* alloc.c: Remove redundant static declarations.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
217
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
224
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
228
229 enum mem_type
230 {
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
246 };
247
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
252 #endif
253
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
256
257 static Lisp_Object Vdead;
258 #define DEADP(x) EQ (x, Vdead)
259
260 #ifdef GC_MALLOC_CHECK
261
262 enum mem_type allocated_mem_type;
263
264 #endif /* GC_MALLOC_CHECK */
265
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
269 is freed.
270
271 A red-black tree is a balanced binary tree with the following
272 properties:
273
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
280
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
283
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
288 describe them. */
289
290 struct mem_node
291 {
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node *left, *right;
295
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node *parent;
298
299 /* Start and end of allocated region. */
300 void *start, *end;
301
302 /* Node color. */
303 enum {MEM_BLACK, MEM_RED} color;
304
305 /* Memory type. */
306 enum mem_type type;
307 };
308
309 /* Base address of stack. Set in main. */
310
311 Lisp_Object *stack_base;
312
313 /* Root of the tree describing allocated Lisp memory. */
314
315 static struct mem_node *mem_root;
316
317 /* Lowest and highest known address in the heap. */
318
319 static void *min_heap_address, *max_heap_address;
320
321 /* Sentinel node of the tree. */
322
323 static struct mem_node mem_z;
324 #define MEM_NIL &mem_z
325
326 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
327 static struct mem_node *mem_insert (void *, void *, enum mem_type);
328 static void mem_insert_fixup (struct mem_node *);
329 static void mem_rotate_left (struct mem_node *);
330 static void mem_rotate_right (struct mem_node *);
331 static void mem_delete (struct mem_node *);
332 static void mem_delete_fixup (struct mem_node *);
333 static struct mem_node *mem_find (void *);
334 #endif
335
336 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
337
338 #ifndef DEADP
339 # define DEADP(x) 0
340 #endif
341
342 /* Recording what needs to be marked for gc. */
343
344 struct gcpro *gcprolist;
345
346 /* Addresses of staticpro'd variables. Initialize it to a nonzero
347 value; otherwise some compilers put it into BSS. */
348
349 #define NSTATICS 0x800
350 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
351
352 /* Index of next unused slot in staticvec. */
353
354 static int staticidx;
355
356 static void *pure_alloc (size_t, int);
357
358
359 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
360 ALIGNMENT must be a power of 2. */
361
362 #define ALIGN(ptr, ALIGNMENT) \
363 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
364 & ~ ((ALIGNMENT) - 1)))
365
366
367 \f
368 /************************************************************************
369 Malloc
370 ************************************************************************/
371
372 /* Function malloc calls this if it finds we are near exhausting storage. */
373
374 void
375 malloc_warning (const char *str)
376 {
377 pending_malloc_warning = str;
378 }
379
380
381 /* Display an already-pending malloc warning. */
382
383 void
384 display_malloc_warning (void)
385 {
386 call3 (intern ("display-warning"),
387 intern ("alloc"),
388 build_string (pending_malloc_warning),
389 intern ("emergency"));
390 pending_malloc_warning = 0;
391 }
392 \f
393 /* Called if we can't allocate relocatable space for a buffer. */
394
395 void
396 buffer_memory_full (ptrdiff_t nbytes)
397 {
398 /* If buffers use the relocating allocator, no need to free
399 spare_memory, because we may have plenty of malloc space left
400 that we could get, and if we don't, the malloc that fails will
401 itself cause spare_memory to be freed. If buffers don't use the
402 relocating allocator, treat this like any other failing
403 malloc. */
404
405 #ifndef REL_ALLOC
406 memory_full (nbytes);
407 #else
408 /* This used to call error, but if we've run out of memory, we could
409 get infinite recursion trying to build the string. */
410 xsignal (Qnil, Vmemory_signal_data);
411 #endif
412 }
413
414 /* A common multiple of the positive integers A and B. Ideally this
415 would be the least common multiple, but there's no way to do that
416 as a constant expression in C, so do the best that we can easily do. */
417 #define COMMON_MULTIPLE(a, b) \
418 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
419
420 #ifndef XMALLOC_OVERRUN_CHECK
421 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
422 #else
423
424 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
425 around each block.
426
427 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
428 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
429 block size in little-endian order. The trailer consists of
430 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
431
432 The header is used to detect whether this block has been allocated
433 through these functions, as some low-level libc functions may
434 bypass the malloc hooks. */
435
436 #define XMALLOC_OVERRUN_CHECK_SIZE 16
437 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
438 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
439
440 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
441 hold a size_t value and (2) the header size is a multiple of the
442 alignment that Emacs needs for C types and for USE_LSB_TAG. */
443 #define XMALLOC_BASE_ALIGNMENT \
444 alignof (union { long double d; intmax_t i; void *p; })
445
446 #if USE_LSB_TAG
447 # define XMALLOC_HEADER_ALIGNMENT \
448 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
449 #else
450 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
451 #endif
452 #define XMALLOC_OVERRUN_SIZE_SIZE \
453 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
454 + XMALLOC_HEADER_ALIGNMENT - 1) \
455 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
456 - XMALLOC_OVERRUN_CHECK_SIZE)
457
458 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
459 { '\x9a', '\x9b', '\xae', '\xaf',
460 '\xbf', '\xbe', '\xce', '\xcf',
461 '\xea', '\xeb', '\xec', '\xed',
462 '\xdf', '\xde', '\x9c', '\x9d' };
463
464 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
465 { '\xaa', '\xab', '\xac', '\xad',
466 '\xba', '\xbb', '\xbc', '\xbd',
467 '\xca', '\xcb', '\xcc', '\xcd',
468 '\xda', '\xdb', '\xdc', '\xdd' };
469
470 /* Insert and extract the block size in the header. */
471
472 static void
473 xmalloc_put_size (unsigned char *ptr, size_t size)
474 {
475 int i;
476 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
477 {
478 *--ptr = size & ((1 << CHAR_BIT) - 1);
479 size >>= CHAR_BIT;
480 }
481 }
482
483 static size_t
484 xmalloc_get_size (unsigned char *ptr)
485 {
486 size_t size = 0;
487 int i;
488 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
489 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
490 {
491 size <<= CHAR_BIT;
492 size += *ptr++;
493 }
494 return size;
495 }
496
497
498 /* Like malloc, but wraps allocated block with header and trailer. */
499
500 static void *
501 overrun_check_malloc (size_t size)
502 {
503 register unsigned char *val;
504 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
505 emacs_abort ();
506
507 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
508 if (val)
509 {
510 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
511 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
512 xmalloc_put_size (val, size);
513 memcpy (val + size, xmalloc_overrun_check_trailer,
514 XMALLOC_OVERRUN_CHECK_SIZE);
515 }
516 return val;
517 }
518
519
520 /* Like realloc, but checks old block for overrun, and wraps new block
521 with header and trailer. */
522
523 static void *
524 overrun_check_realloc (void *block, size_t size)
525 {
526 register unsigned char *val = (unsigned char *) block;
527 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
528 emacs_abort ();
529
530 if (val
531 && memcmp (xmalloc_overrun_check_header,
532 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
533 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
534 {
535 size_t osize = xmalloc_get_size (val);
536 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
537 XMALLOC_OVERRUN_CHECK_SIZE))
538 emacs_abort ();
539 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
540 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
541 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
542 }
543
544 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
545
546 if (val)
547 {
548 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
549 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
550 xmalloc_put_size (val, size);
551 memcpy (val + size, xmalloc_overrun_check_trailer,
552 XMALLOC_OVERRUN_CHECK_SIZE);
553 }
554 return val;
555 }
556
557 /* Like free, but checks block for overrun. */
558
559 static void
560 overrun_check_free (void *block)
561 {
562 unsigned char *val = (unsigned char *) block;
563
564 if (val
565 && memcmp (xmalloc_overrun_check_header,
566 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
567 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
568 {
569 size_t osize = xmalloc_get_size (val);
570 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
571 XMALLOC_OVERRUN_CHECK_SIZE))
572 emacs_abort ();
573 #ifdef XMALLOC_CLEAR_FREE_MEMORY
574 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
575 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
576 #else
577 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
578 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
579 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
580 #endif
581 }
582
583 free (val);
584 }
585
586 #undef malloc
587 #undef realloc
588 #undef free
589 #define malloc overrun_check_malloc
590 #define realloc overrun_check_realloc
591 #define free overrun_check_free
592 #endif
593
594 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
595 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
596 If that variable is set, block input while in one of Emacs's memory
597 allocation functions. There should be no need for this debugging
598 option, since signal handlers do not allocate memory, but Emacs
599 formerly allocated memory in signal handlers and this compile-time
600 option remains as a way to help debug the issue should it rear its
601 ugly head again. */
602 #ifdef XMALLOC_BLOCK_INPUT_CHECK
603 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
604 static void
605 malloc_block_input (void)
606 {
607 if (block_input_in_memory_allocators)
608 block_input ();
609 }
610 static void
611 malloc_unblock_input (void)
612 {
613 if (block_input_in_memory_allocators)
614 unblock_input ();
615 }
616 # define MALLOC_BLOCK_INPUT malloc_block_input ()
617 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
618 #else
619 # define MALLOC_BLOCK_INPUT ((void) 0)
620 # define MALLOC_UNBLOCK_INPUT ((void) 0)
621 #endif
622
623 #define MALLOC_PROBE(size) \
624 do { \
625 if (profiler_memory_running) \
626 malloc_probe (size); \
627 } while (0)
628
629
630 /* Like malloc but check for no memory and block interrupt input.. */
631
632 void *
633 xmalloc (size_t size)
634 {
635 void *val;
636
637 MALLOC_BLOCK_INPUT;
638 val = malloc (size);
639 MALLOC_UNBLOCK_INPUT;
640
641 if (!val && size)
642 memory_full (size);
643 MALLOC_PROBE (size);
644 return val;
645 }
646
647 /* Like the above, but zeroes out the memory just allocated. */
648
649 void *
650 xzalloc (size_t size)
651 {
652 void *val;
653
654 MALLOC_BLOCK_INPUT;
655 val = malloc (size);
656 MALLOC_UNBLOCK_INPUT;
657
658 if (!val && size)
659 memory_full (size);
660 memset (val, 0, size);
661 MALLOC_PROBE (size);
662 return val;
663 }
664
665 /* Like realloc but check for no memory and block interrupt input.. */
666
667 void *
668 xrealloc (void *block, size_t size)
669 {
670 void *val;
671
672 MALLOC_BLOCK_INPUT;
673 /* We must call malloc explicitly when BLOCK is 0, since some
674 reallocs don't do this. */
675 if (! block)
676 val = malloc (size);
677 else
678 val = realloc (block, size);
679 MALLOC_UNBLOCK_INPUT;
680
681 if (!val && size)
682 memory_full (size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687
688 /* Like free but block interrupt input. */
689
690 void
691 xfree (void *block)
692 {
693 if (!block)
694 return;
695 MALLOC_BLOCK_INPUT;
696 free (block);
697 MALLOC_UNBLOCK_INPUT;
698 /* We don't call refill_memory_reserve here
699 because in practice the call in r_alloc_free seems to suffice. */
700 }
701
702
703 /* Other parts of Emacs pass large int values to allocator functions
704 expecting ptrdiff_t. This is portable in practice, but check it to
705 be safe. */
706 verify (INT_MAX <= PTRDIFF_MAX);
707
708
709 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
710 Signal an error on memory exhaustion, and block interrupt input. */
711
712 void *
713 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
714 {
715 eassert (0 <= nitems && 0 < item_size);
716 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
717 memory_full (SIZE_MAX);
718 return xmalloc (nitems * item_size);
719 }
720
721
722 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
723 Signal an error on memory exhaustion, and block interrupt input. */
724
725 void *
726 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
727 {
728 eassert (0 <= nitems && 0 < item_size);
729 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
730 memory_full (SIZE_MAX);
731 return xrealloc (pa, nitems * item_size);
732 }
733
734
735 /* Grow PA, which points to an array of *NITEMS items, and return the
736 location of the reallocated array, updating *NITEMS to reflect its
737 new size. The new array will contain at least NITEMS_INCR_MIN more
738 items, but will not contain more than NITEMS_MAX items total.
739 ITEM_SIZE is the size of each item, in bytes.
740
741 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
742 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
743 infinity.
744
745 If PA is null, then allocate a new array instead of reallocating
746 the old one.
747
748 Block interrupt input as needed. If memory exhaustion occurs, set
749 *NITEMS to zero if PA is null, and signal an error (i.e., do not
750 return).
751
752 Thus, to grow an array A without saving its old contents, do
753 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
754 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
755 and signals an error, and later this code is reexecuted and
756 attempts to free A. */
757
758 void *
759 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
760 ptrdiff_t nitems_max, ptrdiff_t item_size)
761 {
762 /* The approximate size to use for initial small allocation
763 requests. This is the largest "small" request for the GNU C
764 library malloc. */
765 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
766
767 /* If the array is tiny, grow it to about (but no greater than)
768 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
769 ptrdiff_t n = *nitems;
770 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
771 ptrdiff_t half_again = n >> 1;
772 ptrdiff_t incr_estimate = max (tiny_max, half_again);
773
774 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
775 NITEMS_MAX, and what the C language can represent safely. */
776 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
777 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
778 ? nitems_max : C_language_max);
779 ptrdiff_t nitems_incr_max = n_max - n;
780 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
781
782 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
783 if (! pa)
784 *nitems = 0;
785 if (nitems_incr_max < incr)
786 memory_full (SIZE_MAX);
787 n += incr;
788 pa = xrealloc (pa, n * item_size);
789 *nitems = n;
790 return pa;
791 }
792
793
794 /* Like strdup, but uses xmalloc. */
795
796 char *
797 xstrdup (const char *s)
798 {
799 size_t len = strlen (s) + 1;
800 char *p = xmalloc (len);
801 memcpy (p, s, len);
802 return p;
803 }
804
805 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
806 argument is a const pointer. */
807
808 void
809 xputenv (char const *string)
810 {
811 if (putenv ((char *) string) != 0)
812 memory_full (0);
813 }
814
815 /* Unwind for SAFE_ALLOCA */
816
817 Lisp_Object
818 safe_alloca_unwind (Lisp_Object arg)
819 {
820 free_save_value (arg);
821 return Qnil;
822 }
823
824 /* Return a newly allocated memory block of SIZE bytes, remembering
825 to free it when unwinding. */
826 void *
827 record_xmalloc (size_t size)
828 {
829 void *p = xmalloc (size);
830 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
831 return p;
832 }
833
834
835 /* Like malloc but used for allocating Lisp data. NBYTES is the
836 number of bytes to allocate, TYPE describes the intended use of the
837 allocated memory block (for strings, for conses, ...). */
838
839 #if ! USE_LSB_TAG
840 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
841 #endif
842
843 static void *
844 lisp_malloc (size_t nbytes, enum mem_type type)
845 {
846 register void *val;
847
848 MALLOC_BLOCK_INPUT;
849
850 #ifdef GC_MALLOC_CHECK
851 allocated_mem_type = type;
852 #endif
853
854 val = malloc (nbytes);
855
856 #if ! USE_LSB_TAG
857 /* If the memory just allocated cannot be addressed thru a Lisp
858 object's pointer, and it needs to be,
859 that's equivalent to running out of memory. */
860 if (val && type != MEM_TYPE_NON_LISP)
861 {
862 Lisp_Object tem;
863 XSETCONS (tem, (char *) val + nbytes - 1);
864 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
865 {
866 lisp_malloc_loser = val;
867 free (val);
868 val = 0;
869 }
870 }
871 #endif
872
873 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
874 if (val && type != MEM_TYPE_NON_LISP)
875 mem_insert (val, (char *) val + nbytes, type);
876 #endif
877
878 MALLOC_UNBLOCK_INPUT;
879 if (!val && nbytes)
880 memory_full (nbytes);
881 MALLOC_PROBE (nbytes);
882 return val;
883 }
884
885 /* Free BLOCK. This must be called to free memory allocated with a
886 call to lisp_malloc. */
887
888 static void
889 lisp_free (void *block)
890 {
891 MALLOC_BLOCK_INPUT;
892 free (block);
893 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
894 mem_delete (mem_find (block));
895 #endif
896 MALLOC_UNBLOCK_INPUT;
897 }
898
899 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
900
901 /* The entry point is lisp_align_malloc which returns blocks of at most
902 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
903
904 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
905 #define USE_POSIX_MEMALIGN 1
906 #endif
907
908 /* BLOCK_ALIGN has to be a power of 2. */
909 #define BLOCK_ALIGN (1 << 10)
910
911 /* Padding to leave at the end of a malloc'd block. This is to give
912 malloc a chance to minimize the amount of memory wasted to alignment.
913 It should be tuned to the particular malloc library used.
914 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
915 posix_memalign on the other hand would ideally prefer a value of 4
916 because otherwise, there's 1020 bytes wasted between each ablocks.
917 In Emacs, testing shows that those 1020 can most of the time be
918 efficiently used by malloc to place other objects, so a value of 0 can
919 still preferable unless you have a lot of aligned blocks and virtually
920 nothing else. */
921 #define BLOCK_PADDING 0
922 #define BLOCK_BYTES \
923 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
924
925 /* Internal data structures and constants. */
926
927 #define ABLOCKS_SIZE 16
928
929 /* An aligned block of memory. */
930 struct ablock
931 {
932 union
933 {
934 char payload[BLOCK_BYTES];
935 struct ablock *next_free;
936 } x;
937 /* `abase' is the aligned base of the ablocks. */
938 /* It is overloaded to hold the virtual `busy' field that counts
939 the number of used ablock in the parent ablocks.
940 The first ablock has the `busy' field, the others have the `abase'
941 field. To tell the difference, we assume that pointers will have
942 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
943 is used to tell whether the real base of the parent ablocks is `abase'
944 (if not, the word before the first ablock holds a pointer to the
945 real base). */
946 struct ablocks *abase;
947 /* The padding of all but the last ablock is unused. The padding of
948 the last ablock in an ablocks is not allocated. */
949 #if BLOCK_PADDING
950 char padding[BLOCK_PADDING];
951 #endif
952 };
953
954 /* A bunch of consecutive aligned blocks. */
955 struct ablocks
956 {
957 struct ablock blocks[ABLOCKS_SIZE];
958 };
959
960 /* Size of the block requested from malloc or posix_memalign. */
961 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
962
963 #define ABLOCK_ABASE(block) \
964 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
965 ? (struct ablocks *)(block) \
966 : (block)->abase)
967
968 /* Virtual `busy' field. */
969 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
970
971 /* Pointer to the (not necessarily aligned) malloc block. */
972 #ifdef USE_POSIX_MEMALIGN
973 #define ABLOCKS_BASE(abase) (abase)
974 #else
975 #define ABLOCKS_BASE(abase) \
976 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
977 #endif
978
979 /* The list of free ablock. */
980 static struct ablock *free_ablock;
981
982 /* Allocate an aligned block of nbytes.
983 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
984 smaller or equal to BLOCK_BYTES. */
985 static void *
986 lisp_align_malloc (size_t nbytes, enum mem_type type)
987 {
988 void *base, *val;
989 struct ablocks *abase;
990
991 eassert (nbytes <= BLOCK_BYTES);
992
993 MALLOC_BLOCK_INPUT;
994
995 #ifdef GC_MALLOC_CHECK
996 allocated_mem_type = type;
997 #endif
998
999 if (!free_ablock)
1000 {
1001 int i;
1002 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1003
1004 #ifdef DOUG_LEA_MALLOC
1005 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1006 because mapped region contents are not preserved in
1007 a dumped Emacs. */
1008 mallopt (M_MMAP_MAX, 0);
1009 #endif
1010
1011 #ifdef USE_POSIX_MEMALIGN
1012 {
1013 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1014 if (err)
1015 base = NULL;
1016 abase = base;
1017 }
1018 #else
1019 base = malloc (ABLOCKS_BYTES);
1020 abase = ALIGN (base, BLOCK_ALIGN);
1021 #endif
1022
1023 if (base == 0)
1024 {
1025 MALLOC_UNBLOCK_INPUT;
1026 memory_full (ABLOCKS_BYTES);
1027 }
1028
1029 aligned = (base == abase);
1030 if (!aligned)
1031 ((void**)abase)[-1] = base;
1032
1033 #ifdef DOUG_LEA_MALLOC
1034 /* Back to a reasonable maximum of mmap'ed areas. */
1035 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1036 #endif
1037
1038 #if ! USE_LSB_TAG
1039 /* If the memory just allocated cannot be addressed thru a Lisp
1040 object's pointer, and it needs to be, that's equivalent to
1041 running out of memory. */
1042 if (type != MEM_TYPE_NON_LISP)
1043 {
1044 Lisp_Object tem;
1045 char *end = (char *) base + ABLOCKS_BYTES - 1;
1046 XSETCONS (tem, end);
1047 if ((char *) XCONS (tem) != end)
1048 {
1049 lisp_malloc_loser = base;
1050 free (base);
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (SIZE_MAX);
1053 }
1054 }
1055 #endif
1056
1057 /* Initialize the blocks and put them on the free list.
1058 If `base' was not properly aligned, we can't use the last block. */
1059 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1060 {
1061 abase->blocks[i].abase = abase;
1062 abase->blocks[i].x.next_free = free_ablock;
1063 free_ablock = &abase->blocks[i];
1064 }
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1066
1067 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1068 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1069 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1070 eassert (ABLOCKS_BASE (abase) == base);
1071 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1072 }
1073
1074 abase = ABLOCK_ABASE (free_ablock);
1075 ABLOCKS_BUSY (abase) =
1076 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1077 val = free_ablock;
1078 free_ablock = free_ablock->x.next_free;
1079
1080 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1081 if (type != MEM_TYPE_NON_LISP)
1082 mem_insert (val, (char *) val + nbytes, type);
1083 #endif
1084
1085 MALLOC_UNBLOCK_INPUT;
1086
1087 MALLOC_PROBE (nbytes);
1088
1089 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1090 return val;
1091 }
1092
1093 static void
1094 lisp_align_free (void *block)
1095 {
1096 struct ablock *ablock = block;
1097 struct ablocks *abase = ABLOCK_ABASE (ablock);
1098
1099 MALLOC_BLOCK_INPUT;
1100 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1101 mem_delete (mem_find (block));
1102 #endif
1103 /* Put on free list. */
1104 ablock->x.next_free = free_ablock;
1105 free_ablock = ablock;
1106 /* Update busy count. */
1107 ABLOCKS_BUSY (abase)
1108 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1109
1110 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1111 { /* All the blocks are free. */
1112 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1113 struct ablock **tem = &free_ablock;
1114 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1115
1116 while (*tem)
1117 {
1118 if (*tem >= (struct ablock *) abase && *tem < atop)
1119 {
1120 i++;
1121 *tem = (*tem)->x.next_free;
1122 }
1123 else
1124 tem = &(*tem)->x.next_free;
1125 }
1126 eassert ((aligned & 1) == aligned);
1127 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1128 #ifdef USE_POSIX_MEMALIGN
1129 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1130 #endif
1131 free (ABLOCKS_BASE (abase));
1132 }
1133 MALLOC_UNBLOCK_INPUT;
1134 }
1135
1136 \f
1137 /***********************************************************************
1138 Interval Allocation
1139 ***********************************************************************/
1140
1141 /* Number of intervals allocated in an interval_block structure.
1142 The 1020 is 1024 minus malloc overhead. */
1143
1144 #define INTERVAL_BLOCK_SIZE \
1145 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1146
1147 /* Intervals are allocated in chunks in the form of an interval_block
1148 structure. */
1149
1150 struct interval_block
1151 {
1152 /* Place `intervals' first, to preserve alignment. */
1153 struct interval intervals[INTERVAL_BLOCK_SIZE];
1154 struct interval_block *next;
1155 };
1156
1157 /* Current interval block. Its `next' pointer points to older
1158 blocks. */
1159
1160 static struct interval_block *interval_block;
1161
1162 /* Index in interval_block above of the next unused interval
1163 structure. */
1164
1165 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1166
1167 /* Number of free and live intervals. */
1168
1169 static EMACS_INT total_free_intervals, total_intervals;
1170
1171 /* List of free intervals. */
1172
1173 static INTERVAL interval_free_list;
1174
1175 /* Return a new interval. */
1176
1177 INTERVAL
1178 make_interval (void)
1179 {
1180 INTERVAL val;
1181
1182 MALLOC_BLOCK_INPUT;
1183
1184 if (interval_free_list)
1185 {
1186 val = interval_free_list;
1187 interval_free_list = INTERVAL_PARENT (interval_free_list);
1188 }
1189 else
1190 {
1191 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1192 {
1193 struct interval_block *newi
1194 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1195
1196 newi->next = interval_block;
1197 interval_block = newi;
1198 interval_block_index = 0;
1199 total_free_intervals += INTERVAL_BLOCK_SIZE;
1200 }
1201 val = &interval_block->intervals[interval_block_index++];
1202 }
1203
1204 MALLOC_UNBLOCK_INPUT;
1205
1206 consing_since_gc += sizeof (struct interval);
1207 intervals_consed++;
1208 total_free_intervals--;
1209 RESET_INTERVAL (val);
1210 val->gcmarkbit = 0;
1211 return val;
1212 }
1213
1214
1215 /* Mark Lisp objects in interval I. */
1216
1217 static void
1218 mark_interval (register INTERVAL i, Lisp_Object dummy)
1219 {
1220 /* Intervals should never be shared. So, if extra internal checking is
1221 enabled, GC aborts if it seems to have visited an interval twice. */
1222 eassert (!i->gcmarkbit);
1223 i->gcmarkbit = 1;
1224 mark_object (i->plist);
1225 }
1226
1227 /* Mark the interval tree rooted in I. */
1228
1229 #define MARK_INTERVAL_TREE(i) \
1230 do { \
1231 if (i && !i->gcmarkbit) \
1232 traverse_intervals_noorder (i, mark_interval, Qnil); \
1233 } while (0)
1234
1235 /***********************************************************************
1236 String Allocation
1237 ***********************************************************************/
1238
1239 /* Lisp_Strings are allocated in string_block structures. When a new
1240 string_block is allocated, all the Lisp_Strings it contains are
1241 added to a free-list string_free_list. When a new Lisp_String is
1242 needed, it is taken from that list. During the sweep phase of GC,
1243 string_blocks that are entirely free are freed, except two which
1244 we keep.
1245
1246 String data is allocated from sblock structures. Strings larger
1247 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1248 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1249
1250 Sblocks consist internally of sdata structures, one for each
1251 Lisp_String. The sdata structure points to the Lisp_String it
1252 belongs to. The Lisp_String points back to the `u.data' member of
1253 its sdata structure.
1254
1255 When a Lisp_String is freed during GC, it is put back on
1256 string_free_list, and its `data' member and its sdata's `string'
1257 pointer is set to null. The size of the string is recorded in the
1258 `u.nbytes' member of the sdata. So, sdata structures that are no
1259 longer used, can be easily recognized, and it's easy to compact the
1260 sblocks of small strings which we do in compact_small_strings. */
1261
1262 /* Size in bytes of an sblock structure used for small strings. This
1263 is 8192 minus malloc overhead. */
1264
1265 #define SBLOCK_SIZE 8188
1266
1267 /* Strings larger than this are considered large strings. String data
1268 for large strings is allocated from individual sblocks. */
1269
1270 #define LARGE_STRING_BYTES 1024
1271
1272 /* Structure describing string memory sub-allocated from an sblock.
1273 This is where the contents of Lisp strings are stored. */
1274
1275 struct sdata
1276 {
1277 /* Back-pointer to the string this sdata belongs to. If null, this
1278 structure is free, and the NBYTES member of the union below
1279 contains the string's byte size (the same value that STRING_BYTES
1280 would return if STRING were non-null). If non-null, STRING_BYTES
1281 (STRING) is the size of the data, and DATA contains the string's
1282 contents. */
1283 struct Lisp_String *string;
1284
1285 #ifdef GC_CHECK_STRING_BYTES
1286
1287 ptrdiff_t nbytes;
1288 unsigned char data[1];
1289
1290 #define SDATA_NBYTES(S) (S)->nbytes
1291 #define SDATA_DATA(S) (S)->data
1292 #define SDATA_SELECTOR(member) member
1293
1294 #else /* not GC_CHECK_STRING_BYTES */
1295
1296 union
1297 {
1298 /* When STRING is non-null. */
1299 unsigned char data[1];
1300
1301 /* When STRING is null. */
1302 ptrdiff_t nbytes;
1303 } u;
1304
1305 #define SDATA_NBYTES(S) (S)->u.nbytes
1306 #define SDATA_DATA(S) (S)->u.data
1307 #define SDATA_SELECTOR(member) u.member
1308
1309 #endif /* not GC_CHECK_STRING_BYTES */
1310
1311 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1312 };
1313
1314
1315 /* Structure describing a block of memory which is sub-allocated to
1316 obtain string data memory for strings. Blocks for small strings
1317 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1318 as large as needed. */
1319
1320 struct sblock
1321 {
1322 /* Next in list. */
1323 struct sblock *next;
1324
1325 /* Pointer to the next free sdata block. This points past the end
1326 of the sblock if there isn't any space left in this block. */
1327 struct sdata *next_free;
1328
1329 /* Start of data. */
1330 struct sdata first_data;
1331 };
1332
1333 /* Number of Lisp strings in a string_block structure. The 1020 is
1334 1024 minus malloc overhead. */
1335
1336 #define STRING_BLOCK_SIZE \
1337 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1338
1339 /* Structure describing a block from which Lisp_String structures
1340 are allocated. */
1341
1342 struct string_block
1343 {
1344 /* Place `strings' first, to preserve alignment. */
1345 struct Lisp_String strings[STRING_BLOCK_SIZE];
1346 struct string_block *next;
1347 };
1348
1349 /* Head and tail of the list of sblock structures holding Lisp string
1350 data. We always allocate from current_sblock. The NEXT pointers
1351 in the sblock structures go from oldest_sblock to current_sblock. */
1352
1353 static struct sblock *oldest_sblock, *current_sblock;
1354
1355 /* List of sblocks for large strings. */
1356
1357 static struct sblock *large_sblocks;
1358
1359 /* List of string_block structures. */
1360
1361 static struct string_block *string_blocks;
1362
1363 /* Free-list of Lisp_Strings. */
1364
1365 static struct Lisp_String *string_free_list;
1366
1367 /* Number of live and free Lisp_Strings. */
1368
1369 static EMACS_INT total_strings, total_free_strings;
1370
1371 /* Number of bytes used by live strings. */
1372
1373 static EMACS_INT total_string_bytes;
1374
1375 /* Given a pointer to a Lisp_String S which is on the free-list
1376 string_free_list, return a pointer to its successor in the
1377 free-list. */
1378
1379 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1380
1381 /* Return a pointer to the sdata structure belonging to Lisp string S.
1382 S must be live, i.e. S->data must not be null. S->data is actually
1383 a pointer to the `u.data' member of its sdata structure; the
1384 structure starts at a constant offset in front of that. */
1385
1386 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1387
1388
1389 #ifdef GC_CHECK_STRING_OVERRUN
1390
1391 /* We check for overrun in string data blocks by appending a small
1392 "cookie" after each allocated string data block, and check for the
1393 presence of this cookie during GC. */
1394
1395 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1396 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1397 { '\xde', '\xad', '\xbe', '\xef' };
1398
1399 #else
1400 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1401 #endif
1402
1403 /* Value is the size of an sdata structure large enough to hold NBYTES
1404 bytes of string data. The value returned includes a terminating
1405 NUL byte, the size of the sdata structure, and padding. */
1406
1407 #ifdef GC_CHECK_STRING_BYTES
1408
1409 #define SDATA_SIZE(NBYTES) \
1410 ((SDATA_DATA_OFFSET \
1411 + (NBYTES) + 1 \
1412 + sizeof (ptrdiff_t) - 1) \
1413 & ~(sizeof (ptrdiff_t) - 1))
1414
1415 #else /* not GC_CHECK_STRING_BYTES */
1416
1417 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1418 less than the size of that member. The 'max' is not needed when
1419 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1420 alignment code reserves enough space. */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((SDATA_DATA_OFFSET \
1424 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1425 ? NBYTES \
1426 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1427 + 1 \
1428 + sizeof (ptrdiff_t) - 1) \
1429 & ~(sizeof (ptrdiff_t) - 1))
1430
1431 #endif /* not GC_CHECK_STRING_BYTES */
1432
1433 /* Extra bytes to allocate for each string. */
1434
1435 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1436
1437 /* Exact bound on the number of bytes in a string, not counting the
1438 terminating null. A string cannot contain more bytes than
1439 STRING_BYTES_BOUND, nor can it be so long that the size_t
1440 arithmetic in allocate_string_data would overflow while it is
1441 calculating a value to be passed to malloc. */
1442 static ptrdiff_t const STRING_BYTES_MAX =
1443 min (STRING_BYTES_BOUND,
1444 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1445 - GC_STRING_EXTRA
1446 - offsetof (struct sblock, first_data)
1447 - SDATA_DATA_OFFSET)
1448 & ~(sizeof (EMACS_INT) - 1)));
1449
1450 /* Initialize string allocation. Called from init_alloc_once. */
1451
1452 static void
1453 init_strings (void)
1454 {
1455 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1456 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1457 }
1458
1459
1460 #ifdef GC_CHECK_STRING_BYTES
1461
1462 static int check_string_bytes_count;
1463
1464 /* Like STRING_BYTES, but with debugging check. Can be
1465 called during GC, so pay attention to the mark bit. */
1466
1467 ptrdiff_t
1468 string_bytes (struct Lisp_String *s)
1469 {
1470 ptrdiff_t nbytes =
1471 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1472
1473 if (!PURE_POINTER_P (s)
1474 && s->data
1475 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1476 emacs_abort ();
1477 return nbytes;
1478 }
1479
1480 /* Check validity of Lisp strings' string_bytes member in B. */
1481
1482 static void
1483 check_sblock (struct sblock *b)
1484 {
1485 struct sdata *from, *end, *from_end;
1486
1487 end = b->next_free;
1488
1489 for (from = &b->first_data; from < end; from = from_end)
1490 {
1491 /* Compute the next FROM here because copying below may
1492 overwrite data we need to compute it. */
1493 ptrdiff_t nbytes;
1494
1495 /* Check that the string size recorded in the string is the
1496 same as the one recorded in the sdata structure. */
1497 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1498 : SDATA_NBYTES (from));
1499 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1500 }
1501 }
1502
1503
1504 /* Check validity of Lisp strings' string_bytes member. ALL_P
1505 means check all strings, otherwise check only most
1506 recently allocated strings. Used for hunting a bug. */
1507
1508 static void
1509 check_string_bytes (bool all_p)
1510 {
1511 if (all_p)
1512 {
1513 struct sblock *b;
1514
1515 for (b = large_sblocks; b; b = b->next)
1516 {
1517 struct Lisp_String *s = b->first_data.string;
1518 if (s)
1519 string_bytes (s);
1520 }
1521
1522 for (b = oldest_sblock; b; b = b->next)
1523 check_sblock (b);
1524 }
1525 else if (current_sblock)
1526 check_sblock (current_sblock);
1527 }
1528
1529 #else /* not GC_CHECK_STRING_BYTES */
1530
1531 #define check_string_bytes(all) ((void) 0)
1532
1533 #endif /* GC_CHECK_STRING_BYTES */
1534
1535 #ifdef GC_CHECK_STRING_FREE_LIST
1536
1537 /* Walk through the string free list looking for bogus next pointers.
1538 This may catch buffer overrun from a previous string. */
1539
1540 static void
1541 check_string_free_list (void)
1542 {
1543 struct Lisp_String *s;
1544
1545 /* Pop a Lisp_String off the free-list. */
1546 s = string_free_list;
1547 while (s != NULL)
1548 {
1549 if ((uintptr_t) s < 1024)
1550 emacs_abort ();
1551 s = NEXT_FREE_LISP_STRING (s);
1552 }
1553 }
1554 #else
1555 #define check_string_free_list()
1556 #endif
1557
1558 /* Return a new Lisp_String. */
1559
1560 static struct Lisp_String *
1561 allocate_string (void)
1562 {
1563 struct Lisp_String *s;
1564
1565 MALLOC_BLOCK_INPUT;
1566
1567 /* If the free-list is empty, allocate a new string_block, and
1568 add all the Lisp_Strings in it to the free-list. */
1569 if (string_free_list == NULL)
1570 {
1571 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1572 int i;
1573
1574 b->next = string_blocks;
1575 string_blocks = b;
1576
1577 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1578 {
1579 s = b->strings + i;
1580 /* Every string on a free list should have NULL data pointer. */
1581 s->data = NULL;
1582 NEXT_FREE_LISP_STRING (s) = string_free_list;
1583 string_free_list = s;
1584 }
1585
1586 total_free_strings += STRING_BLOCK_SIZE;
1587 }
1588
1589 check_string_free_list ();
1590
1591 /* Pop a Lisp_String off the free-list. */
1592 s = string_free_list;
1593 string_free_list = NEXT_FREE_LISP_STRING (s);
1594
1595 MALLOC_UNBLOCK_INPUT;
1596
1597 --total_free_strings;
1598 ++total_strings;
1599 ++strings_consed;
1600 consing_since_gc += sizeof *s;
1601
1602 #ifdef GC_CHECK_STRING_BYTES
1603 if (!noninteractive)
1604 {
1605 if (++check_string_bytes_count == 200)
1606 {
1607 check_string_bytes_count = 0;
1608 check_string_bytes (1);
1609 }
1610 else
1611 check_string_bytes (0);
1612 }
1613 #endif /* GC_CHECK_STRING_BYTES */
1614
1615 return s;
1616 }
1617
1618
1619 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1620 plus a NUL byte at the end. Allocate an sdata structure for S, and
1621 set S->data to its `u.data' member. Store a NUL byte at the end of
1622 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1623 S->data if it was initially non-null. */
1624
1625 void
1626 allocate_string_data (struct Lisp_String *s,
1627 EMACS_INT nchars, EMACS_INT nbytes)
1628 {
1629 struct sdata *data, *old_data;
1630 struct sblock *b;
1631 ptrdiff_t needed, old_nbytes;
1632
1633 if (STRING_BYTES_MAX < nbytes)
1634 string_overflow ();
1635
1636 /* Determine the number of bytes needed to store NBYTES bytes
1637 of string data. */
1638 needed = SDATA_SIZE (nbytes);
1639 if (s->data)
1640 {
1641 old_data = SDATA_OF_STRING (s);
1642 old_nbytes = STRING_BYTES (s);
1643 }
1644 else
1645 old_data = NULL;
1646
1647 MALLOC_BLOCK_INPUT;
1648
1649 if (nbytes > LARGE_STRING_BYTES)
1650 {
1651 size_t size = offsetof (struct sblock, first_data) + needed;
1652
1653 #ifdef DOUG_LEA_MALLOC
1654 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1655 because mapped region contents are not preserved in
1656 a dumped Emacs.
1657
1658 In case you think of allowing it in a dumped Emacs at the
1659 cost of not being able to re-dump, there's another reason:
1660 mmap'ed data typically have an address towards the top of the
1661 address space, which won't fit into an EMACS_INT (at least on
1662 32-bit systems with the current tagging scheme). --fx */
1663 mallopt (M_MMAP_MAX, 0);
1664 #endif
1665
1666 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1667
1668 #ifdef DOUG_LEA_MALLOC
1669 /* Back to a reasonable maximum of mmap'ed areas. */
1670 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1671 #endif
1672
1673 b->next_free = &b->first_data;
1674 b->first_data.string = NULL;
1675 b->next = large_sblocks;
1676 large_sblocks = b;
1677 }
1678 else if (current_sblock == NULL
1679 || (((char *) current_sblock + SBLOCK_SIZE
1680 - (char *) current_sblock->next_free)
1681 < (needed + GC_STRING_EXTRA)))
1682 {
1683 /* Not enough room in the current sblock. */
1684 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1685 b->next_free = &b->first_data;
1686 b->first_data.string = NULL;
1687 b->next = NULL;
1688
1689 if (current_sblock)
1690 current_sblock->next = b;
1691 else
1692 oldest_sblock = b;
1693 current_sblock = b;
1694 }
1695 else
1696 b = current_sblock;
1697
1698 data = b->next_free;
1699 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1700
1701 MALLOC_UNBLOCK_INPUT;
1702
1703 data->string = s;
1704 s->data = SDATA_DATA (data);
1705 #ifdef GC_CHECK_STRING_BYTES
1706 SDATA_NBYTES (data) = nbytes;
1707 #endif
1708 s->size = nchars;
1709 s->size_byte = nbytes;
1710 s->data[nbytes] = '\0';
1711 #ifdef GC_CHECK_STRING_OVERRUN
1712 memcpy ((char *) data + needed, string_overrun_cookie,
1713 GC_STRING_OVERRUN_COOKIE_SIZE);
1714 #endif
1715
1716 /* Note that Faset may call to this function when S has already data
1717 assigned. In this case, mark data as free by setting it's string
1718 back-pointer to null, and record the size of the data in it. */
1719 if (old_data)
1720 {
1721 SDATA_NBYTES (old_data) = old_nbytes;
1722 old_data->string = NULL;
1723 }
1724
1725 consing_since_gc += needed;
1726 }
1727
1728
1729 /* Sweep and compact strings. */
1730
1731 static void
1732 sweep_strings (void)
1733 {
1734 struct string_block *b, *next;
1735 struct string_block *live_blocks = NULL;
1736
1737 string_free_list = NULL;
1738 total_strings = total_free_strings = 0;
1739 total_string_bytes = 0;
1740
1741 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1742 for (b = string_blocks; b; b = next)
1743 {
1744 int i, nfree = 0;
1745 struct Lisp_String *free_list_before = string_free_list;
1746
1747 next = b->next;
1748
1749 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1750 {
1751 struct Lisp_String *s = b->strings + i;
1752
1753 if (s->data)
1754 {
1755 /* String was not on free-list before. */
1756 if (STRING_MARKED_P (s))
1757 {
1758 /* String is live; unmark it and its intervals. */
1759 UNMARK_STRING (s);
1760
1761 /* Do not use string_(set|get)_intervals here. */
1762 s->intervals = balance_intervals (s->intervals);
1763
1764 ++total_strings;
1765 total_string_bytes += STRING_BYTES (s);
1766 }
1767 else
1768 {
1769 /* String is dead. Put it on the free-list. */
1770 struct sdata *data = SDATA_OF_STRING (s);
1771
1772 /* Save the size of S in its sdata so that we know
1773 how large that is. Reset the sdata's string
1774 back-pointer so that we know it's free. */
1775 #ifdef GC_CHECK_STRING_BYTES
1776 if (string_bytes (s) != SDATA_NBYTES (data))
1777 emacs_abort ();
1778 #else
1779 data->u.nbytes = STRING_BYTES (s);
1780 #endif
1781 data->string = NULL;
1782
1783 /* Reset the strings's `data' member so that we
1784 know it's free. */
1785 s->data = NULL;
1786
1787 /* Put the string on the free-list. */
1788 NEXT_FREE_LISP_STRING (s) = string_free_list;
1789 string_free_list = s;
1790 ++nfree;
1791 }
1792 }
1793 else
1794 {
1795 /* S was on the free-list before. Put it there again. */
1796 NEXT_FREE_LISP_STRING (s) = string_free_list;
1797 string_free_list = s;
1798 ++nfree;
1799 }
1800 }
1801
1802 /* Free blocks that contain free Lisp_Strings only, except
1803 the first two of them. */
1804 if (nfree == STRING_BLOCK_SIZE
1805 && total_free_strings > STRING_BLOCK_SIZE)
1806 {
1807 lisp_free (b);
1808 string_free_list = free_list_before;
1809 }
1810 else
1811 {
1812 total_free_strings += nfree;
1813 b->next = live_blocks;
1814 live_blocks = b;
1815 }
1816 }
1817
1818 check_string_free_list ();
1819
1820 string_blocks = live_blocks;
1821 free_large_strings ();
1822 compact_small_strings ();
1823
1824 check_string_free_list ();
1825 }
1826
1827
1828 /* Free dead large strings. */
1829
1830 static void
1831 free_large_strings (void)
1832 {
1833 struct sblock *b, *next;
1834 struct sblock *live_blocks = NULL;
1835
1836 for (b = large_sblocks; b; b = next)
1837 {
1838 next = b->next;
1839
1840 if (b->first_data.string == NULL)
1841 lisp_free (b);
1842 else
1843 {
1844 b->next = live_blocks;
1845 live_blocks = b;
1846 }
1847 }
1848
1849 large_sblocks = live_blocks;
1850 }
1851
1852
1853 /* Compact data of small strings. Free sblocks that don't contain
1854 data of live strings after compaction. */
1855
1856 static void
1857 compact_small_strings (void)
1858 {
1859 struct sblock *b, *tb, *next;
1860 struct sdata *from, *to, *end, *tb_end;
1861 struct sdata *to_end, *from_end;
1862
1863 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1864 to, and TB_END is the end of TB. */
1865 tb = oldest_sblock;
1866 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1867 to = &tb->first_data;
1868
1869 /* Step through the blocks from the oldest to the youngest. We
1870 expect that old blocks will stabilize over time, so that less
1871 copying will happen this way. */
1872 for (b = oldest_sblock; b; b = b->next)
1873 {
1874 end = b->next_free;
1875 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1876
1877 for (from = &b->first_data; from < end; from = from_end)
1878 {
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
1881 ptrdiff_t nbytes;
1882 struct Lisp_String *s = from->string;
1883
1884 #ifdef GC_CHECK_STRING_BYTES
1885 /* Check that the string size recorded in the string is the
1886 same as the one recorded in the sdata structure. */
1887 if (s && string_bytes (s) != SDATA_NBYTES (from))
1888 emacs_abort ();
1889 #endif /* GC_CHECK_STRING_BYTES */
1890
1891 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1892 eassert (nbytes <= LARGE_STRING_BYTES);
1893
1894 nbytes = SDATA_SIZE (nbytes);
1895 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1896
1897 #ifdef GC_CHECK_STRING_OVERRUN
1898 if (memcmp (string_overrun_cookie,
1899 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1900 GC_STRING_OVERRUN_COOKIE_SIZE))
1901 emacs_abort ();
1902 #endif
1903
1904 /* Non-NULL S means it's alive. Copy its data. */
1905 if (s)
1906 {
1907 /* If TB is full, proceed with the next sblock. */
1908 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1909 if (to_end > tb_end)
1910 {
1911 tb->next_free = to;
1912 tb = tb->next;
1913 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1914 to = &tb->first_data;
1915 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1916 }
1917
1918 /* Copy, and update the string's `data' pointer. */
1919 if (from != to)
1920 {
1921 eassert (tb != b || to < from);
1922 memmove (to, from, nbytes + GC_STRING_EXTRA);
1923 to->string->data = SDATA_DATA (to);
1924 }
1925
1926 /* Advance past the sdata we copied to. */
1927 to = to_end;
1928 }
1929 }
1930 }
1931
1932 /* The rest of the sblocks following TB don't contain live data, so
1933 we can free them. */
1934 for (b = tb->next; b; b = next)
1935 {
1936 next = b->next;
1937 lisp_free (b);
1938 }
1939
1940 tb->next_free = to;
1941 tb->next = NULL;
1942 current_sblock = tb;
1943 }
1944
1945 void
1946 string_overflow (void)
1947 {
1948 error ("Maximum string size exceeded");
1949 }
1950
1951 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1952 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1953 LENGTH must be an integer.
1954 INIT must be an integer that represents a character. */)
1955 (Lisp_Object length, Lisp_Object init)
1956 {
1957 register Lisp_Object val;
1958 register unsigned char *p, *end;
1959 int c;
1960 EMACS_INT nbytes;
1961
1962 CHECK_NATNUM (length);
1963 CHECK_CHARACTER (init);
1964
1965 c = XFASTINT (init);
1966 if (ASCII_CHAR_P (c))
1967 {
1968 nbytes = XINT (length);
1969 val = make_uninit_string (nbytes);
1970 p = SDATA (val);
1971 end = p + SCHARS (val);
1972 while (p != end)
1973 *p++ = c;
1974 }
1975 else
1976 {
1977 unsigned char str[MAX_MULTIBYTE_LENGTH];
1978 int len = CHAR_STRING (c, str);
1979 EMACS_INT string_len = XINT (length);
1980
1981 if (string_len > STRING_BYTES_MAX / len)
1982 string_overflow ();
1983 nbytes = len * string_len;
1984 val = make_uninit_multibyte_string (string_len, nbytes);
1985 p = SDATA (val);
1986 end = p + nbytes;
1987 while (p != end)
1988 {
1989 memcpy (p, str, len);
1990 p += len;
1991 }
1992 }
1993
1994 *p = 0;
1995 return val;
1996 }
1997
1998
1999 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2000 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2001 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2002 (Lisp_Object length, Lisp_Object init)
2003 {
2004 register Lisp_Object val;
2005 struct Lisp_Bool_Vector *p;
2006 ptrdiff_t length_in_chars;
2007 EMACS_INT length_in_elts;
2008 int bits_per_value;
2009 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2010 / word_size);
2011
2012 CHECK_NATNUM (length);
2013
2014 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2015
2016 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2017
2018 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2019
2020 /* No Lisp_Object to trace in there. */
2021 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2022
2023 p = XBOOL_VECTOR (val);
2024 p->size = XFASTINT (length);
2025
2026 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2027 / BOOL_VECTOR_BITS_PER_CHAR);
2028 if (length_in_chars)
2029 {
2030 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2031
2032 /* Clear any extraneous bits in the last byte. */
2033 p->data[length_in_chars - 1]
2034 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2035 }
2036
2037 return val;
2038 }
2039
2040
2041 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2042 of characters from the contents. This string may be unibyte or
2043 multibyte, depending on the contents. */
2044
2045 Lisp_Object
2046 make_string (const char *contents, ptrdiff_t nbytes)
2047 {
2048 register Lisp_Object val;
2049 ptrdiff_t nchars, multibyte_nbytes;
2050
2051 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2052 &nchars, &multibyte_nbytes);
2053 if (nbytes == nchars || nbytes != multibyte_nbytes)
2054 /* CONTENTS contains no multibyte sequences or contains an invalid
2055 multibyte sequence. We must make unibyte string. */
2056 val = make_unibyte_string (contents, nbytes);
2057 else
2058 val = make_multibyte_string (contents, nchars, nbytes);
2059 return val;
2060 }
2061
2062
2063 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2064
2065 Lisp_Object
2066 make_unibyte_string (const char *contents, ptrdiff_t length)
2067 {
2068 register Lisp_Object val;
2069 val = make_uninit_string (length);
2070 memcpy (SDATA (val), contents, length);
2071 return val;
2072 }
2073
2074
2075 /* Make a multibyte string from NCHARS characters occupying NBYTES
2076 bytes at CONTENTS. */
2077
2078 Lisp_Object
2079 make_multibyte_string (const char *contents,
2080 ptrdiff_t nchars, ptrdiff_t nbytes)
2081 {
2082 register Lisp_Object val;
2083 val = make_uninit_multibyte_string (nchars, nbytes);
2084 memcpy (SDATA (val), contents, nbytes);
2085 return val;
2086 }
2087
2088
2089 /* Make a string from NCHARS characters occupying NBYTES bytes at
2090 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2091
2092 Lisp_Object
2093 make_string_from_bytes (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2095 {
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 if (SBYTES (val) == SCHARS (val))
2100 STRING_SET_UNIBYTE (val);
2101 return val;
2102 }
2103
2104
2105 /* Make a string from NCHARS characters occupying NBYTES bytes at
2106 CONTENTS. The argument MULTIBYTE controls whether to label the
2107 string as multibyte. If NCHARS is negative, it counts the number of
2108 characters by itself. */
2109
2110 Lisp_Object
2111 make_specified_string (const char *contents,
2112 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2113 {
2114 Lisp_Object val;
2115
2116 if (nchars < 0)
2117 {
2118 if (multibyte)
2119 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2120 nbytes);
2121 else
2122 nchars = nbytes;
2123 }
2124 val = make_uninit_multibyte_string (nchars, nbytes);
2125 memcpy (SDATA (val), contents, nbytes);
2126 if (!multibyte)
2127 STRING_SET_UNIBYTE (val);
2128 return val;
2129 }
2130
2131
2132 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2133 occupying LENGTH bytes. */
2134
2135 Lisp_Object
2136 make_uninit_string (EMACS_INT length)
2137 {
2138 Lisp_Object val;
2139
2140 if (!length)
2141 return empty_unibyte_string;
2142 val = make_uninit_multibyte_string (length, length);
2143 STRING_SET_UNIBYTE (val);
2144 return val;
2145 }
2146
2147
2148 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2149 which occupy NBYTES bytes. */
2150
2151 Lisp_Object
2152 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2153 {
2154 Lisp_Object string;
2155 struct Lisp_String *s;
2156
2157 if (nchars < 0)
2158 emacs_abort ();
2159 if (!nbytes)
2160 return empty_multibyte_string;
2161
2162 s = allocate_string ();
2163 s->intervals = NULL;
2164 allocate_string_data (s, nchars, nbytes);
2165 XSETSTRING (string, s);
2166 string_chars_consed += nbytes;
2167 return string;
2168 }
2169
2170 /* Print arguments to BUF according to a FORMAT, then return
2171 a Lisp_String initialized with the data from BUF. */
2172
2173 Lisp_Object
2174 make_formatted_string (char *buf, const char *format, ...)
2175 {
2176 va_list ap;
2177 int length;
2178
2179 va_start (ap, format);
2180 length = vsprintf (buf, format, ap);
2181 va_end (ap);
2182 return make_string (buf, length);
2183 }
2184
2185 \f
2186 /***********************************************************************
2187 Float Allocation
2188 ***********************************************************************/
2189
2190 /* We store float cells inside of float_blocks, allocating a new
2191 float_block with malloc whenever necessary. Float cells reclaimed
2192 by GC are put on a free list to be reallocated before allocating
2193 any new float cells from the latest float_block. */
2194
2195 #define FLOAT_BLOCK_SIZE \
2196 (((BLOCK_BYTES - sizeof (struct float_block *) \
2197 /* The compiler might add padding at the end. */ \
2198 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2199 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2200
2201 #define GETMARKBIT(block,n) \
2202 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2203 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2204 & 1)
2205
2206 #define SETMARKBIT(block,n) \
2207 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2208 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2209
2210 #define UNSETMARKBIT(block,n) \
2211 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2212 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2213
2214 #define FLOAT_BLOCK(fptr) \
2215 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2216
2217 #define FLOAT_INDEX(fptr) \
2218 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2219
2220 struct float_block
2221 {
2222 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2223 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2224 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2225 struct float_block *next;
2226 };
2227
2228 #define FLOAT_MARKED_P(fptr) \
2229 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2230
2231 #define FLOAT_MARK(fptr) \
2232 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2233
2234 #define FLOAT_UNMARK(fptr) \
2235 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2236
2237 /* Current float_block. */
2238
2239 static struct float_block *float_block;
2240
2241 /* Index of first unused Lisp_Float in the current float_block. */
2242
2243 static int float_block_index = FLOAT_BLOCK_SIZE;
2244
2245 /* Free-list of Lisp_Floats. */
2246
2247 static struct Lisp_Float *float_free_list;
2248
2249 /* Return a new float object with value FLOAT_VALUE. */
2250
2251 Lisp_Object
2252 make_float (double float_value)
2253 {
2254 register Lisp_Object val;
2255
2256 MALLOC_BLOCK_INPUT;
2257
2258 if (float_free_list)
2259 {
2260 /* We use the data field for chaining the free list
2261 so that we won't use the same field that has the mark bit. */
2262 XSETFLOAT (val, float_free_list);
2263 float_free_list = float_free_list->u.chain;
2264 }
2265 else
2266 {
2267 if (float_block_index == FLOAT_BLOCK_SIZE)
2268 {
2269 struct float_block *new
2270 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2271 new->next = float_block;
2272 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2273 float_block = new;
2274 float_block_index = 0;
2275 total_free_floats += FLOAT_BLOCK_SIZE;
2276 }
2277 XSETFLOAT (val, &float_block->floats[float_block_index]);
2278 float_block_index++;
2279 }
2280
2281 MALLOC_UNBLOCK_INPUT;
2282
2283 XFLOAT_INIT (val, float_value);
2284 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2285 consing_since_gc += sizeof (struct Lisp_Float);
2286 floats_consed++;
2287 total_free_floats--;
2288 return val;
2289 }
2290
2291
2292 \f
2293 /***********************************************************************
2294 Cons Allocation
2295 ***********************************************************************/
2296
2297 /* We store cons cells inside of cons_blocks, allocating a new
2298 cons_block with malloc whenever necessary. Cons cells reclaimed by
2299 GC are put on a free list to be reallocated before allocating
2300 any new cons cells from the latest cons_block. */
2301
2302 #define CONS_BLOCK_SIZE \
2303 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2304 /* The compiler might add padding at the end. */ \
2305 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2306 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2307
2308 #define CONS_BLOCK(fptr) \
2309 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2310
2311 #define CONS_INDEX(fptr) \
2312 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2313
2314 struct cons_block
2315 {
2316 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2317 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2318 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2319 struct cons_block *next;
2320 };
2321
2322 #define CONS_MARKED_P(fptr) \
2323 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2324
2325 #define CONS_MARK(fptr) \
2326 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2327
2328 #define CONS_UNMARK(fptr) \
2329 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2330
2331 /* Current cons_block. */
2332
2333 static struct cons_block *cons_block;
2334
2335 /* Index of first unused Lisp_Cons in the current block. */
2336
2337 static int cons_block_index = CONS_BLOCK_SIZE;
2338
2339 /* Free-list of Lisp_Cons structures. */
2340
2341 static struct Lisp_Cons *cons_free_list;
2342
2343 /* Explicitly free a cons cell by putting it on the free-list. */
2344
2345 void
2346 free_cons (struct Lisp_Cons *ptr)
2347 {
2348 ptr->u.chain = cons_free_list;
2349 #if GC_MARK_STACK
2350 ptr->car = Vdead;
2351 #endif
2352 cons_free_list = ptr;
2353 consing_since_gc -= sizeof *ptr;
2354 total_free_conses++;
2355 }
2356
2357 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2358 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2359 (Lisp_Object car, Lisp_Object cdr)
2360 {
2361 register Lisp_Object val;
2362
2363 MALLOC_BLOCK_INPUT;
2364
2365 if (cons_free_list)
2366 {
2367 /* We use the cdr for chaining the free list
2368 so that we won't use the same field that has the mark bit. */
2369 XSETCONS (val, cons_free_list);
2370 cons_free_list = cons_free_list->u.chain;
2371 }
2372 else
2373 {
2374 if (cons_block_index == CONS_BLOCK_SIZE)
2375 {
2376 struct cons_block *new
2377 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2378 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2379 new->next = cons_block;
2380 cons_block = new;
2381 cons_block_index = 0;
2382 total_free_conses += CONS_BLOCK_SIZE;
2383 }
2384 XSETCONS (val, &cons_block->conses[cons_block_index]);
2385 cons_block_index++;
2386 }
2387
2388 MALLOC_UNBLOCK_INPUT;
2389
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 total_free_conses--;
2395 cons_cells_consed++;
2396 return val;
2397 }
2398
2399 #ifdef GC_CHECK_CONS_LIST
2400 /* Get an error now if there's any junk in the cons free list. */
2401 void
2402 check_cons_list (void)
2403 {
2404 struct Lisp_Cons *tail = cons_free_list;
2405
2406 while (tail)
2407 tail = tail->u.chain;
2408 }
2409 #endif
2410
2411 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2412
2413 Lisp_Object
2414 list1 (Lisp_Object arg1)
2415 {
2416 return Fcons (arg1, Qnil);
2417 }
2418
2419 Lisp_Object
2420 list2 (Lisp_Object arg1, Lisp_Object arg2)
2421 {
2422 return Fcons (arg1, Fcons (arg2, Qnil));
2423 }
2424
2425
2426 Lisp_Object
2427 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2428 {
2429 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2430 }
2431
2432
2433 Lisp_Object
2434 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2435 {
2436 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2437 }
2438
2439
2440 Lisp_Object
2441 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2444 Fcons (arg5, Qnil)))));
2445 }
2446
2447 /* Make a list of COUNT Lisp_Objects, where ARG is the
2448 first one. Allocate conses from pure space if TYPE
2449 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2450
2451 Lisp_Object
2452 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2453 {
2454 va_list ap;
2455 ptrdiff_t i;
2456 Lisp_Object val, *objp;
2457
2458 /* Change to SAFE_ALLOCA if you hit this eassert. */
2459 eassert (count <= MAX_ALLOCA / word_size);
2460
2461 objp = alloca (count * word_size);
2462 objp[0] = arg;
2463 va_start (ap, arg);
2464 for (i = 1; i < count; i++)
2465 objp[i] = va_arg (ap, Lisp_Object);
2466 va_end (ap);
2467
2468 for (val = Qnil, i = count - 1; i >= 0; i--)
2469 {
2470 if (type == CONSTYPE_PURE)
2471 val = pure_cons (objp[i], val);
2472 else if (type == CONSTYPE_HEAP)
2473 val = Fcons (objp[i], val);
2474 else
2475 emacs_abort ();
2476 }
2477 return val;
2478 }
2479
2480 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2481 doc: /* Return a newly created list with specified arguments as elements.
2482 Any number of arguments, even zero arguments, are allowed.
2483 usage: (list &rest OBJECTS) */)
2484 (ptrdiff_t nargs, Lisp_Object *args)
2485 {
2486 register Lisp_Object val;
2487 val = Qnil;
2488
2489 while (nargs > 0)
2490 {
2491 nargs--;
2492 val = Fcons (args[nargs], val);
2493 }
2494 return val;
2495 }
2496
2497
2498 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2499 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2500 (register Lisp_Object length, Lisp_Object init)
2501 {
2502 register Lisp_Object val;
2503 register EMACS_INT size;
2504
2505 CHECK_NATNUM (length);
2506 size = XFASTINT (length);
2507
2508 val = Qnil;
2509 while (size > 0)
2510 {
2511 val = Fcons (init, val);
2512 --size;
2513
2514 if (size > 0)
2515 {
2516 val = Fcons (init, val);
2517 --size;
2518
2519 if (size > 0)
2520 {
2521 val = Fcons (init, val);
2522 --size;
2523
2524 if (size > 0)
2525 {
2526 val = Fcons (init, val);
2527 --size;
2528
2529 if (size > 0)
2530 {
2531 val = Fcons (init, val);
2532 --size;
2533 }
2534 }
2535 }
2536 }
2537
2538 QUIT;
2539 }
2540
2541 return val;
2542 }
2543
2544
2545 \f
2546 /***********************************************************************
2547 Vector Allocation
2548 ***********************************************************************/
2549
2550 /* This value is balanced well enough to avoid too much internal overhead
2551 for the most common cases; it's not required to be a power of two, but
2552 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2553
2554 #define VECTOR_BLOCK_SIZE 4096
2555
2556 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2557 enum
2558 {
2559 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2560 };
2561
2562 /* ROUNDUP_SIZE must be a power of 2. */
2563 verify ((roundup_size & (roundup_size - 1)) == 0);
2564
2565 /* Verify assumptions described above. */
2566 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2567 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2568
2569 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2570
2571 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2572
2573 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2574
2575 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2576
2577 /* Size of the minimal vector allocated from block. */
2578
2579 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2580
2581 /* Size of the largest vector allocated from block. */
2582
2583 #define VBLOCK_BYTES_MAX \
2584 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2585
2586 /* We maintain one free list for each possible block-allocated
2587 vector size, and this is the number of free lists we have. */
2588
2589 #define VECTOR_MAX_FREE_LIST_INDEX \
2590 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2591
2592 /* Common shortcut to advance vector pointer over a block data. */
2593
2594 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2595
2596 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2597
2598 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2599
2600 /* Get and set the next field in block-allocated vectorlike objects on
2601 the free list. Doing it this way respects C's aliasing rules.
2602 We could instead make 'contents' a union, but that would mean
2603 changes everywhere that the code uses 'contents'. */
2604 static struct Lisp_Vector *
2605 next_in_free_list (struct Lisp_Vector *v)
2606 {
2607 intptr_t i = XLI (v->contents[0]);
2608 return (struct Lisp_Vector *) i;
2609 }
2610 static void
2611 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2612 {
2613 v->contents[0] = XIL ((intptr_t) next);
2614 }
2615
2616 /* Common shortcut to setup vector on a free list. */
2617
2618 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2619 do { \
2620 (tmp) = ((nbytes - header_size) / word_size); \
2621 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2622 eassert ((nbytes) % roundup_size == 0); \
2623 (tmp) = VINDEX (nbytes); \
2624 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2625 set_next_in_free_list (v, vector_free_lists[tmp]); \
2626 vector_free_lists[tmp] = (v); \
2627 total_free_vector_slots += (nbytes) / word_size; \
2628 } while (0)
2629
2630 /* This internal type is used to maintain the list of large vectors
2631 which are allocated at their own, e.g. outside of vector blocks. */
2632
2633 struct large_vector
2634 {
2635 union {
2636 struct large_vector *vector;
2637 #if USE_LSB_TAG
2638 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2639 unsigned char c[vroundup (sizeof (struct large_vector *))];
2640 #endif
2641 } next;
2642 struct Lisp_Vector v;
2643 };
2644
2645 /* This internal type is used to maintain an underlying storage
2646 for small vectors. */
2647
2648 struct vector_block
2649 {
2650 char data[VECTOR_BLOCK_BYTES];
2651 struct vector_block *next;
2652 };
2653
2654 /* Chain of vector blocks. */
2655
2656 static struct vector_block *vector_blocks;
2657
2658 /* Vector free lists, where NTH item points to a chain of free
2659 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2660
2661 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2662
2663 /* Singly-linked list of large vectors. */
2664
2665 static struct large_vector *large_vectors;
2666
2667 /* The only vector with 0 slots, allocated from pure space. */
2668
2669 Lisp_Object zero_vector;
2670
2671 /* Number of live vectors. */
2672
2673 static EMACS_INT total_vectors;
2674
2675 /* Total size of live and free vectors, in Lisp_Object units. */
2676
2677 static EMACS_INT total_vector_slots, total_free_vector_slots;
2678
2679 /* Get a new vector block. */
2680
2681 static struct vector_block *
2682 allocate_vector_block (void)
2683 {
2684 struct vector_block *block = xmalloc (sizeof *block);
2685
2686 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2687 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2688 MEM_TYPE_VECTOR_BLOCK);
2689 #endif
2690
2691 block->next = vector_blocks;
2692 vector_blocks = block;
2693 return block;
2694 }
2695
2696 /* Called once to initialize vector allocation. */
2697
2698 static void
2699 init_vectors (void)
2700 {
2701 zero_vector = make_pure_vector (0);
2702 }
2703
2704 /* Allocate vector from a vector block. */
2705
2706 static struct Lisp_Vector *
2707 allocate_vector_from_block (size_t nbytes)
2708 {
2709 struct Lisp_Vector *vector;
2710 struct vector_block *block;
2711 size_t index, restbytes;
2712
2713 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2714 eassert (nbytes % roundup_size == 0);
2715
2716 /* First, try to allocate from a free list
2717 containing vectors of the requested size. */
2718 index = VINDEX (nbytes);
2719 if (vector_free_lists[index])
2720 {
2721 vector = vector_free_lists[index];
2722 vector_free_lists[index] = next_in_free_list (vector);
2723 total_free_vector_slots -= nbytes / word_size;
2724 return vector;
2725 }
2726
2727 /* Next, check free lists containing larger vectors. Since
2728 we will split the result, we should have remaining space
2729 large enough to use for one-slot vector at least. */
2730 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2731 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2732 if (vector_free_lists[index])
2733 {
2734 /* This vector is larger than requested. */
2735 vector = vector_free_lists[index];
2736 vector_free_lists[index] = next_in_free_list (vector);
2737 total_free_vector_slots -= nbytes / word_size;
2738
2739 /* Excess bytes are used for the smaller vector,
2740 which should be set on an appropriate free list. */
2741 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2742 eassert (restbytes % roundup_size == 0);
2743 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2744 return vector;
2745 }
2746
2747 /* Finally, need a new vector block. */
2748 block = allocate_vector_block ();
2749
2750 /* New vector will be at the beginning of this block. */
2751 vector = (struct Lisp_Vector *) block->data;
2752
2753 /* If the rest of space from this block is large enough
2754 for one-slot vector at least, set up it on a free list. */
2755 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2756 if (restbytes >= VBLOCK_BYTES_MIN)
2757 {
2758 eassert (restbytes % roundup_size == 0);
2759 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2760 }
2761 return vector;
2762 }
2763
2764 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2765
2766 #define VECTOR_IN_BLOCK(vector, block) \
2767 ((char *) (vector) <= (block)->data \
2768 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2769
2770 /* Return the memory footprint of V in bytes. */
2771
2772 static ptrdiff_t
2773 vector_nbytes (struct Lisp_Vector *v)
2774 {
2775 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2776
2777 if (size & PSEUDOVECTOR_FLAG)
2778 {
2779 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2780 size = (bool_header_size
2781 + (((struct Lisp_Bool_Vector *) v)->size
2782 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2783 / BOOL_VECTOR_BITS_PER_CHAR);
2784 else
2785 size = (header_size
2786 + ((size & PSEUDOVECTOR_SIZE_MASK)
2787 + ((size & PSEUDOVECTOR_REST_MASK)
2788 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2789 }
2790 else
2791 size = header_size + size * word_size;
2792 return vroundup (size);
2793 }
2794
2795 /* Reclaim space used by unmarked vectors. */
2796
2797 static void
2798 sweep_vectors (void)
2799 {
2800 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2801 struct large_vector *lv, **lvprev = &large_vectors;
2802 struct Lisp_Vector *vector, *next;
2803
2804 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2805 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2806
2807 /* Looking through vector blocks. */
2808
2809 for (block = vector_blocks; block; block = *bprev)
2810 {
2811 bool free_this_block = 0;
2812 ptrdiff_t nbytes;
2813
2814 for (vector = (struct Lisp_Vector *) block->data;
2815 VECTOR_IN_BLOCK (vector, block); vector = next)
2816 {
2817 if (VECTOR_MARKED_P (vector))
2818 {
2819 VECTOR_UNMARK (vector);
2820 total_vectors++;
2821 nbytes = vector_nbytes (vector);
2822 total_vector_slots += nbytes / word_size;
2823 next = ADVANCE (vector, nbytes);
2824 }
2825 else
2826 {
2827 ptrdiff_t total_bytes;
2828
2829 nbytes = vector_nbytes (vector);
2830 total_bytes = nbytes;
2831 next = ADVANCE (vector, nbytes);
2832
2833 /* While NEXT is not marked, try to coalesce with VECTOR,
2834 thus making VECTOR of the largest possible size. */
2835
2836 while (VECTOR_IN_BLOCK (next, block))
2837 {
2838 if (VECTOR_MARKED_P (next))
2839 break;
2840 nbytes = vector_nbytes (next);
2841 total_bytes += nbytes;
2842 next = ADVANCE (next, nbytes);
2843 }
2844
2845 eassert (total_bytes % roundup_size == 0);
2846
2847 if (vector == (struct Lisp_Vector *) block->data
2848 && !VECTOR_IN_BLOCK (next, block))
2849 /* This block should be freed because all of it's
2850 space was coalesced into the only free vector. */
2851 free_this_block = 1;
2852 else
2853 {
2854 int tmp;
2855 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2856 }
2857 }
2858 }
2859
2860 if (free_this_block)
2861 {
2862 *bprev = block->next;
2863 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2864 mem_delete (mem_find (block->data));
2865 #endif
2866 xfree (block);
2867 }
2868 else
2869 bprev = &block->next;
2870 }
2871
2872 /* Sweep large vectors. */
2873
2874 for (lv = large_vectors; lv; lv = *lvprev)
2875 {
2876 vector = &lv->v;
2877 if (VECTOR_MARKED_P (vector))
2878 {
2879 VECTOR_UNMARK (vector);
2880 total_vectors++;
2881 if (vector->header.size & PSEUDOVECTOR_FLAG)
2882 {
2883 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2884
2885 /* All non-bool pseudovectors are small enough to be allocated
2886 from vector blocks. This code should be redesigned if some
2887 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2888 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2889
2890 total_vector_slots
2891 += (bool_header_size
2892 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2893 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2894 }
2895 else
2896 total_vector_slots
2897 += header_size / word_size + vector->header.size;
2898 lvprev = &lv->next.vector;
2899 }
2900 else
2901 {
2902 *lvprev = lv->next.vector;
2903 lisp_free (lv);
2904 }
2905 }
2906 }
2907
2908 /* Value is a pointer to a newly allocated Lisp_Vector structure
2909 with room for LEN Lisp_Objects. */
2910
2911 static struct Lisp_Vector *
2912 allocate_vectorlike (ptrdiff_t len)
2913 {
2914 struct Lisp_Vector *p;
2915
2916 MALLOC_BLOCK_INPUT;
2917
2918 if (len == 0)
2919 p = XVECTOR (zero_vector);
2920 else
2921 {
2922 size_t nbytes = header_size + len * word_size;
2923
2924 #ifdef DOUG_LEA_MALLOC
2925 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2926 because mapped region contents are not preserved in
2927 a dumped Emacs. */
2928 mallopt (M_MMAP_MAX, 0);
2929 #endif
2930
2931 if (nbytes <= VBLOCK_BYTES_MAX)
2932 p = allocate_vector_from_block (vroundup (nbytes));
2933 else
2934 {
2935 struct large_vector *lv
2936 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2937 MEM_TYPE_VECTORLIKE);
2938 lv->next.vector = large_vectors;
2939 large_vectors = lv;
2940 p = &lv->v;
2941 }
2942
2943 #ifdef DOUG_LEA_MALLOC
2944 /* Back to a reasonable maximum of mmap'ed areas. */
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 #endif
2947
2948 consing_since_gc += nbytes;
2949 vector_cells_consed += len;
2950 }
2951
2952 MALLOC_UNBLOCK_INPUT;
2953
2954 return p;
2955 }
2956
2957
2958 /* Allocate a vector with LEN slots. */
2959
2960 struct Lisp_Vector *
2961 allocate_vector (EMACS_INT len)
2962 {
2963 struct Lisp_Vector *v;
2964 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2965
2966 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2967 memory_full (SIZE_MAX);
2968 v = allocate_vectorlike (len);
2969 v->header.size = len;
2970 return v;
2971 }
2972
2973
2974 /* Allocate other vector-like structures. */
2975
2976 struct Lisp_Vector *
2977 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2978 {
2979 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2980 int i;
2981
2982 /* Catch bogus values. */
2983 eassert (tag <= PVEC_FONT);
2984 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2985 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2986
2987 /* Only the first lisplen slots will be traced normally by the GC. */
2988 for (i = 0; i < lisplen; ++i)
2989 v->contents[i] = Qnil;
2990
2991 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2992 return v;
2993 }
2994
2995 struct buffer *
2996 allocate_buffer (void)
2997 {
2998 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
2999
3000 BUFFER_PVEC_INIT (b);
3001 /* Put B on the chain of all buffers including killed ones. */
3002 b->next = all_buffers;
3003 all_buffers = b;
3004 /* Note that the rest fields of B are not initialized. */
3005 return b;
3006 }
3007
3008 struct Lisp_Hash_Table *
3009 allocate_hash_table (void)
3010 {
3011 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3012 }
3013
3014 struct window *
3015 allocate_window (void)
3016 {
3017 struct window *w;
3018
3019 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3020 /* Users assumes that non-Lisp data is zeroed. */
3021 memset (&w->current_matrix, 0,
3022 sizeof (*w) - offsetof (struct window, current_matrix));
3023 return w;
3024 }
3025
3026 struct terminal *
3027 allocate_terminal (void)
3028 {
3029 struct terminal *t;
3030
3031 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3032 /* Users assumes that non-Lisp data is zeroed. */
3033 memset (&t->next_terminal, 0,
3034 sizeof (*t) - offsetof (struct terminal, next_terminal));
3035 return t;
3036 }
3037
3038 struct frame *
3039 allocate_frame (void)
3040 {
3041 struct frame *f;
3042
3043 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3044 /* Users assumes that non-Lisp data is zeroed. */
3045 memset (&f->face_cache, 0,
3046 sizeof (*f) - offsetof (struct frame, face_cache));
3047 return f;
3048 }
3049
3050 struct Lisp_Process *
3051 allocate_process (void)
3052 {
3053 struct Lisp_Process *p;
3054
3055 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3056 /* Users assumes that non-Lisp data is zeroed. */
3057 memset (&p->pid, 0,
3058 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3059 return p;
3060 }
3061
3062 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3063 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3064 See also the function `vector'. */)
3065 (register Lisp_Object length, Lisp_Object init)
3066 {
3067 Lisp_Object vector;
3068 register ptrdiff_t sizei;
3069 register ptrdiff_t i;
3070 register struct Lisp_Vector *p;
3071
3072 CHECK_NATNUM (length);
3073
3074 p = allocate_vector (XFASTINT (length));
3075 sizei = XFASTINT (length);
3076 for (i = 0; i < sizei; i++)
3077 p->contents[i] = init;
3078
3079 XSETVECTOR (vector, p);
3080 return vector;
3081 }
3082
3083
3084 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3085 doc: /* Return a newly created vector with specified arguments as elements.
3086 Any number of arguments, even zero arguments, are allowed.
3087 usage: (vector &rest OBJECTS) */)
3088 (ptrdiff_t nargs, Lisp_Object *args)
3089 {
3090 ptrdiff_t i;
3091 register Lisp_Object val = make_uninit_vector (nargs);
3092 register struct Lisp_Vector *p = XVECTOR (val);
3093
3094 for (i = 0; i < nargs; i++)
3095 p->contents[i] = args[i];
3096 return val;
3097 }
3098
3099 void
3100 make_byte_code (struct Lisp_Vector *v)
3101 {
3102 if (v->header.size > 1 && STRINGP (v->contents[1])
3103 && STRING_MULTIBYTE (v->contents[1]))
3104 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3105 earlier because they produced a raw 8-bit string for byte-code
3106 and now such a byte-code string is loaded as multibyte while
3107 raw 8-bit characters converted to multibyte form. Thus, now we
3108 must convert them back to the original unibyte form. */
3109 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3110 XSETPVECTYPE (v, PVEC_COMPILED);
3111 }
3112
3113 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3114 doc: /* Create a byte-code object with specified arguments as elements.
3115 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3116 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3117 and (optional) INTERACTIVE-SPEC.
3118 The first four arguments are required; at most six have any
3119 significance.
3120 The ARGLIST can be either like the one of `lambda', in which case the arguments
3121 will be dynamically bound before executing the byte code, or it can be an
3122 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3123 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3124 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3125 argument to catch the left-over arguments. If such an integer is used, the
3126 arguments will not be dynamically bound but will be instead pushed on the
3127 stack before executing the byte-code.
3128 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3129 (ptrdiff_t nargs, Lisp_Object *args)
3130 {
3131 ptrdiff_t i;
3132 register Lisp_Object val = make_uninit_vector (nargs);
3133 register struct Lisp_Vector *p = XVECTOR (val);
3134
3135 /* We used to purecopy everything here, if purify-flag was set. This worked
3136 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3137 dangerous, since make-byte-code is used during execution to build
3138 closures, so any closure built during the preload phase would end up
3139 copied into pure space, including its free variables, which is sometimes
3140 just wasteful and other times plainly wrong (e.g. those free vars may want
3141 to be setcar'd). */
3142
3143 for (i = 0; i < nargs; i++)
3144 p->contents[i] = args[i];
3145 make_byte_code (p);
3146 XSETCOMPILED (val, p);
3147 return val;
3148 }
3149
3150
3151 \f
3152 /***********************************************************************
3153 Symbol Allocation
3154 ***********************************************************************/
3155
3156 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3157 of the required alignment if LSB tags are used. */
3158
3159 union aligned_Lisp_Symbol
3160 {
3161 struct Lisp_Symbol s;
3162 #if USE_LSB_TAG
3163 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3164 & -GCALIGNMENT];
3165 #endif
3166 };
3167
3168 /* Each symbol_block is just under 1020 bytes long, since malloc
3169 really allocates in units of powers of two and uses 4 bytes for its
3170 own overhead. */
3171
3172 #define SYMBOL_BLOCK_SIZE \
3173 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3174
3175 struct symbol_block
3176 {
3177 /* Place `symbols' first, to preserve alignment. */
3178 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3179 struct symbol_block *next;
3180 };
3181
3182 /* Current symbol block and index of first unused Lisp_Symbol
3183 structure in it. */
3184
3185 static struct symbol_block *symbol_block;
3186 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3187
3188 /* List of free symbols. */
3189
3190 static struct Lisp_Symbol *symbol_free_list;
3191
3192 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3193 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3194 Its value is void, and its function definition and property list are nil. */)
3195 (Lisp_Object name)
3196 {
3197 register Lisp_Object val;
3198 register struct Lisp_Symbol *p;
3199
3200 CHECK_STRING (name);
3201
3202 MALLOC_BLOCK_INPUT;
3203
3204 if (symbol_free_list)
3205 {
3206 XSETSYMBOL (val, symbol_free_list);
3207 symbol_free_list = symbol_free_list->next;
3208 }
3209 else
3210 {
3211 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3212 {
3213 struct symbol_block *new
3214 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3215 new->next = symbol_block;
3216 symbol_block = new;
3217 symbol_block_index = 0;
3218 total_free_symbols += SYMBOL_BLOCK_SIZE;
3219 }
3220 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3221 symbol_block_index++;
3222 }
3223
3224 MALLOC_UNBLOCK_INPUT;
3225
3226 p = XSYMBOL (val);
3227 set_symbol_name (val, name);
3228 set_symbol_plist (val, Qnil);
3229 p->redirect = SYMBOL_PLAINVAL;
3230 SET_SYMBOL_VAL (p, Qunbound);
3231 set_symbol_function (val, Qnil);
3232 set_symbol_next (val, NULL);
3233 p->gcmarkbit = 0;
3234 p->interned = SYMBOL_UNINTERNED;
3235 p->constant = 0;
3236 p->declared_special = 0;
3237 consing_since_gc += sizeof (struct Lisp_Symbol);
3238 symbols_consed++;
3239 total_free_symbols--;
3240 return val;
3241 }
3242
3243
3244 \f
3245 /***********************************************************************
3246 Marker (Misc) Allocation
3247 ***********************************************************************/
3248
3249 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3250 the required alignment when LSB tags are used. */
3251
3252 union aligned_Lisp_Misc
3253 {
3254 union Lisp_Misc m;
3255 #if USE_LSB_TAG
3256 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3257 & -GCALIGNMENT];
3258 #endif
3259 };
3260
3261 /* Allocation of markers and other objects that share that structure.
3262 Works like allocation of conses. */
3263
3264 #define MARKER_BLOCK_SIZE \
3265 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3266
3267 struct marker_block
3268 {
3269 /* Place `markers' first, to preserve alignment. */
3270 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3271 struct marker_block *next;
3272 };
3273
3274 static struct marker_block *marker_block;
3275 static int marker_block_index = MARKER_BLOCK_SIZE;
3276
3277 static union Lisp_Misc *marker_free_list;
3278
3279 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3280
3281 static Lisp_Object
3282 allocate_misc (enum Lisp_Misc_Type type)
3283 {
3284 Lisp_Object val;
3285
3286 MALLOC_BLOCK_INPUT;
3287
3288 if (marker_free_list)
3289 {
3290 XSETMISC (val, marker_free_list);
3291 marker_free_list = marker_free_list->u_free.chain;
3292 }
3293 else
3294 {
3295 if (marker_block_index == MARKER_BLOCK_SIZE)
3296 {
3297 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3298 new->next = marker_block;
3299 marker_block = new;
3300 marker_block_index = 0;
3301 total_free_markers += MARKER_BLOCK_SIZE;
3302 }
3303 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3304 marker_block_index++;
3305 }
3306
3307 MALLOC_UNBLOCK_INPUT;
3308
3309 --total_free_markers;
3310 consing_since_gc += sizeof (union Lisp_Misc);
3311 misc_objects_consed++;
3312 XMISCTYPE (val) = type;
3313 XMISCANY (val)->gcmarkbit = 0;
3314 return val;
3315 }
3316
3317 /* Free a Lisp_Misc object. */
3318
3319 void
3320 free_misc (Lisp_Object misc)
3321 {
3322 XMISCTYPE (misc) = Lisp_Misc_Free;
3323 XMISC (misc)->u_free.chain = marker_free_list;
3324 marker_free_list = XMISC (misc);
3325 consing_since_gc -= sizeof (union Lisp_Misc);
3326 total_free_markers++;
3327 }
3328
3329 /* Return a Lisp_Save_Value object with the data saved according to
3330 FMT. Format specifiers are `i' for an integer, `p' for a pointer
3331 and `o' for Lisp_Object. Up to 4 objects can be specified. */
3332
3333 Lisp_Object
3334 make_save_value (const char *fmt, ...)
3335 {
3336 va_list ap;
3337 int len = strlen (fmt);
3338 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3339 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3340
3341 eassert (0 < len && len < 5);
3342 va_start (ap, fmt);
3343
3344 #define INITX(index) \
3345 do { \
3346 if (len <= index) \
3347 p->type ## index = SAVE_UNUSED; \
3348 else \
3349 { \
3350 if (fmt[index] == 'i') \
3351 { \
3352 p->type ## index = SAVE_INTEGER; \
3353 p->data[index].integer = va_arg (ap, ptrdiff_t); \
3354 } \
3355 else if (fmt[index] == 'p') \
3356 { \
3357 p->type ## index = SAVE_POINTER; \
3358 p->data[index].pointer = va_arg (ap, void *); \
3359 } \
3360 else if (fmt[index] == 'o') \
3361 { \
3362 p->type ## index = SAVE_OBJECT; \
3363 p->data[index].object = va_arg (ap, Lisp_Object); \
3364 } \
3365 else \
3366 emacs_abort (); \
3367 } \
3368 } while (0)
3369
3370 INITX (0);
3371 INITX (1);
3372 INITX (2);
3373 INITX (3);
3374
3375 #undef INITX
3376
3377 va_end (ap);
3378 p->area = 0;
3379 return val;
3380 }
3381
3382 /* The most common task it to save just one C pointer. */
3383
3384 Lisp_Object
3385 make_save_pointer (void *pointer)
3386 {
3387 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3388 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3389
3390 p->area = 0;
3391 p->type0 = SAVE_POINTER;
3392 p->data[0].pointer = pointer;
3393 p->type1 = p->type2 = p->type3 = SAVE_UNUSED;
3394 return val;
3395 }
3396
3397 /* Free a Lisp_Save_Value object. Do not use this function
3398 if SAVE contains pointer other than returned by xmalloc. */
3399
3400 static void
3401 free_save_value (Lisp_Object save)
3402 {
3403 xfree (XSAVE_POINTER (save, 0));
3404 free_misc (save);
3405 }
3406
3407 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3408
3409 Lisp_Object
3410 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3411 {
3412 register Lisp_Object overlay;
3413
3414 overlay = allocate_misc (Lisp_Misc_Overlay);
3415 OVERLAY_START (overlay) = start;
3416 OVERLAY_END (overlay) = end;
3417 set_overlay_plist (overlay, plist);
3418 XOVERLAY (overlay)->next = NULL;
3419 return overlay;
3420 }
3421
3422 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3423 doc: /* Return a newly allocated marker which does not point at any place. */)
3424 (void)
3425 {
3426 register Lisp_Object val;
3427 register struct Lisp_Marker *p;
3428
3429 val = allocate_misc (Lisp_Misc_Marker);
3430 p = XMARKER (val);
3431 p->buffer = 0;
3432 p->bytepos = 0;
3433 p->charpos = 0;
3434 p->next = NULL;
3435 p->insertion_type = 0;
3436 return val;
3437 }
3438
3439 /* Return a newly allocated marker which points into BUF
3440 at character position CHARPOS and byte position BYTEPOS. */
3441
3442 Lisp_Object
3443 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3444 {
3445 Lisp_Object obj;
3446 struct Lisp_Marker *m;
3447
3448 /* No dead buffers here. */
3449 eassert (BUFFER_LIVE_P (buf));
3450
3451 /* Every character is at least one byte. */
3452 eassert (charpos <= bytepos);
3453
3454 obj = allocate_misc (Lisp_Misc_Marker);
3455 m = XMARKER (obj);
3456 m->buffer = buf;
3457 m->charpos = charpos;
3458 m->bytepos = bytepos;
3459 m->insertion_type = 0;
3460 m->next = BUF_MARKERS (buf);
3461 BUF_MARKERS (buf) = m;
3462 return obj;
3463 }
3464
3465 /* Put MARKER back on the free list after using it temporarily. */
3466
3467 void
3468 free_marker (Lisp_Object marker)
3469 {
3470 unchain_marker (XMARKER (marker));
3471 free_misc (marker);
3472 }
3473
3474 \f
3475 /* Return a newly created vector or string with specified arguments as
3476 elements. If all the arguments are characters that can fit
3477 in a string of events, make a string; otherwise, make a vector.
3478
3479 Any number of arguments, even zero arguments, are allowed. */
3480
3481 Lisp_Object
3482 make_event_array (register int nargs, Lisp_Object *args)
3483 {
3484 int i;
3485
3486 for (i = 0; i < nargs; i++)
3487 /* The things that fit in a string
3488 are characters that are in 0...127,
3489 after discarding the meta bit and all the bits above it. */
3490 if (!INTEGERP (args[i])
3491 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3492 return Fvector (nargs, args);
3493
3494 /* Since the loop exited, we know that all the things in it are
3495 characters, so we can make a string. */
3496 {
3497 Lisp_Object result;
3498
3499 result = Fmake_string (make_number (nargs), make_number (0));
3500 for (i = 0; i < nargs; i++)
3501 {
3502 SSET (result, i, XINT (args[i]));
3503 /* Move the meta bit to the right place for a string char. */
3504 if (XINT (args[i]) & CHAR_META)
3505 SSET (result, i, SREF (result, i) | 0x80);
3506 }
3507
3508 return result;
3509 }
3510 }
3511
3512
3513 \f
3514 /************************************************************************
3515 Memory Full Handling
3516 ************************************************************************/
3517
3518
3519 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3520 there may have been size_t overflow so that malloc was never
3521 called, or perhaps malloc was invoked successfully but the
3522 resulting pointer had problems fitting into a tagged EMACS_INT. In
3523 either case this counts as memory being full even though malloc did
3524 not fail. */
3525
3526 void
3527 memory_full (size_t nbytes)
3528 {
3529 /* Do not go into hysterics merely because a large request failed. */
3530 bool enough_free_memory = 0;
3531 if (SPARE_MEMORY < nbytes)
3532 {
3533 void *p;
3534
3535 MALLOC_BLOCK_INPUT;
3536 p = malloc (SPARE_MEMORY);
3537 if (p)
3538 {
3539 free (p);
3540 enough_free_memory = 1;
3541 }
3542 MALLOC_UNBLOCK_INPUT;
3543 }
3544
3545 if (! enough_free_memory)
3546 {
3547 int i;
3548
3549 Vmemory_full = Qt;
3550
3551 memory_full_cons_threshold = sizeof (struct cons_block);
3552
3553 /* The first time we get here, free the spare memory. */
3554 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3555 if (spare_memory[i])
3556 {
3557 if (i == 0)
3558 free (spare_memory[i]);
3559 else if (i >= 1 && i <= 4)
3560 lisp_align_free (spare_memory[i]);
3561 else
3562 lisp_free (spare_memory[i]);
3563 spare_memory[i] = 0;
3564 }
3565 }
3566
3567 /* This used to call error, but if we've run out of memory, we could
3568 get infinite recursion trying to build the string. */
3569 xsignal (Qnil, Vmemory_signal_data);
3570 }
3571
3572 /* If we released our reserve (due to running out of memory),
3573 and we have a fair amount free once again,
3574 try to set aside another reserve in case we run out once more.
3575
3576 This is called when a relocatable block is freed in ralloc.c,
3577 and also directly from this file, in case we're not using ralloc.c. */
3578
3579 void
3580 refill_memory_reserve (void)
3581 {
3582 #ifndef SYSTEM_MALLOC
3583 if (spare_memory[0] == 0)
3584 spare_memory[0] = malloc (SPARE_MEMORY);
3585 if (spare_memory[1] == 0)
3586 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3587 MEM_TYPE_SPARE);
3588 if (spare_memory[2] == 0)
3589 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3590 MEM_TYPE_SPARE);
3591 if (spare_memory[3] == 0)
3592 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3593 MEM_TYPE_SPARE);
3594 if (spare_memory[4] == 0)
3595 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3596 MEM_TYPE_SPARE);
3597 if (spare_memory[5] == 0)
3598 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3599 MEM_TYPE_SPARE);
3600 if (spare_memory[6] == 0)
3601 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3602 MEM_TYPE_SPARE);
3603 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3604 Vmemory_full = Qnil;
3605 #endif
3606 }
3607 \f
3608 /************************************************************************
3609 C Stack Marking
3610 ************************************************************************/
3611
3612 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3613
3614 /* Conservative C stack marking requires a method to identify possibly
3615 live Lisp objects given a pointer value. We do this by keeping
3616 track of blocks of Lisp data that are allocated in a red-black tree
3617 (see also the comment of mem_node which is the type of nodes in
3618 that tree). Function lisp_malloc adds information for an allocated
3619 block to the red-black tree with calls to mem_insert, and function
3620 lisp_free removes it with mem_delete. Functions live_string_p etc
3621 call mem_find to lookup information about a given pointer in the
3622 tree, and use that to determine if the pointer points to a Lisp
3623 object or not. */
3624
3625 /* Initialize this part of alloc.c. */
3626
3627 static void
3628 mem_init (void)
3629 {
3630 mem_z.left = mem_z.right = MEM_NIL;
3631 mem_z.parent = NULL;
3632 mem_z.color = MEM_BLACK;
3633 mem_z.start = mem_z.end = NULL;
3634 mem_root = MEM_NIL;
3635 }
3636
3637
3638 /* Value is a pointer to the mem_node containing START. Value is
3639 MEM_NIL if there is no node in the tree containing START. */
3640
3641 static struct mem_node *
3642 mem_find (void *start)
3643 {
3644 struct mem_node *p;
3645
3646 if (start < min_heap_address || start > max_heap_address)
3647 return MEM_NIL;
3648
3649 /* Make the search always successful to speed up the loop below. */
3650 mem_z.start = start;
3651 mem_z.end = (char *) start + 1;
3652
3653 p = mem_root;
3654 while (start < p->start || start >= p->end)
3655 p = start < p->start ? p->left : p->right;
3656 return p;
3657 }
3658
3659
3660 /* Insert a new node into the tree for a block of memory with start
3661 address START, end address END, and type TYPE. Value is a
3662 pointer to the node that was inserted. */
3663
3664 static struct mem_node *
3665 mem_insert (void *start, void *end, enum mem_type type)
3666 {
3667 struct mem_node *c, *parent, *x;
3668
3669 if (min_heap_address == NULL || start < min_heap_address)
3670 min_heap_address = start;
3671 if (max_heap_address == NULL || end > max_heap_address)
3672 max_heap_address = end;
3673
3674 /* See where in the tree a node for START belongs. In this
3675 particular application, it shouldn't happen that a node is already
3676 present. For debugging purposes, let's check that. */
3677 c = mem_root;
3678 parent = NULL;
3679
3680 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3681
3682 while (c != MEM_NIL)
3683 {
3684 if (start >= c->start && start < c->end)
3685 emacs_abort ();
3686 parent = c;
3687 c = start < c->start ? c->left : c->right;
3688 }
3689
3690 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3691
3692 while (c != MEM_NIL)
3693 {
3694 parent = c;
3695 c = start < c->start ? c->left : c->right;
3696 }
3697
3698 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3699
3700 /* Create a new node. */
3701 #ifdef GC_MALLOC_CHECK
3702 x = malloc (sizeof *x);
3703 if (x == NULL)
3704 emacs_abort ();
3705 #else
3706 x = xmalloc (sizeof *x);
3707 #endif
3708 x->start = start;
3709 x->end = end;
3710 x->type = type;
3711 x->parent = parent;
3712 x->left = x->right = MEM_NIL;
3713 x->color = MEM_RED;
3714
3715 /* Insert it as child of PARENT or install it as root. */
3716 if (parent)
3717 {
3718 if (start < parent->start)
3719 parent->left = x;
3720 else
3721 parent->right = x;
3722 }
3723 else
3724 mem_root = x;
3725
3726 /* Re-establish red-black tree properties. */
3727 mem_insert_fixup (x);
3728
3729 return x;
3730 }
3731
3732
3733 /* Re-establish the red-black properties of the tree, and thereby
3734 balance the tree, after node X has been inserted; X is always red. */
3735
3736 static void
3737 mem_insert_fixup (struct mem_node *x)
3738 {
3739 while (x != mem_root && x->parent->color == MEM_RED)
3740 {
3741 /* X is red and its parent is red. This is a violation of
3742 red-black tree property #3. */
3743
3744 if (x->parent == x->parent->parent->left)
3745 {
3746 /* We're on the left side of our grandparent, and Y is our
3747 "uncle". */
3748 struct mem_node *y = x->parent->parent->right;
3749
3750 if (y->color == MEM_RED)
3751 {
3752 /* Uncle and parent are red but should be black because
3753 X is red. Change the colors accordingly and proceed
3754 with the grandparent. */
3755 x->parent->color = MEM_BLACK;
3756 y->color = MEM_BLACK;
3757 x->parent->parent->color = MEM_RED;
3758 x = x->parent->parent;
3759 }
3760 else
3761 {
3762 /* Parent and uncle have different colors; parent is
3763 red, uncle is black. */
3764 if (x == x->parent->right)
3765 {
3766 x = x->parent;
3767 mem_rotate_left (x);
3768 }
3769
3770 x->parent->color = MEM_BLACK;
3771 x->parent->parent->color = MEM_RED;
3772 mem_rotate_right (x->parent->parent);
3773 }
3774 }
3775 else
3776 {
3777 /* This is the symmetrical case of above. */
3778 struct mem_node *y = x->parent->parent->left;
3779
3780 if (y->color == MEM_RED)
3781 {
3782 x->parent->color = MEM_BLACK;
3783 y->color = MEM_BLACK;
3784 x->parent->parent->color = MEM_RED;
3785 x = x->parent->parent;
3786 }
3787 else
3788 {
3789 if (x == x->parent->left)
3790 {
3791 x = x->parent;
3792 mem_rotate_right (x);
3793 }
3794
3795 x->parent->color = MEM_BLACK;
3796 x->parent->parent->color = MEM_RED;
3797 mem_rotate_left (x->parent->parent);
3798 }
3799 }
3800 }
3801
3802 /* The root may have been changed to red due to the algorithm. Set
3803 it to black so that property #5 is satisfied. */
3804 mem_root->color = MEM_BLACK;
3805 }
3806
3807
3808 /* (x) (y)
3809 / \ / \
3810 a (y) ===> (x) c
3811 / \ / \
3812 b c a b */
3813
3814 static void
3815 mem_rotate_left (struct mem_node *x)
3816 {
3817 struct mem_node *y;
3818
3819 /* Turn y's left sub-tree into x's right sub-tree. */
3820 y = x->right;
3821 x->right = y->left;
3822 if (y->left != MEM_NIL)
3823 y->left->parent = x;
3824
3825 /* Y's parent was x's parent. */
3826 if (y != MEM_NIL)
3827 y->parent = x->parent;
3828
3829 /* Get the parent to point to y instead of x. */
3830 if (x->parent)
3831 {
3832 if (x == x->parent->left)
3833 x->parent->left = y;
3834 else
3835 x->parent->right = y;
3836 }
3837 else
3838 mem_root = y;
3839
3840 /* Put x on y's left. */
3841 y->left = x;
3842 if (x != MEM_NIL)
3843 x->parent = y;
3844 }
3845
3846
3847 /* (x) (Y)
3848 / \ / \
3849 (y) c ===> a (x)
3850 / \ / \
3851 a b b c */
3852
3853 static void
3854 mem_rotate_right (struct mem_node *x)
3855 {
3856 struct mem_node *y = x->left;
3857
3858 x->left = y->right;
3859 if (y->right != MEM_NIL)
3860 y->right->parent = x;
3861
3862 if (y != MEM_NIL)
3863 y->parent = x->parent;
3864 if (x->parent)
3865 {
3866 if (x == x->parent->right)
3867 x->parent->right = y;
3868 else
3869 x->parent->left = y;
3870 }
3871 else
3872 mem_root = y;
3873
3874 y->right = x;
3875 if (x != MEM_NIL)
3876 x->parent = y;
3877 }
3878
3879
3880 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3881
3882 static void
3883 mem_delete (struct mem_node *z)
3884 {
3885 struct mem_node *x, *y;
3886
3887 if (!z || z == MEM_NIL)
3888 return;
3889
3890 if (z->left == MEM_NIL || z->right == MEM_NIL)
3891 y = z;
3892 else
3893 {
3894 y = z->right;
3895 while (y->left != MEM_NIL)
3896 y = y->left;
3897 }
3898
3899 if (y->left != MEM_NIL)
3900 x = y->left;
3901 else
3902 x = y->right;
3903
3904 x->parent = y->parent;
3905 if (y->parent)
3906 {
3907 if (y == y->parent->left)
3908 y->parent->left = x;
3909 else
3910 y->parent->right = x;
3911 }
3912 else
3913 mem_root = x;
3914
3915 if (y != z)
3916 {
3917 z->start = y->start;
3918 z->end = y->end;
3919 z->type = y->type;
3920 }
3921
3922 if (y->color == MEM_BLACK)
3923 mem_delete_fixup (x);
3924
3925 #ifdef GC_MALLOC_CHECK
3926 free (y);
3927 #else
3928 xfree (y);
3929 #endif
3930 }
3931
3932
3933 /* Re-establish the red-black properties of the tree, after a
3934 deletion. */
3935
3936 static void
3937 mem_delete_fixup (struct mem_node *x)
3938 {
3939 while (x != mem_root && x->color == MEM_BLACK)
3940 {
3941 if (x == x->parent->left)
3942 {
3943 struct mem_node *w = x->parent->right;
3944
3945 if (w->color == MEM_RED)
3946 {
3947 w->color = MEM_BLACK;
3948 x->parent->color = MEM_RED;
3949 mem_rotate_left (x->parent);
3950 w = x->parent->right;
3951 }
3952
3953 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3954 {
3955 w->color = MEM_RED;
3956 x = x->parent;
3957 }
3958 else
3959 {
3960 if (w->right->color == MEM_BLACK)
3961 {
3962 w->left->color = MEM_BLACK;
3963 w->color = MEM_RED;
3964 mem_rotate_right (w);
3965 w = x->parent->right;
3966 }
3967 w->color = x->parent->color;
3968 x->parent->color = MEM_BLACK;
3969 w->right->color = MEM_BLACK;
3970 mem_rotate_left (x->parent);
3971 x = mem_root;
3972 }
3973 }
3974 else
3975 {
3976 struct mem_node *w = x->parent->left;
3977
3978 if (w->color == MEM_RED)
3979 {
3980 w->color = MEM_BLACK;
3981 x->parent->color = MEM_RED;
3982 mem_rotate_right (x->parent);
3983 w = x->parent->left;
3984 }
3985
3986 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3987 {
3988 w->color = MEM_RED;
3989 x = x->parent;
3990 }
3991 else
3992 {
3993 if (w->left->color == MEM_BLACK)
3994 {
3995 w->right->color = MEM_BLACK;
3996 w->color = MEM_RED;
3997 mem_rotate_left (w);
3998 w = x->parent->left;
3999 }
4000
4001 w->color = x->parent->color;
4002 x->parent->color = MEM_BLACK;
4003 w->left->color = MEM_BLACK;
4004 mem_rotate_right (x->parent);
4005 x = mem_root;
4006 }
4007 }
4008 }
4009
4010 x->color = MEM_BLACK;
4011 }
4012
4013
4014 /* Value is non-zero if P is a pointer to a live Lisp string on
4015 the heap. M is a pointer to the mem_block for P. */
4016
4017 static bool
4018 live_string_p (struct mem_node *m, void *p)
4019 {
4020 if (m->type == MEM_TYPE_STRING)
4021 {
4022 struct string_block *b = (struct string_block *) m->start;
4023 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4024
4025 /* P must point to the start of a Lisp_String structure, and it
4026 must not be on the free-list. */
4027 return (offset >= 0
4028 && offset % sizeof b->strings[0] == 0
4029 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4030 && ((struct Lisp_String *) p)->data != NULL);
4031 }
4032 else
4033 return 0;
4034 }
4035
4036
4037 /* Value is non-zero if P is a pointer to a live Lisp cons on
4038 the heap. M is a pointer to the mem_block for P. */
4039
4040 static bool
4041 live_cons_p (struct mem_node *m, void *p)
4042 {
4043 if (m->type == MEM_TYPE_CONS)
4044 {
4045 struct cons_block *b = (struct cons_block *) m->start;
4046 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4047
4048 /* P must point to the start of a Lisp_Cons, not be
4049 one of the unused cells in the current cons block,
4050 and not be on the free-list. */
4051 return (offset >= 0
4052 && offset % sizeof b->conses[0] == 0
4053 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4054 && (b != cons_block
4055 || offset / sizeof b->conses[0] < cons_block_index)
4056 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4057 }
4058 else
4059 return 0;
4060 }
4061
4062
4063 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4064 the heap. M is a pointer to the mem_block for P. */
4065
4066 static bool
4067 live_symbol_p (struct mem_node *m, void *p)
4068 {
4069 if (m->type == MEM_TYPE_SYMBOL)
4070 {
4071 struct symbol_block *b = (struct symbol_block *) m->start;
4072 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4073
4074 /* P must point to the start of a Lisp_Symbol, not be
4075 one of the unused cells in the current symbol block,
4076 and not be on the free-list. */
4077 return (offset >= 0
4078 && offset % sizeof b->symbols[0] == 0
4079 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4080 && (b != symbol_block
4081 || offset / sizeof b->symbols[0] < symbol_block_index)
4082 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4083 }
4084 else
4085 return 0;
4086 }
4087
4088
4089 /* Value is non-zero if P is a pointer to a live Lisp float on
4090 the heap. M is a pointer to the mem_block for P. */
4091
4092 static bool
4093 live_float_p (struct mem_node *m, void *p)
4094 {
4095 if (m->type == MEM_TYPE_FLOAT)
4096 {
4097 struct float_block *b = (struct float_block *) m->start;
4098 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4099
4100 /* P must point to the start of a Lisp_Float and not be
4101 one of the unused cells in the current float block. */
4102 return (offset >= 0
4103 && offset % sizeof b->floats[0] == 0
4104 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4105 && (b != float_block
4106 || offset / sizeof b->floats[0] < float_block_index));
4107 }
4108 else
4109 return 0;
4110 }
4111
4112
4113 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4114 the heap. M is a pointer to the mem_block for P. */
4115
4116 static bool
4117 live_misc_p (struct mem_node *m, void *p)
4118 {
4119 if (m->type == MEM_TYPE_MISC)
4120 {
4121 struct marker_block *b = (struct marker_block *) m->start;
4122 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4123
4124 /* P must point to the start of a Lisp_Misc, not be
4125 one of the unused cells in the current misc block,
4126 and not be on the free-list. */
4127 return (offset >= 0
4128 && offset % sizeof b->markers[0] == 0
4129 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4130 && (b != marker_block
4131 || offset / sizeof b->markers[0] < marker_block_index)
4132 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4133 }
4134 else
4135 return 0;
4136 }
4137
4138
4139 /* Value is non-zero if P is a pointer to a live vector-like object.
4140 M is a pointer to the mem_block for P. */
4141
4142 static bool
4143 live_vector_p (struct mem_node *m, void *p)
4144 {
4145 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4146 {
4147 /* This memory node corresponds to a vector block. */
4148 struct vector_block *block = (struct vector_block *) m->start;
4149 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4150
4151 /* P is in the block's allocation range. Scan the block
4152 up to P and see whether P points to the start of some
4153 vector which is not on a free list. FIXME: check whether
4154 some allocation patterns (probably a lot of short vectors)
4155 may cause a substantial overhead of this loop. */
4156 while (VECTOR_IN_BLOCK (vector, block)
4157 && vector <= (struct Lisp_Vector *) p)
4158 {
4159 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4160 return 1;
4161 else
4162 vector = ADVANCE (vector, vector_nbytes (vector));
4163 }
4164 }
4165 else if (m->type == MEM_TYPE_VECTORLIKE
4166 && (char *) p == ((char *) m->start
4167 + offsetof (struct large_vector, v)))
4168 /* This memory node corresponds to a large vector. */
4169 return 1;
4170 return 0;
4171 }
4172
4173
4174 /* Value is non-zero if P is a pointer to a live buffer. M is a
4175 pointer to the mem_block for P. */
4176
4177 static bool
4178 live_buffer_p (struct mem_node *m, void *p)
4179 {
4180 /* P must point to the start of the block, and the buffer
4181 must not have been killed. */
4182 return (m->type == MEM_TYPE_BUFFER
4183 && p == m->start
4184 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4185 }
4186
4187 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4188
4189 #if GC_MARK_STACK
4190
4191 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4192
4193 /* Array of objects that are kept alive because the C stack contains
4194 a pattern that looks like a reference to them . */
4195
4196 #define MAX_ZOMBIES 10
4197 static Lisp_Object zombies[MAX_ZOMBIES];
4198
4199 /* Number of zombie objects. */
4200
4201 static EMACS_INT nzombies;
4202
4203 /* Number of garbage collections. */
4204
4205 static EMACS_INT ngcs;
4206
4207 /* Average percentage of zombies per collection. */
4208
4209 static double avg_zombies;
4210
4211 /* Max. number of live and zombie objects. */
4212
4213 static EMACS_INT max_live, max_zombies;
4214
4215 /* Average number of live objects per GC. */
4216
4217 static double avg_live;
4218
4219 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4220 doc: /* Show information about live and zombie objects. */)
4221 (void)
4222 {
4223 Lisp_Object args[8], zombie_list = Qnil;
4224 EMACS_INT i;
4225 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4226 zombie_list = Fcons (zombies[i], zombie_list);
4227 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4228 args[1] = make_number (ngcs);
4229 args[2] = make_float (avg_live);
4230 args[3] = make_float (avg_zombies);
4231 args[4] = make_float (avg_zombies / avg_live / 100);
4232 args[5] = make_number (max_live);
4233 args[6] = make_number (max_zombies);
4234 args[7] = zombie_list;
4235 return Fmessage (8, args);
4236 }
4237
4238 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4239
4240
4241 /* Mark OBJ if we can prove it's a Lisp_Object. */
4242
4243 static void
4244 mark_maybe_object (Lisp_Object obj)
4245 {
4246 void *po;
4247 struct mem_node *m;
4248
4249 if (INTEGERP (obj))
4250 return;
4251
4252 po = (void *) XPNTR (obj);
4253 m = mem_find (po);
4254
4255 if (m != MEM_NIL)
4256 {
4257 bool mark_p = 0;
4258
4259 switch (XTYPE (obj))
4260 {
4261 case Lisp_String:
4262 mark_p = (live_string_p (m, po)
4263 && !STRING_MARKED_P ((struct Lisp_String *) po));
4264 break;
4265
4266 case Lisp_Cons:
4267 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4268 break;
4269
4270 case Lisp_Symbol:
4271 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4272 break;
4273
4274 case Lisp_Float:
4275 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4276 break;
4277
4278 case Lisp_Vectorlike:
4279 /* Note: can't check BUFFERP before we know it's a
4280 buffer because checking that dereferences the pointer
4281 PO which might point anywhere. */
4282 if (live_vector_p (m, po))
4283 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4284 else if (live_buffer_p (m, po))
4285 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4286 break;
4287
4288 case Lisp_Misc:
4289 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4290 break;
4291
4292 default:
4293 break;
4294 }
4295
4296 if (mark_p)
4297 {
4298 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4299 if (nzombies < MAX_ZOMBIES)
4300 zombies[nzombies] = obj;
4301 ++nzombies;
4302 #endif
4303 mark_object (obj);
4304 }
4305 }
4306 }
4307
4308
4309 /* If P points to Lisp data, mark that as live if it isn't already
4310 marked. */
4311
4312 static void
4313 mark_maybe_pointer (void *p)
4314 {
4315 struct mem_node *m;
4316
4317 /* Quickly rule out some values which can't point to Lisp data.
4318 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4319 Otherwise, assume that Lisp data is aligned on even addresses. */
4320 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4321 return;
4322
4323 m = mem_find (p);
4324 if (m != MEM_NIL)
4325 {
4326 Lisp_Object obj = Qnil;
4327
4328 switch (m->type)
4329 {
4330 case MEM_TYPE_NON_LISP:
4331 case MEM_TYPE_SPARE:
4332 /* Nothing to do; not a pointer to Lisp memory. */
4333 break;
4334
4335 case MEM_TYPE_BUFFER:
4336 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4337 XSETVECTOR (obj, p);
4338 break;
4339
4340 case MEM_TYPE_CONS:
4341 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4342 XSETCONS (obj, p);
4343 break;
4344
4345 case MEM_TYPE_STRING:
4346 if (live_string_p (m, p)
4347 && !STRING_MARKED_P ((struct Lisp_String *) p))
4348 XSETSTRING (obj, p);
4349 break;
4350
4351 case MEM_TYPE_MISC:
4352 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4353 XSETMISC (obj, p);
4354 break;
4355
4356 case MEM_TYPE_SYMBOL:
4357 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4358 XSETSYMBOL (obj, p);
4359 break;
4360
4361 case MEM_TYPE_FLOAT:
4362 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4363 XSETFLOAT (obj, p);
4364 break;
4365
4366 case MEM_TYPE_VECTORLIKE:
4367 case MEM_TYPE_VECTOR_BLOCK:
4368 if (live_vector_p (m, p))
4369 {
4370 Lisp_Object tem;
4371 XSETVECTOR (tem, p);
4372 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4373 obj = tem;
4374 }
4375 break;
4376
4377 default:
4378 emacs_abort ();
4379 }
4380
4381 if (!NILP (obj))
4382 mark_object (obj);
4383 }
4384 }
4385
4386
4387 /* Alignment of pointer values. Use alignof, as it sometimes returns
4388 a smaller alignment than GCC's __alignof__ and mark_memory might
4389 miss objects if __alignof__ were used. */
4390 #define GC_POINTER_ALIGNMENT alignof (void *)
4391
4392 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4393 not suffice, which is the typical case. A host where a Lisp_Object is
4394 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4395 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4396 suffice to widen it to to a Lisp_Object and check it that way. */
4397 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4398 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4399 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4400 nor mark_maybe_object can follow the pointers. This should not occur on
4401 any practical porting target. */
4402 # error "MSB type bits straddle pointer-word boundaries"
4403 # endif
4404 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4405 pointer words that hold pointers ORed with type bits. */
4406 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4407 #else
4408 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4409 words that hold unmodified pointers. */
4410 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4411 #endif
4412
4413 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4414 or END+OFFSET..START. */
4415
4416 static void
4417 mark_memory (void *start, void *end)
4418 #if defined (__clang__) && defined (__has_feature)
4419 #if __has_feature(address_sanitizer)
4420 /* Do not allow -faddress-sanitizer to check this function, since it
4421 crosses the function stack boundary, and thus would yield many
4422 false positives. */
4423 __attribute__((no_address_safety_analysis))
4424 #endif
4425 #endif
4426 {
4427 void **pp;
4428 int i;
4429
4430 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4431 nzombies = 0;
4432 #endif
4433
4434 /* Make START the pointer to the start of the memory region,
4435 if it isn't already. */
4436 if (end < start)
4437 {
4438 void *tem = start;
4439 start = end;
4440 end = tem;
4441 }
4442
4443 /* Mark Lisp data pointed to. This is necessary because, in some
4444 situations, the C compiler optimizes Lisp objects away, so that
4445 only a pointer to them remains. Example:
4446
4447 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4448 ()
4449 {
4450 Lisp_Object obj = build_string ("test");
4451 struct Lisp_String *s = XSTRING (obj);
4452 Fgarbage_collect ();
4453 fprintf (stderr, "test `%s'\n", s->data);
4454 return Qnil;
4455 }
4456
4457 Here, `obj' isn't really used, and the compiler optimizes it
4458 away. The only reference to the life string is through the
4459 pointer `s'. */
4460
4461 for (pp = start; (void *) pp < end; pp++)
4462 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4463 {
4464 void *p = *(void **) ((char *) pp + i);
4465 mark_maybe_pointer (p);
4466 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4467 mark_maybe_object (XIL ((intptr_t) p));
4468 }
4469 }
4470
4471 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4472
4473 static bool setjmp_tested_p;
4474 static int longjmps_done;
4475
4476 #define SETJMP_WILL_LIKELY_WORK "\
4477 \n\
4478 Emacs garbage collector has been changed to use conservative stack\n\
4479 marking. Emacs has determined that the method it uses to do the\n\
4480 marking will likely work on your system, but this isn't sure.\n\
4481 \n\
4482 If you are a system-programmer, or can get the help of a local wizard\n\
4483 who is, please take a look at the function mark_stack in alloc.c, and\n\
4484 verify that the methods used are appropriate for your system.\n\
4485 \n\
4486 Please mail the result to <emacs-devel@gnu.org>.\n\
4487 "
4488
4489 #define SETJMP_WILL_NOT_WORK "\
4490 \n\
4491 Emacs garbage collector has been changed to use conservative stack\n\
4492 marking. Emacs has determined that the default method it uses to do the\n\
4493 marking will not work on your system. We will need a system-dependent\n\
4494 solution for your system.\n\
4495 \n\
4496 Please take a look at the function mark_stack in alloc.c, and\n\
4497 try to find a way to make it work on your system.\n\
4498 \n\
4499 Note that you may get false negatives, depending on the compiler.\n\
4500 In particular, you need to use -O with GCC for this test.\n\
4501 \n\
4502 Please mail the result to <emacs-devel@gnu.org>.\n\
4503 "
4504
4505
4506 /* Perform a quick check if it looks like setjmp saves registers in a
4507 jmp_buf. Print a message to stderr saying so. When this test
4508 succeeds, this is _not_ a proof that setjmp is sufficient for
4509 conservative stack marking. Only the sources or a disassembly
4510 can prove that. */
4511
4512 static void
4513 test_setjmp (void)
4514 {
4515 char buf[10];
4516 register int x;
4517 sys_jmp_buf jbuf;
4518
4519 /* Arrange for X to be put in a register. */
4520 sprintf (buf, "1");
4521 x = strlen (buf);
4522 x = 2 * x - 1;
4523
4524 sys_setjmp (jbuf);
4525 if (longjmps_done == 1)
4526 {
4527 /* Came here after the longjmp at the end of the function.
4528
4529 If x == 1, the longjmp has restored the register to its
4530 value before the setjmp, and we can hope that setjmp
4531 saves all such registers in the jmp_buf, although that
4532 isn't sure.
4533
4534 For other values of X, either something really strange is
4535 taking place, or the setjmp just didn't save the register. */
4536
4537 if (x == 1)
4538 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4539 else
4540 {
4541 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4542 exit (1);
4543 }
4544 }
4545
4546 ++longjmps_done;
4547 x = 2;
4548 if (longjmps_done == 1)
4549 sys_longjmp (jbuf, 1);
4550 }
4551
4552 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4553
4554
4555 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4556
4557 /* Abort if anything GCPRO'd doesn't survive the GC. */
4558
4559 static void
4560 check_gcpros (void)
4561 {
4562 struct gcpro *p;
4563 ptrdiff_t i;
4564
4565 for (p = gcprolist; p; p = p->next)
4566 for (i = 0; i < p->nvars; ++i)
4567 if (!survives_gc_p (p->var[i]))
4568 /* FIXME: It's not necessarily a bug. It might just be that the
4569 GCPRO is unnecessary or should release the object sooner. */
4570 emacs_abort ();
4571 }
4572
4573 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4574
4575 static void
4576 dump_zombies (void)
4577 {
4578 int i;
4579
4580 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4581 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4582 {
4583 fprintf (stderr, " %d = ", i);
4584 debug_print (zombies[i]);
4585 }
4586 }
4587
4588 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4589
4590
4591 /* Mark live Lisp objects on the C stack.
4592
4593 There are several system-dependent problems to consider when
4594 porting this to new architectures:
4595
4596 Processor Registers
4597
4598 We have to mark Lisp objects in CPU registers that can hold local
4599 variables or are used to pass parameters.
4600
4601 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4602 something that either saves relevant registers on the stack, or
4603 calls mark_maybe_object passing it each register's contents.
4604
4605 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4606 implementation assumes that calling setjmp saves registers we need
4607 to see in a jmp_buf which itself lies on the stack. This doesn't
4608 have to be true! It must be verified for each system, possibly
4609 by taking a look at the source code of setjmp.
4610
4611 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4612 can use it as a machine independent method to store all registers
4613 to the stack. In this case the macros described in the previous
4614 two paragraphs are not used.
4615
4616 Stack Layout
4617
4618 Architectures differ in the way their processor stack is organized.
4619 For example, the stack might look like this
4620
4621 +----------------+
4622 | Lisp_Object | size = 4
4623 +----------------+
4624 | something else | size = 2
4625 +----------------+
4626 | Lisp_Object | size = 4
4627 +----------------+
4628 | ... |
4629
4630 In such a case, not every Lisp_Object will be aligned equally. To
4631 find all Lisp_Object on the stack it won't be sufficient to walk
4632 the stack in steps of 4 bytes. Instead, two passes will be
4633 necessary, one starting at the start of the stack, and a second
4634 pass starting at the start of the stack + 2. Likewise, if the
4635 minimal alignment of Lisp_Objects on the stack is 1, four passes
4636 would be necessary, each one starting with one byte more offset
4637 from the stack start. */
4638
4639 static void
4640 mark_stack (void)
4641 {
4642 void *end;
4643
4644 #ifdef HAVE___BUILTIN_UNWIND_INIT
4645 /* Force callee-saved registers and register windows onto the stack.
4646 This is the preferred method if available, obviating the need for
4647 machine dependent methods. */
4648 __builtin_unwind_init ();
4649 end = &end;
4650 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4651 #ifndef GC_SAVE_REGISTERS_ON_STACK
4652 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4653 union aligned_jmpbuf {
4654 Lisp_Object o;
4655 sys_jmp_buf j;
4656 } j;
4657 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4658 #endif
4659 /* This trick flushes the register windows so that all the state of
4660 the process is contained in the stack. */
4661 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4662 needed on ia64 too. See mach_dep.c, where it also says inline
4663 assembler doesn't work with relevant proprietary compilers. */
4664 #ifdef __sparc__
4665 #if defined (__sparc64__) && defined (__FreeBSD__)
4666 /* FreeBSD does not have a ta 3 handler. */
4667 asm ("flushw");
4668 #else
4669 asm ("ta 3");
4670 #endif
4671 #endif
4672
4673 /* Save registers that we need to see on the stack. We need to see
4674 registers used to hold register variables and registers used to
4675 pass parameters. */
4676 #ifdef GC_SAVE_REGISTERS_ON_STACK
4677 GC_SAVE_REGISTERS_ON_STACK (end);
4678 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4679
4680 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4681 setjmp will definitely work, test it
4682 and print a message with the result
4683 of the test. */
4684 if (!setjmp_tested_p)
4685 {
4686 setjmp_tested_p = 1;
4687 test_setjmp ();
4688 }
4689 #endif /* GC_SETJMP_WORKS */
4690
4691 sys_setjmp (j.j);
4692 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4693 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4694 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4695
4696 /* This assumes that the stack is a contiguous region in memory. If
4697 that's not the case, something has to be done here to iterate
4698 over the stack segments. */
4699 mark_memory (stack_base, end);
4700
4701 /* Allow for marking a secondary stack, like the register stack on the
4702 ia64. */
4703 #ifdef GC_MARK_SECONDARY_STACK
4704 GC_MARK_SECONDARY_STACK ();
4705 #endif
4706
4707 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4708 check_gcpros ();
4709 #endif
4710 }
4711
4712 #endif /* GC_MARK_STACK != 0 */
4713
4714
4715 /* Determine whether it is safe to access memory at address P. */
4716 static int
4717 valid_pointer_p (void *p)
4718 {
4719 #ifdef WINDOWSNT
4720 return w32_valid_pointer_p (p, 16);
4721 #else
4722 int fd[2];
4723
4724 /* Obviously, we cannot just access it (we would SEGV trying), so we
4725 trick the o/s to tell us whether p is a valid pointer.
4726 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4727 not validate p in that case. */
4728
4729 if (pipe (fd) == 0)
4730 {
4731 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4732 emacs_close (fd[1]);
4733 emacs_close (fd[0]);
4734 return valid;
4735 }
4736
4737 return -1;
4738 #endif
4739 }
4740
4741 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4742 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4743 cannot validate OBJ. This function can be quite slow, so its primary
4744 use is the manual debugging. The only exception is print_object, where
4745 we use it to check whether the memory referenced by the pointer of
4746 Lisp_Save_Value object contains valid objects. */
4747
4748 int
4749 valid_lisp_object_p (Lisp_Object obj)
4750 {
4751 void *p;
4752 #if GC_MARK_STACK
4753 struct mem_node *m;
4754 #endif
4755
4756 if (INTEGERP (obj))
4757 return 1;
4758
4759 p = (void *) XPNTR (obj);
4760 if (PURE_POINTER_P (p))
4761 return 1;
4762
4763 if (p == &buffer_defaults || p == &buffer_local_symbols)
4764 return 2;
4765
4766 #if !GC_MARK_STACK
4767 return valid_pointer_p (p);
4768 #else
4769
4770 m = mem_find (p);
4771
4772 if (m == MEM_NIL)
4773 {
4774 int valid = valid_pointer_p (p);
4775 if (valid <= 0)
4776 return valid;
4777
4778 if (SUBRP (obj))
4779 return 1;
4780
4781 return 0;
4782 }
4783
4784 switch (m->type)
4785 {
4786 case MEM_TYPE_NON_LISP:
4787 case MEM_TYPE_SPARE:
4788 return 0;
4789
4790 case MEM_TYPE_BUFFER:
4791 return live_buffer_p (m, p) ? 1 : 2;
4792
4793 case MEM_TYPE_CONS:
4794 return live_cons_p (m, p);
4795
4796 case MEM_TYPE_STRING:
4797 return live_string_p (m, p);
4798
4799 case MEM_TYPE_MISC:
4800 return live_misc_p (m, p);
4801
4802 case MEM_TYPE_SYMBOL:
4803 return live_symbol_p (m, p);
4804
4805 case MEM_TYPE_FLOAT:
4806 return live_float_p (m, p);
4807
4808 case MEM_TYPE_VECTORLIKE:
4809 case MEM_TYPE_VECTOR_BLOCK:
4810 return live_vector_p (m, p);
4811
4812 default:
4813 break;
4814 }
4815
4816 return 0;
4817 #endif
4818 }
4819
4820
4821
4822 \f
4823 /***********************************************************************
4824 Pure Storage Management
4825 ***********************************************************************/
4826
4827 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4828 pointer to it. TYPE is the Lisp type for which the memory is
4829 allocated. TYPE < 0 means it's not used for a Lisp object. */
4830
4831 static void *
4832 pure_alloc (size_t size, int type)
4833 {
4834 void *result;
4835 #if USE_LSB_TAG
4836 size_t alignment = GCALIGNMENT;
4837 #else
4838 size_t alignment = alignof (EMACS_INT);
4839
4840 /* Give Lisp_Floats an extra alignment. */
4841 if (type == Lisp_Float)
4842 alignment = alignof (struct Lisp_Float);
4843 #endif
4844
4845 again:
4846 if (type >= 0)
4847 {
4848 /* Allocate space for a Lisp object from the beginning of the free
4849 space with taking account of alignment. */
4850 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4851 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4852 }
4853 else
4854 {
4855 /* Allocate space for a non-Lisp object from the end of the free
4856 space. */
4857 pure_bytes_used_non_lisp += size;
4858 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4859 }
4860 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4861
4862 if (pure_bytes_used <= pure_size)
4863 return result;
4864
4865 /* Don't allocate a large amount here,
4866 because it might get mmap'd and then its address
4867 might not be usable. */
4868 purebeg = xmalloc (10000);
4869 pure_size = 10000;
4870 pure_bytes_used_before_overflow += pure_bytes_used - size;
4871 pure_bytes_used = 0;
4872 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4873 goto again;
4874 }
4875
4876
4877 /* Print a warning if PURESIZE is too small. */
4878
4879 void
4880 check_pure_size (void)
4881 {
4882 if (pure_bytes_used_before_overflow)
4883 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4884 " bytes needed)"),
4885 pure_bytes_used + pure_bytes_used_before_overflow);
4886 }
4887
4888
4889 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4890 the non-Lisp data pool of the pure storage, and return its start
4891 address. Return NULL if not found. */
4892
4893 static char *
4894 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4895 {
4896 int i;
4897 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4898 const unsigned char *p;
4899 char *non_lisp_beg;
4900
4901 if (pure_bytes_used_non_lisp <= nbytes)
4902 return NULL;
4903
4904 /* Set up the Boyer-Moore table. */
4905 skip = nbytes + 1;
4906 for (i = 0; i < 256; i++)
4907 bm_skip[i] = skip;
4908
4909 p = (const unsigned char *) data;
4910 while (--skip > 0)
4911 bm_skip[*p++] = skip;
4912
4913 last_char_skip = bm_skip['\0'];
4914
4915 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4916 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4917
4918 /* See the comments in the function `boyer_moore' (search.c) for the
4919 use of `infinity'. */
4920 infinity = pure_bytes_used_non_lisp + 1;
4921 bm_skip['\0'] = infinity;
4922
4923 p = (const unsigned char *) non_lisp_beg + nbytes;
4924 start = 0;
4925 do
4926 {
4927 /* Check the last character (== '\0'). */
4928 do
4929 {
4930 start += bm_skip[*(p + start)];
4931 }
4932 while (start <= start_max);
4933
4934 if (start < infinity)
4935 /* Couldn't find the last character. */
4936 return NULL;
4937
4938 /* No less than `infinity' means we could find the last
4939 character at `p[start - infinity]'. */
4940 start -= infinity;
4941
4942 /* Check the remaining characters. */
4943 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4944 /* Found. */
4945 return non_lisp_beg + start;
4946
4947 start += last_char_skip;
4948 }
4949 while (start <= start_max);
4950
4951 return NULL;
4952 }
4953
4954
4955 /* Return a string allocated in pure space. DATA is a buffer holding
4956 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4957 means make the result string multibyte.
4958
4959 Must get an error if pure storage is full, since if it cannot hold
4960 a large string it may be able to hold conses that point to that
4961 string; then the string is not protected from gc. */
4962
4963 Lisp_Object
4964 make_pure_string (const char *data,
4965 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4966 {
4967 Lisp_Object string;
4968 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4969 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4970 if (s->data == NULL)
4971 {
4972 s->data = pure_alloc (nbytes + 1, -1);
4973 memcpy (s->data, data, nbytes);
4974 s->data[nbytes] = '\0';
4975 }
4976 s->size = nchars;
4977 s->size_byte = multibyte ? nbytes : -1;
4978 s->intervals = NULL;
4979 XSETSTRING (string, s);
4980 return string;
4981 }
4982
4983 /* Return a string allocated in pure space. Do not
4984 allocate the string data, just point to DATA. */
4985
4986 Lisp_Object
4987 make_pure_c_string (const char *data, ptrdiff_t nchars)
4988 {
4989 Lisp_Object string;
4990 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4991 s->size = nchars;
4992 s->size_byte = -1;
4993 s->data = (unsigned char *) data;
4994 s->intervals = NULL;
4995 XSETSTRING (string, s);
4996 return string;
4997 }
4998
4999 /* Return a cons allocated from pure space. Give it pure copies
5000 of CAR as car and CDR as cdr. */
5001
5002 Lisp_Object
5003 pure_cons (Lisp_Object car, Lisp_Object cdr)
5004 {
5005 Lisp_Object new;
5006 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5007 XSETCONS (new, p);
5008 XSETCAR (new, Fpurecopy (car));
5009 XSETCDR (new, Fpurecopy (cdr));
5010 return new;
5011 }
5012
5013
5014 /* Value is a float object with value NUM allocated from pure space. */
5015
5016 static Lisp_Object
5017 make_pure_float (double num)
5018 {
5019 Lisp_Object new;
5020 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5021 XSETFLOAT (new, p);
5022 XFLOAT_INIT (new, num);
5023 return new;
5024 }
5025
5026
5027 /* Return a vector with room for LEN Lisp_Objects allocated from
5028 pure space. */
5029
5030 static Lisp_Object
5031 make_pure_vector (ptrdiff_t len)
5032 {
5033 Lisp_Object new;
5034 size_t size = header_size + len * word_size;
5035 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5036 XSETVECTOR (new, p);
5037 XVECTOR (new)->header.size = len;
5038 return new;
5039 }
5040
5041
5042 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5043 doc: /* Make a copy of object OBJ in pure storage.
5044 Recursively copies contents of vectors and cons cells.
5045 Does not copy symbols. Copies strings without text properties. */)
5046 (register Lisp_Object obj)
5047 {
5048 if (NILP (Vpurify_flag))
5049 return obj;
5050
5051 if (PURE_POINTER_P (XPNTR (obj)))
5052 return obj;
5053
5054 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5055 {
5056 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5057 if (!NILP (tmp))
5058 return tmp;
5059 }
5060
5061 if (CONSP (obj))
5062 obj = pure_cons (XCAR (obj), XCDR (obj));
5063 else if (FLOATP (obj))
5064 obj = make_pure_float (XFLOAT_DATA (obj));
5065 else if (STRINGP (obj))
5066 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5067 SBYTES (obj),
5068 STRING_MULTIBYTE (obj));
5069 else if (COMPILEDP (obj) || VECTORP (obj))
5070 {
5071 register struct Lisp_Vector *vec;
5072 register ptrdiff_t i;
5073 ptrdiff_t size;
5074
5075 size = ASIZE (obj);
5076 if (size & PSEUDOVECTOR_FLAG)
5077 size &= PSEUDOVECTOR_SIZE_MASK;
5078 vec = XVECTOR (make_pure_vector (size));
5079 for (i = 0; i < size; i++)
5080 vec->contents[i] = Fpurecopy (AREF (obj, i));
5081 if (COMPILEDP (obj))
5082 {
5083 XSETPVECTYPE (vec, PVEC_COMPILED);
5084 XSETCOMPILED (obj, vec);
5085 }
5086 else
5087 XSETVECTOR (obj, vec);
5088 }
5089 else if (MARKERP (obj))
5090 error ("Attempt to copy a marker to pure storage");
5091 else
5092 /* Not purified, don't hash-cons. */
5093 return obj;
5094
5095 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5096 Fputhash (obj, obj, Vpurify_flag);
5097
5098 return obj;
5099 }
5100
5101
5102 \f
5103 /***********************************************************************
5104 Protection from GC
5105 ***********************************************************************/
5106
5107 /* Put an entry in staticvec, pointing at the variable with address
5108 VARADDRESS. */
5109
5110 void
5111 staticpro (Lisp_Object *varaddress)
5112 {
5113 staticvec[staticidx++] = varaddress;
5114 if (staticidx >= NSTATICS)
5115 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5116 }
5117
5118 \f
5119 /***********************************************************************
5120 Protection from GC
5121 ***********************************************************************/
5122
5123 /* Temporarily prevent garbage collection. */
5124
5125 ptrdiff_t
5126 inhibit_garbage_collection (void)
5127 {
5128 ptrdiff_t count = SPECPDL_INDEX ();
5129
5130 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5131 return count;
5132 }
5133
5134 /* Used to avoid possible overflows when
5135 converting from C to Lisp integers. */
5136
5137 static Lisp_Object
5138 bounded_number (EMACS_INT number)
5139 {
5140 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5141 }
5142
5143 /* Calculate total bytes of live objects. */
5144
5145 static size_t
5146 total_bytes_of_live_objects (void)
5147 {
5148 size_t tot = 0;
5149 tot += total_conses * sizeof (struct Lisp_Cons);
5150 tot += total_symbols * sizeof (struct Lisp_Symbol);
5151 tot += total_markers * sizeof (union Lisp_Misc);
5152 tot += total_string_bytes;
5153 tot += total_vector_slots * word_size;
5154 tot += total_floats * sizeof (struct Lisp_Float);
5155 tot += total_intervals * sizeof (struct interval);
5156 tot += total_strings * sizeof (struct Lisp_String);
5157 return tot;
5158 }
5159
5160 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5161 doc: /* Reclaim storage for Lisp objects no longer needed.
5162 Garbage collection happens automatically if you cons more than
5163 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5164 `garbage-collect' normally returns a list with info on amount of space in use,
5165 where each entry has the form (NAME SIZE USED FREE), where:
5166 - NAME is a symbol describing the kind of objects this entry represents,
5167 - SIZE is the number of bytes used by each one,
5168 - USED is the number of those objects that were found live in the heap,
5169 - FREE is the number of those objects that are not live but that Emacs
5170 keeps around for future allocations (maybe because it does not know how
5171 to return them to the OS).
5172 However, if there was overflow in pure space, `garbage-collect'
5173 returns nil, because real GC can't be done.
5174 See Info node `(elisp)Garbage Collection'. */)
5175 (void)
5176 {
5177 struct specbinding *bind;
5178 struct buffer *nextb;
5179 char stack_top_variable;
5180 ptrdiff_t i;
5181 bool message_p;
5182 ptrdiff_t count = SPECPDL_INDEX ();
5183 EMACS_TIME start;
5184 Lisp_Object retval = Qnil;
5185 size_t tot_before = 0;
5186 struct backtrace backtrace;
5187
5188 if (abort_on_gc)
5189 emacs_abort ();
5190
5191 /* Can't GC if pure storage overflowed because we can't determine
5192 if something is a pure object or not. */
5193 if (pure_bytes_used_before_overflow)
5194 return Qnil;
5195
5196 /* Record this function, so it appears on the profiler's backtraces. */
5197 backtrace.next = backtrace_list;
5198 backtrace.function = Qautomatic_gc;
5199 backtrace.args = &Qnil;
5200 backtrace.nargs = 0;
5201 backtrace.debug_on_exit = 0;
5202 backtrace_list = &backtrace;
5203
5204 check_cons_list ();
5205
5206 /* Don't keep undo information around forever.
5207 Do this early on, so it is no problem if the user quits. */
5208 FOR_EACH_BUFFER (nextb)
5209 compact_buffer (nextb);
5210
5211 if (profiler_memory_running)
5212 tot_before = total_bytes_of_live_objects ();
5213
5214 start = current_emacs_time ();
5215
5216 /* In case user calls debug_print during GC,
5217 don't let that cause a recursive GC. */
5218 consing_since_gc = 0;
5219
5220 /* Save what's currently displayed in the echo area. */
5221 message_p = push_message ();
5222 record_unwind_protect (pop_message_unwind, Qnil);
5223
5224 /* Save a copy of the contents of the stack, for debugging. */
5225 #if MAX_SAVE_STACK > 0
5226 if (NILP (Vpurify_flag))
5227 {
5228 char *stack;
5229 ptrdiff_t stack_size;
5230 if (&stack_top_variable < stack_bottom)
5231 {
5232 stack = &stack_top_variable;
5233 stack_size = stack_bottom - &stack_top_variable;
5234 }
5235 else
5236 {
5237 stack = stack_bottom;
5238 stack_size = &stack_top_variable - stack_bottom;
5239 }
5240 if (stack_size <= MAX_SAVE_STACK)
5241 {
5242 if (stack_copy_size < stack_size)
5243 {
5244 stack_copy = xrealloc (stack_copy, stack_size);
5245 stack_copy_size = stack_size;
5246 }
5247 memcpy (stack_copy, stack, stack_size);
5248 }
5249 }
5250 #endif /* MAX_SAVE_STACK > 0 */
5251
5252 if (garbage_collection_messages)
5253 message1_nolog ("Garbage collecting...");
5254
5255 block_input ();
5256
5257 shrink_regexp_cache ();
5258
5259 gc_in_progress = 1;
5260
5261 /* Mark all the special slots that serve as the roots of accessibility. */
5262
5263 mark_buffer (&buffer_defaults);
5264 mark_buffer (&buffer_local_symbols);
5265
5266 for (i = 0; i < staticidx; i++)
5267 mark_object (*staticvec[i]);
5268
5269 for (bind = specpdl; bind != specpdl_ptr; bind++)
5270 {
5271 mark_object (bind->symbol);
5272 mark_object (bind->old_value);
5273 }
5274 mark_terminals ();
5275 mark_kboards ();
5276
5277 #ifdef USE_GTK
5278 xg_mark_data ();
5279 #endif
5280
5281 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5282 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5283 mark_stack ();
5284 #else
5285 {
5286 register struct gcpro *tail;
5287 for (tail = gcprolist; tail; tail = tail->next)
5288 for (i = 0; i < tail->nvars; i++)
5289 mark_object (tail->var[i]);
5290 }
5291 mark_byte_stack ();
5292 {
5293 struct catchtag *catch;
5294 struct handler *handler;
5295
5296 for (catch = catchlist; catch; catch = catch->next)
5297 {
5298 mark_object (catch->tag);
5299 mark_object (catch->val);
5300 }
5301 for (handler = handlerlist; handler; handler = handler->next)
5302 {
5303 mark_object (handler->handler);
5304 mark_object (handler->var);
5305 }
5306 }
5307 mark_backtrace ();
5308 #endif
5309
5310 #ifdef HAVE_WINDOW_SYSTEM
5311 mark_fringe_data ();
5312 #endif
5313
5314 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5315 mark_stack ();
5316 #endif
5317
5318 /* Everything is now marked, except for the things that require special
5319 finalization, i.e. the undo_list.
5320 Look thru every buffer's undo list
5321 for elements that update markers that were not marked,
5322 and delete them. */
5323 FOR_EACH_BUFFER (nextb)
5324 {
5325 /* If a buffer's undo list is Qt, that means that undo is
5326 turned off in that buffer. Calling truncate_undo_list on
5327 Qt tends to return NULL, which effectively turns undo back on.
5328 So don't call truncate_undo_list if undo_list is Qt. */
5329 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5330 {
5331 Lisp_Object tail, prev;
5332 tail = nextb->INTERNAL_FIELD (undo_list);
5333 prev = Qnil;
5334 while (CONSP (tail))
5335 {
5336 if (CONSP (XCAR (tail))
5337 && MARKERP (XCAR (XCAR (tail)))
5338 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5339 {
5340 if (NILP (prev))
5341 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5342 else
5343 {
5344 tail = XCDR (tail);
5345 XSETCDR (prev, tail);
5346 }
5347 }
5348 else
5349 {
5350 prev = tail;
5351 tail = XCDR (tail);
5352 }
5353 }
5354 }
5355 /* Now that we have stripped the elements that need not be in the
5356 undo_list any more, we can finally mark the list. */
5357 mark_object (nextb->INTERNAL_FIELD (undo_list));
5358 }
5359
5360 gc_sweep ();
5361
5362 /* Clear the mark bits that we set in certain root slots. */
5363
5364 unmark_byte_stack ();
5365 VECTOR_UNMARK (&buffer_defaults);
5366 VECTOR_UNMARK (&buffer_local_symbols);
5367
5368 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5369 dump_zombies ();
5370 #endif
5371
5372 check_cons_list ();
5373
5374 gc_in_progress = 0;
5375
5376 unblock_input ();
5377
5378 consing_since_gc = 0;
5379 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5380 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5381
5382 gc_relative_threshold = 0;
5383 if (FLOATP (Vgc_cons_percentage))
5384 { /* Set gc_cons_combined_threshold. */
5385 double tot = total_bytes_of_live_objects ();
5386
5387 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5388 if (0 < tot)
5389 {
5390 if (tot < TYPE_MAXIMUM (EMACS_INT))
5391 gc_relative_threshold = tot;
5392 else
5393 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5394 }
5395 }
5396
5397 if (garbage_collection_messages)
5398 {
5399 if (message_p || minibuf_level > 0)
5400 restore_message ();
5401 else
5402 message1_nolog ("Garbage collecting...done");
5403 }
5404
5405 unbind_to (count, Qnil);
5406 {
5407 Lisp_Object total[11];
5408 int total_size = 10;
5409
5410 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5411 bounded_number (total_conses),
5412 bounded_number (total_free_conses));
5413
5414 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5415 bounded_number (total_symbols),
5416 bounded_number (total_free_symbols));
5417
5418 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5419 bounded_number (total_markers),
5420 bounded_number (total_free_markers));
5421
5422 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5423 bounded_number (total_strings),
5424 bounded_number (total_free_strings));
5425
5426 total[4] = list3 (Qstring_bytes, make_number (1),
5427 bounded_number (total_string_bytes));
5428
5429 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5430 bounded_number (total_vectors));
5431
5432 total[6] = list4 (Qvector_slots, make_number (word_size),
5433 bounded_number (total_vector_slots),
5434 bounded_number (total_free_vector_slots));
5435
5436 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5437 bounded_number (total_floats),
5438 bounded_number (total_free_floats));
5439
5440 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5441 bounded_number (total_intervals),
5442 bounded_number (total_free_intervals));
5443
5444 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5445 bounded_number (total_buffers));
5446
5447 #ifdef DOUG_LEA_MALLOC
5448 total_size++;
5449 total[10] = list4 (Qheap, make_number (1024),
5450 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5451 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5452 #endif
5453 retval = Flist (total_size, total);
5454 }
5455
5456 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5457 {
5458 /* Compute average percentage of zombies. */
5459 double nlive
5460 = (total_conses + total_symbols + total_markers + total_strings
5461 + total_vectors + total_floats + total_intervals + total_buffers);
5462
5463 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5464 max_live = max (nlive, max_live);
5465 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5466 max_zombies = max (nzombies, max_zombies);
5467 ++ngcs;
5468 }
5469 #endif
5470
5471 if (!NILP (Vpost_gc_hook))
5472 {
5473 ptrdiff_t gc_count = inhibit_garbage_collection ();
5474 safe_run_hooks (Qpost_gc_hook);
5475 unbind_to (gc_count, Qnil);
5476 }
5477
5478 /* Accumulate statistics. */
5479 if (FLOATP (Vgc_elapsed))
5480 {
5481 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5482 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5483 + EMACS_TIME_TO_DOUBLE (since_start));
5484 }
5485
5486 gcs_done++;
5487
5488 /* Collect profiling data. */
5489 if (profiler_memory_running)
5490 {
5491 size_t swept = 0;
5492 size_t tot_after = total_bytes_of_live_objects ();
5493 if (tot_before > tot_after)
5494 swept = tot_before - tot_after;
5495 malloc_probe (swept);
5496 }
5497
5498 backtrace_list = backtrace.next;
5499 return retval;
5500 }
5501
5502
5503 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5504 only interesting objects referenced from glyphs are strings. */
5505
5506 static void
5507 mark_glyph_matrix (struct glyph_matrix *matrix)
5508 {
5509 struct glyph_row *row = matrix->rows;
5510 struct glyph_row *end = row + matrix->nrows;
5511
5512 for (; row < end; ++row)
5513 if (row->enabled_p)
5514 {
5515 int area;
5516 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5517 {
5518 struct glyph *glyph = row->glyphs[area];
5519 struct glyph *end_glyph = glyph + row->used[area];
5520
5521 for (; glyph < end_glyph; ++glyph)
5522 if (STRINGP (glyph->object)
5523 && !STRING_MARKED_P (XSTRING (glyph->object)))
5524 mark_object (glyph->object);
5525 }
5526 }
5527 }
5528
5529
5530 /* Mark Lisp faces in the face cache C. */
5531
5532 static void
5533 mark_face_cache (struct face_cache *c)
5534 {
5535 if (c)
5536 {
5537 int i, j;
5538 for (i = 0; i < c->used; ++i)
5539 {
5540 struct face *face = FACE_FROM_ID (c->f, i);
5541
5542 if (face)
5543 {
5544 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5545 mark_object (face->lface[j]);
5546 }
5547 }
5548 }
5549 }
5550
5551
5552 \f
5553 /* Mark reference to a Lisp_Object.
5554 If the object referred to has not been seen yet, recursively mark
5555 all the references contained in it. */
5556
5557 #define LAST_MARKED_SIZE 500
5558 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5559 static int last_marked_index;
5560
5561 /* For debugging--call abort when we cdr down this many
5562 links of a list, in mark_object. In debugging,
5563 the call to abort will hit a breakpoint.
5564 Normally this is zero and the check never goes off. */
5565 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5566
5567 static void
5568 mark_vectorlike (struct Lisp_Vector *ptr)
5569 {
5570 ptrdiff_t size = ptr->header.size;
5571 ptrdiff_t i;
5572
5573 eassert (!VECTOR_MARKED_P (ptr));
5574 VECTOR_MARK (ptr); /* Else mark it. */
5575 if (size & PSEUDOVECTOR_FLAG)
5576 size &= PSEUDOVECTOR_SIZE_MASK;
5577
5578 /* Note that this size is not the memory-footprint size, but only
5579 the number of Lisp_Object fields that we should trace.
5580 The distinction is used e.g. by Lisp_Process which places extra
5581 non-Lisp_Object fields at the end of the structure... */
5582 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5583 mark_object (ptr->contents[i]);
5584 }
5585
5586 /* Like mark_vectorlike but optimized for char-tables (and
5587 sub-char-tables) assuming that the contents are mostly integers or
5588 symbols. */
5589
5590 static void
5591 mark_char_table (struct Lisp_Vector *ptr)
5592 {
5593 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5594 int i;
5595
5596 eassert (!VECTOR_MARKED_P (ptr));
5597 VECTOR_MARK (ptr);
5598 for (i = 0; i < size; i++)
5599 {
5600 Lisp_Object val = ptr->contents[i];
5601
5602 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5603 continue;
5604 if (SUB_CHAR_TABLE_P (val))
5605 {
5606 if (! VECTOR_MARKED_P (XVECTOR (val)))
5607 mark_char_table (XVECTOR (val));
5608 }
5609 else
5610 mark_object (val);
5611 }
5612 }
5613
5614 /* Mark the chain of overlays starting at PTR. */
5615
5616 static void
5617 mark_overlay (struct Lisp_Overlay *ptr)
5618 {
5619 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5620 {
5621 ptr->gcmarkbit = 1;
5622 mark_object (ptr->start);
5623 mark_object (ptr->end);
5624 mark_object (ptr->plist);
5625 }
5626 }
5627
5628 /* Mark Lisp_Objects and special pointers in BUFFER. */
5629
5630 static void
5631 mark_buffer (struct buffer *buffer)
5632 {
5633 /* This is handled much like other pseudovectors... */
5634 mark_vectorlike ((struct Lisp_Vector *) buffer);
5635
5636 /* ...but there are some buffer-specific things. */
5637
5638 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5639
5640 /* For now, we just don't mark the undo_list. It's done later in
5641 a special way just before the sweep phase, and after stripping
5642 some of its elements that are not needed any more. */
5643
5644 mark_overlay (buffer->overlays_before);
5645 mark_overlay (buffer->overlays_after);
5646
5647 /* If this is an indirect buffer, mark its base buffer. */
5648 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5649 mark_buffer (buffer->base_buffer);
5650 }
5651
5652 /* Remove killed buffers or items whose car is a killed buffer from
5653 LIST, and mark other items. Return changed LIST, which is marked. */
5654
5655 static Lisp_Object
5656 mark_discard_killed_buffers (Lisp_Object list)
5657 {
5658 Lisp_Object tail, *prev = &list;
5659
5660 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5661 tail = XCDR (tail))
5662 {
5663 Lisp_Object tem = XCAR (tail);
5664 if (CONSP (tem))
5665 tem = XCAR (tem);
5666 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5667 *prev = XCDR (tail);
5668 else
5669 {
5670 CONS_MARK (XCONS (tail));
5671 mark_object (XCAR (tail));
5672 prev = &XCDR_AS_LVALUE (tail);
5673 }
5674 }
5675 mark_object (tail);
5676 return list;
5677 }
5678
5679 /* Determine type of generic Lisp_Object and mark it accordingly. */
5680
5681 void
5682 mark_object (Lisp_Object arg)
5683 {
5684 register Lisp_Object obj = arg;
5685 #ifdef GC_CHECK_MARKED_OBJECTS
5686 void *po;
5687 struct mem_node *m;
5688 #endif
5689 ptrdiff_t cdr_count = 0;
5690
5691 loop:
5692
5693 if (PURE_POINTER_P (XPNTR (obj)))
5694 return;
5695
5696 last_marked[last_marked_index++] = obj;
5697 if (last_marked_index == LAST_MARKED_SIZE)
5698 last_marked_index = 0;
5699
5700 /* Perform some sanity checks on the objects marked here. Abort if
5701 we encounter an object we know is bogus. This increases GC time
5702 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5703 #ifdef GC_CHECK_MARKED_OBJECTS
5704
5705 po = (void *) XPNTR (obj);
5706
5707 /* Check that the object pointed to by PO is known to be a Lisp
5708 structure allocated from the heap. */
5709 #define CHECK_ALLOCATED() \
5710 do { \
5711 m = mem_find (po); \
5712 if (m == MEM_NIL) \
5713 emacs_abort (); \
5714 } while (0)
5715
5716 /* Check that the object pointed to by PO is live, using predicate
5717 function LIVEP. */
5718 #define CHECK_LIVE(LIVEP) \
5719 do { \
5720 if (!LIVEP (m, po)) \
5721 emacs_abort (); \
5722 } while (0)
5723
5724 /* Check both of the above conditions. */
5725 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5726 do { \
5727 CHECK_ALLOCATED (); \
5728 CHECK_LIVE (LIVEP); \
5729 } while (0) \
5730
5731 #else /* not GC_CHECK_MARKED_OBJECTS */
5732
5733 #define CHECK_LIVE(LIVEP) (void) 0
5734 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5735
5736 #endif /* not GC_CHECK_MARKED_OBJECTS */
5737
5738 switch (XTYPE (obj))
5739 {
5740 case Lisp_String:
5741 {
5742 register struct Lisp_String *ptr = XSTRING (obj);
5743 if (STRING_MARKED_P (ptr))
5744 break;
5745 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5746 MARK_STRING (ptr);
5747 MARK_INTERVAL_TREE (ptr->intervals);
5748 #ifdef GC_CHECK_STRING_BYTES
5749 /* Check that the string size recorded in the string is the
5750 same as the one recorded in the sdata structure. */
5751 string_bytes (ptr);
5752 #endif /* GC_CHECK_STRING_BYTES */
5753 }
5754 break;
5755
5756 case Lisp_Vectorlike:
5757 {
5758 register struct Lisp_Vector *ptr = XVECTOR (obj);
5759 register ptrdiff_t pvectype;
5760
5761 if (VECTOR_MARKED_P (ptr))
5762 break;
5763
5764 #ifdef GC_CHECK_MARKED_OBJECTS
5765 m = mem_find (po);
5766 if (m == MEM_NIL && !SUBRP (obj))
5767 emacs_abort ();
5768 #endif /* GC_CHECK_MARKED_OBJECTS */
5769
5770 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5771 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5772 >> PSEUDOVECTOR_AREA_BITS);
5773 else
5774 pvectype = PVEC_NORMAL_VECTOR;
5775
5776 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5777 CHECK_LIVE (live_vector_p);
5778
5779 switch (pvectype)
5780 {
5781 case PVEC_BUFFER:
5782 #ifdef GC_CHECK_MARKED_OBJECTS
5783 {
5784 struct buffer *b;
5785 FOR_EACH_BUFFER (b)
5786 if (b == po)
5787 break;
5788 if (b == NULL)
5789 emacs_abort ();
5790 }
5791 #endif /* GC_CHECK_MARKED_OBJECTS */
5792 mark_buffer ((struct buffer *) ptr);
5793 break;
5794
5795 case PVEC_COMPILED:
5796 { /* We could treat this just like a vector, but it is better
5797 to save the COMPILED_CONSTANTS element for last and avoid
5798 recursion there. */
5799 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5800 int i;
5801
5802 VECTOR_MARK (ptr);
5803 for (i = 0; i < size; i++)
5804 if (i != COMPILED_CONSTANTS)
5805 mark_object (ptr->contents[i]);
5806 if (size > COMPILED_CONSTANTS)
5807 {
5808 obj = ptr->contents[COMPILED_CONSTANTS];
5809 goto loop;
5810 }
5811 }
5812 break;
5813
5814 case PVEC_FRAME:
5815 mark_vectorlike (ptr);
5816 mark_face_cache (((struct frame *) ptr)->face_cache);
5817 break;
5818
5819 case PVEC_WINDOW:
5820 {
5821 struct window *w = (struct window *) ptr;
5822 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5823
5824 mark_vectorlike (ptr);
5825
5826 /* Mark glyphs for leaf windows. Marking window
5827 matrices is sufficient because frame matrices
5828 use the same glyph memory. */
5829 if (leaf && w->current_matrix)
5830 {
5831 mark_glyph_matrix (w->current_matrix);
5832 mark_glyph_matrix (w->desired_matrix);
5833 }
5834
5835 /* Filter out killed buffers from both buffer lists
5836 in attempt to help GC to reclaim killed buffers faster.
5837 We can do it elsewhere for live windows, but this is the
5838 best place to do it for dead windows. */
5839 wset_prev_buffers
5840 (w, mark_discard_killed_buffers (w->prev_buffers));
5841 wset_next_buffers
5842 (w, mark_discard_killed_buffers (w->next_buffers));
5843 }
5844 break;
5845
5846 case PVEC_HASH_TABLE:
5847 {
5848 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5849
5850 mark_vectorlike (ptr);
5851 mark_object (h->test.name);
5852 mark_object (h->test.user_hash_function);
5853 mark_object (h->test.user_cmp_function);
5854 /* If hash table is not weak, mark all keys and values.
5855 For weak tables, mark only the vector. */
5856 if (NILP (h->weak))
5857 mark_object (h->key_and_value);
5858 else
5859 VECTOR_MARK (XVECTOR (h->key_and_value));
5860 }
5861 break;
5862
5863 case PVEC_CHAR_TABLE:
5864 mark_char_table (ptr);
5865 break;
5866
5867 case PVEC_BOOL_VECTOR:
5868 /* No Lisp_Objects to mark in a bool vector. */
5869 VECTOR_MARK (ptr);
5870 break;
5871
5872 case PVEC_SUBR:
5873 break;
5874
5875 case PVEC_FREE:
5876 emacs_abort ();
5877
5878 default:
5879 mark_vectorlike (ptr);
5880 }
5881 }
5882 break;
5883
5884 case Lisp_Symbol:
5885 {
5886 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5887 struct Lisp_Symbol *ptrx;
5888
5889 if (ptr->gcmarkbit)
5890 break;
5891 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5892 ptr->gcmarkbit = 1;
5893 mark_object (ptr->function);
5894 mark_object (ptr->plist);
5895 switch (ptr->redirect)
5896 {
5897 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5898 case SYMBOL_VARALIAS:
5899 {
5900 Lisp_Object tem;
5901 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5902 mark_object (tem);
5903 break;
5904 }
5905 case SYMBOL_LOCALIZED:
5906 {
5907 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5908 Lisp_Object where = blv->where;
5909 /* If the value is set up for a killed buffer or deleted
5910 frame, restore it's global binding. If the value is
5911 forwarded to a C variable, either it's not a Lisp_Object
5912 var, or it's staticpro'd already. */
5913 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5914 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5915 swap_in_global_binding (ptr);
5916 mark_object (blv->where);
5917 mark_object (blv->valcell);
5918 mark_object (blv->defcell);
5919 break;
5920 }
5921 case SYMBOL_FORWARDED:
5922 /* If the value is forwarded to a buffer or keyboard field,
5923 these are marked when we see the corresponding object.
5924 And if it's forwarded to a C variable, either it's not
5925 a Lisp_Object var, or it's staticpro'd already. */
5926 break;
5927 default: emacs_abort ();
5928 }
5929 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5930 MARK_STRING (XSTRING (ptr->name));
5931 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5932
5933 ptr = ptr->next;
5934 if (ptr)
5935 {
5936 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5937 XSETSYMBOL (obj, ptrx);
5938 goto loop;
5939 }
5940 }
5941 break;
5942
5943 case Lisp_Misc:
5944 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5945
5946 if (XMISCANY (obj)->gcmarkbit)
5947 break;
5948
5949 switch (XMISCTYPE (obj))
5950 {
5951 case Lisp_Misc_Marker:
5952 /* DO NOT mark thru the marker's chain.
5953 The buffer's markers chain does not preserve markers from gc;
5954 instead, markers are removed from the chain when freed by gc. */
5955 XMISCANY (obj)->gcmarkbit = 1;
5956 break;
5957
5958 case Lisp_Misc_Save_Value:
5959 XMISCANY (obj)->gcmarkbit = 1;
5960 {
5961 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5962 /* If `area' is nonzero, `data[0].pointer' is the address
5963 of a memory area containing `data[1].integer' potential
5964 Lisp_Objects. */
5965 #if GC_MARK_STACK
5966 if (ptr->area)
5967 {
5968 Lisp_Object *p = ptr->data[0].pointer;
5969 ptrdiff_t nelt;
5970 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5971 mark_maybe_object (*p);
5972 }
5973 else
5974 #endif /* GC_MARK_STACK */
5975 {
5976 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5977 if (ptr->type0 == SAVE_OBJECT)
5978 mark_object (ptr->data[0].object);
5979 if (ptr->type1 == SAVE_OBJECT)
5980 mark_object (ptr->data[1].object);
5981 if (ptr->type2 == SAVE_OBJECT)
5982 mark_object (ptr->data[2].object);
5983 if (ptr->type3 == SAVE_OBJECT)
5984 mark_object (ptr->data[3].object);
5985 }
5986 }
5987 break;
5988
5989 case Lisp_Misc_Overlay:
5990 mark_overlay (XOVERLAY (obj));
5991 break;
5992
5993 default:
5994 emacs_abort ();
5995 }
5996 break;
5997
5998 case Lisp_Cons:
5999 {
6000 register struct Lisp_Cons *ptr = XCONS (obj);
6001 if (CONS_MARKED_P (ptr))
6002 break;
6003 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6004 CONS_MARK (ptr);
6005 /* If the cdr is nil, avoid recursion for the car. */
6006 if (EQ (ptr->u.cdr, Qnil))
6007 {
6008 obj = ptr->car;
6009 cdr_count = 0;
6010 goto loop;
6011 }
6012 mark_object (ptr->car);
6013 obj = ptr->u.cdr;
6014 cdr_count++;
6015 if (cdr_count == mark_object_loop_halt)
6016 emacs_abort ();
6017 goto loop;
6018 }
6019
6020 case Lisp_Float:
6021 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6022 FLOAT_MARK (XFLOAT (obj));
6023 break;
6024
6025 case_Lisp_Int:
6026 break;
6027
6028 default:
6029 emacs_abort ();
6030 }
6031
6032 #undef CHECK_LIVE
6033 #undef CHECK_ALLOCATED
6034 #undef CHECK_ALLOCATED_AND_LIVE
6035 }
6036 /* Mark the Lisp pointers in the terminal objects.
6037 Called by Fgarbage_collect. */
6038
6039 static void
6040 mark_terminals (void)
6041 {
6042 struct terminal *t;
6043 for (t = terminal_list; t; t = t->next_terminal)
6044 {
6045 eassert (t->name != NULL);
6046 #ifdef HAVE_WINDOW_SYSTEM
6047 /* If a terminal object is reachable from a stacpro'ed object,
6048 it might have been marked already. Make sure the image cache
6049 gets marked. */
6050 mark_image_cache (t->image_cache);
6051 #endif /* HAVE_WINDOW_SYSTEM */
6052 if (!VECTOR_MARKED_P (t))
6053 mark_vectorlike ((struct Lisp_Vector *)t);
6054 }
6055 }
6056
6057
6058
6059 /* Value is non-zero if OBJ will survive the current GC because it's
6060 either marked or does not need to be marked to survive. */
6061
6062 bool
6063 survives_gc_p (Lisp_Object obj)
6064 {
6065 bool survives_p;
6066
6067 switch (XTYPE (obj))
6068 {
6069 case_Lisp_Int:
6070 survives_p = 1;
6071 break;
6072
6073 case Lisp_Symbol:
6074 survives_p = XSYMBOL (obj)->gcmarkbit;
6075 break;
6076
6077 case Lisp_Misc:
6078 survives_p = XMISCANY (obj)->gcmarkbit;
6079 break;
6080
6081 case Lisp_String:
6082 survives_p = STRING_MARKED_P (XSTRING (obj));
6083 break;
6084
6085 case Lisp_Vectorlike:
6086 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6087 break;
6088
6089 case Lisp_Cons:
6090 survives_p = CONS_MARKED_P (XCONS (obj));
6091 break;
6092
6093 case Lisp_Float:
6094 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6095 break;
6096
6097 default:
6098 emacs_abort ();
6099 }
6100
6101 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6102 }
6103
6104
6105 \f
6106 /* Sweep: find all structures not marked, and free them. */
6107
6108 static void
6109 gc_sweep (void)
6110 {
6111 /* Remove or mark entries in weak hash tables.
6112 This must be done before any object is unmarked. */
6113 sweep_weak_hash_tables ();
6114
6115 sweep_strings ();
6116 check_string_bytes (!noninteractive);
6117
6118 /* Put all unmarked conses on free list */
6119 {
6120 register struct cons_block *cblk;
6121 struct cons_block **cprev = &cons_block;
6122 register int lim = cons_block_index;
6123 EMACS_INT num_free = 0, num_used = 0;
6124
6125 cons_free_list = 0;
6126
6127 for (cblk = cons_block; cblk; cblk = *cprev)
6128 {
6129 register int i = 0;
6130 int this_free = 0;
6131 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6132
6133 /* Scan the mark bits an int at a time. */
6134 for (i = 0; i < ilim; i++)
6135 {
6136 if (cblk->gcmarkbits[i] == -1)
6137 {
6138 /* Fast path - all cons cells for this int are marked. */
6139 cblk->gcmarkbits[i] = 0;
6140 num_used += BITS_PER_INT;
6141 }
6142 else
6143 {
6144 /* Some cons cells for this int are not marked.
6145 Find which ones, and free them. */
6146 int start, pos, stop;
6147
6148 start = i * BITS_PER_INT;
6149 stop = lim - start;
6150 if (stop > BITS_PER_INT)
6151 stop = BITS_PER_INT;
6152 stop += start;
6153
6154 for (pos = start; pos < stop; pos++)
6155 {
6156 if (!CONS_MARKED_P (&cblk->conses[pos]))
6157 {
6158 this_free++;
6159 cblk->conses[pos].u.chain = cons_free_list;
6160 cons_free_list = &cblk->conses[pos];
6161 #if GC_MARK_STACK
6162 cons_free_list->car = Vdead;
6163 #endif
6164 }
6165 else
6166 {
6167 num_used++;
6168 CONS_UNMARK (&cblk->conses[pos]);
6169 }
6170 }
6171 }
6172 }
6173
6174 lim = CONS_BLOCK_SIZE;
6175 /* If this block contains only free conses and we have already
6176 seen more than two blocks worth of free conses then deallocate
6177 this block. */
6178 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6179 {
6180 *cprev = cblk->next;
6181 /* Unhook from the free list. */
6182 cons_free_list = cblk->conses[0].u.chain;
6183 lisp_align_free (cblk);
6184 }
6185 else
6186 {
6187 num_free += this_free;
6188 cprev = &cblk->next;
6189 }
6190 }
6191 total_conses = num_used;
6192 total_free_conses = num_free;
6193 }
6194
6195 /* Put all unmarked floats on free list */
6196 {
6197 register struct float_block *fblk;
6198 struct float_block **fprev = &float_block;
6199 register int lim = float_block_index;
6200 EMACS_INT num_free = 0, num_used = 0;
6201
6202 float_free_list = 0;
6203
6204 for (fblk = float_block; fblk; fblk = *fprev)
6205 {
6206 register int i;
6207 int this_free = 0;
6208 for (i = 0; i < lim; i++)
6209 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6210 {
6211 this_free++;
6212 fblk->floats[i].u.chain = float_free_list;
6213 float_free_list = &fblk->floats[i];
6214 }
6215 else
6216 {
6217 num_used++;
6218 FLOAT_UNMARK (&fblk->floats[i]);
6219 }
6220 lim = FLOAT_BLOCK_SIZE;
6221 /* If this block contains only free floats and we have already
6222 seen more than two blocks worth of free floats then deallocate
6223 this block. */
6224 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6225 {
6226 *fprev = fblk->next;
6227 /* Unhook from the free list. */
6228 float_free_list = fblk->floats[0].u.chain;
6229 lisp_align_free (fblk);
6230 }
6231 else
6232 {
6233 num_free += this_free;
6234 fprev = &fblk->next;
6235 }
6236 }
6237 total_floats = num_used;
6238 total_free_floats = num_free;
6239 }
6240
6241 /* Put all unmarked intervals on free list */
6242 {
6243 register struct interval_block *iblk;
6244 struct interval_block **iprev = &interval_block;
6245 register int lim = interval_block_index;
6246 EMACS_INT num_free = 0, num_used = 0;
6247
6248 interval_free_list = 0;
6249
6250 for (iblk = interval_block; iblk; iblk = *iprev)
6251 {
6252 register int i;
6253 int this_free = 0;
6254
6255 for (i = 0; i < lim; i++)
6256 {
6257 if (!iblk->intervals[i].gcmarkbit)
6258 {
6259 set_interval_parent (&iblk->intervals[i], interval_free_list);
6260 interval_free_list = &iblk->intervals[i];
6261 this_free++;
6262 }
6263 else
6264 {
6265 num_used++;
6266 iblk->intervals[i].gcmarkbit = 0;
6267 }
6268 }
6269 lim = INTERVAL_BLOCK_SIZE;
6270 /* If this block contains only free intervals and we have already
6271 seen more than two blocks worth of free intervals then
6272 deallocate this block. */
6273 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6274 {
6275 *iprev = iblk->next;
6276 /* Unhook from the free list. */
6277 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6278 lisp_free (iblk);
6279 }
6280 else
6281 {
6282 num_free += this_free;
6283 iprev = &iblk->next;
6284 }
6285 }
6286 total_intervals = num_used;
6287 total_free_intervals = num_free;
6288 }
6289
6290 /* Put all unmarked symbols on free list */
6291 {
6292 register struct symbol_block *sblk;
6293 struct symbol_block **sprev = &symbol_block;
6294 register int lim = symbol_block_index;
6295 EMACS_INT num_free = 0, num_used = 0;
6296
6297 symbol_free_list = NULL;
6298
6299 for (sblk = symbol_block; sblk; sblk = *sprev)
6300 {
6301 int this_free = 0;
6302 union aligned_Lisp_Symbol *sym = sblk->symbols;
6303 union aligned_Lisp_Symbol *end = sym + lim;
6304
6305 for (; sym < end; ++sym)
6306 {
6307 /* Check if the symbol was created during loadup. In such a case
6308 it might be pointed to by pure bytecode which we don't trace,
6309 so we conservatively assume that it is live. */
6310 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6311
6312 if (!sym->s.gcmarkbit && !pure_p)
6313 {
6314 if (sym->s.redirect == SYMBOL_LOCALIZED)
6315 xfree (SYMBOL_BLV (&sym->s));
6316 sym->s.next = symbol_free_list;
6317 symbol_free_list = &sym->s;
6318 #if GC_MARK_STACK
6319 symbol_free_list->function = Vdead;
6320 #endif
6321 ++this_free;
6322 }
6323 else
6324 {
6325 ++num_used;
6326 if (!pure_p)
6327 UNMARK_STRING (XSTRING (sym->s.name));
6328 sym->s.gcmarkbit = 0;
6329 }
6330 }
6331
6332 lim = SYMBOL_BLOCK_SIZE;
6333 /* If this block contains only free symbols and we have already
6334 seen more than two blocks worth of free symbols then deallocate
6335 this block. */
6336 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6337 {
6338 *sprev = sblk->next;
6339 /* Unhook from the free list. */
6340 symbol_free_list = sblk->symbols[0].s.next;
6341 lisp_free (sblk);
6342 }
6343 else
6344 {
6345 num_free += this_free;
6346 sprev = &sblk->next;
6347 }
6348 }
6349 total_symbols = num_used;
6350 total_free_symbols = num_free;
6351 }
6352
6353 /* Put all unmarked misc's on free list.
6354 For a marker, first unchain it from the buffer it points into. */
6355 {
6356 register struct marker_block *mblk;
6357 struct marker_block **mprev = &marker_block;
6358 register int lim = marker_block_index;
6359 EMACS_INT num_free = 0, num_used = 0;
6360
6361 marker_free_list = 0;
6362
6363 for (mblk = marker_block; mblk; mblk = *mprev)
6364 {
6365 register int i;
6366 int this_free = 0;
6367
6368 for (i = 0; i < lim; i++)
6369 {
6370 if (!mblk->markers[i].m.u_any.gcmarkbit)
6371 {
6372 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6373 unchain_marker (&mblk->markers[i].m.u_marker);
6374 /* Set the type of the freed object to Lisp_Misc_Free.
6375 We could leave the type alone, since nobody checks it,
6376 but this might catch bugs faster. */
6377 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6378 mblk->markers[i].m.u_free.chain = marker_free_list;
6379 marker_free_list = &mblk->markers[i].m;
6380 this_free++;
6381 }
6382 else
6383 {
6384 num_used++;
6385 mblk->markers[i].m.u_any.gcmarkbit = 0;
6386 }
6387 }
6388 lim = MARKER_BLOCK_SIZE;
6389 /* If this block contains only free markers and we have already
6390 seen more than two blocks worth of free markers then deallocate
6391 this block. */
6392 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6393 {
6394 *mprev = mblk->next;
6395 /* Unhook from the free list. */
6396 marker_free_list = mblk->markers[0].m.u_free.chain;
6397 lisp_free (mblk);
6398 }
6399 else
6400 {
6401 num_free += this_free;
6402 mprev = &mblk->next;
6403 }
6404 }
6405
6406 total_markers = num_used;
6407 total_free_markers = num_free;
6408 }
6409
6410 /* Free all unmarked buffers */
6411 {
6412 register struct buffer *buffer, **bprev = &all_buffers;
6413
6414 total_buffers = 0;
6415 for (buffer = all_buffers; buffer; buffer = *bprev)
6416 if (!VECTOR_MARKED_P (buffer))
6417 {
6418 *bprev = buffer->next;
6419 lisp_free (buffer);
6420 }
6421 else
6422 {
6423 VECTOR_UNMARK (buffer);
6424 /* Do not use buffer_(set|get)_intervals here. */
6425 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6426 total_buffers++;
6427 bprev = &buffer->next;
6428 }
6429 }
6430
6431 sweep_vectors ();
6432 check_string_bytes (!noninteractive);
6433 }
6434
6435
6436
6437 \f
6438 /* Debugging aids. */
6439
6440 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6441 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6442 This may be helpful in debugging Emacs's memory usage.
6443 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6444 (void)
6445 {
6446 Lisp_Object end;
6447
6448 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6449
6450 return end;
6451 }
6452
6453 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6454 doc: /* Return a list of counters that measure how much consing there has been.
6455 Each of these counters increments for a certain kind of object.
6456 The counters wrap around from the largest positive integer to zero.
6457 Garbage collection does not decrease them.
6458 The elements of the value are as follows:
6459 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6460 All are in units of 1 = one object consed
6461 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6462 objects consed.
6463 MISCS include overlays, markers, and some internal types.
6464 Frames, windows, buffers, and subprocesses count as vectors
6465 (but the contents of a buffer's text do not count here). */)
6466 (void)
6467 {
6468 return listn (CONSTYPE_HEAP, 8,
6469 bounded_number (cons_cells_consed),
6470 bounded_number (floats_consed),
6471 bounded_number (vector_cells_consed),
6472 bounded_number (symbols_consed),
6473 bounded_number (string_chars_consed),
6474 bounded_number (misc_objects_consed),
6475 bounded_number (intervals_consed),
6476 bounded_number (strings_consed));
6477 }
6478
6479 /* Find at most FIND_MAX symbols which have OBJ as their value or
6480 function. This is used in gdbinit's `xwhichsymbols' command. */
6481
6482 Lisp_Object
6483 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6484 {
6485 struct symbol_block *sblk;
6486 ptrdiff_t gc_count = inhibit_garbage_collection ();
6487 Lisp_Object found = Qnil;
6488
6489 if (! DEADP (obj))
6490 {
6491 for (sblk = symbol_block; sblk; sblk = sblk->next)
6492 {
6493 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6494 int bn;
6495
6496 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6497 {
6498 struct Lisp_Symbol *sym = &aligned_sym->s;
6499 Lisp_Object val;
6500 Lisp_Object tem;
6501
6502 if (sblk == symbol_block && bn >= symbol_block_index)
6503 break;
6504
6505 XSETSYMBOL (tem, sym);
6506 val = find_symbol_value (tem);
6507 if (EQ (val, obj)
6508 || EQ (sym->function, obj)
6509 || (!NILP (sym->function)
6510 && COMPILEDP (sym->function)
6511 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6512 || (!NILP (val)
6513 && COMPILEDP (val)
6514 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6515 {
6516 found = Fcons (tem, found);
6517 if (--find_max == 0)
6518 goto out;
6519 }
6520 }
6521 }
6522 }
6523
6524 out:
6525 unbind_to (gc_count, Qnil);
6526 return found;
6527 }
6528
6529 #ifdef ENABLE_CHECKING
6530
6531 bool suppress_checking;
6532
6533 void
6534 die (const char *msg, const char *file, int line)
6535 {
6536 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6537 file, line, msg);
6538 terminate_due_to_signal (SIGABRT, INT_MAX);
6539 }
6540 #endif
6541 \f
6542 /* Initialization. */
6543
6544 void
6545 init_alloc_once (void)
6546 {
6547 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6548 purebeg = PUREBEG;
6549 pure_size = PURESIZE;
6550
6551 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6552 mem_init ();
6553 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6554 #endif
6555
6556 #ifdef DOUG_LEA_MALLOC
6557 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6558 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6559 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6560 #endif
6561 init_strings ();
6562 init_vectors ();
6563
6564 refill_memory_reserve ();
6565 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6566 }
6567
6568 void
6569 init_alloc (void)
6570 {
6571 gcprolist = 0;
6572 byte_stack_list = 0;
6573 #if GC_MARK_STACK
6574 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6575 setjmp_tested_p = longjmps_done = 0;
6576 #endif
6577 #endif
6578 Vgc_elapsed = make_float (0.0);
6579 gcs_done = 0;
6580 }
6581
6582 void
6583 syms_of_alloc (void)
6584 {
6585 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6586 doc: /* Number of bytes of consing between garbage collections.
6587 Garbage collection can happen automatically once this many bytes have been
6588 allocated since the last garbage collection. All data types count.
6589
6590 Garbage collection happens automatically only when `eval' is called.
6591
6592 By binding this temporarily to a large number, you can effectively
6593 prevent garbage collection during a part of the program.
6594 See also `gc-cons-percentage'. */);
6595
6596 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6597 doc: /* Portion of the heap used for allocation.
6598 Garbage collection can happen automatically once this portion of the heap
6599 has been allocated since the last garbage collection.
6600 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6601 Vgc_cons_percentage = make_float (0.1);
6602
6603 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6604 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6605
6606 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6607 doc: /* Number of cons cells that have been consed so far. */);
6608
6609 DEFVAR_INT ("floats-consed", floats_consed,
6610 doc: /* Number of floats that have been consed so far. */);
6611
6612 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6613 doc: /* Number of vector cells that have been consed so far. */);
6614
6615 DEFVAR_INT ("symbols-consed", symbols_consed,
6616 doc: /* Number of symbols that have been consed so far. */);
6617
6618 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6619 doc: /* Number of string characters that have been consed so far. */);
6620
6621 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6622 doc: /* Number of miscellaneous objects that have been consed so far.
6623 These include markers and overlays, plus certain objects not visible
6624 to users. */);
6625
6626 DEFVAR_INT ("intervals-consed", intervals_consed,
6627 doc: /* Number of intervals that have been consed so far. */);
6628
6629 DEFVAR_INT ("strings-consed", strings_consed,
6630 doc: /* Number of strings that have been consed so far. */);
6631
6632 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6633 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6634 This means that certain objects should be allocated in shared (pure) space.
6635 It can also be set to a hash-table, in which case this table is used to
6636 do hash-consing of the objects allocated to pure space. */);
6637
6638 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6639 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6640 garbage_collection_messages = 0;
6641
6642 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6643 doc: /* Hook run after garbage collection has finished. */);
6644 Vpost_gc_hook = Qnil;
6645 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6646
6647 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6648 doc: /* Precomputed `signal' argument for memory-full error. */);
6649 /* We build this in advance because if we wait until we need it, we might
6650 not be able to allocate the memory to hold it. */
6651 Vmemory_signal_data
6652 = listn (CONSTYPE_PURE, 2, Qerror,
6653 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6654
6655 DEFVAR_LISP ("memory-full", Vmemory_full,
6656 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6657 Vmemory_full = Qnil;
6658
6659 DEFSYM (Qconses, "conses");
6660 DEFSYM (Qsymbols, "symbols");
6661 DEFSYM (Qmiscs, "miscs");
6662 DEFSYM (Qstrings, "strings");
6663 DEFSYM (Qvectors, "vectors");
6664 DEFSYM (Qfloats, "floats");
6665 DEFSYM (Qintervals, "intervals");
6666 DEFSYM (Qbuffers, "buffers");
6667 DEFSYM (Qstring_bytes, "string-bytes");
6668 DEFSYM (Qvector_slots, "vector-slots");
6669 DEFSYM (Qheap, "heap");
6670 DEFSYM (Qautomatic_gc, "Automatic GC");
6671
6672 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6673 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6674
6675 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6676 doc: /* Accumulated time elapsed in garbage collections.
6677 The time is in seconds as a floating point value. */);
6678 DEFVAR_INT ("gcs-done", gcs_done,
6679 doc: /* Accumulated number of garbage collections done. */);
6680
6681 defsubr (&Scons);
6682 defsubr (&Slist);
6683 defsubr (&Svector);
6684 defsubr (&Smake_byte_code);
6685 defsubr (&Smake_list);
6686 defsubr (&Smake_vector);
6687 defsubr (&Smake_string);
6688 defsubr (&Smake_bool_vector);
6689 defsubr (&Smake_symbol);
6690 defsubr (&Smake_marker);
6691 defsubr (&Spurecopy);
6692 defsubr (&Sgarbage_collect);
6693 defsubr (&Smemory_limit);
6694 defsubr (&Smemory_use_counts);
6695
6696 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6697 defsubr (&Sgc_status);
6698 #endif
6699 }
6700
6701 /* When compiled with GCC, GDB might say "No enum type named
6702 pvec_type" if we don't have at least one symbol with that type, and
6703 then xbacktrace could fail. Similarly for the other enums and
6704 their values. Some non-GCC compilers don't like these constructs. */
6705 #ifdef __GNUC__
6706 union
6707 {
6708 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6709 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6710 enum char_bits char_bits;
6711 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6712 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6713 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6714 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6715 enum Lisp_Bits Lisp_Bits;
6716 enum Lisp_Compiled Lisp_Compiled;
6717 enum maxargs maxargs;
6718 enum MAX_ALLOCA MAX_ALLOCA;
6719 enum More_Lisp_Bits More_Lisp_Bits;
6720 enum pvec_type pvec_type;
6721 #if USE_LSB_TAG
6722 enum lsb_bits lsb_bits;
6723 #endif
6724 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6725 #endif /* __GNUC__ */