(shadow_lookup): If Flookup_key returns a number,
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <stdio.h>
26 #include "lisp.h"
27 #include "commands.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "keyboard.h"
31 #include "termhooks.h"
32 #include "blockinput.h"
33 #include "puresize.h"
34 #include "intervals.h"
35 #include "keymap.h"
36
37 /* The number of elements in keymap vectors. */
38 #define DENSE_TABLE_SIZE (0200)
39
40 /* Actually allocate storage for these variables */
41
42 Lisp_Object current_global_map; /* Current global keymap */
43
44 Lisp_Object global_map; /* default global key bindings */
45
46 Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49 Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52 /* was MinibufLocalMap */
53 Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58 /* was MinibufLocalNSMap */
59 Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64 /* keymap used for minibuffers when doing completion */
65 /* was MinibufLocalCompletionMap */
66 Lisp_Object Vminibuffer_local_completion_map;
67
68 /* keymap used for minibuffers when doing completion and require a match */
69 /* was MinibufLocalMustMatchMap */
70 Lisp_Object Vminibuffer_local_must_match_map;
71
72 /* Alist of minor mode variables and keymaps. */
73 Lisp_Object Vminor_mode_map_alist;
74
75 /* Alist of major-mode-specific overrides for
76 minor mode variables and keymaps. */
77 Lisp_Object Vminor_mode_overriding_map_alist;
78
79 /* List of emulation mode keymap alists. */
80 Lisp_Object Vemulation_mode_map_alists;
81
82 /* Keymap mapping ASCII function key sequences onto their preferred forms.
83 Initialized by the terminal-specific lisp files. See DEFVAR for more
84 documentation. */
85 Lisp_Object Vfunction_key_map;
86
87 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
88 Lisp_Object Vkey_translation_map;
89
90 /* A list of all commands given new bindings since a certain time
91 when nil was stored here.
92 This is used to speed up recomputation of menu key equivalents
93 when Emacs starts up. t means don't record anything here. */
94 Lisp_Object Vdefine_key_rebound_commands;
95
96 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
97
98 /* Alist of elements like (DEL . "\d"). */
99 static Lisp_Object exclude_keys;
100
101 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
102 static Lisp_Object command_remapping_vector;
103
104 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
105 in a string key sequence is equivalent to prefixing with this
106 character. */
107 extern Lisp_Object meta_prefix_char;
108
109 extern Lisp_Object Voverriding_local_map;
110
111 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
112 static Lisp_Object where_is_cache;
113 /* Which keymaps are reverse-stored in the cache. */
114 static Lisp_Object where_is_cache_keymaps;
115
116 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
118
119 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
120 static void describe_command P_ ((Lisp_Object, Lisp_Object));
121 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
122 static void describe_map P_ ((Lisp_Object, Lisp_Object,
123 void (*) P_ ((Lisp_Object, Lisp_Object)),
124 int, Lisp_Object, Lisp_Object*, int, int));
125 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
126 void (*) (Lisp_Object, Lisp_Object), int,
127 Lisp_Object, Lisp_Object, int *,
128 int, int, int));
129 static void silly_event_symbol_error P_ ((Lisp_Object));
130 \f
131 /* Keymap object support - constructors and predicates. */
132
133 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
134 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
135 CHARTABLE is a char-table that holds the bindings for all characters
136 without modifiers. All entries in it are initially nil, meaning
137 "command undefined". ALIST is an assoc-list which holds bindings for
138 function keys, mouse events, and any other things that appear in the
139 input stream. Initially, ALIST is nil.
140
141 The optional arg STRING supplies a menu name for the keymap
142 in case you use it as a menu with `x-popup-menu'. */)
143 (string)
144 Lisp_Object string;
145 {
146 Lisp_Object tail;
147 if (!NILP (string))
148 tail = Fcons (string, Qnil);
149 else
150 tail = Qnil;
151 return Fcons (Qkeymap,
152 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
153 }
154
155 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
156 doc: /* Construct and return a new sparse keymap.
157 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
158 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
159 which binds the function key or mouse event SYMBOL to DEFINITION.
160 Initially the alist is nil.
161
162 The optional arg STRING supplies a menu name for the keymap
163 in case you use it as a menu with `x-popup-menu'. */)
164 (string)
165 Lisp_Object string;
166 {
167 if (!NILP (string))
168 return Fcons (Qkeymap, Fcons (string, Qnil));
169 return Fcons (Qkeymap, Qnil);
170 }
171
172 /* This function is used for installing the standard key bindings
173 at initialization time.
174
175 For example:
176
177 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
178
179 void
180 initial_define_key (keymap, key, defname)
181 Lisp_Object keymap;
182 int key;
183 char *defname;
184 {
185 store_in_keymap (keymap, make_number (key), intern (defname));
186 }
187
188 void
189 initial_define_lispy_key (keymap, keyname, defname)
190 Lisp_Object keymap;
191 char *keyname;
192 char *defname;
193 {
194 store_in_keymap (keymap, intern (keyname), intern (defname));
195 }
196
197 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
198 doc: /* Return t if OBJECT is a keymap.
199
200 A keymap is a list (keymap . ALIST),
201 or a symbol whose function definition is itself a keymap.
202 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
203 a vector of densely packed bindings for small character codes
204 is also allowed as an element. */)
205 (object)
206 Lisp_Object object;
207 {
208 return (KEYMAPP (object) ? Qt : Qnil);
209 }
210
211 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
212 doc: /* Return the prompt-string of a keymap MAP.
213 If non-nil, the prompt is shown in the echo-area
214 when reading a key-sequence to be looked-up in this keymap. */)
215 (map)
216 Lisp_Object map;
217 {
218 map = get_keymap (map, 0, 0);
219 while (CONSP (map))
220 {
221 Lisp_Object tem = XCAR (map);
222 if (STRINGP (tem))
223 return tem;
224 map = XCDR (map);
225 }
226 return Qnil;
227 }
228
229 /* Check that OBJECT is a keymap (after dereferencing through any
230 symbols). If it is, return it.
231
232 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
233 is an autoload form, do the autoload and try again.
234 If AUTOLOAD is nonzero, callers must assume GC is possible.
235
236 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
237 is zero as well), return Qt.
238
239 ERROR controls how we respond if OBJECT isn't a keymap.
240 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
241
242 Note that most of the time, we don't want to pursue autoloads.
243 Functions like Faccessible_keymaps which scan entire keymap trees
244 shouldn't load every autoloaded keymap. I'm not sure about this,
245 but it seems to me that only read_key_sequence, Flookup_key, and
246 Fdefine_key should cause keymaps to be autoloaded.
247
248 This function can GC when AUTOLOAD is non-zero, because it calls
249 do_autoload which can GC. */
250
251 Lisp_Object
252 get_keymap (object, error, autoload)
253 Lisp_Object object;
254 int error, autoload;
255 {
256 Lisp_Object tem;
257
258 autoload_retry:
259 if (NILP (object))
260 goto end;
261 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
262 return object;
263
264 tem = indirect_function (object);
265 if (CONSP (tem))
266 {
267 if (EQ (XCAR (tem), Qkeymap))
268 return tem;
269
270 /* Should we do an autoload? Autoload forms for keymaps have
271 Qkeymap as their fifth element. */
272 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
273 && SYMBOLP (object))
274 {
275 Lisp_Object tail;
276
277 tail = Fnth (make_number (4), tem);
278 if (EQ (tail, Qkeymap))
279 {
280 if (autoload)
281 {
282 struct gcpro gcpro1, gcpro2;
283
284 GCPRO2 (tem, object);
285 do_autoload (tem, object);
286 UNGCPRO;
287
288 goto autoload_retry;
289 }
290 else
291 return Qt;
292 }
293 }
294 }
295
296 end:
297 if (error)
298 wrong_type_argument (Qkeymapp, object);
299 return Qnil;
300 }
301 \f
302 /* Return the parent map of KEYMAP, or nil if it has none.
303 We assume that KEYMAP is a valid keymap. */
304
305 Lisp_Object
306 keymap_parent (keymap, autoload)
307 Lisp_Object keymap;
308 int autoload;
309 {
310 Lisp_Object list;
311
312 keymap = get_keymap (keymap, 1, autoload);
313
314 /* Skip past the initial element `keymap'. */
315 list = XCDR (keymap);
316 for (; CONSP (list); list = XCDR (list))
317 {
318 /* See if there is another `keymap'. */
319 if (KEYMAPP (list))
320 return list;
321 }
322
323 return get_keymap (list, 0, autoload);
324 }
325
326 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
327 doc: /* Return the parent keymap of KEYMAP. */)
328 (keymap)
329 Lisp_Object keymap;
330 {
331 return keymap_parent (keymap, 1);
332 }
333
334 /* Check whether MAP is one of MAPS parents. */
335 int
336 keymap_memberp (map, maps)
337 Lisp_Object map, maps;
338 {
339 if (NILP (map)) return 0;
340 while (KEYMAPP (maps) && !EQ (map, maps))
341 maps = keymap_parent (maps, 0);
342 return (EQ (map, maps));
343 }
344
345 /* Set the parent keymap of MAP to PARENT. */
346
347 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
348 doc: /* Modify KEYMAP to set its parent map to PARENT.
349 Return PARENT. PARENT should be nil or another keymap. */)
350 (keymap, parent)
351 Lisp_Object keymap, parent;
352 {
353 Lisp_Object list, prev;
354 struct gcpro gcpro1, gcpro2;
355 int i;
356
357 /* Force a keymap flush for the next call to where-is.
358 Since this can be called from within where-is, we don't set where_is_cache
359 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
360 be changed during where-is, while where_is_cache_keymaps is only used at
361 the very beginning of where-is and can thus be changed here without any
362 adverse effect.
363 This is a very minor correctness (rather than safety) issue. */
364 where_is_cache_keymaps = Qt;
365
366 GCPRO2 (keymap, parent);
367 keymap = get_keymap (keymap, 1, 1);
368
369 if (!NILP (parent))
370 {
371 parent = get_keymap (parent, 1, 1);
372
373 /* Check for cycles. */
374 if (keymap_memberp (keymap, parent))
375 error ("Cyclic keymap inheritance");
376 }
377
378 /* Skip past the initial element `keymap'. */
379 prev = keymap;
380 while (1)
381 {
382 list = XCDR (prev);
383 /* If there is a parent keymap here, replace it.
384 If we came to the end, add the parent in PREV. */
385 if (!CONSP (list) || KEYMAPP (list))
386 {
387 /* If we already have the right parent, return now
388 so that we avoid the loops below. */
389 if (EQ (XCDR (prev), parent))
390 RETURN_UNGCPRO (parent);
391
392 XSETCDR (prev, parent);
393 break;
394 }
395 prev = list;
396 }
397
398 /* Scan through for submaps, and set their parents too. */
399
400 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
401 {
402 /* Stop the scan when we come to the parent. */
403 if (EQ (XCAR (list), Qkeymap))
404 break;
405
406 /* If this element holds a prefix map, deal with it. */
407 if (CONSP (XCAR (list))
408 && CONSP (XCDR (XCAR (list))))
409 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
410 XCDR (XCAR (list)));
411
412 if (VECTORP (XCAR (list)))
413 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
414 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
415 fix_submap_inheritance (keymap, make_number (i),
416 XVECTOR (XCAR (list))->contents[i]);
417
418 if (CHAR_TABLE_P (XCAR (list)))
419 {
420 Lisp_Object indices[3];
421
422 map_char_table (fix_submap_inheritance, Qnil,
423 XCAR (list), XCAR (list),
424 keymap, 0, indices);
425 }
426 }
427
428 RETURN_UNGCPRO (parent);
429 }
430
431 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
432 if EVENT is also a prefix in MAP's parent,
433 make sure that SUBMAP inherits that definition as its own parent. */
434
435 static void
436 fix_submap_inheritance (map, event, submap)
437 Lisp_Object map, event, submap;
438 {
439 Lisp_Object map_parent, parent_entry;
440
441 /* SUBMAP is a cons that we found as a key binding.
442 Discard the other things found in a menu key binding. */
443
444 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
445
446 /* If it isn't a keymap now, there's no work to do. */
447 if (!CONSP (submap))
448 return;
449
450 map_parent = keymap_parent (map, 0);
451 if (!NILP (map_parent))
452 parent_entry =
453 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
454 else
455 parent_entry = Qnil;
456
457 /* If MAP's parent has something other than a keymap,
458 our own submap shadows it completely. */
459 if (!CONSP (parent_entry))
460 return;
461
462 if (! EQ (parent_entry, submap))
463 {
464 Lisp_Object submap_parent;
465 submap_parent = submap;
466 while (1)
467 {
468 Lisp_Object tem;
469
470 tem = keymap_parent (submap_parent, 0);
471
472 if (KEYMAPP (tem))
473 {
474 if (keymap_memberp (tem, parent_entry))
475 /* Fset_keymap_parent could create a cycle. */
476 return;
477 submap_parent = tem;
478 }
479 else
480 break;
481 }
482 Fset_keymap_parent (submap_parent, parent_entry);
483 }
484 }
485 \f
486 /* Look up IDX in MAP. IDX may be any sort of event.
487 Note that this does only one level of lookup; IDX must be a single
488 event, not a sequence.
489
490 If T_OK is non-zero, bindings for Qt are treated as default
491 bindings; any key left unmentioned by other tables and bindings is
492 given the binding of Qt.
493
494 If T_OK is zero, bindings for Qt are not treated specially.
495
496 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
497
498 Lisp_Object
499 access_keymap (map, idx, t_ok, noinherit, autoload)
500 Lisp_Object map;
501 Lisp_Object idx;
502 int t_ok;
503 int noinherit;
504 int autoload;
505 {
506 Lisp_Object val;
507
508 /* Qunbound in VAL means we have found no binding yet. */
509 val = Qunbound;
510
511 /* If idx is a list (some sort of mouse click, perhaps?),
512 the index we want to use is the car of the list, which
513 ought to be a symbol. */
514 idx = EVENT_HEAD (idx);
515
516 /* If idx is a symbol, it might have modifiers, which need to
517 be put in the canonical order. */
518 if (SYMBOLP (idx))
519 idx = reorder_modifiers (idx);
520 else if (INTEGERP (idx))
521 /* Clobber the high bits that can be present on a machine
522 with more than 24 bits of integer. */
523 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
524
525 /* Handle the special meta -> esc mapping. */
526 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
527 {
528 /* See if there is a meta-map. If there's none, there is
529 no binding for IDX, unless a default binding exists in MAP. */
530 struct gcpro gcpro1;
531 Lisp_Object meta_map;
532 GCPRO1 (map);
533 /* A strange value in which Meta is set would cause
534 infinite recursion. Protect against that. */
535 if (XINT (meta_prefix_char) & CHAR_META)
536 meta_prefix_char = make_number (27);
537 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
538 t_ok, noinherit, autoload),
539 0, autoload);
540 UNGCPRO;
541 if (CONSP (meta_map))
542 {
543 map = meta_map;
544 idx = make_number (XUINT (idx) & ~meta_modifier);
545 }
546 else if (t_ok)
547 /* Set IDX to t, so that we only find a default binding. */
548 idx = Qt;
549 else
550 /* We know there is no binding. */
551 return Qnil;
552 }
553
554 /* t_binding is where we put a default binding that applies,
555 to use in case we do not find a binding specifically
556 for this key sequence. */
557 {
558 Lisp_Object tail;
559 Lisp_Object t_binding = Qnil;
560 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
561
562 GCPRO4 (map, tail, idx, t_binding);
563
564 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
565 If it is 1, only generic-char bindings are accepted.
566 Otherwise, neither are. */
567 t_ok = t_ok ? 2 : 0;
568
569 for (tail = XCDR (map);
570 (CONSP (tail)
571 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
572 tail = XCDR (tail))
573 {
574 Lisp_Object binding;
575
576 binding = XCAR (tail);
577 if (SYMBOLP (binding))
578 {
579 /* If NOINHERIT, stop finding prefix definitions
580 after we pass a second occurrence of the `keymap' symbol. */
581 if (noinherit && EQ (binding, Qkeymap))
582 RETURN_UNGCPRO (Qnil);
583 }
584 else if (CONSP (binding))
585 {
586 Lisp_Object key = XCAR (binding);
587
588 if (EQ (key, idx))
589 val = XCDR (binding);
590 else if (t_ok
591 && INTEGERP (idx)
592 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
593 && INTEGERP (key)
594 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
595 && !SINGLE_BYTE_CHAR_P (XINT (idx))
596 && !SINGLE_BYTE_CHAR_P (XINT (key))
597 && CHAR_VALID_P (XINT (key), 1)
598 && !CHAR_VALID_P (XINT (key), 0)
599 && (CHAR_CHARSET (XINT (key))
600 == CHAR_CHARSET (XINT (idx))))
601 {
602 /* KEY is the generic character of the charset of IDX.
603 Use KEY's binding if there isn't a binding for IDX
604 itself. */
605 t_binding = XCDR (binding);
606 t_ok = 0;
607 }
608 else if (t_ok > 1 && EQ (key, Qt))
609 {
610 t_binding = XCDR (binding);
611 t_ok = 1;
612 }
613 }
614 else if (VECTORP (binding))
615 {
616 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
617 val = AREF (binding, XFASTINT (idx));
618 }
619 else if (CHAR_TABLE_P (binding))
620 {
621 /* Character codes with modifiers
622 are not included in a char-table.
623 All character codes without modifiers are included. */
624 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
625 {
626 val = Faref (binding, idx);
627 /* `nil' has a special meaning for char-tables, so
628 we use something else to record an explicitly
629 unbound entry. */
630 if (NILP (val))
631 val = Qunbound;
632 }
633 }
634
635 /* If we found a binding, clean it up and return it. */
636 if (!EQ (val, Qunbound))
637 {
638 if (EQ (val, Qt))
639 /* A Qt binding is just like an explicit nil binding
640 (i.e. it shadows any parent binding but not bindings in
641 keymaps of lower precedence). */
642 val = Qnil;
643 val = get_keyelt (val, autoload);
644 if (KEYMAPP (val))
645 fix_submap_inheritance (map, idx, val);
646 RETURN_UNGCPRO (val);
647 }
648 QUIT;
649 }
650 UNGCPRO;
651 return get_keyelt (t_binding, autoload);
652 }
653 }
654
655 static void
656 map_keymap_item (fun, args, key, val, data)
657 map_keymap_function_t fun;
658 Lisp_Object args, key, val;
659 void *data;
660 {
661 /* We should maybe try to detect bindings shadowed by previous
662 ones and things like that. */
663 if (EQ (val, Qt))
664 val = Qnil;
665 (*fun) (key, val, args, data);
666 }
667
668 static void
669 map_keymap_char_table_item (args, key, val)
670 Lisp_Object args, key, val;
671 {
672 if (!NILP (val))
673 {
674 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
675 args = XCDR (args);
676 map_keymap_item (fun, XCDR (args), key, val,
677 XSAVE_VALUE (XCAR (args))->pointer);
678 }
679 }
680
681 /* Call FUN for every binding in MAP.
682 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
683 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
684 void
685 map_keymap (map, fun, args, data, autoload)
686 map_keymap_function_t fun;
687 Lisp_Object map, args;
688 void *data;
689 int autoload;
690 {
691 struct gcpro gcpro1, gcpro2, gcpro3;
692 Lisp_Object tail;
693
694 GCPRO3 (map, args, tail);
695 map = get_keymap (map, 1, autoload);
696 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
697 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
698 tail = XCDR (tail))
699 {
700 Lisp_Object binding = XCAR (tail);
701
702 if (CONSP (binding))
703 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
704 else if (VECTORP (binding))
705 {
706 /* Loop over the char values represented in the vector. */
707 int len = ASIZE (binding);
708 int c;
709 for (c = 0; c < len; c++)
710 {
711 Lisp_Object character;
712 XSETFASTINT (character, c);
713 map_keymap_item (fun, args, character, AREF (binding, c), data);
714 }
715 }
716 else if (CHAR_TABLE_P (binding))
717 {
718 Lisp_Object indices[3];
719 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
720 Fcons (make_save_value (fun, 0),
721 Fcons (make_save_value (data, 0),
722 args)),
723 0, indices);
724 }
725 }
726 UNGCPRO;
727 }
728
729 static void
730 map_keymap_call (key, val, fun, dummy)
731 Lisp_Object key, val, fun;
732 void *dummy;
733 {
734 call2 (fun, key, val);
735 }
736
737 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
738 doc: /* Call FUNCTION for every binding in KEYMAP.
739 FUNCTION is called with two arguments: the event and its binding.
740 If KEYMAP has a parent, the parent's bindings are included as well.
741 This works recursively: if the parent has itself a parent, then the
742 grandparent's bindings are also included and so on.
743 usage: (map-keymap FUNCTION KEYMAP) */)
744 (function, keymap, sort_first)
745 Lisp_Object function, keymap, sort_first;
746 {
747 if (INTEGERP (function))
748 /* We have to stop integers early since map_keymap gives them special
749 significance. */
750 Fsignal (Qinvalid_function, Fcons (function, Qnil));
751 if (! NILP (sort_first))
752 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
753
754 map_keymap (keymap, map_keymap_call, function, NULL, 1);
755 return Qnil;
756 }
757
758 /* Given OBJECT which was found in a slot in a keymap,
759 trace indirect definitions to get the actual definition of that slot.
760 An indirect definition is a list of the form
761 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
762 and INDEX is the object to look up in KEYMAP to yield the definition.
763
764 Also if OBJECT has a menu string as the first element,
765 remove that. Also remove a menu help string as second element.
766
767 If AUTOLOAD is nonzero, load autoloadable keymaps
768 that are referred to with indirection.
769
770 This can GC because menu_item_eval_property calls Feval. */
771
772 Lisp_Object
773 get_keyelt (object, autoload)
774 Lisp_Object object;
775 int autoload;
776 {
777 while (1)
778 {
779 if (!(CONSP (object)))
780 /* This is really the value. */
781 return object;
782
783 /* If the keymap contents looks like (keymap ...) or (lambda ...)
784 then use itself. */
785 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
786 return object;
787
788 /* If the keymap contents looks like (menu-item name . DEFN)
789 or (menu-item name DEFN ...) then use DEFN.
790 This is a new format menu item. */
791 else if (EQ (XCAR (object), Qmenu_item))
792 {
793 if (CONSP (XCDR (object)))
794 {
795 Lisp_Object tem;
796
797 object = XCDR (XCDR (object));
798 tem = object;
799 if (CONSP (object))
800 object = XCAR (object);
801
802 /* If there's a `:filter FILTER', apply FILTER to the
803 menu-item's definition to get the real definition to
804 use. */
805 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
806 if (EQ (XCAR (tem), QCfilter) && autoload)
807 {
808 Lisp_Object filter;
809 filter = XCAR (XCDR (tem));
810 filter = list2 (filter, list2 (Qquote, object));
811 object = menu_item_eval_property (filter);
812 break;
813 }
814 }
815 else
816 /* Invalid keymap. */
817 return object;
818 }
819
820 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
821 Keymap alist elements like (CHAR MENUSTRING . DEFN)
822 will be used by HierarKey menus. */
823 else if (STRINGP (XCAR (object)))
824 {
825 object = XCDR (object);
826 /* Also remove a menu help string, if any,
827 following the menu item name. */
828 if (CONSP (object) && STRINGP (XCAR (object)))
829 object = XCDR (object);
830 /* Also remove the sublist that caches key equivalences, if any. */
831 if (CONSP (object) && CONSP (XCAR (object)))
832 {
833 Lisp_Object carcar;
834 carcar = XCAR (XCAR (object));
835 if (NILP (carcar) || VECTORP (carcar))
836 object = XCDR (object);
837 }
838 }
839
840 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
841 else
842 {
843 struct gcpro gcpro1;
844 Lisp_Object map;
845 GCPRO1 (object);
846 map = get_keymap (Fcar_safe (object), 0, autoload);
847 UNGCPRO;
848 return (!CONSP (map) ? object /* Invalid keymap */
849 : access_keymap (map, Fcdr (object), 0, 0, autoload));
850 }
851 }
852 }
853
854 static Lisp_Object
855 store_in_keymap (keymap, idx, def)
856 Lisp_Object keymap;
857 register Lisp_Object idx;
858 register Lisp_Object def;
859 {
860 /* Flush any reverse-map cache. */
861 where_is_cache = Qnil;
862 where_is_cache_keymaps = Qt;
863
864 /* If we are preparing to dump, and DEF is a menu element
865 with a menu item indicator, copy it to ensure it is not pure. */
866 if (CONSP (def) && PURE_P (def)
867 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
868 def = Fcons (XCAR (def), XCDR (def));
869
870 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
871 error ("attempt to define a key in a non-keymap");
872
873 /* If idx is a list (some sort of mouse click, perhaps?),
874 the index we want to use is the car of the list, which
875 ought to be a symbol. */
876 idx = EVENT_HEAD (idx);
877
878 /* If idx is a symbol, it might have modifiers, which need to
879 be put in the canonical order. */
880 if (SYMBOLP (idx))
881 idx = reorder_modifiers (idx);
882 else if (INTEGERP (idx))
883 /* Clobber the high bits that can be present on a machine
884 with more than 24 bits of integer. */
885 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
886
887 /* Scan the keymap for a binding of idx. */
888 {
889 Lisp_Object tail;
890
891 /* The cons after which we should insert new bindings. If the
892 keymap has a table element, we record its position here, so new
893 bindings will go after it; this way, the table will stay
894 towards the front of the alist and character lookups in dense
895 keymaps will remain fast. Otherwise, this just points at the
896 front of the keymap. */
897 Lisp_Object insertion_point;
898
899 insertion_point = keymap;
900 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
901 {
902 Lisp_Object elt;
903
904 elt = XCAR (tail);
905 if (VECTORP (elt))
906 {
907 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
908 {
909 ASET (elt, XFASTINT (idx), def);
910 return def;
911 }
912 insertion_point = tail;
913 }
914 else if (CHAR_TABLE_P (elt))
915 {
916 /* Character codes with modifiers
917 are not included in a char-table.
918 All character codes without modifiers are included. */
919 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
920 {
921 Faset (elt, idx,
922 /* `nil' has a special meaning for char-tables, so
923 we use something else to record an explicitly
924 unbound entry. */
925 NILP (def) ? Qt : def);
926 return def;
927 }
928 insertion_point = tail;
929 }
930 else if (CONSP (elt))
931 {
932 if (EQ (idx, XCAR (elt)))
933 {
934 XSETCDR (elt, def);
935 return def;
936 }
937 }
938 else if (EQ (elt, Qkeymap))
939 /* If we find a 'keymap' symbol in the spine of KEYMAP,
940 then we must have found the start of a second keymap
941 being used as the tail of KEYMAP, and a binding for IDX
942 should be inserted before it. */
943 goto keymap_end;
944
945 QUIT;
946 }
947
948 keymap_end:
949 /* We have scanned the entire keymap, and not found a binding for
950 IDX. Let's add one. */
951 XSETCDR (insertion_point,
952 Fcons (Fcons (idx, def), XCDR (insertion_point)));
953 }
954
955 return def;
956 }
957
958 EXFUN (Fcopy_keymap, 1);
959
960 Lisp_Object
961 copy_keymap_item (elt)
962 Lisp_Object elt;
963 {
964 Lisp_Object res, tem;
965
966 if (!CONSP (elt))
967 return elt;
968
969 res = tem = elt;
970
971 /* Is this a new format menu item. */
972 if (EQ (XCAR (tem), Qmenu_item))
973 {
974 /* Copy cell with menu-item marker. */
975 res = elt = Fcons (XCAR (tem), XCDR (tem));
976 tem = XCDR (elt);
977 if (CONSP (tem))
978 {
979 /* Copy cell with menu-item name. */
980 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
981 elt = XCDR (elt);
982 tem = XCDR (elt);
983 }
984 if (CONSP (tem))
985 {
986 /* Copy cell with binding and if the binding is a keymap,
987 copy that. */
988 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
989 elt = XCDR (elt);
990 tem = XCAR (elt);
991 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
992 XSETCAR (elt, Fcopy_keymap (tem));
993 tem = XCDR (elt);
994 if (CONSP (tem) && CONSP (XCAR (tem)))
995 /* Delete cache for key equivalences. */
996 XSETCDR (elt, XCDR (tem));
997 }
998 }
999 else
1000 {
1001 /* It may be an old fomat menu item.
1002 Skip the optional menu string. */
1003 if (STRINGP (XCAR (tem)))
1004 {
1005 /* Copy the cell, since copy-alist didn't go this deep. */
1006 res = elt = Fcons (XCAR (tem), XCDR (tem));
1007 tem = XCDR (elt);
1008 /* Also skip the optional menu help string. */
1009 if (CONSP (tem) && STRINGP (XCAR (tem)))
1010 {
1011 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1012 elt = XCDR (elt);
1013 tem = XCDR (elt);
1014 }
1015 /* There may also be a list that caches key equivalences.
1016 Just delete it for the new keymap. */
1017 if (CONSP (tem)
1018 && CONSP (XCAR (tem))
1019 && (NILP (XCAR (XCAR (tem)))
1020 || VECTORP (XCAR (XCAR (tem)))))
1021 {
1022 XSETCDR (elt, XCDR (tem));
1023 tem = XCDR (tem);
1024 }
1025 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1026 XSETCDR (elt, Fcopy_keymap (tem));
1027 }
1028 else if (EQ (XCAR (tem), Qkeymap))
1029 res = Fcopy_keymap (elt);
1030 }
1031 return res;
1032 }
1033
1034 static void
1035 copy_keymap_1 (chartable, idx, elt)
1036 Lisp_Object chartable, idx, elt;
1037 {
1038 Faset (chartable, idx, copy_keymap_item (elt));
1039 }
1040
1041 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1042 doc: /* Return a copy of the keymap KEYMAP.
1043 The copy starts out with the same definitions of KEYMAP,
1044 but changing either the copy or KEYMAP does not affect the other.
1045 Any key definitions that are subkeymaps are recursively copied.
1046 However, a key definition which is a symbol whose definition is a keymap
1047 is not copied. */)
1048 (keymap)
1049 Lisp_Object keymap;
1050 {
1051 register Lisp_Object copy, tail;
1052 keymap = get_keymap (keymap, 1, 0);
1053 copy = tail = Fcons (Qkeymap, Qnil);
1054 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1055
1056 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1057 {
1058 Lisp_Object elt = XCAR (keymap);
1059 if (CHAR_TABLE_P (elt))
1060 {
1061 Lisp_Object indices[3];
1062 elt = Fcopy_sequence (elt);
1063 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1064 }
1065 else if (VECTORP (elt))
1066 {
1067 int i;
1068 elt = Fcopy_sequence (elt);
1069 for (i = 0; i < ASIZE (elt); i++)
1070 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1071 }
1072 else if (CONSP (elt))
1073 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1074 XSETCDR (tail, Fcons (elt, Qnil));
1075 tail = XCDR (tail);
1076 keymap = XCDR (keymap);
1077 }
1078 XSETCDR (tail, keymap);
1079 return copy;
1080 }
1081 \f
1082 /* Simple Keymap mutators and accessors. */
1083
1084 /* GC is possible in this function if it autoloads a keymap. */
1085
1086 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1087 doc: /* In KEYMAP, define key sequence KEY as DEF.
1088 KEYMAP is a keymap.
1089
1090 KEY is a string or a vector of symbols and characters meaning a
1091 sequence of keystrokes and events. Non-ASCII characters with codes
1092 above 127 (such as ISO Latin-1) can be included if you use a vector.
1093 Using [t] for KEY creates a default definition, which applies to any
1094 event type that has no other definition in this keymap.
1095
1096 DEF is anything that can be a key's definition:
1097 nil (means key is undefined in this keymap),
1098 a command (a Lisp function suitable for interactive calling),
1099 a string (treated as a keyboard macro),
1100 a keymap (to define a prefix key),
1101 a symbol (when the key is looked up, the symbol will stand for its
1102 function definition, which should at that time be one of the above,
1103 or another symbol whose function definition is used, etc.),
1104 a cons (STRING . DEFN), meaning that DEFN is the definition
1105 (DEFN should be a valid definition in its own right),
1106 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1107
1108 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1109 binding is altered. If there is no binding for KEY, the new pair
1110 binding KEY to DEF is added at the front of KEYMAP. */)
1111 (keymap, key, def)
1112 Lisp_Object keymap;
1113 Lisp_Object key;
1114 Lisp_Object def;
1115 {
1116 register int idx;
1117 register Lisp_Object c;
1118 register Lisp_Object cmd;
1119 int metized = 0;
1120 int meta_bit;
1121 int length;
1122 struct gcpro gcpro1, gcpro2, gcpro3;
1123
1124 GCPRO3 (keymap, key, def);
1125 keymap = get_keymap (keymap, 1, 1);
1126
1127 if (!VECTORP (key) && !STRINGP (key))
1128 key = wrong_type_argument (Qarrayp, key);
1129
1130 length = XFASTINT (Flength (key));
1131 if (length == 0)
1132 RETURN_UNGCPRO (Qnil);
1133
1134 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1135 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1136
1137 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1138
1139 idx = 0;
1140 while (1)
1141 {
1142 c = Faref (key, make_number (idx));
1143
1144 if (CONSP (c) && lucid_event_type_list_p (c))
1145 c = Fevent_convert_list (c);
1146
1147 if (SYMBOLP (c))
1148 silly_event_symbol_error (c);
1149
1150 if (INTEGERP (c)
1151 && (XINT (c) & meta_bit)
1152 && !metized)
1153 {
1154 c = meta_prefix_char;
1155 metized = 1;
1156 }
1157 else
1158 {
1159 if (INTEGERP (c))
1160 XSETINT (c, XINT (c) & ~meta_bit);
1161
1162 metized = 0;
1163 idx++;
1164 }
1165
1166 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1167 error ("Key sequence contains invalid event");
1168
1169 if (idx == length)
1170 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1171
1172 cmd = access_keymap (keymap, c, 0, 1, 1);
1173
1174 /* If this key is undefined, make it a prefix. */
1175 if (NILP (cmd))
1176 cmd = define_as_prefix (keymap, c);
1177
1178 keymap = get_keymap (cmd, 0, 1);
1179 if (!CONSP (keymap))
1180 /* We must use Fkey_description rather than just passing key to
1181 error; key might be a vector, not a string. */
1182 error ("Key sequence %s uses invalid prefix characters",
1183 SDATA (Fkey_description (key, Qnil)));
1184 }
1185 }
1186
1187 /* This function may GC (it calls Fkey_binding). */
1188
1189 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1190 doc: /* Return the remapping for command COMMAND in current keymaps.
1191 Returns nil if COMMAND is not remapped (or not a symbol). */)
1192 (command)
1193 Lisp_Object command;
1194 {
1195 if (!SYMBOLP (command))
1196 return Qnil;
1197
1198 ASET (command_remapping_vector, 1, command);
1199 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1200 }
1201
1202 /* Value is number if KEY is too long; nil if valid but has no definition. */
1203 /* GC is possible in this function if it autoloads a keymap. */
1204
1205 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1206 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1207 nil means undefined. See doc of `define-key' for kinds of definitions.
1208
1209 A number as value means KEY is "too long";
1210 that is, characters or symbols in it except for the last one
1211 fail to be a valid sequence of prefix characters in KEYMAP.
1212 The number is how many characters at the front of KEY
1213 it takes to reach a non-prefix command.
1214
1215 Normally, `lookup-key' ignores bindings for t, which act as default
1216 bindings, used when nothing else in the keymap applies; this makes it
1217 usable as a general function for probing keymaps. However, if the
1218 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1219 recognize the default bindings, just as `read-key-sequence' does. */)
1220 (keymap, key, accept_default)
1221 Lisp_Object keymap;
1222 Lisp_Object key;
1223 Lisp_Object accept_default;
1224 {
1225 register int idx;
1226 register Lisp_Object cmd;
1227 register Lisp_Object c;
1228 int length;
1229 int t_ok = !NILP (accept_default);
1230 struct gcpro gcpro1, gcpro2;
1231
1232 GCPRO2 (keymap, key);
1233 keymap = get_keymap (keymap, 1, 1);
1234
1235 if (!VECTORP (key) && !STRINGP (key))
1236 key = wrong_type_argument (Qarrayp, key);
1237
1238 length = XFASTINT (Flength (key));
1239 if (length == 0)
1240 RETURN_UNGCPRO (keymap);
1241
1242 idx = 0;
1243 while (1)
1244 {
1245 c = Faref (key, make_number (idx++));
1246
1247 if (CONSP (c) && lucid_event_type_list_p (c))
1248 c = Fevent_convert_list (c);
1249
1250 /* Turn the 8th bit of string chars into a meta modifier. */
1251 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1252 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1253
1254 /* Allow string since binding for `menu-bar-select-buffer'
1255 includes the buffer name in the key sequence. */
1256 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1257 error ("Key sequence contains invalid event");
1258
1259 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1260 if (idx == length)
1261 RETURN_UNGCPRO (cmd);
1262
1263 keymap = get_keymap (cmd, 0, 1);
1264 if (!CONSP (keymap))
1265 RETURN_UNGCPRO (make_number (idx));
1266
1267 QUIT;
1268 }
1269 }
1270
1271 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1272 Assume that currently it does not define C at all.
1273 Return the keymap. */
1274
1275 static Lisp_Object
1276 define_as_prefix (keymap, c)
1277 Lisp_Object keymap, c;
1278 {
1279 Lisp_Object cmd;
1280
1281 cmd = Fmake_sparse_keymap (Qnil);
1282 /* If this key is defined as a prefix in an inherited keymap,
1283 make it a prefix in this map, and make its definition
1284 inherit the other prefix definition. */
1285 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1286 store_in_keymap (keymap, c, cmd);
1287
1288 return cmd;
1289 }
1290
1291 /* Append a key to the end of a key sequence. We always make a vector. */
1292
1293 Lisp_Object
1294 append_key (key_sequence, key)
1295 Lisp_Object key_sequence, key;
1296 {
1297 Lisp_Object args[2];
1298
1299 args[0] = key_sequence;
1300
1301 args[1] = Fcons (key, Qnil);
1302 return Fvconcat (2, args);
1303 }
1304
1305 /* Given a event type C which is a symbol,
1306 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1307
1308 static void
1309 silly_event_symbol_error (c)
1310 Lisp_Object c;
1311 {
1312 Lisp_Object parsed, base, name, assoc;
1313 int modifiers;
1314
1315 parsed = parse_modifiers (c);
1316 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1317 base = XCAR (parsed);
1318 name = Fsymbol_name (base);
1319 /* This alist includes elements such as ("RET" . "\\r"). */
1320 assoc = Fassoc (name, exclude_keys);
1321
1322 if (! NILP (assoc))
1323 {
1324 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1325 char *p = new_mods;
1326 Lisp_Object keystring;
1327 if (modifiers & alt_modifier)
1328 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1329 if (modifiers & ctrl_modifier)
1330 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1331 if (modifiers & hyper_modifier)
1332 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1333 if (modifiers & meta_modifier)
1334 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1335 if (modifiers & shift_modifier)
1336 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1337 if (modifiers & super_modifier)
1338 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1339 *p = 0;
1340
1341 c = reorder_modifiers (c);
1342 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1343
1344 error ((modifiers & ~meta_modifier
1345 ? "To bind the key %s, use [?%s], not [%s]"
1346 : "To bind the key %s, use \"%s\", not [%s]"),
1347 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1348 SDATA (SYMBOL_NAME (c)));
1349 }
1350 }
1351 \f
1352 /* Global, local, and minor mode keymap stuff. */
1353
1354 /* We can't put these variables inside current_minor_maps, since under
1355 some systems, static gets macro-defined to be the empty string.
1356 Ickypoo. */
1357 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1358 static int cmm_size = 0;
1359
1360 /* Error handler used in current_minor_maps. */
1361 static Lisp_Object
1362 current_minor_maps_error ()
1363 {
1364 return Qnil;
1365 }
1366
1367 /* Store a pointer to an array of the keymaps of the currently active
1368 minor modes in *buf, and return the number of maps it contains.
1369
1370 This function always returns a pointer to the same buffer, and may
1371 free or reallocate it, so if you want to keep it for a long time or
1372 hand it out to lisp code, copy it. This procedure will be called
1373 for every key sequence read, so the nice lispy approach (return a
1374 new assoclist, list, what have you) for each invocation would
1375 result in a lot of consing over time.
1376
1377 If we used xrealloc/xmalloc and ran out of memory, they would throw
1378 back to the command loop, which would try to read a key sequence,
1379 which would call this function again, resulting in an infinite
1380 loop. Instead, we'll use realloc/malloc and silently truncate the
1381 list, let the key sequence be read, and hope some other piece of
1382 code signals the error. */
1383 int
1384 current_minor_maps (modeptr, mapptr)
1385 Lisp_Object **modeptr, **mapptr;
1386 {
1387 int i = 0;
1388 int list_number = 0;
1389 Lisp_Object alist, assoc, var, val;
1390 Lisp_Object emulation_alists;
1391 Lisp_Object lists[2];
1392
1393 emulation_alists = Vemulation_mode_map_alists;
1394 lists[0] = Vminor_mode_overriding_map_alist;
1395 lists[1] = Vminor_mode_map_alist;
1396
1397 for (list_number = 0; list_number < 2; list_number++)
1398 {
1399 if (CONSP (emulation_alists))
1400 {
1401 alist = XCAR (emulation_alists);
1402 emulation_alists = XCDR (emulation_alists);
1403 if (SYMBOLP (alist))
1404 alist = find_symbol_value (alist);
1405 list_number = -1;
1406 }
1407 else
1408 alist = lists[list_number];
1409
1410 for ( ; CONSP (alist); alist = XCDR (alist))
1411 if ((assoc = XCAR (alist), CONSP (assoc))
1412 && (var = XCAR (assoc), SYMBOLP (var))
1413 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1414 && !NILP (val))
1415 {
1416 Lisp_Object temp;
1417
1418 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1419 and also an entry in Vminor_mode_map_alist,
1420 ignore the latter. */
1421 if (list_number == 1)
1422 {
1423 val = assq_no_quit (var, lists[0]);
1424 if (!NILP (val))
1425 continue;
1426 }
1427
1428 if (i >= cmm_size)
1429 {
1430 int newsize, allocsize;
1431 Lisp_Object *newmodes, *newmaps;
1432
1433 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1434 allocsize = newsize * sizeof *newmodes;
1435
1436 /* Use malloc here. See the comment above this function.
1437 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1438 BLOCK_INPUT;
1439 newmodes = (Lisp_Object *) malloc (allocsize);
1440 if (newmodes)
1441 {
1442 if (cmm_modes)
1443 {
1444 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1445 free (cmm_modes);
1446 }
1447 cmm_modes = newmodes;
1448 }
1449
1450 newmaps = (Lisp_Object *) malloc (allocsize);
1451 if (newmaps)
1452 {
1453 if (cmm_maps)
1454 {
1455 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1456 free (cmm_maps);
1457 }
1458 cmm_maps = newmaps;
1459 }
1460 UNBLOCK_INPUT;
1461
1462 if (newmodes == NULL || newmaps == NULL)
1463 break;
1464 cmm_size = newsize;
1465 }
1466
1467 /* Get the keymap definition--or nil if it is not defined. */
1468 temp = internal_condition_case_1 (Findirect_function,
1469 XCDR (assoc),
1470 Qerror, current_minor_maps_error);
1471 if (!NILP (temp))
1472 {
1473 cmm_modes[i] = var;
1474 cmm_maps [i] = temp;
1475 i++;
1476 }
1477 }
1478 }
1479
1480 if (modeptr) *modeptr = cmm_modes;
1481 if (mapptr) *mapptr = cmm_maps;
1482 return i;
1483 }
1484
1485 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1486 0, 1, 0,
1487 doc: /* Return a list of the currently active keymaps.
1488 OLP if non-nil indicates that we should obey `overriding-local-map' and
1489 `overriding-terminal-local-map'. */)
1490 (olp)
1491 Lisp_Object olp;
1492 {
1493 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1494
1495 if (!NILP (olp))
1496 {
1497 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1498 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1499 /* The doc said that overriding-terminal-local-map should
1500 override overriding-local-map. The code used them both,
1501 but it seems clearer to use just one. rms, jan 2005. */
1502 else if (!NILP (Voverriding_local_map))
1503 keymaps = Fcons (Voverriding_local_map, keymaps);
1504 }
1505 if (NILP (XCDR (keymaps)))
1506 {
1507 Lisp_Object local;
1508 Lisp_Object *maps;
1509 int nmaps, i;
1510
1511 /* This usually returns the buffer's local map,
1512 but that can be overridden by a `local-map' property. */
1513 local = get_local_map (PT, current_buffer, Qlocal_map);
1514 if (!NILP (local))
1515 keymaps = Fcons (local, keymaps);
1516
1517 /* Now put all the minor mode keymaps on the list. */
1518 nmaps = current_minor_maps (0, &maps);
1519
1520 for (i = --nmaps; i >= 0; i--)
1521 if (!NILP (maps[i]))
1522 keymaps = Fcons (maps[i], keymaps);
1523
1524 /* This returns nil unless there is a `keymap' property. */
1525 local = get_local_map (PT, current_buffer, Qkeymap);
1526 if (!NILP (local))
1527 keymaps = Fcons (local, keymaps);
1528 }
1529
1530 return keymaps;
1531 }
1532
1533 /* GC is possible in this function if it autoloads a keymap. */
1534
1535 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1536 doc: /* Return the binding for command KEY in current keymaps.
1537 KEY is a string or vector, a sequence of keystrokes.
1538 The binding is probably a symbol with a function definition.
1539
1540 Normally, `key-binding' ignores bindings for t, which act as default
1541 bindings, used when nothing else in the keymap applies; this makes it
1542 usable as a general function for probing keymaps. However, if the
1543 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1544 recognize the default bindings, just as `read-key-sequence' does.
1545
1546 Like the normal command loop, `key-binding' will remap the command
1547 resulting from looking up KEY by looking up the command in the
1548 current keymaps. However, if the optional third argument NO-REMAP
1549 is non-nil, `key-binding' returns the unmapped command. */)
1550 (key, accept_default, no_remap)
1551 Lisp_Object key, accept_default, no_remap;
1552 {
1553 Lisp_Object *maps, value;
1554 int nmaps, i;
1555 struct gcpro gcpro1;
1556
1557 GCPRO1 (key);
1558
1559 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1560 {
1561 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1562 key, accept_default);
1563 if (! NILP (value) && !INTEGERP (value))
1564 goto done;
1565 }
1566 else if (!NILP (Voverriding_local_map))
1567 {
1568 value = Flookup_key (Voverriding_local_map, key, accept_default);
1569 if (! NILP (value) && !INTEGERP (value))
1570 goto done;
1571 }
1572 else
1573 {
1574 Lisp_Object local;
1575
1576 local = get_local_map (PT, current_buffer, Qkeymap);
1577 if (! NILP (local))
1578 {
1579 value = Flookup_key (local, key, accept_default);
1580 if (! NILP (value) && !INTEGERP (value))
1581 goto done;
1582 }
1583
1584 nmaps = current_minor_maps (0, &maps);
1585 /* Note that all these maps are GCPRO'd
1586 in the places where we found them. */
1587
1588 for (i = 0; i < nmaps; i++)
1589 if (! NILP (maps[i]))
1590 {
1591 value = Flookup_key (maps[i], key, accept_default);
1592 if (! NILP (value) && !INTEGERP (value))
1593 goto done;
1594 }
1595
1596 local = get_local_map (PT, current_buffer, Qlocal_map);
1597 if (! NILP (local))
1598 {
1599 value = Flookup_key (local, key, accept_default);
1600 if (! NILP (value) && !INTEGERP (value))
1601 goto done;
1602 }
1603 }
1604
1605 value = Flookup_key (current_global_map, key, accept_default);
1606
1607 done:
1608 UNGCPRO;
1609 if (NILP (value) || INTEGERP (value))
1610 return Qnil;
1611
1612 /* If the result of the ordinary keymap lookup is an interactive
1613 command, look for a key binding (ie. remapping) for that command. */
1614
1615 if (NILP (no_remap) && SYMBOLP (value))
1616 {
1617 Lisp_Object value1;
1618 if (value1 = Fcommand_remapping (value), !NILP (value1))
1619 value = value1;
1620 }
1621
1622 return value;
1623 }
1624
1625 /* GC is possible in this function if it autoloads a keymap. */
1626
1627 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1628 doc: /* Return the binding for command KEYS in current local keymap only.
1629 KEYS is a string or vector, a sequence of keystrokes.
1630 The binding is probably a symbol with a function definition.
1631
1632 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1633 bindings; see the description of `lookup-key' for more details about this. */)
1634 (keys, accept_default)
1635 Lisp_Object keys, accept_default;
1636 {
1637 register Lisp_Object map;
1638 map = current_buffer->keymap;
1639 if (NILP (map))
1640 return Qnil;
1641 return Flookup_key (map, keys, accept_default);
1642 }
1643
1644 /* GC is possible in this function if it autoloads a keymap. */
1645
1646 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1647 doc: /* Return the binding for command KEYS in current global keymap only.
1648 KEYS is a string or vector, a sequence of keystrokes.
1649 The binding is probably a symbol with a function definition.
1650 This function's return values are the same as those of `lookup-key'
1651 \(which see).
1652
1653 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1654 bindings; see the description of `lookup-key' for more details about this. */)
1655 (keys, accept_default)
1656 Lisp_Object keys, accept_default;
1657 {
1658 return Flookup_key (current_global_map, keys, accept_default);
1659 }
1660
1661 /* GC is possible in this function if it autoloads a keymap. */
1662
1663 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1664 doc: /* Find the visible minor mode bindings of KEY.
1665 Return an alist of pairs (MODENAME . BINDING), where MODENAME is
1666 the symbol which names the minor mode binding KEY, and BINDING is
1667 KEY's definition in that mode. In particular, if KEY has no
1668 minor-mode bindings, return nil. If the first binding is a
1669 non-prefix, all subsequent bindings will be omitted, since they would
1670 be ignored. Similarly, the list doesn't include non-prefix bindings
1671 that come after prefix bindings.
1672
1673 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1674 bindings; see the description of `lookup-key' for more details about this. */)
1675 (key, accept_default)
1676 Lisp_Object key, accept_default;
1677 {
1678 Lisp_Object *modes, *maps;
1679 int nmaps;
1680 Lisp_Object binding;
1681 int i, j;
1682 struct gcpro gcpro1, gcpro2;
1683
1684 nmaps = current_minor_maps (&modes, &maps);
1685 /* Note that all these maps are GCPRO'd
1686 in the places where we found them. */
1687
1688 binding = Qnil;
1689 GCPRO2 (key, binding);
1690
1691 for (i = j = 0; i < nmaps; i++)
1692 if (!NILP (maps[i])
1693 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1694 && !INTEGERP (binding))
1695 {
1696 if (KEYMAPP (binding))
1697 maps[j++] = Fcons (modes[i], binding);
1698 else if (j == 0)
1699 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1700 }
1701
1702 UNGCPRO;
1703 return Flist (j, maps);
1704 }
1705
1706 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1707 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1708 A new sparse keymap is stored as COMMAND's function definition and its value.
1709 If a second optional argument MAPVAR is given, the map is stored as
1710 its value instead of as COMMAND's value; but COMMAND is still defined
1711 as a function.
1712 The third optional argument NAME, if given, supplies a menu name
1713 string for the map. This is required to use the keymap as a menu.
1714 This function returns COMMAND. */)
1715 (command, mapvar, name)
1716 Lisp_Object command, mapvar, name;
1717 {
1718 Lisp_Object map;
1719 map = Fmake_sparse_keymap (name);
1720 Ffset (command, map);
1721 if (!NILP (mapvar))
1722 Fset (mapvar, map);
1723 else
1724 Fset (command, map);
1725 return command;
1726 }
1727
1728 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1729 doc: /* Select KEYMAP as the global keymap. */)
1730 (keymap)
1731 Lisp_Object keymap;
1732 {
1733 keymap = get_keymap (keymap, 1, 1);
1734 current_global_map = keymap;
1735
1736 return Qnil;
1737 }
1738
1739 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1740 doc: /* Select KEYMAP as the local keymap.
1741 If KEYMAP is nil, that means no local keymap. */)
1742 (keymap)
1743 Lisp_Object keymap;
1744 {
1745 if (!NILP (keymap))
1746 keymap = get_keymap (keymap, 1, 1);
1747
1748 current_buffer->keymap = keymap;
1749
1750 return Qnil;
1751 }
1752
1753 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1754 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1755 ()
1756 {
1757 return current_buffer->keymap;
1758 }
1759
1760 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1761 doc: /* Return the current global keymap. */)
1762 ()
1763 {
1764 return current_global_map;
1765 }
1766
1767 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1768 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1769 ()
1770 {
1771 Lisp_Object *maps;
1772 int nmaps = current_minor_maps (0, &maps);
1773
1774 return Flist (nmaps, maps);
1775 }
1776 \f
1777 /* Help functions for describing and documenting keymaps. */
1778
1779
1780 static void
1781 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1782 Lisp_Object maps, tail, thisseq, key, cmd;
1783 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1784 {
1785 Lisp_Object tem;
1786
1787 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1788 if (NILP (cmd))
1789 return;
1790
1791 /* Look for and break cycles. */
1792 while (!NILP (tem = Frassq (cmd, maps)))
1793 {
1794 Lisp_Object prefix = XCAR (tem);
1795 int lim = XINT (Flength (XCAR (tem)));
1796 if (lim <= XINT (Flength (thisseq)))
1797 { /* This keymap was already seen with a smaller prefix. */
1798 int i = 0;
1799 while (i < lim && EQ (Faref (prefix, make_number (i)),
1800 Faref (thisseq, make_number (i))))
1801 i++;
1802 if (i >= lim)
1803 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1804 return;
1805 }
1806 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1807 but maybe `cmd' occurs again further down in `maps', so keep
1808 looking. */
1809 maps = XCDR (Fmemq (tem, maps));
1810 }
1811
1812 /* If the last key in thisseq is meta-prefix-char,
1813 turn it into a meta-ized keystroke. We know
1814 that the event we're about to append is an
1815 ascii keystroke since we're processing a
1816 keymap table. */
1817 if (is_metized)
1818 {
1819 int meta_bit = meta_modifier;
1820 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1821 tem = Fcopy_sequence (thisseq);
1822
1823 Faset (tem, last, make_number (XINT (key) | meta_bit));
1824
1825 /* This new sequence is the same length as
1826 thisseq, so stick it in the list right
1827 after this one. */
1828 XSETCDR (tail,
1829 Fcons (Fcons (tem, cmd), XCDR (tail)));
1830 }
1831 else
1832 {
1833 tem = append_key (thisseq, key);
1834 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1835 }
1836 }
1837
1838 static void
1839 accessible_keymaps_char_table (args, index, cmd)
1840 Lisp_Object args, index, cmd;
1841 {
1842 accessible_keymaps_1 (index, cmd,
1843 XCAR (XCAR (args)),
1844 XCAR (XCDR (args)),
1845 XCDR (XCDR (args)),
1846 XINT (XCDR (XCAR (args))));
1847 }
1848
1849 /* This function cannot GC. */
1850
1851 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1852 1, 2, 0,
1853 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1854 Returns a list of elements of the form (KEYS . MAP), where the sequence
1855 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1856 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1857 An optional argument PREFIX, if non-nil, should be a key sequence;
1858 then the value includes only maps for prefixes that start with PREFIX. */)
1859 (keymap, prefix)
1860 Lisp_Object keymap, prefix;
1861 {
1862 Lisp_Object maps, tail;
1863 int prefixlen = 0;
1864
1865 /* no need for gcpro because we don't autoload any keymaps. */
1866
1867 if (!NILP (prefix))
1868 prefixlen = XINT (Flength (prefix));
1869
1870 if (!NILP (prefix))
1871 {
1872 /* If a prefix was specified, start with the keymap (if any) for
1873 that prefix, so we don't waste time considering other prefixes. */
1874 Lisp_Object tem;
1875 tem = Flookup_key (keymap, prefix, Qt);
1876 /* Flookup_key may give us nil, or a number,
1877 if the prefix is not defined in this particular map.
1878 It might even give us a list that isn't a keymap. */
1879 tem = get_keymap (tem, 0, 0);
1880 if (CONSP (tem))
1881 {
1882 /* Convert PREFIX to a vector now, so that later on
1883 we don't have to deal with the possibility of a string. */
1884 if (STRINGP (prefix))
1885 {
1886 int i, i_byte, c;
1887 Lisp_Object copy;
1888
1889 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1890 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1891 {
1892 int i_before = i;
1893
1894 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1895 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1896 c ^= 0200 | meta_modifier;
1897 ASET (copy, i_before, make_number (c));
1898 }
1899 prefix = copy;
1900 }
1901 maps = Fcons (Fcons (prefix, tem), Qnil);
1902 }
1903 else
1904 return Qnil;
1905 }
1906 else
1907 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1908 get_keymap (keymap, 1, 0)),
1909 Qnil);
1910
1911 /* For each map in the list maps,
1912 look at any other maps it points to,
1913 and stick them at the end if they are not already in the list.
1914
1915 This is a breadth-first traversal, where tail is the queue of
1916 nodes, and maps accumulates a list of all nodes visited. */
1917
1918 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1919 {
1920 register Lisp_Object thisseq, thismap;
1921 Lisp_Object last;
1922 /* Does the current sequence end in the meta-prefix-char? */
1923 int is_metized;
1924
1925 thisseq = Fcar (Fcar (tail));
1926 thismap = Fcdr (Fcar (tail));
1927 last = make_number (XINT (Flength (thisseq)) - 1);
1928 is_metized = (XINT (last) >= 0
1929 /* Don't metize the last char of PREFIX. */
1930 && XINT (last) >= prefixlen
1931 && EQ (Faref (thisseq, last), meta_prefix_char));
1932
1933 for (; CONSP (thismap); thismap = XCDR (thismap))
1934 {
1935 Lisp_Object elt;
1936
1937 elt = XCAR (thismap);
1938
1939 QUIT;
1940
1941 if (CHAR_TABLE_P (elt))
1942 {
1943 Lisp_Object indices[3];
1944
1945 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1946 elt, Fcons (Fcons (maps, make_number (is_metized)),
1947 Fcons (tail, thisseq)),
1948 0, indices);
1949 }
1950 else if (VECTORP (elt))
1951 {
1952 register int i;
1953
1954 /* Vector keymap. Scan all the elements. */
1955 for (i = 0; i < ASIZE (elt); i++)
1956 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1957 maps, tail, thisseq, is_metized);
1958
1959 }
1960 else if (CONSP (elt))
1961 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1962 maps, tail, thisseq,
1963 is_metized && INTEGERP (XCAR (elt)));
1964
1965 }
1966 }
1967
1968 return maps;
1969 }
1970 \f
1971 Lisp_Object Qsingle_key_description, Qkey_description;
1972
1973 /* This function cannot GC. */
1974
1975 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1976 doc: /* Return a pretty description of key-sequence KEYS.
1977 Optional arg PREFIX is the sequence of keys leading up to KEYS.
1978 Control characters turn into "C-foo" sequences, meta into "M-foo",
1979 spaces are put between sequence elements, etc. */)
1980 (keys, prefix)
1981 Lisp_Object keys, prefix;
1982 {
1983 int len = 0;
1984 int i, i_byte;
1985 Lisp_Object *args;
1986 int size = XINT (Flength (keys));
1987 Lisp_Object list;
1988 Lisp_Object sep = build_string (" ");
1989 Lisp_Object key;
1990 int add_meta = 0;
1991
1992 if (!NILP (prefix))
1993 size += XINT (Flength (prefix));
1994
1995 /* This has one extra element at the end that we don't pass to Fconcat. */
1996 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
1997
1998 /* In effect, this computes
1999 (mapconcat 'single-key-description keys " ")
2000 but we shouldn't use mapconcat because it can do GC. */
2001
2002 next_list:
2003 if (!NILP (prefix))
2004 list = prefix, prefix = Qnil;
2005 else if (!NILP (keys))
2006 list = keys, keys = Qnil;
2007 else
2008 {
2009 if (add_meta)
2010 {
2011 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2012 len += 2;
2013 }
2014 else if (len == 0)
2015 return empty_string;
2016 return Fconcat (len - 1, args);
2017 }
2018
2019 if (STRINGP (list))
2020 size = SCHARS (list);
2021 else if (VECTORP (list))
2022 size = XVECTOR (list)->size;
2023 else if (CONSP (list))
2024 size = XINT (Flength (list));
2025 else
2026 wrong_type_argument (Qarrayp, list);
2027
2028 i = i_byte = 0;
2029
2030 while (i < size)
2031 {
2032 if (STRINGP (list))
2033 {
2034 int c;
2035 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2036 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2037 c ^= 0200 | meta_modifier;
2038 XSETFASTINT (key, c);
2039 }
2040 else if (VECTORP (list))
2041 {
2042 key = AREF (list, i++);
2043 }
2044 else
2045 {
2046 key = XCAR (list);
2047 list = XCDR (list);
2048 i++;
2049 }
2050
2051 if (add_meta)
2052 {
2053 if (!INTEGERP (key)
2054 || EQ (key, meta_prefix_char)
2055 || (XINT (key) & meta_modifier))
2056 {
2057 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2058 args[len++] = sep;
2059 if (EQ (key, meta_prefix_char))
2060 continue;
2061 }
2062 else
2063 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2064 add_meta = 0;
2065 }
2066 else if (EQ (key, meta_prefix_char))
2067 {
2068 add_meta = 1;
2069 continue;
2070 }
2071 args[len++] = Fsingle_key_description (key, Qnil);
2072 args[len++] = sep;
2073 }
2074 goto next_list;
2075 }
2076
2077
2078 char *
2079 push_key_description (c, p, force_multibyte)
2080 register unsigned int c;
2081 register char *p;
2082 int force_multibyte;
2083 {
2084 unsigned c2;
2085
2086 /* Clear all the meaningless bits above the meta bit. */
2087 c &= meta_modifier | ~ - meta_modifier;
2088 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2089 | meta_modifier | shift_modifier | super_modifier);
2090
2091 if (c & alt_modifier)
2092 {
2093 *p++ = 'A';
2094 *p++ = '-';
2095 c -= alt_modifier;
2096 }
2097 if ((c & ctrl_modifier) != 0
2098 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2099 {
2100 *p++ = 'C';
2101 *p++ = '-';
2102 c &= ~ctrl_modifier;
2103 }
2104 if (c & hyper_modifier)
2105 {
2106 *p++ = 'H';
2107 *p++ = '-';
2108 c -= hyper_modifier;
2109 }
2110 if (c & meta_modifier)
2111 {
2112 *p++ = 'M';
2113 *p++ = '-';
2114 c -= meta_modifier;
2115 }
2116 if (c & shift_modifier)
2117 {
2118 *p++ = 'S';
2119 *p++ = '-';
2120 c -= shift_modifier;
2121 }
2122 if (c & super_modifier)
2123 {
2124 *p++ = 's';
2125 *p++ = '-';
2126 c -= super_modifier;
2127 }
2128 if (c < 040)
2129 {
2130 if (c == 033)
2131 {
2132 *p++ = 'E';
2133 *p++ = 'S';
2134 *p++ = 'C';
2135 }
2136 else if (c == '\t')
2137 {
2138 *p++ = 'T';
2139 *p++ = 'A';
2140 *p++ = 'B';
2141 }
2142 else if (c == Ctl ('M'))
2143 {
2144 *p++ = 'R';
2145 *p++ = 'E';
2146 *p++ = 'T';
2147 }
2148 else
2149 {
2150 /* `C-' already added above. */
2151 if (c > 0 && c <= Ctl ('Z'))
2152 *p++ = c + 0140;
2153 else
2154 *p++ = c + 0100;
2155 }
2156 }
2157 else if (c == 0177)
2158 {
2159 *p++ = 'D';
2160 *p++ = 'E';
2161 *p++ = 'L';
2162 }
2163 else if (c == ' ')
2164 {
2165 *p++ = 'S';
2166 *p++ = 'P';
2167 *p++ = 'C';
2168 }
2169 else if (c < 128
2170 || (NILP (current_buffer->enable_multibyte_characters)
2171 && SINGLE_BYTE_CHAR_P (c)
2172 && !force_multibyte))
2173 {
2174 *p++ = c;
2175 }
2176 else
2177 {
2178 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2179
2180 if (force_multibyte && valid_p)
2181 {
2182 if (SINGLE_BYTE_CHAR_P (c))
2183 c = unibyte_char_to_multibyte (c);
2184 p += CHAR_STRING (c, p);
2185 }
2186 else if (NILP (current_buffer->enable_multibyte_characters)
2187 || valid_p)
2188 {
2189 int bit_offset;
2190 *p++ = '\\';
2191 /* The biggest character code uses 19 bits. */
2192 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2193 {
2194 if (c >= (1 << bit_offset))
2195 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2196 }
2197 }
2198 else
2199 p += CHAR_STRING (c, p);
2200 }
2201
2202 return p;
2203 }
2204
2205 /* This function cannot GC. */
2206
2207 DEFUN ("single-key-description", Fsingle_key_description,
2208 Ssingle_key_description, 1, 2, 0,
2209 doc: /* Return a pretty description of command character KEY.
2210 Control characters turn into C-whatever, etc.
2211 Optional argument NO-ANGLES non-nil means don't put angle brackets
2212 around function keys and event symbols. */)
2213 (key, no_angles)
2214 Lisp_Object key, no_angles;
2215 {
2216 if (CONSP (key) && lucid_event_type_list_p (key))
2217 key = Fevent_convert_list (key);
2218
2219 key = EVENT_HEAD (key);
2220
2221 if (INTEGERP (key)) /* Normal character */
2222 {
2223 unsigned int charset, c1, c2;
2224 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2225
2226 if (SINGLE_BYTE_CHAR_P (without_bits))
2227 charset = 0;
2228 else
2229 SPLIT_CHAR (without_bits, charset, c1, c2);
2230
2231 if (charset
2232 && CHARSET_DEFINED_P (charset)
2233 && ((c1 >= 0 && c1 < 32)
2234 || (c2 >= 0 && c2 < 32)))
2235 {
2236 /* Handle a generic character. */
2237 Lisp_Object name;
2238 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2239 CHECK_STRING (name);
2240 return concat2 (build_string ("Character set "), name);
2241 }
2242 else
2243 {
2244 char tem[KEY_DESCRIPTION_SIZE], *end;
2245 int nbytes, nchars;
2246 Lisp_Object string;
2247
2248 end = push_key_description (XUINT (key), tem, 1);
2249 nbytes = end - tem;
2250 nchars = multibyte_chars_in_text (tem, nbytes);
2251 if (nchars == nbytes)
2252 {
2253 *end = '\0';
2254 string = build_string (tem);
2255 }
2256 else
2257 string = make_multibyte_string (tem, nchars, nbytes);
2258 return string;
2259 }
2260 }
2261 else if (SYMBOLP (key)) /* Function key or event-symbol */
2262 {
2263 if (NILP (no_angles))
2264 {
2265 char *buffer
2266 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2267 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2268 return build_string (buffer);
2269 }
2270 else
2271 return Fsymbol_name (key);
2272 }
2273 else if (STRINGP (key)) /* Buffer names in the menubar. */
2274 return Fcopy_sequence (key);
2275 else
2276 error ("KEY must be an integer, cons, symbol, or string");
2277 return Qnil;
2278 }
2279
2280 char *
2281 push_text_char_description (c, p)
2282 register unsigned int c;
2283 register char *p;
2284 {
2285 if (c >= 0200)
2286 {
2287 *p++ = 'M';
2288 *p++ = '-';
2289 c -= 0200;
2290 }
2291 if (c < 040)
2292 {
2293 *p++ = '^';
2294 *p++ = c + 64; /* 'A' - 1 */
2295 }
2296 else if (c == 0177)
2297 {
2298 *p++ = '^';
2299 *p++ = '?';
2300 }
2301 else
2302 *p++ = c;
2303 return p;
2304 }
2305
2306 /* This function cannot GC. */
2307
2308 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2309 doc: /* Return a pretty description of file-character CHARACTER.
2310 Control characters turn into "^char", etc. This differs from
2311 `single-key-description' which turns them into "C-char".
2312 Also, this function recognizes the 2**7 bit as the Meta character,
2313 whereas `single-key-description' uses the 2**27 bit for Meta.
2314 See Info node `(elisp)Describing Characters' for examples. */)
2315 (character)
2316 Lisp_Object character;
2317 {
2318 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2319 unsigned char str[6];
2320 int c;
2321
2322 CHECK_NUMBER (character);
2323
2324 c = XINT (character);
2325 if (!SINGLE_BYTE_CHAR_P (c))
2326 {
2327 int len = CHAR_STRING (c, str);
2328
2329 return make_multibyte_string (str, 1, len);
2330 }
2331
2332 *push_text_char_description (c & 0377, str) = 0;
2333
2334 return build_string (str);
2335 }
2336
2337 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2338 a meta bit. */
2339 static int
2340 ascii_sequence_p (seq)
2341 Lisp_Object seq;
2342 {
2343 int i;
2344 int len = XINT (Flength (seq));
2345
2346 for (i = 0; i < len; i++)
2347 {
2348 Lisp_Object ii, elt;
2349
2350 XSETFASTINT (ii, i);
2351 elt = Faref (seq, ii);
2352
2353 if (!INTEGERP (elt)
2354 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2355 return 0;
2356 }
2357
2358 return 1;
2359 }
2360
2361 \f
2362 /* where-is - finding a command in a set of keymaps. */
2363
2364 static Lisp_Object where_is_internal ();
2365 static Lisp_Object where_is_internal_1 ();
2366 static void where_is_internal_2 ();
2367
2368 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2369 Returns the first non-nil binding found in any of those maps. */
2370
2371 static Lisp_Object
2372 shadow_lookup (shadow, key, flag)
2373 Lisp_Object shadow, key, flag;
2374 {
2375 Lisp_Object tail, value;
2376
2377 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2378 {
2379 value = Flookup_key (XCAR (tail), key, flag);
2380 if (NATNUMP (value))
2381 {
2382 value = Flookup_key (XCAR (tail), Fsubstring (key, 0, value), flag);
2383 if (!NILP (value))
2384 return Qnil;
2385 }
2386 else if (!NILP (value))
2387 return value;
2388 }
2389 return Qnil;
2390 }
2391
2392 static Lisp_Object Vmouse_events;
2393
2394 /* This function can GC if Flookup_key autoloads any keymaps. */
2395
2396 static Lisp_Object
2397 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2398 Lisp_Object definition, keymaps;
2399 Lisp_Object firstonly, noindirect, no_remap;
2400 {
2401 Lisp_Object maps = Qnil;
2402 Lisp_Object found, sequences;
2403 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2404 /* 1 means ignore all menu bindings entirely. */
2405 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2406
2407 /* If this command is remapped, then it has no key bindings
2408 of its own. */
2409 if (NILP (no_remap) && SYMBOLP (definition))
2410 {
2411 Lisp_Object tem;
2412 if (tem = Fcommand_remapping (definition), !NILP (tem))
2413 return Qnil;
2414 }
2415
2416 found = keymaps;
2417 while (CONSP (found))
2418 {
2419 maps =
2420 nconc2 (maps,
2421 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2422 found = XCDR (found);
2423 }
2424
2425 GCPRO5 (definition, keymaps, maps, found, sequences);
2426 found = Qnil;
2427 sequences = Qnil;
2428
2429 for (; !NILP (maps); maps = Fcdr (maps))
2430 {
2431 /* Key sequence to reach map, and the map that it reaches */
2432 register Lisp_Object this, map, tem;
2433
2434 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2435 [M-CHAR] sequences, check if last character of the sequence
2436 is the meta-prefix char. */
2437 Lisp_Object last;
2438 int last_is_meta;
2439
2440 this = Fcar (Fcar (maps));
2441 map = Fcdr (Fcar (maps));
2442 last = make_number (XINT (Flength (this)) - 1);
2443 last_is_meta = (XINT (last) >= 0
2444 && EQ (Faref (this, last), meta_prefix_char));
2445
2446 /* if (nomenus && !ascii_sequence_p (this)) */
2447 if (nomenus && XINT (last) >= 0
2448 && SYMBOLP (tem = Faref (this, make_number (0)))
2449 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2450 /* If no menu entries should be returned, skip over the
2451 keymaps bound to `menu-bar' and `tool-bar' and other
2452 non-ascii prefixes like `C-down-mouse-2'. */
2453 continue;
2454
2455 QUIT;
2456
2457 while (CONSP (map))
2458 {
2459 /* Because the code we want to run on each binding is rather
2460 large, we don't want to have two separate loop bodies for
2461 sparse keymap bindings and tables; we want to iterate one
2462 loop body over both keymap and vector bindings.
2463
2464 For this reason, if Fcar (map) is a vector, we don't
2465 advance map to the next element until i indicates that we
2466 have finished off the vector. */
2467 Lisp_Object elt, key, binding;
2468 elt = XCAR (map);
2469 map = XCDR (map);
2470
2471 sequences = Qnil;
2472
2473 QUIT;
2474
2475 /* Set key and binding to the current key and binding, and
2476 advance map and i to the next binding. */
2477 if (VECTORP (elt))
2478 {
2479 Lisp_Object sequence;
2480 int i;
2481 /* In a vector, look at each element. */
2482 for (i = 0; i < XVECTOR (elt)->size; i++)
2483 {
2484 binding = AREF (elt, i);
2485 XSETFASTINT (key, i);
2486 sequence = where_is_internal_1 (binding, key, definition,
2487 noindirect, this,
2488 last, nomenus, last_is_meta);
2489 if (!NILP (sequence))
2490 sequences = Fcons (sequence, sequences);
2491 }
2492 }
2493 else if (CHAR_TABLE_P (elt))
2494 {
2495 Lisp_Object indices[3];
2496 Lisp_Object args;
2497
2498 args = Fcons (Fcons (Fcons (definition, noindirect),
2499 Qnil), /* Result accumulator. */
2500 Fcons (Fcons (this, last),
2501 Fcons (make_number (nomenus),
2502 make_number (last_is_meta))));
2503 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2504 0, indices);
2505 sequences = XCDR (XCAR (args));
2506 }
2507 else if (CONSP (elt))
2508 {
2509 Lisp_Object sequence;
2510
2511 key = XCAR (elt);
2512 binding = XCDR (elt);
2513
2514 sequence = where_is_internal_1 (binding, key, definition,
2515 noindirect, this,
2516 last, nomenus, last_is_meta);
2517 if (!NILP (sequence))
2518 sequences = Fcons (sequence, sequences);
2519 }
2520
2521
2522 while (!NILP (sequences))
2523 {
2524 Lisp_Object sequence, remapped, function;
2525
2526 sequence = XCAR (sequences);
2527 sequences = XCDR (sequences);
2528
2529 /* If the current sequence is a command remapping with
2530 format [remap COMMAND], find the key sequences
2531 which run COMMAND, and use those sequences instead. */
2532 remapped = Qnil;
2533 if (NILP (no_remap)
2534 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2535 && EQ (AREF (sequence, 0), Qremap)
2536 && (function = AREF (sequence, 1), SYMBOLP (function)))
2537 {
2538 Lisp_Object remapped1;
2539
2540 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2541 if (CONSP (remapped1))
2542 {
2543 /* Verify that this key binding actually maps to the
2544 remapped command (see below). */
2545 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2546 continue;
2547 sequence = XCAR (remapped1);
2548 remapped = XCDR (remapped1);
2549 goto record_sequence;
2550 }
2551 }
2552
2553 /* Verify that this key binding is not shadowed by another
2554 binding for the same key, before we say it exists.
2555
2556 Mechanism: look for local definition of this key and if
2557 it is defined and does not match what we found then
2558 ignore this key.
2559
2560 Either nil or number as value from Flookup_key
2561 means undefined. */
2562 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2563 continue;
2564
2565 record_sequence:
2566 /* Don't annoy user with strings from a menu such as
2567 Select Paste. Change them all to "(any string)",
2568 so that there seems to be only one menu item
2569 to report. */
2570 if (! NILP (sequence))
2571 {
2572 Lisp_Object tem;
2573 tem = Faref (sequence, make_number (XVECTOR (sequence)->size - 1));
2574 if (STRINGP (tem))
2575 Faset (sequence, make_number (XVECTOR (sequence)->size - 1),
2576 build_string ("(any string)"));
2577 }
2578
2579 /* It is a true unshadowed match. Record it, unless it's already
2580 been seen (as could happen when inheriting keymaps). */
2581 if (NILP (Fmember (sequence, found)))
2582 found = Fcons (sequence, found);
2583
2584 /* If firstonly is Qnon_ascii, then we can return the first
2585 binding we find. If firstonly is not Qnon_ascii but not
2586 nil, then we should return the first ascii-only binding
2587 we find. */
2588 if (EQ (firstonly, Qnon_ascii))
2589 RETURN_UNGCPRO (sequence);
2590 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2591 RETURN_UNGCPRO (sequence);
2592
2593 if (CONSP (remapped))
2594 {
2595 sequence = XCAR (remapped);
2596 remapped = XCDR (remapped);
2597 goto record_sequence;
2598 }
2599 }
2600 }
2601 }
2602
2603 UNGCPRO;
2604
2605 found = Fnreverse (found);
2606
2607 /* firstonly may have been t, but we may have gone all the way through
2608 the keymaps without finding an all-ASCII key sequence. So just
2609 return the best we could find. */
2610 if (!NILP (firstonly))
2611 return Fcar (found);
2612
2613 return found;
2614 }
2615
2616 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2617 doc: /* Return list of keys that invoke DEFINITION.
2618 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2619 If KEYMAP is nil, search all the currently active keymaps.
2620 If KEYMAP is a list of keymaps, search only those keymaps.
2621
2622 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2623 rather than a list of all possible key sequences.
2624 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2625 no matter what it is.
2626 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2627 \(or their meta variants) and entirely reject menu bindings.
2628
2629 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2630 to other keymaps or slots. This makes it possible to search for an
2631 indirect definition itself.
2632
2633 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2634 that invoke a command which is remapped to DEFINITION, but include the
2635 remapped command in the returned list. */)
2636 (definition, keymap, firstonly, noindirect, no_remap)
2637 Lisp_Object definition, keymap;
2638 Lisp_Object firstonly, noindirect, no_remap;
2639 {
2640 Lisp_Object sequences, keymaps;
2641 /* 1 means ignore all menu bindings entirely. */
2642 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2643 Lisp_Object result;
2644
2645 /* Find the relevant keymaps. */
2646 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2647 keymaps = keymap;
2648 else if (!NILP (keymap))
2649 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2650 else
2651 keymaps = Fcurrent_active_maps (Qnil);
2652
2653 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2654 We don't really need to check `keymap'. */
2655 if (nomenus && NILP (noindirect) && NILP (keymap))
2656 {
2657 Lisp_Object *defns;
2658 int i, j, n;
2659 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2660
2661 /* Check heuristic-consistency of the cache. */
2662 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2663 where_is_cache = Qnil;
2664
2665 if (NILP (where_is_cache))
2666 {
2667 /* We need to create the cache. */
2668 Lisp_Object args[2];
2669 where_is_cache = Fmake_hash_table (0, args);
2670 where_is_cache_keymaps = Qt;
2671
2672 /* Fill in the cache. */
2673 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2674 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2675 UNGCPRO;
2676
2677 where_is_cache_keymaps = keymaps;
2678 }
2679
2680 /* We want to process definitions from the last to the first.
2681 Instead of consing, copy definitions to a vector and step
2682 over that vector. */
2683 sequences = Fgethash (definition, where_is_cache, Qnil);
2684 n = XINT (Flength (sequences));
2685 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2686 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2687 defns[i++] = XCAR (sequences);
2688
2689 /* Verify that the key bindings are not shadowed. Note that
2690 the following can GC. */
2691 GCPRO2 (definition, keymaps);
2692 result = Qnil;
2693 j = -1;
2694 for (i = n - 1; i >= 0; --i)
2695 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2696 {
2697 if (ascii_sequence_p (defns[i]))
2698 break;
2699 else if (j < 0)
2700 j = i;
2701 }
2702
2703 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2704 UNGCPRO;
2705 }
2706 else
2707 {
2708 /* Kill the cache so that where_is_internal_1 doesn't think
2709 we're filling it up. */
2710 where_is_cache = Qnil;
2711 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2712 }
2713
2714 return result;
2715 }
2716
2717 /* This is the function that Fwhere_is_internal calls using map_char_table.
2718 ARGS has the form
2719 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2720 .
2721 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2722 Since map_char_table doesn't really use the return value from this function,
2723 we the result append to RESULT, the slot in ARGS.
2724
2725 This function can GC because it calls where_is_internal_1 which can
2726 GC. */
2727
2728 static void
2729 where_is_internal_2 (args, key, binding)
2730 Lisp_Object args, key, binding;
2731 {
2732 Lisp_Object definition, noindirect, this, last;
2733 Lisp_Object result, sequence;
2734 int nomenus, last_is_meta;
2735 struct gcpro gcpro1, gcpro2, gcpro3;
2736
2737 GCPRO3 (args, key, binding);
2738 result = XCDR (XCAR (args));
2739 definition = XCAR (XCAR (XCAR (args)));
2740 noindirect = XCDR (XCAR (XCAR (args)));
2741 this = XCAR (XCAR (XCDR (args)));
2742 last = XCDR (XCAR (XCDR (args)));
2743 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2744 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2745
2746 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2747 this, last, nomenus, last_is_meta);
2748
2749 if (!NILP (sequence))
2750 XSETCDR (XCAR (args), Fcons (sequence, result));
2751
2752 UNGCPRO;
2753 }
2754
2755
2756 /* This function can GC because get_keyelt can. */
2757
2758 static Lisp_Object
2759 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2760 nomenus, last_is_meta)
2761 Lisp_Object binding, key, definition, noindirect, this, last;
2762 int nomenus, last_is_meta;
2763 {
2764 Lisp_Object sequence;
2765
2766 /* Search through indirections unless that's not wanted. */
2767 if (NILP (noindirect))
2768 binding = get_keyelt (binding, 0);
2769
2770 /* End this iteration if this element does not match
2771 the target. */
2772
2773 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2774 || EQ (binding, definition)
2775 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2776 /* Doesn't match. */
2777 return Qnil;
2778
2779 /* We have found a match. Construct the key sequence where we found it. */
2780 if (INTEGERP (key) && last_is_meta)
2781 {
2782 sequence = Fcopy_sequence (this);
2783 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2784 }
2785 else
2786 sequence = append_key (this, key);
2787
2788 if (!NILP (where_is_cache))
2789 {
2790 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2791 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2792 return Qnil;
2793 }
2794 else
2795 return sequence;
2796 }
2797 \f
2798 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2799
2800 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2801 doc: /* Insert the list of all defined keys and their definitions.
2802 The list is inserted in the current buffer, while the bindings are
2803 looked up in BUFFER.
2804 The optional argument PREFIX, if non-nil, should be a key sequence;
2805 then we display only bindings that start with that prefix.
2806 The optional argument MENUS, if non-nil, says to mention menu bindings.
2807 \(Ordinarily these are omitted from the output.) */)
2808 (buffer, prefix, menus)
2809 Lisp_Object buffer, prefix, menus;
2810 {
2811 Lisp_Object outbuf, shadow;
2812 int nomenu = NILP (menus);
2813 register Lisp_Object start1;
2814 struct gcpro gcpro1;
2815
2816 char *alternate_heading
2817 = "\
2818 Keyboard translations:\n\n\
2819 You type Translation\n\
2820 -------- -----------\n";
2821
2822 shadow = Qnil;
2823 GCPRO1 (shadow);
2824
2825 outbuf = Fcurrent_buffer ();
2826
2827 /* Report on alternates for keys. */
2828 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2829 {
2830 int c;
2831 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2832 int translate_len = SCHARS (Vkeyboard_translate_table);
2833
2834 for (c = 0; c < translate_len; c++)
2835 if (translate[c] != c)
2836 {
2837 char buf[KEY_DESCRIPTION_SIZE];
2838 char *bufend;
2839
2840 if (alternate_heading)
2841 {
2842 insert_string (alternate_heading);
2843 alternate_heading = 0;
2844 }
2845
2846 bufend = push_key_description (translate[c], buf, 1);
2847 insert (buf, bufend - buf);
2848 Findent_to (make_number (16), make_number (1));
2849 bufend = push_key_description (c, buf, 1);
2850 insert (buf, bufend - buf);
2851
2852 insert ("\n", 1);
2853
2854 /* Insert calls signal_after_change which may GC. */
2855 translate = SDATA (Vkeyboard_translate_table);
2856 }
2857
2858 insert ("\n", 1);
2859 }
2860
2861 if (!NILP (Vkey_translation_map))
2862 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2863 "Key translations", nomenu, 1, 0, 0);
2864
2865
2866 /* Print the (major mode) local map. */
2867 start1 = Qnil;
2868 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2869 start1 = current_kboard->Voverriding_terminal_local_map;
2870 else if (!NILP (Voverriding_local_map))
2871 start1 = Voverriding_local_map;
2872
2873 if (!NILP (start1))
2874 {
2875 describe_map_tree (start1, 1, shadow, prefix,
2876 "\f\nOverriding Bindings", nomenu, 0, 0, 0);
2877 shadow = Fcons (start1, shadow);
2878 }
2879 else
2880 {
2881 /* Print the minor mode and major mode keymaps. */
2882 int i, nmaps;
2883 Lisp_Object *modes, *maps;
2884
2885 /* Temporarily switch to `buffer', so that we can get that buffer's
2886 minor modes correctly. */
2887 Fset_buffer (buffer);
2888
2889 nmaps = current_minor_maps (&modes, &maps);
2890 Fset_buffer (outbuf);
2891
2892 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2893 XBUFFER (buffer), Qkeymap);
2894 if (!NILP (start1))
2895 {
2896 describe_map_tree (start1, 1, shadow, prefix,
2897 "\f\n`keymap' Property Bindings", nomenu,
2898 0, 0, 0);
2899 shadow = Fcons (start1, shadow);
2900 }
2901
2902 /* Print the minor mode maps. */
2903 for (i = 0; i < nmaps; i++)
2904 {
2905 /* The title for a minor mode keymap
2906 is constructed at run time.
2907 We let describe_map_tree do the actual insertion
2908 because it takes care of other features when doing so. */
2909 char *title, *p;
2910
2911 if (!SYMBOLP (modes[i]))
2912 abort();
2913
2914 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2915 *p++ = '\f';
2916 *p++ = '\n';
2917 *p++ = '`';
2918 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2919 SCHARS (SYMBOL_NAME (modes[i])));
2920 p += SCHARS (SYMBOL_NAME (modes[i]));
2921 *p++ = '\'';
2922 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2923 p += sizeof (" Minor Mode Bindings") - 1;
2924 *p = 0;
2925
2926 describe_map_tree (maps[i], 1, shadow, prefix,
2927 title, nomenu, 0, 0, 0);
2928 shadow = Fcons (maps[i], shadow);
2929 }
2930
2931 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2932 XBUFFER (buffer), Qlocal_map);
2933 if (!NILP (start1))
2934 {
2935 if (EQ (start1, XBUFFER (buffer)->keymap))
2936 describe_map_tree (start1, 1, shadow, prefix,
2937 "\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
2938 else
2939 describe_map_tree (start1, 1, shadow, prefix,
2940 "\f\n`local-map' Property Bindings",
2941 nomenu, 0, 0, 0);
2942
2943 shadow = Fcons (start1, shadow);
2944 }
2945 }
2946
2947 describe_map_tree (current_global_map, 1, shadow, prefix,
2948 "\f\nGlobal Bindings", nomenu, 0, 1, 0);
2949
2950 /* Print the function-key-map translations under this prefix. */
2951 if (!NILP (Vfunction_key_map))
2952 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2953 "\f\nFunction key map translations", nomenu, 1, 0, 0);
2954
2955 UNGCPRO;
2956 return Qnil;
2957 }
2958
2959 /* Insert a description of the key bindings in STARTMAP,
2960 followed by those of all maps reachable through STARTMAP.
2961 If PARTIAL is nonzero, omit certain "uninteresting" commands
2962 (such as `undefined').
2963 If SHADOW is non-nil, it is a list of maps;
2964 don't mention keys which would be shadowed by any of them.
2965 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2966 TITLE, if not 0, is a string to insert at the beginning.
2967 TITLE should not end with a colon or a newline; we supply that.
2968 If NOMENU is not 0, then omit menu-bar commands.
2969
2970 If TRANSL is nonzero, the definitions are actually key translations
2971 so print strings and vectors differently.
2972
2973 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2974 to look through.
2975
2976 If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
2977 don't omit it; instead, mention it but say it is shadowed. */
2978
2979 void
2980 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2981 always_title, mention_shadow)
2982 Lisp_Object startmap, shadow, prefix;
2983 int partial;
2984 char *title;
2985 int nomenu;
2986 int transl;
2987 int always_title;
2988 int mention_shadow;
2989 {
2990 Lisp_Object maps, orig_maps, seen, sub_shadows;
2991 struct gcpro gcpro1, gcpro2, gcpro3;
2992 int something = 0;
2993 char *key_heading
2994 = "\
2995 key binding\n\
2996 --- -------\n";
2997
2998 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2999 seen = Qnil;
3000 sub_shadows = Qnil;
3001 GCPRO3 (maps, seen, sub_shadows);
3002
3003 if (nomenu)
3004 {
3005 Lisp_Object list;
3006
3007 /* Delete from MAPS each element that is for the menu bar. */
3008 for (list = maps; !NILP (list); list = XCDR (list))
3009 {
3010 Lisp_Object elt, prefix, tem;
3011
3012 elt = Fcar (list);
3013 prefix = Fcar (elt);
3014 if (XVECTOR (prefix)->size >= 1)
3015 {
3016 tem = Faref (prefix, make_number (0));
3017 if (EQ (tem, Qmenu_bar))
3018 maps = Fdelq (elt, maps);
3019 }
3020 }
3021 }
3022
3023 if (!NILP (maps) || always_title)
3024 {
3025 if (title)
3026 {
3027 insert_string (title);
3028 if (!NILP (prefix))
3029 {
3030 insert_string (" Starting With ");
3031 insert1 (Fkey_description (prefix, Qnil));
3032 }
3033 insert_string (":\n");
3034 }
3035 insert_string (key_heading);
3036 something = 1;
3037 }
3038
3039 for (; !NILP (maps); maps = Fcdr (maps))
3040 {
3041 register Lisp_Object elt, prefix, tail;
3042
3043 elt = Fcar (maps);
3044 prefix = Fcar (elt);
3045
3046 sub_shadows = Qnil;
3047
3048 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3049 {
3050 Lisp_Object shmap;
3051
3052 shmap = XCAR (tail);
3053
3054 /* If the sequence by which we reach this keymap is zero-length,
3055 then the shadow map for this keymap is just SHADOW. */
3056 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3057 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3058 ;
3059 /* If the sequence by which we reach this keymap actually has
3060 some elements, then the sequence's definition in SHADOW is
3061 what we should use. */
3062 else
3063 {
3064 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3065 if (INTEGERP (shmap))
3066 shmap = Qnil;
3067 }
3068
3069 /* If shmap is not nil and not a keymap,
3070 it completely shadows this map, so don't
3071 describe this map at all. */
3072 if (!NILP (shmap) && !KEYMAPP (shmap))
3073 goto skip;
3074
3075 if (!NILP (shmap))
3076 sub_shadows = Fcons (shmap, sub_shadows);
3077 }
3078
3079 /* Maps we have already listed in this loop shadow this map. */
3080 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3081 {
3082 Lisp_Object tem;
3083 tem = Fequal (Fcar (XCAR (tail)), prefix);
3084 if (!NILP (tem))
3085 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3086 }
3087
3088 describe_map (Fcdr (elt), prefix,
3089 transl ? describe_translation : describe_command,
3090 partial, sub_shadows, &seen, nomenu, mention_shadow);
3091
3092 skip: ;
3093 }
3094
3095 if (something)
3096 insert_string ("\n");
3097
3098 UNGCPRO;
3099 }
3100
3101 static int previous_description_column;
3102
3103 static void
3104 describe_command (definition, args)
3105 Lisp_Object definition, args;
3106 {
3107 register Lisp_Object tem1;
3108 int column = (int) current_column (); /* iftc */
3109 int description_column;
3110
3111 /* If column 16 is no good, go to col 32;
3112 but don't push beyond that--go to next line instead. */
3113 if (column > 30)
3114 {
3115 insert_char ('\n');
3116 description_column = 32;
3117 }
3118 else if (column > 14 || (column > 10 && previous_description_column == 32))
3119 description_column = 32;
3120 else
3121 description_column = 16;
3122
3123 Findent_to (make_number (description_column), make_number (1));
3124 previous_description_column = description_column;
3125
3126 if (SYMBOLP (definition))
3127 {
3128 tem1 = SYMBOL_NAME (definition);
3129 insert1 (tem1);
3130 insert_string ("\n");
3131 }
3132 else if (STRINGP (definition) || VECTORP (definition))
3133 insert_string ("Keyboard Macro\n");
3134 else if (KEYMAPP (definition))
3135 insert_string ("Prefix Command\n");
3136 else
3137 insert_string ("??\n");
3138 }
3139
3140 static void
3141 describe_translation (definition, args)
3142 Lisp_Object definition, args;
3143 {
3144 register Lisp_Object tem1;
3145
3146 Findent_to (make_number (16), make_number (1));
3147
3148 if (SYMBOLP (definition))
3149 {
3150 tem1 = SYMBOL_NAME (definition);
3151 insert1 (tem1);
3152 insert_string ("\n");
3153 }
3154 else if (STRINGP (definition) || VECTORP (definition))
3155 {
3156 insert1 (Fkey_description (definition, Qnil));
3157 insert_string ("\n");
3158 }
3159 else if (KEYMAPP (definition))
3160 insert_string ("Prefix Command\n");
3161 else
3162 insert_string ("??\n");
3163 }
3164
3165 /* Describe the contents of map MAP, assuming that this map itself is
3166 reached by the sequence of prefix keys PREFIX (a string or vector).
3167 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3168
3169 static void
3170 describe_map (map, prefix, elt_describer, partial, shadow,
3171 seen, nomenu, mention_shadow)
3172 register Lisp_Object map;
3173 Lisp_Object prefix;
3174 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3175 int partial;
3176 Lisp_Object shadow;
3177 Lisp_Object *seen;
3178 int nomenu;
3179 int mention_shadow;
3180 {
3181 Lisp_Object tail, definition, event;
3182 Lisp_Object tem;
3183 Lisp_Object suppress;
3184 Lisp_Object kludge;
3185 int first = 1;
3186 struct gcpro gcpro1, gcpro2, gcpro3;
3187
3188 suppress = Qnil;
3189
3190 if (partial)
3191 suppress = intern ("suppress-keymap");
3192
3193 /* This vector gets used to present single keys to Flookup_key. Since
3194 that is done once per keymap element, we don't want to cons up a
3195 fresh vector every time. */
3196 kludge = Fmake_vector (make_number (1), Qnil);
3197 definition = Qnil;
3198
3199 GCPRO3 (prefix, definition, kludge);
3200
3201 for (tail = map; CONSP (tail); tail = XCDR (tail))
3202 {
3203 QUIT;
3204
3205 if (VECTORP (XCAR (tail))
3206 || CHAR_TABLE_P (XCAR (tail)))
3207 describe_vector (XCAR (tail),
3208 prefix, Qnil, elt_describer, partial, shadow, map,
3209 (int *)0, 0, 1, mention_shadow);
3210 else if (CONSP (XCAR (tail)))
3211 {
3212 int this_shadowed = 0;
3213 event = XCAR (XCAR (tail));
3214
3215 /* Ignore bindings whose "prefix" are not really valid events.
3216 (We get these in the frames and buffers menu.) */
3217 if (!(SYMBOLP (event) || INTEGERP (event)))
3218 continue;
3219
3220 if (nomenu && EQ (event, Qmenu_bar))
3221 continue;
3222
3223 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3224
3225 /* Don't show undefined commands or suppressed commands. */
3226 if (NILP (definition)) continue;
3227 if (SYMBOLP (definition) && partial)
3228 {
3229 tem = Fget (definition, suppress);
3230 if (!NILP (tem))
3231 continue;
3232 }
3233
3234 /* Don't show a command that isn't really visible
3235 because a local definition of the same key shadows it. */
3236
3237 ASET (kludge, 0, event);
3238 if (!NILP (shadow))
3239 {
3240 tem = shadow_lookup (shadow, kludge, Qt);
3241 if (!NILP (tem))
3242 {
3243 if (mention_shadow)
3244 this_shadowed = 1;
3245 else
3246 continue;
3247 }
3248 }
3249
3250 tem = Flookup_key (map, kludge, Qt);
3251 if (!EQ (tem, definition)) continue;
3252
3253 if (first)
3254 {
3255 previous_description_column = 0;
3256 insert ("\n", 1);
3257 first = 0;
3258 }
3259
3260 /* THIS gets the string to describe the character EVENT. */
3261 insert1 (Fkey_description (kludge, prefix));
3262
3263 /* Print a description of the definition of this character.
3264 elt_describer will take care of spacing out far enough
3265 for alignment purposes. */
3266 (*elt_describer) (definition, Qnil);
3267
3268 if (this_shadowed)
3269 {
3270 SET_PT (PT - 1);
3271 insert_string (" (binding currently shadowed)");
3272 SET_PT (PT + 1);
3273 }
3274 }
3275 else if (EQ (XCAR (tail), Qkeymap))
3276 {
3277 /* The same keymap might be in the structure twice, if we're
3278 using an inherited keymap. So skip anything we've already
3279 encountered. */
3280 tem = Fassq (tail, *seen);
3281 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3282 break;
3283 *seen = Fcons (Fcons (tail, prefix), *seen);
3284 }
3285 }
3286
3287 UNGCPRO;
3288 }
3289
3290 static void
3291 describe_vector_princ (elt, fun)
3292 Lisp_Object elt, fun;
3293 {
3294 Findent_to (make_number (16), make_number (1));
3295 call1 (fun, elt);
3296 Fterpri (Qnil);
3297 }
3298
3299 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3300 doc: /* Insert a description of contents of VECTOR.
3301 This is text showing the elements of vector matched against indices.
3302 DESCRIBER is the output function used; nil means use `princ'. */)
3303 (vector, describer)
3304 Lisp_Object vector, describer;
3305 {
3306 int count = SPECPDL_INDEX ();
3307 if (NILP (describer))
3308 describer = intern ("princ");
3309 specbind (Qstandard_output, Fcurrent_buffer ());
3310 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3311 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3312 Qnil, Qnil, (int *)0, 0, 0, 0);
3313
3314 return unbind_to (count, Qnil);
3315 }
3316
3317 /* Insert in the current buffer a description of the contents of VECTOR.
3318 We call ELT_DESCRIBER to insert the description of one value found
3319 in VECTOR.
3320
3321 ELT_PREFIX describes what "comes before" the keys or indices defined
3322 by this vector. This is a human-readable string whose size
3323 is not necessarily related to the situation.
3324
3325 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3326 leads to this keymap.
3327
3328 If the vector is a chartable, ELT_PREFIX is the vector
3329 of bytes that lead to the character set or portion of a character
3330 set described by this chartable.
3331
3332 If PARTIAL is nonzero, it means do not mention suppressed commands
3333 (that assumes the vector is in a keymap).
3334
3335 SHADOW is a list of keymaps that shadow this map.
3336 If it is non-nil, then we look up the key in those maps
3337 and we don't mention it now if it is defined by any of them.
3338
3339 ENTIRE_MAP is the keymap in which this vector appears.
3340 If the definition in effect in the whole map does not match
3341 the one in this vector, we ignore this one.
3342
3343 When describing a sub-char-table, INDICES is a list of
3344 indices at higher levels in this char-table,
3345 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3346
3347 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3348
3349 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3350
3351 static void
3352 describe_vector (vector, prefix, args, elt_describer,
3353 partial, shadow, entire_map,
3354 indices, char_table_depth, keymap_p,
3355 mention_shadow)
3356 register Lisp_Object vector;
3357 Lisp_Object prefix, args;
3358 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3359 int partial;
3360 Lisp_Object shadow;
3361 Lisp_Object entire_map;
3362 int *indices;
3363 int char_table_depth;
3364 int keymap_p;
3365 int mention_shadow;
3366 {
3367 Lisp_Object definition;
3368 Lisp_Object tem2;
3369 Lisp_Object elt_prefix = Qnil;
3370 register int i;
3371 Lisp_Object suppress;
3372 Lisp_Object kludge;
3373 int first = 1;
3374 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3375 /* Range of elements to be handled. */
3376 int from, to;
3377 /* A flag to tell if a leaf in this level of char-table is not a
3378 generic character (i.e. a complete multibyte character). */
3379 int complete_char;
3380 int character;
3381 int starting_i;
3382
3383 suppress = Qnil;
3384
3385 if (indices == 0)
3386 indices = (int *) alloca (3 * sizeof (int));
3387
3388 definition = Qnil;
3389
3390 if (!keymap_p)
3391 {
3392 /* Call Fkey_description first, to avoid GC bug for the other string. */
3393 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3394 {
3395 Lisp_Object tem;
3396 tem = Fkey_description (prefix, Qnil);
3397 elt_prefix = concat2 (tem, build_string (" "));
3398 }
3399 prefix = Qnil;
3400 }
3401
3402 /* This vector gets used to present single keys to Flookup_key. Since
3403 that is done once per vector element, we don't want to cons up a
3404 fresh vector every time. */
3405 kludge = Fmake_vector (make_number (1), Qnil);
3406 GCPRO4 (elt_prefix, prefix, definition, kludge);
3407
3408 if (partial)
3409 suppress = intern ("suppress-keymap");
3410
3411 if (CHAR_TABLE_P (vector))
3412 {
3413 if (char_table_depth == 0)
3414 {
3415 /* VECTOR is a top level char-table. */
3416 complete_char = 1;
3417 from = 0;
3418 to = CHAR_TABLE_ORDINARY_SLOTS;
3419 }
3420 else
3421 {
3422 /* VECTOR is a sub char-table. */
3423 if (char_table_depth >= 3)
3424 /* A char-table is never that deep. */
3425 error ("Too deep char table");
3426
3427 complete_char
3428 = (CHARSET_VALID_P (indices[0])
3429 && ((CHARSET_DIMENSION (indices[0]) == 1
3430 && char_table_depth == 1)
3431 || char_table_depth == 2));
3432
3433 /* Meaningful elements are from 32th to 127th. */
3434 from = 32;
3435 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3436 }
3437 }
3438 else
3439 {
3440 /* This does the right thing for ordinary vectors. */
3441
3442 complete_char = 1;
3443 from = 0;
3444 to = XVECTOR (vector)->size;
3445 }
3446
3447 for (i = from; i < to; i++)
3448 {
3449 int this_shadowed = 0;
3450 QUIT;
3451
3452 if (CHAR_TABLE_P (vector))
3453 {
3454 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3455 complete_char = 0;
3456
3457 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3458 && !CHARSET_DEFINED_P (i - 128))
3459 continue;
3460
3461 definition
3462 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3463 }
3464 else
3465 definition = get_keyelt (AREF (vector, i), 0);
3466
3467 if (NILP (definition)) continue;
3468
3469 /* Don't mention suppressed commands. */
3470 if (SYMBOLP (definition) && partial)
3471 {
3472 Lisp_Object tem;
3473
3474 tem = Fget (definition, suppress);
3475
3476 if (!NILP (tem)) continue;
3477 }
3478
3479 /* Set CHARACTER to the character this entry describes, if any.
3480 Also update *INDICES. */
3481 if (CHAR_TABLE_P (vector))
3482 {
3483 indices[char_table_depth] = i;
3484
3485 if (char_table_depth == 0)
3486 {
3487 character = i;
3488 indices[0] = i - 128;
3489 }
3490 else if (complete_char)
3491 {
3492 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3493 }
3494 else
3495 character = 0;
3496 }
3497 else
3498 character = i;
3499
3500 ASET (kludge, 0, make_number (character));
3501
3502 /* If this binding is shadowed by some other map, ignore it. */
3503 if (!NILP (shadow) && complete_char)
3504 {
3505 Lisp_Object tem;
3506
3507 tem = shadow_lookup (shadow, kludge, Qt);
3508
3509 if (!NILP (tem))
3510 {
3511 if (mention_shadow)
3512 this_shadowed = 1;
3513 else
3514 continue;
3515 }
3516 }
3517
3518 /* Ignore this definition if it is shadowed by an earlier
3519 one in the same keymap. */
3520 if (!NILP (entire_map) && complete_char)
3521 {
3522 Lisp_Object tem;
3523
3524 tem = Flookup_key (entire_map, kludge, Qt);
3525
3526 if (!EQ (tem, definition))
3527 continue;
3528 }
3529
3530 if (first)
3531 {
3532 if (char_table_depth == 0)
3533 insert ("\n", 1);
3534 first = 0;
3535 }
3536
3537 /* For a sub char-table, show the depth by indentation.
3538 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3539 if (char_table_depth > 0)
3540 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3541
3542 /* Output the prefix that applies to every entry in this map. */
3543 if (!NILP (elt_prefix))
3544 insert1 (elt_prefix);
3545
3546 /* Insert or describe the character this slot is for,
3547 or a description of what it is for. */
3548 if (SUB_CHAR_TABLE_P (vector))
3549 {
3550 if (complete_char)
3551 insert_char (character);
3552 else
3553 {
3554 /* We need an octal representation for this block of
3555 characters. */
3556 char work[16];
3557 sprintf (work, "(row %d)", i);
3558 insert (work, strlen (work));
3559 }
3560 }
3561 else if (CHAR_TABLE_P (vector))
3562 {
3563 if (complete_char)
3564 insert1 (Fkey_description (kludge, prefix));
3565 else
3566 {
3567 /* Print the information for this character set. */
3568 insert_string ("<");
3569 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3570 if (STRINGP (tem2))
3571 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3572 SBYTES (tem2), 0);
3573 else
3574 insert ("?", 1);
3575 insert (">", 1);
3576 }
3577 }
3578 else
3579 {
3580 insert1 (Fkey_description (kludge, prefix));
3581 }
3582
3583 /* If we find a sub char-table within a char-table,
3584 scan it recursively; it defines the details for
3585 a character set or a portion of a character set. */
3586 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3587 {
3588 insert ("\n", 1);
3589 describe_vector (definition, prefix, args, elt_describer,
3590 partial, shadow, entire_map,
3591 indices, char_table_depth + 1, keymap_p,
3592 mention_shadow);
3593 continue;
3594 }
3595
3596 starting_i = i;
3597
3598 /* Find all consecutive characters or rows that have the same
3599 definition. But, for elements of a top level char table, if
3600 they are for charsets, we had better describe one by one even
3601 if they have the same definition. */
3602 if (CHAR_TABLE_P (vector))
3603 {
3604 int limit = to;
3605
3606 if (char_table_depth == 0)
3607 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3608
3609 while (i + 1 < limit
3610 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3611 !NILP (tem2))
3612 && !NILP (Fequal (tem2, definition)))
3613 i++;
3614 }
3615 else
3616 while (i + 1 < to
3617 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3618 !NILP (tem2))
3619 && !NILP (Fequal (tem2, definition)))
3620 i++;
3621
3622
3623 /* If we have a range of more than one character,
3624 print where the range reaches to. */
3625
3626 if (i != starting_i)
3627 {
3628 insert (" .. ", 4);
3629
3630 ASET (kludge, 0, make_number (i));
3631
3632 if (!NILP (elt_prefix))
3633 insert1 (elt_prefix);
3634
3635 if (CHAR_TABLE_P (vector))
3636 {
3637 if (char_table_depth == 0)
3638 {
3639 insert1 (Fkey_description (kludge, prefix));
3640 }
3641 else if (complete_char)
3642 {
3643 indices[char_table_depth] = i;
3644 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3645 insert_char (character);
3646 }
3647 else
3648 {
3649 /* We need an octal representation for this block of
3650 characters. */
3651 char work[16];
3652 sprintf (work, "(row %d)", i);
3653 insert (work, strlen (work));
3654 }
3655 }
3656 else
3657 {
3658 insert1 (Fkey_description (kludge, prefix));
3659 }
3660 }
3661
3662 /* Print a description of the definition of this character.
3663 elt_describer will take care of spacing out far enough
3664 for alignment purposes. */
3665 (*elt_describer) (definition, args);
3666
3667 if (this_shadowed)
3668 {
3669 SET_PT (PT - 1);
3670 insert_string (" (binding currently shadowed)");
3671 SET_PT (PT + 1);
3672 }
3673 }
3674
3675 /* For (sub) char-table, print `defalt' slot at last. */
3676 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3677 {
3678 insert (" ", char_table_depth * 2);
3679 insert_string ("<<default>>");
3680 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3681 }
3682
3683 UNGCPRO;
3684 }
3685 \f
3686 /* Apropos - finding all symbols whose names match a regexp. */
3687 static Lisp_Object apropos_predicate;
3688 static Lisp_Object apropos_accumulate;
3689
3690 static void
3691 apropos_accum (symbol, string)
3692 Lisp_Object symbol, string;
3693 {
3694 register Lisp_Object tem;
3695
3696 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3697 if (!NILP (tem) && !NILP (apropos_predicate))
3698 tem = call1 (apropos_predicate, symbol);
3699 if (!NILP (tem))
3700 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3701 }
3702
3703 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3704 doc: /* Show all symbols whose names contain match for REGEXP.
3705 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3706 for each symbol and a symbol is mentioned only if that returns non-nil.
3707 Return list of symbols found. */)
3708 (regexp, predicate)
3709 Lisp_Object regexp, predicate;
3710 {
3711 Lisp_Object tem;
3712 CHECK_STRING (regexp);
3713 apropos_predicate = predicate;
3714 apropos_accumulate = Qnil;
3715 map_obarray (Vobarray, apropos_accum, regexp);
3716 tem = Fsort (apropos_accumulate, Qstring_lessp);
3717 apropos_accumulate = Qnil;
3718 apropos_predicate = Qnil;
3719 return tem;
3720 }
3721 \f
3722 void
3723 syms_of_keymap ()
3724 {
3725 Qkeymap = intern ("keymap");
3726 staticpro (&Qkeymap);
3727 staticpro (&apropos_predicate);
3728 staticpro (&apropos_accumulate);
3729 apropos_predicate = Qnil;
3730 apropos_accumulate = Qnil;
3731
3732 /* Now we are ready to set up this property, so we can
3733 create char tables. */
3734 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3735
3736 /* Initialize the keymaps standardly used.
3737 Each one is the value of a Lisp variable, and is also
3738 pointed to by a C variable */
3739
3740 global_map = Fmake_keymap (Qnil);
3741 Fset (intern ("global-map"), global_map);
3742
3743 current_global_map = global_map;
3744 staticpro (&global_map);
3745 staticpro (&current_global_map);
3746
3747 meta_map = Fmake_keymap (Qnil);
3748 Fset (intern ("esc-map"), meta_map);
3749 Ffset (intern ("ESC-prefix"), meta_map);
3750
3751 control_x_map = Fmake_keymap (Qnil);
3752 Fset (intern ("ctl-x-map"), control_x_map);
3753 Ffset (intern ("Control-X-prefix"), control_x_map);
3754
3755 exclude_keys
3756 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3757 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3758 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3759 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3760 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3761 Qnil)))));
3762 staticpro (&exclude_keys);
3763
3764 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3765 doc: /* List of commands given new key bindings recently.
3766 This is used for internal purposes during Emacs startup;
3767 don't alter it yourself. */);
3768 Vdefine_key_rebound_commands = Qt;
3769
3770 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3771 doc: /* Default keymap to use when reading from the minibuffer. */);
3772 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3773
3774 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3775 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3776 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3777 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3778
3779 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3780 doc: /* Local keymap for minibuffer input with completion. */);
3781 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3782 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3783
3784 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3785 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3786 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3787 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3788 Vminibuffer_local_completion_map);
3789
3790 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3791 doc: /* Alist of keymaps to use for minor modes.
3792 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3793 key sequences and look up bindings iff VARIABLE's value is non-nil.
3794 If two active keymaps bind the same key, the keymap appearing earlier
3795 in the list takes precedence. */);
3796 Vminor_mode_map_alist = Qnil;
3797
3798 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3799 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3800 This variable is an alist just like `minor-mode-map-alist', and it is
3801 used the same way (and before `minor-mode-map-alist'); however,
3802 it is provided for major modes to bind locally. */);
3803 Vminor_mode_overriding_map_alist = Qnil;
3804
3805 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3806 doc: /* List of keymap alists to use for emulations modes.
3807 It is intended for modes or packages using multiple minor-mode keymaps.
3808 Each element is a keymap alist just like `minor-mode-map-alist', or a
3809 symbol with a variable binding which is a keymap alist, and it is used
3810 the same way. The "active" keymaps in each alist are used before
3811 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3812 Vemulation_mode_map_alists = Qnil;
3813
3814
3815 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3816 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3817 This allows Emacs to recognize function keys sent from ASCII
3818 terminals at any point in a key sequence.
3819
3820 The `read-key-sequence' function replaces any subsequence bound by
3821 `function-key-map' with its binding. More precisely, when the active
3822 keymaps have no binding for the current key sequence but
3823 `function-key-map' binds a suffix of the sequence to a vector or string,
3824 `read-key-sequence' replaces the matching suffix with its binding, and
3825 continues with the new sequence.
3826
3827 The events that come from bindings in `function-key-map' are not
3828 themselves looked up in `function-key-map'.
3829
3830 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3831 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3832 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3833 key, typing `ESC O P x' would return [f1 x]. */);
3834 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3835
3836 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3837 doc: /* Keymap of key translations that can override keymaps.
3838 This keymap works like `function-key-map', but comes after that,
3839 and its non-prefix bindings override ordinary bindings. */);
3840 Vkey_translation_map = Qnil;
3841
3842 staticpro (&Vmouse_events);
3843 Vmouse_events = Fcons (intern ("menu-bar"),
3844 Fcons (intern ("tool-bar"),
3845 Fcons (intern ("header-line"),
3846 Fcons (intern ("mode-line"),
3847 Fcons (intern ("mouse-1"),
3848 Fcons (intern ("mouse-2"),
3849 Fcons (intern ("mouse-3"),
3850 Fcons (intern ("mouse-4"),
3851 Fcons (intern ("mouse-5"),
3852 Qnil)))))))));
3853
3854
3855 Qsingle_key_description = intern ("single-key-description");
3856 staticpro (&Qsingle_key_description);
3857
3858 Qkey_description = intern ("key-description");
3859 staticpro (&Qkey_description);
3860
3861 Qkeymapp = intern ("keymapp");
3862 staticpro (&Qkeymapp);
3863
3864 Qnon_ascii = intern ("non-ascii");
3865 staticpro (&Qnon_ascii);
3866
3867 Qmenu_item = intern ("menu-item");
3868 staticpro (&Qmenu_item);
3869
3870 Qremap = intern ("remap");
3871 staticpro (&Qremap);
3872
3873 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3874 staticpro (&command_remapping_vector);
3875
3876 where_is_cache_keymaps = Qt;
3877 where_is_cache = Qnil;
3878 staticpro (&where_is_cache);
3879 staticpro (&where_is_cache_keymaps);
3880
3881 defsubr (&Skeymapp);
3882 defsubr (&Skeymap_parent);
3883 defsubr (&Skeymap_prompt);
3884 defsubr (&Sset_keymap_parent);
3885 defsubr (&Smake_keymap);
3886 defsubr (&Smake_sparse_keymap);
3887 defsubr (&Smap_keymap);
3888 defsubr (&Scopy_keymap);
3889 defsubr (&Scommand_remapping);
3890 defsubr (&Skey_binding);
3891 defsubr (&Slocal_key_binding);
3892 defsubr (&Sglobal_key_binding);
3893 defsubr (&Sminor_mode_key_binding);
3894 defsubr (&Sdefine_key);
3895 defsubr (&Slookup_key);
3896 defsubr (&Sdefine_prefix_command);
3897 defsubr (&Suse_global_map);
3898 defsubr (&Suse_local_map);
3899 defsubr (&Scurrent_local_map);
3900 defsubr (&Scurrent_global_map);
3901 defsubr (&Scurrent_minor_mode_maps);
3902 defsubr (&Scurrent_active_maps);
3903 defsubr (&Saccessible_keymaps);
3904 defsubr (&Skey_description);
3905 defsubr (&Sdescribe_vector);
3906 defsubr (&Ssingle_key_description);
3907 defsubr (&Stext_char_description);
3908 defsubr (&Swhere_is_internal);
3909 defsubr (&Sdescribe_buffer_bindings);
3910 defsubr (&Sapropos_internal);
3911 }
3912
3913 void
3914 keys_of_keymap ()
3915 {
3916 initial_define_key (global_map, 033, "ESC-prefix");
3917 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3918 }
3919
3920 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
3921 (do not change this comment) */