *sym = sblk->symbols;
5884 struct Lisp_Symbol *end = sym + lim;
5885
5886 for (; sym < end; ++sym)
5887 {
5888 /* Check if the symbol was created during loadup. In such a case
5889 it might be pointed to by pure bytecode which we don't trace,
5890 so we conservatively assume that it is live. */
5891 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5892
5893 if (!sym->gcmarkbit && !pure_p)
5894 {
5895 if (sym->redirect == SYMBOL_LOCALIZED)
5896 xfree (SYMBOL_BLV (sym));
5897 sym->next = symbol_free_list;
5898 symbol_free_list = sym;
5899 #if GC_MARK_STACK
5900 symbol_free_list->function = Vdead;
5901 #endif
5902 ++this_free;
5903 }
5904 else
5905 {
5906 ++num_used;
5907 if (!pure_p)
5908 UNMARK_STRING (XSTRING (sym->xname));
5909 sym->gcmarkbit = 0;
5910 }
5911 }
5912
5913 lim = SYMBOL_BLOCK_SIZE;
5914 /* If this block contains only free symbols and we have already
5915 seen more than two blocks worth of free symbols then deallocate
5916 this block. */
5917 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5918 {
5919 *sprev = sblk->next;
5920 /* Unhook from the free list. */
5921 symbol_free_list = sblk->symbols[0].next;
5922 lisp_free (sblk);
5923 n_symbol_blocks--;
5924 }
5925 else
5926 {
5927 num_free += this_free;
5928 sprev = &sblk->next;
5929 }
5930 }
5931 total_symbols = num_used;
5932 total_free_symbols = num_free;
5933 }
5934
5935 /* Put all unmarked misc's on free list.
5936 For a marker, first unchain it from the buffer it points into. */
5937 {
5938 register struct marker_block *mblk;
5939 struct marker_block **mprev = &marker_block;
5940 register int lim = marker_block_index;
5941 register int num_free = 0, num_used = 0;
5942
5943 marker_free_list = 0;
5944
5945 for (mblk = marker_block; mblk; mblk = *mprev)
5946 {
5947 register int i;
5948 int this_free = 0;
5949
5950 for (i = 0; i < lim; i++)
5951 {
5952 if (!mblk->markers[i].u_any.gcmarkbit)
5953 {
5954 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5955 unchain_marker (&mblk->markers[i].u_marker);
5956 /* Set the type of the freed object to Lisp_Misc_Free.
5957 We could leave the type alone, since nobody checks it,
5958 but this might catch bugs faster. */
5959 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5960 mblk->markers[i].u_free.chain = marker_free_list;
5961 marker_free_list = &mblk->markers[i];
5962 this_free++;
5963 }
5964 else
5965 {
5966 num_used++;
5967 mblk->markers[i].u_any.gcmarkbit = 0;
5968 }
5969 }
5970 lim = MARKER_BLOCK_SIZE;
5971 /* If this block contains only free markers and we have already
5972 seen more than two blocks worth of free markers then deallocate
5973 this block. */
5974 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5975 {
5976 *mprev = mblk->next;
5977 /* Unhook from the free list. */
5978 marker_free_list = mblk->markers[0].u_free.chain;
5979 lisp_free (mblk);
5980 n_marker_blocks--;
5981 }
5982 else
5983 {
5984 num_free += this_free;
5985 mprev = &mblk->next;
5986 }
5987 }
5988
5989 total_markers = num_used;
5990 total_free_markers = num_free;
5991 }
5992
5993 /* Free all unmarked buffers */
5994 {
5995 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5996
5997 while (buffer)
5998 if (!VECTOR_MARKED_P (buffer))
5999 {
6000 if (prev)
6001 prev->next = buffer->next;
6002 else
6003 all_buffers = buffer->next;
6004 next = buffer->next;
6005 lisp_free (buffer);
6006 buffer = next;
6007 }
6008 else
6009 {
6010 VECTOR_UNMARK (buffer);
6011 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6012 prev = buffer, buffer = buffer->next;
6013 }
6014 }
6015
6016 /* Free all unmarked vectors */
6017 {
6018 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6019 total_vector_size = 0;
6020
6021 while (vector)
6022 if (!VECTOR_MARKED_P (vector))
6023 {
6024 if (prev)
6025 prev->next = vector->next;
6026 else
6027 all_vectors = vector->next;
6028 next = vector->next;
6029 lisp_free (vector);
6030 n_vectors--;
6031 vector = next;
6032
6033 }
6034 else
6035 {
6036 VECTOR_UNMARK (vector);
6037 if (vector->size & PSEUDOVECTOR_FLAG)
6038 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6039 else
6040 total_vector_size += vector->size;
6041 prev = vector, vector = vector->next;
6042 }
6043 }
6044
6045 #ifdef GC_CHECK_STRING_BYTES
6046 if (!noninteractive)
6047 check_string_bytes (1);
6048 #endif
6049 }
6050
6051
6052
6053 \f
6054 /* Debugging aids. */
6055
6056 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6057 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6058 This may be helpful in debugging Emacs's memory usage.
6059 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6060 (void)
6061 {
6062 Lisp_Object end;
6063
6064 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6065
6066 return end;
6067 }
6068
6069 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6070 doc: /* Return a list of counters that measure how much consing there has been.
6071 Each of these counters increments for a certain kind of object.
6072 The counters wrap around from the largest positive integer to zero.
6073 Garbage collection does not decrease them.
6074 The elements of the value are as follows:
6075 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6076 All are in units of 1 = one object consed
6077 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6078 objects consed.
6079 MISCS include overlays, markers, and some internal types.
6080 Frames, windows, buffers, and subprocesses count as vectors
6081 (but the contents of a buffer's text do not count here). */)
6082 (void)
6083 {
6084 Lisp_Object consed[8];
6085
6086 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6087 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6088 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6089 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6090 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6091 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6092 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6093 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6094
6095 return Flist (8, consed);
6096 }
6097
6098 int suppress_checking;
6099
6100 void
6101 die (const char *msg, const char *file, int line)
6102 {
6103 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6104 file, line, msg);
6105 abort ();
6106 }
6107 \f
6108 /* Initialization */
6109
6110 void
6111 init_alloc_once (void)
6112 {
6113 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6114 purebeg = PUREBEG;
6115 pure_size = PURESIZE;
6116 pure_bytes_used = 0;
6117 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6118 pure_bytes_used_before_overflow = 0;
6119
6120 /* Initialize the list of free aligned blocks. */
6121 free_ablock = NULL;
6122
6123 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6124 mem_init ();
6125 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6126 #endif
6127
6128 all_vectors = 0;
6129 ignore_warnings = 1;
6130 #ifdef DOUG_LEA_MALLOC
6131 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6132 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6133 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6134 #endif
6135 init_strings ();
6136 init_cons ();
6137 init_symbol ();
6138 init_marker ();
6139 init_float ();
6140 init_intervals ();
6141 init_weak_hash_tables ();
6142
6143 #ifdef REL_ALLOC
6144 malloc_hysteresis = 32;
6145 #else
6146 malloc_hysteresis = 0;
6147 #endif
6148
6149 refill_memory_reserve ();
6150
6151 ignore_warnings = 0;
6152 gcprolist = 0;
6153 byte_stack_list = 0;
6154 staticidx = 0;
6155 consing_since_gc = 0;
6156 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6157 gc_relative_threshold = 0;
6158 }
6159
6160 void
6161 init_alloc (void)
6162 {
6163 gcprolist = 0;
6164 byte_stack_list = 0;
6165 #if GC_MARK_STACK
6166 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6167 setjmp_tested_p = longjmps_done = 0;
6168 #endif
6169 #endif
6170 Vgc_elapsed = make_float (0.0);
6171 gcs_done = 0;
6172 }
6173
6174 void
6175 syms_of_alloc (void)
6176 {
6177 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6178 doc: /* *Number of bytes of consing between garbage collections.
6179 Garbage collection can happen automatically once this many bytes have been
6180 allocated since the last garbage collection. All data types count.
6181
6182 Garbage collection happens automatically only when `eval' is called.
6183
6184 By binding this temporarily to a large number, you can effectively
6185 prevent garbage collection during a part of the program.
6186 See also `gc-cons-percentage'. */);
6187
6188 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6189 doc: /* *Portion of the heap used for allocation.
6190 Garbage collection can happen automatically once this portion of the heap
6191 has been allocated since the last garbage collection.
6192 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6193 Vgc_cons_percentage = make_float (0.1);
6194
6195 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6196 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6197
6198 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6199 doc: /* Number of cons cells that have been consed so far. */);
6200
6201 DEFVAR_INT ("floats-consed", floats_consed,
6202 doc: /* Number of floats that have been consed so far. */);
6203
6204 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6205 doc: /* Number of vector cells that have been consed so far. */);
6206
6207 DEFVAR_INT ("symbols-consed", symbols_consed,
6208 doc: /* Number of symbols that have been consed so far. */);
6209
6210 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6211 doc: /* Number of string characters that have been consed so far. */);
6212
6213 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6214 doc: /* Number of miscellaneous objects that have been consed so far. */);
6215
6216 DEFVAR_INT ("intervals-consed", intervals_consed,
6217 doc: /* Number of intervals that have been consed so far. */);
6218
6219 DEFVAR_INT ("strings-consed", strings_consed,
6220 doc: /* Number of strings that have been consed so far. */);
6221
6222 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6223 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6224 This means that certain objects should be allocated in shared (pure) space.
6225 It can also be set to a hash-table, in which case this table is used to
6226 do hash-consing of the objects allocated to pure space. */);
6227
6228 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6229 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6230 garbage_collection_messages = 0;
6231
6232 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6233 doc: /* Hook run after garbage collection has finished. */);
6234 Vpost_gc_hook = Qnil;
6235 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6236 staticpro (&Qpost_gc_hook);
6237
6238 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6239 doc: /* Precomputed `signal' argument for memory-full error. */);
6240 /* We build this in advance because if we wait until we need it, we might
6241 not be able to allocate the memory to hold it. */
6242 Vmemory_signal_data
6243 = pure_cons (Qerror,
6244 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6245
6246 DEFVAR_LISP ("memory-full", Vmemory_full,
6247 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6248 Vmemory_full = Qnil;
6249
6250 staticpro (&Qgc_cons_threshold);
6251 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6252
6253 staticpro (&Qchar_table_extra_slots);
6254 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6255
6256 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6257 doc: /* Accumulated time elapsed in garbage collections.
6258 The time is in seconds as a floating point value. */);
6259 DEFVAR_INT ("gcs-done", gcs_done,
6260 doc: /* Accumulated number of garbage collections done. */);
6261
6262 defsubr (&Scons);
6263 defsubr (&Slist);
6264 defsubr (&Svector);
6265 defsubr (&Smake_byte_code);
6266 defsubr (&Smake_list);
6267 defsubr (&Smake_vector);
6268 defsubr (&Smake_string);
6269 defsubr (&Smake_bool_vector);
6270 defsubr (&Smake_symbol);
6271 defsubr (&Smake_marker);
6272 defsubr (&Spurecopy);
6273 defsubr (&Sgarbage_collect);
6274 defsubr (&Smemory_limit);
6275 defsubr (&Smemory_use_counts);
6276
6277 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6278 defsubr (&Sgc_status);
6279 #endif
6280 }