Avoid call to strlen in fast_c_string_match_ignore_case.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "character.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is nonzero if we want full backtracking (POSIX style)
116 for this pattern. 0 means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
122 {
123 char *val;
124 reg_syntax_t old;
125
126 cp->regexp = Qnil;
127 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
128 cp->posix = posix;
129 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
130 cp->buf.charset_unibyte = charset_unibyte;
131 if (STRINGP (Vsearch_spaces_regexp))
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 else
134 cp->whitespace_regexp = Qnil;
135
136 /* rms: I think BLOCK_INPUT is not needed here any more,
137 because regex.c defines malloc to call xmalloc.
138 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
139 So let's turn it off. */
140 /* BLOCK_INPUT; */
141 old = re_set_syntax (RE_SYNTAX_EMACS
142 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
143
144 if (STRINGP (Vsearch_spaces_regexp))
145 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
146 else
147 re_set_whitespace_regexp (NULL);
148
149 val = (char *) re_compile_pattern (SSDATA (pattern),
150 SBYTES (pattern), &cp->buf);
151
152 /* If the compiled pattern hard codes some of the contents of the
153 syntax-table, it can only be reused with *this* syntax table. */
154 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
155
156 re_set_whitespace_regexp (NULL);
157
158 re_set_syntax (old);
159 /* UNBLOCK_INPUT; */
160 if (val)
161 xsignal1 (Qinvalid_regexp, build_string (val));
162
163 cp->regexp = Fcopy_sequence (pattern);
164 }
165
166 /* Shrink each compiled regexp buffer in the cache
167 to the size actually used right now.
168 This is called from garbage collection. */
169
170 void
171 shrink_regexp_cache (void)
172 {
173 struct regexp_cache *cp;
174
175 for (cp = searchbuf_head; cp != 0; cp = cp->next)
176 {
177 cp->buf.allocated = cp->buf.used;
178 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
179 }
180 }
181
182 /* Clear the regexp cache w.r.t. a particular syntax table,
183 because it was changed.
184 There is no danger of memory leak here because re_compile_pattern
185 automagically manages the memory in each re_pattern_buffer struct,
186 based on its `allocated' and `buffer' values. */
187 void
188 clear_regexp_cache (void)
189 {
190 int i;
191
192 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
193 /* It's tempting to compare with the syntax-table we've actually changed,
194 but it's not sufficient because char-table inheritance means that
195 modifying one syntax-table can change others at the same time. */
196 if (!EQ (searchbufs[i].syntax_table, Qt))
197 searchbufs[i].regexp = Qnil;
198 }
199
200 /* Compile a regexp if necessary, but first check to see if there's one in
201 the cache.
202 PATTERN is the pattern to compile.
203 TRANSLATE is a translation table for ignoring case, or nil for none.
204 REGP is the structure that says where to store the "register"
205 values that will result from matching this pattern.
206 If it is 0, we should compile the pattern not to record any
207 subexpression bounds.
208 POSIX is nonzero if we want full backtracking (POSIX style)
209 for this pattern. 0 means backtrack only enough to get a valid match. */
210
211 struct re_pattern_buffer *
212 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
213 {
214 struct regexp_cache *cp, **cpp;
215
216 for (cpp = &searchbuf_head; ; cpp = &cp->next)
217 {
218 cp = *cpp;
219 /* Entries are initialized to nil, and may be set to nil by
220 compile_pattern_1 if the pattern isn't valid. Don't apply
221 string accessors in those cases. However, compile_pattern_1
222 is only applied to the cache entry we pick here to reuse. So
223 nil should never appear before a non-nil entry. */
224 if (NILP (cp->regexp))
225 goto compile_it;
226 if (SCHARS (cp->regexp) == SCHARS (pattern)
227 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
228 && !NILP (Fstring_equal (cp->regexp, pattern))
229 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
230 && cp->posix == posix
231 && (EQ (cp->syntax_table, Qt)
232 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
233 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
234 && cp->buf.charset_unibyte == charset_unibyte)
235 break;
236
237 /* If we're at the end of the cache, compile into the nil cell
238 we found, or the last (least recently used) cell with a
239 string value. */
240 if (cp->next == 0)
241 {
242 compile_it:
243 compile_pattern_1 (cp, pattern, translate, posix);
244 break;
245 }
246 }
247
248 /* When we get here, cp (aka *cpp) contains the compiled pattern,
249 either because we found it in the cache or because we just compiled it.
250 Move it to the front of the queue to mark it as most recently used. */
251 *cpp = cp->next;
252 cp->next = searchbuf_head;
253 searchbuf_head = cp;
254
255 /* Advise the searching functions about the space we have allocated
256 for register data. */
257 if (regp)
258 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
259
260 /* The compiled pattern can be used both for multibyte and unibyte
261 target. But, we have to tell which the pattern is used for. */
262 cp->buf.target_multibyte = multibyte;
263
264 return &cp->buf;
265 }
266
267 \f
268 static Lisp_Object
269 looking_at_1 (Lisp_Object string, int posix)
270 {
271 Lisp_Object val;
272 unsigned char *p1, *p2;
273 ptrdiff_t s1, s2;
274 register ptrdiff_t i;
275 struct re_pattern_buffer *bufp;
276
277 if (running_asynch_code)
278 save_search_regs ();
279
280 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
281 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
282 = BVAR (current_buffer, case_eqv_table);
283
284 CHECK_STRING (string);
285 bufp = compile_pattern (string,
286 (NILP (Vinhibit_changing_match_data)
287 ? &search_regs : NULL),
288 (!NILP (BVAR (current_buffer, case_fold_search))
289 ? BVAR (current_buffer, case_canon_table) : Qnil),
290 posix,
291 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
292
293 immediate_quit = 1;
294 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
295
296 /* Get pointers and sizes of the two strings
297 that make up the visible portion of the buffer. */
298
299 p1 = BEGV_ADDR;
300 s1 = GPT_BYTE - BEGV_BYTE;
301 p2 = GAP_END_ADDR;
302 s2 = ZV_BYTE - GPT_BYTE;
303 if (s1 < 0)
304 {
305 p2 = p1;
306 s2 = ZV_BYTE - BEGV_BYTE;
307 s1 = 0;
308 }
309 if (s2 < 0)
310 {
311 s1 = ZV_BYTE - BEGV_BYTE;
312 s2 = 0;
313 }
314
315 re_match_object = Qnil;
316
317 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
318 PT_BYTE - BEGV_BYTE,
319 (NILP (Vinhibit_changing_match_data)
320 ? &search_regs : NULL),
321 ZV_BYTE - BEGV_BYTE);
322 immediate_quit = 0;
323
324 if (i == -2)
325 matcher_overflow ();
326
327 val = (0 <= i ? Qt : Qnil);
328 if (NILP (Vinhibit_changing_match_data) && i >= 0)
329 for (i = 0; i < search_regs.num_regs; i++)
330 if (search_regs.start[i] >= 0)
331 {
332 search_regs.start[i]
333 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
334 search_regs.end[i]
335 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
336 }
337
338 /* Set last_thing_searched only when match data is changed. */
339 if (NILP (Vinhibit_changing_match_data))
340 XSETBUFFER (last_thing_searched, current_buffer);
341
342 return val;
343 }
344
345 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
346 doc: /* Return t if text after point matches regular expression REGEXP.
347 This function modifies the match data that `match-beginning',
348 `match-end' and `match-data' access; save and restore the match
349 data if you want to preserve them. */)
350 (Lisp_Object regexp)
351 {
352 return looking_at_1 (regexp, 0);
353 }
354
355 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
356 doc: /* Return t if text after point matches regular expression REGEXP.
357 Find the longest match, in accord with Posix regular expression rules.
358 This function modifies the match data that `match-beginning',
359 `match-end' and `match-data' access; save and restore the match
360 data if you want to preserve them. */)
361 (Lisp_Object regexp)
362 {
363 return looking_at_1 (regexp, 1);
364 }
365 \f
366 static Lisp_Object
367 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
368 {
369 ptrdiff_t val;
370 struct re_pattern_buffer *bufp;
371 EMACS_INT pos;
372 ptrdiff_t pos_byte, i;
373
374 if (running_asynch_code)
375 save_search_regs ();
376
377 CHECK_STRING (regexp);
378 CHECK_STRING (string);
379
380 if (NILP (start))
381 pos = 0, pos_byte = 0;
382 else
383 {
384 ptrdiff_t len = SCHARS (string);
385
386 CHECK_NUMBER (start);
387 pos = XINT (start);
388 if (pos < 0 && -pos <= len)
389 pos = len + pos;
390 else if (0 > pos || pos > len)
391 args_out_of_range (string, start);
392 pos_byte = string_char_to_byte (string, pos);
393 }
394
395 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
396 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
397 = BVAR (current_buffer, case_eqv_table);
398
399 bufp = compile_pattern (regexp,
400 (NILP (Vinhibit_changing_match_data)
401 ? &search_regs : NULL),
402 (!NILP (BVAR (current_buffer, case_fold_search))
403 ? BVAR (current_buffer, case_canon_table) : Qnil),
404 posix,
405 STRING_MULTIBYTE (string));
406 immediate_quit = 1;
407 re_match_object = string;
408
409 val = re_search (bufp, SSDATA (string),
410 SBYTES (string), pos_byte,
411 SBYTES (string) - pos_byte,
412 (NILP (Vinhibit_changing_match_data)
413 ? &search_regs : NULL));
414 immediate_quit = 0;
415
416 /* Set last_thing_searched only when match data is changed. */
417 if (NILP (Vinhibit_changing_match_data))
418 last_thing_searched = Qt;
419
420 if (val == -2)
421 matcher_overflow ();
422 if (val < 0) return Qnil;
423
424 if (NILP (Vinhibit_changing_match_data))
425 for (i = 0; i < search_regs.num_regs; i++)
426 if (search_regs.start[i] >= 0)
427 {
428 search_regs.start[i]
429 = string_byte_to_char (string, search_regs.start[i]);
430 search_regs.end[i]
431 = string_byte_to_char (string, search_regs.end[i]);
432 }
433
434 return make_number (string_byte_to_char (string, val));
435 }
436
437 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
438 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
439 Matching ignores case if `case-fold-search' is non-nil.
440 If third arg START is non-nil, start search at that index in STRING.
441 For index of first char beyond the match, do (match-end 0).
442 `match-end' and `match-beginning' also give indices of substrings
443 matched by parenthesis constructs in the pattern.
444
445 You can use the function `match-string' to extract the substrings
446 matched by the parenthesis constructions in REGEXP. */)
447 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
448 {
449 return string_match_1 (regexp, string, start, 0);
450 }
451
452 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
453 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
454 Find the longest match, in accord with Posix regular expression rules.
455 Case is ignored if `case-fold-search' is non-nil in the current buffer.
456 If third arg START is non-nil, start search at that index in STRING.
457 For index of first char beyond the match, do (match-end 0).
458 `match-end' and `match-beginning' also give indices of substrings
459 matched by parenthesis constructs in the pattern. */)
460 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
461 {
462 return string_match_1 (regexp, string, start, 1);
463 }
464
465 /* Match REGEXP against STRING, searching all of STRING,
466 and return the index of the match, or negative on failure.
467 This does not clobber the match data. */
468
469 ptrdiff_t
470 fast_string_match (Lisp_Object regexp, Lisp_Object string)
471 {
472 ptrdiff_t val;
473 struct re_pattern_buffer *bufp;
474
475 bufp = compile_pattern (regexp, 0, Qnil,
476 0, STRING_MULTIBYTE (string));
477 immediate_quit = 1;
478 re_match_object = string;
479
480 val = re_search (bufp, SSDATA (string),
481 SBYTES (string), 0,
482 SBYTES (string), 0);
483 immediate_quit = 0;
484 return val;
485 }
486
487 /* Match REGEXP against STRING, searching all of STRING ignoring case,
488 and return the index of the match, or negative on failure.
489 This does not clobber the match data.
490 We assume that STRING contains single-byte characters. */
491
492 ptrdiff_t
493 fast_c_string_match_ignore_case (Lisp_Object regexp,
494 const char *string, ptrdiff_t len)
495 {
496 ptrdiff_t val;
497 struct re_pattern_buffer *bufp;
498
499 regexp = string_make_unibyte (regexp);
500 re_match_object = Qt;
501 bufp = compile_pattern (regexp, 0,
502 Vascii_canon_table, 0,
503 0);
504 immediate_quit = 1;
505 val = re_search (bufp, string, len, 0, len, 0);
506 immediate_quit = 0;
507 return val;
508 }
509
510 /* Like fast_string_match but ignore case. */
511
512 ptrdiff_t
513 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
514 {
515 ptrdiff_t val;
516 struct re_pattern_buffer *bufp;
517
518 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
519 0, STRING_MULTIBYTE (string));
520 immediate_quit = 1;
521 re_match_object = string;
522
523 val = re_search (bufp, SSDATA (string),
524 SBYTES (string), 0,
525 SBYTES (string), 0);
526 immediate_quit = 0;
527 return val;
528 }
529 \f
530 /* Match REGEXP against the characters after POS to LIMIT, and return
531 the number of matched characters. If STRING is non-nil, match
532 against the characters in it. In that case, POS and LIMIT are
533 indices into the string. This function doesn't modify the match
534 data. */
535
536 ptrdiff_t
537 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
538 {
539 int multibyte;
540 struct re_pattern_buffer *buf;
541 unsigned char *p1, *p2;
542 ptrdiff_t s1, s2;
543 ptrdiff_t len;
544
545 if (STRINGP (string))
546 {
547 if (pos_byte < 0)
548 pos_byte = string_char_to_byte (string, pos);
549 if (limit_byte < 0)
550 limit_byte = string_char_to_byte (string, limit);
551 p1 = NULL;
552 s1 = 0;
553 p2 = SDATA (string);
554 s2 = SBYTES (string);
555 re_match_object = string;
556 multibyte = STRING_MULTIBYTE (string);
557 }
558 else
559 {
560 if (pos_byte < 0)
561 pos_byte = CHAR_TO_BYTE (pos);
562 if (limit_byte < 0)
563 limit_byte = CHAR_TO_BYTE (limit);
564 pos_byte -= BEGV_BYTE;
565 limit_byte -= BEGV_BYTE;
566 p1 = BEGV_ADDR;
567 s1 = GPT_BYTE - BEGV_BYTE;
568 p2 = GAP_END_ADDR;
569 s2 = ZV_BYTE - GPT_BYTE;
570 if (s1 < 0)
571 {
572 p2 = p1;
573 s2 = ZV_BYTE - BEGV_BYTE;
574 s1 = 0;
575 }
576 if (s2 < 0)
577 {
578 s1 = ZV_BYTE - BEGV_BYTE;
579 s2 = 0;
580 }
581 re_match_object = Qnil;
582 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
583 }
584
585 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
586 immediate_quit = 1;
587 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
588 pos_byte, NULL, limit_byte);
589 immediate_quit = 0;
590
591 return len;
592 }
593
594 \f
595 /* The newline cache: remembering which sections of text have no newlines. */
596
597 /* If the user has requested newline caching, make sure it's on.
598 Otherwise, make sure it's off.
599 This is our cheezy way of associating an action with the change of
600 state of a buffer-local variable. */
601 static void
602 newline_cache_on_off (struct buffer *buf)
603 {
604 if (NILP (BVAR (buf, cache_long_line_scans)))
605 {
606 /* It should be off. */
607 if (buf->newline_cache)
608 {
609 free_region_cache (buf->newline_cache);
610 buf->newline_cache = 0;
611 }
612 }
613 else
614 {
615 /* It should be on. */
616 if (buf->newline_cache == 0)
617 buf->newline_cache = new_region_cache ();
618 }
619 }
620
621 \f
622 /* Search for COUNT instances of the character TARGET between START and END.
623
624 If COUNT is positive, search forwards; END must be >= START.
625 If COUNT is negative, search backwards for the -COUNTth instance;
626 END must be <= START.
627 If COUNT is zero, do anything you please; run rogue, for all I care.
628
629 If END is zero, use BEGV or ZV instead, as appropriate for the
630 direction indicated by COUNT.
631
632 If we find COUNT instances, set *SHORTAGE to zero, and return the
633 position past the COUNTth match. Note that for reverse motion
634 this is not the same as the usual convention for Emacs motion commands.
635
636 If we don't find COUNT instances before reaching END, set *SHORTAGE
637 to the number of TARGETs left unfound, and return END.
638
639 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
640 except when inside redisplay. */
641
642 ptrdiff_t
643 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
644 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
645 {
646 struct region_cache *newline_cache;
647 int direction;
648
649 if (count > 0)
650 {
651 direction = 1;
652 if (! end) end = ZV;
653 }
654 else
655 {
656 direction = -1;
657 if (! end) end = BEGV;
658 }
659
660 newline_cache_on_off (current_buffer);
661 newline_cache = current_buffer->newline_cache;
662
663 if (shortage != 0)
664 *shortage = 0;
665
666 immediate_quit = allow_quit;
667
668 if (count > 0)
669 while (start != end)
670 {
671 /* Our innermost scanning loop is very simple; it doesn't know
672 about gaps, buffer ends, or the newline cache. ceiling is
673 the position of the last character before the next such
674 obstacle --- the last character the dumb search loop should
675 examine. */
676 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
677 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
678 ptrdiff_t tem;
679
680 /* If we're looking for a newline, consult the newline cache
681 to see where we can avoid some scanning. */
682 if (target == '\n' && newline_cache)
683 {
684 ptrdiff_t next_change;
685 immediate_quit = 0;
686 while (region_cache_forward
687 (current_buffer, newline_cache, start_byte, &next_change))
688 start_byte = next_change;
689 immediate_quit = allow_quit;
690
691 /* START should never be after END. */
692 if (start_byte > ceiling_byte)
693 start_byte = ceiling_byte;
694
695 /* Now the text after start is an unknown region, and
696 next_change is the position of the next known region. */
697 ceiling_byte = min (next_change - 1, ceiling_byte);
698 }
699
700 /* The dumb loop can only scan text stored in contiguous
701 bytes. BUFFER_CEILING_OF returns the last character
702 position that is contiguous, so the ceiling is the
703 position after that. */
704 tem = BUFFER_CEILING_OF (start_byte);
705 ceiling_byte = min (tem, ceiling_byte);
706
707 {
708 /* The termination address of the dumb loop. */
709 register unsigned char *ceiling_addr
710 = BYTE_POS_ADDR (ceiling_byte) + 1;
711 register unsigned char *cursor
712 = BYTE_POS_ADDR (start_byte);
713 unsigned char *base = cursor;
714
715 while (cursor < ceiling_addr)
716 {
717 unsigned char *scan_start = cursor;
718
719 /* The dumb loop. */
720 while (*cursor != target && ++cursor < ceiling_addr)
721 ;
722
723 /* If we're looking for newlines, cache the fact that
724 the region from start to cursor is free of them. */
725 if (target == '\n' && newline_cache)
726 know_region_cache (current_buffer, newline_cache,
727 BYTE_TO_CHAR (start_byte + scan_start - base),
728 BYTE_TO_CHAR (start_byte + cursor - base));
729
730 /* Did we find the target character? */
731 if (cursor < ceiling_addr)
732 {
733 if (--count == 0)
734 {
735 immediate_quit = 0;
736 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
737 }
738 cursor++;
739 }
740 }
741
742 start = BYTE_TO_CHAR (start_byte + cursor - base);
743 }
744 }
745 else
746 while (start > end)
747 {
748 /* The last character to check before the next obstacle. */
749 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
750 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
751 ptrdiff_t tem;
752
753 /* Consult the newline cache, if appropriate. */
754 if (target == '\n' && newline_cache)
755 {
756 ptrdiff_t next_change;
757 immediate_quit = 0;
758 while (region_cache_backward
759 (current_buffer, newline_cache, start_byte, &next_change))
760 start_byte = next_change;
761 immediate_quit = allow_quit;
762
763 /* Start should never be at or before end. */
764 if (start_byte <= ceiling_byte)
765 start_byte = ceiling_byte + 1;
766
767 /* Now the text before start is an unknown region, and
768 next_change is the position of the next known region. */
769 ceiling_byte = max (next_change, ceiling_byte);
770 }
771
772 /* Stop scanning before the gap. */
773 tem = BUFFER_FLOOR_OF (start_byte - 1);
774 ceiling_byte = max (tem, ceiling_byte);
775
776 {
777 /* The termination address of the dumb loop. */
778 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
779 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
780 unsigned char *base = cursor;
781
782 while (cursor >= ceiling_addr)
783 {
784 unsigned char *scan_start = cursor;
785
786 while (*cursor != target && --cursor >= ceiling_addr)
787 ;
788
789 /* If we're looking for newlines, cache the fact that
790 the region from after the cursor to start is free of them. */
791 if (target == '\n' && newline_cache)
792 know_region_cache (current_buffer, newline_cache,
793 BYTE_TO_CHAR (start_byte + cursor - base),
794 BYTE_TO_CHAR (start_byte + scan_start - base));
795
796 /* Did we find the target character? */
797 if (cursor >= ceiling_addr)
798 {
799 if (++count >= 0)
800 {
801 immediate_quit = 0;
802 return BYTE_TO_CHAR (start_byte + cursor - base);
803 }
804 cursor--;
805 }
806 }
807
808 start = BYTE_TO_CHAR (start_byte + cursor - base);
809 }
810 }
811
812 immediate_quit = 0;
813 if (shortage != 0)
814 *shortage = count * direction;
815 return start;
816 }
817 \f
818 /* Search for COUNT instances of a line boundary, which means either a
819 newline or (if selective display enabled) a carriage return.
820 Start at START. If COUNT is negative, search backwards.
821
822 We report the resulting position by calling TEMP_SET_PT_BOTH.
823
824 If we find COUNT instances. we position after (always after,
825 even if scanning backwards) the COUNTth match, and return 0.
826
827 If we don't find COUNT instances before reaching the end of the
828 buffer (or the beginning, if scanning backwards), we return
829 the number of line boundaries left unfound, and position at
830 the limit we bumped up against.
831
832 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
833 except in special cases. */
834
835 EMACS_INT
836 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
837 ptrdiff_t limit, ptrdiff_t limit_byte,
838 register EMACS_INT count, int allow_quit)
839 {
840 int direction = ((count > 0) ? 1 : -1);
841
842 register unsigned char *cursor;
843 unsigned char *base;
844
845 ptrdiff_t ceiling;
846 register unsigned char *ceiling_addr;
847
848 int old_immediate_quit = immediate_quit;
849
850 /* The code that follows is like scan_buffer
851 but checks for either newline or carriage return. */
852
853 if (allow_quit)
854 immediate_quit++;
855
856 start_byte = CHAR_TO_BYTE (start);
857
858 if (count > 0)
859 {
860 while (start_byte < limit_byte)
861 {
862 ceiling = BUFFER_CEILING_OF (start_byte);
863 ceiling = min (limit_byte - 1, ceiling);
864 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
865 base = (cursor = BYTE_POS_ADDR (start_byte));
866 while (1)
867 {
868 while (*cursor != '\n' && ++cursor != ceiling_addr)
869 ;
870
871 if (cursor != ceiling_addr)
872 {
873 if (--count == 0)
874 {
875 immediate_quit = old_immediate_quit;
876 start_byte = start_byte + cursor - base + 1;
877 start = BYTE_TO_CHAR (start_byte);
878 TEMP_SET_PT_BOTH (start, start_byte);
879 return 0;
880 }
881 else
882 if (++cursor == ceiling_addr)
883 break;
884 }
885 else
886 break;
887 }
888 start_byte += cursor - base;
889 }
890 }
891 else
892 {
893 while (start_byte > limit_byte)
894 {
895 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
896 ceiling = max (limit_byte, ceiling);
897 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
898 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
899 while (1)
900 {
901 while (--cursor != ceiling_addr && *cursor != '\n')
902 ;
903
904 if (cursor != ceiling_addr)
905 {
906 if (++count == 0)
907 {
908 immediate_quit = old_immediate_quit;
909 /* Return the position AFTER the match we found. */
910 start_byte = start_byte + cursor - base + 1;
911 start = BYTE_TO_CHAR (start_byte);
912 TEMP_SET_PT_BOTH (start, start_byte);
913 return 0;
914 }
915 }
916 else
917 break;
918 }
919 /* Here we add 1 to compensate for the last decrement
920 of CURSOR, which took it past the valid range. */
921 start_byte += cursor - base + 1;
922 }
923 }
924
925 TEMP_SET_PT_BOTH (limit, limit_byte);
926 immediate_quit = old_immediate_quit;
927
928 return count * direction;
929 }
930
931 ptrdiff_t
932 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
933 {
934 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
935 }
936
937 /* Like find_next_newline, but returns position before the newline,
938 not after, and only search up to TO. This isn't just
939 find_next_newline (...)-1, because you might hit TO. */
940
941 ptrdiff_t
942 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
943 {
944 ptrdiff_t shortage;
945 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
946
947 if (shortage == 0)
948 pos--;
949
950 return pos;
951 }
952 \f
953 /* Subroutines of Lisp buffer search functions. */
954
955 static Lisp_Object
956 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
957 Lisp_Object count, int direction, int RE, int posix)
958 {
959 register EMACS_INT np;
960 EMACS_INT lim;
961 ptrdiff_t lim_byte;
962 EMACS_INT n = direction;
963
964 if (!NILP (count))
965 {
966 CHECK_NUMBER (count);
967 n *= XINT (count);
968 }
969
970 CHECK_STRING (string);
971 if (NILP (bound))
972 {
973 if (n > 0)
974 lim = ZV, lim_byte = ZV_BYTE;
975 else
976 lim = BEGV, lim_byte = BEGV_BYTE;
977 }
978 else
979 {
980 CHECK_NUMBER_COERCE_MARKER (bound);
981 lim = XINT (bound);
982 if (n > 0 ? lim < PT : lim > PT)
983 error ("Invalid search bound (wrong side of point)");
984 if (lim > ZV)
985 lim = ZV, lim_byte = ZV_BYTE;
986 else if (lim < BEGV)
987 lim = BEGV, lim_byte = BEGV_BYTE;
988 else
989 lim_byte = CHAR_TO_BYTE (lim);
990 }
991
992 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
993 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
994 = BVAR (current_buffer, case_eqv_table);
995
996 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
997 (!NILP (BVAR (current_buffer, case_fold_search))
998 ? BVAR (current_buffer, case_canon_table)
999 : Qnil),
1000 (!NILP (BVAR (current_buffer, case_fold_search))
1001 ? BVAR (current_buffer, case_eqv_table)
1002 : Qnil),
1003 posix);
1004 if (np <= 0)
1005 {
1006 if (NILP (noerror))
1007 xsignal1 (Qsearch_failed, string);
1008
1009 if (!EQ (noerror, Qt))
1010 {
1011 if (lim < BEGV || lim > ZV)
1012 abort ();
1013 SET_PT_BOTH (lim, lim_byte);
1014 return Qnil;
1015 #if 0 /* This would be clean, but maybe programs depend on
1016 a value of nil here. */
1017 np = lim;
1018 #endif
1019 }
1020 else
1021 return Qnil;
1022 }
1023
1024 if (np < BEGV || np > ZV)
1025 abort ();
1026
1027 SET_PT (np);
1028
1029 return make_number (np);
1030 }
1031 \f
1032 /* Return 1 if REGEXP it matches just one constant string. */
1033
1034 static int
1035 trivial_regexp_p (Lisp_Object regexp)
1036 {
1037 ptrdiff_t len = SBYTES (regexp);
1038 unsigned char *s = SDATA (regexp);
1039 while (--len >= 0)
1040 {
1041 switch (*s++)
1042 {
1043 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1044 return 0;
1045 case '\\':
1046 if (--len < 0)
1047 return 0;
1048 switch (*s++)
1049 {
1050 case '|': case '(': case ')': case '`': case '\'': case 'b':
1051 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1052 case 'S': case '=': case '{': case '}': case '_':
1053 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1054 case '1': case '2': case '3': case '4': case '5':
1055 case '6': case '7': case '8': case '9':
1056 return 0;
1057 }
1058 }
1059 }
1060 return 1;
1061 }
1062
1063 /* Search for the n'th occurrence of STRING in the current buffer,
1064 starting at position POS and stopping at position LIM,
1065 treating STRING as a literal string if RE is false or as
1066 a regular expression if RE is true.
1067
1068 If N is positive, searching is forward and LIM must be greater than POS.
1069 If N is negative, searching is backward and LIM must be less than POS.
1070
1071 Returns -x if x occurrences remain to be found (x > 0),
1072 or else the position at the beginning of the Nth occurrence
1073 (if searching backward) or the end (if searching forward).
1074
1075 POSIX is nonzero if we want full backtracking (POSIX style)
1076 for this pattern. 0 means backtrack only enough to get a valid match. */
1077
1078 #define TRANSLATE(out, trt, d) \
1079 do \
1080 { \
1081 if (! NILP (trt)) \
1082 { \
1083 Lisp_Object temp; \
1084 temp = Faref (trt, make_number (d)); \
1085 if (INTEGERP (temp)) \
1086 out = XINT (temp); \
1087 else \
1088 out = d; \
1089 } \
1090 else \
1091 out = d; \
1092 } \
1093 while (0)
1094
1095 /* Only used in search_buffer, to record the end position of the match
1096 when searching regexps and SEARCH_REGS should not be changed
1097 (i.e. Vinhibit_changing_match_data is non-nil). */
1098 static struct re_registers search_regs_1;
1099
1100 static EMACS_INT
1101 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1102 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1103 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1104 {
1105 ptrdiff_t len = SCHARS (string);
1106 ptrdiff_t len_byte = SBYTES (string);
1107 register ptrdiff_t i;
1108
1109 if (running_asynch_code)
1110 save_search_regs ();
1111
1112 /* Searching 0 times means don't move. */
1113 /* Null string is found at starting position. */
1114 if (len == 0 || n == 0)
1115 {
1116 set_search_regs (pos_byte, 0);
1117 return pos;
1118 }
1119
1120 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1121 {
1122 unsigned char *p1, *p2;
1123 ptrdiff_t s1, s2;
1124 struct re_pattern_buffer *bufp;
1125
1126 bufp = compile_pattern (string,
1127 (NILP (Vinhibit_changing_match_data)
1128 ? &search_regs : &search_regs_1),
1129 trt, posix,
1130 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1131
1132 immediate_quit = 1; /* Quit immediately if user types ^G,
1133 because letting this function finish
1134 can take too long. */
1135 QUIT; /* Do a pending quit right away,
1136 to avoid paradoxical behavior */
1137 /* Get pointers and sizes of the two strings
1138 that make up the visible portion of the buffer. */
1139
1140 p1 = BEGV_ADDR;
1141 s1 = GPT_BYTE - BEGV_BYTE;
1142 p2 = GAP_END_ADDR;
1143 s2 = ZV_BYTE - GPT_BYTE;
1144 if (s1 < 0)
1145 {
1146 p2 = p1;
1147 s2 = ZV_BYTE - BEGV_BYTE;
1148 s1 = 0;
1149 }
1150 if (s2 < 0)
1151 {
1152 s1 = ZV_BYTE - BEGV_BYTE;
1153 s2 = 0;
1154 }
1155 re_match_object = Qnil;
1156
1157 while (n < 0)
1158 {
1159 ptrdiff_t val;
1160
1161 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1162 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1163 (NILP (Vinhibit_changing_match_data)
1164 ? &search_regs : &search_regs_1),
1165 /* Don't allow match past current point */
1166 pos_byte - BEGV_BYTE);
1167 if (val == -2)
1168 {
1169 matcher_overflow ();
1170 }
1171 if (val >= 0)
1172 {
1173 if (NILP (Vinhibit_changing_match_data))
1174 {
1175 pos_byte = search_regs.start[0] + BEGV_BYTE;
1176 for (i = 0; i < search_regs.num_regs; i++)
1177 if (search_regs.start[i] >= 0)
1178 {
1179 search_regs.start[i]
1180 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1181 search_regs.end[i]
1182 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1183 }
1184 XSETBUFFER (last_thing_searched, current_buffer);
1185 /* Set pos to the new position. */
1186 pos = search_regs.start[0];
1187 }
1188 else
1189 {
1190 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1191 /* Set pos to the new position. */
1192 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1193 }
1194 }
1195 else
1196 {
1197 immediate_quit = 0;
1198 return (n);
1199 }
1200 n++;
1201 }
1202 while (n > 0)
1203 {
1204 ptrdiff_t val;
1205
1206 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1207 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1208 (NILP (Vinhibit_changing_match_data)
1209 ? &search_regs : &search_regs_1),
1210 lim_byte - BEGV_BYTE);
1211 if (val == -2)
1212 {
1213 matcher_overflow ();
1214 }
1215 if (val >= 0)
1216 {
1217 if (NILP (Vinhibit_changing_match_data))
1218 {
1219 pos_byte = search_regs.end[0] + BEGV_BYTE;
1220 for (i = 0; i < search_regs.num_regs; i++)
1221 if (search_regs.start[i] >= 0)
1222 {
1223 search_regs.start[i]
1224 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1225 search_regs.end[i]
1226 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1227 }
1228 XSETBUFFER (last_thing_searched, current_buffer);
1229 pos = search_regs.end[0];
1230 }
1231 else
1232 {
1233 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1234 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1235 }
1236 }
1237 else
1238 {
1239 immediate_quit = 0;
1240 return (0 - n);
1241 }
1242 n--;
1243 }
1244 immediate_quit = 0;
1245 return (pos);
1246 }
1247 else /* non-RE case */
1248 {
1249 unsigned char *raw_pattern, *pat;
1250 ptrdiff_t raw_pattern_size;
1251 ptrdiff_t raw_pattern_size_byte;
1252 unsigned char *patbuf;
1253 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1254 unsigned char *base_pat;
1255 /* Set to positive if we find a non-ASCII char that need
1256 translation. Otherwise set to zero later. */
1257 int char_base = -1;
1258 int boyer_moore_ok = 1;
1259
1260 /* MULTIBYTE says whether the text to be searched is multibyte.
1261 We must convert PATTERN to match that, or we will not really
1262 find things right. */
1263
1264 if (multibyte == STRING_MULTIBYTE (string))
1265 {
1266 raw_pattern = SDATA (string);
1267 raw_pattern_size = SCHARS (string);
1268 raw_pattern_size_byte = SBYTES (string);
1269 }
1270 else if (multibyte)
1271 {
1272 raw_pattern_size = SCHARS (string);
1273 raw_pattern_size_byte
1274 = count_size_as_multibyte (SDATA (string),
1275 raw_pattern_size);
1276 raw_pattern = alloca (raw_pattern_size_byte + 1);
1277 copy_text (SDATA (string), raw_pattern,
1278 SCHARS (string), 0, 1);
1279 }
1280 else
1281 {
1282 /* Converting multibyte to single-byte.
1283
1284 ??? Perhaps this conversion should be done in a special way
1285 by subtracting nonascii-insert-offset from each non-ASCII char,
1286 so that only the multibyte chars which really correspond to
1287 the chosen single-byte character set can possibly match. */
1288 raw_pattern_size = SCHARS (string);
1289 raw_pattern_size_byte = SCHARS (string);
1290 raw_pattern = alloca (raw_pattern_size + 1);
1291 copy_text (SDATA (string), raw_pattern,
1292 SBYTES (string), 1, 0);
1293 }
1294
1295 /* Copy and optionally translate the pattern. */
1296 len = raw_pattern_size;
1297 len_byte = raw_pattern_size_byte;
1298 patbuf = alloca (len * MAX_MULTIBYTE_LENGTH);
1299 pat = patbuf;
1300 base_pat = raw_pattern;
1301 if (multibyte)
1302 {
1303 /* Fill patbuf by translated characters in STRING while
1304 checking if we can use boyer-moore search. If TRT is
1305 non-nil, we can use boyer-moore search only if TRT can be
1306 represented by the byte array of 256 elements. For that,
1307 all non-ASCII case-equivalents of all case-sensitive
1308 characters in STRING must belong to the same charset and
1309 row. */
1310
1311 while (--len >= 0)
1312 {
1313 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1314 int c, translated, inverse;
1315 int in_charlen, charlen;
1316
1317 /* If we got here and the RE flag is set, it's because we're
1318 dealing with a regexp known to be trivial, so the backslash
1319 just quotes the next character. */
1320 if (RE && *base_pat == '\\')
1321 {
1322 len--;
1323 raw_pattern_size--;
1324 len_byte--;
1325 base_pat++;
1326 }
1327
1328 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1329
1330 if (NILP (trt))
1331 {
1332 str = base_pat;
1333 charlen = in_charlen;
1334 }
1335 else
1336 {
1337 /* Translate the character. */
1338 TRANSLATE (translated, trt, c);
1339 charlen = CHAR_STRING (translated, str_base);
1340 str = str_base;
1341
1342 /* Check if C has any other case-equivalents. */
1343 TRANSLATE (inverse, inverse_trt, c);
1344 /* If so, check if we can use boyer-moore. */
1345 if (c != inverse && boyer_moore_ok)
1346 {
1347 /* Check if all equivalents belong to the same
1348 group of characters. Note that the check of C
1349 itself is done by the last iteration. */
1350 int this_char_base = -1;
1351
1352 while (boyer_moore_ok)
1353 {
1354 if (ASCII_BYTE_P (inverse))
1355 {
1356 if (this_char_base > 0)
1357 boyer_moore_ok = 0;
1358 else
1359 this_char_base = 0;
1360 }
1361 else if (CHAR_BYTE8_P (inverse))
1362 /* Boyer-moore search can't handle a
1363 translation of an eight-bit
1364 character. */
1365 boyer_moore_ok = 0;
1366 else if (this_char_base < 0)
1367 {
1368 this_char_base = inverse & ~0x3F;
1369 if (char_base < 0)
1370 char_base = this_char_base;
1371 else if (this_char_base != char_base)
1372 boyer_moore_ok = 0;
1373 }
1374 else if ((inverse & ~0x3F) != this_char_base)
1375 boyer_moore_ok = 0;
1376 if (c == inverse)
1377 break;
1378 TRANSLATE (inverse, inverse_trt, inverse);
1379 }
1380 }
1381 }
1382
1383 /* Store this character into the translated pattern. */
1384 memcpy (pat, str, charlen);
1385 pat += charlen;
1386 base_pat += in_charlen;
1387 len_byte -= in_charlen;
1388 }
1389
1390 /* If char_base is still negative we didn't find any translated
1391 non-ASCII characters. */
1392 if (char_base < 0)
1393 char_base = 0;
1394 }
1395 else
1396 {
1397 /* Unibyte buffer. */
1398 char_base = 0;
1399 while (--len >= 0)
1400 {
1401 int c, translated;
1402
1403 /* If we got here and the RE flag is set, it's because we're
1404 dealing with a regexp known to be trivial, so the backslash
1405 just quotes the next character. */
1406 if (RE && *base_pat == '\\')
1407 {
1408 len--;
1409 raw_pattern_size--;
1410 base_pat++;
1411 }
1412 c = *base_pat++;
1413 TRANSLATE (translated, trt, c);
1414 *pat++ = translated;
1415 }
1416 }
1417
1418 len_byte = pat - patbuf;
1419 pat = base_pat = patbuf;
1420
1421 if (boyer_moore_ok)
1422 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1423 pos_byte, lim_byte,
1424 char_base);
1425 else
1426 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1427 pos, pos_byte, lim, lim_byte);
1428 }
1429 }
1430 \f
1431 /* Do a simple string search N times for the string PAT,
1432 whose length is LEN/LEN_BYTE,
1433 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1434 TRT is the translation table.
1435
1436 Return the character position where the match is found.
1437 Otherwise, if M matches remained to be found, return -M.
1438
1439 This kind of search works regardless of what is in PAT and
1440 regardless of what is in TRT. It is used in cases where
1441 boyer_moore cannot work. */
1442
1443 static EMACS_INT
1444 simple_search (EMACS_INT n, unsigned char *pat,
1445 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1446 ptrdiff_t pos, ptrdiff_t pos_byte,
1447 ptrdiff_t lim, ptrdiff_t lim_byte)
1448 {
1449 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1450 int forward = n > 0;
1451 /* Number of buffer bytes matched. Note that this may be different
1452 from len_byte in a multibyte buffer. */
1453 ptrdiff_t match_byte = PTRDIFF_MIN;
1454
1455 if (lim > pos && multibyte)
1456 while (n > 0)
1457 {
1458 while (1)
1459 {
1460 /* Try matching at position POS. */
1461 ptrdiff_t this_pos = pos;
1462 ptrdiff_t this_pos_byte = pos_byte;
1463 ptrdiff_t this_len = len;
1464 unsigned char *p = pat;
1465 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1466 goto stop;
1467
1468 while (this_len > 0)
1469 {
1470 int charlen, buf_charlen;
1471 int pat_ch, buf_ch;
1472
1473 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1474 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1475 buf_charlen);
1476 TRANSLATE (buf_ch, trt, buf_ch);
1477
1478 if (buf_ch != pat_ch)
1479 break;
1480
1481 this_len--;
1482 p += charlen;
1483
1484 this_pos_byte += buf_charlen;
1485 this_pos++;
1486 }
1487
1488 if (this_len == 0)
1489 {
1490 match_byte = this_pos_byte - pos_byte;
1491 pos += len;
1492 pos_byte += match_byte;
1493 break;
1494 }
1495
1496 INC_BOTH (pos, pos_byte);
1497 }
1498
1499 n--;
1500 }
1501 else if (lim > pos)
1502 while (n > 0)
1503 {
1504 while (1)
1505 {
1506 /* Try matching at position POS. */
1507 ptrdiff_t this_pos = pos;
1508 ptrdiff_t this_len = len;
1509 unsigned char *p = pat;
1510
1511 if (pos + len > lim)
1512 goto stop;
1513
1514 while (this_len > 0)
1515 {
1516 int pat_ch = *p++;
1517 int buf_ch = FETCH_BYTE (this_pos);
1518 TRANSLATE (buf_ch, trt, buf_ch);
1519
1520 if (buf_ch != pat_ch)
1521 break;
1522
1523 this_len--;
1524 this_pos++;
1525 }
1526
1527 if (this_len == 0)
1528 {
1529 match_byte = len;
1530 pos += len;
1531 break;
1532 }
1533
1534 pos++;
1535 }
1536
1537 n--;
1538 }
1539 /* Backwards search. */
1540 else if (lim < pos && multibyte)
1541 while (n < 0)
1542 {
1543 while (1)
1544 {
1545 /* Try matching at position POS. */
1546 ptrdiff_t this_pos = pos;
1547 ptrdiff_t this_pos_byte = pos_byte;
1548 ptrdiff_t this_len = len;
1549 const unsigned char *p = pat + len_byte;
1550
1551 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1552 goto stop;
1553
1554 while (this_len > 0)
1555 {
1556 int pat_ch, buf_ch;
1557
1558 DEC_BOTH (this_pos, this_pos_byte);
1559 PREV_CHAR_BOUNDARY (p, pat);
1560 pat_ch = STRING_CHAR (p);
1561 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1562 TRANSLATE (buf_ch, trt, buf_ch);
1563
1564 if (buf_ch != pat_ch)
1565 break;
1566
1567 this_len--;
1568 }
1569
1570 if (this_len == 0)
1571 {
1572 match_byte = pos_byte - this_pos_byte;
1573 pos = this_pos;
1574 pos_byte = this_pos_byte;
1575 break;
1576 }
1577
1578 DEC_BOTH (pos, pos_byte);
1579 }
1580
1581 n++;
1582 }
1583 else if (lim < pos)
1584 while (n < 0)
1585 {
1586 while (1)
1587 {
1588 /* Try matching at position POS. */
1589 ptrdiff_t this_pos = pos - len;
1590 ptrdiff_t this_len = len;
1591 unsigned char *p = pat;
1592
1593 if (this_pos < lim)
1594 goto stop;
1595
1596 while (this_len > 0)
1597 {
1598 int pat_ch = *p++;
1599 int buf_ch = FETCH_BYTE (this_pos);
1600 TRANSLATE (buf_ch, trt, buf_ch);
1601
1602 if (buf_ch != pat_ch)
1603 break;
1604 this_len--;
1605 this_pos++;
1606 }
1607
1608 if (this_len == 0)
1609 {
1610 match_byte = len;
1611 pos -= len;
1612 break;
1613 }
1614
1615 pos--;
1616 }
1617
1618 n++;
1619 }
1620
1621 stop:
1622 if (n == 0)
1623 {
1624 eassert (match_byte != PTRDIFF_MIN);
1625 if (forward)
1626 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1627 else
1628 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1629
1630 return pos;
1631 }
1632 else if (n > 0)
1633 return -n;
1634 else
1635 return n;
1636 }
1637 \f
1638 /* Do Boyer-Moore search N times for the string BASE_PAT,
1639 whose length is LEN_BYTE,
1640 from buffer position POS_BYTE until LIM_BYTE.
1641 DIRECTION says which direction we search in.
1642 TRT and INVERSE_TRT are translation tables.
1643 Characters in PAT are already translated by TRT.
1644
1645 This kind of search works if all the characters in BASE_PAT that
1646 have nontrivial translation are the same aside from the last byte.
1647 This makes it possible to translate just the last byte of a
1648 character, and do so after just a simple test of the context.
1649 CHAR_BASE is nonzero if there is such a non-ASCII character.
1650
1651 If that criterion is not satisfied, do not call this function. */
1652
1653 static EMACS_INT
1654 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1655 ptrdiff_t len_byte,
1656 Lisp_Object trt, Lisp_Object inverse_trt,
1657 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1658 int char_base)
1659 {
1660 int direction = ((n > 0) ? 1 : -1);
1661 register ptrdiff_t dirlen;
1662 ptrdiff_t limit;
1663 int stride_for_teases = 0;
1664 int BM_tab[0400];
1665 register unsigned char *cursor, *p_limit;
1666 register ptrdiff_t i;
1667 register int j;
1668 unsigned char *pat, *pat_end;
1669 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1670
1671 unsigned char simple_translate[0400];
1672 /* These are set to the preceding bytes of a byte to be translated
1673 if char_base is nonzero. As the maximum byte length of a
1674 multibyte character is 5, we have to check at most four previous
1675 bytes. */
1676 int translate_prev_byte1 = 0;
1677 int translate_prev_byte2 = 0;
1678 int translate_prev_byte3 = 0;
1679
1680 /* The general approach is that we are going to maintain that we know
1681 the first (closest to the present position, in whatever direction
1682 we're searching) character that could possibly be the last
1683 (furthest from present position) character of a valid match. We
1684 advance the state of our knowledge by looking at that character
1685 and seeing whether it indeed matches the last character of the
1686 pattern. If it does, we take a closer look. If it does not, we
1687 move our pointer (to putative last characters) as far as is
1688 logically possible. This amount of movement, which I call a
1689 stride, will be the length of the pattern if the actual character
1690 appears nowhere in the pattern, otherwise it will be the distance
1691 from the last occurrence of that character to the end of the
1692 pattern. If the amount is zero we have a possible match. */
1693
1694 /* Here we make a "mickey mouse" BM table. The stride of the search
1695 is determined only by the last character of the putative match.
1696 If that character does not match, we will stride the proper
1697 distance to propose a match that superimposes it on the last
1698 instance of a character that matches it (per trt), or misses
1699 it entirely if there is none. */
1700
1701 dirlen = len_byte * direction;
1702
1703 /* Record position after the end of the pattern. */
1704 pat_end = base_pat + len_byte;
1705 /* BASE_PAT points to a character that we start scanning from.
1706 It is the first character in a forward search,
1707 the last character in a backward search. */
1708 if (direction < 0)
1709 base_pat = pat_end - 1;
1710
1711 /* A character that does not appear in the pattern induces a
1712 stride equal to the pattern length. */
1713 for (i = 0; i < 0400; i++)
1714 BM_tab[i] = dirlen;
1715
1716 /* We use this for translation, instead of TRT itself.
1717 We fill this in to handle the characters that actually
1718 occur in the pattern. Others don't matter anyway! */
1719 for (i = 0; i < 0400; i++)
1720 simple_translate[i] = i;
1721
1722 if (char_base)
1723 {
1724 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1725 byte following them are the target of translation. */
1726 unsigned char str[MAX_MULTIBYTE_LENGTH];
1727 int cblen = CHAR_STRING (char_base, str);
1728
1729 translate_prev_byte1 = str[cblen - 2];
1730 if (cblen > 2)
1731 {
1732 translate_prev_byte2 = str[cblen - 3];
1733 if (cblen > 3)
1734 translate_prev_byte3 = str[cblen - 4];
1735 }
1736 }
1737
1738 i = 0;
1739 while (i != dirlen)
1740 {
1741 unsigned char *ptr = base_pat + i;
1742 i += direction;
1743 if (! NILP (trt))
1744 {
1745 /* If the byte currently looking at is the last of a
1746 character to check case-equivalents, set CH to that
1747 character. An ASCII character and a non-ASCII character
1748 matching with CHAR_BASE are to be checked. */
1749 int ch = -1;
1750
1751 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1752 ch = *ptr;
1753 else if (char_base
1754 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1755 {
1756 unsigned char *charstart = ptr - 1;
1757
1758 while (! (CHAR_HEAD_P (*charstart)))
1759 charstart--;
1760 ch = STRING_CHAR (charstart);
1761 if (char_base != (ch & ~0x3F))
1762 ch = -1;
1763 }
1764
1765 if (ch >= 0200 && multibyte)
1766 j = (ch & 0x3F) | 0200;
1767 else
1768 j = *ptr;
1769
1770 if (i == dirlen)
1771 stride_for_teases = BM_tab[j];
1772
1773 BM_tab[j] = dirlen - i;
1774 /* A translation table is accompanied by its inverse -- see
1775 comment following downcase_table for details. */
1776 if (ch >= 0)
1777 {
1778 int starting_ch = ch;
1779 int starting_j = j;
1780
1781 while (1)
1782 {
1783 TRANSLATE (ch, inverse_trt, ch);
1784 if (ch >= 0200 && multibyte)
1785 j = (ch & 0x3F) | 0200;
1786 else
1787 j = ch;
1788
1789 /* For all the characters that map into CH,
1790 set up simple_translate to map the last byte
1791 into STARTING_J. */
1792 simple_translate[j] = starting_j;
1793 if (ch == starting_ch)
1794 break;
1795 BM_tab[j] = dirlen - i;
1796 }
1797 }
1798 }
1799 else
1800 {
1801 j = *ptr;
1802
1803 if (i == dirlen)
1804 stride_for_teases = BM_tab[j];
1805 BM_tab[j] = dirlen - i;
1806 }
1807 /* stride_for_teases tells how much to stride if we get a
1808 match on the far character but are subsequently
1809 disappointed, by recording what the stride would have been
1810 for that character if the last character had been
1811 different. */
1812 }
1813 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1814 /* loop invariant - POS_BYTE points at where last char (first
1815 char if reverse) of pattern would align in a possible match. */
1816 while (n != 0)
1817 {
1818 ptrdiff_t tail_end;
1819 unsigned char *tail_end_ptr;
1820
1821 /* It's been reported that some (broken) compiler thinks that
1822 Boolean expressions in an arithmetic context are unsigned.
1823 Using an explicit ?1:0 prevents this. */
1824 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1825 < 0)
1826 return (n * (0 - direction));
1827 /* First we do the part we can by pointers (maybe nothing) */
1828 QUIT;
1829 pat = base_pat;
1830 limit = pos_byte - dirlen + direction;
1831 if (direction > 0)
1832 {
1833 limit = BUFFER_CEILING_OF (limit);
1834 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1835 can take on without hitting edge of buffer or the gap. */
1836 limit = min (limit, pos_byte + 20000);
1837 limit = min (limit, lim_byte - 1);
1838 }
1839 else
1840 {
1841 limit = BUFFER_FLOOR_OF (limit);
1842 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1843 can take on without hitting edge of buffer or the gap. */
1844 limit = max (limit, pos_byte - 20000);
1845 limit = max (limit, lim_byte);
1846 }
1847 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1848 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1849
1850 if ((limit - pos_byte) * direction > 20)
1851 {
1852 unsigned char *p2;
1853
1854 p_limit = BYTE_POS_ADDR (limit);
1855 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1856 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1857 while (1) /* use one cursor setting as long as i can */
1858 {
1859 if (direction > 0) /* worth duplicating */
1860 {
1861 while (cursor <= p_limit)
1862 {
1863 if (BM_tab[*cursor] == 0)
1864 goto hit;
1865 cursor += BM_tab[*cursor];
1866 }
1867 }
1868 else
1869 {
1870 while (cursor >= p_limit)
1871 {
1872 if (BM_tab[*cursor] == 0)
1873 goto hit;
1874 cursor += BM_tab[*cursor];
1875 }
1876 }
1877 /* If you are here, cursor is beyond the end of the
1878 searched region. You fail to match within the
1879 permitted region and would otherwise try a character
1880 beyond that region. */
1881 break;
1882
1883 hit:
1884 i = dirlen - direction;
1885 if (! NILP (trt))
1886 {
1887 while ((i -= direction) + direction != 0)
1888 {
1889 int ch;
1890 cursor -= direction;
1891 /* Translate only the last byte of a character. */
1892 if (! multibyte
1893 || ((cursor == tail_end_ptr
1894 || CHAR_HEAD_P (cursor[1]))
1895 && (CHAR_HEAD_P (cursor[0])
1896 /* Check if this is the last byte of
1897 a translatable character. */
1898 || (translate_prev_byte1 == cursor[-1]
1899 && (CHAR_HEAD_P (translate_prev_byte1)
1900 || (translate_prev_byte2 == cursor[-2]
1901 && (CHAR_HEAD_P (translate_prev_byte2)
1902 || (translate_prev_byte3 == cursor[-3]))))))))
1903 ch = simple_translate[*cursor];
1904 else
1905 ch = *cursor;
1906 if (pat[i] != ch)
1907 break;
1908 }
1909 }
1910 else
1911 {
1912 while ((i -= direction) + direction != 0)
1913 {
1914 cursor -= direction;
1915 if (pat[i] != *cursor)
1916 break;
1917 }
1918 }
1919 cursor += dirlen - i - direction; /* fix cursor */
1920 if (i + direction == 0)
1921 {
1922 ptrdiff_t position, start, end;
1923
1924 cursor -= direction;
1925
1926 position = pos_byte + cursor - p2 + ((direction > 0)
1927 ? 1 - len_byte : 0);
1928 set_search_regs (position, len_byte);
1929
1930 if (NILP (Vinhibit_changing_match_data))
1931 {
1932 start = search_regs.start[0];
1933 end = search_regs.end[0];
1934 }
1935 else
1936 /* If Vinhibit_changing_match_data is non-nil,
1937 search_regs will not be changed. So let's
1938 compute start and end here. */
1939 {
1940 start = BYTE_TO_CHAR (position);
1941 end = BYTE_TO_CHAR (position + len_byte);
1942 }
1943
1944 if ((n -= direction) != 0)
1945 cursor += dirlen; /* to resume search */
1946 else
1947 return direction > 0 ? end : start;
1948 }
1949 else
1950 cursor += stride_for_teases; /* <sigh> we lose - */
1951 }
1952 pos_byte += cursor - p2;
1953 }
1954 else
1955 /* Now we'll pick up a clump that has to be done the hard
1956 way because it covers a discontinuity. */
1957 {
1958 limit = ((direction > 0)
1959 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1960 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1961 limit = ((direction > 0)
1962 ? min (limit + len_byte, lim_byte - 1)
1963 : max (limit - len_byte, lim_byte));
1964 /* LIMIT is now the last value POS_BYTE can have
1965 and still be valid for a possible match. */
1966 while (1)
1967 {
1968 /* This loop can be coded for space rather than
1969 speed because it will usually run only once.
1970 (the reach is at most len + 21, and typically
1971 does not exceed len). */
1972 while ((limit - pos_byte) * direction >= 0)
1973 {
1974 int ch = FETCH_BYTE (pos_byte);
1975 if (BM_tab[ch] == 0)
1976 goto hit2;
1977 pos_byte += BM_tab[ch];
1978 }
1979 break; /* ran off the end */
1980
1981 hit2:
1982 /* Found what might be a match. */
1983 i = dirlen - direction;
1984 while ((i -= direction) + direction != 0)
1985 {
1986 int ch;
1987 unsigned char *ptr;
1988 pos_byte -= direction;
1989 ptr = BYTE_POS_ADDR (pos_byte);
1990 /* Translate only the last byte of a character. */
1991 if (! multibyte
1992 || ((ptr == tail_end_ptr
1993 || CHAR_HEAD_P (ptr[1]))
1994 && (CHAR_HEAD_P (ptr[0])
1995 /* Check if this is the last byte of a
1996 translatable character. */
1997 || (translate_prev_byte1 == ptr[-1]
1998 && (CHAR_HEAD_P (translate_prev_byte1)
1999 || (translate_prev_byte2 == ptr[-2]
2000 && (CHAR_HEAD_P (translate_prev_byte2)
2001 || translate_prev_byte3 == ptr[-3])))))))
2002 ch = simple_translate[*ptr];
2003 else
2004 ch = *ptr;
2005 if (pat[i] != ch)
2006 break;
2007 }
2008 /* Above loop has moved POS_BYTE part or all the way
2009 back to the first pos (last pos if reverse).
2010 Set it once again at the last (first if reverse) char. */
2011 pos_byte += dirlen - i - direction;
2012 if (i + direction == 0)
2013 {
2014 ptrdiff_t position, start, end;
2015 pos_byte -= direction;
2016
2017 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2018 set_search_regs (position, len_byte);
2019
2020 if (NILP (Vinhibit_changing_match_data))
2021 {
2022 start = search_regs.start[0];
2023 end = search_regs.end[0];
2024 }
2025 else
2026 /* If Vinhibit_changing_match_data is non-nil,
2027 search_regs will not be changed. So let's
2028 compute start and end here. */
2029 {
2030 start = BYTE_TO_CHAR (position);
2031 end = BYTE_TO_CHAR (position + len_byte);
2032 }
2033
2034 if ((n -= direction) != 0)
2035 pos_byte += dirlen; /* to resume search */
2036 else
2037 return direction > 0 ? end : start;
2038 }
2039 else
2040 pos_byte += stride_for_teases;
2041 }
2042 }
2043 /* We have done one clump. Can we continue? */
2044 if ((lim_byte - pos_byte) * direction < 0)
2045 return ((0 - n) * direction);
2046 }
2047 return BYTE_TO_CHAR (pos_byte);
2048 }
2049
2050 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2051 for the overall match just found in the current buffer.
2052 Also clear out the match data for registers 1 and up. */
2053
2054 static void
2055 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2056 {
2057 ptrdiff_t i;
2058
2059 if (!NILP (Vinhibit_changing_match_data))
2060 return;
2061
2062 /* Make sure we have registers in which to store
2063 the match position. */
2064 if (search_regs.num_regs == 0)
2065 {
2066 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2067 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2068 search_regs.num_regs = 2;
2069 }
2070
2071 /* Clear out the other registers. */
2072 for (i = 1; i < search_regs.num_regs; i++)
2073 {
2074 search_regs.start[i] = -1;
2075 search_regs.end[i] = -1;
2076 }
2077
2078 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2079 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2080 XSETBUFFER (last_thing_searched, current_buffer);
2081 }
2082 \f
2083 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2084 "MSearch backward: ",
2085 doc: /* Search backward from point for STRING.
2086 Set point to the beginning of the occurrence found, and return point.
2087 An optional second argument bounds the search; it is a buffer position.
2088 The match found must not extend before that position.
2089 Optional third argument, if t, means if fail just return nil (no error).
2090 If not nil and not t, position at limit of search and return nil.
2091 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2092 successive occurrences. If COUNT is negative, search forward,
2093 instead of backward, for -COUNT occurrences.
2094
2095 Search case-sensitivity is determined by the value of the variable
2096 `case-fold-search', which see.
2097
2098 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2099 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2100 {
2101 return search_command (string, bound, noerror, count, -1, 0, 0);
2102 }
2103
2104 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2105 doc: /* Search forward from point for STRING.
2106 Set point to the end of the occurrence found, and return point.
2107 An optional second argument bounds the search; it is a buffer position.
2108 The match found must not extend after that position. A value of nil is
2109 equivalent to (point-max).
2110 Optional third argument, if t, means if fail just return nil (no error).
2111 If not nil and not t, move to limit of search and return nil.
2112 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2113 successive occurrences. If COUNT is negative, search backward,
2114 instead of forward, for -COUNT occurrences.
2115
2116 Search case-sensitivity is determined by the value of the variable
2117 `case-fold-search', which see.
2118
2119 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2120 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2121 {
2122 return search_command (string, bound, noerror, count, 1, 0, 0);
2123 }
2124
2125 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2126 "sRE search backward: ",
2127 doc: /* Search backward from point for match for regular expression REGEXP.
2128 Set point to the beginning of the match, and return point.
2129 The match found is the one starting last in the buffer
2130 and yet ending before the origin of the search.
2131 An optional second argument bounds the search; it is a buffer position.
2132 The match found must start at or after that position.
2133 Optional third argument, if t, means if fail just return nil (no error).
2134 If not nil and not t, move to limit of search and return nil.
2135 Optional fourth argument is repeat count--search for successive occurrences.
2136
2137 Search case-sensitivity is determined by the value of the variable
2138 `case-fold-search', which see.
2139
2140 See also the functions `match-beginning', `match-end', `match-string',
2141 and `replace-match'. */)
2142 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2143 {
2144 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2145 }
2146
2147 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2148 "sRE search: ",
2149 doc: /* Search forward from point for regular expression REGEXP.
2150 Set point to the end of the occurrence found, and return point.
2151 An optional second argument bounds the search; it is a buffer position.
2152 The match found must not extend after that position.
2153 Optional third argument, if t, means if fail just return nil (no error).
2154 If not nil and not t, move to limit of search and return nil.
2155 Optional fourth argument is repeat count--search for successive occurrences.
2156
2157 Search case-sensitivity is determined by the value of the variable
2158 `case-fold-search', which see.
2159
2160 See also the functions `match-beginning', `match-end', `match-string',
2161 and `replace-match'. */)
2162 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2163 {
2164 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2165 }
2166
2167 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2168 "sPosix search backward: ",
2169 doc: /* Search backward from point for match for regular expression REGEXP.
2170 Find the longest match in accord with Posix regular expression rules.
2171 Set point to the beginning of the match, and return point.
2172 The match found is the one starting last in the buffer
2173 and yet ending before the origin of the search.
2174 An optional second argument bounds the search; it is a buffer position.
2175 The match found must start at or after that position.
2176 Optional third argument, if t, means if fail just return nil (no error).
2177 If not nil and not t, move to limit of search and return nil.
2178 Optional fourth argument is repeat count--search for successive occurrences.
2179
2180 Search case-sensitivity is determined by the value of the variable
2181 `case-fold-search', which see.
2182
2183 See also the functions `match-beginning', `match-end', `match-string',
2184 and `replace-match'. */)
2185 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2186 {
2187 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2188 }
2189
2190 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2191 "sPosix search: ",
2192 doc: /* Search forward from point for regular expression REGEXP.
2193 Find the longest match in accord with Posix regular expression rules.
2194 Set point to the end of the occurrence found, and return point.
2195 An optional second argument bounds the search; it is a buffer position.
2196 The match found must not extend after that position.
2197 Optional third argument, if t, means if fail just return nil (no error).
2198 If not nil and not t, move to limit of search and return nil.
2199 Optional fourth argument is repeat count--search for successive occurrences.
2200
2201 Search case-sensitivity is determined by the value of the variable
2202 `case-fold-search', which see.
2203
2204 See also the functions `match-beginning', `match-end', `match-string',
2205 and `replace-match'. */)
2206 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2207 {
2208 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2209 }
2210 \f
2211 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2212 doc: /* Replace text matched by last search with NEWTEXT.
2213 Leave point at the end of the replacement text.
2214
2215 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2216 Otherwise maybe capitalize the whole text, or maybe just word initials,
2217 based on the replaced text.
2218 If the replaced text has only capital letters
2219 and has at least one multiletter word, convert NEWTEXT to all caps.
2220 Otherwise if all words are capitalized in the replaced text,
2221 capitalize each word in NEWTEXT.
2222
2223 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2224 Otherwise treat `\\' as special:
2225 `\\&' in NEWTEXT means substitute original matched text.
2226 `\\N' means substitute what matched the Nth `\\(...\\)'.
2227 If Nth parens didn't match, substitute nothing.
2228 `\\\\' means insert one `\\'.
2229 Case conversion does not apply to these substitutions.
2230
2231 FIXEDCASE and LITERAL are optional arguments.
2232
2233 The optional fourth argument STRING can be a string to modify.
2234 This is meaningful when the previous match was done against STRING,
2235 using `string-match'. When used this way, `replace-match'
2236 creates and returns a new string made by copying STRING and replacing
2237 the part of STRING that was matched.
2238
2239 The optional fifth argument SUBEXP specifies a subexpression;
2240 it says to replace just that subexpression with NEWTEXT,
2241 rather than replacing the entire matched text.
2242 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2243 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2244 NEWTEXT in place of subexp N.
2245 This is useful only after a regular expression search or match,
2246 since only regular expressions have distinguished subexpressions. */)
2247 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2248 {
2249 enum { nochange, all_caps, cap_initial } case_action;
2250 register ptrdiff_t pos, pos_byte;
2251 int some_multiletter_word;
2252 int some_lowercase;
2253 int some_uppercase;
2254 int some_nonuppercase_initial;
2255 register int c, prevc;
2256 ptrdiff_t sub;
2257 ptrdiff_t opoint, newpoint;
2258
2259 CHECK_STRING (newtext);
2260
2261 if (! NILP (string))
2262 CHECK_STRING (string);
2263
2264 case_action = nochange; /* We tried an initialization */
2265 /* but some C compilers blew it */
2266
2267 if (search_regs.num_regs <= 0)
2268 error ("`replace-match' called before any match found");
2269
2270 if (NILP (subexp))
2271 sub = 0;
2272 else
2273 {
2274 CHECK_NUMBER (subexp);
2275 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2276 args_out_of_range (subexp, make_number (search_regs.num_regs));
2277 sub = XINT (subexp);
2278 }
2279
2280 if (NILP (string))
2281 {
2282 if (search_regs.start[sub] < BEGV
2283 || search_regs.start[sub] > search_regs.end[sub]
2284 || search_regs.end[sub] > ZV)
2285 args_out_of_range (make_number (search_regs.start[sub]),
2286 make_number (search_regs.end[sub]));
2287 }
2288 else
2289 {
2290 if (search_regs.start[sub] < 0
2291 || search_regs.start[sub] > search_regs.end[sub]
2292 || search_regs.end[sub] > SCHARS (string))
2293 args_out_of_range (make_number (search_regs.start[sub]),
2294 make_number (search_regs.end[sub]));
2295 }
2296
2297 if (NILP (fixedcase))
2298 {
2299 /* Decide how to casify by examining the matched text. */
2300 ptrdiff_t last;
2301
2302 pos = search_regs.start[sub];
2303 last = search_regs.end[sub];
2304
2305 if (NILP (string))
2306 pos_byte = CHAR_TO_BYTE (pos);
2307 else
2308 pos_byte = string_char_to_byte (string, pos);
2309
2310 prevc = '\n';
2311 case_action = all_caps;
2312
2313 /* some_multiletter_word is set nonzero if any original word
2314 is more than one letter long. */
2315 some_multiletter_word = 0;
2316 some_lowercase = 0;
2317 some_nonuppercase_initial = 0;
2318 some_uppercase = 0;
2319
2320 while (pos < last)
2321 {
2322 if (NILP (string))
2323 {
2324 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2325 INC_BOTH (pos, pos_byte);
2326 }
2327 else
2328 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2329
2330 if (lowercasep (c))
2331 {
2332 /* Cannot be all caps if any original char is lower case */
2333
2334 some_lowercase = 1;
2335 if (SYNTAX (prevc) != Sword)
2336 some_nonuppercase_initial = 1;
2337 else
2338 some_multiletter_word = 1;
2339 }
2340 else if (uppercasep (c))
2341 {
2342 some_uppercase = 1;
2343 if (SYNTAX (prevc) != Sword)
2344 ;
2345 else
2346 some_multiletter_word = 1;
2347 }
2348 else
2349 {
2350 /* If the initial is a caseless word constituent,
2351 treat that like a lowercase initial. */
2352 if (SYNTAX (prevc) != Sword)
2353 some_nonuppercase_initial = 1;
2354 }
2355
2356 prevc = c;
2357 }
2358
2359 /* Convert to all caps if the old text is all caps
2360 and has at least one multiletter word. */
2361 if (! some_lowercase && some_multiletter_word)
2362 case_action = all_caps;
2363 /* Capitalize each word, if the old text has all capitalized words. */
2364 else if (!some_nonuppercase_initial && some_multiletter_word)
2365 case_action = cap_initial;
2366 else if (!some_nonuppercase_initial && some_uppercase)
2367 /* Should x -> yz, operating on X, give Yz or YZ?
2368 We'll assume the latter. */
2369 case_action = all_caps;
2370 else
2371 case_action = nochange;
2372 }
2373
2374 /* Do replacement in a string. */
2375 if (!NILP (string))
2376 {
2377 Lisp_Object before, after;
2378
2379 before = Fsubstring (string, make_number (0),
2380 make_number (search_regs.start[sub]));
2381 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2382
2383 /* Substitute parts of the match into NEWTEXT
2384 if desired. */
2385 if (NILP (literal))
2386 {
2387 ptrdiff_t lastpos = 0;
2388 ptrdiff_t lastpos_byte = 0;
2389 /* We build up the substituted string in ACCUM. */
2390 Lisp_Object accum;
2391 Lisp_Object middle;
2392 ptrdiff_t length = SBYTES (newtext);
2393
2394 accum = Qnil;
2395
2396 for (pos_byte = 0, pos = 0; pos_byte < length;)
2397 {
2398 ptrdiff_t substart = -1;
2399 ptrdiff_t subend = 0;
2400 int delbackslash = 0;
2401
2402 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2403
2404 if (c == '\\')
2405 {
2406 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2407
2408 if (c == '&')
2409 {
2410 substart = search_regs.start[sub];
2411 subend = search_regs.end[sub];
2412 }
2413 else if (c >= '1' && c <= '9')
2414 {
2415 if (c - '0' < search_regs.num_regs
2416 && 0 <= search_regs.start[c - '0'])
2417 {
2418 substart = search_regs.start[c - '0'];
2419 subend = search_regs.end[c - '0'];
2420 }
2421 else
2422 {
2423 /* If that subexp did not match,
2424 replace \\N with nothing. */
2425 substart = 0;
2426 subend = 0;
2427 }
2428 }
2429 else if (c == '\\')
2430 delbackslash = 1;
2431 else
2432 error ("Invalid use of `\\' in replacement text");
2433 }
2434 if (substart >= 0)
2435 {
2436 if (pos - 2 != lastpos)
2437 middle = substring_both (newtext, lastpos,
2438 lastpos_byte,
2439 pos - 2, pos_byte - 2);
2440 else
2441 middle = Qnil;
2442 accum = concat3 (accum, middle,
2443 Fsubstring (string,
2444 make_number (substart),
2445 make_number (subend)));
2446 lastpos = pos;
2447 lastpos_byte = pos_byte;
2448 }
2449 else if (delbackslash)
2450 {
2451 middle = substring_both (newtext, lastpos,
2452 lastpos_byte,
2453 pos - 1, pos_byte - 1);
2454
2455 accum = concat2 (accum, middle);
2456 lastpos = pos;
2457 lastpos_byte = pos_byte;
2458 }
2459 }
2460
2461 if (pos != lastpos)
2462 middle = substring_both (newtext, lastpos,
2463 lastpos_byte,
2464 pos, pos_byte);
2465 else
2466 middle = Qnil;
2467
2468 newtext = concat2 (accum, middle);
2469 }
2470
2471 /* Do case substitution in NEWTEXT if desired. */
2472 if (case_action == all_caps)
2473 newtext = Fupcase (newtext);
2474 else if (case_action == cap_initial)
2475 newtext = Fupcase_initials (newtext);
2476
2477 return concat3 (before, newtext, after);
2478 }
2479
2480 /* Record point, then move (quietly) to the start of the match. */
2481 if (PT >= search_regs.end[sub])
2482 opoint = PT - ZV;
2483 else if (PT > search_regs.start[sub])
2484 opoint = search_regs.end[sub] - ZV;
2485 else
2486 opoint = PT;
2487
2488 /* If we want non-literal replacement,
2489 perform substitution on the replacement string. */
2490 if (NILP (literal))
2491 {
2492 ptrdiff_t length = SBYTES (newtext);
2493 unsigned char *substed;
2494 ptrdiff_t substed_alloc_size, substed_len;
2495 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2496 int str_multibyte = STRING_MULTIBYTE (newtext);
2497 int really_changed = 0;
2498
2499 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2500 ? STRING_BYTES_BOUND
2501 : length * 2 + 100);
2502 substed = xmalloc (substed_alloc_size);
2503 substed_len = 0;
2504
2505 /* Go thru NEWTEXT, producing the actual text to insert in
2506 SUBSTED while adjusting multibyteness to that of the current
2507 buffer. */
2508
2509 for (pos_byte = 0, pos = 0; pos_byte < length;)
2510 {
2511 unsigned char str[MAX_MULTIBYTE_LENGTH];
2512 const unsigned char *add_stuff = NULL;
2513 ptrdiff_t add_len = 0;
2514 ptrdiff_t idx = -1;
2515
2516 if (str_multibyte)
2517 {
2518 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2519 if (!buf_multibyte)
2520 c = multibyte_char_to_unibyte (c);
2521 }
2522 else
2523 {
2524 /* Note that we don't have to increment POS. */
2525 c = SREF (newtext, pos_byte++);
2526 if (buf_multibyte)
2527 MAKE_CHAR_MULTIBYTE (c);
2528 }
2529
2530 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2531 or set IDX to a match index, which means put that part
2532 of the buffer text into SUBSTED. */
2533
2534 if (c == '\\')
2535 {
2536 really_changed = 1;
2537
2538 if (str_multibyte)
2539 {
2540 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2541 pos, pos_byte);
2542 if (!buf_multibyte && !ASCII_CHAR_P (c))
2543 c = multibyte_char_to_unibyte (c);
2544 }
2545 else
2546 {
2547 c = SREF (newtext, pos_byte++);
2548 if (buf_multibyte)
2549 MAKE_CHAR_MULTIBYTE (c);
2550 }
2551
2552 if (c == '&')
2553 idx = sub;
2554 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2555 {
2556 if (search_regs.start[c - '0'] >= 1)
2557 idx = c - '0';
2558 }
2559 else if (c == '\\')
2560 add_len = 1, add_stuff = (unsigned char *) "\\";
2561 else
2562 {
2563 xfree (substed);
2564 error ("Invalid use of `\\' in replacement text");
2565 }
2566 }
2567 else
2568 {
2569 add_len = CHAR_STRING (c, str);
2570 add_stuff = str;
2571 }
2572
2573 /* If we want to copy part of a previous match,
2574 set up ADD_STUFF and ADD_LEN to point to it. */
2575 if (idx >= 0)
2576 {
2577 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2578 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2579 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2580 move_gap (search_regs.start[idx]);
2581 add_stuff = BYTE_POS_ADDR (begbyte);
2582 }
2583
2584 /* Now the stuff we want to add to SUBSTED
2585 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2586
2587 /* Make sure SUBSTED is big enough. */
2588 if (substed_alloc_size - substed_len < add_len)
2589 substed =
2590 xpalloc (substed, &substed_alloc_size,
2591 add_len - (substed_alloc_size - substed_len),
2592 STRING_BYTES_BOUND, 1);
2593
2594 /* Now add to the end of SUBSTED. */
2595 if (add_stuff)
2596 {
2597 memcpy (substed + substed_len, add_stuff, add_len);
2598 substed_len += add_len;
2599 }
2600 }
2601
2602 if (really_changed)
2603 {
2604 if (buf_multibyte)
2605 {
2606 ptrdiff_t nchars =
2607 multibyte_chars_in_text (substed, substed_len);
2608
2609 newtext = make_multibyte_string ((char *) substed, nchars,
2610 substed_len);
2611 }
2612 else
2613 newtext = make_unibyte_string ((char *) substed, substed_len);
2614 }
2615 xfree (substed);
2616 }
2617
2618 /* Replace the old text with the new in the cleanest possible way. */
2619 replace_range (search_regs.start[sub], search_regs.end[sub],
2620 newtext, 1, 0, 1);
2621 newpoint = search_regs.start[sub] + SCHARS (newtext);
2622
2623 if (case_action == all_caps)
2624 Fupcase_region (make_number (search_regs.start[sub]),
2625 make_number (newpoint));
2626 else if (case_action == cap_initial)
2627 Fupcase_initials_region (make_number (search_regs.start[sub]),
2628 make_number (newpoint));
2629
2630 /* Adjust search data for this change. */
2631 {
2632 ptrdiff_t oldend = search_regs.end[sub];
2633 ptrdiff_t oldstart = search_regs.start[sub];
2634 ptrdiff_t change = newpoint - search_regs.end[sub];
2635 ptrdiff_t i;
2636
2637 for (i = 0; i < search_regs.num_regs; i++)
2638 {
2639 if (search_regs.start[i] >= oldend)
2640 search_regs.start[i] += change;
2641 else if (search_regs.start[i] > oldstart)
2642 search_regs.start[i] = oldstart;
2643 if (search_regs.end[i] >= oldend)
2644 search_regs.end[i] += change;
2645 else if (search_regs.end[i] > oldstart)
2646 search_regs.end[i] = oldstart;
2647 }
2648 }
2649
2650 /* Put point back where it was in the text. */
2651 if (opoint <= 0)
2652 TEMP_SET_PT (opoint + ZV);
2653 else
2654 TEMP_SET_PT (opoint);
2655
2656 /* Now move point "officially" to the start of the inserted replacement. */
2657 move_if_not_intangible (newpoint);
2658
2659 return Qnil;
2660 }
2661 \f
2662 static Lisp_Object
2663 match_limit (Lisp_Object num, int beginningp)
2664 {
2665 EMACS_INT n;
2666
2667 CHECK_NUMBER (num);
2668 n = XINT (num);
2669 if (n < 0)
2670 args_out_of_range (num, make_number (0));
2671 if (search_regs.num_regs <= 0)
2672 error ("No match data, because no search succeeded");
2673 if (n >= search_regs.num_regs
2674 || search_regs.start[n] < 0)
2675 return Qnil;
2676 return (make_number ((beginningp) ? search_regs.start[n]
2677 : search_regs.end[n]));
2678 }
2679
2680 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2681 doc: /* Return position of start of text matched by last search.
2682 SUBEXP, a number, specifies which parenthesized expression in the last
2683 regexp.
2684 Value is nil if SUBEXPth pair didn't match, or there were less than
2685 SUBEXP pairs.
2686 Zero means the entire text matched by the whole regexp or whole string. */)
2687 (Lisp_Object subexp)
2688 {
2689 return match_limit (subexp, 1);
2690 }
2691
2692 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2693 doc: /* Return position of end of text matched by last search.
2694 SUBEXP, a number, specifies which parenthesized expression in the last
2695 regexp.
2696 Value is nil if SUBEXPth pair didn't match, or there were less than
2697 SUBEXP pairs.
2698 Zero means the entire text matched by the whole regexp or whole string. */)
2699 (Lisp_Object subexp)
2700 {
2701 return match_limit (subexp, 0);
2702 }
2703
2704 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2705 doc: /* Return a list containing all info on what the last search matched.
2706 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2707 All the elements are markers or nil (nil if the Nth pair didn't match)
2708 if the last match was on a buffer; integers or nil if a string was matched.
2709 Use `set-match-data' to reinstate the data in this list.
2710
2711 If INTEGERS (the optional first argument) is non-nil, always use
2712 integers \(rather than markers) to represent buffer positions. In
2713 this case, and if the last match was in a buffer, the buffer will get
2714 stored as one additional element at the end of the list.
2715
2716 If REUSE is a list, reuse it as part of the value. If REUSE is long
2717 enough to hold all the values, and if INTEGERS is non-nil, no consing
2718 is done.
2719
2720 If optional third arg RESEAT is non-nil, any previous markers on the
2721 REUSE list will be modified to point to nowhere.
2722
2723 Return value is undefined if the last search failed. */)
2724 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2725 {
2726 Lisp_Object tail, prev;
2727 Lisp_Object *data;
2728 ptrdiff_t i, len;
2729
2730 if (!NILP (reseat))
2731 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2732 if (MARKERP (XCAR (tail)))
2733 {
2734 unchain_marker (XMARKER (XCAR (tail)));
2735 XSETCAR (tail, Qnil);
2736 }
2737
2738 if (NILP (last_thing_searched))
2739 return Qnil;
2740
2741 prev = Qnil;
2742
2743 data = alloca ((2 * search_regs.num_regs + 1) * sizeof *data);
2744
2745 len = 0;
2746 for (i = 0; i < search_regs.num_regs; i++)
2747 {
2748 ptrdiff_t start = search_regs.start[i];
2749 if (start >= 0)
2750 {
2751 if (EQ (last_thing_searched, Qt)
2752 || ! NILP (integers))
2753 {
2754 XSETFASTINT (data[2 * i], start);
2755 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2756 }
2757 else if (BUFFERP (last_thing_searched))
2758 {
2759 data[2 * i] = Fmake_marker ();
2760 Fset_marker (data[2 * i],
2761 make_number (start),
2762 last_thing_searched);
2763 data[2 * i + 1] = Fmake_marker ();
2764 Fset_marker (data[2 * i + 1],
2765 make_number (search_regs.end[i]),
2766 last_thing_searched);
2767 }
2768 else
2769 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2770 abort ();
2771
2772 len = 2 * i + 2;
2773 }
2774 else
2775 data[2 * i] = data[2 * i + 1] = Qnil;
2776 }
2777
2778 if (BUFFERP (last_thing_searched) && !NILP (integers))
2779 {
2780 data[len] = last_thing_searched;
2781 len++;
2782 }
2783
2784 /* If REUSE is not usable, cons up the values and return them. */
2785 if (! CONSP (reuse))
2786 return Flist (len, data);
2787
2788 /* If REUSE is a list, store as many value elements as will fit
2789 into the elements of REUSE. */
2790 for (i = 0, tail = reuse; CONSP (tail);
2791 i++, tail = XCDR (tail))
2792 {
2793 if (i < len)
2794 XSETCAR (tail, data[i]);
2795 else
2796 XSETCAR (tail, Qnil);
2797 prev = tail;
2798 }
2799
2800 /* If we couldn't fit all value elements into REUSE,
2801 cons up the rest of them and add them to the end of REUSE. */
2802 if (i < len)
2803 XSETCDR (prev, Flist (len - i, data + i));
2804
2805 return reuse;
2806 }
2807
2808 /* We used to have an internal use variant of `reseat' described as:
2809
2810 If RESEAT is `evaporate', put the markers back on the free list
2811 immediately. No other references to the markers must exist in this
2812 case, so it is used only internally on the unwind stack and
2813 save-match-data from Lisp.
2814
2815 But it was ill-conceived: those supposedly-internal markers get exposed via
2816 the undo-list, so freeing them here is unsafe. */
2817
2818 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2819 doc: /* Set internal data on last search match from elements of LIST.
2820 LIST should have been created by calling `match-data' previously.
2821
2822 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2823 (register Lisp_Object list, Lisp_Object reseat)
2824 {
2825 ptrdiff_t i;
2826 register Lisp_Object marker;
2827
2828 if (running_asynch_code)
2829 save_search_regs ();
2830
2831 CHECK_LIST (list);
2832
2833 /* Unless we find a marker with a buffer or an explicit buffer
2834 in LIST, assume that this match data came from a string. */
2835 last_thing_searched = Qt;
2836
2837 /* Allocate registers if they don't already exist. */
2838 {
2839 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2840
2841 if (length > search_regs.num_regs)
2842 {
2843 ptrdiff_t num_regs = search_regs.num_regs;
2844 if (PTRDIFF_MAX < length)
2845 memory_full (SIZE_MAX);
2846 search_regs.start =
2847 xpalloc (search_regs.start, &num_regs, length - num_regs,
2848 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2849 search_regs.end =
2850 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2851
2852 for (i = search_regs.num_regs; i < num_regs; i++)
2853 search_regs.start[i] = -1;
2854
2855 search_regs.num_regs = num_regs;
2856 }
2857
2858 for (i = 0; CONSP (list); i++)
2859 {
2860 marker = XCAR (list);
2861 if (BUFFERP (marker))
2862 {
2863 last_thing_searched = marker;
2864 break;
2865 }
2866 if (i >= length)
2867 break;
2868 if (NILP (marker))
2869 {
2870 search_regs.start[i] = -1;
2871 list = XCDR (list);
2872 }
2873 else
2874 {
2875 Lisp_Object from;
2876 Lisp_Object m;
2877
2878 m = marker;
2879 if (MARKERP (marker))
2880 {
2881 if (XMARKER (marker)->buffer == 0)
2882 XSETFASTINT (marker, 0);
2883 else
2884 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2885 }
2886
2887 CHECK_NUMBER_COERCE_MARKER (marker);
2888 from = marker;
2889
2890 if (!NILP (reseat) && MARKERP (m))
2891 {
2892 unchain_marker (XMARKER (m));
2893 XSETCAR (list, Qnil);
2894 }
2895
2896 if ((list = XCDR (list), !CONSP (list)))
2897 break;
2898
2899 m = marker = XCAR (list);
2900
2901 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2902 XSETFASTINT (marker, 0);
2903
2904 CHECK_NUMBER_COERCE_MARKER (marker);
2905 if ((XINT (from) < 0
2906 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2907 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2908 && (XINT (marker) < 0
2909 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2910 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2911 {
2912 search_regs.start[i] = XINT (from);
2913 search_regs.end[i] = XINT (marker);
2914 }
2915 else
2916 {
2917 search_regs.start[i] = -1;
2918 }
2919
2920 if (!NILP (reseat) && MARKERP (m))
2921 {
2922 unchain_marker (XMARKER (m));
2923 XSETCAR (list, Qnil);
2924 }
2925 }
2926 list = XCDR (list);
2927 }
2928
2929 for (; i < search_regs.num_regs; i++)
2930 search_regs.start[i] = -1;
2931 }
2932
2933 return Qnil;
2934 }
2935
2936 /* If non-zero the match data have been saved in saved_search_regs
2937 during the execution of a sentinel or filter. */
2938 static int search_regs_saved;
2939 static struct re_registers saved_search_regs;
2940 static Lisp_Object saved_last_thing_searched;
2941
2942 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2943 if asynchronous code (filter or sentinel) is running. */
2944 static void
2945 save_search_regs (void)
2946 {
2947 if (!search_regs_saved)
2948 {
2949 saved_search_regs.num_regs = search_regs.num_regs;
2950 saved_search_regs.start = search_regs.start;
2951 saved_search_regs.end = search_regs.end;
2952 saved_last_thing_searched = last_thing_searched;
2953 last_thing_searched = Qnil;
2954 search_regs.num_regs = 0;
2955 search_regs.start = 0;
2956 search_regs.end = 0;
2957
2958 search_regs_saved = 1;
2959 }
2960 }
2961
2962 /* Called upon exit from filters and sentinels. */
2963 void
2964 restore_search_regs (void)
2965 {
2966 if (search_regs_saved)
2967 {
2968 if (search_regs.num_regs > 0)
2969 {
2970 xfree (search_regs.start);
2971 xfree (search_regs.end);
2972 }
2973 search_regs.num_regs = saved_search_regs.num_regs;
2974 search_regs.start = saved_search_regs.start;
2975 search_regs.end = saved_search_regs.end;
2976 last_thing_searched = saved_last_thing_searched;
2977 saved_last_thing_searched = Qnil;
2978 search_regs_saved = 0;
2979 }
2980 }
2981
2982 static Lisp_Object
2983 unwind_set_match_data (Lisp_Object list)
2984 {
2985 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
2986 return Fset_match_data (list, Qt);
2987 }
2988
2989 /* Called to unwind protect the match data. */
2990 void
2991 record_unwind_save_match_data (void)
2992 {
2993 record_unwind_protect (unwind_set_match_data,
2994 Fmatch_data (Qnil, Qnil, Qnil));
2995 }
2996
2997 /* Quote a string to deactivate reg-expr chars */
2998
2999 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3000 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3001 (Lisp_Object string)
3002 {
3003 register char *in, *out, *end;
3004 register char *temp;
3005 int backslashes_added = 0;
3006
3007 CHECK_STRING (string);
3008
3009 temp = alloca (SBYTES (string) * 2);
3010
3011 /* Now copy the data into the new string, inserting escapes. */
3012
3013 in = SSDATA (string);
3014 end = in + SBYTES (string);
3015 out = temp;
3016
3017 for (; in != end; in++)
3018 {
3019 if (*in == '['
3020 || *in == '*' || *in == '.' || *in == '\\'
3021 || *in == '?' || *in == '+'
3022 || *in == '^' || *in == '$')
3023 *out++ = '\\', backslashes_added++;
3024 *out++ = *in;
3025 }
3026
3027 return make_specified_string (temp,
3028 SCHARS (string) + backslashes_added,
3029 out - temp,
3030 STRING_MULTIBYTE (string));
3031 }
3032 \f
3033 void
3034 syms_of_search (void)
3035 {
3036 register int i;
3037
3038 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3039 {
3040 searchbufs[i].buf.allocated = 100;
3041 searchbufs[i].buf.buffer = xmalloc (100);
3042 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3043 searchbufs[i].regexp = Qnil;
3044 searchbufs[i].whitespace_regexp = Qnil;
3045 searchbufs[i].syntax_table = Qnil;
3046 staticpro (&searchbufs[i].regexp);
3047 staticpro (&searchbufs[i].whitespace_regexp);
3048 staticpro (&searchbufs[i].syntax_table);
3049 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3050 }
3051 searchbuf_head = &searchbufs[0];
3052
3053 DEFSYM (Qsearch_failed, "search-failed");
3054 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3055
3056 Fput (Qsearch_failed, Qerror_conditions,
3057 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3058 Fput (Qsearch_failed, Qerror_message,
3059 build_pure_c_string ("Search failed"));
3060
3061 Fput (Qinvalid_regexp, Qerror_conditions,
3062 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3063 Fput (Qinvalid_regexp, Qerror_message,
3064 build_pure_c_string ("Invalid regexp"));
3065
3066 last_thing_searched = Qnil;
3067 staticpro (&last_thing_searched);
3068
3069 saved_last_thing_searched = Qnil;
3070 staticpro (&saved_last_thing_searched);
3071
3072 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3073 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3074 Some commands use this for user-specified regexps.
3075 Spaces that occur inside character classes or repetition operators
3076 or other such regexp constructs are not replaced with this.
3077 A value of nil (which is the normal value) means treat spaces literally. */);
3078 Vsearch_spaces_regexp = Qnil;
3079
3080 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3081 doc: /* Internal use only.
3082 If non-nil, the primitive searching and matching functions
3083 such as `looking-at', `string-match', `re-search-forward', etc.,
3084 do not set the match data. The proper way to use this variable
3085 is to bind it with `let' around a small expression. */);
3086 Vinhibit_changing_match_data = Qnil;
3087
3088 defsubr (&Slooking_at);
3089 defsubr (&Sposix_looking_at);
3090 defsubr (&Sstring_match);
3091 defsubr (&Sposix_string_match);
3092 defsubr (&Ssearch_forward);
3093 defsubr (&Ssearch_backward);
3094 defsubr (&Sre_search_forward);
3095 defsubr (&Sre_search_backward);
3096 defsubr (&Sposix_search_forward);
3097 defsubr (&Sposix_search_backward);
3098 defsubr (&Sreplace_match);
3099 defsubr (&Smatch_beginning);
3100 defsubr (&Smatch_end);
3101 defsubr (&Smatch_data);
3102 defsubr (&Sset_match_data);
3103 defsubr (&Sregexp_quote);
3104 }