Make insert-char interactive, and ucs-insert an obsolete alias for it.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <ctype.h>
48 #include <float.h>
49 #include <limits.h>
50 #include <intprops.h>
51 #include <strftime.h>
52 #include <verify.h>
53
54 #include "intervals.h"
55 #include "character.h"
56 #include "buffer.h"
57 #include "coding.h"
58 #include "frame.h"
59 #include "window.h"
60 #include "blockinput.h"
61
62 #ifndef USER_FULL_NAME
63 #define USER_FULL_NAME pw->pw_gecos
64 #endif
65
66 #ifndef USE_CRT_DLL
67 extern char **environ;
68 #endif
69
70 #define TM_YEAR_BASE 1900
71
72 #ifdef WINDOWSNT
73 extern Lisp_Object w32_get_internal_run_time (void);
74 #endif
75
76 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
77 int, struct tm *);
78 static int tm_diff (struct tm *, struct tm *);
79 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
80
81 static Lisp_Object Qbuffer_access_fontify_functions;
82
83 /* Symbol for the text property used to mark fields. */
84
85 Lisp_Object Qfield;
86
87 /* A special value for Qfield properties. */
88
89 static Lisp_Object Qboundary;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 pw = getpwuid (getuid ());
110 #ifdef MSDOS
111 /* We let the real user name default to "root" because that's quite
112 accurate on MSDOG and because it lets Emacs find the init file.
113 (The DVX libraries override the Djgpp libraries here.) */
114 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
115 #else
116 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
117 #endif
118
119 /* Get the effective user name, by consulting environment variables,
120 or the effective uid if those are unset. */
121 user_name = getenv ("LOGNAME");
122 if (!user_name)
123 #ifdef WINDOWSNT
124 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
125 #else /* WINDOWSNT */
126 user_name = getenv ("USER");
127 #endif /* WINDOWSNT */
128 if (!user_name)
129 {
130 pw = getpwuid (geteuid ());
131 user_name = pw ? pw->pw_name : "unknown";
132 }
133 Vuser_login_name = build_string (user_name);
134
135 /* If the user name claimed in the environment vars differs from
136 the real uid, use the claimed name to find the full name. */
137 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
138 if (! NILP (tem))
139 tem = Vuser_login_name;
140 else
141 {
142 uid_t euid = geteuid ();
143 tem = make_fixnum_or_float (euid);
144 }
145 Vuser_full_name = Fuser_full_name (tem);
146
147 p = getenv ("NAME");
148 if (p)
149 Vuser_full_name = build_string (p);
150 else if (NILP (Vuser_full_name))
151 Vuser_full_name = build_string ("unknown");
152
153 #ifdef HAVE_SYS_UTSNAME_H
154 {
155 struct utsname uts;
156 uname (&uts);
157 Voperating_system_release = build_string (uts.release);
158 }
159 #else
160 Voperating_system_release = Qnil;
161 #endif
162 }
163 \f
164 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
165 doc: /* Convert arg CHAR to a string containing that character.
166 usage: (char-to-string CHAR) */)
167 (Lisp_Object character)
168 {
169 int c, len;
170 unsigned char str[MAX_MULTIBYTE_LENGTH];
171
172 CHECK_CHARACTER (character);
173 c = XFASTINT (character);
174
175 len = CHAR_STRING (c, str);
176 return make_string_from_bytes ((char *) str, 1, len);
177 }
178
179 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
180 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
181 (Lisp_Object byte)
182 {
183 unsigned char b;
184 CHECK_NUMBER (byte);
185 if (XINT (byte) < 0 || XINT (byte) > 255)
186 error ("Invalid byte");
187 b = XINT (byte);
188 return make_string_from_bytes ((char *) &b, 1, 1);
189 }
190
191 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
192 doc: /* Return the first character in STRING. */)
193 (register Lisp_Object string)
194 {
195 register Lisp_Object val;
196 CHECK_STRING (string);
197 if (SCHARS (string))
198 {
199 if (STRING_MULTIBYTE (string))
200 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
201 else
202 XSETFASTINT (val, SREF (string, 0));
203 }
204 else
205 XSETFASTINT (val, 0);
206 return val;
207 }
208
209 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
210 doc: /* Return value of point, as an integer.
211 Beginning of buffer is position (point-min). */)
212 (void)
213 {
214 Lisp_Object temp;
215 XSETFASTINT (temp, PT);
216 return temp;
217 }
218
219 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
220 doc: /* Return value of point, as a marker object. */)
221 (void)
222 {
223 return build_marker (current_buffer, PT, PT_BYTE);
224 }
225
226 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
227 doc: /* Set point to POSITION, a number or marker.
228 Beginning of buffer is position (point-min), end is (point-max).
229
230 The return value is POSITION. */)
231 (register Lisp_Object position)
232 {
233 ptrdiff_t pos;
234
235 if (MARKERP (position)
236 && current_buffer == XMARKER (position)->buffer)
237 {
238 pos = marker_position (position);
239 if (pos < BEGV)
240 SET_PT_BOTH (BEGV, BEGV_BYTE);
241 else if (pos > ZV)
242 SET_PT_BOTH (ZV, ZV_BYTE);
243 else
244 SET_PT_BOTH (pos, marker_byte_position (position));
245
246 return position;
247 }
248
249 CHECK_NUMBER_COERCE_MARKER (position);
250
251 pos = clip_to_bounds (BEGV, XINT (position), ZV);
252 SET_PT (pos);
253 return position;
254 }
255
256
257 /* Return the start or end position of the region.
258 BEGINNINGP non-zero means return the start.
259 If there is no region active, signal an error. */
260
261 static Lisp_Object
262 region_limit (int beginningp)
263 {
264 Lisp_Object m;
265
266 if (!NILP (Vtransient_mark_mode)
267 && NILP (Vmark_even_if_inactive)
268 && NILP (BVAR (current_buffer, mark_active)))
269 xsignal0 (Qmark_inactive);
270
271 m = Fmarker_position (BVAR (current_buffer, mark));
272 if (NILP (m))
273 error ("The mark is not set now, so there is no region");
274
275 /* Clip to the current narrowing (bug#11770). */
276 return make_number ((PT < XFASTINT (m)) == (beginningp != 0)
277 ? PT
278 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
279 }
280
281 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
282 doc: /* Return the integer value of point or mark, whichever is smaller. */)
283 (void)
284 {
285 return region_limit (1);
286 }
287
288 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
289 doc: /* Return the integer value of point or mark, whichever is larger. */)
290 (void)
291 {
292 return region_limit (0);
293 }
294
295 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
296 doc: /* Return this buffer's mark, as a marker object.
297 Watch out! Moving this marker changes the mark position.
298 If you set the marker not to point anywhere, the buffer will have no mark. */)
299 (void)
300 {
301 return BVAR (current_buffer, mark);
302 }
303
304 \f
305 /* Find all the overlays in the current buffer that touch position POS.
306 Return the number found, and store them in a vector in VEC
307 of length LEN. */
308
309 static ptrdiff_t
310 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
311 {
312 Lisp_Object overlay, start, end;
313 struct Lisp_Overlay *tail;
314 ptrdiff_t startpos, endpos;
315 ptrdiff_t idx = 0;
316
317 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
318 {
319 XSETMISC (overlay, tail);
320
321 end = OVERLAY_END (overlay);
322 endpos = OVERLAY_POSITION (end);
323 if (endpos < pos)
324 break;
325 start = OVERLAY_START (overlay);
326 startpos = OVERLAY_POSITION (start);
327 if (startpos <= pos)
328 {
329 if (idx < len)
330 vec[idx] = overlay;
331 /* Keep counting overlays even if we can't return them all. */
332 idx++;
333 }
334 }
335
336 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 start = OVERLAY_START (overlay);
341 startpos = OVERLAY_POSITION (start);
342 if (pos < startpos)
343 break;
344 end = OVERLAY_END (overlay);
345 endpos = OVERLAY_POSITION (end);
346 if (pos <= endpos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 idx++;
351 }
352 }
353
354 return idx;
355 }
356
357 /* Return the value of property PROP, in OBJECT at POSITION.
358 It's the value of PROP that a char inserted at POSITION would get.
359 OBJECT is optional and defaults to the current buffer.
360 If OBJECT is a buffer, then overlay properties are considered as well as
361 text properties.
362 If OBJECT is a window, then that window's buffer is used, but
363 window-specific overlays are considered only if they are associated
364 with OBJECT. */
365 Lisp_Object
366 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
367 {
368 CHECK_NUMBER_COERCE_MARKER (position);
369
370 if (NILP (object))
371 XSETBUFFER (object, current_buffer);
372 else if (WINDOWP (object))
373 object = XWINDOW (object)->buffer;
374
375 if (!BUFFERP (object))
376 /* pos-property only makes sense in buffers right now, since strings
377 have no overlays and no notion of insertion for which stickiness
378 could be obeyed. */
379 return Fget_text_property (position, prop, object);
380 else
381 {
382 EMACS_INT posn = XINT (position);
383 ptrdiff_t noverlays;
384 Lisp_Object *overlay_vec, tem;
385 struct buffer *obuf = current_buffer;
386
387 set_buffer_temp (XBUFFER (object));
388
389 /* First try with room for 40 overlays. */
390 noverlays = 40;
391 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
392 noverlays = overlays_around (posn, overlay_vec, noverlays);
393
394 /* If there are more than 40,
395 make enough space for all, and try again. */
396 if (noverlays > 40)
397 {
398 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
399 noverlays = overlays_around (posn, overlay_vec, noverlays);
400 }
401 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
402
403 set_buffer_temp (obuf);
404
405 /* Now check the overlays in order of decreasing priority. */
406 while (--noverlays >= 0)
407 {
408 Lisp_Object ol = overlay_vec[noverlays];
409 tem = Foverlay_get (ol, prop);
410 if (!NILP (tem))
411 {
412 /* Check the overlay is indeed active at point. */
413 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
414 if ((OVERLAY_POSITION (start) == posn
415 && XMARKER (start)->insertion_type == 1)
416 || (OVERLAY_POSITION (finish) == posn
417 && XMARKER (finish)->insertion_type == 0))
418 ; /* The overlay will not cover a char inserted at point. */
419 else
420 {
421 return tem;
422 }
423 }
424 }
425
426 { /* Now check the text properties. */
427 int stickiness = text_property_stickiness (prop, position, object);
428 if (stickiness > 0)
429 return Fget_text_property (position, prop, object);
430 else if (stickiness < 0
431 && XINT (position) > BUF_BEGV (XBUFFER (object)))
432 return Fget_text_property (make_number (XINT (position) - 1),
433 prop, object);
434 else
435 return Qnil;
436 }
437 }
438 }
439
440 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
441 the value of point is used instead. If BEG or END is null,
442 means don't store the beginning or end of the field.
443
444 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
445 results; they do not effect boundary behavior.
446
447 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
448 position of a field, then the beginning of the previous field is
449 returned instead of the beginning of POS's field (since the end of a
450 field is actually also the beginning of the next input field, this
451 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
452 true case, if two fields are separated by a field with the special
453 value `boundary', and POS lies within it, then the two separated
454 fields are considered to be adjacent, and POS between them, when
455 finding the beginning and ending of the "merged" field.
456
457 Either BEG or END may be 0, in which case the corresponding value
458 is not stored. */
459
460 static void
461 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
462 Lisp_Object beg_limit,
463 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
464 {
465 /* Fields right before and after the point. */
466 Lisp_Object before_field, after_field;
467 /* 1 if POS counts as the start of a field. */
468 int at_field_start = 0;
469 /* 1 if POS counts as the end of a field. */
470 int at_field_end = 0;
471
472 if (NILP (pos))
473 XSETFASTINT (pos, PT);
474 else
475 CHECK_NUMBER_COERCE_MARKER (pos);
476
477 after_field
478 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
479 before_field
480 = (XFASTINT (pos) > BEGV
481 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
482 Qfield, Qnil, NULL)
483 /* Using nil here would be a more obvious choice, but it would
484 fail when the buffer starts with a non-sticky field. */
485 : after_field);
486
487 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
488 and POS is at beginning of a field, which can also be interpreted
489 as the end of the previous field. Note that the case where if
490 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
491 more natural one; then we avoid treating the beginning of a field
492 specially. */
493 if (NILP (merge_at_boundary))
494 {
495 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
496 if (!EQ (field, after_field))
497 at_field_end = 1;
498 if (!EQ (field, before_field))
499 at_field_start = 1;
500 if (NILP (field) && at_field_start && at_field_end)
501 /* If an inserted char would have a nil field while the surrounding
502 text is non-nil, we're probably not looking at a
503 zero-length field, but instead at a non-nil field that's
504 not intended for editing (such as comint's prompts). */
505 at_field_end = at_field_start = 0;
506 }
507
508 /* Note about special `boundary' fields:
509
510 Consider the case where the point (`.') is between the fields `x' and `y':
511
512 xxxx.yyyy
513
514 In this situation, if merge_at_boundary is true, we consider the
515 `x' and `y' fields as forming one big merged field, and so the end
516 of the field is the end of `y'.
517
518 However, if `x' and `y' are separated by a special `boundary' field
519 (a field with a `field' char-property of 'boundary), then we ignore
520 this special field when merging adjacent fields. Here's the same
521 situation, but with a `boundary' field between the `x' and `y' fields:
522
523 xxx.BBBByyyy
524
525 Here, if point is at the end of `x', the beginning of `y', or
526 anywhere in-between (within the `boundary' field), we merge all
527 three fields and consider the beginning as being the beginning of
528 the `x' field, and the end as being the end of the `y' field. */
529
530 if (beg)
531 {
532 if (at_field_start)
533 /* POS is at the edge of a field, and we should consider it as
534 the beginning of the following field. */
535 *beg = XFASTINT (pos);
536 else
537 /* Find the previous field boundary. */
538 {
539 Lisp_Object p = pos;
540 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
541 /* Skip a `boundary' field. */
542 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
543 beg_limit);
544
545 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
546 beg_limit);
547 *beg = NILP (p) ? BEGV : XFASTINT (p);
548 }
549 }
550
551 if (end)
552 {
553 if (at_field_end)
554 /* POS is at the edge of a field, and we should consider it as
555 the end of the previous field. */
556 *end = XFASTINT (pos);
557 else
558 /* Find the next field boundary. */
559 {
560 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
561 /* Skip a `boundary' field. */
562 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
563 end_limit);
564
565 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
566 end_limit);
567 *end = NILP (pos) ? ZV : XFASTINT (pos);
568 }
569 }
570 }
571
572 \f
573 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
574 doc: /* Delete the field surrounding POS.
575 A field is a region of text with the same `field' property.
576 If POS is nil, the value of point is used for POS. */)
577 (Lisp_Object pos)
578 {
579 ptrdiff_t beg, end;
580 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
581 if (beg != end)
582 del_range (beg, end);
583 return Qnil;
584 }
585
586 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
587 doc: /* Return the contents of the field surrounding POS as a string.
588 A field is a region of text with the same `field' property.
589 If POS is nil, the value of point is used for POS. */)
590 (Lisp_Object pos)
591 {
592 ptrdiff_t beg, end;
593 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
594 return make_buffer_string (beg, end, 1);
595 }
596
597 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
598 doc: /* Return the contents of the field around POS, without text properties.
599 A field is a region of text with the same `field' property.
600 If POS is nil, the value of point is used for POS. */)
601 (Lisp_Object pos)
602 {
603 ptrdiff_t beg, end;
604 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
605 return make_buffer_string (beg, end, 0);
606 }
607
608 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
609 doc: /* Return the beginning of the field surrounding POS.
610 A field is a region of text with the same `field' property.
611 If POS is nil, the value of point is used for POS.
612 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
613 field, then the beginning of the *previous* field is returned.
614 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
615 is before LIMIT, then LIMIT will be returned instead. */)
616 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
617 {
618 ptrdiff_t beg;
619 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
620 return make_number (beg);
621 }
622
623 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
624 doc: /* Return the end of the field surrounding POS.
625 A field is a region of text with the same `field' property.
626 If POS is nil, the value of point is used for POS.
627 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
628 then the end of the *following* field is returned.
629 If LIMIT is non-nil, it is a buffer position; if the end of the field
630 is after LIMIT, then LIMIT will be returned instead. */)
631 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
632 {
633 ptrdiff_t end;
634 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
635 return make_number (end);
636 }
637
638 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
639 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
640 A field is a region of text with the same `field' property.
641
642 If NEW-POS is nil, then use the current point instead, and move point
643 to the resulting constrained position, in addition to returning that
644 position.
645
646 If OLD-POS is at the boundary of two fields, then the allowable
647 positions for NEW-POS depends on the value of the optional argument
648 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
649 constrained to the field that has the same `field' char-property
650 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
651 is non-nil, NEW-POS is constrained to the union of the two adjacent
652 fields. Additionally, if two fields are separated by another field with
653 the special value `boundary', then any point within this special field is
654 also considered to be `on the boundary'.
655
656 If the optional argument ONLY-IN-LINE is non-nil and constraining
657 NEW-POS would move it to a different line, NEW-POS is returned
658 unconstrained. This useful for commands that move by line, like
659 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
660 only in the case where they can still move to the right line.
661
662 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
663 a non-nil property of that name, then any field boundaries are ignored.
664
665 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
666 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
667 {
668 /* If non-zero, then the original point, before re-positioning. */
669 ptrdiff_t orig_point = 0;
670 int fwd;
671 Lisp_Object prev_old, prev_new;
672
673 if (NILP (new_pos))
674 /* Use the current point, and afterwards, set it. */
675 {
676 orig_point = PT;
677 XSETFASTINT (new_pos, PT);
678 }
679
680 CHECK_NUMBER_COERCE_MARKER (new_pos);
681 CHECK_NUMBER_COERCE_MARKER (old_pos);
682
683 fwd = (XINT (new_pos) > XINT (old_pos));
684
685 prev_old = make_number (XINT (old_pos) - 1);
686 prev_new = make_number (XINT (new_pos) - 1);
687
688 if (NILP (Vinhibit_field_text_motion)
689 && !EQ (new_pos, old_pos)
690 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
691 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
692 /* To recognize field boundaries, we must also look at the
693 previous positions; we could use `get_pos_property'
694 instead, but in itself that would fail inside non-sticky
695 fields (like comint prompts). */
696 || (XFASTINT (new_pos) > BEGV
697 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
698 || (XFASTINT (old_pos) > BEGV
699 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
700 && (NILP (inhibit_capture_property)
701 /* Field boundaries are again a problem; but now we must
702 decide the case exactly, so we need to call
703 `get_pos_property' as well. */
704 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
705 && (XFASTINT (old_pos) <= BEGV
706 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
707 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
708 /* It is possible that NEW_POS is not within the same field as
709 OLD_POS; try to move NEW_POS so that it is. */
710 {
711 ptrdiff_t shortage;
712 Lisp_Object field_bound;
713
714 if (fwd)
715 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
716 else
717 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
718
719 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
720 other side of NEW_POS, which would mean that NEW_POS is
721 already acceptable, and it's not necessary to constrain it
722 to FIELD_BOUND. */
723 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
724 /* NEW_POS should be constrained, but only if either
725 ONLY_IN_LINE is nil (in which case any constraint is OK),
726 or NEW_POS and FIELD_BOUND are on the same line (in which
727 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
728 && (NILP (only_in_line)
729 /* This is the ONLY_IN_LINE case, check that NEW_POS and
730 FIELD_BOUND are on the same line by seeing whether
731 there's an intervening newline or not. */
732 || (scan_buffer ('\n',
733 XFASTINT (new_pos), XFASTINT (field_bound),
734 fwd ? -1 : 1, &shortage, 1),
735 shortage != 0)))
736 /* Constrain NEW_POS to FIELD_BOUND. */
737 new_pos = field_bound;
738
739 if (orig_point && XFASTINT (new_pos) != orig_point)
740 /* The NEW_POS argument was originally nil, so automatically set PT. */
741 SET_PT (XFASTINT (new_pos));
742 }
743
744 return new_pos;
745 }
746
747 \f
748 DEFUN ("line-beginning-position",
749 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
750 doc: /* Return the character position of the first character on the current line.
751 With argument N not nil or 1, move forward N - 1 lines first.
752 If scan reaches end of buffer, return that position.
753
754 The returned position is of the first character in the logical order,
755 i.e. the one that has the smallest character position.
756
757 This function constrains the returned position to the current field
758 unless that would be on a different line than the original,
759 unconstrained result. If N is nil or 1, and a front-sticky field
760 starts at point, the scan stops as soon as it starts. To ignore field
761 boundaries bind `inhibit-field-text-motion' to t.
762
763 This function does not move point. */)
764 (Lisp_Object n)
765 {
766 ptrdiff_t orig, orig_byte, end;
767 ptrdiff_t count = SPECPDL_INDEX ();
768 specbind (Qinhibit_point_motion_hooks, Qt);
769
770 if (NILP (n))
771 XSETFASTINT (n, 1);
772 else
773 CHECK_NUMBER (n);
774
775 orig = PT;
776 orig_byte = PT_BYTE;
777 Fforward_line (make_number (XINT (n) - 1));
778 end = PT;
779
780 SET_PT_BOTH (orig, orig_byte);
781
782 unbind_to (count, Qnil);
783
784 /* Return END constrained to the current input field. */
785 return Fconstrain_to_field (make_number (end), make_number (orig),
786 XINT (n) != 1 ? Qt : Qnil,
787 Qt, Qnil);
788 }
789
790 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
791 doc: /* Return the character position of the last character on the current line.
792 With argument N not nil or 1, move forward N - 1 lines first.
793 If scan reaches end of buffer, return that position.
794
795 The returned position is of the last character in the logical order,
796 i.e. the character whose buffer position is the largest one.
797
798 This function constrains the returned position to the current field
799 unless that would be on a different line than the original,
800 unconstrained result. If N is nil or 1, and a rear-sticky field ends
801 at point, the scan stops as soon as it starts. To ignore field
802 boundaries bind `inhibit-field-text-motion' to t.
803
804 This function does not move point. */)
805 (Lisp_Object n)
806 {
807 ptrdiff_t clipped_n;
808 ptrdiff_t end_pos;
809 ptrdiff_t orig = PT;
810
811 if (NILP (n))
812 XSETFASTINT (n, 1);
813 else
814 CHECK_NUMBER (n);
815
816 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
817 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
818
819 /* Return END_POS constrained to the current input field. */
820 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
821 Qnil, Qt, Qnil);
822 }
823
824 \f
825 Lisp_Object
826 save_excursion_save (void)
827 {
828 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
829 == current_buffer);
830
831 return Fcons (Fpoint_marker (),
832 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
833 Fcons (visible ? Qt : Qnil,
834 Fcons (BVAR (current_buffer, mark_active),
835 selected_window))));
836 }
837
838 Lisp_Object
839 save_excursion_restore (Lisp_Object info)
840 {
841 Lisp_Object tem, tem1, omark, nmark;
842 struct gcpro gcpro1, gcpro2, gcpro3;
843 int visible_p;
844
845 tem = Fmarker_buffer (XCAR (info));
846 /* If buffer being returned to is now deleted, avoid error */
847 /* Otherwise could get error here while unwinding to top level
848 and crash */
849 /* In that case, Fmarker_buffer returns nil now. */
850 if (NILP (tem))
851 return Qnil;
852
853 omark = nmark = Qnil;
854 GCPRO3 (info, omark, nmark);
855
856 Fset_buffer (tem);
857
858 /* Point marker. */
859 tem = XCAR (info);
860 Fgoto_char (tem);
861 unchain_marker (XMARKER (tem));
862
863 /* Mark marker. */
864 info = XCDR (info);
865 tem = XCAR (info);
866 omark = Fmarker_position (BVAR (current_buffer, mark));
867 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
868 nmark = Fmarker_position (tem);
869 unchain_marker (XMARKER (tem));
870
871 /* visible */
872 info = XCDR (info);
873 visible_p = !NILP (XCAR (info));
874
875 #if 0 /* We used to make the current buffer visible in the selected window
876 if that was true previously. That avoids some anomalies.
877 But it creates others, and it wasn't documented, and it is simpler
878 and cleaner never to alter the window/buffer connections. */
879 tem1 = Fcar (tem);
880 if (!NILP (tem1)
881 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
882 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
883 #endif /* 0 */
884
885 /* Mark active */
886 info = XCDR (info);
887 tem = XCAR (info);
888 tem1 = BVAR (current_buffer, mark_active);
889 BVAR (current_buffer, mark_active) = tem;
890
891 /* If mark is active now, and either was not active
892 or was at a different place, run the activate hook. */
893 if (! NILP (tem))
894 {
895 if (! EQ (omark, nmark))
896 {
897 tem = intern ("activate-mark-hook");
898 Frun_hooks (1, &tem);
899 }
900 }
901 /* If mark has ceased to be active, run deactivate hook. */
902 else if (! NILP (tem1))
903 {
904 tem = intern ("deactivate-mark-hook");
905 Frun_hooks (1, &tem);
906 }
907
908 /* If buffer was visible in a window, and a different window was
909 selected, and the old selected window is still showing this
910 buffer, restore point in that window. */
911 tem = XCDR (info);
912 if (visible_p
913 && !EQ (tem, selected_window)
914 && (tem1 = XWINDOW (tem)->buffer,
915 (/* Window is live... */
916 BUFFERP (tem1)
917 /* ...and it shows the current buffer. */
918 && XBUFFER (tem1) == current_buffer)))
919 Fset_window_point (tem, make_number (PT));
920
921 UNGCPRO;
922 return Qnil;
923 }
924
925 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
926 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
927 Executes BODY just like `progn'.
928 The values of point, mark and the current buffer are restored
929 even in case of abnormal exit (throw or error).
930 The state of activation of the mark is also restored.
931
932 This construct does not save `deactivate-mark', and therefore
933 functions that change the buffer will still cause deactivation
934 of the mark at the end of the command. To prevent that, bind
935 `deactivate-mark' with `let'.
936
937 If you only want to save the current buffer but not point nor mark,
938 then just use `save-current-buffer', or even `with-current-buffer'.
939
940 usage: (save-excursion &rest BODY) */)
941 (Lisp_Object args)
942 {
943 register Lisp_Object val;
944 ptrdiff_t count = SPECPDL_INDEX ();
945
946 record_unwind_protect (save_excursion_restore, save_excursion_save ());
947
948 val = Fprogn (args);
949 return unbind_to (count, val);
950 }
951
952 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
953 doc: /* Save the current buffer; execute BODY; restore the current buffer.
954 Executes BODY just like `progn'.
955 usage: (save-current-buffer &rest BODY) */)
956 (Lisp_Object args)
957 {
958 Lisp_Object val;
959 ptrdiff_t count = SPECPDL_INDEX ();
960
961 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
962
963 val = Fprogn (args);
964 return unbind_to (count, val);
965 }
966 \f
967 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
968 doc: /* Return the number of characters in the current buffer.
969 If BUFFER, return the number of characters in that buffer instead. */)
970 (Lisp_Object buffer)
971 {
972 if (NILP (buffer))
973 return make_number (Z - BEG);
974 else
975 {
976 CHECK_BUFFER (buffer);
977 return make_number (BUF_Z (XBUFFER (buffer))
978 - BUF_BEG (XBUFFER (buffer)));
979 }
980 }
981
982 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
983 doc: /* Return the minimum permissible value of point in the current buffer.
984 This is 1, unless narrowing (a buffer restriction) is in effect. */)
985 (void)
986 {
987 Lisp_Object temp;
988 XSETFASTINT (temp, BEGV);
989 return temp;
990 }
991
992 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
993 doc: /* Return a marker to the minimum permissible value of point in this buffer.
994 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
995 (void)
996 {
997 return build_marker (current_buffer, BEGV, BEGV_BYTE);
998 }
999
1000 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1001 doc: /* Return the maximum permissible value of point in the current buffer.
1002 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1003 is in effect, in which case it is less. */)
1004 (void)
1005 {
1006 Lisp_Object temp;
1007 XSETFASTINT (temp, ZV);
1008 return temp;
1009 }
1010
1011 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1012 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1013 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1014 is in effect, in which case it is less. */)
1015 (void)
1016 {
1017 return build_marker (current_buffer, ZV, ZV_BYTE);
1018 }
1019
1020 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1021 doc: /* Return the position of the gap, in the current buffer.
1022 See also `gap-size'. */)
1023 (void)
1024 {
1025 Lisp_Object temp;
1026 XSETFASTINT (temp, GPT);
1027 return temp;
1028 }
1029
1030 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1031 doc: /* Return the size of the current buffer's gap.
1032 See also `gap-position'. */)
1033 (void)
1034 {
1035 Lisp_Object temp;
1036 XSETFASTINT (temp, GAP_SIZE);
1037 return temp;
1038 }
1039
1040 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1041 doc: /* Return the byte position for character position POSITION.
1042 If POSITION is out of range, the value is nil. */)
1043 (Lisp_Object position)
1044 {
1045 CHECK_NUMBER_COERCE_MARKER (position);
1046 if (XINT (position) < BEG || XINT (position) > Z)
1047 return Qnil;
1048 return make_number (CHAR_TO_BYTE (XINT (position)));
1049 }
1050
1051 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1052 doc: /* Return the character position for byte position BYTEPOS.
1053 If BYTEPOS is out of range, the value is nil. */)
1054 (Lisp_Object bytepos)
1055 {
1056 CHECK_NUMBER (bytepos);
1057 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1058 return Qnil;
1059 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1060 }
1061 \f
1062 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1063 doc: /* Return the character following point, as a number.
1064 At the end of the buffer or accessible region, return 0. */)
1065 (void)
1066 {
1067 Lisp_Object temp;
1068 if (PT >= ZV)
1069 XSETFASTINT (temp, 0);
1070 else
1071 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1072 return temp;
1073 }
1074
1075 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1076 doc: /* Return the character preceding point, as a number.
1077 At the beginning of the buffer or accessible region, return 0. */)
1078 (void)
1079 {
1080 Lisp_Object temp;
1081 if (PT <= BEGV)
1082 XSETFASTINT (temp, 0);
1083 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1084 {
1085 ptrdiff_t pos = PT_BYTE;
1086 DEC_POS (pos);
1087 XSETFASTINT (temp, FETCH_CHAR (pos));
1088 }
1089 else
1090 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1091 return temp;
1092 }
1093
1094 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1095 doc: /* Return t if point is at the beginning of the buffer.
1096 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1097 (void)
1098 {
1099 if (PT == BEGV)
1100 return Qt;
1101 return Qnil;
1102 }
1103
1104 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1105 doc: /* Return t if point is at the end of the buffer.
1106 If the buffer is narrowed, this means the end of the narrowed part. */)
1107 (void)
1108 {
1109 if (PT == ZV)
1110 return Qt;
1111 return Qnil;
1112 }
1113
1114 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1115 doc: /* Return t if point is at the beginning of a line. */)
1116 (void)
1117 {
1118 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1124 doc: /* Return t if point is at the end of a line.
1125 `End of a line' includes point being at the end of the buffer. */)
1126 (void)
1127 {
1128 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1129 return Qt;
1130 return Qnil;
1131 }
1132
1133 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1134 doc: /* Return character in current buffer at position POS.
1135 POS is an integer or a marker and defaults to point.
1136 If POS is out of range, the value is nil. */)
1137 (Lisp_Object pos)
1138 {
1139 register ptrdiff_t pos_byte;
1140
1141 if (NILP (pos))
1142 {
1143 pos_byte = PT_BYTE;
1144 XSETFASTINT (pos, PT);
1145 }
1146
1147 if (MARKERP (pos))
1148 {
1149 pos_byte = marker_byte_position (pos);
1150 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1151 return Qnil;
1152 }
1153 else
1154 {
1155 CHECK_NUMBER_COERCE_MARKER (pos);
1156 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1157 return Qnil;
1158
1159 pos_byte = CHAR_TO_BYTE (XINT (pos));
1160 }
1161
1162 return make_number (FETCH_CHAR (pos_byte));
1163 }
1164
1165 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1166 doc: /* Return character in current buffer preceding position POS.
1167 POS is an integer or a marker and defaults to point.
1168 If POS is out of range, the value is nil. */)
1169 (Lisp_Object pos)
1170 {
1171 register Lisp_Object val;
1172 register ptrdiff_t pos_byte;
1173
1174 if (NILP (pos))
1175 {
1176 pos_byte = PT_BYTE;
1177 XSETFASTINT (pos, PT);
1178 }
1179
1180 if (MARKERP (pos))
1181 {
1182 pos_byte = marker_byte_position (pos);
1183
1184 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1185 return Qnil;
1186 }
1187 else
1188 {
1189 CHECK_NUMBER_COERCE_MARKER (pos);
1190
1191 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1192 return Qnil;
1193
1194 pos_byte = CHAR_TO_BYTE (XINT (pos));
1195 }
1196
1197 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1198 {
1199 DEC_POS (pos_byte);
1200 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1201 }
1202 else
1203 {
1204 pos_byte--;
1205 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1206 }
1207 return val;
1208 }
1209 \f
1210 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1211 doc: /* Return the name under which the user logged in, as a string.
1212 This is based on the effective uid, not the real uid.
1213 Also, if the environment variables LOGNAME or USER are set,
1214 that determines the value of this function.
1215
1216 If optional argument UID is an integer or a float, return the login name
1217 of the user with that uid, or nil if there is no such user. */)
1218 (Lisp_Object uid)
1219 {
1220 struct passwd *pw;
1221 uid_t id;
1222
1223 /* Set up the user name info if we didn't do it before.
1224 (That can happen if Emacs is dumpable
1225 but you decide to run `temacs -l loadup' and not dump. */
1226 if (INTEGERP (Vuser_login_name))
1227 init_editfns ();
1228
1229 if (NILP (uid))
1230 return Vuser_login_name;
1231
1232 CONS_TO_INTEGER (uid, uid_t, id);
1233 BLOCK_INPUT;
1234 pw = getpwuid (id);
1235 UNBLOCK_INPUT;
1236 return (pw ? build_string (pw->pw_name) : Qnil);
1237 }
1238
1239 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1240 0, 0, 0,
1241 doc: /* Return the name of the user's real uid, as a string.
1242 This ignores the environment variables LOGNAME and USER, so it differs from
1243 `user-login-name' when running under `su'. */)
1244 (void)
1245 {
1246 /* Set up the user name info if we didn't do it before.
1247 (That can happen if Emacs is dumpable
1248 but you decide to run `temacs -l loadup' and not dump. */
1249 if (INTEGERP (Vuser_login_name))
1250 init_editfns ();
1251 return Vuser_real_login_name;
1252 }
1253
1254 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1255 doc: /* Return the effective uid of Emacs.
1256 Value is an integer or a float, depending on the value. */)
1257 (void)
1258 {
1259 uid_t euid = geteuid ();
1260 return make_fixnum_or_float (euid);
1261 }
1262
1263 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1264 doc: /* Return the real uid of Emacs.
1265 Value is an integer or a float, depending on the value. */)
1266 (void)
1267 {
1268 uid_t uid = getuid ();
1269 return make_fixnum_or_float (uid);
1270 }
1271
1272 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1273 doc: /* Return the full name of the user logged in, as a string.
1274 If the full name corresponding to Emacs's userid is not known,
1275 return "unknown".
1276
1277 If optional argument UID is an integer or float, return the full name
1278 of the user with that uid, or nil if there is no such user.
1279 If UID is a string, return the full name of the user with that login
1280 name, or nil if there is no such user. */)
1281 (Lisp_Object uid)
1282 {
1283 struct passwd *pw;
1284 register char *p, *q;
1285 Lisp_Object full;
1286
1287 if (NILP (uid))
1288 return Vuser_full_name;
1289 else if (NUMBERP (uid))
1290 {
1291 uid_t u;
1292 CONS_TO_INTEGER (uid, uid_t, u);
1293 BLOCK_INPUT;
1294 pw = getpwuid (u);
1295 UNBLOCK_INPUT;
1296 }
1297 else if (STRINGP (uid))
1298 {
1299 BLOCK_INPUT;
1300 pw = getpwnam (SSDATA (uid));
1301 UNBLOCK_INPUT;
1302 }
1303 else
1304 error ("Invalid UID specification");
1305
1306 if (!pw)
1307 return Qnil;
1308
1309 p = USER_FULL_NAME;
1310 /* Chop off everything after the first comma. */
1311 q = strchr (p, ',');
1312 full = make_string (p, q ? q - p : strlen (p));
1313
1314 #ifdef AMPERSAND_FULL_NAME
1315 p = SSDATA (full);
1316 q = strchr (p, '&');
1317 /* Substitute the login name for the &, upcasing the first character. */
1318 if (q)
1319 {
1320 register char *r;
1321 Lisp_Object login;
1322
1323 login = Fuser_login_name (make_number (pw->pw_uid));
1324 r = alloca (strlen (p) + SCHARS (login) + 1);
1325 memcpy (r, p, q - p);
1326 r[q - p] = 0;
1327 strcat (r, SSDATA (login));
1328 r[q - p] = upcase ((unsigned char) r[q - p]);
1329 strcat (r, q + 1);
1330 full = build_string (r);
1331 }
1332 #endif /* AMPERSAND_FULL_NAME */
1333
1334 return full;
1335 }
1336
1337 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1338 doc: /* Return the host name of the machine you are running on, as a string. */)
1339 (void)
1340 {
1341 return Vsystem_name;
1342 }
1343
1344 const char *
1345 get_system_name (void)
1346 {
1347 if (STRINGP (Vsystem_name))
1348 return SSDATA (Vsystem_name);
1349 else
1350 return "";
1351 }
1352
1353 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1354 doc: /* Return the process ID of Emacs, as a number. */)
1355 (void)
1356 {
1357 pid_t pid = getpid ();
1358 return make_fixnum_or_float (pid);
1359 }
1360
1361 \f
1362
1363 #ifndef TIME_T_MIN
1364 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1365 #endif
1366 #ifndef TIME_T_MAX
1367 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1368 #endif
1369
1370 /* Report that a time value is out of range for Emacs. */
1371 void
1372 time_overflow (void)
1373 {
1374 error ("Specified time is not representable");
1375 }
1376
1377 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1378 static EMACS_INT
1379 hi_time (time_t t)
1380 {
1381 time_t hi = t >> 16;
1382
1383 /* Check for overflow, helping the compiler for common cases where
1384 no runtime check is needed, and taking care not to convert
1385 negative numbers to unsigned before comparing them. */
1386 if (! ((! TYPE_SIGNED (time_t)
1387 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1388 || MOST_NEGATIVE_FIXNUM <= hi)
1389 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1390 || hi <= MOST_POSITIVE_FIXNUM)))
1391 time_overflow ();
1392
1393 return hi;
1394 }
1395
1396 /* Return the bottom 16 bits of the time T. */
1397 static int
1398 lo_time (time_t t)
1399 {
1400 return t & ((1 << 16) - 1);
1401 }
1402
1403 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1404 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1405 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1406 HIGH has the most significant bits of the seconds, while LOW has the
1407 least significant 16 bits. USEC and PSEC are the microsecond and
1408 picosecond counts. */)
1409 (void)
1410 {
1411 return make_lisp_time (current_emacs_time ());
1412 }
1413
1414 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1415 0, 0, 0,
1416 doc: /* Return the current run time used by Emacs.
1417 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1418 style as (current-time).
1419
1420 On systems that can't determine the run time, `get-internal-run-time'
1421 does the same thing as `current-time'. */)
1422 (void)
1423 {
1424 #ifdef HAVE_GETRUSAGE
1425 struct rusage usage;
1426 time_t secs;
1427 int usecs;
1428
1429 if (getrusage (RUSAGE_SELF, &usage) < 0)
1430 /* This shouldn't happen. What action is appropriate? */
1431 xsignal0 (Qerror);
1432
1433 /* Sum up user time and system time. */
1434 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1435 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1436 if (usecs >= 1000000)
1437 {
1438 usecs -= 1000000;
1439 secs++;
1440 }
1441 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1442 #else /* ! HAVE_GETRUSAGE */
1443 #ifdef WINDOWSNT
1444 return w32_get_internal_run_time ();
1445 #else /* ! WINDOWSNT */
1446 return Fcurrent_time ();
1447 #endif /* WINDOWSNT */
1448 #endif /* HAVE_GETRUSAGE */
1449 }
1450 \f
1451
1452 /* Make a Lisp list that represents the time T with fraction TAIL. */
1453 static Lisp_Object
1454 make_time_tail (time_t t, Lisp_Object tail)
1455 {
1456 return Fcons (make_number (hi_time (t)),
1457 Fcons (make_number (lo_time (t)), tail));
1458 }
1459
1460 /* Make a Lisp list that represents the system time T. */
1461 static Lisp_Object
1462 make_time (time_t t)
1463 {
1464 return make_time_tail (t, Qnil);
1465 }
1466
1467 /* Make a Lisp list that represents the Emacs time T. T may be an
1468 invalid time, with a slightly negative tv_nsec value such as
1469 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1470 correspondingly negative picosecond count. */
1471 Lisp_Object
1472 make_lisp_time (EMACS_TIME t)
1473 {
1474 int ns = EMACS_NSECS (t);
1475 return make_time_tail (EMACS_SECS (t),
1476 list2 (make_number (ns / 1000),
1477 make_number (ns % 1000 * 1000)));
1478 }
1479
1480 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1481 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1482 Return nonzero if successful. */
1483 static int
1484 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1485 Lisp_Object *plow, Lisp_Object *pusec,
1486 Lisp_Object *ppsec)
1487 {
1488 if (CONSP (specified_time))
1489 {
1490 Lisp_Object low = XCDR (specified_time);
1491 Lisp_Object usec = make_number (0);
1492 Lisp_Object psec = make_number (0);
1493 if (CONSP (low))
1494 {
1495 Lisp_Object low_tail = XCDR (low);
1496 low = XCAR (low);
1497 if (CONSP (low_tail))
1498 {
1499 usec = XCAR (low_tail);
1500 low_tail = XCDR (low_tail);
1501 if (CONSP (low_tail))
1502 psec = XCAR (low_tail);
1503 }
1504 else if (!NILP (low_tail))
1505 usec = low_tail;
1506 }
1507
1508 *phigh = XCAR (specified_time);
1509 *plow = low;
1510 *pusec = usec;
1511 *ppsec = psec;
1512 return 1;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1519 list, generate the corresponding time value.
1520
1521 If RESULT is not null, store into *RESULT the converted time;
1522 this can fail if the converted time does not fit into EMACS_TIME.
1523 If *DRESULT is not null, store into *DRESULT the number of
1524 seconds since the start of the POSIX Epoch.
1525
1526 Return nonzero if successful. */
1527 int
1528 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1529 Lisp_Object psec,
1530 EMACS_TIME *result, double *dresult)
1531 {
1532 EMACS_INT hi, lo, us, ps;
1533 if (! (INTEGERP (high) && INTEGERP (low)
1534 && INTEGERP (usec) && INTEGERP (psec)))
1535 return 0;
1536 hi = XINT (high);
1537 lo = XINT (low);
1538 us = XINT (usec);
1539 ps = XINT (psec);
1540
1541 /* Normalize out-of-range lower-order components by carrying
1542 each overflow into the next higher-order component. */
1543 us += ps / 1000000 - (ps % 1000000 < 0);
1544 lo += us / 1000000 - (us % 1000000 < 0);
1545 hi += lo >> 16;
1546 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1547 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1548 lo &= (1 << 16) - 1;
1549
1550 if (result)
1551 {
1552 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1553 && hi <= TIME_T_MAX >> 16)
1554 {
1555 /* Return the greatest representable time that is not greater
1556 than the requested time. */
1557 time_t sec = hi;
1558 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1559 }
1560 else
1561 {
1562 /* Overflow in the highest-order component. */
1563 return 0;
1564 }
1565 }
1566
1567 if (dresult)
1568 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1569
1570 return 1;
1571 }
1572
1573 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1574 If SPECIFIED_TIME is nil, use the current time.
1575
1576 Round the time down to the nearest EMACS_TIME value.
1577 Return seconds since the Epoch.
1578 Signal an error if unsuccessful. */
1579 EMACS_TIME
1580 lisp_time_argument (Lisp_Object specified_time)
1581 {
1582 EMACS_TIME t;
1583 if (NILP (specified_time))
1584 t = current_emacs_time ();
1585 else
1586 {
1587 Lisp_Object high, low, usec, psec;
1588 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1589 && decode_time_components (high, low, usec, psec, &t, 0)))
1590 error ("Invalid time specification");
1591 }
1592 return t;
1593 }
1594
1595 /* Like lisp_time_argument, except decode only the seconds part,
1596 do not allow out-of-range time stamps, do not check the subseconds part,
1597 and always round down. */
1598 static time_t
1599 lisp_seconds_argument (Lisp_Object specified_time)
1600 {
1601 if (NILP (specified_time))
1602 return time (NULL);
1603 else
1604 {
1605 Lisp_Object high, low, usec, psec;
1606 EMACS_TIME t;
1607 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1608 && decode_time_components (high, low, make_number (0),
1609 make_number (0), &t, 0)))
1610 error ("Invalid time specification");
1611 return EMACS_SECS (t);
1612 }
1613 }
1614
1615 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1616 doc: /* Return the current time, as a float number of seconds since the epoch.
1617 If SPECIFIED-TIME is given, it is the time to convert to float
1618 instead of the current time. The argument should have the form
1619 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1620 you can use times from `current-time' and from `file-attributes'.
1621 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1622 considered obsolete.
1623
1624 WARNING: Since the result is floating point, it may not be exact.
1625 If precise time stamps are required, use either `current-time',
1626 or (if you need time as a string) `format-time-string'. */)
1627 (Lisp_Object specified_time)
1628 {
1629 double t;
1630 if (NILP (specified_time))
1631 {
1632 EMACS_TIME now = current_emacs_time ();
1633 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1634 }
1635 else
1636 {
1637 Lisp_Object high, low, usec, psec;
1638 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1639 && decode_time_components (high, low, usec, psec, 0, &t)))
1640 error ("Invalid time specification");
1641 }
1642 return make_float (t);
1643 }
1644
1645 /* Write information into buffer S of size MAXSIZE, according to the
1646 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1647 Default to Universal Time if UT is nonzero, local time otherwise.
1648 Use NS as the number of nanoseconds in the %N directive.
1649 Return the number of bytes written, not including the terminating
1650 '\0'. If S is NULL, nothing will be written anywhere; so to
1651 determine how many bytes would be written, use NULL for S and
1652 ((size_t) -1) for MAXSIZE.
1653
1654 This function behaves like nstrftime, except it allows null
1655 bytes in FORMAT and it does not support nanoseconds. */
1656 static size_t
1657 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1658 size_t format_len, const struct tm *tp, int ut, int ns)
1659 {
1660 size_t total = 0;
1661
1662 /* Loop through all the null-terminated strings in the format
1663 argument. Normally there's just one null-terminated string, but
1664 there can be arbitrarily many, concatenated together, if the
1665 format contains '\0' bytes. nstrftime stops at the first
1666 '\0' byte so we must invoke it separately for each such string. */
1667 for (;;)
1668 {
1669 size_t len;
1670 size_t result;
1671
1672 if (s)
1673 s[0] = '\1';
1674
1675 result = nstrftime (s, maxsize, format, tp, ut, ns);
1676
1677 if (s)
1678 {
1679 if (result == 0 && s[0] != '\0')
1680 return 0;
1681 s += result + 1;
1682 }
1683
1684 maxsize -= result + 1;
1685 total += result;
1686 len = strlen (format);
1687 if (len == format_len)
1688 return total;
1689 total++;
1690 format += len + 1;
1691 format_len -= len + 1;
1692 }
1693 }
1694
1695 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1696 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1697 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1698 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1699 is also still accepted.
1700 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1701 as Universal Time; nil means describe TIME in the local time zone.
1702 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1703 by text that describes the specified date and time in TIME:
1704
1705 %Y is the year, %y within the century, %C the century.
1706 %G is the year corresponding to the ISO week, %g within the century.
1707 %m is the numeric month.
1708 %b and %h are the locale's abbreviated month name, %B the full name.
1709 %d is the day of the month, zero-padded, %e is blank-padded.
1710 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1711 %a is the locale's abbreviated name of the day of week, %A the full name.
1712 %U is the week number starting on Sunday, %W starting on Monday,
1713 %V according to ISO 8601.
1714 %j is the day of the year.
1715
1716 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1717 only blank-padded, %l is like %I blank-padded.
1718 %p is the locale's equivalent of either AM or PM.
1719 %M is the minute.
1720 %S is the second.
1721 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1722 %Z is the time zone name, %z is the numeric form.
1723 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1724
1725 %c is the locale's date and time format.
1726 %x is the locale's "preferred" date format.
1727 %D is like "%m/%d/%y".
1728
1729 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1730 %X is the locale's "preferred" time format.
1731
1732 Finally, %n is a newline, %t is a tab, %% is a literal %.
1733
1734 Certain flags and modifiers are available with some format controls.
1735 The flags are `_', `-', `^' and `#'. For certain characters X,
1736 %_X is like %X, but padded with blanks; %-X is like %X,
1737 but without padding. %^X is like %X, but with all textual
1738 characters up-cased; %#X is like %X, but with letter-case of
1739 all textual characters reversed.
1740 %NX (where N stands for an integer) is like %X,
1741 but takes up at least N (a number) positions.
1742 The modifiers are `E' and `O'. For certain characters X,
1743 %EX is a locale's alternative version of %X;
1744 %OX is like %X, but uses the locale's number symbols.
1745
1746 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1747
1748 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1749 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1750 {
1751 EMACS_TIME t = lisp_time_argument (timeval);
1752 struct tm tm;
1753
1754 CHECK_STRING (format_string);
1755 format_string = code_convert_string_norecord (format_string,
1756 Vlocale_coding_system, 1);
1757 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1758 t, ! NILP (universal), &tm);
1759 }
1760
1761 static Lisp_Object
1762 format_time_string (char const *format, ptrdiff_t formatlen,
1763 EMACS_TIME t, int ut, struct tm *tmp)
1764 {
1765 char buffer[4000];
1766 char *buf = buffer;
1767 ptrdiff_t size = sizeof buffer;
1768 size_t len;
1769 Lisp_Object bufstring;
1770 int ns = EMACS_NSECS (t);
1771 struct tm *tm;
1772 USE_SAFE_ALLOCA;
1773
1774 while (1)
1775 {
1776 time_t *taddr = emacs_secs_addr (&t);
1777 BLOCK_INPUT;
1778
1779 synchronize_system_time_locale ();
1780
1781 tm = ut ? gmtime (taddr) : localtime (taddr);
1782 if (! tm)
1783 {
1784 UNBLOCK_INPUT;
1785 time_overflow ();
1786 }
1787 *tmp = *tm;
1788
1789 buf[0] = '\1';
1790 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1791 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1792 break;
1793
1794 /* Buffer was too small, so make it bigger and try again. */
1795 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1796 UNBLOCK_INPUT;
1797 if (STRING_BYTES_BOUND <= len)
1798 string_overflow ();
1799 size = len + 1;
1800 SAFE_ALLOCA (buf, char *, size);
1801 }
1802
1803 UNBLOCK_INPUT;
1804 bufstring = make_unibyte_string (buf, len);
1805 SAFE_FREE ();
1806 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1807 }
1808
1809 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1810 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1811 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1812 as from `current-time' and `file-attributes', or nil to use the
1813 current time. The obsolete form (HIGH . LOW) is also still accepted.
1814 The list has the following nine members: SEC is an integer between 0
1815 and 60; SEC is 60 for a leap second, which only some operating systems
1816 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1817 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1818 integer between 1 and 12. YEAR is an integer indicating the
1819 four-digit year. DOW is the day of week, an integer between 0 and 6,
1820 where 0 is Sunday. DST is t if daylight saving time is in effect,
1821 otherwise nil. ZONE is an integer indicating the number of seconds
1822 east of Greenwich. (Note that Common Lisp has different meanings for
1823 DOW and ZONE.) */)
1824 (Lisp_Object specified_time)
1825 {
1826 time_t time_spec = lisp_seconds_argument (specified_time);
1827 struct tm save_tm;
1828 struct tm *decoded_time;
1829 Lisp_Object list_args[9];
1830
1831 BLOCK_INPUT;
1832 decoded_time = localtime (&time_spec);
1833 if (decoded_time)
1834 save_tm = *decoded_time;
1835 UNBLOCK_INPUT;
1836 if (! (decoded_time
1837 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1838 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1839 time_overflow ();
1840 XSETFASTINT (list_args[0], save_tm.tm_sec);
1841 XSETFASTINT (list_args[1], save_tm.tm_min);
1842 XSETFASTINT (list_args[2], save_tm.tm_hour);
1843 XSETFASTINT (list_args[3], save_tm.tm_mday);
1844 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1845 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1846 cast below avoids overflow in int arithmetics. */
1847 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1848 XSETFASTINT (list_args[6], save_tm.tm_wday);
1849 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1850
1851 BLOCK_INPUT;
1852 decoded_time = gmtime (&time_spec);
1853 if (decoded_time == 0)
1854 list_args[8] = Qnil;
1855 else
1856 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1857 UNBLOCK_INPUT;
1858 return Flist (9, list_args);
1859 }
1860
1861 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1862 the result is representable as an int. Assume OFFSET is small and
1863 nonnegative. */
1864 static int
1865 check_tm_member (Lisp_Object obj, int offset)
1866 {
1867 EMACS_INT n;
1868 CHECK_NUMBER (obj);
1869 n = XINT (obj);
1870 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1871 time_overflow ();
1872 return n - offset;
1873 }
1874
1875 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1876 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1877 This is the reverse operation of `decode-time', which see.
1878 ZONE defaults to the current time zone rule. This can
1879 be a string or t (as from `set-time-zone-rule'), or it can be a list
1880 \(as from `current-time-zone') or an integer (as from `decode-time')
1881 applied without consideration for daylight saving time.
1882
1883 You can pass more than 7 arguments; then the first six arguments
1884 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1885 The intervening arguments are ignored.
1886 This feature lets (apply 'encode-time (decode-time ...)) work.
1887
1888 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1889 for example, a DAY of 0 means the day preceding the given month.
1890 Year numbers less than 100 are treated just like other year numbers.
1891 If you want them to stand for years in this century, you must do that yourself.
1892
1893 Years before 1970 are not guaranteed to work. On some systems,
1894 year values as low as 1901 do work.
1895
1896 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1897 (ptrdiff_t nargs, Lisp_Object *args)
1898 {
1899 time_t value;
1900 struct tm tm;
1901 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1902
1903 tm.tm_sec = check_tm_member (args[0], 0);
1904 tm.tm_min = check_tm_member (args[1], 0);
1905 tm.tm_hour = check_tm_member (args[2], 0);
1906 tm.tm_mday = check_tm_member (args[3], 0);
1907 tm.tm_mon = check_tm_member (args[4], 1);
1908 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1909 tm.tm_isdst = -1;
1910
1911 if (CONSP (zone))
1912 zone = XCAR (zone);
1913 if (NILP (zone))
1914 {
1915 BLOCK_INPUT;
1916 value = mktime (&tm);
1917 UNBLOCK_INPUT;
1918 }
1919 else
1920 {
1921 char tzbuf[100];
1922 const char *tzstring;
1923 char **oldenv = environ, **newenv;
1924
1925 if (EQ (zone, Qt))
1926 tzstring = "UTC0";
1927 else if (STRINGP (zone))
1928 tzstring = SSDATA (zone);
1929 else if (INTEGERP (zone))
1930 {
1931 EMACS_INT abszone = eabs (XINT (zone));
1932 EMACS_INT zone_hr = abszone / (60*60);
1933 int zone_min = (abszone/60) % 60;
1934 int zone_sec = abszone % 60;
1935 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1936 zone_hr, zone_min, zone_sec);
1937 tzstring = tzbuf;
1938 }
1939 else
1940 error ("Invalid time zone specification");
1941
1942 BLOCK_INPUT;
1943
1944 /* Set TZ before calling mktime; merely adjusting mktime's returned
1945 value doesn't suffice, since that would mishandle leap seconds. */
1946 set_time_zone_rule (tzstring);
1947
1948 value = mktime (&tm);
1949
1950 /* Restore TZ to previous value. */
1951 newenv = environ;
1952 environ = oldenv;
1953 #ifdef LOCALTIME_CACHE
1954 tzset ();
1955 #endif
1956 UNBLOCK_INPUT;
1957
1958 xfree (newenv);
1959 }
1960
1961 if (value == (time_t) -1)
1962 time_overflow ();
1963
1964 return make_time (value);
1965 }
1966
1967 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1968 doc: /* Return the current local time, as a human-readable string.
1969 Programs can use this function to decode a time,
1970 since the number of columns in each field is fixed
1971 if the year is in the range 1000-9999.
1972 The format is `Sun Sep 16 01:03:52 1973'.
1973 However, see also the functions `decode-time' and `format-time-string'
1974 which provide a much more powerful and general facility.
1975
1976 If SPECIFIED-TIME is given, it is a time to format instead of the
1977 current time. The argument should have the form (HIGH LOW . IGNORED).
1978 Thus, you can use times obtained from `current-time' and from
1979 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1980 but this is considered obsolete. */)
1981 (Lisp_Object specified_time)
1982 {
1983 time_t value = lisp_seconds_argument (specified_time);
1984 struct tm *tm;
1985 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1986 int len IF_LINT (= 0);
1987
1988 /* Convert to a string in ctime format, except without the trailing
1989 newline, and without the 4-digit year limit. Don't use asctime
1990 or ctime, as they might dump core if the year is outside the
1991 range -999 .. 9999. */
1992 BLOCK_INPUT;
1993 tm = localtime (&value);
1994 if (tm)
1995 {
1996 static char const wday_name[][4] =
1997 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1998 static char const mon_name[][4] =
1999 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2000 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2001 printmax_t year_base = TM_YEAR_BASE;
2002
2003 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2004 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2005 tm->tm_hour, tm->tm_min, tm->tm_sec,
2006 tm->tm_year + year_base);
2007 }
2008 UNBLOCK_INPUT;
2009 if (! tm)
2010 time_overflow ();
2011
2012 return make_unibyte_string (buf, len);
2013 }
2014
2015 /* Yield A - B, measured in seconds.
2016 This function is copied from the GNU C Library. */
2017 static int
2018 tm_diff (struct tm *a, struct tm *b)
2019 {
2020 /* Compute intervening leap days correctly even if year is negative.
2021 Take care to avoid int overflow in leap day calculations,
2022 but it's OK to assume that A and B are close to each other. */
2023 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2024 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2025 int a100 = a4 / 25 - (a4 % 25 < 0);
2026 int b100 = b4 / 25 - (b4 % 25 < 0);
2027 int a400 = a100 >> 2;
2028 int b400 = b100 >> 2;
2029 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2030 int years = a->tm_year - b->tm_year;
2031 int days = (365 * years + intervening_leap_days
2032 + (a->tm_yday - b->tm_yday));
2033 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2034 + (a->tm_min - b->tm_min))
2035 + (a->tm_sec - b->tm_sec));
2036 }
2037
2038 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2039 doc: /* Return the offset and name for the local time zone.
2040 This returns a list of the form (OFFSET NAME).
2041 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2042 A negative value means west of Greenwich.
2043 NAME is a string giving the name of the time zone.
2044 If SPECIFIED-TIME is given, the time zone offset is determined from it
2045 instead of using the current time. The argument should have the form
2046 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2047 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2048 have the form (HIGH . LOW), but this is considered obsolete.
2049
2050 Some operating systems cannot provide all this information to Emacs;
2051 in this case, `current-time-zone' returns a list containing nil for
2052 the data it can't find. */)
2053 (Lisp_Object specified_time)
2054 {
2055 EMACS_TIME value;
2056 int offset;
2057 struct tm *t;
2058 struct tm localtm;
2059 Lisp_Object zone_offset, zone_name;
2060
2061 zone_offset = Qnil;
2062 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2063 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2064 BLOCK_INPUT;
2065 t = gmtime (emacs_secs_addr (&value));
2066 if (t)
2067 offset = tm_diff (&localtm, t);
2068 UNBLOCK_INPUT;
2069
2070 if (t)
2071 {
2072 zone_offset = make_number (offset);
2073 if (SCHARS (zone_name) == 0)
2074 {
2075 /* No local time zone name is available; use "+-NNNN" instead. */
2076 int m = offset / 60;
2077 int am = offset < 0 ? - m : m;
2078 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2079 zone_name = make_formatted_string (buf, "%c%02d%02d",
2080 (offset < 0 ? '-' : '+'),
2081 am / 60, am % 60);
2082 }
2083 }
2084
2085 return list2 (zone_offset, zone_name);
2086 }
2087
2088 /* This holds the value of `environ' produced by the previous
2089 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2090 has never been called. */
2091 static char **environbuf;
2092
2093 /* This holds the startup value of the TZ environment variable so it
2094 can be restored if the user calls set-time-zone-rule with a nil
2095 argument. */
2096 static char *initial_tz;
2097
2098 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2099 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2100 If TZ is nil, use implementation-defined default time zone information.
2101 If TZ is t, use Universal Time.
2102
2103 Instead of calling this function, you typically want (setenv "TZ" TZ).
2104 That changes both the environment of the Emacs process and the
2105 variable `process-environment', whereas `set-time-zone-rule' affects
2106 only the former. */)
2107 (Lisp_Object tz)
2108 {
2109 const char *tzstring;
2110 char **old_environbuf;
2111
2112 if (! (NILP (tz) || EQ (tz, Qt)))
2113 CHECK_STRING (tz);
2114
2115 BLOCK_INPUT;
2116
2117 /* When called for the first time, save the original TZ. */
2118 old_environbuf = environbuf;
2119 if (!old_environbuf)
2120 initial_tz = (char *) getenv ("TZ");
2121
2122 if (NILP (tz))
2123 tzstring = initial_tz;
2124 else if (EQ (tz, Qt))
2125 tzstring = "UTC0";
2126 else
2127 tzstring = SSDATA (tz);
2128
2129 set_time_zone_rule (tzstring);
2130 environbuf = environ;
2131
2132 UNBLOCK_INPUT;
2133
2134 xfree (old_environbuf);
2135 return Qnil;
2136 }
2137
2138 #ifdef LOCALTIME_CACHE
2139
2140 /* These two values are known to load tz files in buggy implementations,
2141 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2142 Their values shouldn't matter in non-buggy implementations.
2143 We don't use string literals for these strings,
2144 since if a string in the environment is in readonly
2145 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2146 See Sun bugs 1113095 and 1114114, ``Timezone routines
2147 improperly modify environment''. */
2148
2149 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2150 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2151
2152 #endif
2153
2154 /* Set the local time zone rule to TZSTRING.
2155 This allocates memory into `environ', which it is the caller's
2156 responsibility to free. */
2157
2158 void
2159 set_time_zone_rule (const char *tzstring)
2160 {
2161 ptrdiff_t envptrs;
2162 char **from, **to, **newenv;
2163
2164 /* Make the ENVIRON vector longer with room for TZSTRING. */
2165 for (from = environ; *from; from++)
2166 continue;
2167 envptrs = from - environ + 2;
2168 newenv = to = xmalloc (envptrs * sizeof *newenv
2169 + (tzstring ? strlen (tzstring) + 4 : 0));
2170
2171 /* Add TZSTRING to the end of environ, as a value for TZ. */
2172 if (tzstring)
2173 {
2174 char *t = (char *) (to + envptrs);
2175 strcpy (t, "TZ=");
2176 strcat (t, tzstring);
2177 *to++ = t;
2178 }
2179
2180 /* Copy the old environ vector elements into NEWENV,
2181 but don't copy the TZ variable.
2182 So we have only one definition of TZ, which came from TZSTRING. */
2183 for (from = environ; *from; from++)
2184 if (strncmp (*from, "TZ=", 3) != 0)
2185 *to++ = *from;
2186 *to = 0;
2187
2188 environ = newenv;
2189
2190 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2191 the TZ variable is stored. If we do not have a TZSTRING,
2192 TO points to the vector slot which has the terminating null. */
2193
2194 #ifdef LOCALTIME_CACHE
2195 {
2196 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2197 "US/Pacific" that loads a tz file, then changes to a value like
2198 "XXX0" that does not load a tz file, and then changes back to
2199 its original value, the last change is (incorrectly) ignored.
2200 Also, if TZ changes twice in succession to values that do
2201 not load a tz file, tzset can dump core (see Sun bug#1225179).
2202 The following code works around these bugs. */
2203
2204 if (tzstring)
2205 {
2206 /* Temporarily set TZ to a value that loads a tz file
2207 and that differs from tzstring. */
2208 char *tz = *newenv;
2209 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2210 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2211 tzset ();
2212 *newenv = tz;
2213 }
2214 else
2215 {
2216 /* The implied tzstring is unknown, so temporarily set TZ to
2217 two different values that each load a tz file. */
2218 *to = set_time_zone_rule_tz1;
2219 to[1] = 0;
2220 tzset ();
2221 *to = set_time_zone_rule_tz2;
2222 tzset ();
2223 *to = 0;
2224 }
2225
2226 /* Now TZ has the desired value, and tzset can be invoked safely. */
2227 }
2228
2229 tzset ();
2230 #endif
2231 }
2232 \f
2233 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2234 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2235 type of object is Lisp_String). INHERIT is passed to
2236 INSERT_FROM_STRING_FUNC as the last argument. */
2237
2238 static void
2239 general_insert_function (void (*insert_func)
2240 (const char *, ptrdiff_t),
2241 void (*insert_from_string_func)
2242 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2243 ptrdiff_t, ptrdiff_t, int),
2244 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2245 {
2246 ptrdiff_t argnum;
2247 register Lisp_Object val;
2248
2249 for (argnum = 0; argnum < nargs; argnum++)
2250 {
2251 val = args[argnum];
2252 if (CHARACTERP (val))
2253 {
2254 int c = XFASTINT (val);
2255 unsigned char str[MAX_MULTIBYTE_LENGTH];
2256 int len;
2257
2258 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2259 len = CHAR_STRING (c, str);
2260 else
2261 {
2262 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2263 len = 1;
2264 }
2265 (*insert_func) ((char *) str, len);
2266 }
2267 else if (STRINGP (val))
2268 {
2269 (*insert_from_string_func) (val, 0, 0,
2270 SCHARS (val),
2271 SBYTES (val),
2272 inherit);
2273 }
2274 else
2275 wrong_type_argument (Qchar_or_string_p, val);
2276 }
2277 }
2278
2279 void
2280 insert1 (Lisp_Object arg)
2281 {
2282 Finsert (1, &arg);
2283 }
2284
2285
2286 /* Callers passing one argument to Finsert need not gcpro the
2287 argument "array", since the only element of the array will
2288 not be used after calling insert or insert_from_string, so
2289 we don't care if it gets trashed. */
2290
2291 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2292 doc: /* Insert the arguments, either strings or characters, at point.
2293 Point and before-insertion markers move forward to end up
2294 after the inserted text.
2295 Any other markers at the point of insertion remain before the text.
2296
2297 If the current buffer is multibyte, unibyte strings are converted
2298 to multibyte for insertion (see `string-make-multibyte').
2299 If the current buffer is unibyte, multibyte strings are converted
2300 to unibyte for insertion (see `string-make-unibyte').
2301
2302 When operating on binary data, it may be necessary to preserve the
2303 original bytes of a unibyte string when inserting it into a multibyte
2304 buffer; to accomplish this, apply `string-as-multibyte' to the string
2305 and insert the result.
2306
2307 usage: (insert &rest ARGS) */)
2308 (ptrdiff_t nargs, Lisp_Object *args)
2309 {
2310 general_insert_function (insert, insert_from_string, 0, nargs, args);
2311 return Qnil;
2312 }
2313
2314 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2315 0, MANY, 0,
2316 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2317 Point and before-insertion markers move forward to end up
2318 after the inserted text.
2319 Any other markers at the point of insertion remain before the text.
2320
2321 If the current buffer is multibyte, unibyte strings are converted
2322 to multibyte for insertion (see `unibyte-char-to-multibyte').
2323 If the current buffer is unibyte, multibyte strings are converted
2324 to unibyte for insertion.
2325
2326 usage: (insert-and-inherit &rest ARGS) */)
2327 (ptrdiff_t nargs, Lisp_Object *args)
2328 {
2329 general_insert_function (insert_and_inherit, insert_from_string, 1,
2330 nargs, args);
2331 return Qnil;
2332 }
2333
2334 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2335 doc: /* Insert strings or characters at point, relocating markers after the text.
2336 Point and markers move forward to end up after the inserted text.
2337
2338 If the current buffer is multibyte, unibyte strings are converted
2339 to multibyte for insertion (see `unibyte-char-to-multibyte').
2340 If the current buffer is unibyte, multibyte strings are converted
2341 to unibyte for insertion.
2342
2343 usage: (insert-before-markers &rest ARGS) */)
2344 (ptrdiff_t nargs, Lisp_Object *args)
2345 {
2346 general_insert_function (insert_before_markers,
2347 insert_from_string_before_markers, 0,
2348 nargs, args);
2349 return Qnil;
2350 }
2351
2352 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2353 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2354 doc: /* Insert text at point, relocating markers and inheriting properties.
2355 Point and markers move forward to end up after the inserted text.
2356
2357 If the current buffer is multibyte, unibyte strings are converted
2358 to multibyte for insertion (see `unibyte-char-to-multibyte').
2359 If the current buffer is unibyte, multibyte strings are converted
2360 to unibyte for insertion.
2361
2362 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2363 (ptrdiff_t nargs, Lisp_Object *args)
2364 {
2365 general_insert_function (insert_before_markers_and_inherit,
2366 insert_from_string_before_markers, 1,
2367 nargs, args);
2368 return Qnil;
2369 }
2370 \f
2371 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2372 "(list (read-char-by-name \"Unicode (name or hex): \")\
2373 (prefix-numeric-value current-prefix-arg)\
2374 t))",
2375 doc: /* Insert COUNT copies of CHARACTER.
2376 Interactively, prompts for a Unicode character name or a hex number
2377 using `read-char-by-name'.
2378
2379 You can type a few of the first letters of the Unicode name and
2380 use completion. If you type a substring of the Unicode name
2381 preceded by an asterisk `*' and use completion, it will show all
2382 the characters whose names include that substring, not necessarily
2383 at the beginning of the name.
2384
2385 This function also accepts a hexadecimal number of Unicode code
2386 point or a number in hash notation, e.g. #o21430 for octal,
2387 #x2318 for hex, or #10r8984 for decimal.
2388
2389 Point, and before-insertion markers, are relocated as in the function `insert'.
2390 The optional third arg INHERIT, if non-nil, says to inherit text properties
2391 from adjoining text, if those properties are sticky. If called
2392 interactively, INHERIT is t. */)
2393 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2394 {
2395 int i, stringlen;
2396 register ptrdiff_t n;
2397 int c, len;
2398 unsigned char str[MAX_MULTIBYTE_LENGTH];
2399 char string[4000];
2400
2401 CHECK_CHARACTER (character);
2402 if (NILP (count))
2403 XSETFASTINT (count, 1);
2404 CHECK_NUMBER (count);
2405 c = XFASTINT (character);
2406
2407 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2408 len = CHAR_STRING (c, str);
2409 else
2410 str[0] = c, len = 1;
2411 if (XINT (count) <= 0)
2412 return Qnil;
2413 if (BUF_BYTES_MAX / len < XINT (count))
2414 buffer_overflow ();
2415 n = XINT (count) * len;
2416 stringlen = min (n, sizeof string - sizeof string % len);
2417 for (i = 0; i < stringlen; i++)
2418 string[i] = str[i % len];
2419 while (n > stringlen)
2420 {
2421 QUIT;
2422 if (!NILP (inherit))
2423 insert_and_inherit (string, stringlen);
2424 else
2425 insert (string, stringlen);
2426 n -= stringlen;
2427 }
2428 if (!NILP (inherit))
2429 insert_and_inherit (string, n);
2430 else
2431 insert (string, n);
2432 return Qnil;
2433 }
2434
2435 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2436 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2437 Both arguments are required.
2438 BYTE is a number of the range 0..255.
2439
2440 If BYTE is 128..255 and the current buffer is multibyte, the
2441 corresponding eight-bit character is inserted.
2442
2443 Point, and before-insertion markers, are relocated as in the function `insert'.
2444 The optional third arg INHERIT, if non-nil, says to inherit text properties
2445 from adjoining text, if those properties are sticky. */)
2446 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2447 {
2448 CHECK_NUMBER (byte);
2449 if (XINT (byte) < 0 || XINT (byte) > 255)
2450 args_out_of_range_3 (byte, make_number (0), make_number (255));
2451 if (XINT (byte) >= 128
2452 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2453 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2454 return Finsert_char (byte, count, inherit);
2455 }
2456
2457 \f
2458 /* Making strings from buffer contents. */
2459
2460 /* Return a Lisp_String containing the text of the current buffer from
2461 START to END. If text properties are in use and the current buffer
2462 has properties in the range specified, the resulting string will also
2463 have them, if PROPS is nonzero.
2464
2465 We don't want to use plain old make_string here, because it calls
2466 make_uninit_string, which can cause the buffer arena to be
2467 compacted. make_string has no way of knowing that the data has
2468 been moved, and thus copies the wrong data into the string. This
2469 doesn't effect most of the other users of make_string, so it should
2470 be left as is. But we should use this function when conjuring
2471 buffer substrings. */
2472
2473 Lisp_Object
2474 make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2475 {
2476 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2477 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2478
2479 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2480 }
2481
2482 /* Return a Lisp_String containing the text of the current buffer from
2483 START / START_BYTE to END / END_BYTE.
2484
2485 If text properties are in use and the current buffer
2486 has properties in the range specified, the resulting string will also
2487 have them, if PROPS is nonzero.
2488
2489 We don't want to use plain old make_string here, because it calls
2490 make_uninit_string, which can cause the buffer arena to be
2491 compacted. make_string has no way of knowing that the data has
2492 been moved, and thus copies the wrong data into the string. This
2493 doesn't effect most of the other users of make_string, so it should
2494 be left as is. But we should use this function when conjuring
2495 buffer substrings. */
2496
2497 Lisp_Object
2498 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2499 ptrdiff_t end, ptrdiff_t end_byte, int props)
2500 {
2501 Lisp_Object result, tem, tem1;
2502
2503 if (start < GPT && GPT < end)
2504 move_gap (start);
2505
2506 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2507 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2508 else
2509 result = make_uninit_string (end - start);
2510 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2511
2512 /* If desired, update and copy the text properties. */
2513 if (props)
2514 {
2515 update_buffer_properties (start, end);
2516
2517 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2518 tem1 = Ftext_properties_at (make_number (start), Qnil);
2519
2520 if (XINT (tem) != end || !NILP (tem1))
2521 copy_intervals_to_string (result, current_buffer, start,
2522 end - start);
2523 }
2524
2525 return result;
2526 }
2527
2528 /* Call Vbuffer_access_fontify_functions for the range START ... END
2529 in the current buffer, if necessary. */
2530
2531 static void
2532 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2533 {
2534 /* If this buffer has some access functions,
2535 call them, specifying the range of the buffer being accessed. */
2536 if (!NILP (Vbuffer_access_fontify_functions))
2537 {
2538 Lisp_Object args[3];
2539 Lisp_Object tem;
2540
2541 args[0] = Qbuffer_access_fontify_functions;
2542 XSETINT (args[1], start);
2543 XSETINT (args[2], end);
2544
2545 /* But don't call them if we can tell that the work
2546 has already been done. */
2547 if (!NILP (Vbuffer_access_fontified_property))
2548 {
2549 tem = Ftext_property_any (args[1], args[2],
2550 Vbuffer_access_fontified_property,
2551 Qnil, Qnil);
2552 if (! NILP (tem))
2553 Frun_hook_with_args (3, args);
2554 }
2555 else
2556 Frun_hook_with_args (3, args);
2557 }
2558 }
2559
2560 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2561 doc: /* Return the contents of part of the current buffer as a string.
2562 The two arguments START and END are character positions;
2563 they can be in either order.
2564 The string returned is multibyte if the buffer is multibyte.
2565
2566 This function copies the text properties of that part of the buffer
2567 into the result string; if you don't want the text properties,
2568 use `buffer-substring-no-properties' instead. */)
2569 (Lisp_Object start, Lisp_Object end)
2570 {
2571 register ptrdiff_t b, e;
2572
2573 validate_region (&start, &end);
2574 b = XINT (start);
2575 e = XINT (end);
2576
2577 return make_buffer_string (b, e, 1);
2578 }
2579
2580 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2581 Sbuffer_substring_no_properties, 2, 2, 0,
2582 doc: /* Return the characters of part of the buffer, without the text properties.
2583 The two arguments START and END are character positions;
2584 they can be in either order. */)
2585 (Lisp_Object start, Lisp_Object end)
2586 {
2587 register ptrdiff_t b, e;
2588
2589 validate_region (&start, &end);
2590 b = XINT (start);
2591 e = XINT (end);
2592
2593 return make_buffer_string (b, e, 0);
2594 }
2595
2596 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2597 doc: /* Return the contents of the current buffer as a string.
2598 If narrowing is in effect, this function returns only the visible part
2599 of the buffer. */)
2600 (void)
2601 {
2602 return make_buffer_string (BEGV, ZV, 1);
2603 }
2604
2605 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2606 1, 3, 0,
2607 doc: /* Insert before point a substring of the contents of BUFFER.
2608 BUFFER may be a buffer or a buffer name.
2609 Arguments START and END are character positions specifying the substring.
2610 They default to the values of (point-min) and (point-max) in BUFFER. */)
2611 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2612 {
2613 register EMACS_INT b, e, temp;
2614 register struct buffer *bp, *obuf;
2615 Lisp_Object buf;
2616
2617 buf = Fget_buffer (buffer);
2618 if (NILP (buf))
2619 nsberror (buffer);
2620 bp = XBUFFER (buf);
2621 if (NILP (BVAR (bp, name)))
2622 error ("Selecting deleted buffer");
2623
2624 if (NILP (start))
2625 b = BUF_BEGV (bp);
2626 else
2627 {
2628 CHECK_NUMBER_COERCE_MARKER (start);
2629 b = XINT (start);
2630 }
2631 if (NILP (end))
2632 e = BUF_ZV (bp);
2633 else
2634 {
2635 CHECK_NUMBER_COERCE_MARKER (end);
2636 e = XINT (end);
2637 }
2638
2639 if (b > e)
2640 temp = b, b = e, e = temp;
2641
2642 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2643 args_out_of_range (start, end);
2644
2645 obuf = current_buffer;
2646 set_buffer_internal_1 (bp);
2647 update_buffer_properties (b, e);
2648 set_buffer_internal_1 (obuf);
2649
2650 insert_from_buffer (bp, b, e - b, 0);
2651 return Qnil;
2652 }
2653
2654 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2655 6, 6, 0,
2656 doc: /* Compare two substrings of two buffers; return result as number.
2657 the value is -N if first string is less after N-1 chars,
2658 +N if first string is greater after N-1 chars, or 0 if strings match.
2659 Each substring is represented as three arguments: BUFFER, START and END.
2660 That makes six args in all, three for each substring.
2661
2662 The value of `case-fold-search' in the current buffer
2663 determines whether case is significant or ignored. */)
2664 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2665 {
2666 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2667 register struct buffer *bp1, *bp2;
2668 register Lisp_Object trt
2669 = (!NILP (BVAR (current_buffer, case_fold_search))
2670 ? BVAR (current_buffer, case_canon_table) : Qnil);
2671 ptrdiff_t chars = 0;
2672 ptrdiff_t i1, i2, i1_byte, i2_byte;
2673
2674 /* Find the first buffer and its substring. */
2675
2676 if (NILP (buffer1))
2677 bp1 = current_buffer;
2678 else
2679 {
2680 Lisp_Object buf1;
2681 buf1 = Fget_buffer (buffer1);
2682 if (NILP (buf1))
2683 nsberror (buffer1);
2684 bp1 = XBUFFER (buf1);
2685 if (NILP (BVAR (bp1, name)))
2686 error ("Selecting deleted buffer");
2687 }
2688
2689 if (NILP (start1))
2690 begp1 = BUF_BEGV (bp1);
2691 else
2692 {
2693 CHECK_NUMBER_COERCE_MARKER (start1);
2694 begp1 = XINT (start1);
2695 }
2696 if (NILP (end1))
2697 endp1 = BUF_ZV (bp1);
2698 else
2699 {
2700 CHECK_NUMBER_COERCE_MARKER (end1);
2701 endp1 = XINT (end1);
2702 }
2703
2704 if (begp1 > endp1)
2705 temp = begp1, begp1 = endp1, endp1 = temp;
2706
2707 if (!(BUF_BEGV (bp1) <= begp1
2708 && begp1 <= endp1
2709 && endp1 <= BUF_ZV (bp1)))
2710 args_out_of_range (start1, end1);
2711
2712 /* Likewise for second substring. */
2713
2714 if (NILP (buffer2))
2715 bp2 = current_buffer;
2716 else
2717 {
2718 Lisp_Object buf2;
2719 buf2 = Fget_buffer (buffer2);
2720 if (NILP (buf2))
2721 nsberror (buffer2);
2722 bp2 = XBUFFER (buf2);
2723 if (NILP (BVAR (bp2, name)))
2724 error ("Selecting deleted buffer");
2725 }
2726
2727 if (NILP (start2))
2728 begp2 = BUF_BEGV (bp2);
2729 else
2730 {
2731 CHECK_NUMBER_COERCE_MARKER (start2);
2732 begp2 = XINT (start2);
2733 }
2734 if (NILP (end2))
2735 endp2 = BUF_ZV (bp2);
2736 else
2737 {
2738 CHECK_NUMBER_COERCE_MARKER (end2);
2739 endp2 = XINT (end2);
2740 }
2741
2742 if (begp2 > endp2)
2743 temp = begp2, begp2 = endp2, endp2 = temp;
2744
2745 if (!(BUF_BEGV (bp2) <= begp2
2746 && begp2 <= endp2
2747 && endp2 <= BUF_ZV (bp2)))
2748 args_out_of_range (start2, end2);
2749
2750 i1 = begp1;
2751 i2 = begp2;
2752 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2753 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2754
2755 while (i1 < endp1 && i2 < endp2)
2756 {
2757 /* When we find a mismatch, we must compare the
2758 characters, not just the bytes. */
2759 int c1, c2;
2760
2761 QUIT;
2762
2763 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2764 {
2765 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2766 BUF_INC_POS (bp1, i1_byte);
2767 i1++;
2768 }
2769 else
2770 {
2771 c1 = BUF_FETCH_BYTE (bp1, i1);
2772 MAKE_CHAR_MULTIBYTE (c1);
2773 i1++;
2774 }
2775
2776 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2777 {
2778 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2779 BUF_INC_POS (bp2, i2_byte);
2780 i2++;
2781 }
2782 else
2783 {
2784 c2 = BUF_FETCH_BYTE (bp2, i2);
2785 MAKE_CHAR_MULTIBYTE (c2);
2786 i2++;
2787 }
2788
2789 if (!NILP (trt))
2790 {
2791 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2792 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2793 }
2794 if (c1 < c2)
2795 return make_number (- 1 - chars);
2796 if (c1 > c2)
2797 return make_number (chars + 1);
2798
2799 chars++;
2800 }
2801
2802 /* The strings match as far as they go.
2803 If one is shorter, that one is less. */
2804 if (chars < endp1 - begp1)
2805 return make_number (chars + 1);
2806 else if (chars < endp2 - begp2)
2807 return make_number (- chars - 1);
2808
2809 /* Same length too => they are equal. */
2810 return make_number (0);
2811 }
2812 \f
2813 static Lisp_Object
2814 subst_char_in_region_unwind (Lisp_Object arg)
2815 {
2816 return BVAR (current_buffer, undo_list) = arg;
2817 }
2818
2819 static Lisp_Object
2820 subst_char_in_region_unwind_1 (Lisp_Object arg)
2821 {
2822 return BVAR (current_buffer, filename) = arg;
2823 }
2824
2825 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2826 Ssubst_char_in_region, 4, 5, 0,
2827 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2828 If optional arg NOUNDO is non-nil, don't record this change for undo
2829 and don't mark the buffer as really changed.
2830 Both characters must have the same length of multi-byte form. */)
2831 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2832 {
2833 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2834 /* Keep track of the first change in the buffer:
2835 if 0 we haven't found it yet.
2836 if < 0 we've found it and we've run the before-change-function.
2837 if > 0 we've actually performed it and the value is its position. */
2838 ptrdiff_t changed = 0;
2839 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2840 unsigned char *p;
2841 ptrdiff_t count = SPECPDL_INDEX ();
2842 #define COMBINING_NO 0
2843 #define COMBINING_BEFORE 1
2844 #define COMBINING_AFTER 2
2845 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2846 int maybe_byte_combining = COMBINING_NO;
2847 ptrdiff_t last_changed = 0;
2848 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2849 int fromc, toc;
2850
2851 restart:
2852
2853 validate_region (&start, &end);
2854 CHECK_CHARACTER (fromchar);
2855 CHECK_CHARACTER (tochar);
2856 fromc = XFASTINT (fromchar);
2857 toc = XFASTINT (tochar);
2858
2859 if (multibyte_p)
2860 {
2861 len = CHAR_STRING (fromc, fromstr);
2862 if (CHAR_STRING (toc, tostr) != len)
2863 error ("Characters in `subst-char-in-region' have different byte-lengths");
2864 if (!ASCII_BYTE_P (*tostr))
2865 {
2866 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2867 complete multibyte character, it may be combined with the
2868 after bytes. If it is in the range 0xA0..0xFF, it may be
2869 combined with the before and after bytes. */
2870 if (!CHAR_HEAD_P (*tostr))
2871 maybe_byte_combining = COMBINING_BOTH;
2872 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2873 maybe_byte_combining = COMBINING_AFTER;
2874 }
2875 }
2876 else
2877 {
2878 len = 1;
2879 fromstr[0] = fromc;
2880 tostr[0] = toc;
2881 }
2882
2883 pos = XINT (start);
2884 pos_byte = CHAR_TO_BYTE (pos);
2885 stop = CHAR_TO_BYTE (XINT (end));
2886 end_byte = stop;
2887
2888 /* If we don't want undo, turn off putting stuff on the list.
2889 That's faster than getting rid of things,
2890 and it prevents even the entry for a first change.
2891 Also inhibit locking the file. */
2892 if (!changed && !NILP (noundo))
2893 {
2894 record_unwind_protect (subst_char_in_region_unwind,
2895 BVAR (current_buffer, undo_list));
2896 BVAR (current_buffer, undo_list) = Qt;
2897 /* Don't do file-locking. */
2898 record_unwind_protect (subst_char_in_region_unwind_1,
2899 BVAR (current_buffer, filename));
2900 BVAR (current_buffer, filename) = Qnil;
2901 }
2902
2903 if (pos_byte < GPT_BYTE)
2904 stop = min (stop, GPT_BYTE);
2905 while (1)
2906 {
2907 ptrdiff_t pos_byte_next = pos_byte;
2908
2909 if (pos_byte >= stop)
2910 {
2911 if (pos_byte >= end_byte) break;
2912 stop = end_byte;
2913 }
2914 p = BYTE_POS_ADDR (pos_byte);
2915 if (multibyte_p)
2916 INC_POS (pos_byte_next);
2917 else
2918 ++pos_byte_next;
2919 if (pos_byte_next - pos_byte == len
2920 && p[0] == fromstr[0]
2921 && (len == 1
2922 || (p[1] == fromstr[1]
2923 && (len == 2 || (p[2] == fromstr[2]
2924 && (len == 3 || p[3] == fromstr[3]))))))
2925 {
2926 if (changed < 0)
2927 /* We've already seen this and run the before-change-function;
2928 this time we only need to record the actual position. */
2929 changed = pos;
2930 else if (!changed)
2931 {
2932 changed = -1;
2933 modify_region (current_buffer, pos, XINT (end), 0);
2934
2935 if (! NILP (noundo))
2936 {
2937 if (MODIFF - 1 == SAVE_MODIFF)
2938 SAVE_MODIFF++;
2939 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2940 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2941 }
2942
2943 /* The before-change-function may have moved the gap
2944 or even modified the buffer so we should start over. */
2945 goto restart;
2946 }
2947
2948 /* Take care of the case where the new character
2949 combines with neighboring bytes. */
2950 if (maybe_byte_combining
2951 && (maybe_byte_combining == COMBINING_AFTER
2952 ? (pos_byte_next < Z_BYTE
2953 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2954 : ((pos_byte_next < Z_BYTE
2955 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2956 || (pos_byte > BEG_BYTE
2957 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2958 {
2959 Lisp_Object tem, string;
2960
2961 struct gcpro gcpro1;
2962
2963 tem = BVAR (current_buffer, undo_list);
2964 GCPRO1 (tem);
2965
2966 /* Make a multibyte string containing this single character. */
2967 string = make_multibyte_string ((char *) tostr, 1, len);
2968 /* replace_range is less efficient, because it moves the gap,
2969 but it handles combining correctly. */
2970 replace_range (pos, pos + 1, string,
2971 0, 0, 1);
2972 pos_byte_next = CHAR_TO_BYTE (pos);
2973 if (pos_byte_next > pos_byte)
2974 /* Before combining happened. We should not increment
2975 POS. So, to cancel the later increment of POS,
2976 decrease it now. */
2977 pos--;
2978 else
2979 INC_POS (pos_byte_next);
2980
2981 if (! NILP (noundo))
2982 BVAR (current_buffer, undo_list) = tem;
2983
2984 UNGCPRO;
2985 }
2986 else
2987 {
2988 if (NILP (noundo))
2989 record_change (pos, 1);
2990 for (i = 0; i < len; i++) *p++ = tostr[i];
2991 }
2992 last_changed = pos + 1;
2993 }
2994 pos_byte = pos_byte_next;
2995 pos++;
2996 }
2997
2998 if (changed > 0)
2999 {
3000 signal_after_change (changed,
3001 last_changed - changed, last_changed - changed);
3002 update_compositions (changed, last_changed, CHECK_ALL);
3003 }
3004
3005 unbind_to (count, Qnil);
3006 return Qnil;
3007 }
3008
3009
3010 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3011 Lisp_Object);
3012
3013 /* Helper function for Ftranslate_region_internal.
3014
3015 Check if a character sequence at POS (POS_BYTE) matches an element
3016 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3017 element is found, return it. Otherwise return Qnil. */
3018
3019 static Lisp_Object
3020 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3021 Lisp_Object val)
3022 {
3023 int buf_size = 16, buf_used = 0;
3024 int *buf = alloca (sizeof (int) * buf_size);
3025
3026 for (; CONSP (val); val = XCDR (val))
3027 {
3028 Lisp_Object elt;
3029 ptrdiff_t len, i;
3030
3031 elt = XCAR (val);
3032 if (! CONSP (elt))
3033 continue;
3034 elt = XCAR (elt);
3035 if (! VECTORP (elt))
3036 continue;
3037 len = ASIZE (elt);
3038 if (len <= end - pos)
3039 {
3040 for (i = 0; i < len; i++)
3041 {
3042 if (buf_used <= i)
3043 {
3044 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3045 int len1;
3046
3047 if (buf_used == buf_size)
3048 {
3049 int *newbuf;
3050
3051 buf_size += 16;
3052 newbuf = alloca (sizeof (int) * buf_size);
3053 memcpy (newbuf, buf, sizeof (int) * buf_used);
3054 buf = newbuf;
3055 }
3056 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3057 pos_byte += len1;
3058 }
3059 if (XINT (AREF (elt, i)) != buf[i])
3060 break;
3061 }
3062 if (i == len)
3063 return XCAR (val);
3064 }
3065 }
3066 return Qnil;
3067 }
3068
3069
3070 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3071 Stranslate_region_internal, 3, 3, 0,
3072 doc: /* Internal use only.
3073 From START to END, translate characters according to TABLE.
3074 TABLE is a string or a char-table; the Nth character in it is the
3075 mapping for the character with code N.
3076 It returns the number of characters changed. */)
3077 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3078 {
3079 register unsigned char *tt; /* Trans table. */
3080 register int nc; /* New character. */
3081 int cnt; /* Number of changes made. */
3082 ptrdiff_t size; /* Size of translate table. */
3083 ptrdiff_t pos, pos_byte, end_pos;
3084 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3085 int string_multibyte IF_LINT (= 0);
3086
3087 validate_region (&start, &end);
3088 if (CHAR_TABLE_P (table))
3089 {
3090 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3091 error ("Not a translation table");
3092 size = MAX_CHAR;
3093 tt = NULL;
3094 }
3095 else
3096 {
3097 CHECK_STRING (table);
3098
3099 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3100 table = string_make_unibyte (table);
3101 string_multibyte = SCHARS (table) < SBYTES (table);
3102 size = SBYTES (table);
3103 tt = SDATA (table);
3104 }
3105
3106 pos = XINT (start);
3107 pos_byte = CHAR_TO_BYTE (pos);
3108 end_pos = XINT (end);
3109 modify_region (current_buffer, pos, end_pos, 0);
3110
3111 cnt = 0;
3112 for (; pos < end_pos; )
3113 {
3114 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3115 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3116 int len, str_len;
3117 int oc;
3118 Lisp_Object val;
3119
3120 if (multibyte)
3121 oc = STRING_CHAR_AND_LENGTH (p, len);
3122 else
3123 oc = *p, len = 1;
3124 if (oc < size)
3125 {
3126 if (tt)
3127 {
3128 /* Reload as signal_after_change in last iteration may GC. */
3129 tt = SDATA (table);
3130 if (string_multibyte)
3131 {
3132 str = tt + string_char_to_byte (table, oc);
3133 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3134 }
3135 else
3136 {
3137 nc = tt[oc];
3138 if (! ASCII_BYTE_P (nc) && multibyte)
3139 {
3140 str_len = BYTE8_STRING (nc, buf);
3141 str = buf;
3142 }
3143 else
3144 {
3145 str_len = 1;
3146 str = tt + oc;
3147 }
3148 }
3149 }
3150 else
3151 {
3152 nc = oc;
3153 val = CHAR_TABLE_REF (table, oc);
3154 if (CHARACTERP (val))
3155 {
3156 nc = XFASTINT (val);
3157 str_len = CHAR_STRING (nc, buf);
3158 str = buf;
3159 }
3160 else if (VECTORP (val) || (CONSP (val)))
3161 {
3162 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3163 where TO is TO-CHAR or [TO-CHAR ...]. */
3164 nc = -1;
3165 }
3166 }
3167
3168 if (nc != oc && nc >= 0)
3169 {
3170 /* Simple one char to one char translation. */
3171 if (len != str_len)
3172 {
3173 Lisp_Object string;
3174
3175 /* This is less efficient, because it moves the gap,
3176 but it should handle multibyte characters correctly. */
3177 string = make_multibyte_string ((char *) str, 1, str_len);
3178 replace_range (pos, pos + 1, string, 1, 0, 1);
3179 len = str_len;
3180 }
3181 else
3182 {
3183 record_change (pos, 1);
3184 while (str_len-- > 0)
3185 *p++ = *str++;
3186 signal_after_change (pos, 1, 1);
3187 update_compositions (pos, pos + 1, CHECK_BORDER);
3188 }
3189 ++cnt;
3190 }
3191 else if (nc < 0)
3192 {
3193 Lisp_Object string;
3194
3195 if (CONSP (val))
3196 {
3197 val = check_translation (pos, pos_byte, end_pos, val);
3198 if (NILP (val))
3199 {
3200 pos_byte += len;
3201 pos++;
3202 continue;
3203 }
3204 /* VAL is ([FROM-CHAR ...] . TO). */
3205 len = ASIZE (XCAR (val));
3206 val = XCDR (val);
3207 }
3208 else
3209 len = 1;
3210
3211 if (VECTORP (val))
3212 {
3213 string = Fconcat (1, &val);
3214 }
3215 else
3216 {
3217 string = Fmake_string (make_number (1), val);
3218 }
3219 replace_range (pos, pos + len, string, 1, 0, 1);
3220 pos_byte += SBYTES (string);
3221 pos += SCHARS (string);
3222 cnt += SCHARS (string);
3223 end_pos += SCHARS (string) - len;
3224 continue;
3225 }
3226 }
3227 pos_byte += len;
3228 pos++;
3229 }
3230
3231 return make_number (cnt);
3232 }
3233
3234 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3235 doc: /* Delete the text between START and END.
3236 If called interactively, delete the region between point and mark.
3237 This command deletes buffer text without modifying the kill ring. */)
3238 (Lisp_Object start, Lisp_Object end)
3239 {
3240 validate_region (&start, &end);
3241 del_range (XINT (start), XINT (end));
3242 return Qnil;
3243 }
3244
3245 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3246 Sdelete_and_extract_region, 2, 2, 0,
3247 doc: /* Delete the text between START and END and return it. */)
3248 (Lisp_Object start, Lisp_Object end)
3249 {
3250 validate_region (&start, &end);
3251 if (XINT (start) == XINT (end))
3252 return empty_unibyte_string;
3253 return del_range_1 (XINT (start), XINT (end), 1, 1);
3254 }
3255 \f
3256 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3257 doc: /* Remove restrictions (narrowing) from current buffer.
3258 This allows the buffer's full text to be seen and edited. */)
3259 (void)
3260 {
3261 if (BEG != BEGV || Z != ZV)
3262 current_buffer->clip_changed = 1;
3263 BEGV = BEG;
3264 BEGV_BYTE = BEG_BYTE;
3265 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3266 /* Changing the buffer bounds invalidates any recorded current column. */
3267 invalidate_current_column ();
3268 return Qnil;
3269 }
3270
3271 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3272 doc: /* Restrict editing in this buffer to the current region.
3273 The rest of the text becomes temporarily invisible and untouchable
3274 but is not deleted; if you save the buffer in a file, the invisible
3275 text is included in the file. \\[widen] makes all visible again.
3276 See also `save-restriction'.
3277
3278 When calling from a program, pass two arguments; positions (integers
3279 or markers) bounding the text that should remain visible. */)
3280 (register Lisp_Object start, Lisp_Object end)
3281 {
3282 CHECK_NUMBER_COERCE_MARKER (start);
3283 CHECK_NUMBER_COERCE_MARKER (end);
3284
3285 if (XINT (start) > XINT (end))
3286 {
3287 Lisp_Object tem;
3288 tem = start; start = end; end = tem;
3289 }
3290
3291 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3292 args_out_of_range (start, end);
3293
3294 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3295 current_buffer->clip_changed = 1;
3296
3297 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3298 SET_BUF_ZV (current_buffer, XFASTINT (end));
3299 if (PT < XFASTINT (start))
3300 SET_PT (XFASTINT (start));
3301 if (PT > XFASTINT (end))
3302 SET_PT (XFASTINT (end));
3303 /* Changing the buffer bounds invalidates any recorded current column. */
3304 invalidate_current_column ();
3305 return Qnil;
3306 }
3307
3308 Lisp_Object
3309 save_restriction_save (void)
3310 {
3311 if (BEGV == BEG && ZV == Z)
3312 /* The common case that the buffer isn't narrowed.
3313 We return just the buffer object, which save_restriction_restore
3314 recognizes as meaning `no restriction'. */
3315 return Fcurrent_buffer ();
3316 else
3317 /* We have to save a restriction, so return a pair of markers, one
3318 for the beginning and one for the end. */
3319 {
3320 Lisp_Object beg, end;
3321
3322 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3323 end = build_marker (current_buffer, ZV, ZV_BYTE);
3324
3325 /* END must move forward if text is inserted at its exact location. */
3326 XMARKER (end)->insertion_type = 1;
3327
3328 return Fcons (beg, end);
3329 }
3330 }
3331
3332 Lisp_Object
3333 save_restriction_restore (Lisp_Object data)
3334 {
3335 struct buffer *cur = NULL;
3336 struct buffer *buf = (CONSP (data)
3337 ? XMARKER (XCAR (data))->buffer
3338 : XBUFFER (data));
3339
3340 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3341 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3342 is the case if it is or has an indirect buffer), then make
3343 sure it is current before we update BEGV, so
3344 set_buffer_internal takes care of managing those markers. */
3345 cur = current_buffer;
3346 set_buffer_internal (buf);
3347 }
3348
3349 if (CONSP (data))
3350 /* A pair of marks bounding a saved restriction. */
3351 {
3352 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3353 struct Lisp_Marker *end = XMARKER (XCDR (data));
3354 eassert (buf == end->buffer);
3355
3356 if (buf /* Verify marker still points to a buffer. */
3357 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3358 /* The restriction has changed from the saved one, so restore
3359 the saved restriction. */
3360 {
3361 ptrdiff_t pt = BUF_PT (buf);
3362
3363 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3364 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3365
3366 if (pt < beg->charpos || pt > end->charpos)
3367 /* The point is outside the new visible range, move it inside. */
3368 SET_BUF_PT_BOTH (buf,
3369 clip_to_bounds (beg->charpos, pt, end->charpos),
3370 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3371 end->bytepos));
3372
3373 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3374 }
3375 }
3376 else
3377 /* A buffer, which means that there was no old restriction. */
3378 {
3379 if (buf /* Verify marker still points to a buffer. */
3380 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3381 /* The buffer has been narrowed, get rid of the narrowing. */
3382 {
3383 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3384 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3385
3386 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3387 }
3388 }
3389
3390 /* Changing the buffer bounds invalidates any recorded current column. */
3391 invalidate_current_column ();
3392
3393 if (cur)
3394 set_buffer_internal (cur);
3395
3396 return Qnil;
3397 }
3398
3399 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3400 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3401 The buffer's restrictions make parts of the beginning and end invisible.
3402 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3403 This special form, `save-restriction', saves the current buffer's restrictions
3404 when it is entered, and restores them when it is exited.
3405 So any `narrow-to-region' within BODY lasts only until the end of the form.
3406 The old restrictions settings are restored
3407 even in case of abnormal exit (throw or error).
3408
3409 The value returned is the value of the last form in BODY.
3410
3411 Note: if you are using both `save-excursion' and `save-restriction',
3412 use `save-excursion' outermost:
3413 (save-excursion (save-restriction ...))
3414
3415 usage: (save-restriction &rest BODY) */)
3416 (Lisp_Object body)
3417 {
3418 register Lisp_Object val;
3419 ptrdiff_t count = SPECPDL_INDEX ();
3420
3421 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3422 val = Fprogn (body);
3423 return unbind_to (count, val);
3424 }
3425 \f
3426 /* Buffer for the most recent text displayed by Fmessage_box. */
3427 static char *message_text;
3428
3429 /* Allocated length of that buffer. */
3430 static ptrdiff_t message_length;
3431
3432 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3433 doc: /* Display a message at the bottom of the screen.
3434 The message also goes into the `*Messages*' buffer.
3435 \(In keyboard macros, that's all it does.)
3436 Return the message.
3437
3438 The first argument is a format control string, and the rest are data
3439 to be formatted under control of the string. See `format' for details.
3440
3441 Note: Use (message "%s" VALUE) to print the value of expressions and
3442 variables to avoid accidentally interpreting `%' as format specifiers.
3443
3444 If the first argument is nil or the empty string, the function clears
3445 any existing message; this lets the minibuffer contents show. See
3446 also `current-message'.
3447
3448 usage: (message FORMAT-STRING &rest ARGS) */)
3449 (ptrdiff_t nargs, Lisp_Object *args)
3450 {
3451 if (NILP (args[0])
3452 || (STRINGP (args[0])
3453 && SBYTES (args[0]) == 0))
3454 {
3455 message (0);
3456 return args[0];
3457 }
3458 else
3459 {
3460 register Lisp_Object val;
3461 val = Fformat (nargs, args);
3462 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3463 return val;
3464 }
3465 }
3466
3467 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3468 doc: /* Display a message, in a dialog box if possible.
3469 If a dialog box is not available, use the echo area.
3470 The first argument is a format control string, and the rest are data
3471 to be formatted under control of the string. See `format' for details.
3472
3473 If the first argument is nil or the empty string, clear any existing
3474 message; let the minibuffer contents show.
3475
3476 usage: (message-box FORMAT-STRING &rest ARGS) */)
3477 (ptrdiff_t nargs, Lisp_Object *args)
3478 {
3479 if (NILP (args[0]))
3480 {
3481 message (0);
3482 return Qnil;
3483 }
3484 else
3485 {
3486 register Lisp_Object val;
3487 val = Fformat (nargs, args);
3488 #ifdef HAVE_MENUS
3489 /* The MS-DOS frames support popup menus even though they are
3490 not FRAME_WINDOW_P. */
3491 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3492 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3493 {
3494 Lisp_Object pane, menu;
3495 struct gcpro gcpro1;
3496 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3497 GCPRO1 (pane);
3498 menu = Fcons (val, pane);
3499 Fx_popup_dialog (Qt, menu, Qt);
3500 UNGCPRO;
3501 return val;
3502 }
3503 #endif /* HAVE_MENUS */
3504 /* Copy the data so that it won't move when we GC. */
3505 if (SBYTES (val) > message_length)
3506 {
3507 ptrdiff_t new_length = SBYTES (val) + 80;
3508 message_text = xrealloc (message_text, new_length);
3509 message_length = new_length;
3510 }
3511 memcpy (message_text, SDATA (val), SBYTES (val));
3512 message2 (message_text, SBYTES (val),
3513 STRING_MULTIBYTE (val));
3514 return val;
3515 }
3516 }
3517
3518 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3519 doc: /* Display a message in a dialog box or in the echo area.
3520 If this command was invoked with the mouse, use a dialog box if
3521 `use-dialog-box' is non-nil.
3522 Otherwise, use the echo area.
3523 The first argument is a format control string, and the rest are data
3524 to be formatted under control of the string. See `format' for details.
3525
3526 If the first argument is nil or the empty string, clear any existing
3527 message; let the minibuffer contents show.
3528
3529 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3530 (ptrdiff_t nargs, Lisp_Object *args)
3531 {
3532 #ifdef HAVE_MENUS
3533 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3534 && use_dialog_box)
3535 return Fmessage_box (nargs, args);
3536 #endif
3537 return Fmessage (nargs, args);
3538 }
3539
3540 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3541 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3542 (void)
3543 {
3544 return current_message ();
3545 }
3546
3547
3548 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3549 doc: /* Return a copy of STRING with text properties added.
3550 First argument is the string to copy.
3551 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3552 properties to add to the result.
3553 usage: (propertize STRING &rest PROPERTIES) */)
3554 (ptrdiff_t nargs, Lisp_Object *args)
3555 {
3556 Lisp_Object properties, string;
3557 struct gcpro gcpro1, gcpro2;
3558 ptrdiff_t i;
3559
3560 /* Number of args must be odd. */
3561 if ((nargs & 1) == 0)
3562 error ("Wrong number of arguments");
3563
3564 properties = string = Qnil;
3565 GCPRO2 (properties, string);
3566
3567 /* First argument must be a string. */
3568 CHECK_STRING (args[0]);
3569 string = Fcopy_sequence (args[0]);
3570
3571 for (i = 1; i < nargs; i += 2)
3572 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3573
3574 Fadd_text_properties (make_number (0),
3575 make_number (SCHARS (string)),
3576 properties, string);
3577 RETURN_UNGCPRO (string);
3578 }
3579
3580 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3581 doc: /* Format a string out of a format-string and arguments.
3582 The first argument is a format control string.
3583 The other arguments are substituted into it to make the result, a string.
3584
3585 The format control string may contain %-sequences meaning to substitute
3586 the next available argument:
3587
3588 %s means print a string argument. Actually, prints any object, with `princ'.
3589 %d means print as number in decimal (%o octal, %x hex).
3590 %X is like %x, but uses upper case.
3591 %e means print a number in exponential notation.
3592 %f means print a number in decimal-point notation.
3593 %g means print a number in exponential notation
3594 or decimal-point notation, whichever uses fewer characters.
3595 %c means print a number as a single character.
3596 %S means print any object as an s-expression (using `prin1').
3597
3598 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3599 Use %% to put a single % into the output.
3600
3601 A %-sequence may contain optional flag, width, and precision
3602 specifiers, as follows:
3603
3604 %<flags><width><precision>character
3605
3606 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3607
3608 The + flag character inserts a + before any positive number, while a
3609 space inserts a space before any positive number; these flags only
3610 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3611 The # flag means to use an alternate display form for %o, %x, %X, %e,
3612 %f, and %g sequences. The - and 0 flags affect the width specifier,
3613 as described below.
3614
3615 The width specifier supplies a lower limit for the length of the
3616 printed representation. The padding, if any, normally goes on the
3617 left, but it goes on the right if the - flag is present. The padding
3618 character is normally a space, but it is 0 if the 0 flag is present.
3619 The 0 flag is ignored if the - flag is present, or the format sequence
3620 is something other than %d, %e, %f, and %g.
3621
3622 For %e, %f, and %g sequences, the number after the "." in the
3623 precision specifier says how many decimal places to show; if zero, the
3624 decimal point itself is omitted. For %s and %S, the precision
3625 specifier truncates the string to the given width.
3626
3627 usage: (format STRING &rest OBJECTS) */)
3628 (ptrdiff_t nargs, Lisp_Object *args)
3629 {
3630 ptrdiff_t n; /* The number of the next arg to substitute */
3631 char initial_buffer[4000];
3632 char *buf = initial_buffer;
3633 ptrdiff_t bufsize = sizeof initial_buffer;
3634 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3635 char *p;
3636 Lisp_Object buf_save_value IF_LINT (= {0});
3637 register char *format, *end, *format_start;
3638 ptrdiff_t formatlen, nchars;
3639 /* Nonzero if the format is multibyte. */
3640 int multibyte_format = 0;
3641 /* Nonzero if the output should be a multibyte string,
3642 which is true if any of the inputs is one. */
3643 int multibyte = 0;
3644 /* When we make a multibyte string, we must pay attention to the
3645 byte combining problem, i.e., a byte may be combined with a
3646 multibyte character of the previous string. This flag tells if we
3647 must consider such a situation or not. */
3648 int maybe_combine_byte;
3649 Lisp_Object val;
3650 int arg_intervals = 0;
3651 USE_SAFE_ALLOCA;
3652
3653 /* discarded[I] is 1 if byte I of the format
3654 string was not copied into the output.
3655 It is 2 if byte I was not the first byte of its character. */
3656 char *discarded;
3657
3658 /* Each element records, for one argument,
3659 the start and end bytepos in the output string,
3660 whether the argument has been converted to string (e.g., due to "%S"),
3661 and whether the argument is a string with intervals.
3662 info[0] is unused. Unused elements have -1 for start. */
3663 struct info
3664 {
3665 ptrdiff_t start, end;
3666 int converted_to_string;
3667 int intervals;
3668 } *info = 0;
3669
3670 /* It should not be necessary to GCPRO ARGS, because
3671 the caller in the interpreter should take care of that. */
3672
3673 CHECK_STRING (args[0]);
3674 format_start = SSDATA (args[0]);
3675 formatlen = SBYTES (args[0]);
3676
3677 /* Allocate the info and discarded tables. */
3678 {
3679 ptrdiff_t i;
3680 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3681 memory_full (SIZE_MAX);
3682 SAFE_ALLOCA (info, struct info *, (nargs + 1) * sizeof *info + formatlen);
3683 discarded = (char *) &info[nargs + 1];
3684 for (i = 0; i < nargs + 1; i++)
3685 {
3686 info[i].start = -1;
3687 info[i].intervals = info[i].converted_to_string = 0;
3688 }
3689 memset (discarded, 0, formatlen);
3690 }
3691
3692 /* Try to determine whether the result should be multibyte.
3693 This is not always right; sometimes the result needs to be multibyte
3694 because of an object that we will pass through prin1,
3695 and in that case, we won't know it here. */
3696 multibyte_format = STRING_MULTIBYTE (args[0]);
3697 multibyte = multibyte_format;
3698 for (n = 1; !multibyte && n < nargs; n++)
3699 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3700 multibyte = 1;
3701
3702 /* If we start out planning a unibyte result,
3703 then discover it has to be multibyte, we jump back to retry. */
3704 retry:
3705
3706 p = buf;
3707 nchars = 0;
3708 n = 0;
3709
3710 /* Scan the format and store result in BUF. */
3711 format = format_start;
3712 end = format + formatlen;
3713 maybe_combine_byte = 0;
3714
3715 while (format != end)
3716 {
3717 /* The values of N and FORMAT when the loop body is entered. */
3718 ptrdiff_t n0 = n;
3719 char *format0 = format;
3720
3721 /* Bytes needed to represent the output of this conversion. */
3722 ptrdiff_t convbytes;
3723
3724 if (*format == '%')
3725 {
3726 /* General format specifications look like
3727
3728 '%' [flags] [field-width] [precision] format
3729
3730 where
3731
3732 flags ::= [-+0# ]+
3733 field-width ::= [0-9]+
3734 precision ::= '.' [0-9]*
3735
3736 If a field-width is specified, it specifies to which width
3737 the output should be padded with blanks, if the output
3738 string is shorter than field-width.
3739
3740 If precision is specified, it specifies the number of
3741 digits to print after the '.' for floats, or the max.
3742 number of chars to print from a string. */
3743
3744 int minus_flag = 0;
3745 int plus_flag = 0;
3746 int space_flag = 0;
3747 int sharp_flag = 0;
3748 int zero_flag = 0;
3749 ptrdiff_t field_width;
3750 int precision_given;
3751 uintmax_t precision = UINTMAX_MAX;
3752 char *num_end;
3753 char conversion;
3754
3755 while (1)
3756 {
3757 switch (*++format)
3758 {
3759 case '-': minus_flag = 1; continue;
3760 case '+': plus_flag = 1; continue;
3761 case ' ': space_flag = 1; continue;
3762 case '#': sharp_flag = 1; continue;
3763 case '0': zero_flag = 1; continue;
3764 }
3765 break;
3766 }
3767
3768 /* Ignore flags when sprintf ignores them. */
3769 space_flag &= ~ plus_flag;
3770 zero_flag &= ~ minus_flag;
3771
3772 {
3773 uintmax_t w = strtoumax (format, &num_end, 10);
3774 if (max_bufsize <= w)
3775 string_overflow ();
3776 field_width = w;
3777 }
3778 precision_given = *num_end == '.';
3779 if (precision_given)
3780 precision = strtoumax (num_end + 1, &num_end, 10);
3781 format = num_end;
3782
3783 if (format == end)
3784 error ("Format string ends in middle of format specifier");
3785
3786 memset (&discarded[format0 - format_start], 1, format - format0);
3787 conversion = *format;
3788 if (conversion == '%')
3789 goto copy_char;
3790 discarded[format - format_start] = 1;
3791 format++;
3792
3793 ++n;
3794 if (! (n < nargs))
3795 error ("Not enough arguments for format string");
3796
3797 /* For 'S', prin1 the argument, and then treat like 's'.
3798 For 's', princ any argument that is not a string or
3799 symbol. But don't do this conversion twice, which might
3800 happen after retrying. */
3801 if ((conversion == 'S'
3802 || (conversion == 's'
3803 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3804 {
3805 if (! info[n].converted_to_string)
3806 {
3807 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3808 args[n] = Fprin1_to_string (args[n], noescape);
3809 info[n].converted_to_string = 1;
3810 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3811 {
3812 multibyte = 1;
3813 goto retry;
3814 }
3815 }
3816 conversion = 's';
3817 }
3818 else if (conversion == 'c')
3819 {
3820 if (FLOATP (args[n]))
3821 {
3822 double d = XFLOAT_DATA (args[n]);
3823 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3824 }
3825
3826 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3827 {
3828 if (!multibyte)
3829 {
3830 multibyte = 1;
3831 goto retry;
3832 }
3833 args[n] = Fchar_to_string (args[n]);
3834 info[n].converted_to_string = 1;
3835 }
3836
3837 if (info[n].converted_to_string)
3838 conversion = 's';
3839 zero_flag = 0;
3840 }
3841
3842 if (SYMBOLP (args[n]))
3843 {
3844 args[n] = SYMBOL_NAME (args[n]);
3845 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3846 {
3847 multibyte = 1;
3848 goto retry;
3849 }
3850 }
3851
3852 if (conversion == 's')
3853 {
3854 /* handle case (precision[n] >= 0) */
3855
3856 ptrdiff_t width, padding, nbytes;
3857 ptrdiff_t nchars_string;
3858
3859 ptrdiff_t prec = -1;
3860 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3861 prec = precision;
3862
3863 /* lisp_string_width ignores a precision of 0, but GNU
3864 libc functions print 0 characters when the precision
3865 is 0. Imitate libc behavior here. Changing
3866 lisp_string_width is the right thing, and will be
3867 done, but meanwhile we work with it. */
3868
3869 if (prec == 0)
3870 width = nchars_string = nbytes = 0;
3871 else
3872 {
3873 ptrdiff_t nch, nby;
3874 width = lisp_string_width (args[n], prec, &nch, &nby);
3875 if (prec < 0)
3876 {
3877 nchars_string = SCHARS (args[n]);
3878 nbytes = SBYTES (args[n]);
3879 }
3880 else
3881 {
3882 nchars_string = nch;
3883 nbytes = nby;
3884 }
3885 }
3886
3887 convbytes = nbytes;
3888 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3889 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3890
3891 padding = width < field_width ? field_width - width : 0;
3892
3893 if (max_bufsize - padding <= convbytes)
3894 string_overflow ();
3895 convbytes += padding;
3896 if (convbytes <= buf + bufsize - p)
3897 {
3898 if (! minus_flag)
3899 {
3900 memset (p, ' ', padding);
3901 p += padding;
3902 nchars += padding;
3903 }
3904
3905 if (p > buf
3906 && multibyte
3907 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3908 && STRING_MULTIBYTE (args[n])
3909 && !CHAR_HEAD_P (SREF (args[n], 0)))
3910 maybe_combine_byte = 1;
3911
3912 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3913 nbytes,
3914 STRING_MULTIBYTE (args[n]), multibyte);
3915
3916 info[n].start = nchars;
3917 nchars += nchars_string;
3918 info[n].end = nchars;
3919
3920 if (minus_flag)
3921 {
3922 memset (p, ' ', padding);
3923 p += padding;
3924 nchars += padding;
3925 }
3926
3927 /* If this argument has text properties, record where
3928 in the result string it appears. */
3929 if (STRING_INTERVALS (args[n]))
3930 info[n].intervals = arg_intervals = 1;
3931
3932 continue;
3933 }
3934 }
3935 else if (! (conversion == 'c' || conversion == 'd'
3936 || conversion == 'e' || conversion == 'f'
3937 || conversion == 'g' || conversion == 'i'
3938 || conversion == 'o' || conversion == 'x'
3939 || conversion == 'X'))
3940 error ("Invalid format operation %%%c",
3941 STRING_CHAR ((unsigned char *) format - 1));
3942 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3943 error ("Format specifier doesn't match argument type");
3944 else
3945 {
3946 enum
3947 {
3948 /* Maximum precision for a %f conversion such that the
3949 trailing output digit might be nonzero. Any precision
3950 larger than this will not yield useful information. */
3951 USEFUL_PRECISION_MAX =
3952 ((1 - DBL_MIN_EXP)
3953 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3954 : FLT_RADIX == 16 ? 4
3955 : -1)),
3956
3957 /* Maximum number of bytes generated by any format, if
3958 precision is no more than USEFUL_PRECISION_MAX.
3959 On all practical hosts, %f is the worst case. */
3960 SPRINTF_BUFSIZE =
3961 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3962
3963 /* Length of pM (that is, of pMd without the
3964 trailing "d"). */
3965 pMlen = sizeof pMd - 2
3966 };
3967 verify (0 < USEFUL_PRECISION_MAX);
3968
3969 int prec;
3970 ptrdiff_t padding, sprintf_bytes;
3971 uintmax_t excess_precision, numwidth;
3972 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3973
3974 char sprintf_buf[SPRINTF_BUFSIZE];
3975
3976 /* Copy of conversion specification, modified somewhat.
3977 At most three flags F can be specified at once. */
3978 char convspec[sizeof "%FFF.*d" + pMlen];
3979
3980 /* Avoid undefined behavior in underlying sprintf. */
3981 if (conversion == 'd' || conversion == 'i')
3982 sharp_flag = 0;
3983
3984 /* Create the copy of the conversion specification, with
3985 any width and precision removed, with ".*" inserted,
3986 and with pM inserted for integer formats. */
3987 {
3988 char *f = convspec;
3989 *f++ = '%';
3990 *f = '-'; f += minus_flag;
3991 *f = '+'; f += plus_flag;
3992 *f = ' '; f += space_flag;
3993 *f = '#'; f += sharp_flag;
3994 *f = '0'; f += zero_flag;
3995 *f++ = '.';
3996 *f++ = '*';
3997 if (conversion == 'd' || conversion == 'i'
3998 || conversion == 'o' || conversion == 'x'
3999 || conversion == 'X')
4000 {
4001 memcpy (f, pMd, pMlen);
4002 f += pMlen;
4003 zero_flag &= ~ precision_given;
4004 }
4005 *f++ = conversion;
4006 *f = '\0';
4007 }
4008
4009 prec = -1;
4010 if (precision_given)
4011 prec = min (precision, USEFUL_PRECISION_MAX);
4012
4013 /* Use sprintf to format this number into sprintf_buf. Omit
4014 padding and excess precision, though, because sprintf limits
4015 output length to INT_MAX.
4016
4017 There are four types of conversion: double, unsigned
4018 char (passed as int), wide signed int, and wide
4019 unsigned int. Treat them separately because the
4020 sprintf ABI is sensitive to which type is passed. Be
4021 careful about integer overflow, NaNs, infinities, and
4022 conversions; for example, the min and max macros are
4023 not suitable here. */
4024 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4025 {
4026 double x = (INTEGERP (args[n])
4027 ? XINT (args[n])
4028 : XFLOAT_DATA (args[n]));
4029 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4030 }
4031 else if (conversion == 'c')
4032 {
4033 /* Don't use sprintf here, as it might mishandle prec. */
4034 sprintf_buf[0] = XINT (args[n]);
4035 sprintf_bytes = prec != 0;
4036 }
4037 else if (conversion == 'd')
4038 {
4039 /* For float, maybe we should use "%1.0f"
4040 instead so it also works for values outside
4041 the integer range. */
4042 printmax_t x;
4043 if (INTEGERP (args[n]))
4044 x = XINT (args[n]);
4045 else
4046 {
4047 double d = XFLOAT_DATA (args[n]);
4048 if (d < 0)
4049 {
4050 x = TYPE_MINIMUM (printmax_t);
4051 if (x < d)
4052 x = d;
4053 }
4054 else
4055 {
4056 x = TYPE_MAXIMUM (printmax_t);
4057 if (d < x)
4058 x = d;
4059 }
4060 }
4061 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4062 }
4063 else
4064 {
4065 /* Don't sign-extend for octal or hex printing. */
4066 uprintmax_t x;
4067 if (INTEGERP (args[n]))
4068 x = XUINT (args[n]);
4069 else
4070 {
4071 double d = XFLOAT_DATA (args[n]);
4072 if (d < 0)
4073 x = 0;
4074 else
4075 {
4076 x = TYPE_MAXIMUM (uprintmax_t);
4077 if (d < x)
4078 x = d;
4079 }
4080 }
4081 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4082 }
4083
4084 /* Now the length of the formatted item is known, except it omits
4085 padding and excess precision. Deal with excess precision
4086 first. This happens only when the format specifies
4087 ridiculously large precision. */
4088 excess_precision = precision - prec;
4089 if (excess_precision)
4090 {
4091 if (conversion == 'e' || conversion == 'f'
4092 || conversion == 'g')
4093 {
4094 if ((conversion == 'g' && ! sharp_flag)
4095 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4096 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4097 excess_precision = 0;
4098 else
4099 {
4100 if (conversion == 'g')
4101 {
4102 char *dot = strchr (sprintf_buf, '.');
4103 if (!dot)
4104 excess_precision = 0;
4105 }
4106 }
4107 trailing_zeros = excess_precision;
4108 }
4109 else
4110 leading_zeros = excess_precision;
4111 }
4112
4113 /* Compute the total bytes needed for this item, including
4114 excess precision and padding. */
4115 numwidth = sprintf_bytes + excess_precision;
4116 padding = numwidth < field_width ? field_width - numwidth : 0;
4117 if (max_bufsize - sprintf_bytes <= excess_precision
4118 || max_bufsize - padding <= numwidth)
4119 string_overflow ();
4120 convbytes = numwidth + padding;
4121
4122 if (convbytes <= buf + bufsize - p)
4123 {
4124 /* Copy the formatted item from sprintf_buf into buf,
4125 inserting padding and excess-precision zeros. */
4126
4127 char *src = sprintf_buf;
4128 char src0 = src[0];
4129 int exponent_bytes = 0;
4130 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4131 int significand_bytes;
4132 if (zero_flag
4133 && ((src[signedp] >= '0' && src[signedp] <= '9')
4134 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4135 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4136 {
4137 leading_zeros += padding;
4138 padding = 0;
4139 }
4140
4141 if (excess_precision
4142 && (conversion == 'e' || conversion == 'g'))
4143 {
4144 char *e = strchr (src, 'e');
4145 if (e)
4146 exponent_bytes = src + sprintf_bytes - e;
4147 }
4148
4149 if (! minus_flag)
4150 {
4151 memset (p, ' ', padding);
4152 p += padding;
4153 nchars += padding;
4154 }
4155
4156 *p = src0;
4157 src += signedp;
4158 p += signedp;
4159 memset (p, '0', leading_zeros);
4160 p += leading_zeros;
4161 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4162 memcpy (p, src, significand_bytes);
4163 p += significand_bytes;
4164 src += significand_bytes;
4165 memset (p, '0', trailing_zeros);
4166 p += trailing_zeros;
4167 memcpy (p, src, exponent_bytes);
4168 p += exponent_bytes;
4169
4170 info[n].start = nchars;
4171 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4172 info[n].end = nchars;
4173
4174 if (minus_flag)
4175 {
4176 memset (p, ' ', padding);
4177 p += padding;
4178 nchars += padding;
4179 }
4180
4181 continue;
4182 }
4183 }
4184 }
4185 else
4186 copy_char:
4187 {
4188 /* Copy a single character from format to buf. */
4189
4190 char *src = format;
4191 unsigned char str[MAX_MULTIBYTE_LENGTH];
4192
4193 if (multibyte_format)
4194 {
4195 /* Copy a whole multibyte character. */
4196 if (p > buf
4197 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4198 && !CHAR_HEAD_P (*format))
4199 maybe_combine_byte = 1;
4200
4201 do
4202 format++;
4203 while (! CHAR_HEAD_P (*format));
4204
4205 convbytes = format - src;
4206 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4207 }
4208 else
4209 {
4210 unsigned char uc = *format++;
4211 if (! multibyte || ASCII_BYTE_P (uc))
4212 convbytes = 1;
4213 else
4214 {
4215 int c = BYTE8_TO_CHAR (uc);
4216 convbytes = CHAR_STRING (c, str);
4217 src = (char *) str;
4218 }
4219 }
4220
4221 if (convbytes <= buf + bufsize - p)
4222 {
4223 memcpy (p, src, convbytes);
4224 p += convbytes;
4225 nchars++;
4226 continue;
4227 }
4228 }
4229
4230 /* There wasn't enough room to store this conversion or single
4231 character. CONVBYTES says how much room is needed. Allocate
4232 enough room (and then some) and do it again. */
4233 {
4234 ptrdiff_t used = p - buf;
4235
4236 if (max_bufsize - used < convbytes)
4237 string_overflow ();
4238 bufsize = used + convbytes;
4239 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4240
4241 if (buf == initial_buffer)
4242 {
4243 buf = xmalloc (bufsize);
4244 sa_must_free = 1;
4245 buf_save_value = make_save_value (buf, 0);
4246 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4247 memcpy (buf, initial_buffer, used);
4248 }
4249 else
4250 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4251
4252 p = buf + used;
4253 }
4254
4255 format = format0;
4256 n = n0;
4257 }
4258
4259 if (bufsize < p - buf)
4260 abort ();
4261
4262 if (maybe_combine_byte)
4263 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4264 val = make_specified_string (buf, nchars, p - buf, multibyte);
4265
4266 /* If we allocated BUF with malloc, free it too. */
4267 SAFE_FREE ();
4268
4269 /* If the format string has text properties, or any of the string
4270 arguments has text properties, set up text properties of the
4271 result string. */
4272
4273 if (STRING_INTERVALS (args[0]) || arg_intervals)
4274 {
4275 Lisp_Object len, new_len, props;
4276 struct gcpro gcpro1;
4277
4278 /* Add text properties from the format string. */
4279 len = make_number (SCHARS (args[0]));
4280 props = text_property_list (args[0], make_number (0), len, Qnil);
4281 GCPRO1 (props);
4282
4283 if (CONSP (props))
4284 {
4285 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4286 ptrdiff_t argn = 1;
4287 Lisp_Object list;
4288
4289 /* Adjust the bounds of each text property
4290 to the proper start and end in the output string. */
4291
4292 /* Put the positions in PROPS in increasing order, so that
4293 we can do (effectively) one scan through the position
4294 space of the format string. */
4295 props = Fnreverse (props);
4296
4297 /* BYTEPOS is the byte position in the format string,
4298 POSITION is the untranslated char position in it,
4299 TRANSLATED is the translated char position in BUF,
4300 and ARGN is the number of the next arg we will come to. */
4301 for (list = props; CONSP (list); list = XCDR (list))
4302 {
4303 Lisp_Object item;
4304 ptrdiff_t pos;
4305
4306 item = XCAR (list);
4307
4308 /* First adjust the property start position. */
4309 pos = XINT (XCAR (item));
4310
4311 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4312 up to this position. */
4313 for (; position < pos; bytepos++)
4314 {
4315 if (! discarded[bytepos])
4316 position++, translated++;
4317 else if (discarded[bytepos] == 1)
4318 {
4319 position++;
4320 if (translated == info[argn].start)
4321 {
4322 translated += info[argn].end - info[argn].start;
4323 argn++;
4324 }
4325 }
4326 }
4327
4328 XSETCAR (item, make_number (translated));
4329
4330 /* Likewise adjust the property end position. */
4331 pos = XINT (XCAR (XCDR (item)));
4332
4333 for (; position < pos; bytepos++)
4334 {
4335 if (! discarded[bytepos])
4336 position++, translated++;
4337 else if (discarded[bytepos] == 1)
4338 {
4339 position++;
4340 if (translated == info[argn].start)
4341 {
4342 translated += info[argn].end - info[argn].start;
4343 argn++;
4344 }
4345 }
4346 }
4347
4348 XSETCAR (XCDR (item), make_number (translated));
4349 }
4350
4351 add_text_properties_from_list (val, props, make_number (0));
4352 }
4353
4354 /* Add text properties from arguments. */
4355 if (arg_intervals)
4356 for (n = 1; n < nargs; ++n)
4357 if (info[n].intervals)
4358 {
4359 len = make_number (SCHARS (args[n]));
4360 new_len = make_number (info[n].end - info[n].start);
4361 props = text_property_list (args[n], make_number (0), len, Qnil);
4362 props = extend_property_ranges (props, new_len);
4363 /* If successive arguments have properties, be sure that
4364 the value of `composition' property be the copy. */
4365 if (n > 1 && info[n - 1].end)
4366 make_composition_value_copy (props);
4367 add_text_properties_from_list (val, props,
4368 make_number (info[n].start));
4369 }
4370
4371 UNGCPRO;
4372 }
4373
4374 return val;
4375 }
4376
4377 Lisp_Object
4378 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4379 {
4380 Lisp_Object args[3];
4381 args[0] = build_string (string1);
4382 args[1] = arg0;
4383 args[2] = arg1;
4384 return Fformat (3, args);
4385 }
4386 \f
4387 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4388 doc: /* Return t if two characters match, optionally ignoring case.
4389 Both arguments must be characters (i.e. integers).
4390 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4391 (register Lisp_Object c1, Lisp_Object c2)
4392 {
4393 int i1, i2;
4394 /* Check they're chars, not just integers, otherwise we could get array
4395 bounds violations in downcase. */
4396 CHECK_CHARACTER (c1);
4397 CHECK_CHARACTER (c2);
4398
4399 if (XINT (c1) == XINT (c2))
4400 return Qt;
4401 if (NILP (BVAR (current_buffer, case_fold_search)))
4402 return Qnil;
4403
4404 i1 = XFASTINT (c1);
4405 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4406 && ! ASCII_CHAR_P (i1))
4407 {
4408 MAKE_CHAR_MULTIBYTE (i1);
4409 }
4410 i2 = XFASTINT (c2);
4411 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4412 && ! ASCII_CHAR_P (i2))
4413 {
4414 MAKE_CHAR_MULTIBYTE (i2);
4415 }
4416 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4417 }
4418 \f
4419 /* Transpose the markers in two regions of the current buffer, and
4420 adjust the ones between them if necessary (i.e.: if the regions
4421 differ in size).
4422
4423 START1, END1 are the character positions of the first region.
4424 START1_BYTE, END1_BYTE are the byte positions.
4425 START2, END2 are the character positions of the second region.
4426 START2_BYTE, END2_BYTE are the byte positions.
4427
4428 Traverses the entire marker list of the buffer to do so, adding an
4429 appropriate amount to some, subtracting from some, and leaving the
4430 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4431
4432 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4433
4434 static void
4435 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4436 ptrdiff_t start2, ptrdiff_t end2,
4437 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4438 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4439 {
4440 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4441 register struct Lisp_Marker *marker;
4442
4443 /* Update point as if it were a marker. */
4444 if (PT < start1)
4445 ;
4446 else if (PT < end1)
4447 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4448 PT_BYTE + (end2_byte - end1_byte));
4449 else if (PT < start2)
4450 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4451 (PT_BYTE + (end2_byte - start2_byte)
4452 - (end1_byte - start1_byte)));
4453 else if (PT < end2)
4454 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4455 PT_BYTE - (start2_byte - start1_byte));
4456
4457 /* We used to adjust the endpoints here to account for the gap, but that
4458 isn't good enough. Even if we assume the caller has tried to move the
4459 gap out of our way, it might still be at start1 exactly, for example;
4460 and that places it `inside' the interval, for our purposes. The amount
4461 of adjustment is nontrivial if there's a `denormalized' marker whose
4462 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4463 the dirty work to Fmarker_position, below. */
4464
4465 /* The difference between the region's lengths */
4466 diff = (end2 - start2) - (end1 - start1);
4467 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4468
4469 /* For shifting each marker in a region by the length of the other
4470 region plus the distance between the regions. */
4471 amt1 = (end2 - start2) + (start2 - end1);
4472 amt2 = (end1 - start1) + (start2 - end1);
4473 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4474 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4475
4476 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4477 {
4478 mpos = marker->bytepos;
4479 if (mpos >= start1_byte && mpos < end2_byte)
4480 {
4481 if (mpos < end1_byte)
4482 mpos += amt1_byte;
4483 else if (mpos < start2_byte)
4484 mpos += diff_byte;
4485 else
4486 mpos -= amt2_byte;
4487 marker->bytepos = mpos;
4488 }
4489 mpos = marker->charpos;
4490 if (mpos >= start1 && mpos < end2)
4491 {
4492 if (mpos < end1)
4493 mpos += amt1;
4494 else if (mpos < start2)
4495 mpos += diff;
4496 else
4497 mpos -= amt2;
4498 }
4499 marker->charpos = mpos;
4500 }
4501 }
4502
4503 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4504 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4505 The regions should not be overlapping, because the size of the buffer is
4506 never changed in a transposition.
4507
4508 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4509 any markers that happen to be located in the regions.
4510
4511 Transposing beyond buffer boundaries is an error. */)
4512 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4513 {
4514 register ptrdiff_t start1, end1, start2, end2;
4515 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4516 ptrdiff_t gap, len1, len_mid, len2;
4517 unsigned char *start1_addr, *start2_addr, *temp;
4518
4519 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4520 Lisp_Object buf;
4521
4522 XSETBUFFER (buf, current_buffer);
4523 cur_intv = BUF_INTERVALS (current_buffer);
4524
4525 validate_region (&startr1, &endr1);
4526 validate_region (&startr2, &endr2);
4527
4528 start1 = XFASTINT (startr1);
4529 end1 = XFASTINT (endr1);
4530 start2 = XFASTINT (startr2);
4531 end2 = XFASTINT (endr2);
4532 gap = GPT;
4533
4534 /* Swap the regions if they're reversed. */
4535 if (start2 < end1)
4536 {
4537 register ptrdiff_t glumph = start1;
4538 start1 = start2;
4539 start2 = glumph;
4540 glumph = end1;
4541 end1 = end2;
4542 end2 = glumph;
4543 }
4544
4545 len1 = end1 - start1;
4546 len2 = end2 - start2;
4547
4548 if (start2 < end1)
4549 error ("Transposed regions overlap");
4550 /* Nothing to change for adjacent regions with one being empty */
4551 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4552 return Qnil;
4553
4554 /* The possibilities are:
4555 1. Adjacent (contiguous) regions, or separate but equal regions
4556 (no, really equal, in this case!), or
4557 2. Separate regions of unequal size.
4558
4559 The worst case is usually No. 2. It means that (aside from
4560 potential need for getting the gap out of the way), there also
4561 needs to be a shifting of the text between the two regions. So
4562 if they are spread far apart, we are that much slower... sigh. */
4563
4564 /* It must be pointed out that the really studly thing to do would
4565 be not to move the gap at all, but to leave it in place and work
4566 around it if necessary. This would be extremely efficient,
4567 especially considering that people are likely to do
4568 transpositions near where they are working interactively, which
4569 is exactly where the gap would be found. However, such code
4570 would be much harder to write and to read. So, if you are
4571 reading this comment and are feeling squirrely, by all means have
4572 a go! I just didn't feel like doing it, so I will simply move
4573 the gap the minimum distance to get it out of the way, and then
4574 deal with an unbroken array. */
4575
4576 /* Make sure the gap won't interfere, by moving it out of the text
4577 we will operate on. */
4578 if (start1 < gap && gap < end2)
4579 {
4580 if (gap - start1 < end2 - gap)
4581 move_gap (start1);
4582 else
4583 move_gap (end2);
4584 }
4585
4586 start1_byte = CHAR_TO_BYTE (start1);
4587 start2_byte = CHAR_TO_BYTE (start2);
4588 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4589 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4590
4591 #ifdef BYTE_COMBINING_DEBUG
4592 if (end1 == start2)
4593 {
4594 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4595 len2_byte, start1, start1_byte)
4596 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4597 len1_byte, end2, start2_byte + len2_byte)
4598 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4599 len1_byte, end2, start2_byte + len2_byte))
4600 abort ();
4601 }
4602 else
4603 {
4604 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4605 len2_byte, start1, start1_byte)
4606 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4607 len1_byte, start2, start2_byte)
4608 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4609 len2_byte, end1, start1_byte + len1_byte)
4610 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4611 len1_byte, end2, start2_byte + len2_byte))
4612 abort ();
4613 }
4614 #endif
4615
4616 /* Hmmm... how about checking to see if the gap is large
4617 enough to use as the temporary storage? That would avoid an
4618 allocation... interesting. Later, don't fool with it now. */
4619
4620 /* Working without memmove, for portability (sigh), so must be
4621 careful of overlapping subsections of the array... */
4622
4623 if (end1 == start2) /* adjacent regions */
4624 {
4625 modify_region (current_buffer, start1, end2, 0);
4626 record_change (start1, len1 + len2);
4627
4628 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4629 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4630 /* Don't use Fset_text_properties: that can cause GC, which can
4631 clobber objects stored in the tmp_intervals. */
4632 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4633 if (!NULL_INTERVAL_P (tmp_interval3))
4634 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4635
4636 /* First region smaller than second. */
4637 if (len1_byte < len2_byte)
4638 {
4639 USE_SAFE_ALLOCA;
4640
4641 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4642
4643 /* Don't precompute these addresses. We have to compute them
4644 at the last minute, because the relocating allocator might
4645 have moved the buffer around during the xmalloc. */
4646 start1_addr = BYTE_POS_ADDR (start1_byte);
4647 start2_addr = BYTE_POS_ADDR (start2_byte);
4648
4649 memcpy (temp, start2_addr, len2_byte);
4650 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4651 memcpy (start1_addr, temp, len2_byte);
4652 SAFE_FREE ();
4653 }
4654 else
4655 /* First region not smaller than second. */
4656 {
4657 USE_SAFE_ALLOCA;
4658
4659 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4660 start1_addr = BYTE_POS_ADDR (start1_byte);
4661 start2_addr = BYTE_POS_ADDR (start2_byte);
4662 memcpy (temp, start1_addr, len1_byte);
4663 memcpy (start1_addr, start2_addr, len2_byte);
4664 memcpy (start1_addr + len2_byte, temp, len1_byte);
4665 SAFE_FREE ();
4666 }
4667 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4668 len1, current_buffer, 0);
4669 graft_intervals_into_buffer (tmp_interval2, start1,
4670 len2, current_buffer, 0);
4671 update_compositions (start1, start1 + len2, CHECK_BORDER);
4672 update_compositions (start1 + len2, end2, CHECK_TAIL);
4673 }
4674 /* Non-adjacent regions, because end1 != start2, bleagh... */
4675 else
4676 {
4677 len_mid = start2_byte - (start1_byte + len1_byte);
4678
4679 if (len1_byte == len2_byte)
4680 /* Regions are same size, though, how nice. */
4681 {
4682 USE_SAFE_ALLOCA;
4683
4684 modify_region (current_buffer, start1, end1, 0);
4685 modify_region (current_buffer, start2, end2, 0);
4686 record_change (start1, len1);
4687 record_change (start2, len2);
4688 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4689 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4690
4691 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4692 if (!NULL_INTERVAL_P (tmp_interval3))
4693 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4694
4695 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4696 if (!NULL_INTERVAL_P (tmp_interval3))
4697 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4698
4699 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4700 start1_addr = BYTE_POS_ADDR (start1_byte);
4701 start2_addr = BYTE_POS_ADDR (start2_byte);
4702 memcpy (temp, start1_addr, len1_byte);
4703 memcpy (start1_addr, start2_addr, len2_byte);
4704 memcpy (start2_addr, temp, len1_byte);
4705 SAFE_FREE ();
4706
4707 graft_intervals_into_buffer (tmp_interval1, start2,
4708 len1, current_buffer, 0);
4709 graft_intervals_into_buffer (tmp_interval2, start1,
4710 len2, current_buffer, 0);
4711 }
4712
4713 else if (len1_byte < len2_byte) /* Second region larger than first */
4714 /* Non-adjacent & unequal size, area between must also be shifted. */
4715 {
4716 USE_SAFE_ALLOCA;
4717
4718 modify_region (current_buffer, start1, end2, 0);
4719 record_change (start1, (end2 - start1));
4720 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4721 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4722 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4723
4724 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4725 if (!NULL_INTERVAL_P (tmp_interval3))
4726 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4727
4728 /* holds region 2 */
4729 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4730 start1_addr = BYTE_POS_ADDR (start1_byte);
4731 start2_addr = BYTE_POS_ADDR (start2_byte);
4732 memcpy (temp, start2_addr, len2_byte);
4733 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4734 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4735 memcpy (start1_addr, temp, len2_byte);
4736 SAFE_FREE ();
4737
4738 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4739 len1, current_buffer, 0);
4740 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4741 len_mid, current_buffer, 0);
4742 graft_intervals_into_buffer (tmp_interval2, start1,
4743 len2, current_buffer, 0);
4744 }
4745 else
4746 /* Second region smaller than first. */
4747 {
4748 USE_SAFE_ALLOCA;
4749
4750 record_change (start1, (end2 - start1));
4751 modify_region (current_buffer, start1, end2, 0);
4752
4753 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4754 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4755 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4756
4757 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4758 if (!NULL_INTERVAL_P (tmp_interval3))
4759 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4760
4761 /* holds region 1 */
4762 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4763 start1_addr = BYTE_POS_ADDR (start1_byte);
4764 start2_addr = BYTE_POS_ADDR (start2_byte);
4765 memcpy (temp, start1_addr, len1_byte);
4766 memcpy (start1_addr, start2_addr, len2_byte);
4767 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4768 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4769 SAFE_FREE ();
4770
4771 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4772 len1, current_buffer, 0);
4773 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4774 len_mid, current_buffer, 0);
4775 graft_intervals_into_buffer (tmp_interval2, start1,
4776 len2, current_buffer, 0);
4777 }
4778
4779 update_compositions (start1, start1 + len2, CHECK_BORDER);
4780 update_compositions (end2 - len1, end2, CHECK_BORDER);
4781 }
4782
4783 /* When doing multiple transpositions, it might be nice
4784 to optimize this. Perhaps the markers in any one buffer
4785 should be organized in some sorted data tree. */
4786 if (NILP (leave_markers))
4787 {
4788 transpose_markers (start1, end1, start2, end2,
4789 start1_byte, start1_byte + len1_byte,
4790 start2_byte, start2_byte + len2_byte);
4791 fix_start_end_in_overlays (start1, end2);
4792 }
4793
4794 signal_after_change (start1, end2 - start1, end2 - start1);
4795 return Qnil;
4796 }
4797
4798 \f
4799 void
4800 syms_of_editfns (void)
4801 {
4802 environbuf = 0;
4803 initial_tz = 0;
4804
4805 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4806
4807 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4808 doc: /* Non-nil means text motion commands don't notice fields. */);
4809 Vinhibit_field_text_motion = Qnil;
4810
4811 DEFVAR_LISP ("buffer-access-fontify-functions",
4812 Vbuffer_access_fontify_functions,
4813 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4814 Each function is called with two arguments which specify the range
4815 of the buffer being accessed. */);
4816 Vbuffer_access_fontify_functions = Qnil;
4817
4818 {
4819 Lisp_Object obuf;
4820 obuf = Fcurrent_buffer ();
4821 /* Do this here, because init_buffer_once is too early--it won't work. */
4822 Fset_buffer (Vprin1_to_string_buffer);
4823 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4824 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4825 Qnil);
4826 Fset_buffer (obuf);
4827 }
4828
4829 DEFVAR_LISP ("buffer-access-fontified-property",
4830 Vbuffer_access_fontified_property,
4831 doc: /* Property which (if non-nil) indicates text has been fontified.
4832 `buffer-substring' need not call the `buffer-access-fontify-functions'
4833 functions if all the text being accessed has this property. */);
4834 Vbuffer_access_fontified_property = Qnil;
4835
4836 DEFVAR_LISP ("system-name", Vsystem_name,
4837 doc: /* The host name of the machine Emacs is running on. */);
4838
4839 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4840 doc: /* The full name of the user logged in. */);
4841
4842 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4843 doc: /* The user's name, taken from environment variables if possible. */);
4844
4845 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4846 doc: /* The user's name, based upon the real uid only. */);
4847
4848 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4849 doc: /* The release of the operating system Emacs is running on. */);
4850
4851 defsubr (&Spropertize);
4852 defsubr (&Schar_equal);
4853 defsubr (&Sgoto_char);
4854 defsubr (&Sstring_to_char);
4855 defsubr (&Schar_to_string);
4856 defsubr (&Sbyte_to_string);
4857 defsubr (&Sbuffer_substring);
4858 defsubr (&Sbuffer_substring_no_properties);
4859 defsubr (&Sbuffer_string);
4860
4861 defsubr (&Spoint_marker);
4862 defsubr (&Smark_marker);
4863 defsubr (&Spoint);
4864 defsubr (&Sregion_beginning);
4865 defsubr (&Sregion_end);
4866
4867 DEFSYM (Qfield, "field");
4868 DEFSYM (Qboundary, "boundary");
4869 defsubr (&Sfield_beginning);
4870 defsubr (&Sfield_end);
4871 defsubr (&Sfield_string);
4872 defsubr (&Sfield_string_no_properties);
4873 defsubr (&Sdelete_field);
4874 defsubr (&Sconstrain_to_field);
4875
4876 defsubr (&Sline_beginning_position);
4877 defsubr (&Sline_end_position);
4878
4879 /* defsubr (&Smark); */
4880 /* defsubr (&Sset_mark); */
4881 defsubr (&Ssave_excursion);
4882 defsubr (&Ssave_current_buffer);
4883
4884 defsubr (&Sbufsize);
4885 defsubr (&Spoint_max);
4886 defsubr (&Spoint_min);
4887 defsubr (&Spoint_min_marker);
4888 defsubr (&Spoint_max_marker);
4889 defsubr (&Sgap_position);
4890 defsubr (&Sgap_size);
4891 defsubr (&Sposition_bytes);
4892 defsubr (&Sbyte_to_position);
4893
4894 defsubr (&Sbobp);
4895 defsubr (&Seobp);
4896 defsubr (&Sbolp);
4897 defsubr (&Seolp);
4898 defsubr (&Sfollowing_char);
4899 defsubr (&Sprevious_char);
4900 defsubr (&Schar_after);
4901 defsubr (&Schar_before);
4902 defsubr (&Sinsert);
4903 defsubr (&Sinsert_before_markers);
4904 defsubr (&Sinsert_and_inherit);
4905 defsubr (&Sinsert_and_inherit_before_markers);
4906 defsubr (&Sinsert_char);
4907 defsubr (&Sinsert_byte);
4908
4909 defsubr (&Suser_login_name);
4910 defsubr (&Suser_real_login_name);
4911 defsubr (&Suser_uid);
4912 defsubr (&Suser_real_uid);
4913 defsubr (&Suser_full_name);
4914 defsubr (&Semacs_pid);
4915 defsubr (&Scurrent_time);
4916 defsubr (&Sget_internal_run_time);
4917 defsubr (&Sformat_time_string);
4918 defsubr (&Sfloat_time);
4919 defsubr (&Sdecode_time);
4920 defsubr (&Sencode_time);
4921 defsubr (&Scurrent_time_string);
4922 defsubr (&Scurrent_time_zone);
4923 defsubr (&Sset_time_zone_rule);
4924 defsubr (&Ssystem_name);
4925 defsubr (&Smessage);
4926 defsubr (&Smessage_box);
4927 defsubr (&Smessage_or_box);
4928 defsubr (&Scurrent_message);
4929 defsubr (&Sformat);
4930
4931 defsubr (&Sinsert_buffer_substring);
4932 defsubr (&Scompare_buffer_substrings);
4933 defsubr (&Ssubst_char_in_region);
4934 defsubr (&Stranslate_region_internal);
4935 defsubr (&Sdelete_region);
4936 defsubr (&Sdelete_and_extract_region);
4937 defsubr (&Swiden);
4938 defsubr (&Snarrow_to_region);
4939 defsubr (&Ssave_restriction);
4940 defsubr (&Stranspose_regions);
4941 }