* window.h (struct window):
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include "termhooks.h" /* For struct terminal. */
59 #include <setjmp.h>
60
61 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
62 memory. Can do this only if using gmalloc.c. */
63
64 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
65 #undef GC_MALLOC_CHECK
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #else
71 extern POINTER_TYPE *sbrk ();
72 #endif
73
74 #ifdef HAVE_FCNTL_H
75 #define INCLUDED_FCNTL
76 #include <fcntl.h>
77 #endif
78 #ifndef O_WRONLY
79 #define O_WRONLY 1
80 #endif
81
82 #ifdef WINDOWSNT
83 #include <fcntl.h>
84 #include "w32.h"
85 #endif
86
87 #ifdef DOUG_LEA_MALLOC
88
89 #include <malloc.h>
90 /* malloc.h #defines this as size_t, at least in glibc2. */
91 #ifndef __malloc_size_t
92 #define __malloc_size_t int
93 #endif
94
95 /* Specify maximum number of areas to mmap. It would be nice to use a
96 value that explicitly means "no limit". */
97
98 #define MMAP_MAX_AREAS 100000000
99
100 #else /* not DOUG_LEA_MALLOC */
101
102 /* The following come from gmalloc.c. */
103
104 #define __malloc_size_t size_t
105 extern __malloc_size_t _bytes_used;
106 extern __malloc_size_t __malloc_extra_blocks;
107
108 #endif /* not DOUG_LEA_MALLOC */
109
110 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111
112 /* When GTK uses the file chooser dialog, different backends can be loaded
113 dynamically. One such a backend is the Gnome VFS backend that gets loaded
114 if you run Gnome. That backend creates several threads and also allocates
115 memory with malloc.
116
117 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
118 functions below are called from malloc, there is a chance that one
119 of these threads preempts the Emacs main thread and the hook variables
120 end up in an inconsistent state. So we have a mutex to prevent that (note
121 that the backend handles concurrent access to malloc within its own threads
122 but Emacs code running in the main thread is not included in that control).
123
124 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
125 happens in one of the backend threads we will have two threads that tries
126 to run Emacs code at once, and the code is not prepared for that.
127 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128
129 static pthread_mutex_t alloc_mutex;
130
131 #define BLOCK_INPUT_ALLOC \
132 do \
133 { \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 BLOCK_INPUT; \
136 pthread_mutex_lock (&alloc_mutex); \
137 } \
138 while (0)
139 #define UNBLOCK_INPUT_ALLOC \
140 do \
141 { \
142 pthread_mutex_unlock (&alloc_mutex); \
143 if (pthread_equal (pthread_self (), main_thread)) \
144 UNBLOCK_INPUT; \
145 } \
146 while (0)
147
148 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149
150 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
151 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152
153 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154
155 /* Value of _bytes_used, when spare_memory was freed. */
156
157 static __malloc_size_t bytes_used_when_full;
158
159 static __malloc_size_t bytes_used_when_reconsidered;
160
161 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
162 to a struct Lisp_String. */
163
164 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
165 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
166 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167
168 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
169 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
170 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171
172 /* Value is the number of bytes/chars of S, a pointer to a struct
173 Lisp_String. This must be used instead of STRING_BYTES (S) or
174 S->size during GC, because S->size contains the mark bit for
175 strings. */
176
177 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
178 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179
180 /* Number of bytes of consing done since the last gc. */
181
182 int consing_since_gc;
183
184 /* Count the amount of consing of various sorts of space. */
185
186 EMACS_INT cons_cells_consed;
187 EMACS_INT floats_consed;
188 EMACS_INT vector_cells_consed;
189 EMACS_INT symbols_consed;
190 EMACS_INT string_chars_consed;
191 EMACS_INT misc_objects_consed;
192 EMACS_INT intervals_consed;
193 EMACS_INT strings_consed;
194
195 /* Minimum number of bytes of consing since GC before next GC. */
196
197 EMACS_INT gc_cons_threshold;
198
199 /* Similar minimum, computed from Vgc_cons_percentage. */
200
201 EMACS_INT gc_relative_threshold;
202
203 static Lisp_Object Vgc_cons_percentage;
204
205 /* Minimum number of bytes of consing since GC before next GC,
206 when memory is full. */
207
208 EMACS_INT memory_full_cons_threshold;
209
210 /* Nonzero during GC. */
211
212 int gc_in_progress;
213
214 /* Nonzero means abort if try to GC.
215 This is for code which is written on the assumption that
216 no GC will happen, so as to verify that assumption. */
217
218 int abort_on_gc;
219
220 /* Nonzero means display messages at beginning and end of GC. */
221
222 int garbage_collection_messages;
223
224 #ifndef VIRT_ADDR_VARIES
225 extern
226 #endif /* VIRT_ADDR_VARIES */
227 int malloc_sbrk_used;
228
229 #ifndef VIRT_ADDR_VARIES
230 extern
231 #endif /* VIRT_ADDR_VARIES */
232 int malloc_sbrk_unused;
233
234 /* Number of live and free conses etc. */
235
236 static int total_conses, total_markers, total_symbols, total_vector_size;
237 static int total_free_conses, total_free_markers, total_free_symbols;
238 static int total_free_floats, total_floats;
239
240 /* Points to memory space allocated as "spare", to be freed if we run
241 out of memory. We keep one large block, four cons-blocks, and
242 two string blocks. */
243
244 char *spare_memory[7];
245
246 /* Amount of spare memory to keep in large reserve block. */
247
248 #define SPARE_MEMORY (1 << 14)
249
250 /* Number of extra blocks malloc should get when it needs more core. */
251
252 static int malloc_hysteresis;
253
254 /* Non-nil means defun should do purecopy on the function definition. */
255
256 Lisp_Object Vpurify_flag;
257
258 /* Non-nil means we are handling a memory-full error. */
259
260 Lisp_Object Vmemory_full;
261
262 #ifndef HAVE_SHM
263
264 /* Initialize it to a nonzero value to force it into data space
265 (rather than bss space). That way unexec will remap it into text
266 space (pure), on some systems. We have not implemented the
267 remapping on more recent systems because this is less important
268 nowadays than in the days of small memories and timesharing. */
269
270 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
271 #define PUREBEG (char *) pure
272
273 #else /* HAVE_SHM */
274
275 #define pure PURE_SEG_BITS /* Use shared memory segment */
276 #define PUREBEG (char *)PURE_SEG_BITS
277
278 #endif /* HAVE_SHM */
279
280 /* Pointer to the pure area, and its size. */
281
282 static char *purebeg;
283 static size_t pure_size;
284
285 /* Number of bytes of pure storage used before pure storage overflowed.
286 If this is non-zero, this implies that an overflow occurred. */
287
288 static size_t pure_bytes_used_before_overflow;
289
290 /* Value is non-zero if P points into pure space. */
291
292 #define PURE_POINTER_P(P) \
293 (((PNTR_COMPARISON_TYPE) (P) \
294 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
295 && ((PNTR_COMPARISON_TYPE) (P) \
296 >= (PNTR_COMPARISON_TYPE) purebeg))
297
298 /* Total number of bytes allocated in pure storage. */
299
300 EMACS_INT pure_bytes_used;
301
302 /* Index in pure at which next pure Lisp object will be allocated.. */
303
304 static EMACS_INT pure_bytes_used_lisp;
305
306 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307
308 static EMACS_INT pure_bytes_used_non_lisp;
309
310 /* If nonzero, this is a warning delivered by malloc and not yet
311 displayed. */
312
313 char *pending_malloc_warning;
314
315 /* Pre-computed signal argument for use when memory is exhausted. */
316
317 Lisp_Object Vmemory_signal_data;
318
319 /* Maximum amount of C stack to save when a GC happens. */
320
321 #ifndef MAX_SAVE_STACK
322 #define MAX_SAVE_STACK 16000
323 #endif
324
325 /* Buffer in which we save a copy of the C stack at each GC. */
326
327 char *stack_copy;
328 int stack_copy_size;
329
330 /* Non-zero means ignore malloc warnings. Set during initialization.
331 Currently not used. */
332
333 int ignore_warnings;
334
335 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336
337 /* Hook run after GC has finished. */
338
339 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340
341 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
342 EMACS_INT gcs_done; /* accumulated GCs */
343
344 static void mark_buffer P_ ((Lisp_Object));
345 static void mark_terminals P_ ((void));
346 extern void mark_kboards P_ ((void));
347 extern void mark_ttys P_ ((void));
348 extern void mark_backtrace P_ ((void));
349 static void gc_sweep P_ ((void));
350 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
351 static void mark_face_cache P_ ((struct face_cache *));
352
353 #ifdef HAVE_WINDOW_SYSTEM
354 extern void mark_fringe_data P_ ((void));
355 static void mark_image P_ ((struct image *));
356 static void mark_image_cache P_ ((struct frame *));
357 #endif /* HAVE_WINDOW_SYSTEM */
358
359 static struct Lisp_String *allocate_string P_ ((void));
360 static void compact_small_strings P_ ((void));
361 static void free_large_strings P_ ((void));
362 static void sweep_strings P_ ((void));
363
364 extern int message_enable_multibyte;
365
366 /* When scanning the C stack for live Lisp objects, Emacs keeps track
367 of what memory allocated via lisp_malloc is intended for what
368 purpose. This enumeration specifies the type of memory. */
369
370 enum mem_type
371 {
372 MEM_TYPE_NON_LISP,
373 MEM_TYPE_BUFFER,
374 MEM_TYPE_CONS,
375 MEM_TYPE_STRING,
376 MEM_TYPE_MISC,
377 MEM_TYPE_SYMBOL,
378 MEM_TYPE_FLOAT,
379 /* We used to keep separate mem_types for subtypes of vectors such as
380 process, hash_table, frame, terminal, and window, but we never made
381 use of the distinction, so it only caused source-code complexity
382 and runtime slowdown. Minor but pointless. */
383 MEM_TYPE_VECTORLIKE
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 1280
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746 #ifdef SYNC_INPUT
747 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
748 there's no need to block input around malloc. */
749 #define MALLOC_BLOCK_INPUT ((void)0)
750 #define MALLOC_UNBLOCK_INPUT ((void)0)
751 #else
752 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
753 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
754 #endif
755
756 /* Like malloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xmalloc (size)
760 size_t size;
761 {
762 register POINTER_TYPE *val;
763
764 MALLOC_BLOCK_INPUT;
765 val = (POINTER_TYPE *) malloc (size);
766 MALLOC_UNBLOCK_INPUT;
767
768 if (!val && size)
769 memory_full ();
770 return val;
771 }
772
773
774 /* Like realloc but check for no memory and block interrupt input.. */
775
776 POINTER_TYPE *
777 xrealloc (block, size)
778 POINTER_TYPE *block;
779 size_t size;
780 {
781 register POINTER_TYPE *val;
782
783 MALLOC_BLOCK_INPUT;
784 /* We must call malloc explicitly when BLOCK is 0, since some
785 reallocs don't do this. */
786 if (! block)
787 val = (POINTER_TYPE *) malloc (size);
788 else
789 val = (POINTER_TYPE *) realloc (block, size);
790 MALLOC_UNBLOCK_INPUT;
791
792 if (!val && size) memory_full ();
793 return val;
794 }
795
796
797 /* Like free but block interrupt input. */
798
799 void
800 xfree (block)
801 POINTER_TYPE *block;
802 {
803 MALLOC_BLOCK_INPUT;
804 free (block);
805 MALLOC_UNBLOCK_INPUT;
806 /* We don't call refill_memory_reserve here
807 because that duplicates doing so in emacs_blocked_free
808 and the criterion should go there. */
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (s)
816 const char *s;
817 {
818 size_t len = strlen (s) + 1;
819 char *p = (char *) xmalloc (len);
820 bcopy (s, p, len);
821 return p;
822 }
823
824
825 /* Unwind for SAFE_ALLOCA */
826
827 Lisp_Object
828 safe_alloca_unwind (arg)
829 Lisp_Object arg;
830 {
831 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
832
833 p->dogc = 0;
834 xfree (p->pointer);
835 p->pointer = 0;
836 free_misc (arg);
837 return Qnil;
838 }
839
840
841 /* Like malloc but used for allocating Lisp data. NBYTES is the
842 number of bytes to allocate, TYPE describes the intended use of the
843 allcated memory block (for strings, for conses, ...). */
844
845 #ifndef USE_LSB_TAG
846 static void *lisp_malloc_loser;
847 #endif
848
849 static POINTER_TYPE *
850 lisp_malloc (nbytes, type)
851 size_t nbytes;
852 enum mem_type type;
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = (void *) malloc (nbytes);
863
864 #ifndef USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full ();
889 return val;
890 }
891
892 /* Free BLOCK. This must be called to free memory allocated with a
893 call to lisp_malloc. */
894
895 static void
896 lisp_free (block)
897 POINTER_TYPE *block;
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /* Allocation of aligned blocks of memory to store Lisp data. */
908 /* The entry point is lisp_align_malloc which returns blocks of at most */
909 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
910
911 /* Use posix_memalloc if the system has it and we're using the system's
912 malloc (because our gmalloc.c routines don't have posix_memalign although
913 its memalloc could be used). */
914 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
915 #define USE_POSIX_MEMALIGN 1
916 #endif
917
918 /* BLOCK_ALIGN has to be a power of 2. */
919 #define BLOCK_ALIGN (1 << 10)
920
921 /* Padding to leave at the end of a malloc'd block. This is to give
922 malloc a chance to minimize the amount of memory wasted to alignment.
923 It should be tuned to the particular malloc library used.
924 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
925 posix_memalign on the other hand would ideally prefer a value of 4
926 because otherwise, there's 1020 bytes wasted between each ablocks.
927 In Emacs, testing shows that those 1020 can most of the time be
928 efficiently used by malloc to place other objects, so a value of 0 can
929 still preferable unless you have a lot of aligned blocks and virtually
930 nothing else. */
931 #define BLOCK_PADDING 0
932 #define BLOCK_BYTES \
933 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
934
935 /* Internal data structures and constants. */
936
937 #define ABLOCKS_SIZE 16
938
939 /* An aligned block of memory. */
940 struct ablock
941 {
942 union
943 {
944 char payload[BLOCK_BYTES];
945 struct ablock *next_free;
946 } x;
947 /* `abase' is the aligned base of the ablocks. */
948 /* It is overloaded to hold the virtual `busy' field that counts
949 the number of used ablock in the parent ablocks.
950 The first ablock has the `busy' field, the others have the `abase'
951 field. To tell the difference, we assume that pointers will have
952 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
953 is used to tell whether the real base of the parent ablocks is `abase'
954 (if not, the word before the first ablock holds a pointer to the
955 real base). */
956 struct ablocks *abase;
957 /* The padding of all but the last ablock is unused. The padding of
958 the last ablock in an ablocks is not allocated. */
959 #if BLOCK_PADDING
960 char padding[BLOCK_PADDING];
961 #endif
962 };
963
964 /* A bunch of consecutive aligned blocks. */
965 struct ablocks
966 {
967 struct ablock blocks[ABLOCKS_SIZE];
968 };
969
970 /* Size of the block requested from malloc or memalign. */
971 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
972
973 #define ABLOCK_ABASE(block) \
974 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
975 ? (struct ablocks *)(block) \
976 : (block)->abase)
977
978 /* Virtual `busy' field. */
979 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
980
981 /* Pointer to the (not necessarily aligned) malloc block. */
982 #ifdef USE_POSIX_MEMALIGN
983 #define ABLOCKS_BASE(abase) (abase)
984 #else
985 #define ABLOCKS_BASE(abase) \
986 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
987 #endif
988
989 /* The list of free ablock. */
990 static struct ablock *free_ablock;
991
992 /* Allocate an aligned block of nbytes.
993 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
994 smaller or equal to BLOCK_BYTES. */
995 static POINTER_TYPE *
996 lisp_align_malloc (nbytes, type)
997 size_t nbytes;
998 enum mem_type type;
999 {
1000 void *base, *val;
1001 struct ablocks *abase;
1002
1003 eassert (nbytes <= BLOCK_BYTES);
1004
1005 MALLOC_BLOCK_INPUT;
1006
1007 #ifdef GC_MALLOC_CHECK
1008 allocated_mem_type = type;
1009 #endif
1010
1011 if (!free_ablock)
1012 {
1013 int i;
1014 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1015
1016 #ifdef DOUG_LEA_MALLOC
1017 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1018 because mapped region contents are not preserved in
1019 a dumped Emacs. */
1020 mallopt (M_MMAP_MAX, 0);
1021 #endif
1022
1023 #ifdef USE_POSIX_MEMALIGN
1024 {
1025 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1026 if (err)
1027 base = NULL;
1028 abase = base;
1029 }
1030 #else
1031 base = malloc (ABLOCKS_BYTES);
1032 abase = ALIGN (base, BLOCK_ALIGN);
1033 #endif
1034
1035 if (base == 0)
1036 {
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1039 }
1040
1041 aligned = (base == abase);
1042 if (!aligned)
1043 ((void**)abase)[-1] = base;
1044
1045 #ifdef DOUG_LEA_MALLOC
1046 /* Back to a reasonable maximum of mmap'ed areas. */
1047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1048 #endif
1049
1050 #ifndef USE_LSB_TAG
1051 /* If the memory just allocated cannot be addressed thru a Lisp
1052 object's pointer, and it needs to be, that's equivalent to
1053 running out of memory. */
1054 if (type != MEM_TYPE_NON_LISP)
1055 {
1056 Lisp_Object tem;
1057 char *end = (char *) base + ABLOCKS_BYTES - 1;
1058 XSETCONS (tem, end);
1059 if ((char *) XCONS (tem) != end)
1060 {
1061 lisp_malloc_loser = base;
1062 free (base);
1063 MALLOC_UNBLOCK_INPUT;
1064 memory_full ();
1065 }
1066 }
1067 #endif
1068
1069 /* Initialize the blocks and put them on the free list.
1070 Is `base' was not properly aligned, we can't use the last block. */
1071 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 {
1073 abase->blocks[i].abase = abase;
1074 abase->blocks[i].x.next_free = free_ablock;
1075 free_ablock = &abase->blocks[i];
1076 }
1077 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1078
1079 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1080 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1081 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1082 eassert (ABLOCKS_BASE (abase) == base);
1083 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 }
1085
1086 abase = ABLOCK_ABASE (free_ablock);
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1090
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (val && type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1095
1096 MALLOC_UNBLOCK_INPUT;
1097 if (!val && nbytes)
1098 memory_full ();
1099
1100 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1101 return val;
1102 }
1103
1104 static void
1105 lisp_align_free (block)
1106 POINTER_TYPE *block;
1107 {
1108 struct ablock *ablock = block;
1109 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110
1111 MALLOC_BLOCK_INPUT;
1112 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 /* Put on free list. */
1116 ablock->x.next_free = free_ablock;
1117 free_ablock = ablock;
1118 /* Update busy count. */
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1120
1121 if (2 > (long) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126
1127 while (*tem)
1128 {
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 {
1131 i++;
1132 *tem = (*tem)->x.next_free;
1133 }
1134 else
1135 tem = &(*tem)->x.next_free;
1136 }
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1143 }
1144 MALLOC_UNBLOCK_INPUT;
1145 }
1146
1147 /* Return a new buffer structure allocated from the heap with
1148 a call to lisp_malloc. */
1149
1150 struct buffer *
1151 allocate_buffer ()
1152 {
1153 struct buffer *b
1154 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1155 MEM_TYPE_BUFFER);
1156 return b;
1157 }
1158
1159 \f
1160 #ifndef SYSTEM_MALLOC
1161
1162 /* Arranging to disable input signals while we're in malloc.
1163
1164 This only works with GNU malloc. To help out systems which can't
1165 use GNU malloc, all the calls to malloc, realloc, and free
1166 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1167 pair; unfortunately, we have no idea what C library functions
1168 might call malloc, so we can't really protect them unless you're
1169 using GNU malloc. Fortunately, most of the major operating systems
1170 can use GNU malloc. */
1171
1172 #ifndef SYNC_INPUT
1173 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1174 there's no need to block input around malloc. */
1175
1176 #ifndef DOUG_LEA_MALLOC
1177 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1178 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1179 extern void (*__free_hook) P_ ((void *, const void *));
1180 /* Else declared in malloc.h, perhaps with an extra arg. */
1181 #endif /* DOUG_LEA_MALLOC */
1182 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1183 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1184 static void (*old_free_hook) P_ ((void*, const void*));
1185
1186 /* This function is used as the hook for free to call. */
1187
1188 static void
1189 emacs_blocked_free (ptr, ptr2)
1190 void *ptr;
1191 const void *ptr2;
1192 {
1193 BLOCK_INPUT_ALLOC;
1194
1195 #ifdef GC_MALLOC_CHECK
1196 if (ptr)
1197 {
1198 struct mem_node *m;
1199
1200 m = mem_find (ptr);
1201 if (m == MEM_NIL || m->start != ptr)
1202 {
1203 fprintf (stderr,
1204 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1205 abort ();
1206 }
1207 else
1208 {
1209 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1210 mem_delete (m);
1211 }
1212 }
1213 #endif /* GC_MALLOC_CHECK */
1214
1215 __free_hook = old_free_hook;
1216 free (ptr);
1217
1218 /* If we released our reserve (due to running out of memory),
1219 and we have a fair amount free once again,
1220 try to set aside another reserve in case we run out once more. */
1221 if (! NILP (Vmemory_full)
1222 /* Verify there is enough space that even with the malloc
1223 hysteresis this call won't run out again.
1224 The code here is correct as long as SPARE_MEMORY
1225 is substantially larger than the block size malloc uses. */
1226 && (bytes_used_when_full
1227 > ((bytes_used_when_reconsidered = BYTES_USED)
1228 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1229 refill_memory_reserve ();
1230
1231 __free_hook = emacs_blocked_free;
1232 UNBLOCK_INPUT_ALLOC;
1233 }
1234
1235
1236 /* This function is the malloc hook that Emacs uses. */
1237
1238 static void *
1239 emacs_blocked_malloc (size, ptr)
1240 size_t size;
1241 const void *ptr;
1242 {
1243 void *value;
1244
1245 BLOCK_INPUT_ALLOC;
1246 __malloc_hook = old_malloc_hook;
1247 #ifdef DOUG_LEA_MALLOC
1248 /* Segfaults on my system. --lorentey */
1249 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1250 #else
1251 __malloc_extra_blocks = malloc_hysteresis;
1252 #endif
1253
1254 value = (void *) malloc (size);
1255
1256 #ifdef GC_MALLOC_CHECK
1257 {
1258 struct mem_node *m = mem_find (value);
1259 if (m != MEM_NIL)
1260 {
1261 fprintf (stderr, "Malloc returned %p which is already in use\n",
1262 value);
1263 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1264 m->start, m->end, (char *) m->end - (char *) m->start,
1265 m->type);
1266 abort ();
1267 }
1268
1269 if (!dont_register_blocks)
1270 {
1271 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1272 allocated_mem_type = MEM_TYPE_NON_LISP;
1273 }
1274 }
1275 #endif /* GC_MALLOC_CHECK */
1276
1277 __malloc_hook = emacs_blocked_malloc;
1278 UNBLOCK_INPUT_ALLOC;
1279
1280 /* fprintf (stderr, "%p malloc\n", value); */
1281 return value;
1282 }
1283
1284
1285 /* This function is the realloc hook that Emacs uses. */
1286
1287 static void *
1288 emacs_blocked_realloc (ptr, size, ptr2)
1289 void *ptr;
1290 size_t size;
1291 const void *ptr2;
1292 {
1293 void *value;
1294
1295 BLOCK_INPUT_ALLOC;
1296 __realloc_hook = old_realloc_hook;
1297
1298 #ifdef GC_MALLOC_CHECK
1299 if (ptr)
1300 {
1301 struct mem_node *m = mem_find (ptr);
1302 if (m == MEM_NIL || m->start != ptr)
1303 {
1304 fprintf (stderr,
1305 "Realloc of %p which wasn't allocated with malloc\n",
1306 ptr);
1307 abort ();
1308 }
1309
1310 mem_delete (m);
1311 }
1312
1313 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1314
1315 /* Prevent malloc from registering blocks. */
1316 dont_register_blocks = 1;
1317 #endif /* GC_MALLOC_CHECK */
1318
1319 value = (void *) realloc (ptr, size);
1320
1321 #ifdef GC_MALLOC_CHECK
1322 dont_register_blocks = 0;
1323
1324 {
1325 struct mem_node *m = mem_find (value);
1326 if (m != MEM_NIL)
1327 {
1328 fprintf (stderr, "Realloc returns memory that is already in use\n");
1329 abort ();
1330 }
1331
1332 /* Can't handle zero size regions in the red-black tree. */
1333 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1334 }
1335
1336 /* fprintf (stderr, "%p <- realloc\n", value); */
1337 #endif /* GC_MALLOC_CHECK */
1338
1339 __realloc_hook = emacs_blocked_realloc;
1340 UNBLOCK_INPUT_ALLOC;
1341
1342 return value;
1343 }
1344
1345
1346 #ifdef HAVE_GTK_AND_PTHREAD
1347 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1348 normal malloc. Some thread implementations need this as they call
1349 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1350 calls malloc because it is the first call, and we have an endless loop. */
1351
1352 void
1353 reset_malloc_hooks ()
1354 {
1355 __free_hook = old_free_hook;
1356 __malloc_hook = old_malloc_hook;
1357 __realloc_hook = old_realloc_hook;
1358 }
1359 #endif /* HAVE_GTK_AND_PTHREAD */
1360
1361
1362 /* Called from main to set up malloc to use our hooks. */
1363
1364 void
1365 uninterrupt_malloc ()
1366 {
1367 #ifdef HAVE_GTK_AND_PTHREAD
1368 pthread_mutexattr_t attr;
1369
1370 /* GLIBC has a faster way to do this, but lets keep it portable.
1371 This is according to the Single UNIX Specification. */
1372 pthread_mutexattr_init (&attr);
1373 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1374 pthread_mutex_init (&alloc_mutex, &attr);
1375 #endif /* HAVE_GTK_AND_PTHREAD */
1376
1377 if (__free_hook != emacs_blocked_free)
1378 old_free_hook = __free_hook;
1379 __free_hook = emacs_blocked_free;
1380
1381 if (__malloc_hook != emacs_blocked_malloc)
1382 old_malloc_hook = __malloc_hook;
1383 __malloc_hook = emacs_blocked_malloc;
1384
1385 if (__realloc_hook != emacs_blocked_realloc)
1386 old_realloc_hook = __realloc_hook;
1387 __realloc_hook = emacs_blocked_realloc;
1388 }
1389
1390 #endif /* not SYNC_INPUT */
1391 #endif /* not SYSTEM_MALLOC */
1392
1393
1394 \f
1395 /***********************************************************************
1396 Interval Allocation
1397 ***********************************************************************/
1398
1399 /* Number of intervals allocated in an interval_block structure.
1400 The 1020 is 1024 minus malloc overhead. */
1401
1402 #define INTERVAL_BLOCK_SIZE \
1403 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1404
1405 /* Intervals are allocated in chunks in form of an interval_block
1406 structure. */
1407
1408 struct interval_block
1409 {
1410 /* Place `intervals' first, to preserve alignment. */
1411 struct interval intervals[INTERVAL_BLOCK_SIZE];
1412 struct interval_block *next;
1413 };
1414
1415 /* Current interval block. Its `next' pointer points to older
1416 blocks. */
1417
1418 struct interval_block *interval_block;
1419
1420 /* Index in interval_block above of the next unused interval
1421 structure. */
1422
1423 static int interval_block_index;
1424
1425 /* Number of free and live intervals. */
1426
1427 static int total_free_intervals, total_intervals;
1428
1429 /* List of free intervals. */
1430
1431 INTERVAL interval_free_list;
1432
1433 /* Total number of interval blocks now in use. */
1434
1435 int n_interval_blocks;
1436
1437
1438 /* Initialize interval allocation. */
1439
1440 static void
1441 init_intervals ()
1442 {
1443 interval_block = NULL;
1444 interval_block_index = INTERVAL_BLOCK_SIZE;
1445 interval_free_list = 0;
1446 n_interval_blocks = 0;
1447 }
1448
1449
1450 /* Return a new interval. */
1451
1452 INTERVAL
1453 make_interval ()
1454 {
1455 INTERVAL val;
1456
1457 /* eassert (!handling_signal); */
1458
1459 MALLOC_BLOCK_INPUT;
1460
1461 if (interval_free_list)
1462 {
1463 val = interval_free_list;
1464 interval_free_list = INTERVAL_PARENT (interval_free_list);
1465 }
1466 else
1467 {
1468 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1469 {
1470 register struct interval_block *newi;
1471
1472 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1473 MEM_TYPE_NON_LISP);
1474
1475 newi->next = interval_block;
1476 interval_block = newi;
1477 interval_block_index = 0;
1478 n_interval_blocks++;
1479 }
1480 val = &interval_block->intervals[interval_block_index++];
1481 }
1482
1483 MALLOC_UNBLOCK_INPUT;
1484
1485 consing_since_gc += sizeof (struct interval);
1486 intervals_consed++;
1487 RESET_INTERVAL (val);
1488 val->gcmarkbit = 0;
1489 return val;
1490 }
1491
1492
1493 /* Mark Lisp objects in interval I. */
1494
1495 static void
1496 mark_interval (i, dummy)
1497 register INTERVAL i;
1498 Lisp_Object dummy;
1499 {
1500 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1501 i->gcmarkbit = 1;
1502 mark_object (i->plist);
1503 }
1504
1505
1506 /* Mark the interval tree rooted in TREE. Don't call this directly;
1507 use the macro MARK_INTERVAL_TREE instead. */
1508
1509 static void
1510 mark_interval_tree (tree)
1511 register INTERVAL tree;
1512 {
1513 /* No need to test if this tree has been marked already; this
1514 function is always called through the MARK_INTERVAL_TREE macro,
1515 which takes care of that. */
1516
1517 traverse_intervals_noorder (tree, mark_interval, Qnil);
1518 }
1519
1520
1521 /* Mark the interval tree rooted in I. */
1522
1523 #define MARK_INTERVAL_TREE(i) \
1524 do { \
1525 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1526 mark_interval_tree (i); \
1527 } while (0)
1528
1529
1530 #define UNMARK_BALANCE_INTERVALS(i) \
1531 do { \
1532 if (! NULL_INTERVAL_P (i)) \
1533 (i) = balance_intervals (i); \
1534 } while (0)
1535
1536 \f
1537 /* Number support. If NO_UNION_TYPE isn't in effect, we
1538 can't create number objects in macros. */
1539 #ifndef make_number
1540 Lisp_Object
1541 make_number (n)
1542 EMACS_INT n;
1543 {
1544 Lisp_Object obj;
1545 obj.s.val = n;
1546 obj.s.type = Lisp_Int;
1547 return obj;
1548 }
1549 #endif
1550 \f
1551 /***********************************************************************
1552 String Allocation
1553 ***********************************************************************/
1554
1555 /* Lisp_Strings are allocated in string_block structures. When a new
1556 string_block is allocated, all the Lisp_Strings it contains are
1557 added to a free-list string_free_list. When a new Lisp_String is
1558 needed, it is taken from that list. During the sweep phase of GC,
1559 string_blocks that are entirely free are freed, except two which
1560 we keep.
1561
1562 String data is allocated from sblock structures. Strings larger
1563 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1564 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1565
1566 Sblocks consist internally of sdata structures, one for each
1567 Lisp_String. The sdata structure points to the Lisp_String it
1568 belongs to. The Lisp_String points back to the `u.data' member of
1569 its sdata structure.
1570
1571 When a Lisp_String is freed during GC, it is put back on
1572 string_free_list, and its `data' member and its sdata's `string'
1573 pointer is set to null. The size of the string is recorded in the
1574 `u.nbytes' member of the sdata. So, sdata structures that are no
1575 longer used, can be easily recognized, and it's easy to compact the
1576 sblocks of small strings which we do in compact_small_strings. */
1577
1578 /* Size in bytes of an sblock structure used for small strings. This
1579 is 8192 minus malloc overhead. */
1580
1581 #define SBLOCK_SIZE 8188
1582
1583 /* Strings larger than this are considered large strings. String data
1584 for large strings is allocated from individual sblocks. */
1585
1586 #define LARGE_STRING_BYTES 1024
1587
1588 /* Structure describing string memory sub-allocated from an sblock.
1589 This is where the contents of Lisp strings are stored. */
1590
1591 struct sdata
1592 {
1593 /* Back-pointer to the string this sdata belongs to. If null, this
1594 structure is free, and the NBYTES member of the union below
1595 contains the string's byte size (the same value that STRING_BYTES
1596 would return if STRING were non-null). If non-null, STRING_BYTES
1597 (STRING) is the size of the data, and DATA contains the string's
1598 contents. */
1599 struct Lisp_String *string;
1600
1601 #ifdef GC_CHECK_STRING_BYTES
1602
1603 EMACS_INT nbytes;
1604 unsigned char data[1];
1605
1606 #define SDATA_NBYTES(S) (S)->nbytes
1607 #define SDATA_DATA(S) (S)->data
1608
1609 #else /* not GC_CHECK_STRING_BYTES */
1610
1611 union
1612 {
1613 /* When STRING in non-null. */
1614 unsigned char data[1];
1615
1616 /* When STRING is null. */
1617 EMACS_INT nbytes;
1618 } u;
1619
1620
1621 #define SDATA_NBYTES(S) (S)->u.nbytes
1622 #define SDATA_DATA(S) (S)->u.data
1623
1624 #endif /* not GC_CHECK_STRING_BYTES */
1625 };
1626
1627
1628 /* Structure describing a block of memory which is sub-allocated to
1629 obtain string data memory for strings. Blocks for small strings
1630 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1631 as large as needed. */
1632
1633 struct sblock
1634 {
1635 /* Next in list. */
1636 struct sblock *next;
1637
1638 /* Pointer to the next free sdata block. This points past the end
1639 of the sblock if there isn't any space left in this block. */
1640 struct sdata *next_free;
1641
1642 /* Start of data. */
1643 struct sdata first_data;
1644 };
1645
1646 /* Number of Lisp strings in a string_block structure. The 1020 is
1647 1024 minus malloc overhead. */
1648
1649 #define STRING_BLOCK_SIZE \
1650 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1651
1652 /* Structure describing a block from which Lisp_String structures
1653 are allocated. */
1654
1655 struct string_block
1656 {
1657 /* Place `strings' first, to preserve alignment. */
1658 struct Lisp_String strings[STRING_BLOCK_SIZE];
1659 struct string_block *next;
1660 };
1661
1662 /* Head and tail of the list of sblock structures holding Lisp string
1663 data. We always allocate from current_sblock. The NEXT pointers
1664 in the sblock structures go from oldest_sblock to current_sblock. */
1665
1666 static struct sblock *oldest_sblock, *current_sblock;
1667
1668 /* List of sblocks for large strings. */
1669
1670 static struct sblock *large_sblocks;
1671
1672 /* List of string_block structures, and how many there are. */
1673
1674 static struct string_block *string_blocks;
1675 static int n_string_blocks;
1676
1677 /* Free-list of Lisp_Strings. */
1678
1679 static struct Lisp_String *string_free_list;
1680
1681 /* Number of live and free Lisp_Strings. */
1682
1683 static int total_strings, total_free_strings;
1684
1685 /* Number of bytes used by live strings. */
1686
1687 static int total_string_size;
1688
1689 /* Given a pointer to a Lisp_String S which is on the free-list
1690 string_free_list, return a pointer to its successor in the
1691 free-list. */
1692
1693 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1694
1695 /* Return a pointer to the sdata structure belonging to Lisp string S.
1696 S must be live, i.e. S->data must not be null. S->data is actually
1697 a pointer to the `u.data' member of its sdata structure; the
1698 structure starts at a constant offset in front of that. */
1699
1700 #ifdef GC_CHECK_STRING_BYTES
1701
1702 #define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1704 - sizeof (EMACS_INT)))
1705
1706 #else /* not GC_CHECK_STRING_BYTES */
1707
1708 #define SDATA_OF_STRING(S) \
1709 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1710
1711 #endif /* not GC_CHECK_STRING_BYTES */
1712
1713
1714 #ifdef GC_CHECK_STRING_OVERRUN
1715
1716 /* We check for overrun in string data blocks by appending a small
1717 "cookie" after each allocated string data block, and check for the
1718 presence of this cookie during GC. */
1719
1720 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1721 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1722 { 0xde, 0xad, 0xbe, 0xef };
1723
1724 #else
1725 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1726 #endif
1727
1728 /* Value is the size of an sdata structure large enough to hold NBYTES
1729 bytes of string data. The value returned includes a terminating
1730 NUL byte, the size of the sdata structure, and padding. */
1731
1732 #ifdef GC_CHECK_STRING_BYTES
1733
1734 #define SDATA_SIZE(NBYTES) \
1735 ((sizeof (struct Lisp_String *) \
1736 + (NBYTES) + 1 \
1737 + sizeof (EMACS_INT) \
1738 + sizeof (EMACS_INT) - 1) \
1739 & ~(sizeof (EMACS_INT) - 1))
1740
1741 #else /* not GC_CHECK_STRING_BYTES */
1742
1743 #define SDATA_SIZE(NBYTES) \
1744 ((sizeof (struct Lisp_String *) \
1745 + (NBYTES) + 1 \
1746 + sizeof (EMACS_INT) - 1) \
1747 & ~(sizeof (EMACS_INT) - 1))
1748
1749 #endif /* not GC_CHECK_STRING_BYTES */
1750
1751 /* Extra bytes to allocate for each string. */
1752
1753 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1754
1755 /* Initialize string allocation. Called from init_alloc_once. */
1756
1757 void
1758 init_strings ()
1759 {
1760 total_strings = total_free_strings = total_string_size = 0;
1761 oldest_sblock = current_sblock = large_sblocks = NULL;
1762 string_blocks = NULL;
1763 n_string_blocks = 0;
1764 string_free_list = NULL;
1765 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1766 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1767 }
1768
1769
1770 #ifdef GC_CHECK_STRING_BYTES
1771
1772 static int check_string_bytes_count;
1773
1774 void check_string_bytes P_ ((int));
1775 void check_sblock P_ ((struct sblock *));
1776
1777 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1778
1779
1780 /* Like GC_STRING_BYTES, but with debugging check. */
1781
1782 int
1783 string_bytes (s)
1784 struct Lisp_String *s;
1785 {
1786 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1787 if (!PURE_POINTER_P (s)
1788 && s->data
1789 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1790 abort ();
1791 return nbytes;
1792 }
1793
1794 /* Check validity of Lisp strings' string_bytes member in B. */
1795
1796 void
1797 check_sblock (b)
1798 struct sblock *b;
1799 {
1800 struct sdata *from, *end, *from_end;
1801
1802 end = b->next_free;
1803
1804 for (from = &b->first_data; from < end; from = from_end)
1805 {
1806 /* Compute the next FROM here because copying below may
1807 overwrite data we need to compute it. */
1808 int nbytes;
1809
1810 /* Check that the string size recorded in the string is the
1811 same as the one recorded in the sdata structure. */
1812 if (from->string)
1813 CHECK_STRING_BYTES (from->string);
1814
1815 if (from->string)
1816 nbytes = GC_STRING_BYTES (from->string);
1817 else
1818 nbytes = SDATA_NBYTES (from);
1819
1820 nbytes = SDATA_SIZE (nbytes);
1821 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1822 }
1823 }
1824
1825
1826 /* Check validity of Lisp strings' string_bytes member. ALL_P
1827 non-zero means check all strings, otherwise check only most
1828 recently allocated strings. Used for hunting a bug. */
1829
1830 void
1831 check_string_bytes (all_p)
1832 int all_p;
1833 {
1834 if (all_p)
1835 {
1836 struct sblock *b;
1837
1838 for (b = large_sblocks; b; b = b->next)
1839 {
1840 struct Lisp_String *s = b->first_data.string;
1841 if (s)
1842 CHECK_STRING_BYTES (s);
1843 }
1844
1845 for (b = oldest_sblock; b; b = b->next)
1846 check_sblock (b);
1847 }
1848 else
1849 check_sblock (current_sblock);
1850 }
1851
1852 #endif /* GC_CHECK_STRING_BYTES */
1853
1854 #ifdef GC_CHECK_STRING_FREE_LIST
1855
1856 /* Walk through the string free list looking for bogus next pointers.
1857 This may catch buffer overrun from a previous string. */
1858
1859 static void
1860 check_string_free_list ()
1861 {
1862 struct Lisp_String *s;
1863
1864 /* Pop a Lisp_String off the free-list. */
1865 s = string_free_list;
1866 while (s != NULL)
1867 {
1868 if ((unsigned)s < 1024)
1869 abort();
1870 s = NEXT_FREE_LISP_STRING (s);
1871 }
1872 }
1873 #else
1874 #define check_string_free_list()
1875 #endif
1876
1877 /* Return a new Lisp_String. */
1878
1879 static struct Lisp_String *
1880 allocate_string ()
1881 {
1882 struct Lisp_String *s;
1883
1884 /* eassert (!handling_signal); */
1885
1886 MALLOC_BLOCK_INPUT;
1887
1888 /* If the free-list is empty, allocate a new string_block, and
1889 add all the Lisp_Strings in it to the free-list. */
1890 if (string_free_list == NULL)
1891 {
1892 struct string_block *b;
1893 int i;
1894
1895 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1896 bzero (b, sizeof *b);
1897 b->next = string_blocks;
1898 string_blocks = b;
1899 ++n_string_blocks;
1900
1901 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1902 {
1903 s = b->strings + i;
1904 NEXT_FREE_LISP_STRING (s) = string_free_list;
1905 string_free_list = s;
1906 }
1907
1908 total_free_strings += STRING_BLOCK_SIZE;
1909 }
1910
1911 check_string_free_list ();
1912
1913 /* Pop a Lisp_String off the free-list. */
1914 s = string_free_list;
1915 string_free_list = NEXT_FREE_LISP_STRING (s);
1916
1917 MALLOC_UNBLOCK_INPUT;
1918
1919 /* Probably not strictly necessary, but play it safe. */
1920 bzero (s, sizeof *s);
1921
1922 --total_free_strings;
1923 ++total_strings;
1924 ++strings_consed;
1925 consing_since_gc += sizeof *s;
1926
1927 #ifdef GC_CHECK_STRING_BYTES
1928 if (!noninteractive
1929 #ifdef MAC_OS8
1930 && current_sblock
1931 #endif
1932 )
1933 {
1934 if (++check_string_bytes_count == 200)
1935 {
1936 check_string_bytes_count = 0;
1937 check_string_bytes (1);
1938 }
1939 else
1940 check_string_bytes (0);
1941 }
1942 #endif /* GC_CHECK_STRING_BYTES */
1943
1944 return s;
1945 }
1946
1947
1948 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1949 plus a NUL byte at the end. Allocate an sdata structure for S, and
1950 set S->data to its `u.data' member. Store a NUL byte at the end of
1951 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1952 S->data if it was initially non-null. */
1953
1954 void
1955 allocate_string_data (s, nchars, nbytes)
1956 struct Lisp_String *s;
1957 int nchars, nbytes;
1958 {
1959 struct sdata *data, *old_data;
1960 struct sblock *b;
1961 int needed, old_nbytes;
1962
1963 /* Determine the number of bytes needed to store NBYTES bytes
1964 of string data. */
1965 needed = SDATA_SIZE (nbytes);
1966 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1967 old_nbytes = GC_STRING_BYTES (s);
1968
1969 MALLOC_BLOCK_INPUT;
1970
1971 if (nbytes > LARGE_STRING_BYTES)
1972 {
1973 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1974
1975 #ifdef DOUG_LEA_MALLOC
1976 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1977 because mapped region contents are not preserved in
1978 a dumped Emacs.
1979
1980 In case you think of allowing it in a dumped Emacs at the
1981 cost of not being able to re-dump, there's another reason:
1982 mmap'ed data typically have an address towards the top of the
1983 address space, which won't fit into an EMACS_INT (at least on
1984 32-bit systems with the current tagging scheme). --fx */
1985 mallopt (M_MMAP_MAX, 0);
1986 #endif
1987
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1989
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1993 #endif
1994
1995 b->next_free = &b->first_data;
1996 b->first_data.string = NULL;
1997 b->next = large_sblocks;
1998 large_sblocks = b;
1999 }
2000 else if (current_sblock == NULL
2001 || (((char *) current_sblock + SBLOCK_SIZE
2002 - (char *) current_sblock->next_free)
2003 < (needed + GC_STRING_EXTRA)))
2004 {
2005 /* Not enough room in the current sblock. */
2006 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2007 b->next_free = &b->first_data;
2008 b->first_data.string = NULL;
2009 b->next = NULL;
2010
2011 if (current_sblock)
2012 current_sblock->next = b;
2013 else
2014 oldest_sblock = b;
2015 current_sblock = b;
2016 }
2017 else
2018 b = current_sblock;
2019
2020 data = b->next_free;
2021 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2022
2023 MALLOC_UNBLOCK_INPUT;
2024
2025 data->string = s;
2026 s->data = SDATA_DATA (data);
2027 #ifdef GC_CHECK_STRING_BYTES
2028 SDATA_NBYTES (data) = nbytes;
2029 #endif
2030 s->size = nchars;
2031 s->size_byte = nbytes;
2032 s->data[nbytes] = '\0';
2033 #ifdef GC_CHECK_STRING_OVERRUN
2034 bcopy (string_overrun_cookie, (char *) data + needed,
2035 GC_STRING_OVERRUN_COOKIE_SIZE);
2036 #endif
2037
2038 /* If S had already data assigned, mark that as free by setting its
2039 string back-pointer to null, and recording the size of the data
2040 in it. */
2041 if (old_data)
2042 {
2043 SDATA_NBYTES (old_data) = old_nbytes;
2044 old_data->string = NULL;
2045 }
2046
2047 consing_since_gc += needed;
2048 }
2049
2050
2051 /* Sweep and compact strings. */
2052
2053 static void
2054 sweep_strings ()
2055 {
2056 struct string_block *b, *next;
2057 struct string_block *live_blocks = NULL;
2058
2059 string_free_list = NULL;
2060 total_strings = total_free_strings = 0;
2061 total_string_size = 0;
2062
2063 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2064 for (b = string_blocks; b; b = next)
2065 {
2066 int i, nfree = 0;
2067 struct Lisp_String *free_list_before = string_free_list;
2068
2069 next = b->next;
2070
2071 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2072 {
2073 struct Lisp_String *s = b->strings + i;
2074
2075 if (s->data)
2076 {
2077 /* String was not on free-list before. */
2078 if (STRING_MARKED_P (s))
2079 {
2080 /* String is live; unmark it and its intervals. */
2081 UNMARK_STRING (s);
2082
2083 if (!NULL_INTERVAL_P (s->intervals))
2084 UNMARK_BALANCE_INTERVALS (s->intervals);
2085
2086 ++total_strings;
2087 total_string_size += STRING_BYTES (s);
2088 }
2089 else
2090 {
2091 /* String is dead. Put it on the free-list. */
2092 struct sdata *data = SDATA_OF_STRING (s);
2093
2094 /* Save the size of S in its sdata so that we know
2095 how large that is. Reset the sdata's string
2096 back-pointer so that we know it's free. */
2097 #ifdef GC_CHECK_STRING_BYTES
2098 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2099 abort ();
2100 #else
2101 data->u.nbytes = GC_STRING_BYTES (s);
2102 #endif
2103 data->string = NULL;
2104
2105 /* Reset the strings's `data' member so that we
2106 know it's free. */
2107 s->data = NULL;
2108
2109 /* Put the string on the free-list. */
2110 NEXT_FREE_LISP_STRING (s) = string_free_list;
2111 string_free_list = s;
2112 ++nfree;
2113 }
2114 }
2115 else
2116 {
2117 /* S was on the free-list before. Put it there again. */
2118 NEXT_FREE_LISP_STRING (s) = string_free_list;
2119 string_free_list = s;
2120 ++nfree;
2121 }
2122 }
2123
2124 /* Free blocks that contain free Lisp_Strings only, except
2125 the first two of them. */
2126 if (nfree == STRING_BLOCK_SIZE
2127 && total_free_strings > STRING_BLOCK_SIZE)
2128 {
2129 lisp_free (b);
2130 --n_string_blocks;
2131 string_free_list = free_list_before;
2132 }
2133 else
2134 {
2135 total_free_strings += nfree;
2136 b->next = live_blocks;
2137 live_blocks = b;
2138 }
2139 }
2140
2141 check_string_free_list ();
2142
2143 string_blocks = live_blocks;
2144 free_large_strings ();
2145 compact_small_strings ();
2146
2147 check_string_free_list ();
2148 }
2149
2150
2151 /* Free dead large strings. */
2152
2153 static void
2154 free_large_strings ()
2155 {
2156 struct sblock *b, *next;
2157 struct sblock *live_blocks = NULL;
2158
2159 for (b = large_sblocks; b; b = next)
2160 {
2161 next = b->next;
2162
2163 if (b->first_data.string == NULL)
2164 lisp_free (b);
2165 else
2166 {
2167 b->next = live_blocks;
2168 live_blocks = b;
2169 }
2170 }
2171
2172 large_sblocks = live_blocks;
2173 }
2174
2175
2176 /* Compact data of small strings. Free sblocks that don't contain
2177 data of live strings after compaction. */
2178
2179 static void
2180 compact_small_strings ()
2181 {
2182 struct sblock *b, *tb, *next;
2183 struct sdata *from, *to, *end, *tb_end;
2184 struct sdata *to_end, *from_end;
2185
2186 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2187 to, and TB_END is the end of TB. */
2188 tb = oldest_sblock;
2189 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2190 to = &tb->first_data;
2191
2192 /* Step through the blocks from the oldest to the youngest. We
2193 expect that old blocks will stabilize over time, so that less
2194 copying will happen this way. */
2195 for (b = oldest_sblock; b; b = b->next)
2196 {
2197 end = b->next_free;
2198 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2199
2200 for (from = &b->first_data; from < end; from = from_end)
2201 {
2202 /* Compute the next FROM here because copying below may
2203 overwrite data we need to compute it. */
2204 int nbytes;
2205
2206 #ifdef GC_CHECK_STRING_BYTES
2207 /* Check that the string size recorded in the string is the
2208 same as the one recorded in the sdata structure. */
2209 if (from->string
2210 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2211 abort ();
2212 #endif /* GC_CHECK_STRING_BYTES */
2213
2214 if (from->string)
2215 nbytes = GC_STRING_BYTES (from->string);
2216 else
2217 nbytes = SDATA_NBYTES (from);
2218
2219 if (nbytes > LARGE_STRING_BYTES)
2220 abort ();
2221
2222 nbytes = SDATA_SIZE (nbytes);
2223 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2224
2225 #ifdef GC_CHECK_STRING_OVERRUN
2226 if (bcmp (string_overrun_cookie,
2227 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2228 GC_STRING_OVERRUN_COOKIE_SIZE))
2229 abort ();
2230 #endif
2231
2232 /* FROM->string non-null means it's alive. Copy its data. */
2233 if (from->string)
2234 {
2235 /* If TB is full, proceed with the next sblock. */
2236 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2237 if (to_end > tb_end)
2238 {
2239 tb->next_free = to;
2240 tb = tb->next;
2241 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2242 to = &tb->first_data;
2243 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2244 }
2245
2246 /* Copy, and update the string's `data' pointer. */
2247 if (from != to)
2248 {
2249 xassert (tb != b || to <= from);
2250 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2251 to->string->data = SDATA_DATA (to);
2252 }
2253
2254 /* Advance past the sdata we copied to. */
2255 to = to_end;
2256 }
2257 }
2258 }
2259
2260 /* The rest of the sblocks following TB don't contain live data, so
2261 we can free them. */
2262 for (b = tb->next; b; b = next)
2263 {
2264 next = b->next;
2265 lisp_free (b);
2266 }
2267
2268 tb->next_free = to;
2269 tb->next = NULL;
2270 current_sblock = tb;
2271 }
2272
2273
2274 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2275 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2276 LENGTH must be an integer.
2277 INIT must be an integer that represents a character. */)
2278 (length, init)
2279 Lisp_Object length, init;
2280 {
2281 register Lisp_Object val;
2282 register unsigned char *p, *end;
2283 int c, nbytes;
2284
2285 CHECK_NATNUM (length);
2286 CHECK_NUMBER (init);
2287
2288 c = XINT (init);
2289 if (SINGLE_BYTE_CHAR_P (c))
2290 {
2291 nbytes = XINT (length);
2292 val = make_uninit_string (nbytes);
2293 p = SDATA (val);
2294 end = p + SCHARS (val);
2295 while (p != end)
2296 *p++ = c;
2297 }
2298 else
2299 {
2300 unsigned char str[MAX_MULTIBYTE_LENGTH];
2301 int len = CHAR_STRING (c, str);
2302
2303 nbytes = len * XINT (length);
2304 val = make_uninit_multibyte_string (XINT (length), nbytes);
2305 p = SDATA (val);
2306 end = p + nbytes;
2307 while (p != end)
2308 {
2309 bcopy (str, p, len);
2310 p += len;
2311 }
2312 }
2313
2314 *p = 0;
2315 return val;
2316 }
2317
2318
2319 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2320 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2321 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2322 (length, init)
2323 Lisp_Object length, init;
2324 {
2325 register Lisp_Object val;
2326 struct Lisp_Bool_Vector *p;
2327 int real_init, i;
2328 int length_in_chars, length_in_elts, bits_per_value;
2329
2330 CHECK_NATNUM (length);
2331
2332 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2333
2334 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2335 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2336 / BOOL_VECTOR_BITS_PER_CHAR);
2337
2338 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2339 slot `size' of the struct Lisp_Bool_Vector. */
2340 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2341
2342 /* Get rid of any bits that would cause confusion. */
2343 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2344 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2345 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2346
2347 p = XBOOL_VECTOR (val);
2348 p->size = XFASTINT (length);
2349
2350 real_init = (NILP (init) ? 0 : -1);
2351 for (i = 0; i < length_in_chars ; i++)
2352 p->data[i] = real_init;
2353
2354 /* Clear the extraneous bits in the last byte. */
2355 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2356 p->data[length_in_chars - 1]
2357 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2358
2359 return val;
2360 }
2361
2362
2363 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2364 of characters from the contents. This string may be unibyte or
2365 multibyte, depending on the contents. */
2366
2367 Lisp_Object
2368 make_string (contents, nbytes)
2369 const char *contents;
2370 int nbytes;
2371 {
2372 register Lisp_Object val;
2373 int nchars, multibyte_nbytes;
2374
2375 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2376 if (nbytes == nchars || nbytes != multibyte_nbytes)
2377 /* CONTENTS contains no multibyte sequences or contains an invalid
2378 multibyte sequence. We must make unibyte string. */
2379 val = make_unibyte_string (contents, nbytes);
2380 else
2381 val = make_multibyte_string (contents, nchars, nbytes);
2382 return val;
2383 }
2384
2385
2386 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2387
2388 Lisp_Object
2389 make_unibyte_string (contents, length)
2390 const char *contents;
2391 int length;
2392 {
2393 register Lisp_Object val;
2394 val = make_uninit_string (length);
2395 bcopy (contents, SDATA (val), length);
2396 STRING_SET_UNIBYTE (val);
2397 return val;
2398 }
2399
2400
2401 /* Make a multibyte string from NCHARS characters occupying NBYTES
2402 bytes at CONTENTS. */
2403
2404 Lisp_Object
2405 make_multibyte_string (contents, nchars, nbytes)
2406 const char *contents;
2407 int nchars, nbytes;
2408 {
2409 register Lisp_Object val;
2410 val = make_uninit_multibyte_string (nchars, nbytes);
2411 bcopy (contents, SDATA (val), nbytes);
2412 return val;
2413 }
2414
2415
2416 /* Make a string from NCHARS characters occupying NBYTES bytes at
2417 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2418
2419 Lisp_Object
2420 make_string_from_bytes (contents, nchars, nbytes)
2421 const char *contents;
2422 int nchars, nbytes;
2423 {
2424 register Lisp_Object val;
2425 val = make_uninit_multibyte_string (nchars, nbytes);
2426 bcopy (contents, SDATA (val), nbytes);
2427 if (SBYTES (val) == SCHARS (val))
2428 STRING_SET_UNIBYTE (val);
2429 return val;
2430 }
2431
2432
2433 /* Make a string from NCHARS characters occupying NBYTES bytes at
2434 CONTENTS. The argument MULTIBYTE controls whether to label the
2435 string as multibyte. If NCHARS is negative, it counts the number of
2436 characters by itself. */
2437
2438 Lisp_Object
2439 make_specified_string (contents, nchars, nbytes, multibyte)
2440 const char *contents;
2441 int nchars, nbytes;
2442 int multibyte;
2443 {
2444 register Lisp_Object val;
2445
2446 if (nchars < 0)
2447 {
2448 if (multibyte)
2449 nchars = multibyte_chars_in_text (contents, nbytes);
2450 else
2451 nchars = nbytes;
2452 }
2453 val = make_uninit_multibyte_string (nchars, nbytes);
2454 bcopy (contents, SDATA (val), nbytes);
2455 if (!multibyte)
2456 STRING_SET_UNIBYTE (val);
2457 return val;
2458 }
2459
2460
2461 /* Make a string from the data at STR, treating it as multibyte if the
2462 data warrants. */
2463
2464 Lisp_Object
2465 build_string (str)
2466 const char *str;
2467 {
2468 return make_string (str, strlen (str));
2469 }
2470
2471
2472 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2473 occupying LENGTH bytes. */
2474
2475 Lisp_Object
2476 make_uninit_string (length)
2477 int length;
2478 {
2479 Lisp_Object val;
2480
2481 if (!length)
2482 return empty_unibyte_string;
2483 val = make_uninit_multibyte_string (length, length);
2484 STRING_SET_UNIBYTE (val);
2485 return val;
2486 }
2487
2488
2489 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2490 which occupy NBYTES bytes. */
2491
2492 Lisp_Object
2493 make_uninit_multibyte_string (nchars, nbytes)
2494 int nchars, nbytes;
2495 {
2496 Lisp_Object string;
2497 struct Lisp_String *s;
2498
2499 if (nchars < 0)
2500 abort ();
2501 if (!nbytes)
2502 return empty_multibyte_string;
2503
2504 s = allocate_string ();
2505 allocate_string_data (s, nchars, nbytes);
2506 XSETSTRING (string, s);
2507 string_chars_consed += nbytes;
2508 return string;
2509 }
2510
2511
2512 \f
2513 /***********************************************************************
2514 Float Allocation
2515 ***********************************************************************/
2516
2517 /* We store float cells inside of float_blocks, allocating a new
2518 float_block with malloc whenever necessary. Float cells reclaimed
2519 by GC are put on a free list to be reallocated before allocating
2520 any new float cells from the latest float_block. */
2521
2522 #define FLOAT_BLOCK_SIZE \
2523 (((BLOCK_BYTES - sizeof (struct float_block *) \
2524 /* The compiler might add padding at the end. */ \
2525 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2526 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2527
2528 #define GETMARKBIT(block,n) \
2529 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2530 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2531 & 1)
2532
2533 #define SETMARKBIT(block,n) \
2534 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2535 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2536
2537 #define UNSETMARKBIT(block,n) \
2538 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2539 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2540
2541 #define FLOAT_BLOCK(fptr) \
2542 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2543
2544 #define FLOAT_INDEX(fptr) \
2545 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2546
2547 struct float_block
2548 {
2549 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2550 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2551 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2552 struct float_block *next;
2553 };
2554
2555 #define FLOAT_MARKED_P(fptr) \
2556 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557
2558 #define FLOAT_MARK(fptr) \
2559 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561 #define FLOAT_UNMARK(fptr) \
2562 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2563
2564 /* Current float_block. */
2565
2566 struct float_block *float_block;
2567
2568 /* Index of first unused Lisp_Float in the current float_block. */
2569
2570 int float_block_index;
2571
2572 /* Total number of float blocks now in use. */
2573
2574 int n_float_blocks;
2575
2576 /* Free-list of Lisp_Floats. */
2577
2578 struct Lisp_Float *float_free_list;
2579
2580
2581 /* Initialize float allocation. */
2582
2583 void
2584 init_float ()
2585 {
2586 float_block = NULL;
2587 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2588 float_free_list = 0;
2589 n_float_blocks = 0;
2590 }
2591
2592
2593 /* Explicitly free a float cell by putting it on the free-list. */
2594
2595 void
2596 free_float (ptr)
2597 struct Lisp_Float *ptr;
2598 {
2599 ptr->u.chain = float_free_list;
2600 float_free_list = ptr;
2601 }
2602
2603
2604 /* Return a new float object with value FLOAT_VALUE. */
2605
2606 Lisp_Object
2607 make_float (float_value)
2608 double float_value;
2609 {
2610 register Lisp_Object val;
2611
2612 /* eassert (!handling_signal); */
2613
2614 MALLOC_BLOCK_INPUT;
2615
2616 if (float_free_list)
2617 {
2618 /* We use the data field for chaining the free list
2619 so that we won't use the same field that has the mark bit. */
2620 XSETFLOAT (val, float_free_list);
2621 float_free_list = float_free_list->u.chain;
2622 }
2623 else
2624 {
2625 if (float_block_index == FLOAT_BLOCK_SIZE)
2626 {
2627 register struct float_block *new;
2628
2629 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2630 MEM_TYPE_FLOAT);
2631 new->next = float_block;
2632 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2633 float_block = new;
2634 float_block_index = 0;
2635 n_float_blocks++;
2636 }
2637 XSETFLOAT (val, &float_block->floats[float_block_index]);
2638 float_block_index++;
2639 }
2640
2641 MALLOC_UNBLOCK_INPUT;
2642
2643 XFLOAT_DATA (val) = float_value;
2644 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2645 consing_since_gc += sizeof (struct Lisp_Float);
2646 floats_consed++;
2647 return val;
2648 }
2649
2650
2651 \f
2652 /***********************************************************************
2653 Cons Allocation
2654 ***********************************************************************/
2655
2656 /* We store cons cells inside of cons_blocks, allocating a new
2657 cons_block with malloc whenever necessary. Cons cells reclaimed by
2658 GC are put on a free list to be reallocated before allocating
2659 any new cons cells from the latest cons_block. */
2660
2661 #define CONS_BLOCK_SIZE \
2662 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2663 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2664
2665 #define CONS_BLOCK(fptr) \
2666 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2667
2668 #define CONS_INDEX(fptr) \
2669 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2670
2671 struct cons_block
2672 {
2673 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2674 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2675 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2676 struct cons_block *next;
2677 };
2678
2679 #define CONS_MARKED_P(fptr) \
2680 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2681
2682 #define CONS_MARK(fptr) \
2683 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684
2685 #define CONS_UNMARK(fptr) \
2686 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687
2688 /* Current cons_block. */
2689
2690 struct cons_block *cons_block;
2691
2692 /* Index of first unused Lisp_Cons in the current block. */
2693
2694 int cons_block_index;
2695
2696 /* Free-list of Lisp_Cons structures. */
2697
2698 struct Lisp_Cons *cons_free_list;
2699
2700 /* Total number of cons blocks now in use. */
2701
2702 int n_cons_blocks;
2703
2704
2705 /* Initialize cons allocation. */
2706
2707 void
2708 init_cons ()
2709 {
2710 cons_block = NULL;
2711 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2712 cons_free_list = 0;
2713 n_cons_blocks = 0;
2714 }
2715
2716
2717 /* Explicitly free a cons cell by putting it on the free-list. */
2718
2719 void
2720 free_cons (ptr)
2721 struct Lisp_Cons *ptr;
2722 {
2723 ptr->u.chain = cons_free_list;
2724 #if GC_MARK_STACK
2725 ptr->car = Vdead;
2726 #endif
2727 cons_free_list = ptr;
2728 }
2729
2730 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2731 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2732 (car, cdr)
2733 Lisp_Object car, cdr;
2734 {
2735 register Lisp_Object val;
2736
2737 /* eassert (!handling_signal); */
2738
2739 MALLOC_BLOCK_INPUT;
2740
2741 if (cons_free_list)
2742 {
2743 /* We use the cdr for chaining the free list
2744 so that we won't use the same field that has the mark bit. */
2745 XSETCONS (val, cons_free_list);
2746 cons_free_list = cons_free_list->u.chain;
2747 }
2748 else
2749 {
2750 if (cons_block_index == CONS_BLOCK_SIZE)
2751 {
2752 register struct cons_block *new;
2753 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2754 MEM_TYPE_CONS);
2755 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2756 new->next = cons_block;
2757 cons_block = new;
2758 cons_block_index = 0;
2759 n_cons_blocks++;
2760 }
2761 XSETCONS (val, &cons_block->conses[cons_block_index]);
2762 cons_block_index++;
2763 }
2764
2765 MALLOC_UNBLOCK_INPUT;
2766
2767 XSETCAR (val, car);
2768 XSETCDR (val, cdr);
2769 eassert (!CONS_MARKED_P (XCONS (val)));
2770 consing_since_gc += sizeof (struct Lisp_Cons);
2771 cons_cells_consed++;
2772 return val;
2773 }
2774
2775 /* Get an error now if there's any junk in the cons free list. */
2776 void
2777 check_cons_list ()
2778 {
2779 #ifdef GC_CHECK_CONS_LIST
2780 struct Lisp_Cons *tail = cons_free_list;
2781
2782 while (tail)
2783 tail = tail->u.chain;
2784 #endif
2785 }
2786
2787 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2788
2789 Lisp_Object
2790 list1 (arg1)
2791 Lisp_Object arg1;
2792 {
2793 return Fcons (arg1, Qnil);
2794 }
2795
2796 Lisp_Object
2797 list2 (arg1, arg2)
2798 Lisp_Object arg1, arg2;
2799 {
2800 return Fcons (arg1, Fcons (arg2, Qnil));
2801 }
2802
2803
2804 Lisp_Object
2805 list3 (arg1, arg2, arg3)
2806 Lisp_Object arg1, arg2, arg3;
2807 {
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2809 }
2810
2811
2812 Lisp_Object
2813 list4 (arg1, arg2, arg3, arg4)
2814 Lisp_Object arg1, arg2, arg3, arg4;
2815 {
2816 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2817 }
2818
2819
2820 Lisp_Object
2821 list5 (arg1, arg2, arg3, arg4, arg5)
2822 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2823 {
2824 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2825 Fcons (arg5, Qnil)))));
2826 }
2827
2828
2829 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2830 doc: /* Return a newly created list with specified arguments as elements.
2831 Any number of arguments, even zero arguments, are allowed.
2832 usage: (list &rest OBJECTS) */)
2833 (nargs, args)
2834 int nargs;
2835 register Lisp_Object *args;
2836 {
2837 register Lisp_Object val;
2838 val = Qnil;
2839
2840 while (nargs > 0)
2841 {
2842 nargs--;
2843 val = Fcons (args[nargs], val);
2844 }
2845 return val;
2846 }
2847
2848
2849 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2850 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2851 (length, init)
2852 register Lisp_Object length, init;
2853 {
2854 register Lisp_Object val;
2855 register int size;
2856
2857 CHECK_NATNUM (length);
2858 size = XFASTINT (length);
2859
2860 val = Qnil;
2861 while (size > 0)
2862 {
2863 val = Fcons (init, val);
2864 --size;
2865
2866 if (size > 0)
2867 {
2868 val = Fcons (init, val);
2869 --size;
2870
2871 if (size > 0)
2872 {
2873 val = Fcons (init, val);
2874 --size;
2875
2876 if (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
2885 }
2886 }
2887 }
2888 }
2889
2890 QUIT;
2891 }
2892
2893 return val;
2894 }
2895
2896
2897 \f
2898 /***********************************************************************
2899 Vector Allocation
2900 ***********************************************************************/
2901
2902 /* Singly-linked list of all vectors. */
2903
2904 struct Lisp_Vector *all_vectors;
2905
2906 /* Total number of vector-like objects now in use. */
2907
2908 int n_vectors;
2909
2910
2911 /* Value is a pointer to a newly allocated Lisp_Vector structure
2912 with room for LEN Lisp_Objects. */
2913
2914 static struct Lisp_Vector *
2915 allocate_vectorlike (len)
2916 EMACS_INT len;
2917 {
2918 struct Lisp_Vector *p;
2919 size_t nbytes;
2920
2921 MALLOC_BLOCK_INPUT;
2922
2923 #ifdef DOUG_LEA_MALLOC
2924 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2925 because mapped region contents are not preserved in
2926 a dumped Emacs. */
2927 mallopt (M_MMAP_MAX, 0);
2928 #endif
2929
2930 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2931 /* eassert (!handling_signal); */
2932
2933 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2934 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2935
2936 #ifdef DOUG_LEA_MALLOC
2937 /* Back to a reasonable maximum of mmap'ed areas. */
2938 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2939 #endif
2940
2941 consing_since_gc += nbytes;
2942 vector_cells_consed += len;
2943
2944 p->next = all_vectors;
2945 all_vectors = p;
2946
2947 MALLOC_UNBLOCK_INPUT;
2948
2949 ++n_vectors;
2950 return p;
2951 }
2952
2953
2954 /* Allocate a vector with NSLOTS slots. */
2955
2956 struct Lisp_Vector *
2957 allocate_vector (nslots)
2958 EMACS_INT nslots;
2959 {
2960 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2961 v->size = nslots;
2962 return v;
2963 }
2964
2965
2966 /* Allocate other vector-like structures. */
2967
2968 static struct Lisp_Vector *
2969 allocate_pseudovector (memlen, lisplen, tag)
2970 int memlen, lisplen;
2971 EMACS_INT tag;
2972 {
2973 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2974 EMACS_INT i;
2975
2976 /* Only the first lisplen slots will be traced normally by the GC. */
2977 v->size = lisplen;
2978 for (i = 0; i < lisplen; ++i)
2979 v->contents[i] = Qnil;
2980
2981 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2982 return v;
2983 }
2984 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
2985 ((typ*) \
2986 allocate_pseudovector \
2987 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
2988
2989 struct Lisp_Hash_Table *
2990 allocate_hash_table (void)
2991 {
2992 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2993 }
2994
2995
2996 struct window *
2997 allocate_window ()
2998 {
2999 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
3000 }
3001
3002
3003 struct terminal *
3004 allocate_terminal ()
3005 {
3006 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3007 next_terminal, PVEC_TERMINAL);
3008 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3009 bzero (&(t->next_terminal),
3010 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3011
3012 return t;
3013 }
3014
3015 struct frame *
3016 allocate_frame ()
3017 {
3018 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3019 face_cache, PVEC_FRAME);
3020 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3021 bzero (&(f->face_cache),
3022 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3023 return f;
3024 }
3025
3026
3027 struct Lisp_Process *
3028 allocate_process ()
3029 {
3030 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3031 }
3032
3033
3034 /* Only used for PVEC_WINDOW_CONFIGURATION. */
3035 struct Lisp_Vector *
3036 allocate_other_vector (len)
3037 EMACS_INT len;
3038 {
3039 struct Lisp_Vector *v = allocate_vectorlike (len);
3040 EMACS_INT i;
3041
3042 for (i = 0; i < len; ++i)
3043 v->contents[i] = Qnil;
3044 v->size = len;
3045
3046 return v;
3047 }
3048
3049
3050 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3051 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3052 See also the function `vector'. */)
3053 (length, init)
3054 register Lisp_Object length, init;
3055 {
3056 Lisp_Object vector;
3057 register EMACS_INT sizei;
3058 register int index;
3059 register struct Lisp_Vector *p;
3060
3061 CHECK_NATNUM (length);
3062 sizei = XFASTINT (length);
3063
3064 p = allocate_vector (sizei);
3065 for (index = 0; index < sizei; index++)
3066 p->contents[index] = init;
3067
3068 XSETVECTOR (vector, p);
3069 return vector;
3070 }
3071
3072
3073 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3074 doc: /* Return a newly created char-table, with purpose PURPOSE.
3075 Each element is initialized to INIT, which defaults to nil.
3076 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3077 The property's value should be an integer between 0 and 10. */)
3078 (purpose, init)
3079 register Lisp_Object purpose, init;
3080 {
3081 Lisp_Object vector;
3082 Lisp_Object n;
3083 CHECK_SYMBOL (purpose);
3084 n = Fget (purpose, Qchar_table_extra_slots);
3085 CHECK_NUMBER (n);
3086 if (XINT (n) < 0 || XINT (n) > 10)
3087 args_out_of_range (n, Qnil);
3088 /* Add 2 to the size for the defalt and parent slots. */
3089 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3090 init);
3091 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3092 XCHAR_TABLE (vector)->top = Qt;
3093 XCHAR_TABLE (vector)->parent = Qnil;
3094 XCHAR_TABLE (vector)->purpose = purpose;
3095 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3096 return vector;
3097 }
3098
3099
3100 /* Return a newly created sub char table with slots initialized by INIT.
3101 Since a sub char table does not appear as a top level Emacs Lisp
3102 object, we don't need a Lisp interface to make it. */
3103
3104 Lisp_Object
3105 make_sub_char_table (init)
3106 Lisp_Object init;
3107 {
3108 Lisp_Object vector
3109 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3110 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3111 XCHAR_TABLE (vector)->top = Qnil;
3112 XCHAR_TABLE (vector)->defalt = Qnil;
3113 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3114 return vector;
3115 }
3116
3117
3118 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3119 doc: /* Return a newly created vector with specified arguments as elements.
3120 Any number of arguments, even zero arguments, are allowed.
3121 usage: (vector &rest OBJECTS) */)
3122 (nargs, args)
3123 register int nargs;
3124 Lisp_Object *args;
3125 {
3126 register Lisp_Object len, val;
3127 register int index;
3128 register struct Lisp_Vector *p;
3129
3130 XSETFASTINT (len, nargs);
3131 val = Fmake_vector (len, Qnil);
3132 p = XVECTOR (val);
3133 for (index = 0; index < nargs; index++)
3134 p->contents[index] = args[index];
3135 return val;
3136 }
3137
3138
3139 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3140 doc: /* Create a byte-code object with specified arguments as elements.
3141 The arguments should be the arglist, bytecode-string, constant vector,
3142 stack size, (optional) doc string, and (optional) interactive spec.
3143 The first four arguments are required; at most six have any
3144 significance.
3145 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3146 (nargs, args)
3147 register int nargs;
3148 Lisp_Object *args;
3149 {
3150 register Lisp_Object len, val;
3151 register int index;
3152 register struct Lisp_Vector *p;
3153
3154 XSETFASTINT (len, nargs);
3155 if (!NILP (Vpurify_flag))
3156 val = make_pure_vector ((EMACS_INT) nargs);
3157 else
3158 val = Fmake_vector (len, Qnil);
3159
3160 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3161 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3162 earlier because they produced a raw 8-bit string for byte-code
3163 and now such a byte-code string is loaded as multibyte while
3164 raw 8-bit characters converted to multibyte form. Thus, now we
3165 must convert them back to the original unibyte form. */
3166 args[1] = Fstring_as_unibyte (args[1]);
3167
3168 p = XVECTOR (val);
3169 for (index = 0; index < nargs; index++)
3170 {
3171 if (!NILP (Vpurify_flag))
3172 args[index] = Fpurecopy (args[index]);
3173 p->contents[index] = args[index];
3174 }
3175 XSETPVECTYPE (p, PVEC_COMPILED);
3176 XSETCOMPILED (val, p);
3177 return val;
3178 }
3179
3180
3181 \f
3182 /***********************************************************************
3183 Symbol Allocation
3184 ***********************************************************************/
3185
3186 /* Each symbol_block is just under 1020 bytes long, since malloc
3187 really allocates in units of powers of two and uses 4 bytes for its
3188 own overhead. */
3189
3190 #define SYMBOL_BLOCK_SIZE \
3191 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3192
3193 struct symbol_block
3194 {
3195 /* Place `symbols' first, to preserve alignment. */
3196 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3197 struct symbol_block *next;
3198 };
3199
3200 /* Current symbol block and index of first unused Lisp_Symbol
3201 structure in it. */
3202
3203 struct symbol_block *symbol_block;
3204 int symbol_block_index;
3205
3206 /* List of free symbols. */
3207
3208 struct Lisp_Symbol *symbol_free_list;
3209
3210 /* Total number of symbol blocks now in use. */
3211
3212 int n_symbol_blocks;
3213
3214
3215 /* Initialize symbol allocation. */
3216
3217 void
3218 init_symbol ()
3219 {
3220 symbol_block = NULL;
3221 symbol_block_index = SYMBOL_BLOCK_SIZE;
3222 symbol_free_list = 0;
3223 n_symbol_blocks = 0;
3224 }
3225
3226
3227 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3228 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3229 Its value and function definition are void, and its property list is nil. */)
3230 (name)
3231 Lisp_Object name;
3232 {
3233 register Lisp_Object val;
3234 register struct Lisp_Symbol *p;
3235
3236 CHECK_STRING (name);
3237
3238 /* eassert (!handling_signal); */
3239
3240 MALLOC_BLOCK_INPUT;
3241
3242 if (symbol_free_list)
3243 {
3244 XSETSYMBOL (val, symbol_free_list);
3245 symbol_free_list = symbol_free_list->next;
3246 }
3247 else
3248 {
3249 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3250 {
3251 struct symbol_block *new;
3252 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3253 MEM_TYPE_SYMBOL);
3254 new->next = symbol_block;
3255 symbol_block = new;
3256 symbol_block_index = 0;
3257 n_symbol_blocks++;
3258 }
3259 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3260 symbol_block_index++;
3261 }
3262
3263 MALLOC_UNBLOCK_INPUT;
3264
3265 p = XSYMBOL (val);
3266 p->xname = name;
3267 p->plist = Qnil;
3268 p->value = Qunbound;
3269 p->function = Qunbound;
3270 p->next = NULL;
3271 p->gcmarkbit = 0;
3272 p->interned = SYMBOL_UNINTERNED;
3273 p->constant = 0;
3274 p->indirect_variable = 0;
3275 consing_since_gc += sizeof (struct Lisp_Symbol);
3276 symbols_consed++;
3277 return val;
3278 }
3279
3280
3281 \f
3282 /***********************************************************************
3283 Marker (Misc) Allocation
3284 ***********************************************************************/
3285
3286 /* Allocation of markers and other objects that share that structure.
3287 Works like allocation of conses. */
3288
3289 #define MARKER_BLOCK_SIZE \
3290 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3291
3292 struct marker_block
3293 {
3294 /* Place `markers' first, to preserve alignment. */
3295 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3296 struct marker_block *next;
3297 };
3298
3299 struct marker_block *marker_block;
3300 int marker_block_index;
3301
3302 union Lisp_Misc *marker_free_list;
3303
3304 /* Total number of marker blocks now in use. */
3305
3306 int n_marker_blocks;
3307
3308 void
3309 init_marker ()
3310 {
3311 marker_block = NULL;
3312 marker_block_index = MARKER_BLOCK_SIZE;
3313 marker_free_list = 0;
3314 n_marker_blocks = 0;
3315 }
3316
3317 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3318
3319 Lisp_Object
3320 allocate_misc ()
3321 {
3322 Lisp_Object val;
3323
3324 /* eassert (!handling_signal); */
3325
3326 MALLOC_BLOCK_INPUT;
3327
3328 if (marker_free_list)
3329 {
3330 XSETMISC (val, marker_free_list);
3331 marker_free_list = marker_free_list->u_free.chain;
3332 }
3333 else
3334 {
3335 if (marker_block_index == MARKER_BLOCK_SIZE)
3336 {
3337 struct marker_block *new;
3338 new = (struct marker_block *) lisp_malloc (sizeof *new,
3339 MEM_TYPE_MISC);
3340 new->next = marker_block;
3341 marker_block = new;
3342 marker_block_index = 0;
3343 n_marker_blocks++;
3344 total_free_markers += MARKER_BLOCK_SIZE;
3345 }
3346 XSETMISC (val, &marker_block->markers[marker_block_index]);
3347 marker_block_index++;
3348 }
3349
3350 MALLOC_UNBLOCK_INPUT;
3351
3352 --total_free_markers;
3353 consing_since_gc += sizeof (union Lisp_Misc);
3354 misc_objects_consed++;
3355 XMARKER (val)->gcmarkbit = 0;
3356 return val;
3357 }
3358
3359 /* Free a Lisp_Misc object */
3360
3361 void
3362 free_misc (misc)
3363 Lisp_Object misc;
3364 {
3365 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3366 XMISC (misc)->u_free.chain = marker_free_list;
3367 marker_free_list = XMISC (misc);
3368
3369 total_free_markers++;
3370 }
3371
3372 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3373 INTEGER. This is used to package C values to call record_unwind_protect.
3374 The unwind function can get the C values back using XSAVE_VALUE. */
3375
3376 Lisp_Object
3377 make_save_value (pointer, integer)
3378 void *pointer;
3379 int integer;
3380 {
3381 register Lisp_Object val;
3382 register struct Lisp_Save_Value *p;
3383
3384 val = allocate_misc ();
3385 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3386 p = XSAVE_VALUE (val);
3387 p->pointer = pointer;
3388 p->integer = integer;
3389 p->dogc = 0;
3390 return val;
3391 }
3392
3393 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3394 doc: /* Return a newly allocated marker which does not point at any place. */)
3395 ()
3396 {
3397 register Lisp_Object val;
3398 register struct Lisp_Marker *p;
3399
3400 val = allocate_misc ();
3401 XMISCTYPE (val) = Lisp_Misc_Marker;
3402 p = XMARKER (val);
3403 p->buffer = 0;
3404 p->bytepos = 0;
3405 p->charpos = 0;
3406 p->next = NULL;
3407 p->insertion_type = 0;
3408 return val;
3409 }
3410
3411 /* Put MARKER back on the free list after using it temporarily. */
3412
3413 void
3414 free_marker (marker)
3415 Lisp_Object marker;
3416 {
3417 unchain_marker (XMARKER (marker));
3418 free_misc (marker);
3419 }
3420
3421 \f
3422 /* Return a newly created vector or string with specified arguments as
3423 elements. If all the arguments are characters that can fit
3424 in a string of events, make a string; otherwise, make a vector.
3425
3426 Any number of arguments, even zero arguments, are allowed. */
3427
3428 Lisp_Object
3429 make_event_array (nargs, args)
3430 register int nargs;
3431 Lisp_Object *args;
3432 {
3433 int i;
3434
3435 for (i = 0; i < nargs; i++)
3436 /* The things that fit in a string
3437 are characters that are in 0...127,
3438 after discarding the meta bit and all the bits above it. */
3439 if (!INTEGERP (args[i])
3440 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3441 return Fvector (nargs, args);
3442
3443 /* Since the loop exited, we know that all the things in it are
3444 characters, so we can make a string. */
3445 {
3446 Lisp_Object result;
3447
3448 result = Fmake_string (make_number (nargs), make_number (0));
3449 for (i = 0; i < nargs; i++)
3450 {
3451 SSET (result, i, XINT (args[i]));
3452 /* Move the meta bit to the right place for a string char. */
3453 if (XINT (args[i]) & CHAR_META)
3454 SSET (result, i, SREF (result, i) | 0x80);
3455 }
3456
3457 return result;
3458 }
3459 }
3460
3461
3462 \f
3463 /************************************************************************
3464 Memory Full Handling
3465 ************************************************************************/
3466
3467
3468 /* Called if malloc returns zero. */
3469
3470 void
3471 memory_full ()
3472 {
3473 int i;
3474
3475 Vmemory_full = Qt;
3476
3477 memory_full_cons_threshold = sizeof (struct cons_block);
3478
3479 /* The first time we get here, free the spare memory. */
3480 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3481 if (spare_memory[i])
3482 {
3483 if (i == 0)
3484 free (spare_memory[i]);
3485 else if (i >= 1 && i <= 4)
3486 lisp_align_free (spare_memory[i]);
3487 else
3488 lisp_free (spare_memory[i]);
3489 spare_memory[i] = 0;
3490 }
3491
3492 /* Record the space now used. When it decreases substantially,
3493 we can refill the memory reserve. */
3494 #ifndef SYSTEM_MALLOC
3495 bytes_used_when_full = BYTES_USED;
3496 #endif
3497
3498 /* This used to call error, but if we've run out of memory, we could
3499 get infinite recursion trying to build the string. */
3500 xsignal (Qnil, Vmemory_signal_data);
3501 }
3502
3503 /* If we released our reserve (due to running out of memory),
3504 and we have a fair amount free once again,
3505 try to set aside another reserve in case we run out once more.
3506
3507 This is called when a relocatable block is freed in ralloc.c,
3508 and also directly from this file, in case we're not using ralloc.c. */
3509
3510 void
3511 refill_memory_reserve ()
3512 {
3513 #ifndef SYSTEM_MALLOC
3514 if (spare_memory[0] == 0)
3515 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3516 if (spare_memory[1] == 0)
3517 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3518 MEM_TYPE_CONS);
3519 if (spare_memory[2] == 0)
3520 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3521 MEM_TYPE_CONS);
3522 if (spare_memory[3] == 0)
3523 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3524 MEM_TYPE_CONS);
3525 if (spare_memory[4] == 0)
3526 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3527 MEM_TYPE_CONS);
3528 if (spare_memory[5] == 0)
3529 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3530 MEM_TYPE_STRING);
3531 if (spare_memory[6] == 0)
3532 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3533 MEM_TYPE_STRING);
3534 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3535 Vmemory_full = Qnil;
3536 #endif
3537 }
3538 \f
3539 /************************************************************************
3540 C Stack Marking
3541 ************************************************************************/
3542
3543 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3544
3545 /* Conservative C stack marking requires a method to identify possibly
3546 live Lisp objects given a pointer value. We do this by keeping
3547 track of blocks of Lisp data that are allocated in a red-black tree
3548 (see also the comment of mem_node which is the type of nodes in
3549 that tree). Function lisp_malloc adds information for an allocated
3550 block to the red-black tree with calls to mem_insert, and function
3551 lisp_free removes it with mem_delete. Functions live_string_p etc
3552 call mem_find to lookup information about a given pointer in the
3553 tree, and use that to determine if the pointer points to a Lisp
3554 object or not. */
3555
3556 /* Initialize this part of alloc.c. */
3557
3558 static void
3559 mem_init ()
3560 {
3561 mem_z.left = mem_z.right = MEM_NIL;
3562 mem_z.parent = NULL;
3563 mem_z.color = MEM_BLACK;
3564 mem_z.start = mem_z.end = NULL;
3565 mem_root = MEM_NIL;
3566 }
3567
3568
3569 /* Value is a pointer to the mem_node containing START. Value is
3570 MEM_NIL if there is no node in the tree containing START. */
3571
3572 static INLINE struct mem_node *
3573 mem_find (start)
3574 void *start;
3575 {
3576 struct mem_node *p;
3577
3578 if (start < min_heap_address || start > max_heap_address)
3579 return MEM_NIL;
3580
3581 /* Make the search always successful to speed up the loop below. */
3582 mem_z.start = start;
3583 mem_z.end = (char *) start + 1;
3584
3585 p = mem_root;
3586 while (start < p->start || start >= p->end)
3587 p = start < p->start ? p->left : p->right;
3588 return p;
3589 }
3590
3591
3592 /* Insert a new node into the tree for a block of memory with start
3593 address START, end address END, and type TYPE. Value is a
3594 pointer to the node that was inserted. */
3595
3596 static struct mem_node *
3597 mem_insert (start, end, type)
3598 void *start, *end;
3599 enum mem_type type;
3600 {
3601 struct mem_node *c, *parent, *x;
3602
3603 if (min_heap_address == NULL || start < min_heap_address)
3604 min_heap_address = start;
3605 if (max_heap_address == NULL || end > max_heap_address)
3606 max_heap_address = end;
3607
3608 /* See where in the tree a node for START belongs. In this
3609 particular application, it shouldn't happen that a node is already
3610 present. For debugging purposes, let's check that. */
3611 c = mem_root;
3612 parent = NULL;
3613
3614 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3615
3616 while (c != MEM_NIL)
3617 {
3618 if (start >= c->start && start < c->end)
3619 abort ();
3620 parent = c;
3621 c = start < c->start ? c->left : c->right;
3622 }
3623
3624 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3625
3626 while (c != MEM_NIL)
3627 {
3628 parent = c;
3629 c = start < c->start ? c->left : c->right;
3630 }
3631
3632 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3633
3634 /* Create a new node. */
3635 #ifdef GC_MALLOC_CHECK
3636 x = (struct mem_node *) _malloc_internal (sizeof *x);
3637 if (x == NULL)
3638 abort ();
3639 #else
3640 x = (struct mem_node *) xmalloc (sizeof *x);
3641 #endif
3642 x->start = start;
3643 x->end = end;
3644 x->type = type;
3645 x->parent = parent;
3646 x->left = x->right = MEM_NIL;
3647 x->color = MEM_RED;
3648
3649 /* Insert it as child of PARENT or install it as root. */
3650 if (parent)
3651 {
3652 if (start < parent->start)
3653 parent->left = x;
3654 else
3655 parent->right = x;
3656 }
3657 else
3658 mem_root = x;
3659
3660 /* Re-establish red-black tree properties. */
3661 mem_insert_fixup (x);
3662
3663 return x;
3664 }
3665
3666
3667 /* Re-establish the red-black properties of the tree, and thereby
3668 balance the tree, after node X has been inserted; X is always red. */
3669
3670 static void
3671 mem_insert_fixup (x)
3672 struct mem_node *x;
3673 {
3674 while (x != mem_root && x->parent->color == MEM_RED)
3675 {
3676 /* X is red and its parent is red. This is a violation of
3677 red-black tree property #3. */
3678
3679 if (x->parent == x->parent->parent->left)
3680 {
3681 /* We're on the left side of our grandparent, and Y is our
3682 "uncle". */
3683 struct mem_node *y = x->parent->parent->right;
3684
3685 if (y->color == MEM_RED)
3686 {
3687 /* Uncle and parent are red but should be black because
3688 X is red. Change the colors accordingly and proceed
3689 with the grandparent. */
3690 x->parent->color = MEM_BLACK;
3691 y->color = MEM_BLACK;
3692 x->parent->parent->color = MEM_RED;
3693 x = x->parent->parent;
3694 }
3695 else
3696 {
3697 /* Parent and uncle have different colors; parent is
3698 red, uncle is black. */
3699 if (x == x->parent->right)
3700 {
3701 x = x->parent;
3702 mem_rotate_left (x);
3703 }
3704
3705 x->parent->color = MEM_BLACK;
3706 x->parent->parent->color = MEM_RED;
3707 mem_rotate_right (x->parent->parent);
3708 }
3709 }
3710 else
3711 {
3712 /* This is the symmetrical case of above. */
3713 struct mem_node *y = x->parent->parent->left;
3714
3715 if (y->color == MEM_RED)
3716 {
3717 x->parent->color = MEM_BLACK;
3718 y->color = MEM_BLACK;
3719 x->parent->parent->color = MEM_RED;
3720 x = x->parent->parent;
3721 }
3722 else
3723 {
3724 if (x == x->parent->left)
3725 {
3726 x = x->parent;
3727 mem_rotate_right (x);
3728 }
3729
3730 x->parent->color = MEM_BLACK;
3731 x->parent->parent->color = MEM_RED;
3732 mem_rotate_left (x->parent->parent);
3733 }
3734 }
3735 }
3736
3737 /* The root may have been changed to red due to the algorithm. Set
3738 it to black so that property #5 is satisfied. */
3739 mem_root->color = MEM_BLACK;
3740 }
3741
3742
3743 /* (x) (y)
3744 / \ / \
3745 a (y) ===> (x) c
3746 / \ / \
3747 b c a b */
3748
3749 static void
3750 mem_rotate_left (x)
3751 struct mem_node *x;
3752 {
3753 struct mem_node *y;
3754
3755 /* Turn y's left sub-tree into x's right sub-tree. */
3756 y = x->right;
3757 x->right = y->left;
3758 if (y->left != MEM_NIL)
3759 y->left->parent = x;
3760
3761 /* Y's parent was x's parent. */
3762 if (y != MEM_NIL)
3763 y->parent = x->parent;
3764
3765 /* Get the parent to point to y instead of x. */
3766 if (x->parent)
3767 {
3768 if (x == x->parent->left)
3769 x->parent->left = y;
3770 else
3771 x->parent->right = y;
3772 }
3773 else
3774 mem_root = y;
3775
3776 /* Put x on y's left. */
3777 y->left = x;
3778 if (x != MEM_NIL)
3779 x->parent = y;
3780 }
3781
3782
3783 /* (x) (Y)
3784 / \ / \
3785 (y) c ===> a (x)
3786 / \ / \
3787 a b b c */
3788
3789 static void
3790 mem_rotate_right (x)
3791 struct mem_node *x;
3792 {
3793 struct mem_node *y = x->left;
3794
3795 x->left = y->right;
3796 if (y->right != MEM_NIL)
3797 y->right->parent = x;
3798
3799 if (y != MEM_NIL)
3800 y->parent = x->parent;
3801 if (x->parent)
3802 {
3803 if (x == x->parent->right)
3804 x->parent->right = y;
3805 else
3806 x->parent->left = y;
3807 }
3808 else
3809 mem_root = y;
3810
3811 y->right = x;
3812 if (x != MEM_NIL)
3813 x->parent = y;
3814 }
3815
3816
3817 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3818
3819 static void
3820 mem_delete (z)
3821 struct mem_node *z;
3822 {
3823 struct mem_node *x, *y;
3824
3825 if (!z || z == MEM_NIL)
3826 return;
3827
3828 if (z->left == MEM_NIL || z->right == MEM_NIL)
3829 y = z;
3830 else
3831 {
3832 y = z->right;
3833 while (y->left != MEM_NIL)
3834 y = y->left;
3835 }
3836
3837 if (y->left != MEM_NIL)
3838 x = y->left;
3839 else
3840 x = y->right;
3841
3842 x->parent = y->parent;
3843 if (y->parent)
3844 {
3845 if (y == y->parent->left)
3846 y->parent->left = x;
3847 else
3848 y->parent->right = x;
3849 }
3850 else
3851 mem_root = x;
3852
3853 if (y != z)
3854 {
3855 z->start = y->start;
3856 z->end = y->end;
3857 z->type = y->type;
3858 }
3859
3860 if (y->color == MEM_BLACK)
3861 mem_delete_fixup (x);
3862
3863 #ifdef GC_MALLOC_CHECK
3864 _free_internal (y);
3865 #else
3866 xfree (y);
3867 #endif
3868 }
3869
3870
3871 /* Re-establish the red-black properties of the tree, after a
3872 deletion. */
3873
3874 static void
3875 mem_delete_fixup (x)
3876 struct mem_node *x;
3877 {
3878 while (x != mem_root && x->color == MEM_BLACK)
3879 {
3880 if (x == x->parent->left)
3881 {
3882 struct mem_node *w = x->parent->right;
3883
3884 if (w->color == MEM_RED)
3885 {
3886 w->color = MEM_BLACK;
3887 x->parent->color = MEM_RED;
3888 mem_rotate_left (x->parent);
3889 w = x->parent->right;
3890 }
3891
3892 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3893 {
3894 w->color = MEM_RED;
3895 x = x->parent;
3896 }
3897 else
3898 {
3899 if (w->right->color == MEM_BLACK)
3900 {
3901 w->left->color = MEM_BLACK;
3902 w->color = MEM_RED;
3903 mem_rotate_right (w);
3904 w = x->parent->right;
3905 }
3906 w->color = x->parent->color;
3907 x->parent->color = MEM_BLACK;
3908 w->right->color = MEM_BLACK;
3909 mem_rotate_left (x->parent);
3910 x = mem_root;
3911 }
3912 }
3913 else
3914 {
3915 struct mem_node *w = x->parent->left;
3916
3917 if (w->color == MEM_RED)
3918 {
3919 w->color = MEM_BLACK;
3920 x->parent->color = MEM_RED;
3921 mem_rotate_right (x->parent);
3922 w = x->parent->left;
3923 }
3924
3925 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3926 {
3927 w->color = MEM_RED;
3928 x = x->parent;
3929 }
3930 else
3931 {
3932 if (w->left->color == MEM_BLACK)
3933 {
3934 w->right->color = MEM_BLACK;
3935 w->color = MEM_RED;
3936 mem_rotate_left (w);
3937 w = x->parent->left;
3938 }
3939
3940 w->color = x->parent->color;
3941 x->parent->color = MEM_BLACK;
3942 w->left->color = MEM_BLACK;
3943 mem_rotate_right (x->parent);
3944 x = mem_root;
3945 }
3946 }
3947 }
3948
3949 x->color = MEM_BLACK;
3950 }
3951
3952
3953 /* Value is non-zero if P is a pointer to a live Lisp string on
3954 the heap. M is a pointer to the mem_block for P. */
3955
3956 static INLINE int
3957 live_string_p (m, p)
3958 struct mem_node *m;
3959 void *p;
3960 {
3961 if (m->type == MEM_TYPE_STRING)
3962 {
3963 struct string_block *b = (struct string_block *) m->start;
3964 int offset = (char *) p - (char *) &b->strings[0];
3965
3966 /* P must point to the start of a Lisp_String structure, and it
3967 must not be on the free-list. */
3968 return (offset >= 0
3969 && offset % sizeof b->strings[0] == 0
3970 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3971 && ((struct Lisp_String *) p)->data != NULL);
3972 }
3973 else
3974 return 0;
3975 }
3976
3977
3978 /* Value is non-zero if P is a pointer to a live Lisp cons on
3979 the heap. M is a pointer to the mem_block for P. */
3980
3981 static INLINE int
3982 live_cons_p (m, p)
3983 struct mem_node *m;
3984 void *p;
3985 {
3986 if (m->type == MEM_TYPE_CONS)
3987 {
3988 struct cons_block *b = (struct cons_block *) m->start;
3989 int offset = (char *) p - (char *) &b->conses[0];
3990
3991 /* P must point to the start of a Lisp_Cons, not be
3992 one of the unused cells in the current cons block,
3993 and not be on the free-list. */
3994 return (offset >= 0
3995 && offset % sizeof b->conses[0] == 0
3996 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3997 && (b != cons_block
3998 || offset / sizeof b->conses[0] < cons_block_index)
3999 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4000 }
4001 else
4002 return 0;
4003 }
4004
4005
4006 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4007 the heap. M is a pointer to the mem_block for P. */
4008
4009 static INLINE int
4010 live_symbol_p (m, p)
4011 struct mem_node *m;
4012 void *p;
4013 {
4014 if (m->type == MEM_TYPE_SYMBOL)
4015 {
4016 struct symbol_block *b = (struct symbol_block *) m->start;
4017 int offset = (char *) p - (char *) &b->symbols[0];
4018
4019 /* P must point to the start of a Lisp_Symbol, not be
4020 one of the unused cells in the current symbol block,
4021 and not be on the free-list. */
4022 return (offset >= 0
4023 && offset % sizeof b->symbols[0] == 0
4024 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4025 && (b != symbol_block
4026 || offset / sizeof b->symbols[0] < symbol_block_index)
4027 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4028 }
4029 else
4030 return 0;
4031 }
4032
4033
4034 /* Value is non-zero if P is a pointer to a live Lisp float on
4035 the heap. M is a pointer to the mem_block for P. */
4036
4037 static INLINE int
4038 live_float_p (m, p)
4039 struct mem_node *m;
4040 void *p;
4041 {
4042 if (m->type == MEM_TYPE_FLOAT)
4043 {
4044 struct float_block *b = (struct float_block *) m->start;
4045 int offset = (char *) p - (char *) &b->floats[0];
4046
4047 /* P must point to the start of a Lisp_Float and not be
4048 one of the unused cells in the current float block. */
4049 return (offset >= 0
4050 && offset % sizeof b->floats[0] == 0
4051 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4052 && (b != float_block
4053 || offset / sizeof b->floats[0] < float_block_index));
4054 }
4055 else
4056 return 0;
4057 }
4058
4059
4060 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4061 the heap. M is a pointer to the mem_block for P. */
4062
4063 static INLINE int
4064 live_misc_p (m, p)
4065 struct mem_node *m;
4066 void *p;
4067 {
4068 if (m->type == MEM_TYPE_MISC)
4069 {
4070 struct marker_block *b = (struct marker_block *) m->start;
4071 int offset = (char *) p - (char *) &b->markers[0];
4072
4073 /* P must point to the start of a Lisp_Misc, not be
4074 one of the unused cells in the current misc block,
4075 and not be on the free-list. */
4076 return (offset >= 0
4077 && offset % sizeof b->markers[0] == 0
4078 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4079 && (b != marker_block
4080 || offset / sizeof b->markers[0] < marker_block_index)
4081 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4082 }
4083 else
4084 return 0;
4085 }
4086
4087
4088 /* Value is non-zero if P is a pointer to a live vector-like object.
4089 M is a pointer to the mem_block for P. */
4090
4091 static INLINE int
4092 live_vector_p (m, p)
4093 struct mem_node *m;
4094 void *p;
4095 {
4096 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4097 }
4098
4099
4100 /* Value is non-zero if P is a pointer to a live buffer. M is a
4101 pointer to the mem_block for P. */
4102
4103 static INLINE int
4104 live_buffer_p (m, p)
4105 struct mem_node *m;
4106 void *p;
4107 {
4108 /* P must point to the start of the block, and the buffer
4109 must not have been killed. */
4110 return (m->type == MEM_TYPE_BUFFER
4111 && p == m->start
4112 && !NILP (((struct buffer *) p)->name));
4113 }
4114
4115 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4116
4117 #if GC_MARK_STACK
4118
4119 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4120
4121 /* Array of objects that are kept alive because the C stack contains
4122 a pattern that looks like a reference to them . */
4123
4124 #define MAX_ZOMBIES 10
4125 static Lisp_Object zombies[MAX_ZOMBIES];
4126
4127 /* Number of zombie objects. */
4128
4129 static int nzombies;
4130
4131 /* Number of garbage collections. */
4132
4133 static int ngcs;
4134
4135 /* Average percentage of zombies per collection. */
4136
4137 static double avg_zombies;
4138
4139 /* Max. number of live and zombie objects. */
4140
4141 static int max_live, max_zombies;
4142
4143 /* Average number of live objects per GC. */
4144
4145 static double avg_live;
4146
4147 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4148 doc: /* Show information about live and zombie objects. */)
4149 ()
4150 {
4151 Lisp_Object args[8], zombie_list = Qnil;
4152 int i;
4153 for (i = 0; i < nzombies; i++)
4154 zombie_list = Fcons (zombies[i], zombie_list);
4155 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4156 args[1] = make_number (ngcs);
4157 args[2] = make_float (avg_live);
4158 args[3] = make_float (avg_zombies);
4159 args[4] = make_float (avg_zombies / avg_live / 100);
4160 args[5] = make_number (max_live);
4161 args[6] = make_number (max_zombies);
4162 args[7] = zombie_list;
4163 return Fmessage (8, args);
4164 }
4165
4166 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4167
4168
4169 /* Mark OBJ if we can prove it's a Lisp_Object. */
4170
4171 static INLINE void
4172 mark_maybe_object (obj)
4173 Lisp_Object obj;
4174 {
4175 void *po = (void *) XPNTR (obj);
4176 struct mem_node *m = mem_find (po);
4177
4178 if (m != MEM_NIL)
4179 {
4180 int mark_p = 0;
4181
4182 switch (XGCTYPE (obj))
4183 {
4184 case Lisp_String:
4185 mark_p = (live_string_p (m, po)
4186 && !STRING_MARKED_P ((struct Lisp_String *) po));
4187 break;
4188
4189 case Lisp_Cons:
4190 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4191 break;
4192
4193 case Lisp_Symbol:
4194 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4195 break;
4196
4197 case Lisp_Float:
4198 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4199 break;
4200
4201 case Lisp_Vectorlike:
4202 /* Note: can't check GC_BUFFERP before we know it's a
4203 buffer because checking that dereferences the pointer
4204 PO which might point anywhere. */
4205 if (live_vector_p (m, po))
4206 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4207 else if (live_buffer_p (m, po))
4208 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4209 break;
4210
4211 case Lisp_Misc:
4212 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4213 break;
4214
4215 case Lisp_Int:
4216 case Lisp_Type_Limit:
4217 break;
4218 }
4219
4220 if (mark_p)
4221 {
4222 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4223 if (nzombies < MAX_ZOMBIES)
4224 zombies[nzombies] = obj;
4225 ++nzombies;
4226 #endif
4227 mark_object (obj);
4228 }
4229 }
4230 }
4231
4232
4233 /* If P points to Lisp data, mark that as live if it isn't already
4234 marked. */
4235
4236 static INLINE void
4237 mark_maybe_pointer (p)
4238 void *p;
4239 {
4240 struct mem_node *m;
4241
4242 /* Quickly rule out some values which can't point to Lisp data. */
4243 if ((EMACS_INT) p %
4244 #ifdef USE_LSB_TAG
4245 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4246 #else
4247 2 /* We assume that Lisp data is aligned on even addresses. */
4248 #endif
4249 )
4250 return;
4251
4252 m = mem_find (p);
4253 if (m != MEM_NIL)
4254 {
4255 Lisp_Object obj = Qnil;
4256
4257 switch (m->type)
4258 {
4259 case MEM_TYPE_NON_LISP:
4260 /* Nothing to do; not a pointer to Lisp memory. */
4261 break;
4262
4263 case MEM_TYPE_BUFFER:
4264 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4265 XSETVECTOR (obj, p);
4266 break;
4267
4268 case MEM_TYPE_CONS:
4269 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4270 XSETCONS (obj, p);
4271 break;
4272
4273 case MEM_TYPE_STRING:
4274 if (live_string_p (m, p)
4275 && !STRING_MARKED_P ((struct Lisp_String *) p))
4276 XSETSTRING (obj, p);
4277 break;
4278
4279 case MEM_TYPE_MISC:
4280 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4281 XSETMISC (obj, p);
4282 break;
4283
4284 case MEM_TYPE_SYMBOL:
4285 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4286 XSETSYMBOL (obj, p);
4287 break;
4288
4289 case MEM_TYPE_FLOAT:
4290 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4291 XSETFLOAT (obj, p);
4292 break;
4293
4294 case MEM_TYPE_VECTORLIKE:
4295 if (live_vector_p (m, p))
4296 {
4297 Lisp_Object tem;
4298 XSETVECTOR (tem, p);
4299 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4300 obj = tem;
4301 }
4302 break;
4303
4304 default:
4305 abort ();
4306 }
4307
4308 if (!GC_NILP (obj))
4309 mark_object (obj);
4310 }
4311 }
4312
4313
4314 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4315 or END+OFFSET..START. */
4316
4317 static void
4318 mark_memory (start, end, offset)
4319 void *start, *end;
4320 int offset;
4321 {
4322 Lisp_Object *p;
4323 void **pp;
4324
4325 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4326 nzombies = 0;
4327 #endif
4328
4329 /* Make START the pointer to the start of the memory region,
4330 if it isn't already. */
4331 if (end < start)
4332 {
4333 void *tem = start;
4334 start = end;
4335 end = tem;
4336 }
4337
4338 /* Mark Lisp_Objects. */
4339 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4340 mark_maybe_object (*p);
4341
4342 /* Mark Lisp data pointed to. This is necessary because, in some
4343 situations, the C compiler optimizes Lisp objects away, so that
4344 only a pointer to them remains. Example:
4345
4346 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4347 ()
4348 {
4349 Lisp_Object obj = build_string ("test");
4350 struct Lisp_String *s = XSTRING (obj);
4351 Fgarbage_collect ();
4352 fprintf (stderr, "test `%s'\n", s->data);
4353 return Qnil;
4354 }
4355
4356 Here, `obj' isn't really used, and the compiler optimizes it
4357 away. The only reference to the life string is through the
4358 pointer `s'. */
4359
4360 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4361 mark_maybe_pointer (*pp);
4362 }
4363
4364 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4365 the GCC system configuration. In gcc 3.2, the only systems for
4366 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4367 by others?) and ns32k-pc532-min. */
4368
4369 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4370
4371 static int setjmp_tested_p, longjmps_done;
4372
4373 #define SETJMP_WILL_LIKELY_WORK "\
4374 \n\
4375 Emacs garbage collector has been changed to use conservative stack\n\
4376 marking. Emacs has determined that the method it uses to do the\n\
4377 marking will likely work on your system, but this isn't sure.\n\
4378 \n\
4379 If you are a system-programmer, or can get the help of a local wizard\n\
4380 who is, please take a look at the function mark_stack in alloc.c, and\n\
4381 verify that the methods used are appropriate for your system.\n\
4382 \n\
4383 Please mail the result to <emacs-devel@gnu.org>.\n\
4384 "
4385
4386 #define SETJMP_WILL_NOT_WORK "\
4387 \n\
4388 Emacs garbage collector has been changed to use conservative stack\n\
4389 marking. Emacs has determined that the default method it uses to do the\n\
4390 marking will not work on your system. We will need a system-dependent\n\
4391 solution for your system.\n\
4392 \n\
4393 Please take a look at the function mark_stack in alloc.c, and\n\
4394 try to find a way to make it work on your system.\n\
4395 \n\
4396 Note that you may get false negatives, depending on the compiler.\n\
4397 In particular, you need to use -O with GCC for this test.\n\
4398 \n\
4399 Please mail the result to <emacs-devel@gnu.org>.\n\
4400 "
4401
4402
4403 /* Perform a quick check if it looks like setjmp saves registers in a
4404 jmp_buf. Print a message to stderr saying so. When this test
4405 succeeds, this is _not_ a proof that setjmp is sufficient for
4406 conservative stack marking. Only the sources or a disassembly
4407 can prove that. */
4408
4409 static void
4410 test_setjmp ()
4411 {
4412 char buf[10];
4413 register int x;
4414 jmp_buf jbuf;
4415 int result = 0;
4416
4417 /* Arrange for X to be put in a register. */
4418 sprintf (buf, "1");
4419 x = strlen (buf);
4420 x = 2 * x - 1;
4421
4422 setjmp (jbuf);
4423 if (longjmps_done == 1)
4424 {
4425 /* Came here after the longjmp at the end of the function.
4426
4427 If x == 1, the longjmp has restored the register to its
4428 value before the setjmp, and we can hope that setjmp
4429 saves all such registers in the jmp_buf, although that
4430 isn't sure.
4431
4432 For other values of X, either something really strange is
4433 taking place, or the setjmp just didn't save the register. */
4434
4435 if (x == 1)
4436 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4437 else
4438 {
4439 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4440 exit (1);
4441 }
4442 }
4443
4444 ++longjmps_done;
4445 x = 2;
4446 if (longjmps_done == 1)
4447 longjmp (jbuf, 1);
4448 }
4449
4450 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4451
4452
4453 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4454
4455 /* Abort if anything GCPRO'd doesn't survive the GC. */
4456
4457 static void
4458 check_gcpros ()
4459 {
4460 struct gcpro *p;
4461 int i;
4462
4463 for (p = gcprolist; p; p = p->next)
4464 for (i = 0; i < p->nvars; ++i)
4465 if (!survives_gc_p (p->var[i]))
4466 /* FIXME: It's not necessarily a bug. It might just be that the
4467 GCPRO is unnecessary or should release the object sooner. */
4468 abort ();
4469 }
4470
4471 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4472
4473 static void
4474 dump_zombies ()
4475 {
4476 int i;
4477
4478 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4479 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4480 {
4481 fprintf (stderr, " %d = ", i);
4482 debug_print (zombies[i]);
4483 }
4484 }
4485
4486 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4487
4488
4489 /* Mark live Lisp objects on the C stack.
4490
4491 There are several system-dependent problems to consider when
4492 porting this to new architectures:
4493
4494 Processor Registers
4495
4496 We have to mark Lisp objects in CPU registers that can hold local
4497 variables or are used to pass parameters.
4498
4499 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4500 something that either saves relevant registers on the stack, or
4501 calls mark_maybe_object passing it each register's contents.
4502
4503 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4504 implementation assumes that calling setjmp saves registers we need
4505 to see in a jmp_buf which itself lies on the stack. This doesn't
4506 have to be true! It must be verified for each system, possibly
4507 by taking a look at the source code of setjmp.
4508
4509 Stack Layout
4510
4511 Architectures differ in the way their processor stack is organized.
4512 For example, the stack might look like this
4513
4514 +----------------+
4515 | Lisp_Object | size = 4
4516 +----------------+
4517 | something else | size = 2
4518 +----------------+
4519 | Lisp_Object | size = 4
4520 +----------------+
4521 | ... |
4522
4523 In such a case, not every Lisp_Object will be aligned equally. To
4524 find all Lisp_Object on the stack it won't be sufficient to walk
4525 the stack in steps of 4 bytes. Instead, two passes will be
4526 necessary, one starting at the start of the stack, and a second
4527 pass starting at the start of the stack + 2. Likewise, if the
4528 minimal alignment of Lisp_Objects on the stack is 1, four passes
4529 would be necessary, each one starting with one byte more offset
4530 from the stack start.
4531
4532 The current code assumes by default that Lisp_Objects are aligned
4533 equally on the stack. */
4534
4535 static void
4536 mark_stack ()
4537 {
4538 int i;
4539 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4540 union aligned_jmpbuf {
4541 Lisp_Object o;
4542 jmp_buf j;
4543 } j;
4544 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4545 void *end;
4546
4547 /* This trick flushes the register windows so that all the state of
4548 the process is contained in the stack. */
4549 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4550 needed on ia64 too. See mach_dep.c, where it also says inline
4551 assembler doesn't work with relevant proprietary compilers. */
4552 #ifdef sparc
4553 asm ("ta 3");
4554 #endif
4555
4556 /* Save registers that we need to see on the stack. We need to see
4557 registers used to hold register variables and registers used to
4558 pass parameters. */
4559 #ifdef GC_SAVE_REGISTERS_ON_STACK
4560 GC_SAVE_REGISTERS_ON_STACK (end);
4561 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4562
4563 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4564 setjmp will definitely work, test it
4565 and print a message with the result
4566 of the test. */
4567 if (!setjmp_tested_p)
4568 {
4569 setjmp_tested_p = 1;
4570 test_setjmp ();
4571 }
4572 #endif /* GC_SETJMP_WORKS */
4573
4574 setjmp (j.j);
4575 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4576 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4577
4578 /* This assumes that the stack is a contiguous region in memory. If
4579 that's not the case, something has to be done here to iterate
4580 over the stack segments. */
4581 #ifndef GC_LISP_OBJECT_ALIGNMENT
4582 #ifdef __GNUC__
4583 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4584 #else
4585 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4586 #endif
4587 #endif
4588 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4589 mark_memory (stack_base, end, i);
4590 /* Allow for marking a secondary stack, like the register stack on the
4591 ia64. */
4592 #ifdef GC_MARK_SECONDARY_STACK
4593 GC_MARK_SECONDARY_STACK ();
4594 #endif
4595
4596 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4597 check_gcpros ();
4598 #endif
4599 }
4600
4601 #endif /* GC_MARK_STACK != 0 */
4602
4603
4604 /* Determine whether it is safe to access memory at address P. */
4605 int
4606 valid_pointer_p (p)
4607 void *p;
4608 {
4609 #ifdef WINDOWSNT
4610 return w32_valid_pointer_p (p, 16);
4611 #else
4612 int fd;
4613
4614 /* Obviously, we cannot just access it (we would SEGV trying), so we
4615 trick the o/s to tell us whether p is a valid pointer.
4616 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4617 not validate p in that case. */
4618
4619 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4620 {
4621 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4622 emacs_close (fd);
4623 unlink ("__Valid__Lisp__Object__");
4624 return valid;
4625 }
4626
4627 return -1;
4628 #endif
4629 }
4630
4631 /* Return 1 if OBJ is a valid lisp object.
4632 Return 0 if OBJ is NOT a valid lisp object.
4633 Return -1 if we cannot validate OBJ.
4634 This function can be quite slow,
4635 so it should only be used in code for manual debugging. */
4636
4637 int
4638 valid_lisp_object_p (obj)
4639 Lisp_Object obj;
4640 {
4641 void *p;
4642 #if GC_MARK_STACK
4643 struct mem_node *m;
4644 #endif
4645
4646 if (INTEGERP (obj))
4647 return 1;
4648
4649 p = (void *) XPNTR (obj);
4650 if (PURE_POINTER_P (p))
4651 return 1;
4652
4653 #if !GC_MARK_STACK
4654 return valid_pointer_p (p);
4655 #else
4656
4657 m = mem_find (p);
4658
4659 if (m == MEM_NIL)
4660 {
4661 int valid = valid_pointer_p (p);
4662 if (valid <= 0)
4663 return valid;
4664
4665 if (SUBRP (obj))
4666 return 1;
4667
4668 return 0;
4669 }
4670
4671 switch (m->type)
4672 {
4673 case MEM_TYPE_NON_LISP:
4674 return 0;
4675
4676 case MEM_TYPE_BUFFER:
4677 return live_buffer_p (m, p);
4678
4679 case MEM_TYPE_CONS:
4680 return live_cons_p (m, p);
4681
4682 case MEM_TYPE_STRING:
4683 return live_string_p (m, p);
4684
4685 case MEM_TYPE_MISC:
4686 return live_misc_p (m, p);
4687
4688 case MEM_TYPE_SYMBOL:
4689 return live_symbol_p (m, p);
4690
4691 case MEM_TYPE_FLOAT:
4692 return live_float_p (m, p);
4693
4694 case MEM_TYPE_VECTORLIKE:
4695 return live_vector_p (m, p);
4696
4697 default:
4698 break;
4699 }
4700
4701 return 0;
4702 #endif
4703 }
4704
4705
4706
4707 \f
4708 /***********************************************************************
4709 Pure Storage Management
4710 ***********************************************************************/
4711
4712 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4713 pointer to it. TYPE is the Lisp type for which the memory is
4714 allocated. TYPE < 0 means it's not used for a Lisp object. */
4715
4716 static POINTER_TYPE *
4717 pure_alloc (size, type)
4718 size_t size;
4719 int type;
4720 {
4721 POINTER_TYPE *result;
4722 #ifdef USE_LSB_TAG
4723 size_t alignment = (1 << GCTYPEBITS);
4724 #else
4725 size_t alignment = sizeof (EMACS_INT);
4726
4727 /* Give Lisp_Floats an extra alignment. */
4728 if (type == Lisp_Float)
4729 {
4730 #if defined __GNUC__ && __GNUC__ >= 2
4731 alignment = __alignof (struct Lisp_Float);
4732 #else
4733 alignment = sizeof (struct Lisp_Float);
4734 #endif
4735 }
4736 #endif
4737
4738 again:
4739 if (type >= 0)
4740 {
4741 /* Allocate space for a Lisp object from the beginning of the free
4742 space with taking account of alignment. */
4743 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4744 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4745 }
4746 else
4747 {
4748 /* Allocate space for a non-Lisp object from the end of the free
4749 space. */
4750 pure_bytes_used_non_lisp += size;
4751 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4752 }
4753 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4754
4755 if (pure_bytes_used <= pure_size)
4756 return result;
4757
4758 /* Don't allocate a large amount here,
4759 because it might get mmap'd and then its address
4760 might not be usable. */
4761 purebeg = (char *) xmalloc (10000);
4762 pure_size = 10000;
4763 pure_bytes_used_before_overflow += pure_bytes_used - size;
4764 pure_bytes_used = 0;
4765 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4766 goto again;
4767 }
4768
4769
4770 /* Print a warning if PURESIZE is too small. */
4771
4772 void
4773 check_pure_size ()
4774 {
4775 if (pure_bytes_used_before_overflow)
4776 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4777 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4778 }
4779
4780
4781 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4782 the non-Lisp data pool of the pure storage, and return its start
4783 address. Return NULL if not found. */
4784
4785 static char *
4786 find_string_data_in_pure (data, nbytes)
4787 char *data;
4788 int nbytes;
4789 {
4790 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4791 unsigned char *p;
4792 char *non_lisp_beg;
4793
4794 if (pure_bytes_used_non_lisp < nbytes + 1)
4795 return NULL;
4796
4797 /* Set up the Boyer-Moore table. */
4798 skip = nbytes + 1;
4799 for (i = 0; i < 256; i++)
4800 bm_skip[i] = skip;
4801
4802 p = (unsigned char *) data;
4803 while (--skip > 0)
4804 bm_skip[*p++] = skip;
4805
4806 last_char_skip = bm_skip['\0'];
4807
4808 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4809 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4810
4811 /* See the comments in the function `boyer_moore' (search.c) for the
4812 use of `infinity'. */
4813 infinity = pure_bytes_used_non_lisp + 1;
4814 bm_skip['\0'] = infinity;
4815
4816 p = (unsigned char *) non_lisp_beg + nbytes;
4817 start = 0;
4818 do
4819 {
4820 /* Check the last character (== '\0'). */
4821 do
4822 {
4823 start += bm_skip[*(p + start)];
4824 }
4825 while (start <= start_max);
4826
4827 if (start < infinity)
4828 /* Couldn't find the last character. */
4829 return NULL;
4830
4831 /* No less than `infinity' means we could find the last
4832 character at `p[start - infinity]'. */
4833 start -= infinity;
4834
4835 /* Check the remaining characters. */
4836 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4837 /* Found. */
4838 return non_lisp_beg + start;
4839
4840 start += last_char_skip;
4841 }
4842 while (start <= start_max);
4843
4844 return NULL;
4845 }
4846
4847
4848 /* Return a string allocated in pure space. DATA is a buffer holding
4849 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4850 non-zero means make the result string multibyte.
4851
4852 Must get an error if pure storage is full, since if it cannot hold
4853 a large string it may be able to hold conses that point to that
4854 string; then the string is not protected from gc. */
4855
4856 Lisp_Object
4857 make_pure_string (data, nchars, nbytes, multibyte)
4858 char *data;
4859 int nchars, nbytes;
4860 int multibyte;
4861 {
4862 Lisp_Object string;
4863 struct Lisp_String *s;
4864
4865 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4866 s->data = find_string_data_in_pure (data, nbytes);
4867 if (s->data == NULL)
4868 {
4869 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4870 bcopy (data, s->data, nbytes);
4871 s->data[nbytes] = '\0';
4872 }
4873 s->size = nchars;
4874 s->size_byte = multibyte ? nbytes : -1;
4875 s->intervals = NULL_INTERVAL;
4876 XSETSTRING (string, s);
4877 return string;
4878 }
4879
4880
4881 /* Return a cons allocated from pure space. Give it pure copies
4882 of CAR as car and CDR as cdr. */
4883
4884 Lisp_Object
4885 pure_cons (car, cdr)
4886 Lisp_Object car, cdr;
4887 {
4888 register Lisp_Object new;
4889 struct Lisp_Cons *p;
4890
4891 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4892 XSETCONS (new, p);
4893 XSETCAR (new, Fpurecopy (car));
4894 XSETCDR (new, Fpurecopy (cdr));
4895 return new;
4896 }
4897
4898
4899 /* Value is a float object with value NUM allocated from pure space. */
4900
4901 Lisp_Object
4902 make_pure_float (num)
4903 double num;
4904 {
4905 register Lisp_Object new;
4906 struct Lisp_Float *p;
4907
4908 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4909 XSETFLOAT (new, p);
4910 XFLOAT_DATA (new) = num;
4911 return new;
4912 }
4913
4914
4915 /* Return a vector with room for LEN Lisp_Objects allocated from
4916 pure space. */
4917
4918 Lisp_Object
4919 make_pure_vector (len)
4920 EMACS_INT len;
4921 {
4922 Lisp_Object new;
4923 struct Lisp_Vector *p;
4924 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4925
4926 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4927 XSETVECTOR (new, p);
4928 XVECTOR (new)->size = len;
4929 return new;
4930 }
4931
4932
4933 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4934 doc: /* Make a copy of object OBJ in pure storage.
4935 Recursively copies contents of vectors and cons cells.
4936 Does not copy symbols. Copies strings without text properties. */)
4937 (obj)
4938 register Lisp_Object obj;
4939 {
4940 if (NILP (Vpurify_flag))
4941 return obj;
4942
4943 if (PURE_POINTER_P (XPNTR (obj)))
4944 return obj;
4945
4946 if (CONSP (obj))
4947 return pure_cons (XCAR (obj), XCDR (obj));
4948 else if (FLOATP (obj))
4949 return make_pure_float (XFLOAT_DATA (obj));
4950 else if (STRINGP (obj))
4951 return make_pure_string (SDATA (obj), SCHARS (obj),
4952 SBYTES (obj),
4953 STRING_MULTIBYTE (obj));
4954 else if (COMPILEDP (obj) || VECTORP (obj))
4955 {
4956 register struct Lisp_Vector *vec;
4957 register int i;
4958 EMACS_INT size;
4959
4960 size = XVECTOR (obj)->size;
4961 if (size & PSEUDOVECTOR_FLAG)
4962 size &= PSEUDOVECTOR_SIZE_MASK;
4963 vec = XVECTOR (make_pure_vector (size));
4964 for (i = 0; i < size; i++)
4965 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4966 if (COMPILEDP (obj))
4967 XSETCOMPILED (obj, vec);
4968 else
4969 XSETVECTOR (obj, vec);
4970 return obj;
4971 }
4972 else if (MARKERP (obj))
4973 error ("Attempt to copy a marker to pure storage");
4974
4975 return obj;
4976 }
4977
4978
4979 \f
4980 /***********************************************************************
4981 Protection from GC
4982 ***********************************************************************/
4983
4984 /* Put an entry in staticvec, pointing at the variable with address
4985 VARADDRESS. */
4986
4987 void
4988 staticpro (varaddress)
4989 Lisp_Object *varaddress;
4990 {
4991 staticvec[staticidx++] = varaddress;
4992 if (staticidx >= NSTATICS)
4993 abort ();
4994 }
4995
4996 struct catchtag
4997 {
4998 Lisp_Object tag;
4999 Lisp_Object val;
5000 struct catchtag *next;
5001 };
5002
5003 \f
5004 /***********************************************************************
5005 Protection from GC
5006 ***********************************************************************/
5007
5008 /* Temporarily prevent garbage collection. */
5009
5010 int
5011 inhibit_garbage_collection ()
5012 {
5013 int count = SPECPDL_INDEX ();
5014 int nbits = min (VALBITS, BITS_PER_INT);
5015
5016 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5017 return count;
5018 }
5019
5020
5021 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5022 doc: /* Reclaim storage for Lisp objects no longer needed.
5023 Garbage collection happens automatically if you cons more than
5024 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5025 `garbage-collect' normally returns a list with info on amount of space in use:
5026 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5027 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5028 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5029 (USED-STRINGS . FREE-STRINGS))
5030 However, if there was overflow in pure space, `garbage-collect'
5031 returns nil, because real GC can't be done. */)
5032 ()
5033 {
5034 register struct specbinding *bind;
5035 struct catchtag *catch;
5036 struct handler *handler;
5037 char stack_top_variable;
5038 register int i;
5039 int message_p;
5040 Lisp_Object total[8];
5041 int count = SPECPDL_INDEX ();
5042 EMACS_TIME t1, t2, t3;
5043
5044 if (abort_on_gc)
5045 abort ();
5046
5047 /* Can't GC if pure storage overflowed because we can't determine
5048 if something is a pure object or not. */
5049 if (pure_bytes_used_before_overflow)
5050 return Qnil;
5051
5052 CHECK_CONS_LIST ();
5053
5054 /* Don't keep undo information around forever.
5055 Do this early on, so it is no problem if the user quits. */
5056 {
5057 register struct buffer *nextb = all_buffers;
5058
5059 while (nextb)
5060 {
5061 /* If a buffer's undo list is Qt, that means that undo is
5062 turned off in that buffer. Calling truncate_undo_list on
5063 Qt tends to return NULL, which effectively turns undo back on.
5064 So don't call truncate_undo_list if undo_list is Qt. */
5065 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5066 truncate_undo_list (nextb);
5067
5068 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5069 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5070 {
5071 /* If a buffer's gap size is more than 10% of the buffer
5072 size, or larger than 2000 bytes, then shrink it
5073 accordingly. Keep a minimum size of 20 bytes. */
5074 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5075
5076 if (nextb->text->gap_size > size)
5077 {
5078 struct buffer *save_current = current_buffer;
5079 current_buffer = nextb;
5080 make_gap (-(nextb->text->gap_size - size));
5081 current_buffer = save_current;
5082 }
5083 }
5084
5085 nextb = nextb->next;
5086 }
5087 }
5088
5089 EMACS_GET_TIME (t1);
5090
5091 /* In case user calls debug_print during GC,
5092 don't let that cause a recursive GC. */
5093 consing_since_gc = 0;
5094
5095 /* Save what's currently displayed in the echo area. */
5096 message_p = push_message ();
5097 record_unwind_protect (pop_message_unwind, Qnil);
5098
5099 /* Save a copy of the contents of the stack, for debugging. */
5100 #if MAX_SAVE_STACK > 0
5101 if (NILP (Vpurify_flag))
5102 {
5103 i = &stack_top_variable - stack_bottom;
5104 if (i < 0) i = -i;
5105 if (i < MAX_SAVE_STACK)
5106 {
5107 if (stack_copy == 0)
5108 stack_copy = (char *) xmalloc (stack_copy_size = i);
5109 else if (stack_copy_size < i)
5110 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5111 if (stack_copy)
5112 {
5113 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5114 bcopy (stack_bottom, stack_copy, i);
5115 else
5116 bcopy (&stack_top_variable, stack_copy, i);
5117 }
5118 }
5119 }
5120 #endif /* MAX_SAVE_STACK > 0 */
5121
5122 if (garbage_collection_messages)
5123 message1_nolog ("Garbage collecting...");
5124
5125 BLOCK_INPUT;
5126
5127 shrink_regexp_cache ();
5128
5129 gc_in_progress = 1;
5130
5131 /* clear_marks (); */
5132
5133 /* Mark all the special slots that serve as the roots of accessibility. */
5134
5135 for (i = 0; i < staticidx; i++)
5136 mark_object (*staticvec[i]);
5137
5138 for (bind = specpdl; bind != specpdl_ptr; bind++)
5139 {
5140 mark_object (bind->symbol);
5141 mark_object (bind->old_value);
5142 }
5143 mark_terminals ();
5144 mark_kboards ();
5145 mark_ttys ();
5146
5147 #ifdef USE_GTK
5148 {
5149 extern void xg_mark_data ();
5150 xg_mark_data ();
5151 }
5152 #endif
5153
5154 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5155 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5156 mark_stack ();
5157 #else
5158 {
5159 register struct gcpro *tail;
5160 for (tail = gcprolist; tail; tail = tail->next)
5161 for (i = 0; i < tail->nvars; i++)
5162 mark_object (tail->var[i]);
5163 }
5164 #endif
5165
5166 mark_byte_stack ();
5167 for (catch = catchlist; catch; catch = catch->next)
5168 {
5169 mark_object (catch->tag);
5170 mark_object (catch->val);
5171 }
5172 for (handler = handlerlist; handler; handler = handler->next)
5173 {
5174 mark_object (handler->handler);
5175 mark_object (handler->var);
5176 }
5177 mark_backtrace ();
5178
5179 #ifdef HAVE_WINDOW_SYSTEM
5180 mark_fringe_data ();
5181 #endif
5182
5183 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5184 mark_stack ();
5185 #endif
5186
5187 /* Everything is now marked, except for the things that require special
5188 finalization, i.e. the undo_list.
5189 Look thru every buffer's undo list
5190 for elements that update markers that were not marked,
5191 and delete them. */
5192 {
5193 register struct buffer *nextb = all_buffers;
5194
5195 while (nextb)
5196 {
5197 /* If a buffer's undo list is Qt, that means that undo is
5198 turned off in that buffer. Calling truncate_undo_list on
5199 Qt tends to return NULL, which effectively turns undo back on.
5200 So don't call truncate_undo_list if undo_list is Qt. */
5201 if (! EQ (nextb->undo_list, Qt))
5202 {
5203 Lisp_Object tail, prev;
5204 tail = nextb->undo_list;
5205 prev = Qnil;
5206 while (CONSP (tail))
5207 {
5208 if (GC_CONSP (XCAR (tail))
5209 && GC_MARKERP (XCAR (XCAR (tail)))
5210 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5211 {
5212 if (NILP (prev))
5213 nextb->undo_list = tail = XCDR (tail);
5214 else
5215 {
5216 tail = XCDR (tail);
5217 XSETCDR (prev, tail);
5218 }
5219 }
5220 else
5221 {
5222 prev = tail;
5223 tail = XCDR (tail);
5224 }
5225 }
5226 }
5227 /* Now that we have stripped the elements that need not be in the
5228 undo_list any more, we can finally mark the list. */
5229 mark_object (nextb->undo_list);
5230
5231 nextb = nextb->next;
5232 }
5233 }
5234
5235 gc_sweep ();
5236
5237 /* Clear the mark bits that we set in certain root slots. */
5238
5239 unmark_byte_stack ();
5240 VECTOR_UNMARK (&buffer_defaults);
5241 VECTOR_UNMARK (&buffer_local_symbols);
5242
5243 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5244 dump_zombies ();
5245 #endif
5246
5247 UNBLOCK_INPUT;
5248
5249 CHECK_CONS_LIST ();
5250
5251 /* clear_marks (); */
5252 gc_in_progress = 0;
5253
5254 consing_since_gc = 0;
5255 if (gc_cons_threshold < 10000)
5256 gc_cons_threshold = 10000;
5257
5258 if (FLOATP (Vgc_cons_percentage))
5259 { /* Set gc_cons_combined_threshold. */
5260 EMACS_INT total = 0;
5261
5262 total += total_conses * sizeof (struct Lisp_Cons);
5263 total += total_symbols * sizeof (struct Lisp_Symbol);
5264 total += total_markers * sizeof (union Lisp_Misc);
5265 total += total_string_size;
5266 total += total_vector_size * sizeof (Lisp_Object);
5267 total += total_floats * sizeof (struct Lisp_Float);
5268 total += total_intervals * sizeof (struct interval);
5269 total += total_strings * sizeof (struct Lisp_String);
5270
5271 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5272 }
5273 else
5274 gc_relative_threshold = 0;
5275
5276 if (garbage_collection_messages)
5277 {
5278 if (message_p || minibuf_level > 0)
5279 restore_message ();
5280 else
5281 message1_nolog ("Garbage collecting...done");
5282 }
5283
5284 unbind_to (count, Qnil);
5285
5286 total[0] = Fcons (make_number (total_conses),
5287 make_number (total_free_conses));
5288 total[1] = Fcons (make_number (total_symbols),
5289 make_number (total_free_symbols));
5290 total[2] = Fcons (make_number (total_markers),
5291 make_number (total_free_markers));
5292 total[3] = make_number (total_string_size);
5293 total[4] = make_number (total_vector_size);
5294 total[5] = Fcons (make_number (total_floats),
5295 make_number (total_free_floats));
5296 total[6] = Fcons (make_number (total_intervals),
5297 make_number (total_free_intervals));
5298 total[7] = Fcons (make_number (total_strings),
5299 make_number (total_free_strings));
5300
5301 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5302 {
5303 /* Compute average percentage of zombies. */
5304 double nlive = 0;
5305
5306 for (i = 0; i < 7; ++i)
5307 if (CONSP (total[i]))
5308 nlive += XFASTINT (XCAR (total[i]));
5309
5310 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5311 max_live = max (nlive, max_live);
5312 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5313 max_zombies = max (nzombies, max_zombies);
5314 ++ngcs;
5315 }
5316 #endif
5317
5318 if (!NILP (Vpost_gc_hook))
5319 {
5320 int count = inhibit_garbage_collection ();
5321 safe_run_hooks (Qpost_gc_hook);
5322 unbind_to (count, Qnil);
5323 }
5324
5325 /* Accumulate statistics. */
5326 EMACS_GET_TIME (t2);
5327 EMACS_SUB_TIME (t3, t2, t1);
5328 if (FLOATP (Vgc_elapsed))
5329 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5330 EMACS_SECS (t3) +
5331 EMACS_USECS (t3) * 1.0e-6);
5332 gcs_done++;
5333
5334 return Flist (sizeof total / sizeof *total, total);
5335 }
5336
5337
5338 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5339 only interesting objects referenced from glyphs are strings. */
5340
5341 static void
5342 mark_glyph_matrix (matrix)
5343 struct glyph_matrix *matrix;
5344 {
5345 struct glyph_row *row = matrix->rows;
5346 struct glyph_row *end = row + matrix->nrows;
5347
5348 for (; row < end; ++row)
5349 if (row->enabled_p)
5350 {
5351 int area;
5352 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5353 {
5354 struct glyph *glyph = row->glyphs[area];
5355 struct glyph *end_glyph = glyph + row->used[area];
5356
5357 for (; glyph < end_glyph; ++glyph)
5358 if (GC_STRINGP (glyph->object)
5359 && !STRING_MARKED_P (XSTRING (glyph->object)))
5360 mark_object (glyph->object);
5361 }
5362 }
5363 }
5364
5365
5366 /* Mark Lisp faces in the face cache C. */
5367
5368 static void
5369 mark_face_cache (c)
5370 struct face_cache *c;
5371 {
5372 if (c)
5373 {
5374 int i, j;
5375 for (i = 0; i < c->used; ++i)
5376 {
5377 struct face *face = FACE_FROM_ID (c->f, i);
5378
5379 if (face)
5380 {
5381 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5382 mark_object (face->lface[j]);
5383 }
5384 }
5385 }
5386 }
5387
5388
5389 #ifdef HAVE_WINDOW_SYSTEM
5390
5391 /* Mark Lisp objects in image IMG. */
5392
5393 static void
5394 mark_image (img)
5395 struct image *img;
5396 {
5397 mark_object (img->spec);
5398
5399 if (!NILP (img->data.lisp_val))
5400 mark_object (img->data.lisp_val);
5401 }
5402
5403
5404 /* Mark Lisp objects in image cache of frame F. It's done this way so
5405 that we don't have to include xterm.h here. */
5406
5407 static void
5408 mark_image_cache (f)
5409 struct frame *f;
5410 {
5411 forall_images_in_image_cache (f, mark_image);
5412 }
5413
5414 #endif /* HAVE_X_WINDOWS */
5415
5416
5417 \f
5418 /* Mark reference to a Lisp_Object.
5419 If the object referred to has not been seen yet, recursively mark
5420 all the references contained in it. */
5421
5422 #define LAST_MARKED_SIZE 500
5423 Lisp_Object last_marked[LAST_MARKED_SIZE];
5424 int last_marked_index;
5425
5426 /* For debugging--call abort when we cdr down this many
5427 links of a list, in mark_object. In debugging,
5428 the call to abort will hit a breakpoint.
5429 Normally this is zero and the check never goes off. */
5430 int mark_object_loop_halt;
5431
5432 /* Return non-zero if the object was not yet marked. */
5433 static int
5434 mark_vectorlike (ptr)
5435 struct Lisp_Vector *ptr;
5436 {
5437 register EMACS_INT size = ptr->size;
5438 register int i;
5439
5440 if (VECTOR_MARKED_P (ptr))
5441 return 0; /* Already marked */
5442 VECTOR_MARK (ptr); /* Else mark it */
5443 if (size & PSEUDOVECTOR_FLAG)
5444 size &= PSEUDOVECTOR_SIZE_MASK;
5445
5446 /* Note that this size is not the memory-footprint size, but only
5447 the number of Lisp_Object fields that we should trace.
5448 The distinction is used e.g. by Lisp_Process which places extra
5449 non-Lisp_Object fields at the end of the structure. */
5450 for (i = 0; i < size; i++) /* and then mark its elements */
5451 mark_object (ptr->contents[i]);
5452 return 1;
5453 }
5454
5455 void
5456 mark_object (arg)
5457 Lisp_Object arg;
5458 {
5459 register Lisp_Object obj = arg;
5460 #ifdef GC_CHECK_MARKED_OBJECTS
5461 void *po;
5462 struct mem_node *m;
5463 #endif
5464 int cdr_count = 0;
5465
5466 loop:
5467
5468 if (PURE_POINTER_P (XPNTR (obj)))
5469 return;
5470
5471 last_marked[last_marked_index++] = obj;
5472 if (last_marked_index == LAST_MARKED_SIZE)
5473 last_marked_index = 0;
5474
5475 /* Perform some sanity checks on the objects marked here. Abort if
5476 we encounter an object we know is bogus. This increases GC time
5477 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5478 #ifdef GC_CHECK_MARKED_OBJECTS
5479
5480 po = (void *) XPNTR (obj);
5481
5482 /* Check that the object pointed to by PO is known to be a Lisp
5483 structure allocated from the heap. */
5484 #define CHECK_ALLOCATED() \
5485 do { \
5486 m = mem_find (po); \
5487 if (m == MEM_NIL) \
5488 abort (); \
5489 } while (0)
5490
5491 /* Check that the object pointed to by PO is live, using predicate
5492 function LIVEP. */
5493 #define CHECK_LIVE(LIVEP) \
5494 do { \
5495 if (!LIVEP (m, po)) \
5496 abort (); \
5497 } while (0)
5498
5499 /* Check both of the above conditions. */
5500 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5501 do { \
5502 CHECK_ALLOCATED (); \
5503 CHECK_LIVE (LIVEP); \
5504 } while (0) \
5505
5506 #else /* not GC_CHECK_MARKED_OBJECTS */
5507
5508 #define CHECK_ALLOCATED() (void) 0
5509 #define CHECK_LIVE(LIVEP) (void) 0
5510 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5511
5512 #endif /* not GC_CHECK_MARKED_OBJECTS */
5513
5514 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5515 {
5516 case Lisp_String:
5517 {
5518 register struct Lisp_String *ptr = XSTRING (obj);
5519 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5520 MARK_INTERVAL_TREE (ptr->intervals);
5521 MARK_STRING (ptr);
5522 #ifdef GC_CHECK_STRING_BYTES
5523 /* Check that the string size recorded in the string is the
5524 same as the one recorded in the sdata structure. */
5525 CHECK_STRING_BYTES (ptr);
5526 #endif /* GC_CHECK_STRING_BYTES */
5527 }
5528 break;
5529
5530 case Lisp_Vectorlike:
5531 #ifdef GC_CHECK_MARKED_OBJECTS
5532 m = mem_find (po);
5533 if (m == MEM_NIL && !GC_SUBRP (obj)
5534 && po != &buffer_defaults
5535 && po != &buffer_local_symbols)
5536 abort ();
5537 #endif /* GC_CHECK_MARKED_OBJECTS */
5538
5539 if (GC_BUFFERP (obj))
5540 {
5541 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5542 {
5543 #ifdef GC_CHECK_MARKED_OBJECTS
5544 if (po != &buffer_defaults && po != &buffer_local_symbols)
5545 {
5546 struct buffer *b;
5547 for (b = all_buffers; b && b != po; b = b->next)
5548 ;
5549 if (b == NULL)
5550 abort ();
5551 }
5552 #endif /* GC_CHECK_MARKED_OBJECTS */
5553 mark_buffer (obj);
5554 }
5555 }
5556 else if (GC_SUBRP (obj))
5557 break;
5558 else if (GC_COMPILEDP (obj))
5559 /* We could treat this just like a vector, but it is better to
5560 save the COMPILED_CONSTANTS element for last and avoid
5561 recursion there. */
5562 {
5563 register struct Lisp_Vector *ptr = XVECTOR (obj);
5564 register EMACS_INT size = ptr->size;
5565 register int i;
5566
5567 if (VECTOR_MARKED_P (ptr))
5568 break; /* Already marked */
5569
5570 CHECK_LIVE (live_vector_p);
5571 VECTOR_MARK (ptr); /* Else mark it */
5572 size &= PSEUDOVECTOR_SIZE_MASK;
5573 for (i = 0; i < size; i++) /* and then mark its elements */
5574 {
5575 if (i != COMPILED_CONSTANTS)
5576 mark_object (ptr->contents[i]);
5577 }
5578 obj = ptr->contents[COMPILED_CONSTANTS];
5579 goto loop;
5580 }
5581 else if (GC_FRAMEP (obj))
5582 {
5583 register struct frame *ptr = XFRAME (obj);
5584 if (mark_vectorlike (XVECTOR (obj)))
5585 {
5586 mark_face_cache (ptr->face_cache);
5587 #ifdef HAVE_WINDOW_SYSTEM
5588 mark_image_cache (ptr);
5589 #endif /* HAVE_WINDOW_SYSTEM */
5590 }
5591 }
5592 else if (GC_WINDOWP (obj))
5593 {
5594 register struct Lisp_Vector *ptr = XVECTOR (obj);
5595 struct window *w = XWINDOW (obj);
5596 if (mark_vectorlike (ptr))
5597 {
5598 /* Mark glyphs for leaf windows. Marking window matrices is
5599 sufficient because frame matrices use the same glyph
5600 memory. */
5601 if (NILP (w->hchild)
5602 && NILP (w->vchild)
5603 && w->current_matrix)
5604 {
5605 mark_glyph_matrix (w->current_matrix);
5606 mark_glyph_matrix (w->desired_matrix);
5607 }
5608 }
5609 }
5610 else if (GC_HASH_TABLE_P (obj))
5611 {
5612 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5613 if (mark_vectorlike ((struct Lisp_Vector *)h))
5614 { /* If hash table is not weak, mark all keys and values.
5615 For weak tables, mark only the vector. */
5616 if (GC_NILP (h->weak))
5617 mark_object (h->key_and_value);
5618 else
5619 VECTOR_MARK (XVECTOR (h->key_and_value));
5620 }
5621 }
5622 else
5623 mark_vectorlike (XVECTOR (obj));
5624 break;
5625
5626 case Lisp_Symbol:
5627 {
5628 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5629 struct Lisp_Symbol *ptrx;
5630
5631 if (ptr->gcmarkbit) break;
5632 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5633 ptr->gcmarkbit = 1;
5634 mark_object (ptr->value);
5635 mark_object (ptr->function);
5636 mark_object (ptr->plist);
5637
5638 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5639 MARK_STRING (XSTRING (ptr->xname));
5640 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5641
5642 /* Note that we do not mark the obarray of the symbol.
5643 It is safe not to do so because nothing accesses that
5644 slot except to check whether it is nil. */
5645 ptr = ptr->next;
5646 if (ptr)
5647 {
5648 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5649 XSETSYMBOL (obj, ptrx);
5650 goto loop;
5651 }
5652 }
5653 break;
5654
5655 case Lisp_Misc:
5656 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5657 if (XMARKER (obj)->gcmarkbit)
5658 break;
5659 XMARKER (obj)->gcmarkbit = 1;
5660
5661 switch (XMISCTYPE (obj))
5662 {
5663 case Lisp_Misc_Buffer_Local_Value:
5664 case Lisp_Misc_Some_Buffer_Local_Value:
5665 {
5666 register struct Lisp_Buffer_Local_Value *ptr
5667 = XBUFFER_LOCAL_VALUE (obj);
5668 /* If the cdr is nil, avoid recursion for the car. */
5669 if (EQ (ptr->cdr, Qnil))
5670 {
5671 obj = ptr->realvalue;
5672 goto loop;
5673 }
5674 mark_object (ptr->realvalue);
5675 mark_object (ptr->buffer);
5676 mark_object (ptr->frame);
5677 obj = ptr->cdr;
5678 goto loop;
5679 }
5680
5681 case Lisp_Misc_Marker:
5682 /* DO NOT mark thru the marker's chain.
5683 The buffer's markers chain does not preserve markers from gc;
5684 instead, markers are removed from the chain when freed by gc. */
5685 break;
5686
5687 case Lisp_Misc_Intfwd:
5688 case Lisp_Misc_Boolfwd:
5689 case Lisp_Misc_Objfwd:
5690 case Lisp_Misc_Buffer_Objfwd:
5691 case Lisp_Misc_Kboard_Objfwd:
5692 /* Don't bother with Lisp_Buffer_Objfwd,
5693 since all markable slots in current buffer marked anyway. */
5694 /* Don't need to do Lisp_Objfwd, since the places they point
5695 are protected with staticpro. */
5696 break;
5697
5698 case Lisp_Misc_Save_Value:
5699 #if GC_MARK_STACK
5700 {
5701 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5702 /* If DOGC is set, POINTER is the address of a memory
5703 area containing INTEGER potential Lisp_Objects. */
5704 if (ptr->dogc)
5705 {
5706 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5707 int nelt;
5708 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5709 mark_maybe_object (*p);
5710 }
5711 }
5712 #endif
5713 break;
5714
5715 case Lisp_Misc_Overlay:
5716 {
5717 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5718 mark_object (ptr->start);
5719 mark_object (ptr->end);
5720 mark_object (ptr->plist);
5721 if (ptr->next)
5722 {
5723 XSETMISC (obj, ptr->next);
5724 goto loop;
5725 }
5726 }
5727 break;
5728
5729 default:
5730 abort ();
5731 }
5732 break;
5733
5734 case Lisp_Cons:
5735 {
5736 register struct Lisp_Cons *ptr = XCONS (obj);
5737 if (CONS_MARKED_P (ptr)) break;
5738 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5739 CONS_MARK (ptr);
5740 /* If the cdr is nil, avoid recursion for the car. */
5741 if (EQ (ptr->u.cdr, Qnil))
5742 {
5743 obj = ptr->car;
5744 cdr_count = 0;
5745 goto loop;
5746 }
5747 mark_object (ptr->car);
5748 obj = ptr->u.cdr;
5749 cdr_count++;
5750 if (cdr_count == mark_object_loop_halt)
5751 abort ();
5752 goto loop;
5753 }
5754
5755 case Lisp_Float:
5756 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5757 FLOAT_MARK (XFLOAT (obj));
5758 break;
5759
5760 case Lisp_Int:
5761 break;
5762
5763 default:
5764 abort ();
5765 }
5766
5767 #undef CHECK_LIVE
5768 #undef CHECK_ALLOCATED
5769 #undef CHECK_ALLOCATED_AND_LIVE
5770 }
5771
5772 /* Mark the pointers in a buffer structure. */
5773
5774 static void
5775 mark_buffer (buf)
5776 Lisp_Object buf;
5777 {
5778 register struct buffer *buffer = XBUFFER (buf);
5779 register Lisp_Object *ptr, tmp;
5780 Lisp_Object base_buffer;
5781
5782 VECTOR_MARK (buffer);
5783
5784 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5785
5786 /* For now, we just don't mark the undo_list. It's done later in
5787 a special way just before the sweep phase, and after stripping
5788 some of its elements that are not needed any more. */
5789
5790 if (buffer->overlays_before)
5791 {
5792 XSETMISC (tmp, buffer->overlays_before);
5793 mark_object (tmp);
5794 }
5795 if (buffer->overlays_after)
5796 {
5797 XSETMISC (tmp, buffer->overlays_after);
5798 mark_object (tmp);
5799 }
5800
5801 for (ptr = &buffer->name;
5802 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5803 ptr++)
5804 mark_object (*ptr);
5805
5806 /* If this is an indirect buffer, mark its base buffer. */
5807 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5808 {
5809 XSETBUFFER (base_buffer, buffer->base_buffer);
5810 mark_buffer (base_buffer);
5811 }
5812 }
5813
5814 /* Mark the Lisp pointers in the terminal objects.
5815 Called by the Fgarbage_collector. */
5816
5817 static void
5818 mark_terminals (void)
5819 {
5820 struct terminal *t;
5821 for (t = terminal_list; t; t = t->next_terminal)
5822 {
5823 eassert (t->name != NULL);
5824 mark_vectorlike ((struct Lisp_Vector *)tmp);
5825 }
5826 }
5827
5828
5829
5830 /* Value is non-zero if OBJ will survive the current GC because it's
5831 either marked or does not need to be marked to survive. */
5832
5833 int
5834 survives_gc_p (obj)
5835 Lisp_Object obj;
5836 {
5837 int survives_p;
5838
5839 switch (XGCTYPE (obj))
5840 {
5841 case Lisp_Int:
5842 survives_p = 1;
5843 break;
5844
5845 case Lisp_Symbol:
5846 survives_p = XSYMBOL (obj)->gcmarkbit;
5847 break;
5848
5849 case Lisp_Misc:
5850 survives_p = XMARKER (obj)->gcmarkbit;
5851 break;
5852
5853 case Lisp_String:
5854 survives_p = STRING_MARKED_P (XSTRING (obj));
5855 break;
5856
5857 case Lisp_Vectorlike:
5858 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5859 break;
5860
5861 case Lisp_Cons:
5862 survives_p = CONS_MARKED_P (XCONS (obj));
5863 break;
5864
5865 case Lisp_Float:
5866 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5867 break;
5868
5869 default:
5870 abort ();
5871 }
5872
5873 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5874 }
5875
5876
5877 \f
5878 /* Sweep: find all structures not marked, and free them. */
5879
5880 static void
5881 gc_sweep ()
5882 {
5883 /* Remove or mark entries in weak hash tables.
5884 This must be done before any object is unmarked. */
5885 sweep_weak_hash_tables ();
5886
5887 sweep_strings ();
5888 #ifdef GC_CHECK_STRING_BYTES
5889 if (!noninteractive)
5890 check_string_bytes (1);
5891 #endif
5892
5893 /* Put all unmarked conses on free list */
5894 {
5895 register struct cons_block *cblk;
5896 struct cons_block **cprev = &cons_block;
5897 register int lim = cons_block_index;
5898 register int num_free = 0, num_used = 0;
5899
5900 cons_free_list = 0;
5901
5902 for (cblk = cons_block; cblk; cblk = *cprev)
5903 {
5904 register int i = 0;
5905 int this_free = 0;
5906 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5907
5908 /* Scan the mark bits an int at a time. */
5909 for (i = 0; i <= ilim; i++)
5910 {
5911 if (cblk->gcmarkbits[i] == -1)
5912 {
5913 /* Fast path - all cons cells for this int are marked. */
5914 cblk->gcmarkbits[i] = 0;
5915 num_used += BITS_PER_INT;
5916 }
5917 else
5918 {
5919 /* Some cons cells for this int are not marked.
5920 Find which ones, and free them. */
5921 int start, pos, stop;
5922
5923 start = i * BITS_PER_INT;
5924 stop = lim - start;
5925 if (stop > BITS_PER_INT)
5926 stop = BITS_PER_INT;
5927 stop += start;
5928
5929 for (pos = start; pos < stop; pos++)
5930 {
5931 if (!CONS_MARKED_P (&cblk->conses[pos]))
5932 {
5933 this_free++;
5934 cblk->conses[pos].u.chain = cons_free_list;
5935 cons_free_list = &cblk->conses[pos];
5936 #if GC_MARK_STACK
5937 cons_free_list->car = Vdead;
5938 #endif
5939 }
5940 else
5941 {
5942 num_used++;
5943 CONS_UNMARK (&cblk->conses[pos]);
5944 }
5945 }
5946 }
5947 }
5948
5949 lim = CONS_BLOCK_SIZE;
5950 /* If this block contains only free conses and we have already
5951 seen more than two blocks worth of free conses then deallocate
5952 this block. */
5953 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5954 {
5955 *cprev = cblk->next;
5956 /* Unhook from the free list. */
5957 cons_free_list = cblk->conses[0].u.chain;
5958 lisp_align_free (cblk);
5959 n_cons_blocks--;
5960 }
5961 else
5962 {
5963 num_free += this_free;
5964 cprev = &cblk->next;
5965 }
5966 }
5967 total_conses = num_used;
5968 total_free_conses = num_free;
5969 }
5970
5971 /* Put all unmarked floats on free list */
5972 {
5973 register struct float_block *fblk;
5974 struct float_block **fprev = &float_block;
5975 register int lim = float_block_index;
5976 register int num_free = 0, num_used = 0;
5977
5978 float_free_list = 0;
5979
5980 for (fblk = float_block; fblk; fblk = *fprev)
5981 {
5982 register int i;
5983 int this_free = 0;
5984 for (i = 0; i < lim; i++)
5985 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5986 {
5987 this_free++;
5988 fblk->floats[i].u.chain = float_free_list;
5989 float_free_list = &fblk->floats[i];
5990 }
5991 else
5992 {
5993 num_used++;
5994 FLOAT_UNMARK (&fblk->floats[i]);
5995 }
5996 lim = FLOAT_BLOCK_SIZE;
5997 /* If this block contains only free floats and we have already
5998 seen more than two blocks worth of free floats then deallocate
5999 this block. */
6000 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6001 {
6002 *fprev = fblk->next;
6003 /* Unhook from the free list. */
6004 float_free_list = fblk->floats[0].u.chain;
6005 lisp_align_free (fblk);
6006 n_float_blocks--;
6007 }
6008 else
6009 {
6010 num_free += this_free;
6011 fprev = &fblk->next;
6012 }
6013 }
6014 total_floats = num_used;
6015 total_free_floats = num_free;
6016 }
6017
6018 /* Put all unmarked intervals on free list */
6019 {
6020 register struct interval_block *iblk;
6021 struct interval_block **iprev = &interval_block;
6022 register int lim = interval_block_index;
6023 register int num_free = 0, num_used = 0;
6024
6025 interval_free_list = 0;
6026
6027 for (iblk = interval_block; iblk; iblk = *iprev)
6028 {
6029 register int i;
6030 int this_free = 0;
6031
6032 for (i = 0; i < lim; i++)
6033 {
6034 if (!iblk->intervals[i].gcmarkbit)
6035 {
6036 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6037 interval_free_list = &iblk->intervals[i];
6038 this_free++;
6039 }
6040 else
6041 {
6042 num_used++;
6043 iblk->intervals[i].gcmarkbit = 0;
6044 }
6045 }
6046 lim = INTERVAL_BLOCK_SIZE;
6047 /* If this block contains only free intervals and we have already
6048 seen more than two blocks worth of free intervals then
6049 deallocate this block. */
6050 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6051 {
6052 *iprev = iblk->next;
6053 /* Unhook from the free list. */
6054 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6055 lisp_free (iblk);
6056 n_interval_blocks--;
6057 }
6058 else
6059 {
6060 num_free += this_free;
6061 iprev = &iblk->next;
6062 }
6063 }
6064 total_intervals = num_used;
6065 total_free_intervals = num_free;
6066 }
6067
6068 /* Put all unmarked symbols on free list */
6069 {
6070 register struct symbol_block *sblk;
6071 struct symbol_block **sprev = &symbol_block;
6072 register int lim = symbol_block_index;
6073 register int num_free = 0, num_used = 0;
6074
6075 symbol_free_list = NULL;
6076
6077 for (sblk = symbol_block; sblk; sblk = *sprev)
6078 {
6079 int this_free = 0;
6080 struct Lisp_Symbol *sym = sblk->symbols;
6081 struct Lisp_Symbol *end = sym + lim;
6082
6083 for (; sym < end; ++sym)
6084 {
6085 /* Check if the symbol was created during loadup. In such a case
6086 it might be pointed to by pure bytecode which we don't trace,
6087 so we conservatively assume that it is live. */
6088 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6089
6090 if (!sym->gcmarkbit && !pure_p)
6091 {
6092 sym->next = symbol_free_list;
6093 symbol_free_list = sym;
6094 #if GC_MARK_STACK
6095 symbol_free_list->function = Vdead;
6096 #endif
6097 ++this_free;
6098 }
6099 else
6100 {
6101 ++num_used;
6102 if (!pure_p)
6103 UNMARK_STRING (XSTRING (sym->xname));
6104 sym->gcmarkbit = 0;
6105 }
6106 }
6107
6108 lim = SYMBOL_BLOCK_SIZE;
6109 /* If this block contains only free symbols and we have already
6110 seen more than two blocks worth of free symbols then deallocate
6111 this block. */
6112 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6113 {
6114 *sprev = sblk->next;
6115 /* Unhook from the free list. */
6116 symbol_free_list = sblk->symbols[0].next;
6117 lisp_free (sblk);
6118 n_symbol_blocks--;
6119 }
6120 else
6121 {
6122 num_free += this_free;
6123 sprev = &sblk->next;
6124 }
6125 }
6126 total_symbols = num_used;
6127 total_free_symbols = num_free;
6128 }
6129
6130 /* Put all unmarked misc's on free list.
6131 For a marker, first unchain it from the buffer it points into. */
6132 {
6133 register struct marker_block *mblk;
6134 struct marker_block **mprev = &marker_block;
6135 register int lim = marker_block_index;
6136 register int num_free = 0, num_used = 0;
6137
6138 marker_free_list = 0;
6139
6140 for (mblk = marker_block; mblk; mblk = *mprev)
6141 {
6142 register int i;
6143 int this_free = 0;
6144
6145 for (i = 0; i < lim; i++)
6146 {
6147 if (!mblk->markers[i].u_marker.gcmarkbit)
6148 {
6149 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6150 unchain_marker (&mblk->markers[i].u_marker);
6151 /* Set the type of the freed object to Lisp_Misc_Free.
6152 We could leave the type alone, since nobody checks it,
6153 but this might catch bugs faster. */
6154 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6155 mblk->markers[i].u_free.chain = marker_free_list;
6156 marker_free_list = &mblk->markers[i];
6157 this_free++;
6158 }
6159 else
6160 {
6161 num_used++;
6162 mblk->markers[i].u_marker.gcmarkbit = 0;
6163 }
6164 }
6165 lim = MARKER_BLOCK_SIZE;
6166 /* If this block contains only free markers and we have already
6167 seen more than two blocks worth of free markers then deallocate
6168 this block. */
6169 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6170 {
6171 *mprev = mblk->next;
6172 /* Unhook from the free list. */
6173 marker_free_list = mblk->markers[0].u_free.chain;
6174 lisp_free (mblk);
6175 n_marker_blocks--;
6176 }
6177 else
6178 {
6179 num_free += this_free;
6180 mprev = &mblk->next;
6181 }
6182 }
6183
6184 total_markers = num_used;
6185 total_free_markers = num_free;
6186 }
6187
6188 /* Free all unmarked buffers */
6189 {
6190 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6191
6192 while (buffer)
6193 if (!VECTOR_MARKED_P (buffer))
6194 {
6195 if (prev)
6196 prev->next = buffer->next;
6197 else
6198 all_buffers = buffer->next;
6199 next = buffer->next;
6200 lisp_free (buffer);
6201 buffer = next;
6202 }
6203 else
6204 {
6205 VECTOR_UNMARK (buffer);
6206 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6207 prev = buffer, buffer = buffer->next;
6208 }
6209 }
6210
6211 /* Free all unmarked vectors */
6212 {
6213 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6214 total_vector_size = 0;
6215
6216 while (vector)
6217 if (!VECTOR_MARKED_P (vector))
6218 {
6219 if (prev)
6220 prev->next = vector->next;
6221 else
6222 all_vectors = vector->next;
6223 next = vector->next;
6224 lisp_free (vector);
6225 n_vectors--;
6226 vector = next;
6227
6228 }
6229 else
6230 {
6231 VECTOR_UNMARK (vector);
6232 if (vector->size & PSEUDOVECTOR_FLAG)
6233 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6234 else
6235 total_vector_size += vector->size;
6236 prev = vector, vector = vector->next;
6237 }
6238 }
6239
6240 #ifdef GC_CHECK_STRING_BYTES
6241 if (!noninteractive)
6242 check_string_bytes (1);
6243 #endif
6244 }
6245
6246
6247
6248 \f
6249 /* Debugging aids. */
6250
6251 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6252 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6253 This may be helpful in debugging Emacs's memory usage.
6254 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6255 ()
6256 {
6257 Lisp_Object end;
6258
6259 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6260
6261 return end;
6262 }
6263
6264 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6265 doc: /* Return a list of counters that measure how much consing there has been.
6266 Each of these counters increments for a certain kind of object.
6267 The counters wrap around from the largest positive integer to zero.
6268 Garbage collection does not decrease them.
6269 The elements of the value are as follows:
6270 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6271 All are in units of 1 = one object consed
6272 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6273 objects consed.
6274 MISCS include overlays, markers, and some internal types.
6275 Frames, windows, buffers, and subprocesses count as vectors
6276 (but the contents of a buffer's text do not count here). */)
6277 ()
6278 {
6279 Lisp_Object consed[8];
6280
6281 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6282 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6283 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6284 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6285 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6286 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6287 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6288 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6289
6290 return Flist (8, consed);
6291 }
6292
6293 int suppress_checking;
6294 void
6295 die (msg, file, line)
6296 const char *msg;
6297 const char *file;
6298 int line;
6299 {
6300 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6301 file, line, msg);
6302 abort ();
6303 }
6304 \f
6305 /* Initialization */
6306
6307 void
6308 init_alloc_once ()
6309 {
6310 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6311 purebeg = PUREBEG;
6312 pure_size = PURESIZE;
6313 pure_bytes_used = 0;
6314 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6315 pure_bytes_used_before_overflow = 0;
6316
6317 /* Initialize the list of free aligned blocks. */
6318 free_ablock = NULL;
6319
6320 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6321 mem_init ();
6322 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6323 #endif
6324
6325 all_vectors = 0;
6326 ignore_warnings = 1;
6327 #ifdef DOUG_LEA_MALLOC
6328 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6329 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6330 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6331 #endif
6332 init_strings ();
6333 init_cons ();
6334 init_symbol ();
6335 init_marker ();
6336 init_float ();
6337 init_intervals ();
6338
6339 #ifdef REL_ALLOC
6340 malloc_hysteresis = 32;
6341 #else
6342 malloc_hysteresis = 0;
6343 #endif
6344
6345 refill_memory_reserve ();
6346
6347 ignore_warnings = 0;
6348 gcprolist = 0;
6349 byte_stack_list = 0;
6350 staticidx = 0;
6351 consing_since_gc = 0;
6352 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6353 gc_relative_threshold = 0;
6354
6355 #ifdef VIRT_ADDR_VARIES
6356 malloc_sbrk_unused = 1<<22; /* A large number */
6357 malloc_sbrk_used = 100000; /* as reasonable as any number */
6358 #endif /* VIRT_ADDR_VARIES */
6359 }
6360
6361 void
6362 init_alloc ()
6363 {
6364 gcprolist = 0;
6365 byte_stack_list = 0;
6366 #if GC_MARK_STACK
6367 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6368 setjmp_tested_p = longjmps_done = 0;
6369 #endif
6370 #endif
6371 Vgc_elapsed = make_float (0.0);
6372 gcs_done = 0;
6373 }
6374
6375 void
6376 syms_of_alloc ()
6377 {
6378 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6379 doc: /* *Number of bytes of consing between garbage collections.
6380 Garbage collection can happen automatically once this many bytes have been
6381 allocated since the last garbage collection. All data types count.
6382
6383 Garbage collection happens automatically only when `eval' is called.
6384
6385 By binding this temporarily to a large number, you can effectively
6386 prevent garbage collection during a part of the program.
6387 See also `gc-cons-percentage'. */);
6388
6389 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6390 doc: /* *Portion of the heap used for allocation.
6391 Garbage collection can happen automatically once this portion of the heap
6392 has been allocated since the last garbage collection.
6393 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6394 Vgc_cons_percentage = make_float (0.1);
6395
6396 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6397 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6398
6399 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6400 doc: /* Number of cons cells that have been consed so far. */);
6401
6402 DEFVAR_INT ("floats-consed", &floats_consed,
6403 doc: /* Number of floats that have been consed so far. */);
6404
6405 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6406 doc: /* Number of vector cells that have been consed so far. */);
6407
6408 DEFVAR_INT ("symbols-consed", &symbols_consed,
6409 doc: /* Number of symbols that have been consed so far. */);
6410
6411 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6412 doc: /* Number of string characters that have been consed so far. */);
6413
6414 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6415 doc: /* Number of miscellaneous objects that have been consed so far. */);
6416
6417 DEFVAR_INT ("intervals-consed", &intervals_consed,
6418 doc: /* Number of intervals that have been consed so far. */);
6419
6420 DEFVAR_INT ("strings-consed", &strings_consed,
6421 doc: /* Number of strings that have been consed so far. */);
6422
6423 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6424 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6425 This means that certain objects should be allocated in shared (pure) space. */);
6426
6427 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6428 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6429 garbage_collection_messages = 0;
6430
6431 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6432 doc: /* Hook run after garbage collection has finished. */);
6433 Vpost_gc_hook = Qnil;
6434 Qpost_gc_hook = intern ("post-gc-hook");
6435 staticpro (&Qpost_gc_hook);
6436
6437 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6438 doc: /* Precomputed `signal' argument for memory-full error. */);
6439 /* We build this in advance because if we wait until we need it, we might
6440 not be able to allocate the memory to hold it. */
6441 Vmemory_signal_data
6442 = list2 (Qerror,
6443 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6444
6445 DEFVAR_LISP ("memory-full", &Vmemory_full,
6446 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6447 Vmemory_full = Qnil;
6448
6449 staticpro (&Qgc_cons_threshold);
6450 Qgc_cons_threshold = intern ("gc-cons-threshold");
6451
6452 staticpro (&Qchar_table_extra_slots);
6453 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6454
6455 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6456 doc: /* Accumulated time elapsed in garbage collections.
6457 The time is in seconds as a floating point value. */);
6458 DEFVAR_INT ("gcs-done", &gcs_done,
6459 doc: /* Accumulated number of garbage collections done. */);
6460
6461 defsubr (&Scons);
6462 defsubr (&Slist);
6463 defsubr (&Svector);
6464 defsubr (&Smake_byte_code);
6465 defsubr (&Smake_list);
6466 defsubr (&Smake_vector);
6467 defsubr (&Smake_char_table);
6468 defsubr (&Smake_string);
6469 defsubr (&Smake_bool_vector);
6470 defsubr (&Smake_symbol);
6471 defsubr (&Smake_marker);
6472 defsubr (&Spurecopy);
6473 defsubr (&Sgarbage_collect);
6474 defsubr (&Smemory_limit);
6475 defsubr (&Smemory_use_counts);
6476
6477 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6478 defsubr (&Sgc_status);
6479 #endif
6480 }
6481
6482 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6483 (do not change this comment) */