* lisp/emacs-lisp/bytecomp.el (byte-compile-catch)
[bpt/emacs.git] / lisp / emacs-lisp / cconv.el
1 ;;; cconv.el --- Closure conversion for statically scoped Emacs lisp. -*- lexical-binding: t -*-
2
3 ;; Copyright (C) 2011 Free Software Foundation, Inc.
4
5 ;; Author: Igor Kuzmin <kzuminig@iro.umontreal.ca>
6 ;; Maintainer: FSF
7 ;; Keywords: lisp
8 ;; Package: emacs
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software: you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation, either version 3 of the License, or
15 ;; (at your option) any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24
25 ;;; Commentary:
26
27 ;; This takes a piece of Elisp code, and eliminates all free variables from
28 ;; lambda expressions. The user entry points are cconv-closure-convert and
29 ;; cconv-closure-convert-toplevel(for toplevel forms).
30 ;; All macros should be expanded beforehand.
31 ;;
32 ;; Here is a brief explanation how this code works.
33 ;; Firstly, we analyse the tree by calling cconv-analyse-form.
34 ;; This function finds all mutated variables, all functions that are suitable
35 ;; for lambda lifting and all variables captured by closure. It passes the tree
36 ;; once, returning a list of three lists.
37 ;;
38 ;; Then we calculate the intersection of first and third lists returned by
39 ;; cconv-analyse form to find all mutated variables that are captured by
40 ;; closure.
41
42 ;; Armed with this data, we call cconv-closure-convert-rec, that rewrites the
43 ;; tree recursivly, lifting lambdas where possible, building closures where it
44 ;; is needed and eliminating mutable variables used in closure.
45 ;;
46 ;; We do following replacements :
47 ;; (lambda (v1 ...) ... fv1 fv2 ...) => (lambda (v1 ... fv1 fv2 ) ... fv1 fv2 .)
48 ;; if the function is suitable for lambda lifting (if all calls are known)
49 ;;
50 ;; (lambda (v1 ...) ... fv ...) =>
51 ;; (curry (lambda (env v1 ...) ... env ...) env)
52 ;; if the function has only 1 free variable
53 ;;
54 ;; and finally
55 ;; (lambda (v1 ...) ... fv1 fv2 ...) =>
56 ;; (curry (lambda (env v1 ..) .. (aref env 0) (aref env 1) ..) (vector fv1 fv2))
57 ;; if the function has 2 or more free variables.
58 ;;
59 ;; If the function has no free variables, we don't do anything.
60 ;;
61 ;; If a variable is mutated (updated by setq), and it is used in a closure
62 ;; we wrap it's definition with list: (list val) and we also replace
63 ;; var => (car var) wherever this variable is used, and also
64 ;; (setq var value) => (setcar var value) where it is updated.
65 ;;
66 ;; If defun argument is closure mutable, we letbind it and wrap it's
67 ;; definition with list.
68 ;; (defun foo (... mutable-arg ...) ...) =>
69 ;; (defun foo (... m-arg ...) (let ((m-arg (list m-arg))) ...))
70 ;;
71 ;;; Code:
72
73 (eval-when-compile (require 'cl))
74
75 (defconst cconv-liftwhen 3
76 "Try to do lambda lifting if the number of arguments + free variables
77 is less than this number.")
78 (defvar cconv-mutated nil
79 "List of mutated variables in current form")
80 (defvar cconv-captured nil
81 "List of closure captured variables in current form")
82 (defvar cconv-captured+mutated nil
83 "An intersection between cconv-mutated and cconv-captured lists.")
84 (defvar cconv-lambda-candidates nil
85 "List of candidates for lambda lifting")
86
87
88 (defun cconv-freevars (form &optional fvrs)
89 "Find all free variables of given form.
90 Arguments:
91 -- FORM is a piece of Elisp code after macroexpansion.
92 -- FVRS(optional) is a list of variables already found. Used for recursive tree
93 traversal
94
95 Returns a list of free variables."
96 ;; If a leaf in the tree is a symbol, but it is not a global variable, not a
97 ;; keyword, not 'nil or 't we consider this leaf as a variable.
98 ;; Free variables are the variables that are not declared above in this tree.
99 ;; For example free variables of (lambda (a1 a2 ..) body-forms) are
100 ;; free variables of body-forms excluding a1, a2 ..
101 ;; Free variables of (let ((v1 ..) (v2) ..)) body-forms) are
102 ;; free variables of body-forms excluding v1, v2 ...
103 ;; and so on.
104
105 ;; A list of free variables already found(FVRS) is passed in parameter
106 ;; to try to use cons or push where possible, and to minimize the usage
107 ;; of append.
108
109 ;; This function can return duplicates (because we use 'append instead
110 ;; of union of two sets - for performance reasons).
111 (pcase form
112 (`(let ,varsvalues . ,body-forms) ; let special form
113 (let ((fvrs-1 '()))
114 (dolist (exp body-forms)
115 (setq fvrs-1 (cconv-freevars exp fvrs-1)))
116 (dolist (elm varsvalues)
117 (setq fvrs-1 (delq (if (consp elm) (car elm) elm) fvrs-1)))
118 (setq fvrs (nconc fvrs-1 fvrs))
119 (dolist (exp varsvalues)
120 (when (consp exp) (setq fvrs (cconv-freevars (cadr exp) fvrs))))
121 fvrs))
122
123 (`(let* ,varsvalues . ,body-forms) ; let* special form
124 (let ((vrs '())
125 (fvrs-1 '()))
126 (dolist (exp varsvalues)
127 (if (consp exp)
128 (progn
129 (setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1))
130 (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
131 (push (car exp) vrs))
132 (progn
133 (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
134 (push exp vrs))))
135 (dolist (exp body-forms)
136 (setq fvrs-1 (cconv-freevars exp fvrs-1)))
137 (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
138 (append fvrs fvrs-1)))
139
140 (`((lambda . ,_) . ,_) ; first element is lambda expression
141 (dolist (exp `((function ,(car form)) . ,(cdr form)))
142 (setq fvrs (cconv-freevars exp fvrs))) fvrs)
143
144 (`(cond . ,cond-forms) ; cond special form
145 (dolist (exp1 cond-forms)
146 (dolist (exp2 exp1)
147 (setq fvrs (cconv-freevars exp2 fvrs)))) fvrs)
148
149 (`(quote . ,_) fvrs) ; quote form
150
151 (`(function . ((lambda ,vars . ,body-forms)))
152 (let ((functionform (cadr form)) (fvrs-1 '()))
153 (dolist (exp body-forms)
154 (setq fvrs-1 (cconv-freevars exp fvrs-1)))
155 (dolist (elm vars) (setq fvrs-1 (delq elm fvrs-1)))
156 (append fvrs fvrs-1))) ; function form
157
158 (`(function . ,_) fvrs) ; same as quote
159 ;condition-case
160 (`(condition-case ,var ,protected-form . ,conditions-bodies)
161 (let ((fvrs-1 '()))
162 (dolist (exp conditions-bodies)
163 (setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1)))
164 (setq fvrs-1 (delq var fvrs-1))
165 (setq fvrs-1 (cconv-freevars protected-form fvrs-1))
166 (append fvrs fvrs-1)))
167
168 (`(,(and sym (or `defun `defconst `defvar)) . ,_)
169 ;; we call cconv-freevars only for functions(lambdas)
170 ;; defun, defconst, defvar are not allowed to be inside
171 ;; a function(lambda)
172 (error "Invalid form: %s inside a function" sym))
173
174 (`(,_ . ,body-forms) ; first element is a function or whatever
175 (dolist (exp body-forms)
176 (setq fvrs (cconv-freevars exp fvrs))) fvrs)
177
178 (_ (if (or (not (symbolp form)) ; form is not a list
179 (special-variable-p form)
180 ;; byte-compile-bound-variables normally holds both the
181 ;; dynamic and lexical vars, but the bytecomp.el should
182 ;; only call us at the top-level so there shouldn't be
183 ;; any lexical vars in it here.
184 (memq form byte-compile-bound-variables)
185 (memq form '(nil t))
186 (keywordp form))
187 fvrs
188 (cons form fvrs)))))
189
190 ;;;###autoload
191 (defun cconv-closure-convert (form &optional toplevel)
192 ;; cconv-closure-convert-rec has a lot of parameters that are
193 ;; whether useless for user, whether they should contain
194 ;; specific data like a list of closure mutables or the list
195 ;; of lambdas suitable for lifting.
196 ;;
197 ;; That's why this function exists.
198 "Main entry point for non-toplevel forms.
199 -- FORM is a piece of Elisp code after macroexpansion.
200 -- TOPLEVEL(optional) is a boolean variable, true if we are at the root of AST
201
202 Returns a form where all lambdas don't have any free variables."
203 (let ((cconv-mutated '())
204 (cconv-lambda-candidates '())
205 (cconv-captured '())
206 (cconv-captured+mutated '()))
207 ;; Analyse form - fill these variables with new information
208 (cconv-analyse-form form '() nil)
209 ;; Calculate an intersection of cconv-mutated and cconv-captured
210 (dolist (mvr cconv-mutated)
211 (when (memq mvr cconv-captured) ;
212 (push mvr cconv-captured+mutated)))
213 (cconv-closure-convert-rec
214 form ; the tree
215 '() ;
216 '() ; fvrs initially empty
217 '() ; envs initially empty
218 '()
219 toplevel))) ; true if the tree is a toplevel form
220
221 ;;;###autoload
222 (defun cconv-closure-convert-toplevel (form)
223 "Entry point for toplevel forms.
224 -- FORM is a piece of Elisp code after macroexpansion.
225
226 Returns a form where all lambdas don't have any free variables."
227 ;; we distinguish toplevel forms to treat def(un|var|const) correctly.
228 (cconv-closure-convert form t))
229
230 (defun cconv-closure-convert-rec
231 (form emvrs fvrs envs lmenvs defs-are-legal)
232 ;; This function actually rewrites the tree.
233 "Eliminates all free variables of all lambdas in given forms.
234 Arguments:
235 -- FORM is a piece of Elisp code after macroexpansion.
236 -- LMENVS is a list of environments used for lambda-lifting. Initially empty.
237 -- EMVRS is a list that contains mutated variables that are visible
238 within current environment.
239 -- ENVS is an environment(list of free variables) of current closure.
240 Initially empty.
241 -- FVRS is a list of variables to substitute in each context.
242 Initially empty.
243 -- DEFS-ARE-LEGAL is a boolean variable, true if def(un|var|const)
244 can be used in this form(e.g. toplevel form)
245
246 Returns a form where all lambdas don't have any free variables."
247 ;; What's the difference between fvrs and envs?
248 ;; Suppose that we have the code
249 ;; (lambda (..) fvr (let ((fvr 1)) (+ fvr 1)))
250 ;; only the first occurrence of fvr should be replaced by
251 ;; (aref env ...).
252 ;; So initially envs and fvrs are the same thing, but when we descend to
253 ;; the 'let, we delete fvr from fvrs. Why we don't delete fvr from envs?
254 ;; Because in envs the order of variables is important. We use this list
255 ;; to find the number of a specific variable in the environment vector,
256 ;; so we never touch it(unless we enter to the other closure).
257 ;;(if (listp form) (print (car form)) form)
258 (pcase form
259 (`(,(and letsym (or `let* `let)) ,varsvalues . ,body-forms)
260
261 ; let and let* special forms
262 (let ((body-forms-new '())
263 (varsvalues-new '())
264 ;; next for variables needed for delayed push
265 ;; because we should process <value(s)>
266 ;; before we change any arguments
267 (lmenvs-new '()) ;needed only in case of let
268 (emvrs-new '()) ;needed only in case of let
269 (emvr-push) ;needed only in case of let*
270 (lmenv-push)) ;needed only in case of let*
271
272 (dolist (elm varsvalues) ;begin of dolist over varsvalues
273 (let (var value elm-new iscandidate ismutated)
274 (if (listp elm) ; (let (v1) ...) => (let ((v1 nil)) ...)
275 (progn
276 (setq var (car elm))
277 (setq value (cadr elm)))
278 (setq var elm))
279
280 ;; Check if var is a candidate for lambda lifting
281 (let ((lcandid cconv-lambda-candidates))
282 (while (and lcandid (not iscandidate))
283 (when (and (eq (caar lcandid) var)
284 (eq (caddar lcandid) elm)
285 (eq (cadr (cddar lcandid)) form))
286 (setq iscandidate t))
287 (setq lcandid (cdr lcandid))))
288
289 ; declared variable is a candidate
290 ; for lambda lifting
291 (if iscandidate
292 (let* ((func (cadr elm)) ; function(lambda) itself
293 ; free variables
294 (fv (delete-dups (cconv-freevars func '())))
295 (funcvars (append fv (cadadr func))) ;function args
296 (funcbodies (cddadr func)) ; function bodies
297 (funcbodies-new '()))
298 ; lambda lifting condition
299 (if (or (not fv) (< cconv-liftwhen (length funcvars)))
300 ; do not lift
301 (setq
302 elm-new
303 `(,var
304 ,(cconv-closure-convert-rec
305 func emvrs fvrs envs lmenvs nil)))
306 ; lift
307 (progn
308 (dolist (elm2 funcbodies)
309 (push ; convert function bodies
310 (cconv-closure-convert-rec
311 elm2 emvrs nil envs lmenvs nil)
312 funcbodies-new))
313 (if (eq letsym 'let*)
314 (setq lmenv-push (cons var fv))
315 (push (cons var fv) lmenvs-new))
316 ; push lifted function
317
318 (setq elm-new
319 `(,var
320 (function .
321 ((lambda ,funcvars .
322 ,(reverse funcbodies-new)))))))))
323
324 ;declared variable is not a function
325 (progn
326 ;; Check if var is mutated
327 (let ((lmutated cconv-captured+mutated))
328 (while (and lmutated (not ismutated))
329 (when (and (eq (caar lmutated) var)
330 (eq (caddar lmutated) elm)
331 (eq (cadr (cddar lmutated)) form))
332 (setq ismutated t))
333 (setq lmutated (cdr lmutated))))
334 (if ismutated
335 (progn ; declared variable is mutated
336 (setq elm-new
337 `(,var (list ,(cconv-closure-convert-rec
338 value emvrs
339 fvrs envs lmenvs nil))))
340 (if (eq letsym 'let*)
341 (setq emvr-push var)
342 (push var emvrs-new)))
343 (progn
344 (setq
345 elm-new
346 `(,var ; else
347 ,(cconv-closure-convert-rec
348 value emvrs fvrs envs lmenvs nil)))))))
349
350 ;; this piece of code below letbinds free
351 ;; variables of a lambda lifted function
352 ;; if they are redefined in this let
353 ;; example:
354 ;; (let* ((fun (lambda (x) (+ x y))) (y 1)) (funcall fun 1))
355 ;; Here we can not pass y as parameter because it is
356 ;; redefined. We add a (closed-y y) declaration.
357 ;; We do that even if the function is not used inside
358 ;; this let(*). The reason why we ignore this case is
359 ;; that we can't "look forward" to see if the function
360 ;; is called there or not. To treat well this case we
361 ;; need to traverse the tree one more time to collect this
362 ;; data, and I think that it's not worth it.
363
364 (when (eq letsym 'let*)
365 (let ((closedsym '())
366 (new-lmenv '())
367 (old-lmenv '()))
368 (dolist (lmenv lmenvs)
369 (when (memq var (cdr lmenv))
370 (setq closedsym
371 (make-symbol
372 (concat "closed-" (symbol-name var))))
373 (setq new-lmenv (list (car lmenv)))
374 (dolist (frv (cdr lmenv)) (if (eq frv var)
375 (push closedsym new-lmenv)
376 (push frv new-lmenv)))
377 (setq new-lmenv (reverse new-lmenv))
378 (setq old-lmenv lmenv)))
379 (when new-lmenv
380 (setq lmenvs (remq old-lmenv lmenvs))
381 (push new-lmenv lmenvs)
382 (push `(,closedsym ,var) varsvalues-new))))
383 ;; we push the element after redefined free variables
384 ;; are processes. this is important to avoid the bug
385 ;; when free variable and the function have the same
386 ;; name
387 (push elm-new varsvalues-new)
388
389 (when (eq letsym 'let*) ; update fvrs
390 (setq fvrs (remq var fvrs))
391 (setq emvrs (remq var emvrs)) ; remove if redefined
392 (when emvr-push
393 (push emvr-push emvrs)
394 (setq emvr-push nil))
395 (let (lmenvs-1) ; remove var from lmenvs if redefined
396 (dolist (iter lmenvs)
397 (when (not (assq var lmenvs))
398 (push iter lmenvs-1)))
399 (setq lmenvs lmenvs-1))
400 (when lmenv-push
401 (push lmenv-push lmenvs)
402 (setq lmenv-push nil)))
403 )) ; end of dolist over varsvalues
404 (when (eq letsym 'let)
405
406 (let (var fvrs-1 emvrs-1 lmenvs-1)
407 ;; Here we update emvrs, fvrs and lmenvs lists
408 (dolist (vr fvrs)
409 ; safely remove
410 (when (not (assq vr varsvalues-new)) (push vr fvrs-1)))
411 (setq fvrs fvrs-1)
412 (dolist (vr emvrs)
413 ; safely remove
414 (when (not (assq vr varsvalues-new)) (push vr emvrs-1)))
415 (setq emvrs emvrs-1)
416 ; push new
417 (setq emvrs (append emvrs emvrs-new))
418 (dolist (vr lmenvs)
419 (when (not (assq (car vr) varsvalues-new))
420 (push vr lmenvs-1)))
421 (setq lmenvs (append lmenvs lmenvs-new)))
422
423 ;; Here we do the same letbinding as for let* above
424 ;; to avoid situation when a free variable of a lambda lifted
425 ;; function got redefined.
426
427 (let ((new-lmenv)
428 (var nil)
429 (closedsym nil)
430 (letbinds '())
431 (fvrs-new)) ; list of (closed-var var)
432 (dolist (elm varsvalues)
433 (if (listp elm)
434 (setq var (car elm))
435 (setq var elm))
436
437 (let ((lmenvs-1 lmenvs)) ; just to avoid manipulating
438 (dolist (lmenv lmenvs-1) ; the counter inside the loop
439 (when (memq var (cdr lmenv))
440 (setq closedsym (make-symbol
441 (concat "closed-"
442 (symbol-name var))))
443
444 (setq new-lmenv (list (car lmenv)))
445 (dolist (frv (cdr lmenv)) (if (eq frv var)
446 (push closedsym new-lmenv)
447 (push frv new-lmenv)))
448 (setq new-lmenv (reverse new-lmenv))
449 (setq lmenvs (remq lmenv lmenvs))
450 (push new-lmenv lmenvs)
451 (push `(,closedsym ,var) letbinds)
452 ))))
453 (setq varsvalues-new (append varsvalues-new letbinds))))
454
455 (dolist (elm body-forms) ; convert body forms
456 (push (cconv-closure-convert-rec
457 elm emvrs fvrs envs lmenvs nil)
458 body-forms-new))
459 `(,letsym ,(reverse varsvalues-new) . ,(reverse body-forms-new))))
460 ;end of let let* forms
461
462 ; first element is lambda expression
463 (`(,(and `(lambda . ,_) fun) . ,other-body-forms)
464
465 (let ((other-body-forms-new '()))
466 (dolist (elm other-body-forms)
467 (push (cconv-closure-convert-rec
468 elm emvrs fvrs envs lmenvs nil)
469 other-body-forms-new))
470 (cons
471 (cadr
472 (cconv-closure-convert-rec
473 (list 'function fun) emvrs fvrs envs lmenvs nil))
474 (reverse other-body-forms-new))))
475
476 (`(cond . ,cond-forms) ; cond special form
477 (let ((cond-forms-new '()))
478 (dolist (elm cond-forms)
479 (push (let ((elm-new '()))
480 (dolist (elm-2 elm)
481 (push
482 (cconv-closure-convert-rec
483 elm-2 emvrs fvrs envs lmenvs nil)
484 elm-new))
485 (reverse elm-new))
486 cond-forms-new))
487 (cons 'cond
488 (reverse cond-forms-new))))
489
490 (`(quote . ,_) form) ; quote form
491
492 (`(function . ((lambda ,vars . ,body-forms))) ; function form
493 (let (fvrs-new) ; we remove vars from fvrs
494 (dolist (elm fvrs) ;i use such a tricky way to avoid side effects
495 (when (not (memq elm vars))
496 (push elm fvrs-new)))
497 (setq fvrs fvrs-new))
498 (let* ((fv (delete-dups (cconv-freevars form '())))
499 (leave fvrs) ; leave = non nil if we should leave env unchanged
500 (body-forms-new '())
501 (letbind '())
502 (mv nil)
503 (envector nil))
504 (when fv
505 ;; Here we form our environment vector.
506 ;; If outer closure contains all
507 ;; free variables of this function(and nothing else)
508 ;; then we use the same environment vector as for outer closure,
509 ;; i.e. we leave the environment vector unchanged
510 ;; otherwise we build a new environmet vector
511 (if (eq (length envs) (length fv))
512 (let ((fv-temp fv))
513 (while (and fv-temp leave)
514 (when (not (memq (car fv-temp) fvrs)) (setq leave nil))
515 (setq fv-temp (cdr fv-temp))))
516 (setq leave nil))
517
518 (if (not leave)
519 (progn
520 (dolist (elm fv)
521 (push
522 (cconv-closure-convert-rec
523 elm (remq elm emvrs) fvrs envs lmenvs nil)
524 envector)) ; process vars for closure vector
525 (setq envector (reverse envector))
526 (setq envs fv))
527 (setq envector `(env))) ; leave unchanged
528 (setq fvrs fv)) ; update substitution list
529
530 ;; the difference between envs and fvrs is explained
531 ;; in comment in the beginning of the function
532 (dolist (elm cconv-captured+mutated) ; find mutated arguments
533 (setq mv (car elm)) ; used in inner closures
534 (when (and (memq mv vars) (eq form (caddr elm)))
535 (progn (push mv emvrs)
536 (push `(,mv (list ,mv)) letbind))))
537 (dolist (elm body-forms) ; convert function body
538 (push (cconv-closure-convert-rec
539 elm emvrs fvrs envs lmenvs nil)
540 body-forms-new))
541
542 (setq body-forms-new
543 (if letbind `((let ,letbind . ,(reverse body-forms-new)))
544 (reverse body-forms-new)))
545
546 (cond
547 ;if no freevars - do nothing
548 ((null envector)
549 `(function (lambda ,vars . ,body-forms-new)))
550 ; 1 free variable - do not build vector
551 ((null (cdr envector))
552 `(curry
553 (function (lambda (env . ,vars) . ,body-forms-new))
554 ,(car envector)))
555 ; >=2 free variables - build vector
556 (t
557 `(curry
558 (function (lambda (env . ,vars) . ,body-forms-new))
559 (vector . ,envector))))))
560
561 (`(function . ,_) form) ; same as quote
562
563 ;defconst, defvar
564 (`(,(and sym (or `defconst `defvar)) ,definedsymbol . ,body-forms)
565
566 (if defs-are-legal
567 (let ((body-forms-new '()))
568 (dolist (elm body-forms)
569 (push (cconv-closure-convert-rec
570 elm emvrs fvrs envs lmenvs nil)
571 body-forms-new))
572 (setq body-forms-new (reverse body-forms-new))
573 `(,sym ,definedsymbol . ,body-forms-new))
574 (error "Invalid form: %s inside a function" sym)))
575
576 ;defun, defmacro
577 (`(,(and sym (or `defun `defmacro))
578 ,func ,vars . ,body-forms)
579 (if defs-are-legal
580 (let ((body-new '()) ; the whole body
581 (body-forms-new '()) ; body w\o docstring and interactive
582 (letbind '()))
583 ; find mutable arguments
584 (let ((lmutated cconv-captured+mutated) ismutated)
585 (dolist (elm vars)
586 (setq ismutated nil)
587 (while (and lmutated (not ismutated))
588 (when (and (eq (caar lmutated) elm)
589 (eq (cadar lmutated) form))
590 (setq ismutated t))
591 (setq lmutated (cdr lmutated)))
592 (when ismutated
593 (push elm letbind)
594 (push elm emvrs))))
595 ;transform body-forms
596 (when (stringp (car body-forms)) ; treat docstring well
597 (push (car body-forms) body-new)
598 (setq body-forms (cdr body-forms)))
599 (when (and (listp (car body-forms)) ; treat (interactive) well
600 (eq (caar body-forms) 'interactive))
601 (push
602 (cconv-closure-convert-rec
603 (car body-forms)
604 emvrs fvrs envs lmenvs nil) body-new)
605 (setq body-forms (cdr body-forms)))
606
607 (dolist (elm body-forms)
608 (push (cconv-closure-convert-rec
609 elm emvrs fvrs envs lmenvs nil)
610 body-forms-new))
611 (setq body-forms-new (reverse body-forms-new))
612
613 (if letbind
614 ; letbind mutable arguments
615 (let ((varsvalues-new '()))
616 (dolist (elm letbind) (push `(,elm (list ,elm))
617 varsvalues-new))
618 (push `(let ,(reverse varsvalues-new) .
619 ,body-forms-new) body-new)
620 (setq body-new (reverse body-new)))
621 (setq body-new (append (reverse body-new) body-forms-new)))
622
623 `(,sym ,func ,vars . ,body-new))
624
625 (error "Invalid form: defun inside a function")))
626 ;condition-case
627 (`(condition-case ,var ,protected-form . ,conditions-bodies)
628 (let ((conditions-bodies-new '()))
629 (setq fvrs (remq var fvrs))
630 (dolist (elm conditions-bodies)
631 (push (let ((elm-new '()))
632 (dolist (elm-2 (cdr elm))
633 (push
634 (cconv-closure-convert-rec
635 elm-2 emvrs fvrs envs lmenvs nil)
636 elm-new))
637 (cons (car elm) (reverse elm-new)))
638 conditions-bodies-new))
639 `(condition-case
640 ,var
641 ,(cconv-closure-convert-rec
642 protected-form emvrs fvrs envs lmenvs nil)
643 . ,(reverse conditions-bodies-new))))
644
645 (`(setq . ,forms) ; setq special form
646 (let (prognlist sym sym-new value)
647 (while forms
648 (setq sym (car forms))
649 (setq sym-new (cconv-closure-convert-rec
650 sym
651 (remq sym emvrs) fvrs envs lmenvs nil))
652 (setq value
653 (cconv-closure-convert-rec
654 (cadr forms) emvrs fvrs envs lmenvs nil))
655 (if (memq sym emvrs)
656 (push `(setcar ,sym-new ,value) prognlist)
657 (if (symbolp sym-new)
658 (push `(setq ,sym-new ,value) prognlist)
659 (push `(set ,sym-new ,value) prognlist)))
660 (setq forms (cddr forms)))
661 (if (cdr prognlist)
662 `(progn . ,(reverse prognlist))
663 (car prognlist))))
664
665 (`(,(and (or `funcall `apply) callsym) ,fun . ,args)
666 ; funcall is not a special form
667 ; but we treat it separately
668 ; for the needs of lambda lifting
669 (let ((fv (cdr (assq fun lmenvs))))
670 (if fv
671 (let ((args-new '())
672 (processed-fv '()))
673 ;; All args (free variables and actual arguments)
674 ;; should be processed, because they can be fvrs
675 ;; (free variables of another closure)
676 (dolist (fvr fv)
677 (push (cconv-closure-convert-rec
678 fvr (remq fvr emvrs)
679 fvrs envs lmenvs nil)
680 processed-fv))
681 (setq processed-fv (reverse processed-fv))
682 (dolist (elm args)
683 (push (cconv-closure-convert-rec
684 elm emvrs fvrs envs lmenvs nil)
685 args-new))
686 (setq args-new (append processed-fv (reverse args-new)))
687 (setq fun (cconv-closure-convert-rec
688 fun emvrs fvrs envs lmenvs nil))
689 `(,callsym ,fun . ,args-new))
690 (let ((cdr-new '()))
691 (dolist (elm (cdr form))
692 (push (cconv-closure-convert-rec
693 elm emvrs fvrs envs lmenvs nil)
694 cdr-new))
695 `(,callsym . ,(reverse cdr-new))))))
696
697 (`(,func . ,body-forms) ; first element is function or whatever
698 ; function-like forms are:
699 ; or, and, if, progn, prog1, prog2,
700 ; while, until
701 (let ((body-forms-new '()))
702 (dolist (elm body-forms)
703 (push (cconv-closure-convert-rec
704 elm emvrs fvrs envs lmenvs defs-are-legal)
705 body-forms-new))
706 (setq body-forms-new (reverse body-forms-new))
707 `(,func . ,body-forms-new)))
708
709 (_
710 (if (memq form fvrs) ;form is a free variable
711 (let* ((numero (position form envs))
712 (var '()))
713 (assert numero)
714 (if (null (cdr envs))
715 (setq var 'env)
716 ;replace form =>
717 ;(aref env #)
718 (setq var `(aref env ,numero)))
719 (if (memq form emvrs) ; form => (car (aref env #)) if mutable
720 `(car ,var)
721 var))
722 (if (memq form emvrs) ; if form is a mutable variable
723 `(car ,form) ; replace form => (car form)
724 form)))))
725
726 (defun cconv-analyse-form (form vars inclosure)
727
728 "Find mutated variables and variables captured by closure. Analyse
729 lambdas if they are suitable for lambda lifting.
730 -- FORM is a piece of Elisp code after macroexpansion.
731 -- MLCVRS is a structure that contains captured and mutated variables.
732 (first MLCVRS) is a list of mutated variables, (second MLCVRS) is a
733 list of candidates for lambda lifting and (third MLCVRS) is a list of
734 variables captured by closure. It should be (nil nil nil) initially.
735 -- VARS is a list of local variables visible in current environment
736 (initially empty).
737 -- INCLOSURE is a boolean variable, true if we are in closure.
738 Initially false"
739 (pcase form
740 ; let special form
741 (`(,(and (or `let* `let) letsym) ,varsvalues . ,body-forms)
742
743 (when (eq letsym 'let)
744 (dolist (elm varsvalues) ; analyse values
745 (when (listp elm)
746 (cconv-analyse-form (cadr elm) vars inclosure))))
747
748 (let ((v nil)
749 (var nil)
750 (value nil)
751 (varstruct nil))
752 (dolist (elm varsvalues)
753 (if (listp elm)
754 (progn
755 (setq var (car elm))
756 (setq value (cadr elm)))
757 (progn
758 (setq var elm) ; treat the form (let (x) ...) well
759 (setq value nil)))
760
761 (when (eq letsym 'let*) ; analyse value
762 (cconv-analyse-form value vars inclosure))
763
764 (let (vars-new) ; remove the old var
765 (dolist (vr vars)
766 (when (not (eq (car vr) var))
767 (push vr vars-new)))
768 (setq vars vars-new))
769
770 (setq varstruct (list var inclosure elm form))
771 (push varstruct vars) ; push a new one
772
773 (when (and (listp value)
774 (eq (car value) 'function)
775 (eq (caadr value) 'lambda))
776 ; if var is a function
777 ; push it to lambda list
778 (push varstruct cconv-lambda-candidates))))
779
780 (dolist (elm body-forms) ; analyse body forms
781 (cconv-analyse-form elm vars inclosure))
782 nil)
783 ; defun special form
784 (`(,(or `defun `defmacro) ,func ,vrs . ,body-forms)
785 (let ((v nil))
786 (dolist (vr vrs)
787 (push (list vr form) vars))) ;push vrs to vars
788 (dolist (elm body-forms) ; analyse body forms
789 (cconv-analyse-form elm vars inclosure))
790 nil)
791
792 (`(function . ((lambda ,vrs . ,body-forms)))
793 (if inclosure ;we are in closure
794 (setq inclosure (+ inclosure 1))
795 (setq inclosure 1))
796 (let (vars-new) ; update vars
797 (dolist (vr vars) ; we do that in such a tricky way
798 (when (not (memq (car vr) vrs)) ; to avoid side effects
799 (push vr vars-new)))
800 (dolist (vr vrs)
801 (push (list vr inclosure form) vars-new))
802 (setq vars vars-new))
803
804 (dolist (elm body-forms)
805 (cconv-analyse-form elm vars inclosure))
806 nil)
807
808 (`(setq . ,forms) ; setq
809 ; if a local variable (member of vars)
810 ; is modified by setq
811 ; then it is a mutated variable
812 (while forms
813 (let ((v (assq (car forms) vars))) ; v = non nil if visible
814 (when v
815 (push v cconv-mutated)
816 ;; delete from candidate list for lambda lifting
817 (setq cconv-lambda-candidates (delq v cconv-lambda-candidates))
818 (when inclosure
819 ;; test if v is declared as argument for lambda
820 (let* ((thirdv (third v))
821 (isarg (if (listp thirdv)
822 (eq (car thirdv) 'function) nil)))
823 (if isarg
824 (when (> inclosure (cadr v)) ; when we are in closure
825 (push v cconv-captured)) ; push it to captured vars
826 ;; FIXME more detailed comments needed
827 (push v cconv-captured))))))
828 (cconv-analyse-form (cadr forms) vars inclosure)
829 (setq forms (cddr forms)))
830 nil)
831
832 (`((lambda . ,_) . ,_) ; first element is lambda expression
833 (dolist (exp `((function ,(car form)) . ,(cdr form)))
834 (cconv-analyse-form exp vars inclosure))
835 nil)
836
837 (`(cond . ,cond-forms) ; cond special form
838 (dolist (exp1 cond-forms)
839 (dolist (exp2 exp1)
840 (cconv-analyse-form exp2 vars inclosure)))
841 nil)
842
843 (`(quote . ,_) nil) ; quote form
844
845 (`(function . ,_) nil) ; same as quote
846
847 (`(condition-case ,var ,protected-form . ,conditions-bodies)
848 ;condition-case
849 (cconv-analyse-form protected-form vars inclosure)
850 (dolist (exp conditions-bodies)
851 (cconv-analyse-form (cadr exp) vars inclosure))
852 nil)
853
854 (`(,(or `defconst `defvar) ,value)
855 (cconv-analyse-form value vars inclosure))
856
857 (`(,(or `funcall `apply) ,fun . ,args)
858 ;; Here we ignore fun because
859 ;; funcall and apply are the only two
860 ;; functions where we can pass a candidate
861 ;; for lambda lifting as argument.
862 ;; So, if we see fun elsewhere, we'll
863 ;; delete it from lambda candidate list.
864
865 ;; If this funcall and the definition of fun
866 ;; are in different closures - we delete fun from
867 ;; canidate list, because it is too complicated
868 ;; to manage free variables in this case.
869 (let ((lv (assq fun cconv-lambda-candidates)))
870 (when lv
871 (when (not (eq (cadr lv) inclosure))
872 (setq cconv-lambda-candidates
873 (delq lv cconv-lambda-candidates)))))
874
875 (dolist (elm args)
876 (cconv-analyse-form elm vars inclosure))
877 nil)
878
879 (`(,_ . ,body-forms) ; first element is a function or whatever
880 (dolist (exp body-forms)
881 (cconv-analyse-form exp vars inclosure))
882 nil)
883
884 (_
885 (when (and (symbolp form)
886 (not (memq form '(nil t)))
887 (not (keywordp form))
888 (not (special-variable-p form)))
889 (let ((dv (assq form vars))) ; dv = declared and visible
890 (when dv
891 (when inclosure
892 ;; test if v is declared as argument of lambda
893 (let* ((thirddv (third dv))
894 (isarg (if (listp thirddv)
895 (eq (car thirddv) 'function) nil)))
896 (if isarg
897 ;; FIXME add detailed comments
898 (when (> inclosure (cadr dv)) ; capturing condition
899 (push dv cconv-captured))
900 (push dv cconv-captured))))
901 ; delete lambda
902 (setq cconv-lambda-candidates ; if it is found here
903 (delq dv cconv-lambda-candidates)))))
904 nil)))
905
906 (provide 'cconv)
907 ;;; cconv.el ends here