(Fcurrent_active_maps): Ignore Voverriding_local_map
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 01, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* List of emulation mode keymap alists. */
79 Lisp_Object Vemulation_mode_map_alists;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
96
97 /* Alist of elements like (DEL . "\d"). */
98 static Lisp_Object exclude_keys;
99
100 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
101 static Lisp_Object command_remapping_vector;
102
103 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
104 in a string key sequence is equivalent to prefixing with this
105 character. */
106 extern Lisp_Object meta_prefix_char;
107
108 extern Lisp_Object Voverriding_local_map;
109
110 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
111 static Lisp_Object where_is_cache;
112 /* Which keymaps are reverse-stored in the cache. */
113 static Lisp_Object where_is_cache_keymaps;
114
115 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
116 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117
118 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
119 static void describe_command P_ ((Lisp_Object, Lisp_Object));
120 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
121 static void describe_map P_ ((Lisp_Object, Lisp_Object,
122 void (*) P_ ((Lisp_Object, Lisp_Object)),
123 int, Lisp_Object, Lisp_Object*, int));
124 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
125 void (*) (Lisp_Object, Lisp_Object), int,
126 Lisp_Object, Lisp_Object, int *, int, int));
127 static void silly_event_symbol_error P_ ((Lisp_Object));
128 \f
129 /* Keymap object support - constructors and predicates. */
130
131 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
132 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
133 CHARTABLE is a char-table that holds the bindings for all characters
134 without modifiers. All entries in it are initially nil, meaning
135 "command undefined". ALIST is an assoc-list which holds bindings for
136 function keys, mouse events, and any other things that appear in the
137 input stream. Initially, ALIST is nil.
138
139 The optional arg STRING supplies a menu name for the keymap
140 in case you use it as a menu with `x-popup-menu'. */)
141 (string)
142 Lisp_Object string;
143 {
144 Lisp_Object tail;
145 if (!NILP (string))
146 tail = Fcons (string, Qnil);
147 else
148 tail = Qnil;
149 return Fcons (Qkeymap,
150 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
151 }
152
153 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
154 doc: /* Construct and return a new sparse keymap.
155 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
156 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
157 which binds the function key or mouse event SYMBOL to DEFINITION.
158 Initially the alist is nil.
159
160 The optional arg STRING supplies a menu name for the keymap
161 in case you use it as a menu with `x-popup-menu'. */)
162 (string)
163 Lisp_Object string;
164 {
165 if (!NILP (string))
166 return Fcons (Qkeymap, Fcons (string, Qnil));
167 return Fcons (Qkeymap, Qnil);
168 }
169
170 /* This function is used for installing the standard key bindings
171 at initialization time.
172
173 For example:
174
175 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
176
177 void
178 initial_define_key (keymap, key, defname)
179 Lisp_Object keymap;
180 int key;
181 char *defname;
182 {
183 store_in_keymap (keymap, make_number (key), intern (defname));
184 }
185
186 void
187 initial_define_lispy_key (keymap, keyname, defname)
188 Lisp_Object keymap;
189 char *keyname;
190 char *defname;
191 {
192 store_in_keymap (keymap, intern (keyname), intern (defname));
193 }
194
195 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
196 doc: /* Return t if OBJECT is a keymap.
197
198 A keymap is a list (keymap . ALIST),
199 or a symbol whose function definition is itself a keymap.
200 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
201 a vector of densely packed bindings for small character codes
202 is also allowed as an element. */)
203 (object)
204 Lisp_Object object;
205 {
206 return (KEYMAPP (object) ? Qt : Qnil);
207 }
208
209 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
210 doc: /* Return the prompt-string of a keymap MAP.
211 If non-nil, the prompt is shown in the echo-area
212 when reading a key-sequence to be looked-up in this keymap. */)
213 (map)
214 Lisp_Object map;
215 {
216 map = get_keymap (map, 0, 0);
217 while (CONSP (map))
218 {
219 Lisp_Object tem = XCAR (map);
220 if (STRINGP (tem))
221 return tem;
222 map = XCDR (map);
223 }
224 return Qnil;
225 }
226
227 /* Check that OBJECT is a keymap (after dereferencing through any
228 symbols). If it is, return it.
229
230 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
231 is an autoload form, do the autoload and try again.
232 If AUTOLOAD is nonzero, callers must assume GC is possible.
233
234 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
235 is zero as well), return Qt.
236
237 ERROR controls how we respond if OBJECT isn't a keymap.
238 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
239
240 Note that most of the time, we don't want to pursue autoloads.
241 Functions like Faccessible_keymaps which scan entire keymap trees
242 shouldn't load every autoloaded keymap. I'm not sure about this,
243 but it seems to me that only read_key_sequence, Flookup_key, and
244 Fdefine_key should cause keymaps to be autoloaded.
245
246 This function can GC when AUTOLOAD is non-zero, because it calls
247 do_autoload which can GC. */
248
249 Lisp_Object
250 get_keymap (object, error, autoload)
251 Lisp_Object object;
252 int error, autoload;
253 {
254 Lisp_Object tem;
255
256 autoload_retry:
257 if (NILP (object))
258 goto end;
259 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
260 return object;
261
262 tem = indirect_function (object);
263 if (CONSP (tem))
264 {
265 if (EQ (XCAR (tem), Qkeymap))
266 return tem;
267
268 /* Should we do an autoload? Autoload forms for keymaps have
269 Qkeymap as their fifth element. */
270 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
271 && SYMBOLP (object))
272 {
273 Lisp_Object tail;
274
275 tail = Fnth (make_number (4), tem);
276 if (EQ (tail, Qkeymap))
277 {
278 if (autoload)
279 {
280 struct gcpro gcpro1, gcpro2;
281
282 GCPRO2 (tem, object);
283 do_autoload (tem, object);
284 UNGCPRO;
285
286 goto autoload_retry;
287 }
288 else
289 return Qt;
290 }
291 }
292 }
293
294 end:
295 if (error)
296 wrong_type_argument (Qkeymapp, object);
297 return Qnil;
298 }
299 \f
300 /* Return the parent map of KEYMAP, or nil if it has none.
301 We assume that KEYMAP is a valid keymap. */
302
303 Lisp_Object
304 keymap_parent (keymap, autoload)
305 Lisp_Object keymap;
306 int autoload;
307 {
308 Lisp_Object list;
309
310 keymap = get_keymap (keymap, 1, autoload);
311
312 /* Skip past the initial element `keymap'. */
313 list = XCDR (keymap);
314 for (; CONSP (list); list = XCDR (list))
315 {
316 /* See if there is another `keymap'. */
317 if (KEYMAPP (list))
318 return list;
319 }
320
321 return get_keymap (list, 0, autoload);
322 }
323
324 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
325 doc: /* Return the parent keymap of KEYMAP. */)
326 (keymap)
327 Lisp_Object keymap;
328 {
329 return keymap_parent (keymap, 1);
330 }
331
332 /* Check whether MAP is one of MAPS parents. */
333 int
334 keymap_memberp (map, maps)
335 Lisp_Object map, maps;
336 {
337 if (NILP (map)) return 0;
338 while (KEYMAPP (maps) && !EQ (map, maps))
339 maps = keymap_parent (maps, 0);
340 return (EQ (map, maps));
341 }
342
343 /* Set the parent keymap of MAP to PARENT. */
344
345 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
346 doc: /* Modify KEYMAP to set its parent map to PARENT.
347 Return PARENT. PARENT should be nil or another keymap. */)
348 (keymap, parent)
349 Lisp_Object keymap, parent;
350 {
351 Lisp_Object list, prev;
352 struct gcpro gcpro1, gcpro2;
353 int i;
354
355 /* Force a keymap flush for the next call to where-is.
356 Since this can be called from within where-is, we don't set where_is_cache
357 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
358 be changed during where-is, while where_is_cache_keymaps is only used at
359 the very beginning of where-is and can thus be changed here without any
360 adverse effect.
361 This is a very minor correctness (rather than safety) issue. */
362 where_is_cache_keymaps = Qt;
363
364 GCPRO2 (keymap, parent);
365 keymap = get_keymap (keymap, 1, 1);
366
367 if (!NILP (parent))
368 {
369 parent = get_keymap (parent, 1, 1);
370
371 /* Check for cycles. */
372 if (keymap_memberp (keymap, parent))
373 error ("Cyclic keymap inheritance");
374 }
375
376 /* Skip past the initial element `keymap'. */
377 prev = keymap;
378 while (1)
379 {
380 list = XCDR (prev);
381 /* If there is a parent keymap here, replace it.
382 If we came to the end, add the parent in PREV. */
383 if (!CONSP (list) || KEYMAPP (list))
384 {
385 /* If we already have the right parent, return now
386 so that we avoid the loops below. */
387 if (EQ (XCDR (prev), parent))
388 RETURN_UNGCPRO (parent);
389
390 XSETCDR (prev, parent);
391 break;
392 }
393 prev = list;
394 }
395
396 /* Scan through for submaps, and set their parents too. */
397
398 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
399 {
400 /* Stop the scan when we come to the parent. */
401 if (EQ (XCAR (list), Qkeymap))
402 break;
403
404 /* If this element holds a prefix map, deal with it. */
405 if (CONSP (XCAR (list))
406 && CONSP (XCDR (XCAR (list))))
407 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
408 XCDR (XCAR (list)));
409
410 if (VECTORP (XCAR (list)))
411 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
412 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
413 fix_submap_inheritance (keymap, make_number (i),
414 XVECTOR (XCAR (list))->contents[i]);
415
416 if (CHAR_TABLE_P (XCAR (list)))
417 {
418 Lisp_Object indices[3];
419
420 map_char_table (fix_submap_inheritance, Qnil,
421 XCAR (list), XCAR (list),
422 keymap, 0, indices);
423 }
424 }
425
426 RETURN_UNGCPRO (parent);
427 }
428
429 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
430 if EVENT is also a prefix in MAP's parent,
431 make sure that SUBMAP inherits that definition as its own parent. */
432
433 static void
434 fix_submap_inheritance (map, event, submap)
435 Lisp_Object map, event, submap;
436 {
437 Lisp_Object map_parent, parent_entry;
438
439 /* SUBMAP is a cons that we found as a key binding.
440 Discard the other things found in a menu key binding. */
441
442 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
443
444 /* If it isn't a keymap now, there's no work to do. */
445 if (!CONSP (submap))
446 return;
447
448 map_parent = keymap_parent (map, 0);
449 if (!NILP (map_parent))
450 parent_entry =
451 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
452 else
453 parent_entry = Qnil;
454
455 /* If MAP's parent has something other than a keymap,
456 our own submap shadows it completely. */
457 if (!CONSP (parent_entry))
458 return;
459
460 if (! EQ (parent_entry, submap))
461 {
462 Lisp_Object submap_parent;
463 submap_parent = submap;
464 while (1)
465 {
466 Lisp_Object tem;
467
468 tem = keymap_parent (submap_parent, 0);
469
470 if (KEYMAPP (tem))
471 {
472 if (keymap_memberp (tem, parent_entry))
473 /* Fset_keymap_parent could create a cycle. */
474 return;
475 submap_parent = tem;
476 }
477 else
478 break;
479 }
480 Fset_keymap_parent (submap_parent, parent_entry);
481 }
482 }
483 \f
484 /* Look up IDX in MAP. IDX may be any sort of event.
485 Note that this does only one level of lookup; IDX must be a single
486 event, not a sequence.
487
488 If T_OK is non-zero, bindings for Qt are treated as default
489 bindings; any key left unmentioned by other tables and bindings is
490 given the binding of Qt.
491
492 If T_OK is zero, bindings for Qt are not treated specially.
493
494 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
495
496 Lisp_Object
497 access_keymap (map, idx, t_ok, noinherit, autoload)
498 Lisp_Object map;
499 Lisp_Object idx;
500 int t_ok;
501 int noinherit;
502 int autoload;
503 {
504 Lisp_Object val;
505
506 /* Qunbound in VAL means we have found no binding yet. */
507 val = Qunbound;
508
509 /* If idx is a list (some sort of mouse click, perhaps?),
510 the index we want to use is the car of the list, which
511 ought to be a symbol. */
512 idx = EVENT_HEAD (idx);
513
514 /* If idx is a symbol, it might have modifiers, which need to
515 be put in the canonical order. */
516 if (SYMBOLP (idx))
517 idx = reorder_modifiers (idx);
518 else if (INTEGERP (idx))
519 /* Clobber the high bits that can be present on a machine
520 with more than 24 bits of integer. */
521 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
522
523 /* Handle the special meta -> esc mapping. */
524 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
525 {
526 /* See if there is a meta-map. If there's none, there is
527 no binding for IDX, unless a default binding exists in MAP. */
528 struct gcpro gcpro1;
529 Lisp_Object meta_map;
530 GCPRO1 (map);
531 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
532 t_ok, noinherit, autoload),
533 0, autoload);
534 UNGCPRO;
535 if (CONSP (meta_map))
536 {
537 map = meta_map;
538 idx = make_number (XUINT (idx) & ~meta_modifier);
539 }
540 else if (t_ok)
541 /* Set IDX to t, so that we only find a default binding. */
542 idx = Qt;
543 else
544 /* We know there is no binding. */
545 return Qnil;
546 }
547
548 /* t_binding is where we put a default binding that applies,
549 to use in case we do not find a binding specifically
550 for this key sequence. */
551 {
552 Lisp_Object tail;
553 Lisp_Object t_binding = Qnil;
554 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
555
556 GCPRO4 (map, tail, idx, t_binding);
557
558 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
559 If it is 1, only generic-char bindings are accepted.
560 Otherwise, neither are. */
561 t_ok = t_ok ? 2 : 0;
562
563 for (tail = XCDR (map);
564 (CONSP (tail)
565 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
566 tail = XCDR (tail))
567 {
568 Lisp_Object binding;
569
570 binding = XCAR (tail);
571 if (SYMBOLP (binding))
572 {
573 /* If NOINHERIT, stop finding prefix definitions
574 after we pass a second occurrence of the `keymap' symbol. */
575 if (noinherit && EQ (binding, Qkeymap))
576 RETURN_UNGCPRO (Qnil);
577 }
578 else if (CONSP (binding))
579 {
580 Lisp_Object key = XCAR (binding);
581
582 if (EQ (key, idx))
583 val = XCDR (binding);
584 else if (t_ok
585 && INTEGERP (idx)
586 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
587 && INTEGERP (key)
588 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
589 && !SINGLE_BYTE_CHAR_P (XINT (idx))
590 && !SINGLE_BYTE_CHAR_P (XINT (key))
591 && CHAR_VALID_P (XINT (key), 1)
592 && !CHAR_VALID_P (XINT (key), 0)
593 && (CHAR_CHARSET (XINT (key))
594 == CHAR_CHARSET (XINT (idx))))
595 {
596 /* KEY is the generic character of the charset of IDX.
597 Use KEY's binding if there isn't a binding for IDX
598 itself. */
599 t_binding = XCDR (binding);
600 t_ok = 0;
601 }
602 else if (t_ok > 1 && EQ (key, Qt))
603 {
604 t_binding = XCDR (binding);
605 t_ok = 1;
606 }
607 }
608 else if (VECTORP (binding))
609 {
610 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
611 val = AREF (binding, XFASTINT (idx));
612 }
613 else if (CHAR_TABLE_P (binding))
614 {
615 /* Character codes with modifiers
616 are not included in a char-table.
617 All character codes without modifiers are included. */
618 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
619 {
620 val = Faref (binding, idx);
621 /* `nil' has a special meaning for char-tables, so
622 we use something else to record an explicitly
623 unbound entry. */
624 if (NILP (val))
625 val = Qunbound;
626 }
627 }
628
629 /* If we found a binding, clean it up and return it. */
630 if (!EQ (val, Qunbound))
631 {
632 if (EQ (val, Qt))
633 /* A Qt binding is just like an explicit nil binding
634 (i.e. it shadows any parent binding but not bindings in
635 keymaps of lower precedence). */
636 val = Qnil;
637 val = get_keyelt (val, autoload);
638 if (KEYMAPP (val))
639 fix_submap_inheritance (map, idx, val);
640 RETURN_UNGCPRO (val);
641 }
642 QUIT;
643 }
644 UNGCPRO;
645 return get_keyelt (t_binding, autoload);
646 }
647 }
648
649 static void
650 map_keymap_item (fun, args, key, val, data)
651 map_keymap_function_t fun;
652 Lisp_Object args, key, val;
653 void *data;
654 {
655 /* We should maybe try to detect bindings shadowed by previous
656 ones and things like that. */
657 if (EQ (val, Qt))
658 val = Qnil;
659 (*fun) (key, val, args, data);
660 }
661
662 static void
663 map_keymap_char_table_item (args, key, val)
664 Lisp_Object args, key, val;
665 {
666 if (!NILP (val))
667 {
668 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
669 args = XCDR (args);
670 map_keymap_item (fun, XCDR (args), key, val,
671 XSAVE_VALUE (XCAR (args))->pointer);
672 }
673 }
674
675 /* Call FUN for every binding in MAP.
676 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
677 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
678 void
679 map_keymap (map, fun, args, data, autoload)
680 map_keymap_function_t fun;
681 Lisp_Object map, args;
682 void *data;
683 int autoload;
684 {
685 struct gcpro gcpro1, gcpro2, gcpro3;
686 Lisp_Object tail;
687
688 GCPRO3 (map, args, tail);
689 map = get_keymap (map, 1, autoload);
690 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
691 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
692 tail = XCDR (tail))
693 {
694 Lisp_Object binding = XCAR (tail);
695
696 if (CONSP (binding))
697 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
698 else if (VECTORP (binding))
699 {
700 /* Loop over the char values represented in the vector. */
701 int len = ASIZE (binding);
702 int c;
703 for (c = 0; c < len; c++)
704 {
705 Lisp_Object character;
706 XSETFASTINT (character, c);
707 map_keymap_item (fun, args, character, AREF (binding, c), data);
708 }
709 }
710 else if (CHAR_TABLE_P (binding))
711 {
712 Lisp_Object indices[3];
713 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
714 Fcons (make_save_value (fun, 0),
715 Fcons (make_save_value (data, 0),
716 args)),
717 0, indices);
718 }
719 }
720 UNGCPRO;
721 }
722
723 static void
724 map_keymap_call (key, val, fun, dummy)
725 Lisp_Object key, val, fun;
726 void *dummy;
727 {
728 call2 (fun, key, val);
729 }
730
731 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
732 doc: /* Call FUNCTION for every binding in KEYMAP.
733 FUNCTION is called with two arguments: the event and its binding.
734 If KEYMAP has a parent, the parent's bindings are included as well.
735 This works recursively: if the parent has itself a parent, then the
736 grandparent's bindings are also included and so on.
737 usage: (map-keymap FUNCTION KEYMAP) */)
738 (function, keymap, sort_first)
739 Lisp_Object function, keymap, sort_first;
740 {
741 if (INTEGERP (function))
742 /* We have to stop integers early since map_keymap gives them special
743 significance. */
744 Fsignal (Qinvalid_function, Fcons (function, Qnil));
745 if (! NILP (sort_first))
746 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
747
748 map_keymap (keymap, map_keymap_call, function, NULL, 1);
749 return Qnil;
750 }
751
752 /* Given OBJECT which was found in a slot in a keymap,
753 trace indirect definitions to get the actual definition of that slot.
754 An indirect definition is a list of the form
755 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
756 and INDEX is the object to look up in KEYMAP to yield the definition.
757
758 Also if OBJECT has a menu string as the first element,
759 remove that. Also remove a menu help string as second element.
760
761 If AUTOLOAD is nonzero, load autoloadable keymaps
762 that are referred to with indirection. */
763
764 Lisp_Object
765 get_keyelt (object, autoload)
766 Lisp_Object object;
767 int autoload;
768 {
769 while (1)
770 {
771 if (!(CONSP (object)))
772 /* This is really the value. */
773 return object;
774
775 /* If the keymap contents looks like (keymap ...) or (lambda ...)
776 then use itself. */
777 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
778 return object;
779
780 /* If the keymap contents looks like (menu-item name . DEFN)
781 or (menu-item name DEFN ...) then use DEFN.
782 This is a new format menu item. */
783 else if (EQ (XCAR (object), Qmenu_item))
784 {
785 if (CONSP (XCDR (object)))
786 {
787 Lisp_Object tem;
788
789 object = XCDR (XCDR (object));
790 tem = object;
791 if (CONSP (object))
792 object = XCAR (object);
793
794 /* If there's a `:filter FILTER', apply FILTER to the
795 menu-item's definition to get the real definition to
796 use. */
797 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
798 if (EQ (XCAR (tem), QCfilter) && autoload)
799 {
800 Lisp_Object filter;
801 filter = XCAR (XCDR (tem));
802 filter = list2 (filter, list2 (Qquote, object));
803 object = menu_item_eval_property (filter);
804 break;
805 }
806 }
807 else
808 /* Invalid keymap. */
809 return object;
810 }
811
812 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
813 Keymap alist elements like (CHAR MENUSTRING . DEFN)
814 will be used by HierarKey menus. */
815 else if (STRINGP (XCAR (object)))
816 {
817 object = XCDR (object);
818 /* Also remove a menu help string, if any,
819 following the menu item name. */
820 if (CONSP (object) && STRINGP (XCAR (object)))
821 object = XCDR (object);
822 /* Also remove the sublist that caches key equivalences, if any. */
823 if (CONSP (object) && CONSP (XCAR (object)))
824 {
825 Lisp_Object carcar;
826 carcar = XCAR (XCAR (object));
827 if (NILP (carcar) || VECTORP (carcar))
828 object = XCDR (object);
829 }
830 }
831
832 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
833 else
834 {
835 struct gcpro gcpro1;
836 Lisp_Object map;
837 GCPRO1 (object);
838 map = get_keymap (Fcar_safe (object), 0, autoload);
839 UNGCPRO;
840 return (!CONSP (map) ? object /* Invalid keymap */
841 : access_keymap (map, Fcdr (object), 0, 0, autoload));
842 }
843 }
844 }
845
846 static Lisp_Object
847 store_in_keymap (keymap, idx, def)
848 Lisp_Object keymap;
849 register Lisp_Object idx;
850 register Lisp_Object def;
851 {
852 /* Flush any reverse-map cache. */
853 where_is_cache = Qnil;
854 where_is_cache_keymaps = Qt;
855
856 /* If we are preparing to dump, and DEF is a menu element
857 with a menu item indicator, copy it to ensure it is not pure. */
858 if (CONSP (def) && PURE_P (def)
859 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
860 def = Fcons (XCAR (def), XCDR (def));
861
862 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
863 error ("attempt to define a key in a non-keymap");
864
865 /* If idx is a list (some sort of mouse click, perhaps?),
866 the index we want to use is the car of the list, which
867 ought to be a symbol. */
868 idx = EVENT_HEAD (idx);
869
870 /* If idx is a symbol, it might have modifiers, which need to
871 be put in the canonical order. */
872 if (SYMBOLP (idx))
873 idx = reorder_modifiers (idx);
874 else if (INTEGERP (idx))
875 /* Clobber the high bits that can be present on a machine
876 with more than 24 bits of integer. */
877 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
878
879 /* Scan the keymap for a binding of idx. */
880 {
881 Lisp_Object tail;
882
883 /* The cons after which we should insert new bindings. If the
884 keymap has a table element, we record its position here, so new
885 bindings will go after it; this way, the table will stay
886 towards the front of the alist and character lookups in dense
887 keymaps will remain fast. Otherwise, this just points at the
888 front of the keymap. */
889 Lisp_Object insertion_point;
890
891 insertion_point = keymap;
892 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
893 {
894 Lisp_Object elt;
895
896 elt = XCAR (tail);
897 if (VECTORP (elt))
898 {
899 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
900 {
901 ASET (elt, XFASTINT (idx), def);
902 return def;
903 }
904 insertion_point = tail;
905 }
906 else if (CHAR_TABLE_P (elt))
907 {
908 /* Character codes with modifiers
909 are not included in a char-table.
910 All character codes without modifiers are included. */
911 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
912 {
913 Faset (elt, idx,
914 /* `nil' has a special meaning for char-tables, so
915 we use something else to record an explicitly
916 unbound entry. */
917 NILP (def) ? Qt : def);
918 return def;
919 }
920 insertion_point = tail;
921 }
922 else if (CONSP (elt))
923 {
924 if (EQ (idx, XCAR (elt)))
925 {
926 XSETCDR (elt, def);
927 return def;
928 }
929 }
930 else if (EQ (elt, Qkeymap))
931 /* If we find a 'keymap' symbol in the spine of KEYMAP,
932 then we must have found the start of a second keymap
933 being used as the tail of KEYMAP, and a binding for IDX
934 should be inserted before it. */
935 goto keymap_end;
936
937 QUIT;
938 }
939
940 keymap_end:
941 /* We have scanned the entire keymap, and not found a binding for
942 IDX. Let's add one. */
943 XSETCDR (insertion_point,
944 Fcons (Fcons (idx, def), XCDR (insertion_point)));
945 }
946
947 return def;
948 }
949
950 EXFUN (Fcopy_keymap, 1);
951
952 Lisp_Object
953 copy_keymap_item (elt)
954 Lisp_Object elt;
955 {
956 Lisp_Object res, tem;
957
958 if (!CONSP (elt))
959 return elt;
960
961 res = tem = elt;
962
963 /* Is this a new format menu item. */
964 if (EQ (XCAR (tem), Qmenu_item))
965 {
966 /* Copy cell with menu-item marker. */
967 res = elt = Fcons (XCAR (tem), XCDR (tem));
968 tem = XCDR (elt);
969 if (CONSP (tem))
970 {
971 /* Copy cell with menu-item name. */
972 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
973 elt = XCDR (elt);
974 tem = XCDR (elt);
975 }
976 if (CONSP (tem))
977 {
978 /* Copy cell with binding and if the binding is a keymap,
979 copy that. */
980 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
981 elt = XCDR (elt);
982 tem = XCAR (elt);
983 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
984 XSETCAR (elt, Fcopy_keymap (tem));
985 tem = XCDR (elt);
986 if (CONSP (tem) && CONSP (XCAR (tem)))
987 /* Delete cache for key equivalences. */
988 XSETCDR (elt, XCDR (tem));
989 }
990 }
991 else
992 {
993 /* It may be an old fomat menu item.
994 Skip the optional menu string. */
995 if (STRINGP (XCAR (tem)))
996 {
997 /* Copy the cell, since copy-alist didn't go this deep. */
998 res = elt = Fcons (XCAR (tem), XCDR (tem));
999 tem = XCDR (elt);
1000 /* Also skip the optional menu help string. */
1001 if (CONSP (tem) && STRINGP (XCAR (tem)))
1002 {
1003 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1004 elt = XCDR (elt);
1005 tem = XCDR (elt);
1006 }
1007 /* There may also be a list that caches key equivalences.
1008 Just delete it for the new keymap. */
1009 if (CONSP (tem)
1010 && CONSP (XCAR (tem))
1011 && (NILP (XCAR (XCAR (tem)))
1012 || VECTORP (XCAR (XCAR (tem)))))
1013 {
1014 XSETCDR (elt, XCDR (tem));
1015 tem = XCDR (tem);
1016 }
1017 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1018 XSETCDR (elt, Fcopy_keymap (tem));
1019 }
1020 else if (EQ (XCAR (tem), Qkeymap))
1021 res = Fcopy_keymap (elt);
1022 }
1023 return res;
1024 }
1025
1026 static void
1027 copy_keymap_1 (chartable, idx, elt)
1028 Lisp_Object chartable, idx, elt;
1029 {
1030 Faset (chartable, idx, copy_keymap_item (elt));
1031 }
1032
1033 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1034 doc: /* Return a copy of the keymap KEYMAP.
1035 The copy starts out with the same definitions of KEYMAP,
1036 but changing either the copy or KEYMAP does not affect the other.
1037 Any key definitions that are subkeymaps are recursively copied.
1038 However, a key definition which is a symbol whose definition is a keymap
1039 is not copied. */)
1040 (keymap)
1041 Lisp_Object keymap;
1042 {
1043 register Lisp_Object copy, tail;
1044 keymap = get_keymap (keymap, 1, 0);
1045 copy = tail = Fcons (Qkeymap, Qnil);
1046 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1047
1048 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1049 {
1050 Lisp_Object elt = XCAR (keymap);
1051 if (CHAR_TABLE_P (elt))
1052 {
1053 Lisp_Object indices[3];
1054 elt = Fcopy_sequence (elt);
1055 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1056 }
1057 else if (VECTORP (elt))
1058 {
1059 int i;
1060 elt = Fcopy_sequence (elt);
1061 for (i = 0; i < ASIZE (elt); i++)
1062 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1063 }
1064 else if (CONSP (elt))
1065 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1066 XSETCDR (tail, Fcons (elt, Qnil));
1067 tail = XCDR (tail);
1068 keymap = XCDR (keymap);
1069 }
1070 XSETCDR (tail, keymap);
1071 return copy;
1072 }
1073 \f
1074 /* Simple Keymap mutators and accessors. */
1075
1076 /* GC is possible in this function if it autoloads a keymap. */
1077
1078 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1079 doc: /* In KEYMAP, define key sequence KEY as DEF.
1080 KEYMAP is a keymap.
1081
1082 KEY is a string or a vector of symbols and characters meaning a
1083 sequence of keystrokes and events. Non-ASCII characters with codes
1084 above 127 (such as ISO Latin-1) can be included if you use a vector.
1085 Using [t] for KEY creates a default definition, which applies to any
1086 event type that has no other definition in this keymap.
1087
1088 DEF is anything that can be a key's definition:
1089 nil (means key is undefined in this keymap),
1090 a command (a Lisp function suitable for interactive calling),
1091 a string (treated as a keyboard macro),
1092 a keymap (to define a prefix key),
1093 a symbol (when the key is looked up, the symbol will stand for its
1094 function definition, which should at that time be one of the above,
1095 or another symbol whose function definition is used, etc.),
1096 a cons (STRING . DEFN), meaning that DEFN is the definition
1097 (DEFN should be a valid definition in its own right),
1098 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1099
1100 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1101 binding is altered. If there is no binding for KEY, the new pair
1102 binding KEY to DEF is added at the front of KEYMAP. */)
1103 (keymap, key, def)
1104 Lisp_Object keymap;
1105 Lisp_Object key;
1106 Lisp_Object def;
1107 {
1108 register int idx;
1109 register Lisp_Object c;
1110 register Lisp_Object cmd;
1111 int metized = 0;
1112 int meta_bit;
1113 int length;
1114 struct gcpro gcpro1, gcpro2, gcpro3;
1115
1116 GCPRO3 (keymap, key, def);
1117 keymap = get_keymap (keymap, 1, 1);
1118
1119 if (!VECTORP (key) && !STRINGP (key))
1120 key = wrong_type_argument (Qarrayp, key);
1121
1122 length = XFASTINT (Flength (key));
1123 if (length == 0)
1124 RETURN_UNGCPRO (Qnil);
1125
1126 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1127 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1128
1129 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1130
1131 idx = 0;
1132 while (1)
1133 {
1134 c = Faref (key, make_number (idx));
1135
1136 if (CONSP (c) && lucid_event_type_list_p (c))
1137 c = Fevent_convert_list (c);
1138
1139 if (SYMBOLP (c))
1140 silly_event_symbol_error (c);
1141
1142 if (INTEGERP (c)
1143 && (XINT (c) & meta_bit)
1144 && !metized)
1145 {
1146 c = meta_prefix_char;
1147 metized = 1;
1148 }
1149 else
1150 {
1151 if (INTEGERP (c))
1152 XSETINT (c, XINT (c) & ~meta_bit);
1153
1154 metized = 0;
1155 idx++;
1156 }
1157
1158 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1159 error ("Key sequence contains invalid event");
1160
1161 if (idx == length)
1162 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1163
1164 cmd = access_keymap (keymap, c, 0, 1, 1);
1165
1166 /* If this key is undefined, make it a prefix. */
1167 if (NILP (cmd))
1168 cmd = define_as_prefix (keymap, c);
1169
1170 keymap = get_keymap (cmd, 0, 1);
1171 if (!CONSP (keymap))
1172 /* We must use Fkey_description rather than just passing key to
1173 error; key might be a vector, not a string. */
1174 error ("Key sequence %s uses invalid prefix characters",
1175 SDATA (Fkey_description (key, Qnil)));
1176 }
1177 }
1178
1179 /* This function may GC (it calls Fkey_binding). */
1180
1181 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1182 doc: /* Return the remapping for command COMMAND in current keymaps.
1183 Returns nil if COMMAND is not remapped (or not a symbol). */)
1184 (command)
1185 Lisp_Object command;
1186 {
1187 if (!SYMBOLP (command))
1188 return Qnil;
1189
1190 ASET (command_remapping_vector, 1, command);
1191 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1192 }
1193
1194 /* Value is number if KEY is too long; nil if valid but has no definition. */
1195 /* GC is possible in this function if it autoloads a keymap. */
1196
1197 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1198 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1199 nil means undefined. See doc of `define-key' for kinds of definitions.
1200
1201 A number as value means KEY is "too long";
1202 that is, characters or symbols in it except for the last one
1203 fail to be a valid sequence of prefix characters in KEYMAP.
1204 The number is how many characters at the front of KEY
1205 it takes to reach a non-prefix command.
1206
1207 Normally, `lookup-key' ignores bindings for t, which act as default
1208 bindings, used when nothing else in the keymap applies; this makes it
1209 usable as a general function for probing keymaps. However, if the
1210 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1211 recognize the default bindings, just as `read-key-sequence' does. */)
1212 (keymap, key, accept_default)
1213 Lisp_Object keymap;
1214 Lisp_Object key;
1215 Lisp_Object accept_default;
1216 {
1217 register int idx;
1218 register Lisp_Object cmd;
1219 register Lisp_Object c;
1220 int length;
1221 int t_ok = !NILP (accept_default);
1222 struct gcpro gcpro1, gcpro2;
1223
1224 GCPRO2 (keymap, key);
1225 keymap = get_keymap (keymap, 1, 1);
1226
1227 if (!VECTORP (key) && !STRINGP (key))
1228 key = wrong_type_argument (Qarrayp, key);
1229
1230 length = XFASTINT (Flength (key));
1231 if (length == 0)
1232 RETURN_UNGCPRO (keymap);
1233
1234 idx = 0;
1235 while (1)
1236 {
1237 c = Faref (key, make_number (idx++));
1238
1239 if (CONSP (c) && lucid_event_type_list_p (c))
1240 c = Fevent_convert_list (c);
1241
1242 /* Turn the 8th bit of string chars into a meta modifier. */
1243 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1244 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1245
1246 /* Allow string since binding for `menu-bar-select-buffer'
1247 includes the buffer name in the key sequence. */
1248 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1249 error ("Key sequence contains invalid event");
1250
1251 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1252 if (idx == length)
1253 RETURN_UNGCPRO (cmd);
1254
1255 keymap = get_keymap (cmd, 0, 1);
1256 if (!CONSP (keymap))
1257 RETURN_UNGCPRO (make_number (idx));
1258
1259 QUIT;
1260 }
1261 }
1262
1263 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1264 Assume that currently it does not define C at all.
1265 Return the keymap. */
1266
1267 static Lisp_Object
1268 define_as_prefix (keymap, c)
1269 Lisp_Object keymap, c;
1270 {
1271 Lisp_Object cmd;
1272
1273 cmd = Fmake_sparse_keymap (Qnil);
1274 /* If this key is defined as a prefix in an inherited keymap,
1275 make it a prefix in this map, and make its definition
1276 inherit the other prefix definition. */
1277 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1278 store_in_keymap (keymap, c, cmd);
1279
1280 return cmd;
1281 }
1282
1283 /* Append a key to the end of a key sequence. We always make a vector. */
1284
1285 Lisp_Object
1286 append_key (key_sequence, key)
1287 Lisp_Object key_sequence, key;
1288 {
1289 Lisp_Object args[2];
1290
1291 args[0] = key_sequence;
1292
1293 args[1] = Fcons (key, Qnil);
1294 return Fvconcat (2, args);
1295 }
1296
1297 /* Given a event type C which is a symbol,
1298 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1299
1300 static void
1301 silly_event_symbol_error (c)
1302 Lisp_Object c;
1303 {
1304 Lisp_Object parsed, base, name, assoc;
1305 int modifiers;
1306
1307 parsed = parse_modifiers (c);
1308 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1309 base = XCAR (parsed);
1310 name = Fsymbol_name (base);
1311 /* This alist includes elements such as ("RET" . "\\r"). */
1312 assoc = Fassoc (name, exclude_keys);
1313
1314 if (! NILP (assoc))
1315 {
1316 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1317 char *p = new_mods;
1318 Lisp_Object keystring;
1319 if (modifiers & alt_modifier)
1320 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1321 if (modifiers & ctrl_modifier)
1322 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1323 if (modifiers & hyper_modifier)
1324 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1325 if (modifiers & meta_modifier)
1326 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1327 if (modifiers & shift_modifier)
1328 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1329 if (modifiers & super_modifier)
1330 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1331 *p = 0;
1332
1333 c = reorder_modifiers (c);
1334 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1335
1336 error ((modifiers & ~meta_modifier
1337 ? "To bind the key %s, use [?%s], not [%s]"
1338 : "To bind the key %s, use \"%s\", not [%s]"),
1339 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1340 SDATA (SYMBOL_NAME (c)));
1341 }
1342 }
1343 \f
1344 /* Global, local, and minor mode keymap stuff. */
1345
1346 /* We can't put these variables inside current_minor_maps, since under
1347 some systems, static gets macro-defined to be the empty string.
1348 Ickypoo. */
1349 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1350 static int cmm_size = 0;
1351
1352 /* Error handler used in current_minor_maps. */
1353 static Lisp_Object
1354 current_minor_maps_error ()
1355 {
1356 return Qnil;
1357 }
1358
1359 /* Store a pointer to an array of the keymaps of the currently active
1360 minor modes in *buf, and return the number of maps it contains.
1361
1362 This function always returns a pointer to the same buffer, and may
1363 free or reallocate it, so if you want to keep it for a long time or
1364 hand it out to lisp code, copy it. This procedure will be called
1365 for every key sequence read, so the nice lispy approach (return a
1366 new assoclist, list, what have you) for each invocation would
1367 result in a lot of consing over time.
1368
1369 If we used xrealloc/xmalloc and ran out of memory, they would throw
1370 back to the command loop, which would try to read a key sequence,
1371 which would call this function again, resulting in an infinite
1372 loop. Instead, we'll use realloc/malloc and silently truncate the
1373 list, let the key sequence be read, and hope some other piece of
1374 code signals the error. */
1375 int
1376 current_minor_maps (modeptr, mapptr)
1377 Lisp_Object **modeptr, **mapptr;
1378 {
1379 int i = 0;
1380 int list_number = 0;
1381 Lisp_Object alist, assoc, var, val;
1382 Lisp_Object emulation_alists;
1383 Lisp_Object lists[2];
1384
1385 emulation_alists = Vemulation_mode_map_alists;
1386 lists[0] = Vminor_mode_overriding_map_alist;
1387 lists[1] = Vminor_mode_map_alist;
1388
1389 for (list_number = 0; list_number < 2; list_number++)
1390 {
1391 if (CONSP (emulation_alists))
1392 {
1393 alist = XCAR (emulation_alists);
1394 emulation_alists = XCDR (emulation_alists);
1395 if (SYMBOLP (alist))
1396 alist = find_symbol_value (alist);
1397 list_number = -1;
1398 }
1399 else
1400 alist = lists[list_number];
1401
1402 for ( ; CONSP (alist); alist = XCDR (alist))
1403 if ((assoc = XCAR (alist), CONSP (assoc))
1404 && (var = XCAR (assoc), SYMBOLP (var))
1405 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1406 && !NILP (val))
1407 {
1408 Lisp_Object temp;
1409
1410 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1411 and also an entry in Vminor_mode_map_alist,
1412 ignore the latter. */
1413 if (list_number == 1)
1414 {
1415 val = assq_no_quit (var, lists[0]);
1416 if (!NILP (val))
1417 continue;
1418 }
1419
1420 if (i >= cmm_size)
1421 {
1422 int newsize, allocsize;
1423 Lisp_Object *newmodes, *newmaps;
1424
1425 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1426 allocsize = newsize * sizeof *newmodes;
1427
1428 /* Use malloc here. See the comment above this function.
1429 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1430 BLOCK_INPUT;
1431 newmodes = (Lisp_Object *) malloc (allocsize);
1432 if (newmodes)
1433 {
1434 if (cmm_modes)
1435 {
1436 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1437 free (cmm_modes);
1438 }
1439 cmm_modes = newmodes;
1440 }
1441
1442 newmaps = (Lisp_Object *) malloc (allocsize);
1443 if (newmaps)
1444 {
1445 if (cmm_maps)
1446 {
1447 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1448 free (cmm_maps);
1449 }
1450 cmm_maps = newmaps;
1451 }
1452 UNBLOCK_INPUT;
1453
1454 if (newmodes == NULL || newmaps == NULL)
1455 break;
1456 cmm_size = newsize;
1457 }
1458
1459 /* Get the keymap definition--or nil if it is not defined. */
1460 temp = internal_condition_case_1 (Findirect_function,
1461 XCDR (assoc),
1462 Qerror, current_minor_maps_error);
1463 if (!NILP (temp))
1464 {
1465 cmm_modes[i] = var;
1466 cmm_maps [i] = temp;
1467 i++;
1468 }
1469 }
1470 }
1471
1472 if (modeptr) *modeptr = cmm_modes;
1473 if (mapptr) *mapptr = cmm_maps;
1474 return i;
1475 }
1476
1477 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1478 0, 1, 0,
1479 doc: /* Return a list of the currently active keymaps.
1480 OLP if non-nil indicates that we should obey `overriding-local-map' and
1481 `overriding-terminal-local-map'. */)
1482 (olp)
1483 Lisp_Object olp;
1484 {
1485 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1486
1487 if (!NILP (olp))
1488 {
1489 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1490 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1491 /* The doc said that overriding-terminal-local-map should
1492 override overriding-local-map. The code used them both,
1493 but it seems clearer to use just one. rms, jan 2005. */
1494 else if (!NILP (Voverriding_local_map))
1495 keymaps = Fcons (Voverriding_local_map, keymaps);
1496 }
1497 if (NILP (XCDR (keymaps)))
1498 {
1499 Lisp_Object local;
1500 Lisp_Object *maps;
1501 int nmaps, i;
1502
1503 /* This usually returns the buffer's local map,
1504 but that can be overridden by a `local-map' property. */
1505 local = get_local_map (PT, current_buffer, Qlocal_map);
1506 if (!NILP (local))
1507 keymaps = Fcons (local, keymaps);
1508
1509 /* Now put all the minor mode keymaps on the list. */
1510 nmaps = current_minor_maps (0, &maps);
1511
1512 for (i = --nmaps; i >= 0; i--)
1513 if (!NILP (maps[i]))
1514 keymaps = Fcons (maps[i], keymaps);
1515
1516 /* This returns nil unless there is a `keymap' property. */
1517 local = get_local_map (PT, current_buffer, Qkeymap);
1518 if (!NILP (local))
1519 keymaps = Fcons (local, keymaps);
1520 }
1521
1522 return keymaps;
1523 }
1524
1525 /* GC is possible in this function if it autoloads a keymap. */
1526
1527 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1528 doc: /* Return the binding for command KEY in current keymaps.
1529 KEY is a string or vector, a sequence of keystrokes.
1530 The binding is probably a symbol with a function definition.
1531
1532 Normally, `key-binding' ignores bindings for t, which act as default
1533 bindings, used when nothing else in the keymap applies; this makes it
1534 usable as a general function for probing keymaps. However, if the
1535 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1536 recognize the default bindings, just as `read-key-sequence' does.
1537
1538 Like the normal command loop, `key-binding' will remap the command
1539 resulting from looking up KEY by looking up the command in the
1540 current keymaps. However, if the optional third argument NO-REMAP
1541 is non-nil, `key-binding' returns the unmapped command. */)
1542 (key, accept_default, no_remap)
1543 Lisp_Object key, accept_default, no_remap;
1544 {
1545 Lisp_Object *maps, value;
1546 int nmaps, i;
1547 struct gcpro gcpro1;
1548
1549 GCPRO1 (key);
1550
1551 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1552 {
1553 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1554 key, accept_default);
1555 if (! NILP (value) && !INTEGERP (value))
1556 goto done;
1557 }
1558 else if (!NILP (Voverriding_local_map))
1559 {
1560 value = Flookup_key (Voverriding_local_map, key, accept_default);
1561 if (! NILP (value) && !INTEGERP (value))
1562 goto done;
1563 }
1564 else
1565 {
1566 Lisp_Object local;
1567
1568 local = get_local_map (PT, current_buffer, Qkeymap);
1569 if (! NILP (local))
1570 {
1571 value = Flookup_key (local, key, accept_default);
1572 if (! NILP (value) && !INTEGERP (value))
1573 goto done;
1574 }
1575
1576 nmaps = current_minor_maps (0, &maps);
1577 /* Note that all these maps are GCPRO'd
1578 in the places where we found them. */
1579
1580 for (i = 0; i < nmaps; i++)
1581 if (! NILP (maps[i]))
1582 {
1583 value = Flookup_key (maps[i], key, accept_default);
1584 if (! NILP (value) && !INTEGERP (value))
1585 goto done;
1586 }
1587
1588 local = get_local_map (PT, current_buffer, Qlocal_map);
1589 if (! NILP (local))
1590 {
1591 value = Flookup_key (local, key, accept_default);
1592 if (! NILP (value) && !INTEGERP (value))
1593 goto done;
1594 }
1595 }
1596
1597 value = Flookup_key (current_global_map, key, accept_default);
1598
1599 done:
1600 UNGCPRO;
1601 if (NILP (value) || INTEGERP (value))
1602 return Qnil;
1603
1604 /* If the result of the ordinary keymap lookup is an interactive
1605 command, look for a key binding (ie. remapping) for that command. */
1606
1607 if (NILP (no_remap) && SYMBOLP (value))
1608 {
1609 Lisp_Object value1;
1610 if (value1 = Fcommand_remapping (value), !NILP (value1))
1611 value = value1;
1612 }
1613
1614 return value;
1615 }
1616
1617 /* GC is possible in this function if it autoloads a keymap. */
1618
1619 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1620 doc: /* Return the binding for command KEYS in current local keymap only.
1621 KEYS is a string or vector, a sequence of keystrokes.
1622 The binding is probably a symbol with a function definition.
1623
1624 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1625 bindings; see the description of `lookup-key' for more details about this. */)
1626 (keys, accept_default)
1627 Lisp_Object keys, accept_default;
1628 {
1629 register Lisp_Object map;
1630 map = current_buffer->keymap;
1631 if (NILP (map))
1632 return Qnil;
1633 return Flookup_key (map, keys, accept_default);
1634 }
1635
1636 /* GC is possible in this function if it autoloads a keymap. */
1637
1638 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1639 doc: /* Return the binding for command KEYS in current global keymap only.
1640 KEYS is a string or vector, a sequence of keystrokes.
1641 The binding is probably a symbol with a function definition.
1642 This function's return values are the same as those of `lookup-key'
1643 \(which see).
1644
1645 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1646 bindings; see the description of `lookup-key' for more details about this. */)
1647 (keys, accept_default)
1648 Lisp_Object keys, accept_default;
1649 {
1650 return Flookup_key (current_global_map, keys, accept_default);
1651 }
1652
1653 /* GC is possible in this function if it autoloads a keymap. */
1654
1655 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1656 doc: /* Find the visible minor mode bindings of KEY.
1657 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1658 the symbol which names the minor mode binding KEY, and BINDING is
1659 KEY's definition in that mode. In particular, if KEY has no
1660 minor-mode bindings, return nil. If the first binding is a
1661 non-prefix, all subsequent bindings will be omitted, since they would
1662 be ignored. Similarly, the list doesn't include non-prefix bindings
1663 that come after prefix bindings.
1664
1665 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1666 bindings; see the description of `lookup-key' for more details about this. */)
1667 (key, accept_default)
1668 Lisp_Object key, accept_default;
1669 {
1670 Lisp_Object *modes, *maps;
1671 int nmaps;
1672 Lisp_Object binding;
1673 int i, j;
1674 struct gcpro gcpro1, gcpro2;
1675
1676 nmaps = current_minor_maps (&modes, &maps);
1677 /* Note that all these maps are GCPRO'd
1678 in the places where we found them. */
1679
1680 binding = Qnil;
1681 GCPRO2 (key, binding);
1682
1683 for (i = j = 0; i < nmaps; i++)
1684 if (!NILP (maps[i])
1685 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1686 && !INTEGERP (binding))
1687 {
1688 if (KEYMAPP (binding))
1689 maps[j++] = Fcons (modes[i], binding);
1690 else if (j == 0)
1691 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1692 }
1693
1694 UNGCPRO;
1695 return Flist (j, maps);
1696 }
1697
1698 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1699 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1700 A new sparse keymap is stored as COMMAND's function definition and its value.
1701 If a second optional argument MAPVAR is given, the map is stored as
1702 its value instead of as COMMAND's value; but COMMAND is still defined
1703 as a function.
1704 The third optional argument NAME, if given, supplies a menu name
1705 string for the map. This is required to use the keymap as a menu.
1706 This function returns COMMAND. */)
1707 (command, mapvar, name)
1708 Lisp_Object command, mapvar, name;
1709 {
1710 Lisp_Object map;
1711 map = Fmake_sparse_keymap (name);
1712 Ffset (command, map);
1713 if (!NILP (mapvar))
1714 Fset (mapvar, map);
1715 else
1716 Fset (command, map);
1717 return command;
1718 }
1719
1720 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1721 doc: /* Select KEYMAP as the global keymap. */)
1722 (keymap)
1723 Lisp_Object keymap;
1724 {
1725 keymap = get_keymap (keymap, 1, 1);
1726 current_global_map = keymap;
1727
1728 return Qnil;
1729 }
1730
1731 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1732 doc: /* Select KEYMAP as the local keymap.
1733 If KEYMAP is nil, that means no local keymap. */)
1734 (keymap)
1735 Lisp_Object keymap;
1736 {
1737 if (!NILP (keymap))
1738 keymap = get_keymap (keymap, 1, 1);
1739
1740 current_buffer->keymap = keymap;
1741
1742 return Qnil;
1743 }
1744
1745 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1746 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1747 ()
1748 {
1749 return current_buffer->keymap;
1750 }
1751
1752 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1753 doc: /* Return the current global keymap. */)
1754 ()
1755 {
1756 return current_global_map;
1757 }
1758
1759 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1760 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1761 ()
1762 {
1763 Lisp_Object *maps;
1764 int nmaps = current_minor_maps (0, &maps);
1765
1766 return Flist (nmaps, maps);
1767 }
1768 \f
1769 /* Help functions for describing and documenting keymaps. */
1770
1771
1772 static void
1773 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1774 Lisp_Object maps, tail, thisseq, key, cmd;
1775 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1776 {
1777 Lisp_Object tem;
1778
1779 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1780 if (NILP (cmd))
1781 return;
1782
1783 /* Look for and break cycles. */
1784 while (!NILP (tem = Frassq (cmd, maps)))
1785 {
1786 Lisp_Object prefix = XCAR (tem);
1787 int lim = XINT (Flength (XCAR (tem)));
1788 if (lim <= XINT (Flength (thisseq)))
1789 { /* This keymap was already seen with a smaller prefix. */
1790 int i = 0;
1791 while (i < lim && EQ (Faref (prefix, make_number (i)),
1792 Faref (thisseq, make_number (i))))
1793 i++;
1794 if (i >= lim)
1795 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1796 return;
1797 }
1798 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1799 but maybe `cmd' occurs again further down in `maps', so keep
1800 looking. */
1801 maps = XCDR (Fmemq (tem, maps));
1802 }
1803
1804 /* If the last key in thisseq is meta-prefix-char,
1805 turn it into a meta-ized keystroke. We know
1806 that the event we're about to append is an
1807 ascii keystroke since we're processing a
1808 keymap table. */
1809 if (is_metized)
1810 {
1811 int meta_bit = meta_modifier;
1812 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1813 tem = Fcopy_sequence (thisseq);
1814
1815 Faset (tem, last, make_number (XINT (key) | meta_bit));
1816
1817 /* This new sequence is the same length as
1818 thisseq, so stick it in the list right
1819 after this one. */
1820 XSETCDR (tail,
1821 Fcons (Fcons (tem, cmd), XCDR (tail)));
1822 }
1823 else
1824 {
1825 tem = append_key (thisseq, key);
1826 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1827 }
1828 }
1829
1830 static void
1831 accessible_keymaps_char_table (args, index, cmd)
1832 Lisp_Object args, index, cmd;
1833 {
1834 accessible_keymaps_1 (index, cmd,
1835 XCAR (XCAR (args)),
1836 XCAR (XCDR (args)),
1837 XCDR (XCDR (args)),
1838 XINT (XCDR (XCAR (args))));
1839 }
1840
1841 /* This function cannot GC. */
1842
1843 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1844 1, 2, 0,
1845 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1846 Returns a list of elements of the form (KEYS . MAP), where the sequence
1847 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1848 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1849 An optional argument PREFIX, if non-nil, should be a key sequence;
1850 then the value includes only maps for prefixes that start with PREFIX. */)
1851 (keymap, prefix)
1852 Lisp_Object keymap, prefix;
1853 {
1854 Lisp_Object maps, tail;
1855 int prefixlen = 0;
1856
1857 /* no need for gcpro because we don't autoload any keymaps. */
1858
1859 if (!NILP (prefix))
1860 prefixlen = XINT (Flength (prefix));
1861
1862 if (!NILP (prefix))
1863 {
1864 /* If a prefix was specified, start with the keymap (if any) for
1865 that prefix, so we don't waste time considering other prefixes. */
1866 Lisp_Object tem;
1867 tem = Flookup_key (keymap, prefix, Qt);
1868 /* Flookup_key may give us nil, or a number,
1869 if the prefix is not defined in this particular map.
1870 It might even give us a list that isn't a keymap. */
1871 tem = get_keymap (tem, 0, 0);
1872 if (CONSP (tem))
1873 {
1874 /* Convert PREFIX to a vector now, so that later on
1875 we don't have to deal with the possibility of a string. */
1876 if (STRINGP (prefix))
1877 {
1878 int i, i_byte, c;
1879 Lisp_Object copy;
1880
1881 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1882 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1883 {
1884 int i_before = i;
1885
1886 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1887 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1888 c ^= 0200 | meta_modifier;
1889 ASET (copy, i_before, make_number (c));
1890 }
1891 prefix = copy;
1892 }
1893 maps = Fcons (Fcons (prefix, tem), Qnil);
1894 }
1895 else
1896 return Qnil;
1897 }
1898 else
1899 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1900 get_keymap (keymap, 1, 0)),
1901 Qnil);
1902
1903 /* For each map in the list maps,
1904 look at any other maps it points to,
1905 and stick them at the end if they are not already in the list.
1906
1907 This is a breadth-first traversal, where tail is the queue of
1908 nodes, and maps accumulates a list of all nodes visited. */
1909
1910 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1911 {
1912 register Lisp_Object thisseq, thismap;
1913 Lisp_Object last;
1914 /* Does the current sequence end in the meta-prefix-char? */
1915 int is_metized;
1916
1917 thisseq = Fcar (Fcar (tail));
1918 thismap = Fcdr (Fcar (tail));
1919 last = make_number (XINT (Flength (thisseq)) - 1);
1920 is_metized = (XINT (last) >= 0
1921 /* Don't metize the last char of PREFIX. */
1922 && XINT (last) >= prefixlen
1923 && EQ (Faref (thisseq, last), meta_prefix_char));
1924
1925 for (; CONSP (thismap); thismap = XCDR (thismap))
1926 {
1927 Lisp_Object elt;
1928
1929 elt = XCAR (thismap);
1930
1931 QUIT;
1932
1933 if (CHAR_TABLE_P (elt))
1934 {
1935 Lisp_Object indices[3];
1936
1937 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1938 elt, Fcons (Fcons (maps, make_number (is_metized)),
1939 Fcons (tail, thisseq)),
1940 0, indices);
1941 }
1942 else if (VECTORP (elt))
1943 {
1944 register int i;
1945
1946 /* Vector keymap. Scan all the elements. */
1947 for (i = 0; i < ASIZE (elt); i++)
1948 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1949 maps, tail, thisseq, is_metized);
1950
1951 }
1952 else if (CONSP (elt))
1953 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1954 maps, tail, thisseq,
1955 is_metized && INTEGERP (XCAR (elt)));
1956
1957 }
1958 }
1959
1960 return maps;
1961 }
1962 \f
1963 Lisp_Object Qsingle_key_description, Qkey_description;
1964
1965 /* This function cannot GC. */
1966
1967 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1968 doc: /* Return a pretty description of key-sequence KEYS.
1969 Optional arg PREFIX is the sequence of keys leading up to KEYS.
1970 Control characters turn into "C-foo" sequences, meta into "M-foo",
1971 spaces are put between sequence elements, etc. */)
1972 (keys, prefix)
1973 Lisp_Object keys, prefix;
1974 {
1975 int len = 0;
1976 int i, i_byte;
1977 Lisp_Object *args;
1978 int size = XINT (Flength (keys));
1979 Lisp_Object list;
1980 Lisp_Object sep = build_string (" ");
1981 Lisp_Object key;
1982 int add_meta = 0;
1983
1984 if (!NILP (prefix))
1985 size += XINT (Flength (prefix));
1986
1987 /* This has one extra element at the end that we don't pass to Fconcat. */
1988 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
1989
1990 /* In effect, this computes
1991 (mapconcat 'single-key-description keys " ")
1992 but we shouldn't use mapconcat because it can do GC. */
1993
1994 next_list:
1995 if (!NILP (prefix))
1996 list = prefix, prefix = Qnil;
1997 else if (!NILP (keys))
1998 list = keys, keys = Qnil;
1999 else
2000 {
2001 if (add_meta)
2002 {
2003 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2004 len += 2;
2005 }
2006 else if (len == 0)
2007 return empty_string;
2008 return Fconcat (len - 1, args);
2009 }
2010
2011 if (STRINGP (list))
2012 size = SCHARS (list);
2013 else if (VECTORP (list))
2014 size = XVECTOR (list)->size;
2015 else if (CONSP (list))
2016 size = XINT (Flength (list));
2017 else
2018 wrong_type_argument (Qarrayp, list);
2019
2020 i = i_byte = 0;
2021
2022 while (i < size)
2023 {
2024 if (STRINGP (list))
2025 {
2026 int c;
2027 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2028 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2029 c ^= 0200 | meta_modifier;
2030 XSETFASTINT (key, c);
2031 }
2032 else if (VECTORP (list))
2033 {
2034 key = AREF (list, i++);
2035 }
2036 else
2037 {
2038 key = XCAR (list);
2039 list = XCDR (list);
2040 i++;
2041 }
2042
2043 if (add_meta)
2044 {
2045 if (!INTEGERP (key)
2046 || EQ (key, meta_prefix_char)
2047 || (XINT (key) & meta_modifier))
2048 {
2049 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2050 args[len++] = sep;
2051 if (EQ (key, meta_prefix_char))
2052 continue;
2053 }
2054 else
2055 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2056 add_meta = 0;
2057 }
2058 else if (EQ (key, meta_prefix_char))
2059 {
2060 add_meta = 1;
2061 continue;
2062 }
2063 args[len++] = Fsingle_key_description (key, Qnil);
2064 args[len++] = sep;
2065 }
2066 goto next_list;
2067 }
2068
2069
2070 char *
2071 push_key_description (c, p, force_multibyte)
2072 register unsigned int c;
2073 register char *p;
2074 int force_multibyte;
2075 {
2076 unsigned c2;
2077
2078 /* Clear all the meaningless bits above the meta bit. */
2079 c &= meta_modifier | ~ - meta_modifier;
2080 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2081 | meta_modifier | shift_modifier | super_modifier);
2082
2083 if (c & alt_modifier)
2084 {
2085 *p++ = 'A';
2086 *p++ = '-';
2087 c -= alt_modifier;
2088 }
2089 if ((c & ctrl_modifier) != 0
2090 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2091 {
2092 *p++ = 'C';
2093 *p++ = '-';
2094 c &= ~ctrl_modifier;
2095 }
2096 if (c & hyper_modifier)
2097 {
2098 *p++ = 'H';
2099 *p++ = '-';
2100 c -= hyper_modifier;
2101 }
2102 if (c & meta_modifier)
2103 {
2104 *p++ = 'M';
2105 *p++ = '-';
2106 c -= meta_modifier;
2107 }
2108 if (c & shift_modifier)
2109 {
2110 *p++ = 'S';
2111 *p++ = '-';
2112 c -= shift_modifier;
2113 }
2114 if (c & super_modifier)
2115 {
2116 *p++ = 's';
2117 *p++ = '-';
2118 c -= super_modifier;
2119 }
2120 if (c < 040)
2121 {
2122 if (c == 033)
2123 {
2124 *p++ = 'E';
2125 *p++ = 'S';
2126 *p++ = 'C';
2127 }
2128 else if (c == '\t')
2129 {
2130 *p++ = 'T';
2131 *p++ = 'A';
2132 *p++ = 'B';
2133 }
2134 else if (c == Ctl ('M'))
2135 {
2136 *p++ = 'R';
2137 *p++ = 'E';
2138 *p++ = 'T';
2139 }
2140 else
2141 {
2142 /* `C-' already added above. */
2143 if (c > 0 && c <= Ctl ('Z'))
2144 *p++ = c + 0140;
2145 else
2146 *p++ = c + 0100;
2147 }
2148 }
2149 else if (c == 0177)
2150 {
2151 *p++ = 'D';
2152 *p++ = 'E';
2153 *p++ = 'L';
2154 }
2155 else if (c == ' ')
2156 {
2157 *p++ = 'S';
2158 *p++ = 'P';
2159 *p++ = 'C';
2160 }
2161 else if (c < 128
2162 || (NILP (current_buffer->enable_multibyte_characters)
2163 && SINGLE_BYTE_CHAR_P (c)
2164 && !force_multibyte))
2165 {
2166 *p++ = c;
2167 }
2168 else
2169 {
2170 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2171
2172 if (force_multibyte && valid_p)
2173 {
2174 if (SINGLE_BYTE_CHAR_P (c))
2175 c = unibyte_char_to_multibyte (c);
2176 p += CHAR_STRING (c, p);
2177 }
2178 else if (NILP (current_buffer->enable_multibyte_characters)
2179 || valid_p)
2180 {
2181 int bit_offset;
2182 *p++ = '\\';
2183 /* The biggest character code uses 19 bits. */
2184 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2185 {
2186 if (c >= (1 << bit_offset))
2187 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2188 }
2189 }
2190 else
2191 p += CHAR_STRING (c, p);
2192 }
2193
2194 return p;
2195 }
2196
2197 /* This function cannot GC. */
2198
2199 DEFUN ("single-key-description", Fsingle_key_description,
2200 Ssingle_key_description, 1, 2, 0,
2201 doc: /* Return a pretty description of command character KEY.
2202 Control characters turn into C-whatever, etc.
2203 Optional argument NO-ANGLES non-nil means don't put angle brackets
2204 around function keys and event symbols. */)
2205 (key, no_angles)
2206 Lisp_Object key, no_angles;
2207 {
2208 if (CONSP (key) && lucid_event_type_list_p (key))
2209 key = Fevent_convert_list (key);
2210
2211 key = EVENT_HEAD (key);
2212
2213 if (INTEGERP (key)) /* Normal character */
2214 {
2215 unsigned int charset, c1, c2;
2216 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2217
2218 if (SINGLE_BYTE_CHAR_P (without_bits))
2219 charset = 0;
2220 else
2221 SPLIT_CHAR (without_bits, charset, c1, c2);
2222
2223 if (charset
2224 && CHARSET_DEFINED_P (charset)
2225 && ((c1 >= 0 && c1 < 32)
2226 || (c2 >= 0 && c2 < 32)))
2227 {
2228 /* Handle a generic character. */
2229 Lisp_Object name;
2230 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2231 CHECK_STRING (name);
2232 return concat2 (build_string ("Character set "), name);
2233 }
2234 else
2235 {
2236 char tem[KEY_DESCRIPTION_SIZE], *end;
2237 int nbytes, nchars;
2238 Lisp_Object string;
2239
2240 end = push_key_description (XUINT (key), tem, 1);
2241 nbytes = end - tem;
2242 nchars = multibyte_chars_in_text (tem, nbytes);
2243 if (nchars == nbytes)
2244 {
2245 *end = '\0';
2246 string = build_string (tem);
2247 }
2248 else
2249 string = make_multibyte_string (tem, nchars, nbytes);
2250 return string;
2251 }
2252 }
2253 else if (SYMBOLP (key)) /* Function key or event-symbol */
2254 {
2255 if (NILP (no_angles))
2256 {
2257 char *buffer
2258 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2259 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2260 return build_string (buffer);
2261 }
2262 else
2263 return Fsymbol_name (key);
2264 }
2265 else if (STRINGP (key)) /* Buffer names in the menubar. */
2266 return Fcopy_sequence (key);
2267 else
2268 error ("KEY must be an integer, cons, symbol, or string");
2269 return Qnil;
2270 }
2271
2272 char *
2273 push_text_char_description (c, p)
2274 register unsigned int c;
2275 register char *p;
2276 {
2277 if (c >= 0200)
2278 {
2279 *p++ = 'M';
2280 *p++ = '-';
2281 c -= 0200;
2282 }
2283 if (c < 040)
2284 {
2285 *p++ = '^';
2286 *p++ = c + 64; /* 'A' - 1 */
2287 }
2288 else if (c == 0177)
2289 {
2290 *p++ = '^';
2291 *p++ = '?';
2292 }
2293 else
2294 *p++ = c;
2295 return p;
2296 }
2297
2298 /* This function cannot GC. */
2299
2300 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2301 doc: /* Return a pretty description of file-character CHARACTER.
2302 Control characters turn into "^char", etc. This differs from
2303 `single-key-description' which turns them into "C-char".
2304 Also, this function recognizes the 2**7 bit as the Meta character,
2305 whereas `single-key-description' uses the 2**27 bit for Meta.
2306 See Info node `(elisp)Describing Characters' for examples. */)
2307 (character)
2308 Lisp_Object character;
2309 {
2310 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2311 unsigned char str[6];
2312 int c;
2313
2314 CHECK_NUMBER (character);
2315
2316 c = XINT (character);
2317 if (!SINGLE_BYTE_CHAR_P (c))
2318 {
2319 int len = CHAR_STRING (c, str);
2320
2321 return make_multibyte_string (str, 1, len);
2322 }
2323
2324 *push_text_char_description (c & 0377, str) = 0;
2325
2326 return build_string (str);
2327 }
2328
2329 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2330 a meta bit. */
2331 static int
2332 ascii_sequence_p (seq)
2333 Lisp_Object seq;
2334 {
2335 int i;
2336 int len = XINT (Flength (seq));
2337
2338 for (i = 0; i < len; i++)
2339 {
2340 Lisp_Object ii, elt;
2341
2342 XSETFASTINT (ii, i);
2343 elt = Faref (seq, ii);
2344
2345 if (!INTEGERP (elt)
2346 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2347 return 0;
2348 }
2349
2350 return 1;
2351 }
2352
2353 \f
2354 /* where-is - finding a command in a set of keymaps. */
2355
2356 static Lisp_Object where_is_internal ();
2357 static Lisp_Object where_is_internal_1 ();
2358 static void where_is_internal_2 ();
2359
2360 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2361 Returns the first non-nil binding found in any of those maps. */
2362
2363 static Lisp_Object
2364 shadow_lookup (shadow, key, flag)
2365 Lisp_Object shadow, key, flag;
2366 {
2367 Lisp_Object tail, value;
2368
2369 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2370 {
2371 value = Flookup_key (XCAR (tail), key, flag);
2372 if (!NILP (value) && !NATNUMP (value))
2373 return value;
2374 }
2375 return Qnil;
2376 }
2377
2378 static Lisp_Object Vmouse_events;
2379
2380 /* This function can GC if Flookup_key autoloads any keymaps. */
2381
2382 static Lisp_Object
2383 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2384 Lisp_Object definition, keymaps;
2385 Lisp_Object firstonly, noindirect, no_remap;
2386 {
2387 Lisp_Object maps = Qnil;
2388 Lisp_Object found, sequences;
2389 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2390 /* 1 means ignore all menu bindings entirely. */
2391 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2392
2393 /* If this command is remapped, then it has no key bindings
2394 of its own. */
2395 if (NILP (no_remap) && SYMBOLP (definition))
2396 {
2397 Lisp_Object tem;
2398 if (tem = Fcommand_remapping (definition), !NILP (tem))
2399 return Qnil;
2400 }
2401
2402 found = keymaps;
2403 while (CONSP (found))
2404 {
2405 maps =
2406 nconc2 (maps,
2407 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2408 found = XCDR (found);
2409 }
2410
2411 GCPRO5 (definition, keymaps, maps, found, sequences);
2412 found = Qnil;
2413 sequences = Qnil;
2414
2415 for (; !NILP (maps); maps = Fcdr (maps))
2416 {
2417 /* Key sequence to reach map, and the map that it reaches */
2418 register Lisp_Object this, map, tem;
2419
2420 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2421 [M-CHAR] sequences, check if last character of the sequence
2422 is the meta-prefix char. */
2423 Lisp_Object last;
2424 int last_is_meta;
2425
2426 this = Fcar (Fcar (maps));
2427 map = Fcdr (Fcar (maps));
2428 last = make_number (XINT (Flength (this)) - 1);
2429 last_is_meta = (XINT (last) >= 0
2430 && EQ (Faref (this, last), meta_prefix_char));
2431
2432 /* if (nomenus && !ascii_sequence_p (this)) */
2433 if (nomenus && XINT (last) >= 0
2434 && SYMBOLP (tem = Faref (this, make_number (0)))
2435 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2436 /* If no menu entries should be returned, skip over the
2437 keymaps bound to `menu-bar' and `tool-bar' and other
2438 non-ascii prefixes like `C-down-mouse-2'. */
2439 continue;
2440
2441 QUIT;
2442
2443 while (CONSP (map))
2444 {
2445 /* Because the code we want to run on each binding is rather
2446 large, we don't want to have two separate loop bodies for
2447 sparse keymap bindings and tables; we want to iterate one
2448 loop body over both keymap and vector bindings.
2449
2450 For this reason, if Fcar (map) is a vector, we don't
2451 advance map to the next element until i indicates that we
2452 have finished off the vector. */
2453 Lisp_Object elt, key, binding;
2454 elt = XCAR (map);
2455 map = XCDR (map);
2456
2457 sequences = Qnil;
2458
2459 QUIT;
2460
2461 /* Set key and binding to the current key and binding, and
2462 advance map and i to the next binding. */
2463 if (VECTORP (elt))
2464 {
2465 Lisp_Object sequence;
2466 int i;
2467 /* In a vector, look at each element. */
2468 for (i = 0; i < XVECTOR (elt)->size; i++)
2469 {
2470 binding = AREF (elt, i);
2471 XSETFASTINT (key, i);
2472 sequence = where_is_internal_1 (binding, key, definition,
2473 noindirect, this,
2474 last, nomenus, last_is_meta);
2475 if (!NILP (sequence))
2476 sequences = Fcons (sequence, sequences);
2477 }
2478 }
2479 else if (CHAR_TABLE_P (elt))
2480 {
2481 Lisp_Object indices[3];
2482 Lisp_Object args;
2483
2484 args = Fcons (Fcons (Fcons (definition, noindirect),
2485 Qnil), /* Result accumulator. */
2486 Fcons (Fcons (this, last),
2487 Fcons (make_number (nomenus),
2488 make_number (last_is_meta))));
2489 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2490 0, indices);
2491 sequences = XCDR (XCAR (args));
2492 }
2493 else if (CONSP (elt))
2494 {
2495 Lisp_Object sequence;
2496
2497 key = XCAR (elt);
2498 binding = XCDR (elt);
2499
2500 sequence = where_is_internal_1 (binding, key, definition,
2501 noindirect, this,
2502 last, nomenus, last_is_meta);
2503 if (!NILP (sequence))
2504 sequences = Fcons (sequence, sequences);
2505 }
2506
2507
2508 while (!NILP (sequences))
2509 {
2510 Lisp_Object sequence, remapped, function;
2511
2512 sequence = XCAR (sequences);
2513 sequences = XCDR (sequences);
2514
2515 /* If the current sequence is a command remapping with
2516 format [remap COMMAND], find the key sequences
2517 which run COMMAND, and use those sequences instead. */
2518 remapped = Qnil;
2519 if (NILP (no_remap)
2520 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2521 && EQ (AREF (sequence, 0), Qremap)
2522 && (function = AREF (sequence, 1), SYMBOLP (function)))
2523 {
2524 Lisp_Object remapped1;
2525
2526 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2527 if (CONSP (remapped1))
2528 {
2529 /* Verify that this key binding actually maps to the
2530 remapped command (see below). */
2531 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2532 continue;
2533 sequence = XCAR (remapped1);
2534 remapped = XCDR (remapped1);
2535 goto record_sequence;
2536 }
2537 }
2538
2539 /* Verify that this key binding is not shadowed by another
2540 binding for the same key, before we say it exists.
2541
2542 Mechanism: look for local definition of this key and if
2543 it is defined and does not match what we found then
2544 ignore this key.
2545
2546 Either nil or number as value from Flookup_key
2547 means undefined. */
2548 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2549 continue;
2550
2551 record_sequence:
2552 /* It is a true unshadowed match. Record it, unless it's already
2553 been seen (as could happen when inheriting keymaps). */
2554 if (NILP (Fmember (sequence, found)))
2555 found = Fcons (sequence, found);
2556
2557 /* If firstonly is Qnon_ascii, then we can return the first
2558 binding we find. If firstonly is not Qnon_ascii but not
2559 nil, then we should return the first ascii-only binding
2560 we find. */
2561 if (EQ (firstonly, Qnon_ascii))
2562 RETURN_UNGCPRO (sequence);
2563 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2564 RETURN_UNGCPRO (sequence);
2565
2566 if (CONSP (remapped))
2567 {
2568 sequence = XCAR (remapped);
2569 remapped = XCDR (remapped);
2570 goto record_sequence;
2571 }
2572 }
2573 }
2574 }
2575
2576 UNGCPRO;
2577
2578 found = Fnreverse (found);
2579
2580 /* firstonly may have been t, but we may have gone all the way through
2581 the keymaps without finding an all-ASCII key sequence. So just
2582 return the best we could find. */
2583 if (!NILP (firstonly))
2584 return Fcar (found);
2585
2586 return found;
2587 }
2588
2589 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2590 doc: /* Return list of keys that invoke DEFINITION.
2591 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2592 If KEYMAP is nil, search all the currently active keymaps.
2593 If KEYMAP is a list of keymaps, search only those keymaps.
2594
2595 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2596 rather than a list of all possible key sequences.
2597 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2598 no matter what it is.
2599 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2600 \(or their meta variants) and entirely reject menu bindings.
2601
2602 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2603 to other keymaps or slots. This makes it possible to search for an
2604 indirect definition itself.
2605
2606 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2607 that invoke a command which is remapped to DEFINITION, but include the
2608 remapped command in the returned list. */)
2609 (definition, keymap, firstonly, noindirect, no_remap)
2610 Lisp_Object definition, keymap;
2611 Lisp_Object firstonly, noindirect, no_remap;
2612 {
2613 Lisp_Object sequences, keymaps;
2614 /* 1 means ignore all menu bindings entirely. */
2615 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2616 Lisp_Object result;
2617
2618 /* Find the relevant keymaps. */
2619 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2620 keymaps = keymap;
2621 else if (!NILP (keymap))
2622 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2623 else
2624 keymaps = Fcurrent_active_maps (Qnil);
2625
2626 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2627 We don't really need to check `keymap'. */
2628 if (nomenus && NILP (noindirect) && NILP (keymap))
2629 {
2630 Lisp_Object *defns;
2631 int i, j, n;
2632 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2633
2634 /* Check heuristic-consistency of the cache. */
2635 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2636 where_is_cache = Qnil;
2637
2638 if (NILP (where_is_cache))
2639 {
2640 /* We need to create the cache. */
2641 Lisp_Object args[2];
2642 where_is_cache = Fmake_hash_table (0, args);
2643 where_is_cache_keymaps = Qt;
2644
2645 /* Fill in the cache. */
2646 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2647 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2648 UNGCPRO;
2649
2650 where_is_cache_keymaps = keymaps;
2651 }
2652
2653 /* We want to process definitions from the last to the first.
2654 Instead of consing, copy definitions to a vector and step
2655 over that vector. */
2656 sequences = Fgethash (definition, where_is_cache, Qnil);
2657 n = XINT (Flength (sequences));
2658 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2659 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2660 defns[i++] = XCAR (sequences);
2661
2662 /* Verify that the key bindings are not shadowed. Note that
2663 the following can GC. */
2664 GCPRO2 (definition, keymaps);
2665 result = Qnil;
2666 j = -1;
2667 for (i = n - 1; i >= 0; --i)
2668 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2669 {
2670 if (ascii_sequence_p (defns[i]))
2671 break;
2672 else if (j < 0)
2673 j = i;
2674 }
2675
2676 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2677 UNGCPRO;
2678 }
2679 else
2680 {
2681 /* Kill the cache so that where_is_internal_1 doesn't think
2682 we're filling it up. */
2683 where_is_cache = Qnil;
2684 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2685 }
2686
2687 return result;
2688 }
2689
2690 /* This is the function that Fwhere_is_internal calls using map_char_table.
2691 ARGS has the form
2692 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2693 .
2694 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2695 Since map_char_table doesn't really use the return value from this function,
2696 we the result append to RESULT, the slot in ARGS.
2697
2698 This function can GC because it calls where_is_internal_1 which can
2699 GC. */
2700
2701 static void
2702 where_is_internal_2 (args, key, binding)
2703 Lisp_Object args, key, binding;
2704 {
2705 Lisp_Object definition, noindirect, this, last;
2706 Lisp_Object result, sequence;
2707 int nomenus, last_is_meta;
2708 struct gcpro gcpro1, gcpro2, gcpro3;
2709
2710 GCPRO3 (args, key, binding);
2711 result = XCDR (XCAR (args));
2712 definition = XCAR (XCAR (XCAR (args)));
2713 noindirect = XCDR (XCAR (XCAR (args)));
2714 this = XCAR (XCAR (XCDR (args)));
2715 last = XCDR (XCAR (XCDR (args)));
2716 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2717 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2718
2719 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2720 this, last, nomenus, last_is_meta);
2721
2722 if (!NILP (sequence))
2723 XSETCDR (XCAR (args), Fcons (sequence, result));
2724
2725 UNGCPRO;
2726 }
2727
2728
2729 /* This function cannot GC. */
2730
2731 static Lisp_Object
2732 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2733 nomenus, last_is_meta)
2734 Lisp_Object binding, key, definition, noindirect, this, last;
2735 int nomenus, last_is_meta;
2736 {
2737 Lisp_Object sequence;
2738
2739 /* Search through indirections unless that's not wanted. */
2740 if (NILP (noindirect))
2741 binding = get_keyelt (binding, 0);
2742
2743 /* End this iteration if this element does not match
2744 the target. */
2745
2746 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2747 || EQ (binding, definition)
2748 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2749 /* Doesn't match. */
2750 return Qnil;
2751
2752 /* We have found a match. Construct the key sequence where we found it. */
2753 if (INTEGERP (key) && last_is_meta)
2754 {
2755 sequence = Fcopy_sequence (this);
2756 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2757 }
2758 else
2759 sequence = append_key (this, key);
2760
2761 if (!NILP (where_is_cache))
2762 {
2763 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2764 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2765 return Qnil;
2766 }
2767 else
2768 return sequence;
2769 }
2770 \f
2771 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2772
2773 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2774 doc: /* Insert the list of all defined keys and their definitions.
2775 The list is inserted in the current buffer, while the bindings are
2776 looked up in BUFFER.
2777 The optional argument PREFIX, if non-nil, should be a key sequence;
2778 then we display only bindings that start with that prefix.
2779 The optional argument MENUS, if non-nil, says to mention menu bindings.
2780 \(Ordinarily these are omitted from the output.) */)
2781 (buffer, prefix, menus)
2782 Lisp_Object buffer, prefix, menus;
2783 {
2784 Lisp_Object outbuf, shadow;
2785 int nomenu = NILP (menus);
2786 register Lisp_Object start1;
2787 struct gcpro gcpro1;
2788
2789 char *alternate_heading
2790 = "\
2791 Keyboard translations:\n\n\
2792 You type Translation\n\
2793 -------- -----------\n";
2794
2795 shadow = Qnil;
2796 GCPRO1 (shadow);
2797
2798 outbuf = Fcurrent_buffer ();
2799
2800 /* Report on alternates for keys. */
2801 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2802 {
2803 int c;
2804 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2805 int translate_len = SCHARS (Vkeyboard_translate_table);
2806
2807 for (c = 0; c < translate_len; c++)
2808 if (translate[c] != c)
2809 {
2810 char buf[KEY_DESCRIPTION_SIZE];
2811 char *bufend;
2812
2813 if (alternate_heading)
2814 {
2815 insert_string (alternate_heading);
2816 alternate_heading = 0;
2817 }
2818
2819 bufend = push_key_description (translate[c], buf, 1);
2820 insert (buf, bufend - buf);
2821 Findent_to (make_number (16), make_number (1));
2822 bufend = push_key_description (c, buf, 1);
2823 insert (buf, bufend - buf);
2824
2825 insert ("\n", 1);
2826 }
2827
2828 insert ("\n", 1);
2829 }
2830
2831 if (!NILP (Vkey_translation_map))
2832 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2833 "Key translations", nomenu, 1, 0);
2834
2835
2836 /* Print the (major mode) local map. */
2837 start1 = Qnil;
2838 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2839 start1 = current_kboard->Voverriding_terminal_local_map;
2840 else if (!NILP (Voverriding_local_map))
2841 start1 = Voverriding_local_map;
2842
2843 if (!NILP (start1))
2844 {
2845 describe_map_tree (start1, 1, shadow, prefix,
2846 "\f\nOverriding Bindings", nomenu, 0, 0);
2847 shadow = Fcons (start1, shadow);
2848 }
2849 else
2850 {
2851 /* Print the minor mode and major mode keymaps. */
2852 int i, nmaps;
2853 Lisp_Object *modes, *maps;
2854
2855 /* Temporarily switch to `buffer', so that we can get that buffer's
2856 minor modes correctly. */
2857 Fset_buffer (buffer);
2858
2859 nmaps = current_minor_maps (&modes, &maps);
2860 Fset_buffer (outbuf);
2861
2862 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2863 XBUFFER (buffer), Qkeymap);
2864 if (!NILP (start1))
2865 {
2866 describe_map_tree (start1, 1, shadow, prefix,
2867 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2868 shadow = Fcons (start1, shadow);
2869 }
2870
2871 /* Print the minor mode maps. */
2872 for (i = 0; i < nmaps; i++)
2873 {
2874 /* The title for a minor mode keymap
2875 is constructed at run time.
2876 We let describe_map_tree do the actual insertion
2877 because it takes care of other features when doing so. */
2878 char *title, *p;
2879
2880 if (!SYMBOLP (modes[i]))
2881 abort();
2882
2883 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2884 *p++ = '\f';
2885 *p++ = '\n';
2886 *p++ = '`';
2887 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2888 SCHARS (SYMBOL_NAME (modes[i])));
2889 p += SCHARS (SYMBOL_NAME (modes[i]));
2890 *p++ = '\'';
2891 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2892 p += sizeof (" Minor Mode Bindings") - 1;
2893 *p = 0;
2894
2895 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2896 shadow = Fcons (maps[i], shadow);
2897 }
2898
2899 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2900 XBUFFER (buffer), Qlocal_map);
2901 if (!NILP (start1))
2902 {
2903 if (EQ (start1, XBUFFER (buffer)->keymap))
2904 describe_map_tree (start1, 1, shadow, prefix,
2905 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2906 else
2907 describe_map_tree (start1, 1, shadow, prefix,
2908 "\f\n`local-map' Property Bindings",
2909 nomenu, 0, 0);
2910
2911 shadow = Fcons (start1, shadow);
2912 }
2913 }
2914
2915 describe_map_tree (current_global_map, 1, shadow, prefix,
2916 "\f\nGlobal Bindings", nomenu, 0, 1);
2917
2918 /* Print the function-key-map translations under this prefix. */
2919 if (!NILP (Vfunction_key_map))
2920 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2921 "\f\nFunction key map translations", nomenu, 1, 0);
2922
2923 UNGCPRO;
2924 return Qnil;
2925 }
2926
2927 /* Insert a description of the key bindings in STARTMAP,
2928 followed by those of all maps reachable through STARTMAP.
2929 If PARTIAL is nonzero, omit certain "uninteresting" commands
2930 (such as `undefined').
2931 If SHADOW is non-nil, it is a list of maps;
2932 don't mention keys which would be shadowed by any of them.
2933 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2934 TITLE, if not 0, is a string to insert at the beginning.
2935 TITLE should not end with a colon or a newline; we supply that.
2936 If NOMENU is not 0, then omit menu-bar commands.
2937
2938 If TRANSL is nonzero, the definitions are actually key translations
2939 so print strings and vectors differently.
2940
2941 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2942 to look through. */
2943
2944 void
2945 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2946 always_title)
2947 Lisp_Object startmap, shadow, prefix;
2948 int partial;
2949 char *title;
2950 int nomenu;
2951 int transl;
2952 int always_title;
2953 {
2954 Lisp_Object maps, orig_maps, seen, sub_shadows;
2955 struct gcpro gcpro1, gcpro2, gcpro3;
2956 int something = 0;
2957 char *key_heading
2958 = "\
2959 key binding\n\
2960 --- -------\n";
2961
2962 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2963 seen = Qnil;
2964 sub_shadows = Qnil;
2965 GCPRO3 (maps, seen, sub_shadows);
2966
2967 if (nomenu)
2968 {
2969 Lisp_Object list;
2970
2971 /* Delete from MAPS each element that is for the menu bar. */
2972 for (list = maps; !NILP (list); list = XCDR (list))
2973 {
2974 Lisp_Object elt, prefix, tem;
2975
2976 elt = Fcar (list);
2977 prefix = Fcar (elt);
2978 if (XVECTOR (prefix)->size >= 1)
2979 {
2980 tem = Faref (prefix, make_number (0));
2981 if (EQ (tem, Qmenu_bar))
2982 maps = Fdelq (elt, maps);
2983 }
2984 }
2985 }
2986
2987 if (!NILP (maps) || always_title)
2988 {
2989 if (title)
2990 {
2991 insert_string (title);
2992 if (!NILP (prefix))
2993 {
2994 insert_string (" Starting With ");
2995 insert1 (Fkey_description (prefix, Qnil));
2996 }
2997 insert_string (":\n");
2998 }
2999 insert_string (key_heading);
3000 something = 1;
3001 }
3002
3003 for (; !NILP (maps); maps = Fcdr (maps))
3004 {
3005 register Lisp_Object elt, prefix, tail;
3006
3007 elt = Fcar (maps);
3008 prefix = Fcar (elt);
3009
3010 sub_shadows = Qnil;
3011
3012 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3013 {
3014 Lisp_Object shmap;
3015
3016 shmap = XCAR (tail);
3017
3018 /* If the sequence by which we reach this keymap is zero-length,
3019 then the shadow map for this keymap is just SHADOW. */
3020 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3021 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3022 ;
3023 /* If the sequence by which we reach this keymap actually has
3024 some elements, then the sequence's definition in SHADOW is
3025 what we should use. */
3026 else
3027 {
3028 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3029 if (INTEGERP (shmap))
3030 shmap = Qnil;
3031 }
3032
3033 /* If shmap is not nil and not a keymap,
3034 it completely shadows this map, so don't
3035 describe this map at all. */
3036 if (!NILP (shmap) && !KEYMAPP (shmap))
3037 goto skip;
3038
3039 if (!NILP (shmap))
3040 sub_shadows = Fcons (shmap, sub_shadows);
3041 }
3042
3043 /* Maps we have already listed in this loop shadow this map. */
3044 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3045 {
3046 Lisp_Object tem;
3047 tem = Fequal (Fcar (XCAR (tail)), prefix);
3048 if (!NILP (tem))
3049 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3050 }
3051
3052 describe_map (Fcdr (elt), prefix,
3053 transl ? describe_translation : describe_command,
3054 partial, sub_shadows, &seen, nomenu);
3055
3056 skip: ;
3057 }
3058
3059 if (something)
3060 insert_string ("\n");
3061
3062 UNGCPRO;
3063 }
3064
3065 static int previous_description_column;
3066
3067 static void
3068 describe_command (definition, args)
3069 Lisp_Object definition, args;
3070 {
3071 register Lisp_Object tem1;
3072 int column = (int) current_column (); /* iftc */
3073 int description_column;
3074
3075 /* If column 16 is no good, go to col 32;
3076 but don't push beyond that--go to next line instead. */
3077 if (column > 30)
3078 {
3079 insert_char ('\n');
3080 description_column = 32;
3081 }
3082 else if (column > 14 || (column > 10 && previous_description_column == 32))
3083 description_column = 32;
3084 else
3085 description_column = 16;
3086
3087 Findent_to (make_number (description_column), make_number (1));
3088 previous_description_column = description_column;
3089
3090 if (SYMBOLP (definition))
3091 {
3092 tem1 = SYMBOL_NAME (definition);
3093 insert1 (tem1);
3094 insert_string ("\n");
3095 }
3096 else if (STRINGP (definition) || VECTORP (definition))
3097 insert_string ("Keyboard Macro\n");
3098 else if (KEYMAPP (definition))
3099 insert_string ("Prefix Command\n");
3100 else
3101 insert_string ("??\n");
3102 }
3103
3104 static void
3105 describe_translation (definition, args)
3106 Lisp_Object definition, args;
3107 {
3108 register Lisp_Object tem1;
3109
3110 Findent_to (make_number (16), make_number (1));
3111
3112 if (SYMBOLP (definition))
3113 {
3114 tem1 = SYMBOL_NAME (definition);
3115 insert1 (tem1);
3116 insert_string ("\n");
3117 }
3118 else if (STRINGP (definition) || VECTORP (definition))
3119 {
3120 insert1 (Fkey_description (definition, Qnil));
3121 insert_string ("\n");
3122 }
3123 else if (KEYMAPP (definition))
3124 insert_string ("Prefix Command\n");
3125 else
3126 insert_string ("??\n");
3127 }
3128
3129 /* Describe the contents of map MAP, assuming that this map itself is
3130 reached by the sequence of prefix keys PREFIX (a string or vector).
3131 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3132
3133 static void
3134 describe_map (map, prefix, elt_describer, partial, shadow, seen, nomenu)
3135 register Lisp_Object map;
3136 Lisp_Object prefix;
3137 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3138 int partial;
3139 Lisp_Object shadow;
3140 Lisp_Object *seen;
3141 int nomenu;
3142 {
3143 Lisp_Object tail, definition, event;
3144 Lisp_Object tem;
3145 Lisp_Object suppress;
3146 Lisp_Object kludge;
3147 int first = 1;
3148 struct gcpro gcpro1, gcpro2, gcpro3;
3149
3150 suppress = Qnil;
3151
3152 if (partial)
3153 suppress = intern ("suppress-keymap");
3154
3155 /* This vector gets used to present single keys to Flookup_key. Since
3156 that is done once per keymap element, we don't want to cons up a
3157 fresh vector every time. */
3158 kludge = Fmake_vector (make_number (1), Qnil);
3159 definition = Qnil;
3160
3161 GCPRO3 (prefix, definition, kludge);
3162
3163 for (tail = map; CONSP (tail); tail = XCDR (tail))
3164 {
3165 QUIT;
3166
3167 if (VECTORP (XCAR (tail))
3168 || CHAR_TABLE_P (XCAR (tail)))
3169 describe_vector (XCAR (tail),
3170 prefix, Qnil, elt_describer, partial, shadow, map,
3171 (int *)0, 0, 1);
3172 else if (CONSP (XCAR (tail)))
3173 {
3174 event = XCAR (XCAR (tail));
3175
3176 /* Ignore bindings whose "prefix" are not really valid events.
3177 (We get these in the frames and buffers menu.) */
3178 if (!(SYMBOLP (event) || INTEGERP (event)))
3179 continue;
3180
3181 if (nomenu && EQ (event, Qmenu_bar))
3182 continue;
3183
3184 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3185
3186 /* Don't show undefined commands or suppressed commands. */
3187 if (NILP (definition)) continue;
3188 if (SYMBOLP (definition) && partial)
3189 {
3190 tem = Fget (definition, suppress);
3191 if (!NILP (tem))
3192 continue;
3193 }
3194
3195 /* Don't show a command that isn't really visible
3196 because a local definition of the same key shadows it. */
3197
3198 ASET (kludge, 0, event);
3199 if (!NILP (shadow))
3200 {
3201 tem = shadow_lookup (shadow, kludge, Qt);
3202 if (!NILP (tem)) continue;
3203 }
3204
3205 tem = Flookup_key (map, kludge, Qt);
3206 if (!EQ (tem, definition)) continue;
3207
3208 if (first)
3209 {
3210 previous_description_column = 0;
3211 insert ("\n", 1);
3212 first = 0;
3213 }
3214
3215 /* THIS gets the string to describe the character EVENT. */
3216 insert1 (Fkey_description (kludge, prefix));
3217
3218 /* Print a description of the definition of this character.
3219 elt_describer will take care of spacing out far enough
3220 for alignment purposes. */
3221 (*elt_describer) (definition, Qnil);
3222 }
3223 else if (EQ (XCAR (tail), Qkeymap))
3224 {
3225 /* The same keymap might be in the structure twice, if we're
3226 using an inherited keymap. So skip anything we've already
3227 encountered. */
3228 tem = Fassq (tail, *seen);
3229 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3230 break;
3231 *seen = Fcons (Fcons (tail, prefix), *seen);
3232 }
3233 }
3234
3235 UNGCPRO;
3236 }
3237
3238 static void
3239 describe_vector_princ (elt, fun)
3240 Lisp_Object elt, fun;
3241 {
3242 Findent_to (make_number (16), make_number (1));
3243 call1 (fun, elt);
3244 Fterpri (Qnil);
3245 }
3246
3247 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3248 doc: /* Insert a description of contents of VECTOR.
3249 This is text showing the elements of vector matched against indices.
3250 DESCRIBER is the output function used; nil means use `princ'. */)
3251 (vector, describer)
3252 Lisp_Object vector, describer;
3253 {
3254 int count = SPECPDL_INDEX ();
3255 if (NILP (describer))
3256 describer = intern ("princ");
3257 specbind (Qstandard_output, Fcurrent_buffer ());
3258 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3259 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3260 Qnil, Qnil, (int *)0, 0, 0);
3261
3262 return unbind_to (count, Qnil);
3263 }
3264
3265 /* Insert in the current buffer a description of the contents of VECTOR.
3266 We call ELT_DESCRIBER to insert the description of one value found
3267 in VECTOR.
3268
3269 ELT_PREFIX describes what "comes before" the keys or indices defined
3270 by this vector. This is a human-readable string whose size
3271 is not necessarily related to the situation.
3272
3273 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3274 leads to this keymap.
3275
3276 If the vector is a chartable, ELT_PREFIX is the vector
3277 of bytes that lead to the character set or portion of a character
3278 set described by this chartable.
3279
3280 If PARTIAL is nonzero, it means do not mention suppressed commands
3281 (that assumes the vector is in a keymap).
3282
3283 SHADOW is a list of keymaps that shadow this map.
3284 If it is non-nil, then we look up the key in those maps
3285 and we don't mention it now if it is defined by any of them.
3286
3287 ENTIRE_MAP is the keymap in which this vector appears.
3288 If the definition in effect in the whole map does not match
3289 the one in this vector, we ignore this one.
3290
3291 When describing a sub-char-table, INDICES is a list of
3292 indices at higher levels in this char-table,
3293 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3294
3295 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3296
3297 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3298
3299 static void
3300 describe_vector (vector, prefix, args, elt_describer,
3301 partial, shadow, entire_map,
3302 indices, char_table_depth, keymap_p)
3303 register Lisp_Object vector;
3304 Lisp_Object prefix, args;
3305 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3306 int partial;
3307 Lisp_Object shadow;
3308 Lisp_Object entire_map;
3309 int *indices;
3310 int char_table_depth;
3311 int keymap_p;
3312 {
3313 Lisp_Object definition;
3314 Lisp_Object tem2;
3315 Lisp_Object elt_prefix = Qnil;
3316 register int i;
3317 Lisp_Object suppress;
3318 Lisp_Object kludge;
3319 int first = 1;
3320 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3321 /* Range of elements to be handled. */
3322 int from, to;
3323 /* A flag to tell if a leaf in this level of char-table is not a
3324 generic character (i.e. a complete multibyte character). */
3325 int complete_char;
3326 int character;
3327 int starting_i;
3328
3329 suppress = Qnil;
3330
3331 if (indices == 0)
3332 indices = (int *) alloca (3 * sizeof (int));
3333
3334 definition = Qnil;
3335
3336 if (!keymap_p)
3337 {
3338 /* Call Fkey_description first, to avoid GC bug for the other string. */
3339 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3340 {
3341 Lisp_Object tem;
3342 tem = Fkey_description (prefix, Qnil);
3343 elt_prefix = concat2 (tem, build_string (" "));
3344 }
3345 prefix = Qnil;
3346 }
3347
3348 /* This vector gets used to present single keys to Flookup_key. Since
3349 that is done once per vector element, we don't want to cons up a
3350 fresh vector every time. */
3351 kludge = Fmake_vector (make_number (1), Qnil);
3352 GCPRO4 (elt_prefix, prefix, definition, kludge);
3353
3354 if (partial)
3355 suppress = intern ("suppress-keymap");
3356
3357 if (CHAR_TABLE_P (vector))
3358 {
3359 if (char_table_depth == 0)
3360 {
3361 /* VECTOR is a top level char-table. */
3362 complete_char = 1;
3363 from = 0;
3364 to = CHAR_TABLE_ORDINARY_SLOTS;
3365 }
3366 else
3367 {
3368 /* VECTOR is a sub char-table. */
3369 if (char_table_depth >= 3)
3370 /* A char-table is never that deep. */
3371 error ("Too deep char table");
3372
3373 complete_char
3374 = (CHARSET_VALID_P (indices[0])
3375 && ((CHARSET_DIMENSION (indices[0]) == 1
3376 && char_table_depth == 1)
3377 || char_table_depth == 2));
3378
3379 /* Meaningful elements are from 32th to 127th. */
3380 from = 32;
3381 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3382 }
3383 }
3384 else
3385 {
3386 /* This does the right thing for ordinary vectors. */
3387
3388 complete_char = 1;
3389 from = 0;
3390 to = XVECTOR (vector)->size;
3391 }
3392
3393 for (i = from; i < to; i++)
3394 {
3395 QUIT;
3396
3397 if (CHAR_TABLE_P (vector))
3398 {
3399 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3400 complete_char = 0;
3401
3402 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3403 && !CHARSET_DEFINED_P (i - 128))
3404 continue;
3405
3406 definition
3407 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3408 }
3409 else
3410 definition = get_keyelt (AREF (vector, i), 0);
3411
3412 if (NILP (definition)) continue;
3413
3414 /* Don't mention suppressed commands. */
3415 if (SYMBOLP (definition) && partial)
3416 {
3417 Lisp_Object tem;
3418
3419 tem = Fget (definition, suppress);
3420
3421 if (!NILP (tem)) continue;
3422 }
3423
3424 /* Set CHARACTER to the character this entry describes, if any.
3425 Also update *INDICES. */
3426 if (CHAR_TABLE_P (vector))
3427 {
3428 indices[char_table_depth] = i;
3429
3430 if (char_table_depth == 0)
3431 {
3432 character = i;
3433 indices[0] = i - 128;
3434 }
3435 else if (complete_char)
3436 {
3437 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3438 }
3439 else
3440 character = 0;
3441 }
3442 else
3443 character = i;
3444
3445 ASET (kludge, 0, make_number (character));
3446
3447 /* If this binding is shadowed by some other map, ignore it. */
3448 if (!NILP (shadow) && complete_char)
3449 {
3450 Lisp_Object tem;
3451
3452 tem = shadow_lookup (shadow, kludge, Qt);
3453
3454 if (!NILP (tem)) continue;
3455 }
3456
3457 /* Ignore this definition if it is shadowed by an earlier
3458 one in the same keymap. */
3459 if (!NILP (entire_map) && complete_char)
3460 {
3461 Lisp_Object tem;
3462
3463 tem = Flookup_key (entire_map, kludge, Qt);
3464
3465 if (!EQ (tem, definition))
3466 continue;
3467 }
3468
3469 if (first)
3470 {
3471 if (char_table_depth == 0)
3472 insert ("\n", 1);
3473 first = 0;
3474 }
3475
3476 /* For a sub char-table, show the depth by indentation.
3477 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3478 if (char_table_depth > 0)
3479 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3480
3481 /* Output the prefix that applies to every entry in this map. */
3482 if (!NILP (elt_prefix))
3483 insert1 (elt_prefix);
3484
3485 /* Insert or describe the character this slot is for,
3486 or a description of what it is for. */
3487 if (SUB_CHAR_TABLE_P (vector))
3488 {
3489 if (complete_char)
3490 insert_char (character);
3491 else
3492 {
3493 /* We need an octal representation for this block of
3494 characters. */
3495 char work[16];
3496 sprintf (work, "(row %d)", i);
3497 insert (work, strlen (work));
3498 }
3499 }
3500 else if (CHAR_TABLE_P (vector))
3501 {
3502 if (complete_char)
3503 insert1 (Fkey_description (kludge, prefix));
3504 else
3505 {
3506 /* Print the information for this character set. */
3507 insert_string ("<");
3508 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3509 if (STRINGP (tem2))
3510 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3511 SBYTES (tem2), 0);
3512 else
3513 insert ("?", 1);
3514 insert (">", 1);
3515 }
3516 }
3517 else
3518 {
3519 insert1 (Fkey_description (kludge, prefix));
3520 }
3521
3522 /* If we find a sub char-table within a char-table,
3523 scan it recursively; it defines the details for
3524 a character set or a portion of a character set. */
3525 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3526 {
3527 insert ("\n", 1);
3528 describe_vector (definition, prefix, args, elt_describer,
3529 partial, shadow, entire_map,
3530 indices, char_table_depth + 1, keymap_p);
3531 continue;
3532 }
3533
3534 starting_i = i;
3535
3536 /* Find all consecutive characters or rows that have the same
3537 definition. But, for elements of a top level char table, if
3538 they are for charsets, we had better describe one by one even
3539 if they have the same definition. */
3540 if (CHAR_TABLE_P (vector))
3541 {
3542 int limit = to;
3543
3544 if (char_table_depth == 0)
3545 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3546
3547 while (i + 1 < limit
3548 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3549 !NILP (tem2))
3550 && !NILP (Fequal (tem2, definition)))
3551 i++;
3552 }
3553 else
3554 while (i + 1 < to
3555 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3556 !NILP (tem2))
3557 && !NILP (Fequal (tem2, definition)))
3558 i++;
3559
3560
3561 /* If we have a range of more than one character,
3562 print where the range reaches to. */
3563
3564 if (i != starting_i)
3565 {
3566 insert (" .. ", 4);
3567
3568 ASET (kludge, 0, make_number (i));
3569
3570 if (!NILP (elt_prefix))
3571 insert1 (elt_prefix);
3572
3573 if (CHAR_TABLE_P (vector))
3574 {
3575 if (char_table_depth == 0)
3576 {
3577 insert1 (Fkey_description (kludge, prefix));
3578 }
3579 else if (complete_char)
3580 {
3581 indices[char_table_depth] = i;
3582 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3583 insert_char (character);
3584 }
3585 else
3586 {
3587 /* We need an octal representation for this block of
3588 characters. */
3589 char work[16];
3590 sprintf (work, "(row %d)", i);
3591 insert (work, strlen (work));
3592 }
3593 }
3594 else
3595 {
3596 insert1 (Fkey_description (kludge, prefix));
3597 }
3598 }
3599
3600 /* Print a description of the definition of this character.
3601 elt_describer will take care of spacing out far enough
3602 for alignment purposes. */
3603 (*elt_describer) (definition, args);
3604 }
3605
3606 /* For (sub) char-table, print `defalt' slot at last. */
3607 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3608 {
3609 insert (" ", char_table_depth * 2);
3610 insert_string ("<<default>>");
3611 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3612 }
3613
3614 UNGCPRO;
3615 }
3616 \f
3617 /* Apropos - finding all symbols whose names match a regexp. */
3618 static Lisp_Object apropos_predicate;
3619 static Lisp_Object apropos_accumulate;
3620
3621 static void
3622 apropos_accum (symbol, string)
3623 Lisp_Object symbol, string;
3624 {
3625 register Lisp_Object tem;
3626
3627 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3628 if (!NILP (tem) && !NILP (apropos_predicate))
3629 tem = call1 (apropos_predicate, symbol);
3630 if (!NILP (tem))
3631 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3632 }
3633
3634 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3635 doc: /* Show all symbols whose names contain match for REGEXP.
3636 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3637 for each symbol and a symbol is mentioned only if that returns non-nil.
3638 Return list of symbols found. */)
3639 (regexp, predicate)
3640 Lisp_Object regexp, predicate;
3641 {
3642 Lisp_Object tem;
3643 CHECK_STRING (regexp);
3644 apropos_predicate = predicate;
3645 apropos_accumulate = Qnil;
3646 map_obarray (Vobarray, apropos_accum, regexp);
3647 tem = Fsort (apropos_accumulate, Qstring_lessp);
3648 apropos_accumulate = Qnil;
3649 apropos_predicate = Qnil;
3650 return tem;
3651 }
3652 \f
3653 void
3654 syms_of_keymap ()
3655 {
3656 Qkeymap = intern ("keymap");
3657 staticpro (&Qkeymap);
3658 staticpro (&apropos_predicate);
3659 staticpro (&apropos_accumulate);
3660 apropos_predicate = Qnil;
3661 apropos_accumulate = Qnil;
3662
3663 /* Now we are ready to set up this property, so we can
3664 create char tables. */
3665 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3666
3667 /* Initialize the keymaps standardly used.
3668 Each one is the value of a Lisp variable, and is also
3669 pointed to by a C variable */
3670
3671 global_map = Fmake_keymap (Qnil);
3672 Fset (intern ("global-map"), global_map);
3673
3674 current_global_map = global_map;
3675 staticpro (&global_map);
3676 staticpro (&current_global_map);
3677
3678 meta_map = Fmake_keymap (Qnil);
3679 Fset (intern ("esc-map"), meta_map);
3680 Ffset (intern ("ESC-prefix"), meta_map);
3681
3682 control_x_map = Fmake_keymap (Qnil);
3683 Fset (intern ("ctl-x-map"), control_x_map);
3684 Ffset (intern ("Control-X-prefix"), control_x_map);
3685
3686 exclude_keys
3687 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3688 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3689 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3690 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3691 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3692 Qnil)))));
3693 staticpro (&exclude_keys);
3694
3695 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3696 doc: /* List of commands given new key bindings recently.
3697 This is used for internal purposes during Emacs startup;
3698 don't alter it yourself. */);
3699 Vdefine_key_rebound_commands = Qt;
3700
3701 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3702 doc: /* Default keymap to use when reading from the minibuffer. */);
3703 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3704
3705 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3706 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3707 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3708 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3709
3710 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3711 doc: /* Local keymap for minibuffer input with completion. */);
3712 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3713 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3714
3715 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3716 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3717 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3718 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3719 Vminibuffer_local_completion_map);
3720
3721 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3722 doc: /* Alist of keymaps to use for minor modes.
3723 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3724 key sequences and look up bindings iff VARIABLE's value is non-nil.
3725 If two active keymaps bind the same key, the keymap appearing earlier
3726 in the list takes precedence. */);
3727 Vminor_mode_map_alist = Qnil;
3728
3729 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3730 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3731 This variable is an alist just like `minor-mode-map-alist', and it is
3732 used the same way (and before `minor-mode-map-alist'); however,
3733 it is provided for major modes to bind locally. */);
3734 Vminor_mode_overriding_map_alist = Qnil;
3735
3736 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3737 doc: /* List of keymap alists to use for emulations modes.
3738 It is intended for modes or packages using multiple minor-mode keymaps.
3739 Each element is a keymap alist just like `minor-mode-map-alist', or a
3740 symbol with a variable binding which is a keymap alist, and it is used
3741 the same way. The "active" keymaps in each alist are used before
3742 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3743 Vemulation_mode_map_alists = Qnil;
3744
3745
3746 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3747 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3748 This allows Emacs to recognize function keys sent from ASCII
3749 terminals at any point in a key sequence.
3750
3751 The `read-key-sequence' function replaces any subsequence bound by
3752 `function-key-map' with its binding. More precisely, when the active
3753 keymaps have no binding for the current key sequence but
3754 `function-key-map' binds a suffix of the sequence to a vector or string,
3755 `read-key-sequence' replaces the matching suffix with its binding, and
3756 continues with the new sequence.
3757
3758 The events that come from bindings in `function-key-map' are not
3759 themselves looked up in `function-key-map'.
3760
3761 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3762 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3763 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3764 key, typing `ESC O P x' would return [f1 x]. */);
3765 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3766
3767 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3768 doc: /* Keymap of key translations that can override keymaps.
3769 This keymap works like `function-key-map', but comes after that,
3770 and its non-prefix bindings override ordinary bindings. */);
3771 Vkey_translation_map = Qnil;
3772
3773 staticpro (&Vmouse_events);
3774 Vmouse_events = Fcons (intern ("menu-bar"),
3775 Fcons (intern ("tool-bar"),
3776 Fcons (intern ("header-line"),
3777 Fcons (intern ("mode-line"),
3778 Fcons (intern ("mouse-1"),
3779 Fcons (intern ("mouse-2"),
3780 Fcons (intern ("mouse-3"),
3781 Fcons (intern ("mouse-4"),
3782 Fcons (intern ("mouse-5"),
3783 Qnil)))))))));
3784
3785
3786 Qsingle_key_description = intern ("single-key-description");
3787 staticpro (&Qsingle_key_description);
3788
3789 Qkey_description = intern ("key-description");
3790 staticpro (&Qkey_description);
3791
3792 Qkeymapp = intern ("keymapp");
3793 staticpro (&Qkeymapp);
3794
3795 Qnon_ascii = intern ("non-ascii");
3796 staticpro (&Qnon_ascii);
3797
3798 Qmenu_item = intern ("menu-item");
3799 staticpro (&Qmenu_item);
3800
3801 Qremap = intern ("remap");
3802 staticpro (&Qremap);
3803
3804 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3805 staticpro (&command_remapping_vector);
3806
3807 where_is_cache_keymaps = Qt;
3808 where_is_cache = Qnil;
3809 staticpro (&where_is_cache);
3810 staticpro (&where_is_cache_keymaps);
3811
3812 defsubr (&Skeymapp);
3813 defsubr (&Skeymap_parent);
3814 defsubr (&Skeymap_prompt);
3815 defsubr (&Sset_keymap_parent);
3816 defsubr (&Smake_keymap);
3817 defsubr (&Smake_sparse_keymap);
3818 defsubr (&Smap_keymap);
3819 defsubr (&Scopy_keymap);
3820 defsubr (&Scommand_remapping);
3821 defsubr (&Skey_binding);
3822 defsubr (&Slocal_key_binding);
3823 defsubr (&Sglobal_key_binding);
3824 defsubr (&Sminor_mode_key_binding);
3825 defsubr (&Sdefine_key);
3826 defsubr (&Slookup_key);
3827 defsubr (&Sdefine_prefix_command);
3828 defsubr (&Suse_global_map);
3829 defsubr (&Suse_local_map);
3830 defsubr (&Scurrent_local_map);
3831 defsubr (&Scurrent_global_map);
3832 defsubr (&Scurrent_minor_mode_maps);
3833 defsubr (&Scurrent_active_maps);
3834 defsubr (&Saccessible_keymaps);
3835 defsubr (&Skey_description);
3836 defsubr (&Sdescribe_vector);
3837 defsubr (&Ssingle_key_description);
3838 defsubr (&Stext_char_description);
3839 defsubr (&Swhere_is_internal);
3840 defsubr (&Sdescribe_buffer_bindings);
3841 defsubr (&Sapropos_internal);
3842 }
3843
3844 void
3845 keys_of_keymap ()
3846 {
3847 initial_define_key (global_map, 033, "ESC-prefix");
3848 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3849 }
3850
3851 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
3852 (do not change this comment) */