Merge from trunk.
[bpt/emacs.git] / src / floatfns.c
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2011
4 Free Software Foundation, Inc.
5
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
8
9 This file is part of GNU Emacs.
10
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
23
24
25 /* ANSI C requires only these float functions:
26 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
28
29 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
30 Define HAVE_CBRT if you have cbrt.
31 Define HAVE_RINT if you have a working rint.
32 If you don't define these, then the appropriate routines will be simulated.
33
34 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
35 (This should happen automatically.)
36
37 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
38 This has no effect if HAVE_MATHERR is defined.
39
40 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
41 (What systems actually do this? Please let us know.)
42
43 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
44 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
45 range checking will happen before calling the float routines. This has
46 no effect if HAVE_MATHERR is defined (since matherr will be called when
47 a domain error occurs.)
48 */
49
50 #include <config.h>
51 #include <signal.h>
52 #include <setjmp.h>
53 #include "lisp.h"
54 #include "syssignal.h"
55
56 #include <float.h>
57 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
58 #ifndef IEEE_FLOATING_POINT
59 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
60 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
61 #define IEEE_FLOATING_POINT 1
62 #else
63 #define IEEE_FLOATING_POINT 0
64 #endif
65 #endif
66
67 #include <math.h>
68
69 /* This declaration is omitted on some systems, like Ultrix. */
70 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
71 extern double logb (double);
72 #endif /* not HPUX and HAVE_LOGB and no logb macro */
73
74 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
75 /* If those are defined, then this is probably a `matherr' machine. */
76 # ifndef HAVE_MATHERR
77 # define HAVE_MATHERR
78 # endif
79 #endif
80
81 #ifdef NO_MATHERR
82 #undef HAVE_MATHERR
83 #endif
84
85 #ifdef HAVE_MATHERR
86 # ifdef FLOAT_CHECK_ERRNO
87 # undef FLOAT_CHECK_ERRNO
88 # endif
89 # ifdef FLOAT_CHECK_DOMAIN
90 # undef FLOAT_CHECK_DOMAIN
91 # endif
92 #endif
93
94 #ifndef NO_FLOAT_CHECK_ERRNO
95 #define FLOAT_CHECK_ERRNO
96 #endif
97
98 #ifdef FLOAT_CHECK_ERRNO
99 # include <errno.h>
100 #endif
101
102 #ifdef FLOAT_CATCH_SIGILL
103 static void float_error ();
104 #endif
105
106 /* Nonzero while executing in floating point.
107 This tells float_error what to do. */
108
109 static int in_float;
110
111 /* If an argument is out of range for a mathematical function,
112 here is the actual argument value to use in the error message.
113 These variables are used only across the floating point library call
114 so there is no need to staticpro them. */
115
116 static Lisp_Object float_error_arg, float_error_arg2;
117
118 static const char *float_error_fn_name;
119
120 /* Evaluate the floating point expression D, recording NUM
121 as the original argument for error messages.
122 D is normally an assignment expression.
123 Handle errors which may result in signals or may set errno.
124
125 Note that float_error may be declared to return void, so you can't
126 just cast the zero after the colon to (void) to make the types
127 check properly. */
128
129 #ifdef FLOAT_CHECK_ERRNO
130 #define IN_FLOAT(d, name, num) \
131 do { \
132 float_error_arg = num; \
133 float_error_fn_name = name; \
134 in_float = 1; errno = 0; (d); in_float = 0; \
135 switch (errno) { \
136 case 0: break; \
137 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
138 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
139 default: arith_error (float_error_fn_name, float_error_arg); \
140 } \
141 } while (0)
142 #define IN_FLOAT2(d, name, num, num2) \
143 do { \
144 float_error_arg = num; \
145 float_error_arg2 = num2; \
146 float_error_fn_name = name; \
147 in_float = 1; errno = 0; (d); in_float = 0; \
148 switch (errno) { \
149 case 0: break; \
150 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
151 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
152 default: arith_error (float_error_fn_name, float_error_arg); \
153 } \
154 } while (0)
155 #else
156 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
157 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
158 #endif
159
160 /* Convert float to Lisp_Int if it fits, else signal a range error
161 using the given arguments. */
162 #define FLOAT_TO_INT(x, i, name, num) \
163 do \
164 { \
165 if (FIXNUM_OVERFLOW_P (x)) \
166 range_error (name, num); \
167 XSETINT (i, (EMACS_INT)(x)); \
168 } \
169 while (0)
170 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
171 do \
172 { \
173 if (FIXNUM_OVERFLOW_P (x)) \
174 range_error2 (name, num1, num2); \
175 XSETINT (i, (EMACS_INT)(x)); \
176 } \
177 while (0)
178
179 #define arith_error(op,arg) \
180 xsignal2 (Qarith_error, build_string ((op)), (arg))
181 #define range_error(op,arg) \
182 xsignal2 (Qrange_error, build_string ((op)), (arg))
183 #define range_error2(op,a1,a2) \
184 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
185 #define domain_error(op,arg) \
186 xsignal2 (Qdomain_error, build_string ((op)), (arg))
187 #ifdef FLOAT_CHECK_DOMAIN
188 #define domain_error2(op,a1,a2) \
189 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
190 #endif
191
192 /* Extract a Lisp number as a `double', or signal an error. */
193
194 double
195 extract_float (Lisp_Object num)
196 {
197 CHECK_NUMBER_OR_FLOAT (num);
198
199 if (FLOATP (num))
200 return XFLOAT_DATA (num);
201 return (double) XINT (num);
202 }
203 \f
204 /* Trig functions. */
205
206 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
207 doc: /* Return the inverse cosine of ARG. */)
208 (register Lisp_Object arg)
209 {
210 double d = extract_float (arg);
211 #ifdef FLOAT_CHECK_DOMAIN
212 if (d > 1.0 || d < -1.0)
213 domain_error ("acos", arg);
214 #endif
215 IN_FLOAT (d = acos (d), "acos", arg);
216 return make_float (d);
217 }
218
219 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
220 doc: /* Return the inverse sine of ARG. */)
221 (register Lisp_Object arg)
222 {
223 double d = extract_float (arg);
224 #ifdef FLOAT_CHECK_DOMAIN
225 if (d > 1.0 || d < -1.0)
226 domain_error ("asin", arg);
227 #endif
228 IN_FLOAT (d = asin (d), "asin", arg);
229 return make_float (d);
230 }
231
232 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
233 doc: /* Return the inverse tangent of the arguments.
234 If only one argument Y is given, return the inverse tangent of Y.
235 If two arguments Y and X are given, return the inverse tangent of Y
236 divided by X, i.e. the angle in radians between the vector (X, Y)
237 and the x-axis. */)
238 (register Lisp_Object y, Lisp_Object x)
239 {
240 double d = extract_float (y);
241
242 if (NILP (x))
243 IN_FLOAT (d = atan (d), "atan", y);
244 else
245 {
246 double d2 = extract_float (x);
247
248 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
249 }
250 return make_float (d);
251 }
252
253 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
254 doc: /* Return the cosine of ARG. */)
255 (register Lisp_Object arg)
256 {
257 double d = extract_float (arg);
258 IN_FLOAT (d = cos (d), "cos", arg);
259 return make_float (d);
260 }
261
262 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
263 doc: /* Return the sine of ARG. */)
264 (register Lisp_Object arg)
265 {
266 double d = extract_float (arg);
267 IN_FLOAT (d = sin (d), "sin", arg);
268 return make_float (d);
269 }
270
271 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
272 doc: /* Return the tangent of ARG. */)
273 (register Lisp_Object arg)
274 {
275 double d = extract_float (arg);
276 double c = cos (d);
277 #ifdef FLOAT_CHECK_DOMAIN
278 if (c == 0.0)
279 domain_error ("tan", arg);
280 #endif
281 IN_FLOAT (d = sin (d) / c, "tan", arg);
282 return make_float (d);
283 }
284
285 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
286 DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
287 doc: /* Return non nil iff argument X is a NaN. */)
288 (Lisp_Object x)
289 {
290 CHECK_FLOAT (x);
291 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
292 }
293
294 DEFUN ("copysign", Fcopysign, Scopysign, 1, 2, 0,
295 doc: /* Copy sign of X2 to value of X1, and return the result.
296 Cause an error if X1 or X2 is not a float. */)
297 (Lisp_Object x1, Lisp_Object x2)
298 {
299 double f1, f2;
300
301 CHECK_FLOAT (x1);
302 CHECK_FLOAT (x2);
303
304 f1 = XFLOAT_DATA (x1);
305 f2 = XFLOAT_DATA (x2);
306
307 return make_float (copysign (f1, f2));
308 }
309
310 DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
311 doc: /* Get significand and exponent of a floating point number.
312 Breaks the floating point number X into its binary significand SGNFCAND
313 \(a floating point value between 0.5 (included) and 1.0 (excluded))
314 and an integral exponent EXP for 2, such that:
315
316 X = SGNFCAND * 2^EXP
317
318 The function returns the cons cell (SGNFCAND . EXP).
319 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
320 (Lisp_Object x)
321 {
322 double f = XFLOATINT (x);
323
324 if (f == 0.0)
325 return Fcons (make_float (0.0), make_number (0));
326 else
327 {
328 int exponent;
329 double sgnfcand = frexp (f, &exponent);
330 return Fcons (make_float (sgnfcand), make_number (exponent));
331 }
332 }
333
334 DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
335 doc: /* Construct number X from significand SGNFCAND and exponent EXP.
336 Returns the floating point value resulting from multiplying SGNFCAND
337 (the significand) by 2 raised to the power of EXP (the exponent). */)
338 (Lisp_Object sgnfcand, Lisp_Object exponent)
339 {
340 CHECK_NUMBER (exponent);
341 return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
342 }
343 #endif
344 \f
345 #if 0 /* Leave these out unless we find there's a reason for them. */
346
347 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
348 doc: /* Return the bessel function j0 of ARG. */)
349 (register Lisp_Object arg)
350 {
351 double d = extract_float (arg);
352 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
353 return make_float (d);
354 }
355
356 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
357 doc: /* Return the bessel function j1 of ARG. */)
358 (register Lisp_Object arg)
359 {
360 double d = extract_float (arg);
361 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
362 return make_float (d);
363 }
364
365 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
366 doc: /* Return the order N bessel function output jn of ARG.
367 The first arg (the order) is truncated to an integer. */)
368 (register Lisp_Object n, Lisp_Object arg)
369 {
370 int i1 = extract_float (n);
371 double f2 = extract_float (arg);
372
373 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
374 return make_float (f2);
375 }
376
377 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
378 doc: /* Return the bessel function y0 of ARG. */)
379 (register Lisp_Object arg)
380 {
381 double d = extract_float (arg);
382 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
383 return make_float (d);
384 }
385
386 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
387 doc: /* Return the bessel function y1 of ARG. */)
388 (register Lisp_Object arg)
389 {
390 double d = extract_float (arg);
391 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
392 return make_float (d);
393 }
394
395 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
396 doc: /* Return the order N bessel function output yn of ARG.
397 The first arg (the order) is truncated to an integer. */)
398 (register Lisp_Object n, Lisp_Object arg)
399 {
400 int i1 = extract_float (n);
401 double f2 = extract_float (arg);
402
403 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
404 return make_float (f2);
405 }
406
407 #endif
408 \f
409 #if 0 /* Leave these out unless we see they are worth having. */
410
411 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
412 doc: /* Return the mathematical error function of ARG. */)
413 (register Lisp_Object arg)
414 {
415 double d = extract_float (arg);
416 IN_FLOAT (d = erf (d), "erf", arg);
417 return make_float (d);
418 }
419
420 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
421 doc: /* Return the complementary error function of ARG. */)
422 (register Lisp_Object arg)
423 {
424 double d = extract_float (arg);
425 IN_FLOAT (d = erfc (d), "erfc", arg);
426 return make_float (d);
427 }
428
429 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
430 doc: /* Return the log gamma of ARG. */)
431 (register Lisp_Object arg)
432 {
433 double d = extract_float (arg);
434 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
435 return make_float (d);
436 }
437
438 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
439 doc: /* Return the cube root of ARG. */)
440 (register Lisp_Object arg)
441 {
442 double d = extract_float (arg);
443 #ifdef HAVE_CBRT
444 IN_FLOAT (d = cbrt (d), "cube-root", arg);
445 #else
446 if (d >= 0.0)
447 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
448 else
449 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
450 #endif
451 return make_float (d);
452 }
453
454 #endif
455 \f
456 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
457 doc: /* Return the exponential base e of ARG. */)
458 (register Lisp_Object arg)
459 {
460 double d = extract_float (arg);
461 #ifdef FLOAT_CHECK_DOMAIN
462 if (d > 709.7827) /* Assume IEEE doubles here */
463 range_error ("exp", arg);
464 else if (d < -709.0)
465 return make_float (0.0);
466 else
467 #endif
468 IN_FLOAT (d = exp (d), "exp", arg);
469 return make_float (d);
470 }
471
472 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
473 doc: /* Return the exponential ARG1 ** ARG2. */)
474 (register Lisp_Object arg1, Lisp_Object arg2)
475 {
476 double f1, f2, f3;
477
478 CHECK_NUMBER_OR_FLOAT (arg1);
479 CHECK_NUMBER_OR_FLOAT (arg2);
480 if (INTEGERP (arg1) /* common lisp spec */
481 && INTEGERP (arg2) /* don't promote, if both are ints, and */
482 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
483 { /* this can be improved by pre-calculating */
484 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
485 Lisp_Object val;
486
487 x = XINT (arg1);
488 y = XINT (arg2);
489 acc = 1;
490
491 if (y < 0)
492 {
493 if (x == 1)
494 acc = 1;
495 else if (x == -1)
496 acc = (y & 1) ? -1 : 1;
497 else
498 acc = 0;
499 }
500 else
501 {
502 while (y > 0)
503 {
504 if (y & 1)
505 acc *= x;
506 x *= x;
507 y >>= 1;
508 }
509 }
510 XSETINT (val, acc);
511 return val;
512 }
513 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
514 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
515 /* Really should check for overflow, too */
516 if (f1 == 0.0 && f2 == 0.0)
517 f1 = 1.0;
518 #ifdef FLOAT_CHECK_DOMAIN
519 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
520 domain_error2 ("expt", arg1, arg2);
521 #endif
522 IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
523 /* Check for overflow in the result. */
524 if (f1 != 0.0 && f3 == 0.0)
525 range_error ("expt", arg1);
526 return make_float (f3);
527 }
528
529 DEFUN ("log", Flog, Slog, 1, 2, 0,
530 doc: /* Return the natural logarithm of ARG.
531 If the optional argument BASE is given, return log ARG using that base. */)
532 (register Lisp_Object arg, Lisp_Object base)
533 {
534 double d = extract_float (arg);
535
536 #ifdef FLOAT_CHECK_DOMAIN
537 if (d <= 0.0)
538 domain_error2 ("log", arg, base);
539 #endif
540 if (NILP (base))
541 IN_FLOAT (d = log (d), "log", arg);
542 else
543 {
544 double b = extract_float (base);
545
546 #ifdef FLOAT_CHECK_DOMAIN
547 if (b <= 0.0 || b == 1.0)
548 domain_error2 ("log", arg, base);
549 #endif
550 if (b == 10.0)
551 IN_FLOAT2 (d = log10 (d), "log", arg, base);
552 else
553 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
554 }
555 return make_float (d);
556 }
557
558 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
559 doc: /* Return the logarithm base 10 of ARG. */)
560 (register Lisp_Object arg)
561 {
562 double d = extract_float (arg);
563 #ifdef FLOAT_CHECK_DOMAIN
564 if (d <= 0.0)
565 domain_error ("log10", arg);
566 #endif
567 IN_FLOAT (d = log10 (d), "log10", arg);
568 return make_float (d);
569 }
570
571 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
572 doc: /* Return the square root of ARG. */)
573 (register Lisp_Object arg)
574 {
575 double d = extract_float (arg);
576 #ifdef FLOAT_CHECK_DOMAIN
577 if (d < 0.0)
578 domain_error ("sqrt", arg);
579 #endif
580 IN_FLOAT (d = sqrt (d), "sqrt", arg);
581 return make_float (d);
582 }
583 \f
584 #if 0 /* Not clearly worth adding. */
585
586 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
587 doc: /* Return the inverse hyperbolic cosine of ARG. */)
588 (register Lisp_Object arg)
589 {
590 double d = extract_float (arg);
591 #ifdef FLOAT_CHECK_DOMAIN
592 if (d < 1.0)
593 domain_error ("acosh", arg);
594 #endif
595 #ifdef HAVE_INVERSE_HYPERBOLIC
596 IN_FLOAT (d = acosh (d), "acosh", arg);
597 #else
598 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
599 #endif
600 return make_float (d);
601 }
602
603 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
604 doc: /* Return the inverse hyperbolic sine of ARG. */)
605 (register Lisp_Object arg)
606 {
607 double d = extract_float (arg);
608 #ifdef HAVE_INVERSE_HYPERBOLIC
609 IN_FLOAT (d = asinh (d), "asinh", arg);
610 #else
611 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
612 #endif
613 return make_float (d);
614 }
615
616 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
617 doc: /* Return the inverse hyperbolic tangent of ARG. */)
618 (register Lisp_Object arg)
619 {
620 double d = extract_float (arg);
621 #ifdef FLOAT_CHECK_DOMAIN
622 if (d >= 1.0 || d <= -1.0)
623 domain_error ("atanh", arg);
624 #endif
625 #ifdef HAVE_INVERSE_HYPERBOLIC
626 IN_FLOAT (d = atanh (d), "atanh", arg);
627 #else
628 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
629 #endif
630 return make_float (d);
631 }
632
633 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
634 doc: /* Return the hyperbolic cosine of ARG. */)
635 (register Lisp_Object arg)
636 {
637 double d = extract_float (arg);
638 #ifdef FLOAT_CHECK_DOMAIN
639 if (d > 710.0 || d < -710.0)
640 range_error ("cosh", arg);
641 #endif
642 IN_FLOAT (d = cosh (d), "cosh", arg);
643 return make_float (d);
644 }
645
646 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
647 doc: /* Return the hyperbolic sine of ARG. */)
648 (register Lisp_Object arg)
649 {
650 double d = extract_float (arg);
651 #ifdef FLOAT_CHECK_DOMAIN
652 if (d > 710.0 || d < -710.0)
653 range_error ("sinh", arg);
654 #endif
655 IN_FLOAT (d = sinh (d), "sinh", arg);
656 return make_float (d);
657 }
658
659 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
660 doc: /* Return the hyperbolic tangent of ARG. */)
661 (register Lisp_Object arg)
662 {
663 double d = extract_float (arg);
664 IN_FLOAT (d = tanh (d), "tanh", arg);
665 return make_float (d);
666 }
667 #endif
668 \f
669 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
670 doc: /* Return the absolute value of ARG. */)
671 (register Lisp_Object arg)
672 {
673 CHECK_NUMBER_OR_FLOAT (arg);
674
675 if (FLOATP (arg))
676 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
677 else if (XINT (arg) < 0)
678 XSETINT (arg, - XINT (arg));
679
680 return arg;
681 }
682
683 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
684 doc: /* Return the floating point number equal to ARG. */)
685 (register Lisp_Object arg)
686 {
687 CHECK_NUMBER_OR_FLOAT (arg);
688
689 if (INTEGERP (arg))
690 return make_float ((double) XINT (arg));
691 else /* give 'em the same float back */
692 return arg;
693 }
694
695 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
696 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
697 This is the same as the exponent of a float. */)
698 (Lisp_Object arg)
699 {
700 Lisp_Object val;
701 EMACS_INT value;
702 double f = extract_float (arg);
703
704 if (f == 0.0)
705 value = MOST_NEGATIVE_FIXNUM;
706 else
707 {
708 #ifdef HAVE_LOGB
709 IN_FLOAT (value = logb (f), "logb", arg);
710 #else
711 #ifdef HAVE_FREXP
712 int ivalue;
713 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
714 value = ivalue - 1;
715 #else
716 int i;
717 double d;
718 if (f < 0.0)
719 f = -f;
720 value = -1;
721 while (f < 0.5)
722 {
723 for (i = 1, d = 0.5; d * d >= f; i += i)
724 d *= d;
725 f /= d;
726 value -= i;
727 }
728 while (f >= 1.0)
729 {
730 for (i = 1, d = 2.0; d * d <= f; i += i)
731 d *= d;
732 f /= d;
733 value += i;
734 }
735 #endif
736 #endif
737 }
738 XSETINT (val, value);
739 return val;
740 }
741
742
743 /* the rounding functions */
744
745 static Lisp_Object
746 rounding_driver (Lisp_Object arg, Lisp_Object divisor,
747 double (*double_round) (double),
748 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
749 const char *name)
750 {
751 CHECK_NUMBER_OR_FLOAT (arg);
752
753 if (! NILP (divisor))
754 {
755 EMACS_INT i1, i2;
756
757 CHECK_NUMBER_OR_FLOAT (divisor);
758
759 if (FLOATP (arg) || FLOATP (divisor))
760 {
761 double f1, f2;
762
763 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
764 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
765 if (! IEEE_FLOATING_POINT && f2 == 0)
766 xsignal0 (Qarith_error);
767
768 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
769 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
770 return arg;
771 }
772
773 i1 = XINT (arg);
774 i2 = XINT (divisor);
775
776 if (i2 == 0)
777 xsignal0 (Qarith_error);
778
779 XSETINT (arg, (*int_round2) (i1, i2));
780 return arg;
781 }
782
783 if (FLOATP (arg))
784 {
785 double d;
786
787 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
788 FLOAT_TO_INT (d, arg, name, arg);
789 }
790
791 return arg;
792 }
793
794 /* With C's /, the result is implementation-defined if either operand
795 is negative, so take care with negative operands in the following
796 integer functions. */
797
798 static EMACS_INT
799 ceiling2 (EMACS_INT i1, EMACS_INT i2)
800 {
801 return (i2 < 0
802 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
803 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
804 }
805
806 static EMACS_INT
807 floor2 (EMACS_INT i1, EMACS_INT i2)
808 {
809 return (i2 < 0
810 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
811 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
812 }
813
814 static EMACS_INT
815 truncate2 (EMACS_INT i1, EMACS_INT i2)
816 {
817 return (i2 < 0
818 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
819 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
820 }
821
822 static EMACS_INT
823 round2 (EMACS_INT i1, EMACS_INT i2)
824 {
825 /* The C language's division operator gives us one remainder R, but
826 we want the remainder R1 on the other side of 0 if R1 is closer
827 to 0 than R is; because we want to round to even, we also want R1
828 if R and R1 are the same distance from 0 and if C's quotient is
829 odd. */
830 EMACS_INT q = i1 / i2;
831 EMACS_INT r = i1 % i2;
832 EMACS_INT abs_r = r < 0 ? -r : r;
833 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
834 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
835 }
836
837 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
838 if `rint' exists but does not work right. */
839 #ifdef HAVE_RINT
840 #define emacs_rint rint
841 #else
842 static double
843 emacs_rint (double d)
844 {
845 return floor (d + 0.5);
846 }
847 #endif
848
849 static double
850 double_identity (double d)
851 {
852 return d;
853 }
854
855 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
856 doc: /* Return the smallest integer no less than ARG.
857 This rounds the value towards +inf.
858 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
859 (Lisp_Object arg, Lisp_Object divisor)
860 {
861 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
862 }
863
864 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
865 doc: /* Return the largest integer no greater than ARG.
866 This rounds the value towards -inf.
867 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
868 (Lisp_Object arg, Lisp_Object divisor)
869 {
870 return rounding_driver (arg, divisor, floor, floor2, "floor");
871 }
872
873 DEFUN ("round", Fround, Sround, 1, 2, 0,
874 doc: /* Return the nearest integer to ARG.
875 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
876
877 Rounding a value equidistant between two integers may choose the
878 integer closer to zero, or it may prefer an even integer, depending on
879 your machine. For example, \(round 2.5\) can return 3 on some
880 systems, but 2 on others. */)
881 (Lisp_Object arg, Lisp_Object divisor)
882 {
883 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
884 }
885
886 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
887 doc: /* Truncate a floating point number to an int.
888 Rounds ARG toward zero.
889 With optional DIVISOR, truncate ARG/DIVISOR. */)
890 (Lisp_Object arg, Lisp_Object divisor)
891 {
892 return rounding_driver (arg, divisor, double_identity, truncate2,
893 "truncate");
894 }
895
896
897 Lisp_Object
898 fmod_float (Lisp_Object x, Lisp_Object y)
899 {
900 double f1, f2;
901
902 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
903 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
904
905 if (! IEEE_FLOATING_POINT && f2 == 0)
906 xsignal0 (Qarith_error);
907
908 /* If the "remainder" comes out with the wrong sign, fix it. */
909 IN_FLOAT2 ((f1 = fmod (f1, f2),
910 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
911 "mod", x, y);
912 return make_float (f1);
913 }
914 \f
915 /* It's not clear these are worth adding. */
916
917 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
918 doc: /* Return the smallest integer no less than ARG, as a float.
919 \(Round toward +inf.\) */)
920 (register Lisp_Object arg)
921 {
922 double d = extract_float (arg);
923 IN_FLOAT (d = ceil (d), "fceiling", arg);
924 return make_float (d);
925 }
926
927 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
928 doc: /* Return the largest integer no greater than ARG, as a float.
929 \(Round towards -inf.\) */)
930 (register Lisp_Object arg)
931 {
932 double d = extract_float (arg);
933 IN_FLOAT (d = floor (d), "ffloor", arg);
934 return make_float (d);
935 }
936
937 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
938 doc: /* Return the nearest integer to ARG, as a float. */)
939 (register Lisp_Object arg)
940 {
941 double d = extract_float (arg);
942 IN_FLOAT (d = emacs_rint (d), "fround", arg);
943 return make_float (d);
944 }
945
946 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
947 doc: /* Truncate a floating point number to an integral float value.
948 Rounds the value toward zero. */)
949 (register Lisp_Object arg)
950 {
951 double d = extract_float (arg);
952 if (d >= 0.0)
953 IN_FLOAT (d = floor (d), "ftruncate", arg);
954 else
955 IN_FLOAT (d = ceil (d), "ftruncate", arg);
956 return make_float (d);
957 }
958 \f
959 #ifdef FLOAT_CATCH_SIGILL
960 static void
961 float_error (int signo)
962 {
963 if (! in_float)
964 fatal_error_signal (signo);
965
966 #ifdef BSD_SYSTEM
967 sigsetmask (SIGEMPTYMASK);
968 #else
969 /* Must reestablish handler each time it is called. */
970 signal (SIGILL, float_error);
971 #endif /* BSD_SYSTEM */
972
973 SIGNAL_THREAD_CHECK (signo);
974 in_float = 0;
975
976 xsignal1 (Qarith_error, float_error_arg);
977 }
978
979 /* Another idea was to replace the library function `infnan'
980 where SIGILL is signaled. */
981
982 #endif /* FLOAT_CATCH_SIGILL */
983
984 #ifdef HAVE_MATHERR
985 int
986 matherr (struct exception *x)
987 {
988 Lisp_Object args;
989 const char *name = x->name;
990
991 if (! in_float)
992 /* Not called from emacs-lisp float routines; do the default thing. */
993 return 0;
994 if (!strcmp (x->name, "pow"))
995 name = "expt";
996
997 args
998 = Fcons (build_string (name),
999 Fcons (make_float (x->arg1),
1000 ((!strcmp (name, "log") || !strcmp (name, "pow"))
1001 ? Fcons (make_float (x->arg2), Qnil)
1002 : Qnil)));
1003 switch (x->type)
1004 {
1005 case DOMAIN: xsignal (Qdomain_error, args); break;
1006 case SING: xsignal (Qsingularity_error, args); break;
1007 case OVERFLOW: xsignal (Qoverflow_error, args); break;
1008 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
1009 default: xsignal (Qarith_error, args); break;
1010 }
1011 return (1); /* don't set errno or print a message */
1012 }
1013 #endif /* HAVE_MATHERR */
1014
1015 void
1016 init_floatfns (void)
1017 {
1018 #ifdef FLOAT_CATCH_SIGILL
1019 signal (SIGILL, float_error);
1020 #endif
1021 in_float = 0;
1022 }
1023
1024 void
1025 syms_of_floatfns (void)
1026 {
1027 defsubr (&Sacos);
1028 defsubr (&Sasin);
1029 defsubr (&Satan);
1030 defsubr (&Scos);
1031 defsubr (&Ssin);
1032 defsubr (&Stan);
1033 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
1034 defsubr (&Sisnan);
1035 defsubr (&Scopysign);
1036 defsubr (&Sfrexp);
1037 defsubr (&Sldexp);
1038 #endif
1039 #if 0
1040 defsubr (&Sacosh);
1041 defsubr (&Sasinh);
1042 defsubr (&Satanh);
1043 defsubr (&Scosh);
1044 defsubr (&Ssinh);
1045 defsubr (&Stanh);
1046 defsubr (&Sbessel_y0);
1047 defsubr (&Sbessel_y1);
1048 defsubr (&Sbessel_yn);
1049 defsubr (&Sbessel_j0);
1050 defsubr (&Sbessel_j1);
1051 defsubr (&Sbessel_jn);
1052 defsubr (&Serf);
1053 defsubr (&Serfc);
1054 defsubr (&Slog_gamma);
1055 defsubr (&Scube_root);
1056 #endif
1057 defsubr (&Sfceiling);
1058 defsubr (&Sffloor);
1059 defsubr (&Sfround);
1060 defsubr (&Sftruncate);
1061 defsubr (&Sexp);
1062 defsubr (&Sexpt);
1063 defsubr (&Slog);
1064 defsubr (&Slog10);
1065 defsubr (&Ssqrt);
1066
1067 defsubr (&Sabs);
1068 defsubr (&Sfloat);
1069 defsubr (&Slogb);
1070 defsubr (&Sceiling);
1071 defsubr (&Sfloor);
1072 defsubr (&Sround);
1073 defsubr (&Struncate);
1074 }