shr.el (shr-urlify): Use shr-add-font to make underlines be less ugly at the end...
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
143 to a struct Lisp_String. */
144
145 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
146 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
147 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
148
149 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
150 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
151 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
152
153 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
154 Be careful during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158
159 /* Global variables. */
160 struct emacs_globals globals;
161
162 /* Number of bytes of consing done since the last gc. */
163
164 int consing_since_gc;
165
166 /* Similar minimum, computed from Vgc_cons_percentage. */
167
168 EMACS_INT gc_relative_threshold;
169
170 /* Minimum number of bytes of consing since GC before next GC,
171 when memory is full. */
172
173 EMACS_INT memory_full_cons_threshold;
174
175 /* Nonzero during GC. */
176
177 int gc_in_progress;
178
179 /* Nonzero means abort if try to GC.
180 This is for code which is written on the assumption that
181 no GC will happen, so as to verify that assumption. */
182
183 int abort_on_gc;
184
185 /* Number of live and free conses etc. */
186
187 static int total_conses, total_markers, total_symbols, total_vector_size;
188 static int total_free_conses, total_free_markers, total_free_symbols;
189 static int total_free_floats, total_floats;
190
191 /* Points to memory space allocated as "spare", to be freed if we run
192 out of memory. We keep one large block, four cons-blocks, and
193 two string blocks. */
194
195 static char *spare_memory[7];
196
197 #ifndef SYSTEM_MALLOC
198 /* Amount of spare memory to keep in large reserve block. */
199
200 #define SPARE_MEMORY (1 << 14)
201 #endif
202
203 /* Number of extra blocks malloc should get when it needs more core. */
204
205 static int malloc_hysteresis;
206
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
212
213 #ifndef VIRT_ADDR_VARIES
214 static
215 #endif
216 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
217 #define PUREBEG (char *) pure
218
219 /* Pointer to the pure area, and its size. */
220
221 static char *purebeg;
222 static size_t pure_size;
223
224 /* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
226
227 static size_t pure_bytes_used_before_overflow;
228
229 /* Value is non-zero if P points into pure space. */
230
231 #define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
234 && ((PNTR_COMPARISON_TYPE) (P) \
235 >= (PNTR_COMPARISON_TYPE) purebeg))
236
237 /* Index in pure at which next pure Lisp object will be allocated.. */
238
239 static EMACS_INT pure_bytes_used_lisp;
240
241 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242
243 static EMACS_INT pure_bytes_used_non_lisp;
244
245 /* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
247
248 const char *pending_malloc_warning;
249
250 /* Maximum amount of C stack to save when a GC happens. */
251
252 #ifndef MAX_SAVE_STACK
253 #define MAX_SAVE_STACK 16000
254 #endif
255
256 /* Buffer in which we save a copy of the C stack at each GC. */
257
258 #if MAX_SAVE_STACK > 0
259 static char *stack_copy;
260 static size_t stack_copy_size;
261 #endif
262
263 /* Non-zero means ignore malloc warnings. Set during initialization.
264 Currently not used. */
265
266 static int ignore_warnings;
267
268 static Lisp_Object Qgc_cons_threshold;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_buffer (Lisp_Object);
276 static void mark_terminals (void);
277 static void gc_sweep (void);
278 static void mark_glyph_matrix (struct glyph_matrix *);
279 static void mark_face_cache (struct face_cache *);
280
281 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
282 static void refill_memory_reserve (void);
283 #endif
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288 static void free_misc (Lisp_Object);
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE
308 };
309
310 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
311 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
312
313
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
315
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324
325 #ifdef GC_MALLOC_CHECK
326
327 enum mem_type allocated_mem_type;
328 static int dont_register_blocks;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
393 static void lisp_free (POINTER_TYPE *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *, int);
404 static void mem_init (void);
405 static struct mem_node *mem_insert (void *, void *, enum mem_type);
406 static void mem_insert_fixup (struct mem_node *);
407 static void mem_rotate_left (struct mem_node *);
408 static void mem_rotate_right (struct mem_node *);
409 static void mem_delete (struct mem_node *);
410 static void mem_delete_fixup (struct mem_node *);
411 static INLINE struct mem_node *mem_find (void *);
412
413
414 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
415 static void check_gcpros (void);
416 #endif
417
418 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
419
420 /* Recording what needs to be marked for gc. */
421
422 struct gcpro *gcprolist;
423
424 /* Addresses of staticpro'd variables. Initialize it to a nonzero
425 value; otherwise some compilers put it into BSS. */
426
427 #define NSTATICS 0x640
428 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
429
430 /* Index of next unused slot in staticvec. */
431
432 static int staticidx = 0;
433
434 static POINTER_TYPE *pure_alloc (size_t, int);
435
436
437 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
438 ALIGNMENT must be a power of 2. */
439
440 #define ALIGN(ptr, ALIGNMENT) \
441 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
442 & ~((ALIGNMENT) - 1)))
443
444
445 \f
446 /************************************************************************
447 Malloc
448 ************************************************************************/
449
450 /* Function malloc calls this if it finds we are near exhausting storage. */
451
452 void
453 malloc_warning (const char *str)
454 {
455 pending_malloc_warning = str;
456 }
457
458
459 /* Display an already-pending malloc warning. */
460
461 void
462 display_malloc_warning (void)
463 {
464 call3 (intern ("display-warning"),
465 intern ("alloc"),
466 build_string (pending_malloc_warning),
467 intern ("emergency"));
468 pending_malloc_warning = 0;
469 }
470 \f
471 /* Called if we can't allocate relocatable space for a buffer. */
472
473 void
474 buffer_memory_full (void)
475 {
476 /* If buffers use the relocating allocator, no need to free
477 spare_memory, because we may have plenty of malloc space left
478 that we could get, and if we don't, the malloc that fails will
479 itself cause spare_memory to be freed. If buffers don't use the
480 relocating allocator, treat this like any other failing
481 malloc. */
482
483 #ifndef REL_ALLOC
484 memory_full ();
485 #endif
486
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
489 xsignal (Qnil, Vmemory_signal_data);
490 }
491
492
493 #ifdef XMALLOC_OVERRUN_CHECK
494
495 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
496 and a 16 byte trailer around each block.
497
498 The header consists of 12 fixed bytes + a 4 byte integer contaning the
499 original block size, while the trailer consists of 16 fixed bytes.
500
501 The header is used to detect whether this block has been allocated
502 through these functions -- as it seems that some low-level libc
503 functions may bypass the malloc hooks.
504 */
505
506
507 #define XMALLOC_OVERRUN_CHECK_SIZE 16
508
509 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
510 { 0x9a, 0x9b, 0xae, 0xaf,
511 0xbf, 0xbe, 0xce, 0xcf,
512 0xea, 0xeb, 0xec, 0xed };
513
514 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
515 { 0xaa, 0xab, 0xac, 0xad,
516 0xba, 0xbb, 0xbc, 0xbd,
517 0xca, 0xcb, 0xcc, 0xcd,
518 0xda, 0xdb, 0xdc, 0xdd };
519
520 /* Macros to insert and extract the block size in the header. */
521
522 #define XMALLOC_PUT_SIZE(ptr, size) \
523 (ptr[-1] = (size & 0xff), \
524 ptr[-2] = ((size >> 8) & 0xff), \
525 ptr[-3] = ((size >> 16) & 0xff), \
526 ptr[-4] = ((size >> 24) & 0xff))
527
528 #define XMALLOC_GET_SIZE(ptr) \
529 (size_t)((unsigned)(ptr[-1]) | \
530 ((unsigned)(ptr[-2]) << 8) | \
531 ((unsigned)(ptr[-3]) << 16) | \
532 ((unsigned)(ptr[-4]) << 24))
533
534
535 /* The call depth in overrun_check functions. For example, this might happen:
536 xmalloc()
537 overrun_check_malloc()
538 -> malloc -> (via hook)_-> emacs_blocked_malloc
539 -> overrun_check_malloc
540 call malloc (hooks are NULL, so real malloc is called).
541 malloc returns 10000.
542 add overhead, return 10016.
543 <- (back in overrun_check_malloc)
544 add overhead again, return 10032
545 xmalloc returns 10032.
546
547 (time passes).
548
549 xfree(10032)
550 overrun_check_free(10032)
551 decrease overhed
552 free(10016) <- crash, because 10000 is the original pointer. */
553
554 static int check_depth;
555
556 /* Like malloc, but wraps allocated block with header and trailer. */
557
558 static POINTER_TYPE *
559 overrun_check_malloc (size_t size)
560 {
561 register unsigned char *val;
562 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
563
564 val = (unsigned char *) malloc (size + overhead);
565 if (val && check_depth == 1)
566 {
567 memcpy (val, xmalloc_overrun_check_header,
568 XMALLOC_OVERRUN_CHECK_SIZE - 4);
569 val += XMALLOC_OVERRUN_CHECK_SIZE;
570 XMALLOC_PUT_SIZE(val, size);
571 memcpy (val + size, xmalloc_overrun_check_trailer,
572 XMALLOC_OVERRUN_CHECK_SIZE);
573 }
574 --check_depth;
575 return (POINTER_TYPE *)val;
576 }
577
578
579 /* Like realloc, but checks old block for overrun, and wraps new block
580 with header and trailer. */
581
582 static POINTER_TYPE *
583 overrun_check_realloc (POINTER_TYPE *block, size_t size)
584 {
585 register unsigned char *val = (unsigned char *) block;
586 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
587
588 if (val
589 && check_depth == 1
590 && memcmp (xmalloc_overrun_check_header,
591 val - XMALLOC_OVERRUN_CHECK_SIZE,
592 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
593 {
594 size_t osize = XMALLOC_GET_SIZE (val);
595 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
596 XMALLOC_OVERRUN_CHECK_SIZE))
597 abort ();
598 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
599 val -= XMALLOC_OVERRUN_CHECK_SIZE;
600 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602
603 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
604
605 if (val && check_depth == 1)
606 {
607 memcpy (val, xmalloc_overrun_check_header,
608 XMALLOC_OVERRUN_CHECK_SIZE - 4);
609 val += XMALLOC_OVERRUN_CHECK_SIZE;
610 XMALLOC_PUT_SIZE(val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614 --check_depth;
615 return (POINTER_TYPE *)val;
616 }
617
618 /* Like free, but checks block for overrun. */
619
620 static void
621 overrun_check_free (POINTER_TYPE *block)
622 {
623 unsigned char *val = (unsigned char *) block;
624
625 ++check_depth;
626 if (val
627 && check_depth == 1
628 && memcmp (xmalloc_overrun_check_header,
629 val - XMALLOC_OVERRUN_CHECK_SIZE,
630 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
631 {
632 size_t osize = XMALLOC_GET_SIZE (val);
633 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
635 abort ();
636 #ifdef XMALLOC_CLEAR_FREE_MEMORY
637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
638 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
639 #else
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
643 #endif
644 }
645
646 free (val);
647 --check_depth;
648 }
649
650 #undef malloc
651 #undef realloc
652 #undef free
653 #define malloc overrun_check_malloc
654 #define realloc overrun_check_realloc
655 #define free overrun_check_free
656 #endif
657
658 #ifdef SYNC_INPUT
659 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
660 there's no need to block input around malloc. */
661 #define MALLOC_BLOCK_INPUT ((void)0)
662 #define MALLOC_UNBLOCK_INPUT ((void)0)
663 #else
664 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
665 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
666 #endif
667
668 /* Like malloc but check for no memory and block interrupt input.. */
669
670 POINTER_TYPE *
671 xmalloc (size_t size)
672 {
673 register POINTER_TYPE *val;
674
675 MALLOC_BLOCK_INPUT;
676 val = (POINTER_TYPE *) malloc (size);
677 MALLOC_UNBLOCK_INPUT;
678
679 if (!val && size)
680 memory_full ();
681 return val;
682 }
683
684
685 /* Like realloc but check for no memory and block interrupt input.. */
686
687 POINTER_TYPE *
688 xrealloc (POINTER_TYPE *block, size_t size)
689 {
690 register POINTER_TYPE *val;
691
692 MALLOC_BLOCK_INPUT;
693 /* We must call malloc explicitly when BLOCK is 0, since some
694 reallocs don't do this. */
695 if (! block)
696 val = (POINTER_TYPE *) malloc (size);
697 else
698 val = (POINTER_TYPE *) realloc (block, size);
699 MALLOC_UNBLOCK_INPUT;
700
701 if (!val && size) memory_full ();
702 return val;
703 }
704
705
706 /* Like free but block interrupt input. */
707
708 void
709 xfree (POINTER_TYPE *block)
710 {
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because that duplicates doing so in emacs_blocked_free
718 and the criterion should go there. */
719 }
720
721
722 /* Like strdup, but uses xmalloc. */
723
724 char *
725 xstrdup (const char *s)
726 {
727 size_t len = strlen (s) + 1;
728 char *p = (char *) xmalloc (len);
729 memcpy (p, s, len);
730 return p;
731 }
732
733
734 /* Unwind for SAFE_ALLOCA */
735
736 Lisp_Object
737 safe_alloca_unwind (Lisp_Object arg)
738 {
739 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
740
741 p->dogc = 0;
742 xfree (p->pointer);
743 p->pointer = 0;
744 free_misc (arg);
745 return Qnil;
746 }
747
748
749 /* Like malloc but used for allocating Lisp data. NBYTES is the
750 number of bytes to allocate, TYPE describes the intended use of the
751 allcated memory block (for strings, for conses, ...). */
752
753 #ifndef USE_LSB_TAG
754 static void *lisp_malloc_loser;
755 #endif
756
757 static POINTER_TYPE *
758 lisp_malloc (size_t nbytes, enum mem_type type)
759 {
760 register void *val;
761
762 MALLOC_BLOCK_INPUT;
763
764 #ifdef GC_MALLOC_CHECK
765 allocated_mem_type = type;
766 #endif
767
768 val = (void *) malloc (nbytes);
769
770 #ifndef USE_LSB_TAG
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
775 {
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
779 {
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
783 }
784 }
785 #endif
786
787 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
788 if (val && type != MEM_TYPE_NON_LISP)
789 mem_insert (val, (char *) val + nbytes, type);
790 #endif
791
792 MALLOC_UNBLOCK_INPUT;
793 if (!val && nbytes)
794 memory_full ();
795 return val;
796 }
797
798 /* Free BLOCK. This must be called to free memory allocated with a
799 call to lisp_malloc. */
800
801 static void
802 lisp_free (POINTER_TYPE *block)
803 {
804 MALLOC_BLOCK_INPUT;
805 free (block);
806 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 mem_delete (mem_find (block));
808 #endif
809 MALLOC_UNBLOCK_INPUT;
810 }
811
812 /* Allocation of aligned blocks of memory to store Lisp data. */
813 /* The entry point is lisp_align_malloc which returns blocks of at most */
814 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
815
816 /* Use posix_memalloc if the system has it and we're using the system's
817 malloc (because our gmalloc.c routines don't have posix_memalign although
818 its memalloc could be used). */
819 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
820 #define USE_POSIX_MEMALIGN 1
821 #endif
822
823 /* BLOCK_ALIGN has to be a power of 2. */
824 #define BLOCK_ALIGN (1 << 10)
825
826 /* Padding to leave at the end of a malloc'd block. This is to give
827 malloc a chance to minimize the amount of memory wasted to alignment.
828 It should be tuned to the particular malloc library used.
829 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
830 posix_memalign on the other hand would ideally prefer a value of 4
831 because otherwise, there's 1020 bytes wasted between each ablocks.
832 In Emacs, testing shows that those 1020 can most of the time be
833 efficiently used by malloc to place other objects, so a value of 0 can
834 still preferable unless you have a lot of aligned blocks and virtually
835 nothing else. */
836 #define BLOCK_PADDING 0
837 #define BLOCK_BYTES \
838 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
839
840 /* Internal data structures and constants. */
841
842 #define ABLOCKS_SIZE 16
843
844 /* An aligned block of memory. */
845 struct ablock
846 {
847 union
848 {
849 char payload[BLOCK_BYTES];
850 struct ablock *next_free;
851 } x;
852 /* `abase' is the aligned base of the ablocks. */
853 /* It is overloaded to hold the virtual `busy' field that counts
854 the number of used ablock in the parent ablocks.
855 The first ablock has the `busy' field, the others have the `abase'
856 field. To tell the difference, we assume that pointers will have
857 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
858 is used to tell whether the real base of the parent ablocks is `abase'
859 (if not, the word before the first ablock holds a pointer to the
860 real base). */
861 struct ablocks *abase;
862 /* The padding of all but the last ablock is unused. The padding of
863 the last ablock in an ablocks is not allocated. */
864 #if BLOCK_PADDING
865 char padding[BLOCK_PADDING];
866 #endif
867 };
868
869 /* A bunch of consecutive aligned blocks. */
870 struct ablocks
871 {
872 struct ablock blocks[ABLOCKS_SIZE];
873 };
874
875 /* Size of the block requested from malloc or memalign. */
876 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
877
878 #define ABLOCK_ABASE(block) \
879 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
880 ? (struct ablocks *)(block) \
881 : (block)->abase)
882
883 /* Virtual `busy' field. */
884 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
885
886 /* Pointer to the (not necessarily aligned) malloc block. */
887 #ifdef USE_POSIX_MEMALIGN
888 #define ABLOCKS_BASE(abase) (abase)
889 #else
890 #define ABLOCKS_BASE(abase) \
891 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
892 #endif
893
894 /* The list of free ablock. */
895 static struct ablock *free_ablock;
896
897 /* Allocate an aligned block of nbytes.
898 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
899 smaller or equal to BLOCK_BYTES. */
900 static POINTER_TYPE *
901 lisp_align_malloc (size_t nbytes, enum mem_type type)
902 {
903 void *base, *val;
904 struct ablocks *abase;
905
906 eassert (nbytes <= BLOCK_BYTES);
907
908 MALLOC_BLOCK_INPUT;
909
910 #ifdef GC_MALLOC_CHECK
911 allocated_mem_type = type;
912 #endif
913
914 if (!free_ablock)
915 {
916 int i;
917 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
918
919 #ifdef DOUG_LEA_MALLOC
920 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
921 because mapped region contents are not preserved in
922 a dumped Emacs. */
923 mallopt (M_MMAP_MAX, 0);
924 #endif
925
926 #ifdef USE_POSIX_MEMALIGN
927 {
928 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
929 if (err)
930 base = NULL;
931 abase = base;
932 }
933 #else
934 base = malloc (ABLOCKS_BYTES);
935 abase = ALIGN (base, BLOCK_ALIGN);
936 #endif
937
938 if (base == 0)
939 {
940 MALLOC_UNBLOCK_INPUT;
941 memory_full ();
942 }
943
944 aligned = (base == abase);
945 if (!aligned)
946 ((void**)abase)[-1] = base;
947
948 #ifdef DOUG_LEA_MALLOC
949 /* Back to a reasonable maximum of mmap'ed areas. */
950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
951 #endif
952
953 #ifndef USE_LSB_TAG
954 /* If the memory just allocated cannot be addressed thru a Lisp
955 object's pointer, and it needs to be, that's equivalent to
956 running out of memory. */
957 if (type != MEM_TYPE_NON_LISP)
958 {
959 Lisp_Object tem;
960 char *end = (char *) base + ABLOCKS_BYTES - 1;
961 XSETCONS (tem, end);
962 if ((char *) XCONS (tem) != end)
963 {
964 lisp_malloc_loser = base;
965 free (base);
966 MALLOC_UNBLOCK_INPUT;
967 memory_full ();
968 }
969 }
970 #endif
971
972 /* Initialize the blocks and put them on the free list.
973 Is `base' was not properly aligned, we can't use the last block. */
974 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
975 {
976 abase->blocks[i].abase = abase;
977 abase->blocks[i].x.next_free = free_ablock;
978 free_ablock = &abase->blocks[i];
979 }
980 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
981
982 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
983 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
984 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
985 eassert (ABLOCKS_BASE (abase) == base);
986 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
987 }
988
989 abase = ABLOCK_ABASE (free_ablock);
990 ABLOCKS_BUSY (abase) =
991 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
992 val = free_ablock;
993 free_ablock = free_ablock->x.next_free;
994
995 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
996 if (val && type != MEM_TYPE_NON_LISP)
997 mem_insert (val, (char *) val + nbytes, type);
998 #endif
999
1000 MALLOC_UNBLOCK_INPUT;
1001 if (!val && nbytes)
1002 memory_full ();
1003
1004 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1005 return val;
1006 }
1007
1008 static void
1009 lisp_align_free (POINTER_TYPE *block)
1010 {
1011 struct ablock *ablock = block;
1012 struct ablocks *abase = ABLOCK_ABASE (ablock);
1013
1014 MALLOC_BLOCK_INPUT;
1015 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1016 mem_delete (mem_find (block));
1017 #endif
1018 /* Put on free list. */
1019 ablock->x.next_free = free_ablock;
1020 free_ablock = ablock;
1021 /* Update busy count. */
1022 ABLOCKS_BUSY (abase) =
1023 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1024
1025 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1026 { /* All the blocks are free. */
1027 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1028 struct ablock **tem = &free_ablock;
1029 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1030
1031 while (*tem)
1032 {
1033 if (*tem >= (struct ablock *) abase && *tem < atop)
1034 {
1035 i++;
1036 *tem = (*tem)->x.next_free;
1037 }
1038 else
1039 tem = &(*tem)->x.next_free;
1040 }
1041 eassert ((aligned & 1) == aligned);
1042 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1043 #ifdef USE_POSIX_MEMALIGN
1044 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1045 #endif
1046 free (ABLOCKS_BASE (abase));
1047 }
1048 MALLOC_UNBLOCK_INPUT;
1049 }
1050
1051 /* Return a new buffer structure allocated from the heap with
1052 a call to lisp_malloc. */
1053
1054 struct buffer *
1055 allocate_buffer (void)
1056 {
1057 struct buffer *b
1058 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1059 MEM_TYPE_BUFFER);
1060 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1061 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1062 / sizeof (EMACS_INT)));
1063 return b;
1064 }
1065
1066 \f
1067 #ifndef SYSTEM_MALLOC
1068
1069 /* Arranging to disable input signals while we're in malloc.
1070
1071 This only works with GNU malloc. To help out systems which can't
1072 use GNU malloc, all the calls to malloc, realloc, and free
1073 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1074 pair; unfortunately, we have no idea what C library functions
1075 might call malloc, so we can't really protect them unless you're
1076 using GNU malloc. Fortunately, most of the major operating systems
1077 can use GNU malloc. */
1078
1079 #ifndef SYNC_INPUT
1080 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1081 there's no need to block input around malloc. */
1082
1083 #ifndef DOUG_LEA_MALLOC
1084 extern void * (*__malloc_hook) (size_t, const void *);
1085 extern void * (*__realloc_hook) (void *, size_t, const void *);
1086 extern void (*__free_hook) (void *, const void *);
1087 /* Else declared in malloc.h, perhaps with an extra arg. */
1088 #endif /* DOUG_LEA_MALLOC */
1089 static void * (*old_malloc_hook) (size_t, const void *);
1090 static void * (*old_realloc_hook) (void *, size_t, const void*);
1091 static void (*old_free_hook) (void*, const void*);
1092
1093 #ifdef DOUG_LEA_MALLOC
1094 # define BYTES_USED (mallinfo ().uordblks)
1095 #else
1096 # define BYTES_USED _bytes_used
1097 #endif
1098
1099 static __malloc_size_t bytes_used_when_reconsidered;
1100
1101 /* Value of _bytes_used, when spare_memory was freed. */
1102
1103 static __malloc_size_t bytes_used_when_full;
1104
1105 /* This function is used as the hook for free to call. */
1106
1107 static void
1108 emacs_blocked_free (void *ptr, const void *ptr2)
1109 {
1110 BLOCK_INPUT_ALLOC;
1111
1112 #ifdef GC_MALLOC_CHECK
1113 if (ptr)
1114 {
1115 struct mem_node *m;
1116
1117 m = mem_find (ptr);
1118 if (m == MEM_NIL || m->start != ptr)
1119 {
1120 fprintf (stderr,
1121 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1122 abort ();
1123 }
1124 else
1125 {
1126 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1127 mem_delete (m);
1128 }
1129 }
1130 #endif /* GC_MALLOC_CHECK */
1131
1132 __free_hook = old_free_hook;
1133 free (ptr);
1134
1135 /* If we released our reserve (due to running out of memory),
1136 and we have a fair amount free once again,
1137 try to set aside another reserve in case we run out once more. */
1138 if (! NILP (Vmemory_full)
1139 /* Verify there is enough space that even with the malloc
1140 hysteresis this call won't run out again.
1141 The code here is correct as long as SPARE_MEMORY
1142 is substantially larger than the block size malloc uses. */
1143 && (bytes_used_when_full
1144 > ((bytes_used_when_reconsidered = BYTES_USED)
1145 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1146 refill_memory_reserve ();
1147
1148 __free_hook = emacs_blocked_free;
1149 UNBLOCK_INPUT_ALLOC;
1150 }
1151
1152
1153 /* This function is the malloc hook that Emacs uses. */
1154
1155 static void *
1156 emacs_blocked_malloc (size_t size, const void *ptr)
1157 {
1158 void *value;
1159
1160 BLOCK_INPUT_ALLOC;
1161 __malloc_hook = old_malloc_hook;
1162 #ifdef DOUG_LEA_MALLOC
1163 /* Segfaults on my system. --lorentey */
1164 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1165 #else
1166 __malloc_extra_blocks = malloc_hysteresis;
1167 #endif
1168
1169 value = (void *) malloc (size);
1170
1171 #ifdef GC_MALLOC_CHECK
1172 {
1173 struct mem_node *m = mem_find (value);
1174 if (m != MEM_NIL)
1175 {
1176 fprintf (stderr, "Malloc returned %p which is already in use\n",
1177 value);
1178 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1179 m->start, m->end, (char *) m->end - (char *) m->start,
1180 m->type);
1181 abort ();
1182 }
1183
1184 if (!dont_register_blocks)
1185 {
1186 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1187 allocated_mem_type = MEM_TYPE_NON_LISP;
1188 }
1189 }
1190 #endif /* GC_MALLOC_CHECK */
1191
1192 __malloc_hook = emacs_blocked_malloc;
1193 UNBLOCK_INPUT_ALLOC;
1194
1195 /* fprintf (stderr, "%p malloc\n", value); */
1196 return value;
1197 }
1198
1199
1200 /* This function is the realloc hook that Emacs uses. */
1201
1202 static void *
1203 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 {
1205 void *value;
1206
1207 BLOCK_INPUT_ALLOC;
1208 __realloc_hook = old_realloc_hook;
1209
1210 #ifdef GC_MALLOC_CHECK
1211 if (ptr)
1212 {
1213 struct mem_node *m = mem_find (ptr);
1214 if (m == MEM_NIL || m->start != ptr)
1215 {
1216 fprintf (stderr,
1217 "Realloc of %p which wasn't allocated with malloc\n",
1218 ptr);
1219 abort ();
1220 }
1221
1222 mem_delete (m);
1223 }
1224
1225 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226
1227 /* Prevent malloc from registering blocks. */
1228 dont_register_blocks = 1;
1229 #endif /* GC_MALLOC_CHECK */
1230
1231 value = (void *) realloc (ptr, size);
1232
1233 #ifdef GC_MALLOC_CHECK
1234 dont_register_blocks = 0;
1235
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Realloc returns memory that is already in use\n");
1241 abort ();
1242 }
1243
1244 /* Can't handle zero size regions in the red-black tree. */
1245 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1246 }
1247
1248 /* fprintf (stderr, "%p <- realloc\n", value); */
1249 #endif /* GC_MALLOC_CHECK */
1250
1251 __realloc_hook = emacs_blocked_realloc;
1252 UNBLOCK_INPUT_ALLOC;
1253
1254 return value;
1255 }
1256
1257
1258 #ifdef HAVE_GTK_AND_PTHREAD
1259 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1260 normal malloc. Some thread implementations need this as they call
1261 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1262 calls malloc because it is the first call, and we have an endless loop. */
1263
1264 void
1265 reset_malloc_hooks ()
1266 {
1267 __free_hook = old_free_hook;
1268 __malloc_hook = old_malloc_hook;
1269 __realloc_hook = old_realloc_hook;
1270 }
1271 #endif /* HAVE_GTK_AND_PTHREAD */
1272
1273
1274 /* Called from main to set up malloc to use our hooks. */
1275
1276 void
1277 uninterrupt_malloc (void)
1278 {
1279 #ifdef HAVE_GTK_AND_PTHREAD
1280 #ifdef DOUG_LEA_MALLOC
1281 pthread_mutexattr_t attr;
1282
1283 /* GLIBC has a faster way to do this, but lets keep it portable.
1284 This is according to the Single UNIX Specification. */
1285 pthread_mutexattr_init (&attr);
1286 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1287 pthread_mutex_init (&alloc_mutex, &attr);
1288 #else /* !DOUG_LEA_MALLOC */
1289 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1290 and the bundled gmalloc.c doesn't require it. */
1291 pthread_mutex_init (&alloc_mutex, NULL);
1292 #endif /* !DOUG_LEA_MALLOC */
1293 #endif /* HAVE_GTK_AND_PTHREAD */
1294
1295 if (__free_hook != emacs_blocked_free)
1296 old_free_hook = __free_hook;
1297 __free_hook = emacs_blocked_free;
1298
1299 if (__malloc_hook != emacs_blocked_malloc)
1300 old_malloc_hook = __malloc_hook;
1301 __malloc_hook = emacs_blocked_malloc;
1302
1303 if (__realloc_hook != emacs_blocked_realloc)
1304 old_realloc_hook = __realloc_hook;
1305 __realloc_hook = emacs_blocked_realloc;
1306 }
1307
1308 #endif /* not SYNC_INPUT */
1309 #endif /* not SYSTEM_MALLOC */
1310
1311
1312 \f
1313 /***********************************************************************
1314 Interval Allocation
1315 ***********************************************************************/
1316
1317 /* Number of intervals allocated in an interval_block structure.
1318 The 1020 is 1024 minus malloc overhead. */
1319
1320 #define INTERVAL_BLOCK_SIZE \
1321 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322
1323 /* Intervals are allocated in chunks in form of an interval_block
1324 structure. */
1325
1326 struct interval_block
1327 {
1328 /* Place `intervals' first, to preserve alignment. */
1329 struct interval intervals[INTERVAL_BLOCK_SIZE];
1330 struct interval_block *next;
1331 };
1332
1333 /* Current interval block. Its `next' pointer points to older
1334 blocks. */
1335
1336 static struct interval_block *interval_block;
1337
1338 /* Index in interval_block above of the next unused interval
1339 structure. */
1340
1341 static int interval_block_index;
1342
1343 /* Number of free and live intervals. */
1344
1345 static int total_free_intervals, total_intervals;
1346
1347 /* List of free intervals. */
1348
1349 static INTERVAL interval_free_list;
1350
1351 /* Total number of interval blocks now in use. */
1352
1353 static int n_interval_blocks;
1354
1355
1356 /* Initialize interval allocation. */
1357
1358 static void
1359 init_intervals (void)
1360 {
1361 interval_block = NULL;
1362 interval_block_index = INTERVAL_BLOCK_SIZE;
1363 interval_free_list = 0;
1364 n_interval_blocks = 0;
1365 }
1366
1367
1368 /* Return a new interval. */
1369
1370 INTERVAL
1371 make_interval (void)
1372 {
1373 INTERVAL val;
1374
1375 /* eassert (!handling_signal); */
1376
1377 MALLOC_BLOCK_INPUT;
1378
1379 if (interval_free_list)
1380 {
1381 val = interval_free_list;
1382 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 }
1384 else
1385 {
1386 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 {
1388 register struct interval_block *newi;
1389
1390 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1391 MEM_TYPE_NON_LISP);
1392
1393 newi->next = interval_block;
1394 interval_block = newi;
1395 interval_block_index = 0;
1396 n_interval_blocks++;
1397 }
1398 val = &interval_block->intervals[interval_block_index++];
1399 }
1400
1401 MALLOC_UNBLOCK_INPUT;
1402
1403 consing_since_gc += sizeof (struct interval);
1404 intervals_consed++;
1405 RESET_INTERVAL (val);
1406 val->gcmarkbit = 0;
1407 return val;
1408 }
1409
1410
1411 /* Mark Lisp objects in interval I. */
1412
1413 static void
1414 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 {
1416 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1417 i->gcmarkbit = 1;
1418 mark_object (i->plist);
1419 }
1420
1421
1422 /* Mark the interval tree rooted in TREE. Don't call this directly;
1423 use the macro MARK_INTERVAL_TREE instead. */
1424
1425 static void
1426 mark_interval_tree (register INTERVAL tree)
1427 {
1428 /* No need to test if this tree has been marked already; this
1429 function is always called through the MARK_INTERVAL_TREE macro,
1430 which takes care of that. */
1431
1432 traverse_intervals_noorder (tree, mark_interval, Qnil);
1433 }
1434
1435
1436 /* Mark the interval tree rooted in I. */
1437
1438 #define MARK_INTERVAL_TREE(i) \
1439 do { \
1440 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1441 mark_interval_tree (i); \
1442 } while (0)
1443
1444
1445 #define UNMARK_BALANCE_INTERVALS(i) \
1446 do { \
1447 if (! NULL_INTERVAL_P (i)) \
1448 (i) = balance_intervals (i); \
1449 } while (0)
1450
1451 \f
1452 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1453 can't create number objects in macros. */
1454 #ifndef make_number
1455 Lisp_Object
1456 make_number (EMACS_INT n)
1457 {
1458 Lisp_Object obj;
1459 obj.s.val = n;
1460 obj.s.type = Lisp_Int;
1461 return obj;
1462 }
1463 #endif
1464 \f
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `u.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* Structure describing string memory sub-allocated from an sblock.
1503 This is where the contents of Lisp strings are stored. */
1504
1505 struct sdata
1506 {
1507 /* Back-pointer to the string this sdata belongs to. If null, this
1508 structure is free, and the NBYTES member of the union below
1509 contains the string's byte size (the same value that STRING_BYTES
1510 would return if STRING were non-null). If non-null, STRING_BYTES
1511 (STRING) is the size of the data, and DATA contains the string's
1512 contents. */
1513 struct Lisp_String *string;
1514
1515 #ifdef GC_CHECK_STRING_BYTES
1516
1517 EMACS_INT nbytes;
1518 unsigned char data[1];
1519
1520 #define SDATA_NBYTES(S) (S)->nbytes
1521 #define SDATA_DATA(S) (S)->data
1522 #define SDATA_SELECTOR(member) member
1523
1524 #else /* not GC_CHECK_STRING_BYTES */
1525
1526 union
1527 {
1528 /* When STRING is non-null. */
1529 unsigned char data[1];
1530
1531 /* When STRING is null. */
1532 EMACS_INT nbytes;
1533 } u;
1534
1535 #define SDATA_NBYTES(S) (S)->u.nbytes
1536 #define SDATA_DATA(S) (S)->u.data
1537 #define SDATA_SELECTOR(member) u.member
1538
1539 #endif /* not GC_CHECK_STRING_BYTES */
1540
1541 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1542 };
1543
1544
1545 /* Structure describing a block of memory which is sub-allocated to
1546 obtain string data memory for strings. Blocks for small strings
1547 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1548 as large as needed. */
1549
1550 struct sblock
1551 {
1552 /* Next in list. */
1553 struct sblock *next;
1554
1555 /* Pointer to the next free sdata block. This points past the end
1556 of the sblock if there isn't any space left in this block. */
1557 struct sdata *next_free;
1558
1559 /* Start of data. */
1560 struct sdata first_data;
1561 };
1562
1563 /* Number of Lisp strings in a string_block structure. The 1020 is
1564 1024 minus malloc overhead. */
1565
1566 #define STRING_BLOCK_SIZE \
1567 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1568
1569 /* Structure describing a block from which Lisp_String structures
1570 are allocated. */
1571
1572 struct string_block
1573 {
1574 /* Place `strings' first, to preserve alignment. */
1575 struct Lisp_String strings[STRING_BLOCK_SIZE];
1576 struct string_block *next;
1577 };
1578
1579 /* Head and tail of the list of sblock structures holding Lisp string
1580 data. We always allocate from current_sblock. The NEXT pointers
1581 in the sblock structures go from oldest_sblock to current_sblock. */
1582
1583 static struct sblock *oldest_sblock, *current_sblock;
1584
1585 /* List of sblocks for large strings. */
1586
1587 static struct sblock *large_sblocks;
1588
1589 /* List of string_block structures, and how many there are. */
1590
1591 static struct string_block *string_blocks;
1592 static int n_string_blocks;
1593
1594 /* Free-list of Lisp_Strings. */
1595
1596 static struct Lisp_String *string_free_list;
1597
1598 /* Number of live and free Lisp_Strings. */
1599
1600 static int total_strings, total_free_strings;
1601
1602 /* Number of bytes used by live strings. */
1603
1604 static EMACS_INT total_string_size;
1605
1606 /* Given a pointer to a Lisp_String S which is on the free-list
1607 string_free_list, return a pointer to its successor in the
1608 free-list. */
1609
1610 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1611
1612 /* Return a pointer to the sdata structure belonging to Lisp string S.
1613 S must be live, i.e. S->data must not be null. S->data is actually
1614 a pointer to the `u.data' member of its sdata structure; the
1615 structure starts at a constant offset in front of that. */
1616
1617 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1618
1619
1620 #ifdef GC_CHECK_STRING_OVERRUN
1621
1622 /* We check for overrun in string data blocks by appending a small
1623 "cookie" after each allocated string data block, and check for the
1624 presence of this cookie during GC. */
1625
1626 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1627 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1628 { '\xde', '\xad', '\xbe', '\xef' };
1629
1630 #else
1631 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1632 #endif
1633
1634 /* Value is the size of an sdata structure large enough to hold NBYTES
1635 bytes of string data. The value returned includes a terminating
1636 NUL byte, the size of the sdata structure, and padding. */
1637
1638 #ifdef GC_CHECK_STRING_BYTES
1639
1640 #define SDATA_SIZE(NBYTES) \
1641 ((SDATA_DATA_OFFSET \
1642 + (NBYTES) + 1 \
1643 + sizeof (EMACS_INT) - 1) \
1644 & ~(sizeof (EMACS_INT) - 1))
1645
1646 #else /* not GC_CHECK_STRING_BYTES */
1647
1648 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1649 less than the size of that member. The 'max' is not needed when
1650 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1651 alignment code reserves enough space. */
1652
1653 #define SDATA_SIZE(NBYTES) \
1654 ((SDATA_DATA_OFFSET \
1655 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1656 ? NBYTES \
1657 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1658 + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1691
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1694 {
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703 }
1704
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1706
1707 static void
1708 check_sblock (struct sblock *b)
1709 {
1710 struct sdata *from, *end, *from_end;
1711
1712 end = b->next_free;
1713
1714 for (from = &b->first_data; from < end; from = from_end)
1715 {
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1718 EMACS_INT nbytes;
1719
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
1724
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
1729
1730 nbytes = SDATA_SIZE (nbytes);
1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1732 }
1733 }
1734
1735
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
1740 static void
1741 check_string_bytes (int all_p)
1742 {
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1752 }
1753
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1756 }
1757 else
1758 check_sblock (current_sblock);
1759 }
1760
1761 #endif /* GC_CHECK_STRING_BYTES */
1762
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1764
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
1768 static void
1769 check_string_free_list (void)
1770 {
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
1777 if ((uintptr_t) s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781 }
1782 #else
1783 #define check_string_free_list()
1784 #endif
1785
1786 /* Return a new Lisp_String. */
1787
1788 static struct Lisp_String *
1789 allocate_string (void)
1790 {
1791 struct Lisp_String *s;
1792
1793 /* eassert (!handling_signal); */
1794
1795 MALLOC_BLOCK_INPUT;
1796
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1800 {
1801 struct string_block *b;
1802 int i;
1803
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1808 ++n_string_blocks;
1809
1810 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1811 {
1812 s = b->strings + i;
1813 NEXT_FREE_LISP_STRING (s) = string_free_list;
1814 string_free_list = s;
1815 }
1816
1817 total_free_strings += STRING_BLOCK_SIZE;
1818 }
1819
1820 check_string_free_list ();
1821
1822 /* Pop a Lisp_String off the free-list. */
1823 s = string_free_list;
1824 string_free_list = NEXT_FREE_LISP_STRING (s);
1825
1826 MALLOC_UNBLOCK_INPUT;
1827
1828 /* Probably not strictly necessary, but play it safe. */
1829 memset (s, 0, sizeof *s);
1830
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
1835
1836 #ifdef GC_CHECK_STRING_BYTES
1837 if (!noninteractive)
1838 {
1839 if (++check_string_bytes_count == 200)
1840 {
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1843 }
1844 else
1845 check_string_bytes (0);
1846 }
1847 #endif /* GC_CHECK_STRING_BYTES */
1848
1849 return s;
1850 }
1851
1852
1853 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
1858
1859 void
1860 allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
1862 {
1863 struct sdata *data, *old_data;
1864 struct sblock *b;
1865 EMACS_INT needed, old_nbytes;
1866
1867 /* Determine the number of bytes needed to store NBYTES bytes
1868 of string data. */
1869 needed = SDATA_SIZE (nbytes);
1870 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1871 old_nbytes = GC_STRING_BYTES (s);
1872
1873 MALLOC_BLOCK_INPUT;
1874
1875 if (nbytes > LARGE_STRING_BYTES)
1876 {
1877 size_t size = offsetof (struct sblock, first_data) + needed;
1878
1879 #ifdef DOUG_LEA_MALLOC
1880 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1881 because mapped region contents are not preserved in
1882 a dumped Emacs.
1883
1884 In case you think of allowing it in a dumped Emacs at the
1885 cost of not being able to re-dump, there's another reason:
1886 mmap'ed data typically have an address towards the top of the
1887 address space, which won't fit into an EMACS_INT (at least on
1888 32-bit systems with the current tagging scheme). --fx */
1889 mallopt (M_MMAP_MAX, 0);
1890 #endif
1891
1892 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1893
1894 #ifdef DOUG_LEA_MALLOC
1895 /* Back to a reasonable maximum of mmap'ed areas. */
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897 #endif
1898
1899 b->next_free = &b->first_data;
1900 b->first_data.string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1903 }
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
1907 < (needed + GC_STRING_EXTRA)))
1908 {
1909 /* Not enough room in the current sblock. */
1910 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1911 b->next_free = &b->first_data;
1912 b->first_data.string = NULL;
1913 b->next = NULL;
1914
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1920 }
1921 else
1922 b = current_sblock;
1923
1924 data = b->next_free;
1925 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926
1927 MALLOC_UNBLOCK_INPUT;
1928
1929 data->string = s;
1930 s->data = SDATA_DATA (data);
1931 #ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933 #endif
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
1937 #ifdef GC_CHECK_STRING_OVERRUN
1938 memcpy ((char *) data + needed, string_overrun_cookie,
1939 GC_STRING_OVERRUN_COOKIE_SIZE);
1940 #endif
1941
1942 /* If S had already data assigned, mark that as free by setting its
1943 string back-pointer to null, and recording the size of the data
1944 in it. */
1945 if (old_data)
1946 {
1947 SDATA_NBYTES (old_data) = old_nbytes;
1948 old_data->string = NULL;
1949 }
1950
1951 consing_since_gc += needed;
1952 }
1953
1954
1955 /* Sweep and compact strings. */
1956
1957 static void
1958 sweep_strings (void)
1959 {
1960 struct string_block *b, *next;
1961 struct string_block *live_blocks = NULL;
1962
1963 string_free_list = NULL;
1964 total_strings = total_free_strings = 0;
1965 total_string_size = 0;
1966
1967 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1968 for (b = string_blocks; b; b = next)
1969 {
1970 int i, nfree = 0;
1971 struct Lisp_String *free_list_before = string_free_list;
1972
1973 next = b->next;
1974
1975 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1976 {
1977 struct Lisp_String *s = b->strings + i;
1978
1979 if (s->data)
1980 {
1981 /* String was not on free-list before. */
1982 if (STRING_MARKED_P (s))
1983 {
1984 /* String is live; unmark it and its intervals. */
1985 UNMARK_STRING (s);
1986
1987 if (!NULL_INTERVAL_P (s->intervals))
1988 UNMARK_BALANCE_INTERVALS (s->intervals);
1989
1990 ++total_strings;
1991 total_string_size += STRING_BYTES (s);
1992 }
1993 else
1994 {
1995 /* String is dead. Put it on the free-list. */
1996 struct sdata *data = SDATA_OF_STRING (s);
1997
1998 /* Save the size of S in its sdata so that we know
1999 how large that is. Reset the sdata's string
2000 back-pointer so that we know it's free. */
2001 #ifdef GC_CHECK_STRING_BYTES
2002 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2003 abort ();
2004 #else
2005 data->u.nbytes = GC_STRING_BYTES (s);
2006 #endif
2007 data->string = NULL;
2008
2009 /* Reset the strings's `data' member so that we
2010 know it's free. */
2011 s->data = NULL;
2012
2013 /* Put the string on the free-list. */
2014 NEXT_FREE_LISP_STRING (s) = string_free_list;
2015 string_free_list = s;
2016 ++nfree;
2017 }
2018 }
2019 else
2020 {
2021 /* S was on the free-list before. Put it there again. */
2022 NEXT_FREE_LISP_STRING (s) = string_free_list;
2023 string_free_list = s;
2024 ++nfree;
2025 }
2026 }
2027
2028 /* Free blocks that contain free Lisp_Strings only, except
2029 the first two of them. */
2030 if (nfree == STRING_BLOCK_SIZE
2031 && total_free_strings > STRING_BLOCK_SIZE)
2032 {
2033 lisp_free (b);
2034 --n_string_blocks;
2035 string_free_list = free_list_before;
2036 }
2037 else
2038 {
2039 total_free_strings += nfree;
2040 b->next = live_blocks;
2041 live_blocks = b;
2042 }
2043 }
2044
2045 check_string_free_list ();
2046
2047 string_blocks = live_blocks;
2048 free_large_strings ();
2049 compact_small_strings ();
2050
2051 check_string_free_list ();
2052 }
2053
2054
2055 /* Free dead large strings. */
2056
2057 static void
2058 free_large_strings (void)
2059 {
2060 struct sblock *b, *next;
2061 struct sblock *live_blocks = NULL;
2062
2063 for (b = large_sblocks; b; b = next)
2064 {
2065 next = b->next;
2066
2067 if (b->first_data.string == NULL)
2068 lisp_free (b);
2069 else
2070 {
2071 b->next = live_blocks;
2072 live_blocks = b;
2073 }
2074 }
2075
2076 large_sblocks = live_blocks;
2077 }
2078
2079
2080 /* Compact data of small strings. Free sblocks that don't contain
2081 data of live strings after compaction. */
2082
2083 static void
2084 compact_small_strings (void)
2085 {
2086 struct sblock *b, *tb, *next;
2087 struct sdata *from, *to, *end, *tb_end;
2088 struct sdata *to_end, *from_end;
2089
2090 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2091 to, and TB_END is the end of TB. */
2092 tb = oldest_sblock;
2093 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2094 to = &tb->first_data;
2095
2096 /* Step through the blocks from the oldest to the youngest. We
2097 expect that old blocks will stabilize over time, so that less
2098 copying will happen this way. */
2099 for (b = oldest_sblock; b; b = b->next)
2100 {
2101 end = b->next_free;
2102 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2103
2104 for (from = &b->first_data; from < end; from = from_end)
2105 {
2106 /* Compute the next FROM here because copying below may
2107 overwrite data we need to compute it. */
2108 EMACS_INT nbytes;
2109
2110 #ifdef GC_CHECK_STRING_BYTES
2111 /* Check that the string size recorded in the string is the
2112 same as the one recorded in the sdata structure. */
2113 if (from->string
2114 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2115 abort ();
2116 #endif /* GC_CHECK_STRING_BYTES */
2117
2118 if (from->string)
2119 nbytes = GC_STRING_BYTES (from->string);
2120 else
2121 nbytes = SDATA_NBYTES (from);
2122
2123 if (nbytes > LARGE_STRING_BYTES)
2124 abort ();
2125
2126 nbytes = SDATA_SIZE (nbytes);
2127 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2128
2129 #ifdef GC_CHECK_STRING_OVERRUN
2130 if (memcmp (string_overrun_cookie,
2131 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2132 GC_STRING_OVERRUN_COOKIE_SIZE))
2133 abort ();
2134 #endif
2135
2136 /* FROM->string non-null means it's alive. Copy its data. */
2137 if (from->string)
2138 {
2139 /* If TB is full, proceed with the next sblock. */
2140 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2141 if (to_end > tb_end)
2142 {
2143 tb->next_free = to;
2144 tb = tb->next;
2145 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2146 to = &tb->first_data;
2147 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2148 }
2149
2150 /* Copy, and update the string's `data' pointer. */
2151 if (from != to)
2152 {
2153 xassert (tb != b || to < from);
2154 memmove (to, from, nbytes + GC_STRING_EXTRA);
2155 to->string->data = SDATA_DATA (to);
2156 }
2157
2158 /* Advance past the sdata we copied to. */
2159 to = to_end;
2160 }
2161 }
2162 }
2163
2164 /* The rest of the sblocks following TB don't contain live data, so
2165 we can free them. */
2166 for (b = tb->next; b; b = next)
2167 {
2168 next = b->next;
2169 lisp_free (b);
2170 }
2171
2172 tb->next_free = to;
2173 tb->next = NULL;
2174 current_sblock = tb;
2175 }
2176
2177 void
2178 string_overflow (void)
2179 {
2180 error ("Maximum string size exceeded");
2181 }
2182
2183 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2184 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2185 LENGTH must be an integer.
2186 INIT must be an integer that represents a character. */)
2187 (Lisp_Object length, Lisp_Object init)
2188 {
2189 register Lisp_Object val;
2190 register unsigned char *p, *end;
2191 int c;
2192 EMACS_INT nbytes;
2193
2194 CHECK_NATNUM (length);
2195 CHECK_NUMBER (init);
2196
2197 c = XINT (init);
2198 if (ASCII_CHAR_P (c))
2199 {
2200 nbytes = XINT (length);
2201 val = make_uninit_string (nbytes);
2202 p = SDATA (val);
2203 end = p + SCHARS (val);
2204 while (p != end)
2205 *p++ = c;
2206 }
2207 else
2208 {
2209 unsigned char str[MAX_MULTIBYTE_LENGTH];
2210 int len = CHAR_STRING (c, str);
2211 EMACS_INT string_len = XINT (length);
2212
2213 if (string_len > MOST_POSITIVE_FIXNUM / len)
2214 string_overflow ();
2215 nbytes = len * string_len;
2216 val = make_uninit_multibyte_string (string_len, nbytes);
2217 p = SDATA (val);
2218 end = p + nbytes;
2219 while (p != end)
2220 {
2221 memcpy (p, str, len);
2222 p += len;
2223 }
2224 }
2225
2226 *p = 0;
2227 return val;
2228 }
2229
2230
2231 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2232 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2233 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2234 (Lisp_Object length, Lisp_Object init)
2235 {
2236 register Lisp_Object val;
2237 struct Lisp_Bool_Vector *p;
2238 int real_init, i;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2241
2242 CHECK_NATNUM (length);
2243
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2256
2257 p = XBOOL_VECTOR (val);
2258 p->size = XFASTINT (length);
2259
2260 real_init = (NILP (init) ? 0 : -1);
2261 for (i = 0; i < length_in_chars ; i++)
2262 p->data[i] = real_init;
2263
2264 /* Clear the extraneous bits in the last byte. */
2265 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2266 p->data[length_in_chars - 1]
2267 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2268
2269 return val;
2270 }
2271
2272
2273 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2274 of characters from the contents. This string may be unibyte or
2275 multibyte, depending on the contents. */
2276
2277 Lisp_Object
2278 make_string (const char *contents, EMACS_INT nbytes)
2279 {
2280 register Lisp_Object val;
2281 EMACS_INT nchars, multibyte_nbytes;
2282
2283 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2284 &nchars, &multibyte_nbytes);
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2291 return val;
2292 }
2293
2294
2295 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296
2297 Lisp_Object
2298 make_unibyte_string (const char *contents, EMACS_INT length)
2299 {
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
2302 memcpy (SDATA (val), contents, length);
2303 return val;
2304 }
2305
2306
2307 /* Make a multibyte string from NCHARS characters occupying NBYTES
2308 bytes at CONTENTS. */
2309
2310 Lisp_Object
2311 make_multibyte_string (const char *contents,
2312 EMACS_INT nchars, EMACS_INT nbytes)
2313 {
2314 register Lisp_Object val;
2315 val = make_uninit_multibyte_string (nchars, nbytes);
2316 memcpy (SDATA (val), contents, nbytes);
2317 return val;
2318 }
2319
2320
2321 /* Make a string from NCHARS characters occupying NBYTES bytes at
2322 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2323
2324 Lisp_Object
2325 make_string_from_bytes (const char *contents,
2326 EMACS_INT nchars, EMACS_INT nbytes)
2327 {
2328 register Lisp_Object val;
2329 val = make_uninit_multibyte_string (nchars, nbytes);
2330 memcpy (SDATA (val), contents, nbytes);
2331 if (SBYTES (val) == SCHARS (val))
2332 STRING_SET_UNIBYTE (val);
2333 return val;
2334 }
2335
2336
2337 /* Make a string from NCHARS characters occupying NBYTES bytes at
2338 CONTENTS. The argument MULTIBYTE controls whether to label the
2339 string as multibyte. If NCHARS is negative, it counts the number of
2340 characters by itself. */
2341
2342 Lisp_Object
2343 make_specified_string (const char *contents,
2344 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2345 {
2346 register Lisp_Object val;
2347
2348 if (nchars < 0)
2349 {
2350 if (multibyte)
2351 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2352 nbytes);
2353 else
2354 nchars = nbytes;
2355 }
2356 val = make_uninit_multibyte_string (nchars, nbytes);
2357 memcpy (SDATA (val), contents, nbytes);
2358 if (!multibyte)
2359 STRING_SET_UNIBYTE (val);
2360 return val;
2361 }
2362
2363
2364 /* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2366
2367 Lisp_Object
2368 build_string (const char *str)
2369 {
2370 return make_string (str, strlen (str));
2371 }
2372
2373
2374 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2376
2377 Lisp_Object
2378 make_uninit_string (EMACS_INT length)
2379 {
2380 Lisp_Object val;
2381
2382 if (!length)
2383 return empty_unibyte_string;
2384 val = make_uninit_multibyte_string (length, length);
2385 STRING_SET_UNIBYTE (val);
2386 return val;
2387 }
2388
2389
2390 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2392
2393 Lisp_Object
2394 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2395 {
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2398
2399 if (nchars < 0)
2400 abort ();
2401 if (!nbytes)
2402 return empty_multibyte_string;
2403
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2409 }
2410
2411
2412 \f
2413 /***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2416
2417 /* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
2420 any new float cells from the latest float_block. */
2421
2422 #define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2427
2428 #define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2432
2433 #define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2436
2437 #define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2440
2441 #define FLOAT_BLOCK(fptr) \
2442 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2443
2444 #define FLOAT_INDEX(fptr) \
2445 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2446
2447 struct float_block
2448 {
2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2453 };
2454
2455 #define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2457
2458 #define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2460
2461 #define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2463
2464 /* Current float_block. */
2465
2466 static struct float_block *float_block;
2467
2468 /* Index of first unused Lisp_Float in the current float_block. */
2469
2470 static int float_block_index;
2471
2472 /* Total number of float blocks now in use. */
2473
2474 static int n_float_blocks;
2475
2476 /* Free-list of Lisp_Floats. */
2477
2478 static struct Lisp_Float *float_free_list;
2479
2480
2481 /* Initialize float allocation. */
2482
2483 static void
2484 init_float (void)
2485 {
2486 float_block = NULL;
2487 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2488 float_free_list = 0;
2489 n_float_blocks = 0;
2490 }
2491
2492
2493 /* Return a new float object with value FLOAT_VALUE. */
2494
2495 Lisp_Object
2496 make_float (double float_value)
2497 {
2498 register Lisp_Object val;
2499
2500 /* eassert (!handling_signal); */
2501
2502 MALLOC_BLOCK_INPUT;
2503
2504 if (float_free_list)
2505 {
2506 /* We use the data field for chaining the free list
2507 so that we won't use the same field that has the mark bit. */
2508 XSETFLOAT (val, float_free_list);
2509 float_free_list = float_free_list->u.chain;
2510 }
2511 else
2512 {
2513 if (float_block_index == FLOAT_BLOCK_SIZE)
2514 {
2515 register struct float_block *new;
2516
2517 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2518 MEM_TYPE_FLOAT);
2519 new->next = float_block;
2520 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2521 float_block = new;
2522 float_block_index = 0;
2523 n_float_blocks++;
2524 }
2525 XSETFLOAT (val, &float_block->floats[float_block_index]);
2526 float_block_index++;
2527 }
2528
2529 MALLOC_UNBLOCK_INPUT;
2530
2531 XFLOAT_INIT (val, float_value);
2532 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2533 consing_since_gc += sizeof (struct Lisp_Float);
2534 floats_consed++;
2535 return val;
2536 }
2537
2538
2539 \f
2540 /***********************************************************************
2541 Cons Allocation
2542 ***********************************************************************/
2543
2544 /* We store cons cells inside of cons_blocks, allocating a new
2545 cons_block with malloc whenever necessary. Cons cells reclaimed by
2546 GC are put on a free list to be reallocated before allocating
2547 any new cons cells from the latest cons_block. */
2548
2549 #define CONS_BLOCK_SIZE \
2550 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2551 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2552
2553 #define CONS_BLOCK(fptr) \
2554 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2555
2556 #define CONS_INDEX(fptr) \
2557 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2558
2559 struct cons_block
2560 {
2561 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2562 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2563 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2564 struct cons_block *next;
2565 };
2566
2567 #define CONS_MARKED_P(fptr) \
2568 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2569
2570 #define CONS_MARK(fptr) \
2571 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2572
2573 #define CONS_UNMARK(fptr) \
2574 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2575
2576 /* Current cons_block. */
2577
2578 static struct cons_block *cons_block;
2579
2580 /* Index of first unused Lisp_Cons in the current block. */
2581
2582 static int cons_block_index;
2583
2584 /* Free-list of Lisp_Cons structures. */
2585
2586 static struct Lisp_Cons *cons_free_list;
2587
2588 /* Total number of cons blocks now in use. */
2589
2590 static int n_cons_blocks;
2591
2592
2593 /* Initialize cons allocation. */
2594
2595 static void
2596 init_cons (void)
2597 {
2598 cons_block = NULL;
2599 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2600 cons_free_list = 0;
2601 n_cons_blocks = 0;
2602 }
2603
2604
2605 /* Explicitly free a cons cell by putting it on the free-list. */
2606
2607 void
2608 free_cons (struct Lisp_Cons *ptr)
2609 {
2610 ptr->u.chain = cons_free_list;
2611 #if GC_MARK_STACK
2612 ptr->car = Vdead;
2613 #endif
2614 cons_free_list = ptr;
2615 }
2616
2617 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2618 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2619 (Lisp_Object car, Lisp_Object cdr)
2620 {
2621 register Lisp_Object val;
2622
2623 /* eassert (!handling_signal); */
2624
2625 MALLOC_BLOCK_INPUT;
2626
2627 if (cons_free_list)
2628 {
2629 /* We use the cdr for chaining the free list
2630 so that we won't use the same field that has the mark bit. */
2631 XSETCONS (val, cons_free_list);
2632 cons_free_list = cons_free_list->u.chain;
2633 }
2634 else
2635 {
2636 if (cons_block_index == CONS_BLOCK_SIZE)
2637 {
2638 register struct cons_block *new;
2639 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2640 MEM_TYPE_CONS);
2641 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2642 new->next = cons_block;
2643 cons_block = new;
2644 cons_block_index = 0;
2645 n_cons_blocks++;
2646 }
2647 XSETCONS (val, &cons_block->conses[cons_block_index]);
2648 cons_block_index++;
2649 }
2650
2651 MALLOC_UNBLOCK_INPUT;
2652
2653 XSETCAR (val, car);
2654 XSETCDR (val, cdr);
2655 eassert (!CONS_MARKED_P (XCONS (val)));
2656 consing_since_gc += sizeof (struct Lisp_Cons);
2657 cons_cells_consed++;
2658 return val;
2659 }
2660
2661 #ifdef GC_CHECK_CONS_LIST
2662 /* Get an error now if there's any junk in the cons free list. */
2663 void
2664 check_cons_list (void)
2665 {
2666 struct Lisp_Cons *tail = cons_free_list;
2667
2668 while (tail)
2669 tail = tail->u.chain;
2670 }
2671 #endif
2672
2673 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2674
2675 Lisp_Object
2676 list1 (Lisp_Object arg1)
2677 {
2678 return Fcons (arg1, Qnil);
2679 }
2680
2681 Lisp_Object
2682 list2 (Lisp_Object arg1, Lisp_Object arg2)
2683 {
2684 return Fcons (arg1, Fcons (arg2, Qnil));
2685 }
2686
2687
2688 Lisp_Object
2689 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2692 }
2693
2694
2695 Lisp_Object
2696 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2697 {
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2699 }
2700
2701
2702 Lisp_Object
2703 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2704 {
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2706 Fcons (arg5, Qnil)))));
2707 }
2708
2709
2710 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2711 doc: /* Return a newly created list with specified arguments as elements.
2712 Any number of arguments, even zero arguments, are allowed.
2713 usage: (list &rest OBJECTS) */)
2714 (size_t nargs, register Lisp_Object *args)
2715 {
2716 register Lisp_Object val;
2717 val = Qnil;
2718
2719 while (nargs > 0)
2720 {
2721 nargs--;
2722 val = Fcons (args[nargs], val);
2723 }
2724 return val;
2725 }
2726
2727
2728 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2729 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2730 (register Lisp_Object length, Lisp_Object init)
2731 {
2732 register Lisp_Object val;
2733 register EMACS_INT size;
2734
2735 CHECK_NATNUM (length);
2736 size = XFASTINT (length);
2737
2738 val = Qnil;
2739 while (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
2743
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
2748
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
2753
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
2758
2759 if (size > 0)
2760 {
2761 val = Fcons (init, val);
2762 --size;
2763 }
2764 }
2765 }
2766 }
2767
2768 QUIT;
2769 }
2770
2771 return val;
2772 }
2773
2774
2775 \f
2776 /***********************************************************************
2777 Vector Allocation
2778 ***********************************************************************/
2779
2780 /* Singly-linked list of all vectors. */
2781
2782 static struct Lisp_Vector *all_vectors;
2783
2784 /* Total number of vector-like objects now in use. */
2785
2786 static int n_vectors;
2787
2788
2789 /* Value is a pointer to a newly allocated Lisp_Vector structure
2790 with room for LEN Lisp_Objects. */
2791
2792 static struct Lisp_Vector *
2793 allocate_vectorlike (EMACS_INT len)
2794 {
2795 struct Lisp_Vector *p;
2796 size_t nbytes;
2797
2798 MALLOC_BLOCK_INPUT;
2799
2800 #ifdef DOUG_LEA_MALLOC
2801 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2802 because mapped region contents are not preserved in
2803 a dumped Emacs. */
2804 mallopt (M_MMAP_MAX, 0);
2805 #endif
2806
2807 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2808 /* eassert (!handling_signal); */
2809
2810 nbytes = (offsetof (struct Lisp_Vector, contents)
2811 + len * sizeof p->contents[0]);
2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2813
2814 #ifdef DOUG_LEA_MALLOC
2815 /* Back to a reasonable maximum of mmap'ed areas. */
2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2817 #endif
2818
2819 consing_since_gc += nbytes;
2820 vector_cells_consed += len;
2821
2822 p->header.next.vector = all_vectors;
2823 all_vectors = p;
2824
2825 MALLOC_UNBLOCK_INPUT;
2826
2827 ++n_vectors;
2828 return p;
2829 }
2830
2831
2832 /* Allocate a vector with NSLOTS slots. */
2833
2834 struct Lisp_Vector *
2835 allocate_vector (EMACS_INT nslots)
2836 {
2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2838 v->header.size = nslots;
2839 return v;
2840 }
2841
2842
2843 /* Allocate other vector-like structures. */
2844
2845 struct Lisp_Vector *
2846 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2847 {
2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2849 EMACS_INT i;
2850
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 for (i = 0; i < lisplen; ++i)
2853 v->contents[i] = Qnil;
2854
2855 XSETPVECTYPESIZE (v, tag, lisplen);
2856 return v;
2857 }
2858
2859 struct Lisp_Hash_Table *
2860 allocate_hash_table (void)
2861 {
2862 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2863 }
2864
2865
2866 struct window *
2867 allocate_window (void)
2868 {
2869 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2870 }
2871
2872
2873 struct terminal *
2874 allocate_terminal (void)
2875 {
2876 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2877 next_terminal, PVEC_TERMINAL);
2878 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2879 memset (&t->next_terminal, 0,
2880 (char*) (t + 1) - (char*) &t->next_terminal);
2881
2882 return t;
2883 }
2884
2885 struct frame *
2886 allocate_frame (void)
2887 {
2888 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2889 face_cache, PVEC_FRAME);
2890 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2891 memset (&f->face_cache, 0,
2892 (char *) (f + 1) - (char *) &f->face_cache);
2893 return f;
2894 }
2895
2896
2897 struct Lisp_Process *
2898 allocate_process (void)
2899 {
2900 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2901 }
2902
2903
2904 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2905 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2906 See also the function `vector'. */)
2907 (register Lisp_Object length, Lisp_Object init)
2908 {
2909 Lisp_Object vector;
2910 register EMACS_INT sizei;
2911 register EMACS_INT i;
2912 register struct Lisp_Vector *p;
2913
2914 CHECK_NATNUM (length);
2915 sizei = XFASTINT (length);
2916
2917 p = allocate_vector (sizei);
2918 for (i = 0; i < sizei; i++)
2919 p->contents[i] = init;
2920
2921 XSETVECTOR (vector, p);
2922 return vector;
2923 }
2924
2925
2926 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2927 doc: /* Return a newly created vector with specified arguments as elements.
2928 Any number of arguments, even zero arguments, are allowed.
2929 usage: (vector &rest OBJECTS) */)
2930 (register size_t nargs, Lisp_Object *args)
2931 {
2932 register Lisp_Object len, val;
2933 register size_t i;
2934 register struct Lisp_Vector *p;
2935
2936 XSETFASTINT (len, nargs);
2937 val = Fmake_vector (len, Qnil);
2938 p = XVECTOR (val);
2939 for (i = 0; i < nargs; i++)
2940 p->contents[i] = args[i];
2941 return val;
2942 }
2943
2944
2945 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2946 doc: /* Create a byte-code object with specified arguments as elements.
2947 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2948 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2949 and (optional) INTERACTIVE-SPEC.
2950 The first four arguments are required; at most six have any
2951 significance.
2952 The ARGLIST can be either like the one of `lambda', in which case the arguments
2953 will be dynamically bound before executing the byte code, or it can be an
2954 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2955 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2956 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2957 argument to catch the left-over arguments. If such an integer is used, the
2958 arguments will not be dynamically bound but will be instead pushed on the
2959 stack before executing the byte-code.
2960 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2961 (register size_t nargs, Lisp_Object *args)
2962 {
2963 register Lisp_Object len, val;
2964 register size_t i;
2965 register struct Lisp_Vector *p;
2966
2967 XSETFASTINT (len, nargs);
2968 if (!NILP (Vpurify_flag))
2969 val = make_pure_vector ((EMACS_INT) nargs);
2970 else
2971 val = Fmake_vector (len, Qnil);
2972
2973 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2974 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2975 earlier because they produced a raw 8-bit string for byte-code
2976 and now such a byte-code string is loaded as multibyte while
2977 raw 8-bit characters converted to multibyte form. Thus, now we
2978 must convert them back to the original unibyte form. */
2979 args[1] = Fstring_as_unibyte (args[1]);
2980
2981 p = XVECTOR (val);
2982 for (i = 0; i < nargs; i++)
2983 {
2984 if (!NILP (Vpurify_flag))
2985 args[i] = Fpurecopy (args[i]);
2986 p->contents[i] = args[i];
2987 }
2988 XSETPVECTYPE (p, PVEC_COMPILED);
2989 XSETCOMPILED (val, p);
2990 return val;
2991 }
2992
2993
2994 \f
2995 /***********************************************************************
2996 Symbol Allocation
2997 ***********************************************************************/
2998
2999 /* Each symbol_block is just under 1020 bytes long, since malloc
3000 really allocates in units of powers of two and uses 4 bytes for its
3001 own overhead. */
3002
3003 #define SYMBOL_BLOCK_SIZE \
3004 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3005
3006 struct symbol_block
3007 {
3008 /* Place `symbols' first, to preserve alignment. */
3009 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3010 struct symbol_block *next;
3011 };
3012
3013 /* Current symbol block and index of first unused Lisp_Symbol
3014 structure in it. */
3015
3016 static struct symbol_block *symbol_block;
3017 static int symbol_block_index;
3018
3019 /* List of free symbols. */
3020
3021 static struct Lisp_Symbol *symbol_free_list;
3022
3023 /* Total number of symbol blocks now in use. */
3024
3025 static int n_symbol_blocks;
3026
3027
3028 /* Initialize symbol allocation. */
3029
3030 static void
3031 init_symbol (void)
3032 {
3033 symbol_block = NULL;
3034 symbol_block_index = SYMBOL_BLOCK_SIZE;
3035 symbol_free_list = 0;
3036 n_symbol_blocks = 0;
3037 }
3038
3039
3040 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3041 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3042 Its value and function definition are void, and its property list is nil. */)
3043 (Lisp_Object name)
3044 {
3045 register Lisp_Object val;
3046 register struct Lisp_Symbol *p;
3047
3048 CHECK_STRING (name);
3049
3050 /* eassert (!handling_signal); */
3051
3052 MALLOC_BLOCK_INPUT;
3053
3054 if (symbol_free_list)
3055 {
3056 XSETSYMBOL (val, symbol_free_list);
3057 symbol_free_list = symbol_free_list->next;
3058 }
3059 else
3060 {
3061 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3062 {
3063 struct symbol_block *new;
3064 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3065 MEM_TYPE_SYMBOL);
3066 new->next = symbol_block;
3067 symbol_block = new;
3068 symbol_block_index = 0;
3069 n_symbol_blocks++;
3070 }
3071 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3072 symbol_block_index++;
3073 }
3074
3075 MALLOC_UNBLOCK_INPUT;
3076
3077 p = XSYMBOL (val);
3078 p->xname = name;
3079 p->plist = Qnil;
3080 p->redirect = SYMBOL_PLAINVAL;
3081 SET_SYMBOL_VAL (p, Qunbound);
3082 p->function = Qunbound;
3083 p->next = NULL;
3084 p->gcmarkbit = 0;
3085 p->interned = SYMBOL_UNINTERNED;
3086 p->constant = 0;
3087 p->declared_special = 0;
3088 consing_since_gc += sizeof (struct Lisp_Symbol);
3089 symbols_consed++;
3090 return val;
3091 }
3092
3093
3094 \f
3095 /***********************************************************************
3096 Marker (Misc) Allocation
3097 ***********************************************************************/
3098
3099 /* Allocation of markers and other objects that share that structure.
3100 Works like allocation of conses. */
3101
3102 #define MARKER_BLOCK_SIZE \
3103 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3104
3105 struct marker_block
3106 {
3107 /* Place `markers' first, to preserve alignment. */
3108 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3109 struct marker_block *next;
3110 };
3111
3112 static struct marker_block *marker_block;
3113 static int marker_block_index;
3114
3115 static union Lisp_Misc *marker_free_list;
3116
3117 /* Total number of marker blocks now in use. */
3118
3119 static int n_marker_blocks;
3120
3121 static void
3122 init_marker (void)
3123 {
3124 marker_block = NULL;
3125 marker_block_index = MARKER_BLOCK_SIZE;
3126 marker_free_list = 0;
3127 n_marker_blocks = 0;
3128 }
3129
3130 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3131
3132 Lisp_Object
3133 allocate_misc (void)
3134 {
3135 Lisp_Object val;
3136
3137 /* eassert (!handling_signal); */
3138
3139 MALLOC_BLOCK_INPUT;
3140
3141 if (marker_free_list)
3142 {
3143 XSETMISC (val, marker_free_list);
3144 marker_free_list = marker_free_list->u_free.chain;
3145 }
3146 else
3147 {
3148 if (marker_block_index == MARKER_BLOCK_SIZE)
3149 {
3150 struct marker_block *new;
3151 new = (struct marker_block *) lisp_malloc (sizeof *new,
3152 MEM_TYPE_MISC);
3153 new->next = marker_block;
3154 marker_block = new;
3155 marker_block_index = 0;
3156 n_marker_blocks++;
3157 total_free_markers += MARKER_BLOCK_SIZE;
3158 }
3159 XSETMISC (val, &marker_block->markers[marker_block_index]);
3160 marker_block_index++;
3161 }
3162
3163 MALLOC_UNBLOCK_INPUT;
3164
3165 --total_free_markers;
3166 consing_since_gc += sizeof (union Lisp_Misc);
3167 misc_objects_consed++;
3168 XMISCANY (val)->gcmarkbit = 0;
3169 return val;
3170 }
3171
3172 /* Free a Lisp_Misc object */
3173
3174 static void
3175 free_misc (Lisp_Object misc)
3176 {
3177 XMISCTYPE (misc) = Lisp_Misc_Free;
3178 XMISC (misc)->u_free.chain = marker_free_list;
3179 marker_free_list = XMISC (misc);
3180
3181 total_free_markers++;
3182 }
3183
3184 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3185 INTEGER. This is used to package C values to call record_unwind_protect.
3186 The unwind function can get the C values back using XSAVE_VALUE. */
3187
3188 Lisp_Object
3189 make_save_value (void *pointer, int integer)
3190 {
3191 register Lisp_Object val;
3192 register struct Lisp_Save_Value *p;
3193
3194 val = allocate_misc ();
3195 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3196 p = XSAVE_VALUE (val);
3197 p->pointer = pointer;
3198 p->integer = integer;
3199 p->dogc = 0;
3200 return val;
3201 }
3202
3203 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3204 doc: /* Return a newly allocated marker which does not point at any place. */)
3205 (void)
3206 {
3207 register Lisp_Object val;
3208 register struct Lisp_Marker *p;
3209
3210 val = allocate_misc ();
3211 XMISCTYPE (val) = Lisp_Misc_Marker;
3212 p = XMARKER (val);
3213 p->buffer = 0;
3214 p->bytepos = 0;
3215 p->charpos = 0;
3216 p->next = NULL;
3217 p->insertion_type = 0;
3218 return val;
3219 }
3220
3221 /* Put MARKER back on the free list after using it temporarily. */
3222
3223 void
3224 free_marker (Lisp_Object marker)
3225 {
3226 unchain_marker (XMARKER (marker));
3227 free_misc (marker);
3228 }
3229
3230 \f
3231 /* Return a newly created vector or string with specified arguments as
3232 elements. If all the arguments are characters that can fit
3233 in a string of events, make a string; otherwise, make a vector.
3234
3235 Any number of arguments, even zero arguments, are allowed. */
3236
3237 Lisp_Object
3238 make_event_array (register int nargs, Lisp_Object *args)
3239 {
3240 int i;
3241
3242 for (i = 0; i < nargs; i++)
3243 /* The things that fit in a string
3244 are characters that are in 0...127,
3245 after discarding the meta bit and all the bits above it. */
3246 if (!INTEGERP (args[i])
3247 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3248 return Fvector (nargs, args);
3249
3250 /* Since the loop exited, we know that all the things in it are
3251 characters, so we can make a string. */
3252 {
3253 Lisp_Object result;
3254
3255 result = Fmake_string (make_number (nargs), make_number (0));
3256 for (i = 0; i < nargs; i++)
3257 {
3258 SSET (result, i, XINT (args[i]));
3259 /* Move the meta bit to the right place for a string char. */
3260 if (XINT (args[i]) & CHAR_META)
3261 SSET (result, i, SREF (result, i) | 0x80);
3262 }
3263
3264 return result;
3265 }
3266 }
3267
3268
3269 \f
3270 /************************************************************************
3271 Memory Full Handling
3272 ************************************************************************/
3273
3274
3275 /* Called if malloc returns zero. */
3276
3277 void
3278 memory_full (void)
3279 {
3280 int i;
3281
3282 Vmemory_full = Qt;
3283
3284 memory_full_cons_threshold = sizeof (struct cons_block);
3285
3286 /* The first time we get here, free the spare memory. */
3287 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3288 if (spare_memory[i])
3289 {
3290 if (i == 0)
3291 free (spare_memory[i]);
3292 else if (i >= 1 && i <= 4)
3293 lisp_align_free (spare_memory[i]);
3294 else
3295 lisp_free (spare_memory[i]);
3296 spare_memory[i] = 0;
3297 }
3298
3299 /* Record the space now used. When it decreases substantially,
3300 we can refill the memory reserve. */
3301 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3302 bytes_used_when_full = BYTES_USED;
3303 #endif
3304
3305 /* This used to call error, but if we've run out of memory, we could
3306 get infinite recursion trying to build the string. */
3307 xsignal (Qnil, Vmemory_signal_data);
3308 }
3309
3310 /* If we released our reserve (due to running out of memory),
3311 and we have a fair amount free once again,
3312 try to set aside another reserve in case we run out once more.
3313
3314 This is called when a relocatable block is freed in ralloc.c,
3315 and also directly from this file, in case we're not using ralloc.c. */
3316
3317 void
3318 refill_memory_reserve (void)
3319 {
3320 #ifndef SYSTEM_MALLOC
3321 if (spare_memory[0] == 0)
3322 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3323 if (spare_memory[1] == 0)
3324 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3325 MEM_TYPE_CONS);
3326 if (spare_memory[2] == 0)
3327 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3328 MEM_TYPE_CONS);
3329 if (spare_memory[3] == 0)
3330 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3331 MEM_TYPE_CONS);
3332 if (spare_memory[4] == 0)
3333 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3334 MEM_TYPE_CONS);
3335 if (spare_memory[5] == 0)
3336 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3337 MEM_TYPE_STRING);
3338 if (spare_memory[6] == 0)
3339 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3340 MEM_TYPE_STRING);
3341 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3342 Vmemory_full = Qnil;
3343 #endif
3344 }
3345 \f
3346 /************************************************************************
3347 C Stack Marking
3348 ************************************************************************/
3349
3350 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3351
3352 /* Conservative C stack marking requires a method to identify possibly
3353 live Lisp objects given a pointer value. We do this by keeping
3354 track of blocks of Lisp data that are allocated in a red-black tree
3355 (see also the comment of mem_node which is the type of nodes in
3356 that tree). Function lisp_malloc adds information for an allocated
3357 block to the red-black tree with calls to mem_insert, and function
3358 lisp_free removes it with mem_delete. Functions live_string_p etc
3359 call mem_find to lookup information about a given pointer in the
3360 tree, and use that to determine if the pointer points to a Lisp
3361 object or not. */
3362
3363 /* Initialize this part of alloc.c. */
3364
3365 static void
3366 mem_init (void)
3367 {
3368 mem_z.left = mem_z.right = MEM_NIL;
3369 mem_z.parent = NULL;
3370 mem_z.color = MEM_BLACK;
3371 mem_z.start = mem_z.end = NULL;
3372 mem_root = MEM_NIL;
3373 }
3374
3375
3376 /* Value is a pointer to the mem_node containing START. Value is
3377 MEM_NIL if there is no node in the tree containing START. */
3378
3379 static INLINE struct mem_node *
3380 mem_find (void *start)
3381 {
3382 struct mem_node *p;
3383
3384 if (start < min_heap_address || start > max_heap_address)
3385 return MEM_NIL;
3386
3387 /* Make the search always successful to speed up the loop below. */
3388 mem_z.start = start;
3389 mem_z.end = (char *) start + 1;
3390
3391 p = mem_root;
3392 while (start < p->start || start >= p->end)
3393 p = start < p->start ? p->left : p->right;
3394 return p;
3395 }
3396
3397
3398 /* Insert a new node into the tree for a block of memory with start
3399 address START, end address END, and type TYPE. Value is a
3400 pointer to the node that was inserted. */
3401
3402 static struct mem_node *
3403 mem_insert (void *start, void *end, enum mem_type type)
3404 {
3405 struct mem_node *c, *parent, *x;
3406
3407 if (min_heap_address == NULL || start < min_heap_address)
3408 min_heap_address = start;
3409 if (max_heap_address == NULL || end > max_heap_address)
3410 max_heap_address = end;
3411
3412 /* See where in the tree a node for START belongs. In this
3413 particular application, it shouldn't happen that a node is already
3414 present. For debugging purposes, let's check that. */
3415 c = mem_root;
3416 parent = NULL;
3417
3418 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3419
3420 while (c != MEM_NIL)
3421 {
3422 if (start >= c->start && start < c->end)
3423 abort ();
3424 parent = c;
3425 c = start < c->start ? c->left : c->right;
3426 }
3427
3428 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3429
3430 while (c != MEM_NIL)
3431 {
3432 parent = c;
3433 c = start < c->start ? c->left : c->right;
3434 }
3435
3436 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3437
3438 /* Create a new node. */
3439 #ifdef GC_MALLOC_CHECK
3440 x = (struct mem_node *) _malloc_internal (sizeof *x);
3441 if (x == NULL)
3442 abort ();
3443 #else
3444 x = (struct mem_node *) xmalloc (sizeof *x);
3445 #endif
3446 x->start = start;
3447 x->end = end;
3448 x->type = type;
3449 x->parent = parent;
3450 x->left = x->right = MEM_NIL;
3451 x->color = MEM_RED;
3452
3453 /* Insert it as child of PARENT or install it as root. */
3454 if (parent)
3455 {
3456 if (start < parent->start)
3457 parent->left = x;
3458 else
3459 parent->right = x;
3460 }
3461 else
3462 mem_root = x;
3463
3464 /* Re-establish red-black tree properties. */
3465 mem_insert_fixup (x);
3466
3467 return x;
3468 }
3469
3470
3471 /* Re-establish the red-black properties of the tree, and thereby
3472 balance the tree, after node X has been inserted; X is always red. */
3473
3474 static void
3475 mem_insert_fixup (struct mem_node *x)
3476 {
3477 while (x != mem_root && x->parent->color == MEM_RED)
3478 {
3479 /* X is red and its parent is red. This is a violation of
3480 red-black tree property #3. */
3481
3482 if (x->parent == x->parent->parent->left)
3483 {
3484 /* We're on the left side of our grandparent, and Y is our
3485 "uncle". */
3486 struct mem_node *y = x->parent->parent->right;
3487
3488 if (y->color == MEM_RED)
3489 {
3490 /* Uncle and parent are red but should be black because
3491 X is red. Change the colors accordingly and proceed
3492 with the grandparent. */
3493 x->parent->color = MEM_BLACK;
3494 y->color = MEM_BLACK;
3495 x->parent->parent->color = MEM_RED;
3496 x = x->parent->parent;
3497 }
3498 else
3499 {
3500 /* Parent and uncle have different colors; parent is
3501 red, uncle is black. */
3502 if (x == x->parent->right)
3503 {
3504 x = x->parent;
3505 mem_rotate_left (x);
3506 }
3507
3508 x->parent->color = MEM_BLACK;
3509 x->parent->parent->color = MEM_RED;
3510 mem_rotate_right (x->parent->parent);
3511 }
3512 }
3513 else
3514 {
3515 /* This is the symmetrical case of above. */
3516 struct mem_node *y = x->parent->parent->left;
3517
3518 if (y->color == MEM_RED)
3519 {
3520 x->parent->color = MEM_BLACK;
3521 y->color = MEM_BLACK;
3522 x->parent->parent->color = MEM_RED;
3523 x = x->parent->parent;
3524 }
3525 else
3526 {
3527 if (x == x->parent->left)
3528 {
3529 x = x->parent;
3530 mem_rotate_right (x);
3531 }
3532
3533 x->parent->color = MEM_BLACK;
3534 x->parent->parent->color = MEM_RED;
3535 mem_rotate_left (x->parent->parent);
3536 }
3537 }
3538 }
3539
3540 /* The root may have been changed to red due to the algorithm. Set
3541 it to black so that property #5 is satisfied. */
3542 mem_root->color = MEM_BLACK;
3543 }
3544
3545
3546 /* (x) (y)
3547 / \ / \
3548 a (y) ===> (x) c
3549 / \ / \
3550 b c a b */
3551
3552 static void
3553 mem_rotate_left (struct mem_node *x)
3554 {
3555 struct mem_node *y;
3556
3557 /* Turn y's left sub-tree into x's right sub-tree. */
3558 y = x->right;
3559 x->right = y->left;
3560 if (y->left != MEM_NIL)
3561 y->left->parent = x;
3562
3563 /* Y's parent was x's parent. */
3564 if (y != MEM_NIL)
3565 y->parent = x->parent;
3566
3567 /* Get the parent to point to y instead of x. */
3568 if (x->parent)
3569 {
3570 if (x == x->parent->left)
3571 x->parent->left = y;
3572 else
3573 x->parent->right = y;
3574 }
3575 else
3576 mem_root = y;
3577
3578 /* Put x on y's left. */
3579 y->left = x;
3580 if (x != MEM_NIL)
3581 x->parent = y;
3582 }
3583
3584
3585 /* (x) (Y)
3586 / \ / \
3587 (y) c ===> a (x)
3588 / \ / \
3589 a b b c */
3590
3591 static void
3592 mem_rotate_right (struct mem_node *x)
3593 {
3594 struct mem_node *y = x->left;
3595
3596 x->left = y->right;
3597 if (y->right != MEM_NIL)
3598 y->right->parent = x;
3599
3600 if (y != MEM_NIL)
3601 y->parent = x->parent;
3602 if (x->parent)
3603 {
3604 if (x == x->parent->right)
3605 x->parent->right = y;
3606 else
3607 x->parent->left = y;
3608 }
3609 else
3610 mem_root = y;
3611
3612 y->right = x;
3613 if (x != MEM_NIL)
3614 x->parent = y;
3615 }
3616
3617
3618 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3619
3620 static void
3621 mem_delete (struct mem_node *z)
3622 {
3623 struct mem_node *x, *y;
3624
3625 if (!z || z == MEM_NIL)
3626 return;
3627
3628 if (z->left == MEM_NIL || z->right == MEM_NIL)
3629 y = z;
3630 else
3631 {
3632 y = z->right;
3633 while (y->left != MEM_NIL)
3634 y = y->left;
3635 }
3636
3637 if (y->left != MEM_NIL)
3638 x = y->left;
3639 else
3640 x = y->right;
3641
3642 x->parent = y->parent;
3643 if (y->parent)
3644 {
3645 if (y == y->parent->left)
3646 y->parent->left = x;
3647 else
3648 y->parent->right = x;
3649 }
3650 else
3651 mem_root = x;
3652
3653 if (y != z)
3654 {
3655 z->start = y->start;
3656 z->end = y->end;
3657 z->type = y->type;
3658 }
3659
3660 if (y->color == MEM_BLACK)
3661 mem_delete_fixup (x);
3662
3663 #ifdef GC_MALLOC_CHECK
3664 _free_internal (y);
3665 #else
3666 xfree (y);
3667 #endif
3668 }
3669
3670
3671 /* Re-establish the red-black properties of the tree, after a
3672 deletion. */
3673
3674 static void
3675 mem_delete_fixup (struct mem_node *x)
3676 {
3677 while (x != mem_root && x->color == MEM_BLACK)
3678 {
3679 if (x == x->parent->left)
3680 {
3681 struct mem_node *w = x->parent->right;
3682
3683 if (w->color == MEM_RED)
3684 {
3685 w->color = MEM_BLACK;
3686 x->parent->color = MEM_RED;
3687 mem_rotate_left (x->parent);
3688 w = x->parent->right;
3689 }
3690
3691 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3692 {
3693 w->color = MEM_RED;
3694 x = x->parent;
3695 }
3696 else
3697 {
3698 if (w->right->color == MEM_BLACK)
3699 {
3700 w->left->color = MEM_BLACK;
3701 w->color = MEM_RED;
3702 mem_rotate_right (w);
3703 w = x->parent->right;
3704 }
3705 w->color = x->parent->color;
3706 x->parent->color = MEM_BLACK;
3707 w->right->color = MEM_BLACK;
3708 mem_rotate_left (x->parent);
3709 x = mem_root;
3710 }
3711 }
3712 else
3713 {
3714 struct mem_node *w = x->parent->left;
3715
3716 if (w->color == MEM_RED)
3717 {
3718 w->color = MEM_BLACK;
3719 x->parent->color = MEM_RED;
3720 mem_rotate_right (x->parent);
3721 w = x->parent->left;
3722 }
3723
3724 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3725 {
3726 w->color = MEM_RED;
3727 x = x->parent;
3728 }
3729 else
3730 {
3731 if (w->left->color == MEM_BLACK)
3732 {
3733 w->right->color = MEM_BLACK;
3734 w->color = MEM_RED;
3735 mem_rotate_left (w);
3736 w = x->parent->left;
3737 }
3738
3739 w->color = x->parent->color;
3740 x->parent->color = MEM_BLACK;
3741 w->left->color = MEM_BLACK;
3742 mem_rotate_right (x->parent);
3743 x = mem_root;
3744 }
3745 }
3746 }
3747
3748 x->color = MEM_BLACK;
3749 }
3750
3751
3752 /* Value is non-zero if P is a pointer to a live Lisp string on
3753 the heap. M is a pointer to the mem_block for P. */
3754
3755 static INLINE int
3756 live_string_p (struct mem_node *m, void *p)
3757 {
3758 if (m->type == MEM_TYPE_STRING)
3759 {
3760 struct string_block *b = (struct string_block *) m->start;
3761 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3762
3763 /* P must point to the start of a Lisp_String structure, and it
3764 must not be on the free-list. */
3765 return (offset >= 0
3766 && offset % sizeof b->strings[0] == 0
3767 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3768 && ((struct Lisp_String *) p)->data != NULL);
3769 }
3770 else
3771 return 0;
3772 }
3773
3774
3775 /* Value is non-zero if P is a pointer to a live Lisp cons on
3776 the heap. M is a pointer to the mem_block for P. */
3777
3778 static INLINE int
3779 live_cons_p (struct mem_node *m, void *p)
3780 {
3781 if (m->type == MEM_TYPE_CONS)
3782 {
3783 struct cons_block *b = (struct cons_block *) m->start;
3784 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3785
3786 /* P must point to the start of a Lisp_Cons, not be
3787 one of the unused cells in the current cons block,
3788 and not be on the free-list. */
3789 return (offset >= 0
3790 && offset % sizeof b->conses[0] == 0
3791 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3792 && (b != cons_block
3793 || offset / sizeof b->conses[0] < cons_block_index)
3794 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3795 }
3796 else
3797 return 0;
3798 }
3799
3800
3801 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3802 the heap. M is a pointer to the mem_block for P. */
3803
3804 static INLINE int
3805 live_symbol_p (struct mem_node *m, void *p)
3806 {
3807 if (m->type == MEM_TYPE_SYMBOL)
3808 {
3809 struct symbol_block *b = (struct symbol_block *) m->start;
3810 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3811
3812 /* P must point to the start of a Lisp_Symbol, not be
3813 one of the unused cells in the current symbol block,
3814 and not be on the free-list. */
3815 return (offset >= 0
3816 && offset % sizeof b->symbols[0] == 0
3817 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3818 && (b != symbol_block
3819 || offset / sizeof b->symbols[0] < symbol_block_index)
3820 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3821 }
3822 else
3823 return 0;
3824 }
3825
3826
3827 /* Value is non-zero if P is a pointer to a live Lisp float on
3828 the heap. M is a pointer to the mem_block for P. */
3829
3830 static INLINE int
3831 live_float_p (struct mem_node *m, void *p)
3832 {
3833 if (m->type == MEM_TYPE_FLOAT)
3834 {
3835 struct float_block *b = (struct float_block *) m->start;
3836 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3837
3838 /* P must point to the start of a Lisp_Float and not be
3839 one of the unused cells in the current float block. */
3840 return (offset >= 0
3841 && offset % sizeof b->floats[0] == 0
3842 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3843 && (b != float_block
3844 || offset / sizeof b->floats[0] < float_block_index));
3845 }
3846 else
3847 return 0;
3848 }
3849
3850
3851 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3852 the heap. M is a pointer to the mem_block for P. */
3853
3854 static INLINE int
3855 live_misc_p (struct mem_node *m, void *p)
3856 {
3857 if (m->type == MEM_TYPE_MISC)
3858 {
3859 struct marker_block *b = (struct marker_block *) m->start;
3860 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3861
3862 /* P must point to the start of a Lisp_Misc, not be
3863 one of the unused cells in the current misc block,
3864 and not be on the free-list. */
3865 return (offset >= 0
3866 && offset % sizeof b->markers[0] == 0
3867 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3868 && (b != marker_block
3869 || offset / sizeof b->markers[0] < marker_block_index)
3870 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3871 }
3872 else
3873 return 0;
3874 }
3875
3876
3877 /* Value is non-zero if P is a pointer to a live vector-like object.
3878 M is a pointer to the mem_block for P. */
3879
3880 static INLINE int
3881 live_vector_p (struct mem_node *m, void *p)
3882 {
3883 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3884 }
3885
3886
3887 /* Value is non-zero if P is a pointer to a live buffer. M is a
3888 pointer to the mem_block for P. */
3889
3890 static INLINE int
3891 live_buffer_p (struct mem_node *m, void *p)
3892 {
3893 /* P must point to the start of the block, and the buffer
3894 must not have been killed. */
3895 return (m->type == MEM_TYPE_BUFFER
3896 && p == m->start
3897 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3898 }
3899
3900 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3901
3902 #if GC_MARK_STACK
3903
3904 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3905
3906 /* Array of objects that are kept alive because the C stack contains
3907 a pattern that looks like a reference to them . */
3908
3909 #define MAX_ZOMBIES 10
3910 static Lisp_Object zombies[MAX_ZOMBIES];
3911
3912 /* Number of zombie objects. */
3913
3914 static int nzombies;
3915
3916 /* Number of garbage collections. */
3917
3918 static int ngcs;
3919
3920 /* Average percentage of zombies per collection. */
3921
3922 static double avg_zombies;
3923
3924 /* Max. number of live and zombie objects. */
3925
3926 static int max_live, max_zombies;
3927
3928 /* Average number of live objects per GC. */
3929
3930 static double avg_live;
3931
3932 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3933 doc: /* Show information about live and zombie objects. */)
3934 (void)
3935 {
3936 Lisp_Object args[8], zombie_list = Qnil;
3937 int i;
3938 for (i = 0; i < nzombies; i++)
3939 zombie_list = Fcons (zombies[i], zombie_list);
3940 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3941 args[1] = make_number (ngcs);
3942 args[2] = make_float (avg_live);
3943 args[3] = make_float (avg_zombies);
3944 args[4] = make_float (avg_zombies / avg_live / 100);
3945 args[5] = make_number (max_live);
3946 args[6] = make_number (max_zombies);
3947 args[7] = zombie_list;
3948 return Fmessage (8, args);
3949 }
3950
3951 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3952
3953
3954 /* Mark OBJ if we can prove it's a Lisp_Object. */
3955
3956 static INLINE void
3957 mark_maybe_object (Lisp_Object obj)
3958 {
3959 void *po;
3960 struct mem_node *m;
3961
3962 if (INTEGERP (obj))
3963 return;
3964
3965 po = (void *) XPNTR (obj);
3966 m = mem_find (po);
3967
3968 if (m != MEM_NIL)
3969 {
3970 int mark_p = 0;
3971
3972 switch (XTYPE (obj))
3973 {
3974 case Lisp_String:
3975 mark_p = (live_string_p (m, po)
3976 && !STRING_MARKED_P ((struct Lisp_String *) po));
3977 break;
3978
3979 case Lisp_Cons:
3980 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3981 break;
3982
3983 case Lisp_Symbol:
3984 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3985 break;
3986
3987 case Lisp_Float:
3988 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3989 break;
3990
3991 case Lisp_Vectorlike:
3992 /* Note: can't check BUFFERP before we know it's a
3993 buffer because checking that dereferences the pointer
3994 PO which might point anywhere. */
3995 if (live_vector_p (m, po))
3996 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3997 else if (live_buffer_p (m, po))
3998 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3999 break;
4000
4001 case Lisp_Misc:
4002 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4003 break;
4004
4005 default:
4006 break;
4007 }
4008
4009 if (mark_p)
4010 {
4011 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4012 if (nzombies < MAX_ZOMBIES)
4013 zombies[nzombies] = obj;
4014 ++nzombies;
4015 #endif
4016 mark_object (obj);
4017 }
4018 }
4019 }
4020
4021
4022 /* If P points to Lisp data, mark that as live if it isn't already
4023 marked. */
4024
4025 static INLINE void
4026 mark_maybe_pointer (void *p)
4027 {
4028 struct mem_node *m;
4029
4030 /* Quickly rule out some values which can't point to Lisp data. */
4031 if ((intptr_t) p %
4032 #ifdef USE_LSB_TAG
4033 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4034 #else
4035 2 /* We assume that Lisp data is aligned on even addresses. */
4036 #endif
4037 )
4038 return;
4039
4040 m = mem_find (p);
4041 if (m != MEM_NIL)
4042 {
4043 Lisp_Object obj = Qnil;
4044
4045 switch (m->type)
4046 {
4047 case MEM_TYPE_NON_LISP:
4048 /* Nothing to do; not a pointer to Lisp memory. */
4049 break;
4050
4051 case MEM_TYPE_BUFFER:
4052 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4053 XSETVECTOR (obj, p);
4054 break;
4055
4056 case MEM_TYPE_CONS:
4057 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4058 XSETCONS (obj, p);
4059 break;
4060
4061 case MEM_TYPE_STRING:
4062 if (live_string_p (m, p)
4063 && !STRING_MARKED_P ((struct Lisp_String *) p))
4064 XSETSTRING (obj, p);
4065 break;
4066
4067 case MEM_TYPE_MISC:
4068 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4069 XSETMISC (obj, p);
4070 break;
4071
4072 case MEM_TYPE_SYMBOL:
4073 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4074 XSETSYMBOL (obj, p);
4075 break;
4076
4077 case MEM_TYPE_FLOAT:
4078 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4079 XSETFLOAT (obj, p);
4080 break;
4081
4082 case MEM_TYPE_VECTORLIKE:
4083 if (live_vector_p (m, p))
4084 {
4085 Lisp_Object tem;
4086 XSETVECTOR (tem, p);
4087 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4088 obj = tem;
4089 }
4090 break;
4091
4092 default:
4093 abort ();
4094 }
4095
4096 if (!NILP (obj))
4097 mark_object (obj);
4098 }
4099 }
4100
4101
4102 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4103 or END+OFFSET..START. */
4104
4105 static void
4106 mark_memory (void *start, void *end, int offset)
4107 {
4108 Lisp_Object *p;
4109 void **pp;
4110
4111 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4112 nzombies = 0;
4113 #endif
4114
4115 /* Make START the pointer to the start of the memory region,
4116 if it isn't already. */
4117 if (end < start)
4118 {
4119 void *tem = start;
4120 start = end;
4121 end = tem;
4122 }
4123
4124 /* Mark Lisp_Objects. */
4125 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4126 mark_maybe_object (*p);
4127
4128 /* Mark Lisp data pointed to. This is necessary because, in some
4129 situations, the C compiler optimizes Lisp objects away, so that
4130 only a pointer to them remains. Example:
4131
4132 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4133 ()
4134 {
4135 Lisp_Object obj = build_string ("test");
4136 struct Lisp_String *s = XSTRING (obj);
4137 Fgarbage_collect ();
4138 fprintf (stderr, "test `%s'\n", s->data);
4139 return Qnil;
4140 }
4141
4142 Here, `obj' isn't really used, and the compiler optimizes it
4143 away. The only reference to the life string is through the
4144 pointer `s'. */
4145
4146 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4147 mark_maybe_pointer (*pp);
4148 }
4149
4150 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4151 the GCC system configuration. In gcc 3.2, the only systems for
4152 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4153 by others?) and ns32k-pc532-min. */
4154
4155 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4156
4157 static int setjmp_tested_p, longjmps_done;
4158
4159 #define SETJMP_WILL_LIKELY_WORK "\
4160 \n\
4161 Emacs garbage collector has been changed to use conservative stack\n\
4162 marking. Emacs has determined that the method it uses to do the\n\
4163 marking will likely work on your system, but this isn't sure.\n\
4164 \n\
4165 If you are a system-programmer, or can get the help of a local wizard\n\
4166 who is, please take a look at the function mark_stack in alloc.c, and\n\
4167 verify that the methods used are appropriate for your system.\n\
4168 \n\
4169 Please mail the result to <emacs-devel@gnu.org>.\n\
4170 "
4171
4172 #define SETJMP_WILL_NOT_WORK "\
4173 \n\
4174 Emacs garbage collector has been changed to use conservative stack\n\
4175 marking. Emacs has determined that the default method it uses to do the\n\
4176 marking will not work on your system. We will need a system-dependent\n\
4177 solution for your system.\n\
4178 \n\
4179 Please take a look at the function mark_stack in alloc.c, and\n\
4180 try to find a way to make it work on your system.\n\
4181 \n\
4182 Note that you may get false negatives, depending on the compiler.\n\
4183 In particular, you need to use -O with GCC for this test.\n\
4184 \n\
4185 Please mail the result to <emacs-devel@gnu.org>.\n\
4186 "
4187
4188
4189 /* Perform a quick check if it looks like setjmp saves registers in a
4190 jmp_buf. Print a message to stderr saying so. When this test
4191 succeeds, this is _not_ a proof that setjmp is sufficient for
4192 conservative stack marking. Only the sources or a disassembly
4193 can prove that. */
4194
4195 static void
4196 test_setjmp (void)
4197 {
4198 char buf[10];
4199 register int x;
4200 jmp_buf jbuf;
4201 int result = 0;
4202
4203 /* Arrange for X to be put in a register. */
4204 sprintf (buf, "1");
4205 x = strlen (buf);
4206 x = 2 * x - 1;
4207
4208 setjmp (jbuf);
4209 if (longjmps_done == 1)
4210 {
4211 /* Came here after the longjmp at the end of the function.
4212
4213 If x == 1, the longjmp has restored the register to its
4214 value before the setjmp, and we can hope that setjmp
4215 saves all such registers in the jmp_buf, although that
4216 isn't sure.
4217
4218 For other values of X, either something really strange is
4219 taking place, or the setjmp just didn't save the register. */
4220
4221 if (x == 1)
4222 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4223 else
4224 {
4225 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4226 exit (1);
4227 }
4228 }
4229
4230 ++longjmps_done;
4231 x = 2;
4232 if (longjmps_done == 1)
4233 longjmp (jbuf, 1);
4234 }
4235
4236 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4237
4238
4239 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4240
4241 /* Abort if anything GCPRO'd doesn't survive the GC. */
4242
4243 static void
4244 check_gcpros (void)
4245 {
4246 struct gcpro *p;
4247 size_t i;
4248
4249 for (p = gcprolist; p; p = p->next)
4250 for (i = 0; i < p->nvars; ++i)
4251 if (!survives_gc_p (p->var[i]))
4252 /* FIXME: It's not necessarily a bug. It might just be that the
4253 GCPRO is unnecessary or should release the object sooner. */
4254 abort ();
4255 }
4256
4257 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258
4259 static void
4260 dump_zombies (void)
4261 {
4262 int i;
4263
4264 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4265 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4266 {
4267 fprintf (stderr, " %d = ", i);
4268 debug_print (zombies[i]);
4269 }
4270 }
4271
4272 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4273
4274
4275 /* Mark live Lisp objects on the C stack.
4276
4277 There are several system-dependent problems to consider when
4278 porting this to new architectures:
4279
4280 Processor Registers
4281
4282 We have to mark Lisp objects in CPU registers that can hold local
4283 variables or are used to pass parameters.
4284
4285 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4286 something that either saves relevant registers on the stack, or
4287 calls mark_maybe_object passing it each register's contents.
4288
4289 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4290 implementation assumes that calling setjmp saves registers we need
4291 to see in a jmp_buf which itself lies on the stack. This doesn't
4292 have to be true! It must be verified for each system, possibly
4293 by taking a look at the source code of setjmp.
4294
4295 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4296 can use it as a machine independent method to store all registers
4297 to the stack. In this case the macros described in the previous
4298 two paragraphs are not used.
4299
4300 Stack Layout
4301
4302 Architectures differ in the way their processor stack is organized.
4303 For example, the stack might look like this
4304
4305 +----------------+
4306 | Lisp_Object | size = 4
4307 +----------------+
4308 | something else | size = 2
4309 +----------------+
4310 | Lisp_Object | size = 4
4311 +----------------+
4312 | ... |
4313
4314 In such a case, not every Lisp_Object will be aligned equally. To
4315 find all Lisp_Object on the stack it won't be sufficient to walk
4316 the stack in steps of 4 bytes. Instead, two passes will be
4317 necessary, one starting at the start of the stack, and a second
4318 pass starting at the start of the stack + 2. Likewise, if the
4319 minimal alignment of Lisp_Objects on the stack is 1, four passes
4320 would be necessary, each one starting with one byte more offset
4321 from the stack start.
4322
4323 The current code assumes by default that Lisp_Objects are aligned
4324 equally on the stack. */
4325
4326 static void
4327 mark_stack (void)
4328 {
4329 int i;
4330 void *end;
4331
4332 #ifdef HAVE___BUILTIN_UNWIND_INIT
4333 /* Force callee-saved registers and register windows onto the stack.
4334 This is the preferred method if available, obviating the need for
4335 machine dependent methods. */
4336 __builtin_unwind_init ();
4337 end = &end;
4338 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4339 #ifndef GC_SAVE_REGISTERS_ON_STACK
4340 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4341 union aligned_jmpbuf {
4342 Lisp_Object o;
4343 jmp_buf j;
4344 } j;
4345 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4346 #endif
4347 /* This trick flushes the register windows so that all the state of
4348 the process is contained in the stack. */
4349 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4350 needed on ia64 too. See mach_dep.c, where it also says inline
4351 assembler doesn't work with relevant proprietary compilers. */
4352 #ifdef __sparc__
4353 #if defined (__sparc64__) && defined (__FreeBSD__)
4354 /* FreeBSD does not have a ta 3 handler. */
4355 asm ("flushw");
4356 #else
4357 asm ("ta 3");
4358 #endif
4359 #endif
4360
4361 /* Save registers that we need to see on the stack. We need to see
4362 registers used to hold register variables and registers used to
4363 pass parameters. */
4364 #ifdef GC_SAVE_REGISTERS_ON_STACK
4365 GC_SAVE_REGISTERS_ON_STACK (end);
4366 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4367
4368 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4369 setjmp will definitely work, test it
4370 and print a message with the result
4371 of the test. */
4372 if (!setjmp_tested_p)
4373 {
4374 setjmp_tested_p = 1;
4375 test_setjmp ();
4376 }
4377 #endif /* GC_SETJMP_WORKS */
4378
4379 setjmp (j.j);
4380 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4381 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4382 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4383
4384 /* This assumes that the stack is a contiguous region in memory. If
4385 that's not the case, something has to be done here to iterate
4386 over the stack segments. */
4387 #ifndef GC_LISP_OBJECT_ALIGNMENT
4388 #ifdef __GNUC__
4389 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4390 #else
4391 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4392 #endif
4393 #endif
4394 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4395 mark_memory (stack_base, end, i);
4396 /* Allow for marking a secondary stack, like the register stack on the
4397 ia64. */
4398 #ifdef GC_MARK_SECONDARY_STACK
4399 GC_MARK_SECONDARY_STACK ();
4400 #endif
4401
4402 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4403 check_gcpros ();
4404 #endif
4405 }
4406
4407 #endif /* GC_MARK_STACK != 0 */
4408
4409
4410 /* Determine whether it is safe to access memory at address P. */
4411 static int
4412 valid_pointer_p (void *p)
4413 {
4414 #ifdef WINDOWSNT
4415 return w32_valid_pointer_p (p, 16);
4416 #else
4417 int fd;
4418
4419 /* Obviously, we cannot just access it (we would SEGV trying), so we
4420 trick the o/s to tell us whether p is a valid pointer.
4421 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4422 not validate p in that case. */
4423
4424 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4425 {
4426 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4427 emacs_close (fd);
4428 unlink ("__Valid__Lisp__Object__");
4429 return valid;
4430 }
4431
4432 return -1;
4433 #endif
4434 }
4435
4436 /* Return 1 if OBJ is a valid lisp object.
4437 Return 0 if OBJ is NOT a valid lisp object.
4438 Return -1 if we cannot validate OBJ.
4439 This function can be quite slow,
4440 so it should only be used in code for manual debugging. */
4441
4442 int
4443 valid_lisp_object_p (Lisp_Object obj)
4444 {
4445 void *p;
4446 #if GC_MARK_STACK
4447 struct mem_node *m;
4448 #endif
4449
4450 if (INTEGERP (obj))
4451 return 1;
4452
4453 p = (void *) XPNTR (obj);
4454 if (PURE_POINTER_P (p))
4455 return 1;
4456
4457 #if !GC_MARK_STACK
4458 return valid_pointer_p (p);
4459 #else
4460
4461 m = mem_find (p);
4462
4463 if (m == MEM_NIL)
4464 {
4465 int valid = valid_pointer_p (p);
4466 if (valid <= 0)
4467 return valid;
4468
4469 if (SUBRP (obj))
4470 return 1;
4471
4472 return 0;
4473 }
4474
4475 switch (m->type)
4476 {
4477 case MEM_TYPE_NON_LISP:
4478 return 0;
4479
4480 case MEM_TYPE_BUFFER:
4481 return live_buffer_p (m, p);
4482
4483 case MEM_TYPE_CONS:
4484 return live_cons_p (m, p);
4485
4486 case MEM_TYPE_STRING:
4487 return live_string_p (m, p);
4488
4489 case MEM_TYPE_MISC:
4490 return live_misc_p (m, p);
4491
4492 case MEM_TYPE_SYMBOL:
4493 return live_symbol_p (m, p);
4494
4495 case MEM_TYPE_FLOAT:
4496 return live_float_p (m, p);
4497
4498 case MEM_TYPE_VECTORLIKE:
4499 return live_vector_p (m, p);
4500
4501 default:
4502 break;
4503 }
4504
4505 return 0;
4506 #endif
4507 }
4508
4509
4510
4511 \f
4512 /***********************************************************************
4513 Pure Storage Management
4514 ***********************************************************************/
4515
4516 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4517 pointer to it. TYPE is the Lisp type for which the memory is
4518 allocated. TYPE < 0 means it's not used for a Lisp object. */
4519
4520 static POINTER_TYPE *
4521 pure_alloc (size_t size, int type)
4522 {
4523 POINTER_TYPE *result;
4524 #ifdef USE_LSB_TAG
4525 size_t alignment = (1 << GCTYPEBITS);
4526 #else
4527 size_t alignment = sizeof (EMACS_INT);
4528
4529 /* Give Lisp_Floats an extra alignment. */
4530 if (type == Lisp_Float)
4531 {
4532 #if defined __GNUC__ && __GNUC__ >= 2
4533 alignment = __alignof (struct Lisp_Float);
4534 #else
4535 alignment = sizeof (struct Lisp_Float);
4536 #endif
4537 }
4538 #endif
4539
4540 again:
4541 if (type >= 0)
4542 {
4543 /* Allocate space for a Lisp object from the beginning of the free
4544 space with taking account of alignment. */
4545 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4546 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4547 }
4548 else
4549 {
4550 /* Allocate space for a non-Lisp object from the end of the free
4551 space. */
4552 pure_bytes_used_non_lisp += size;
4553 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4554 }
4555 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4556
4557 if (pure_bytes_used <= pure_size)
4558 return result;
4559
4560 /* Don't allocate a large amount here,
4561 because it might get mmap'd and then its address
4562 might not be usable. */
4563 purebeg = (char *) xmalloc (10000);
4564 pure_size = 10000;
4565 pure_bytes_used_before_overflow += pure_bytes_used - size;
4566 pure_bytes_used = 0;
4567 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4568 goto again;
4569 }
4570
4571
4572 /* Print a warning if PURESIZE is too small. */
4573
4574 void
4575 check_pure_size (void)
4576 {
4577 if (pure_bytes_used_before_overflow)
4578 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4579 " bytes needed)"),
4580 pure_bytes_used + pure_bytes_used_before_overflow);
4581 }
4582
4583
4584 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4585 the non-Lisp data pool of the pure storage, and return its start
4586 address. Return NULL if not found. */
4587
4588 static char *
4589 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4590 {
4591 int i;
4592 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4593 const unsigned char *p;
4594 char *non_lisp_beg;
4595
4596 if (pure_bytes_used_non_lisp < nbytes + 1)
4597 return NULL;
4598
4599 /* Set up the Boyer-Moore table. */
4600 skip = nbytes + 1;
4601 for (i = 0; i < 256; i++)
4602 bm_skip[i] = skip;
4603
4604 p = (const unsigned char *) data;
4605 while (--skip > 0)
4606 bm_skip[*p++] = skip;
4607
4608 last_char_skip = bm_skip['\0'];
4609
4610 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4611 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4612
4613 /* See the comments in the function `boyer_moore' (search.c) for the
4614 use of `infinity'. */
4615 infinity = pure_bytes_used_non_lisp + 1;
4616 bm_skip['\0'] = infinity;
4617
4618 p = (const unsigned char *) non_lisp_beg + nbytes;
4619 start = 0;
4620 do
4621 {
4622 /* Check the last character (== '\0'). */
4623 do
4624 {
4625 start += bm_skip[*(p + start)];
4626 }
4627 while (start <= start_max);
4628
4629 if (start < infinity)
4630 /* Couldn't find the last character. */
4631 return NULL;
4632
4633 /* No less than `infinity' means we could find the last
4634 character at `p[start - infinity]'. */
4635 start -= infinity;
4636
4637 /* Check the remaining characters. */
4638 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4639 /* Found. */
4640 return non_lisp_beg + start;
4641
4642 start += last_char_skip;
4643 }
4644 while (start <= start_max);
4645
4646 return NULL;
4647 }
4648
4649
4650 /* Return a string allocated in pure space. DATA is a buffer holding
4651 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4652 non-zero means make the result string multibyte.
4653
4654 Must get an error if pure storage is full, since if it cannot hold
4655 a large string it may be able to hold conses that point to that
4656 string; then the string is not protected from gc. */
4657
4658 Lisp_Object
4659 make_pure_string (const char *data,
4660 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4661 {
4662 Lisp_Object string;
4663 struct Lisp_String *s;
4664
4665 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4666 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4667 if (s->data == NULL)
4668 {
4669 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4670 memcpy (s->data, data, nbytes);
4671 s->data[nbytes] = '\0';
4672 }
4673 s->size = nchars;
4674 s->size_byte = multibyte ? nbytes : -1;
4675 s->intervals = NULL_INTERVAL;
4676 XSETSTRING (string, s);
4677 return string;
4678 }
4679
4680 /* Return a string a string allocated in pure space. Do not allocate
4681 the string data, just point to DATA. */
4682
4683 Lisp_Object
4684 make_pure_c_string (const char *data)
4685 {
4686 Lisp_Object string;
4687 struct Lisp_String *s;
4688 EMACS_INT nchars = strlen (data);
4689
4690 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4691 s->size = nchars;
4692 s->size_byte = -1;
4693 s->data = (unsigned char *) data;
4694 s->intervals = NULL_INTERVAL;
4695 XSETSTRING (string, s);
4696 return string;
4697 }
4698
4699 /* Return a cons allocated from pure space. Give it pure copies
4700 of CAR as car and CDR as cdr. */
4701
4702 Lisp_Object
4703 pure_cons (Lisp_Object car, Lisp_Object cdr)
4704 {
4705 register Lisp_Object new;
4706 struct Lisp_Cons *p;
4707
4708 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4709 XSETCONS (new, p);
4710 XSETCAR (new, Fpurecopy (car));
4711 XSETCDR (new, Fpurecopy (cdr));
4712 return new;
4713 }
4714
4715
4716 /* Value is a float object with value NUM allocated from pure space. */
4717
4718 static Lisp_Object
4719 make_pure_float (double num)
4720 {
4721 register Lisp_Object new;
4722 struct Lisp_Float *p;
4723
4724 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4725 XSETFLOAT (new, p);
4726 XFLOAT_INIT (new, num);
4727 return new;
4728 }
4729
4730
4731 /* Return a vector with room for LEN Lisp_Objects allocated from
4732 pure space. */
4733
4734 Lisp_Object
4735 make_pure_vector (EMACS_INT len)
4736 {
4737 Lisp_Object new;
4738 struct Lisp_Vector *p;
4739 size_t size = (offsetof (struct Lisp_Vector, contents)
4740 + len * sizeof (Lisp_Object));
4741
4742 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4743 XSETVECTOR (new, p);
4744 XVECTOR (new)->header.size = len;
4745 return new;
4746 }
4747
4748
4749 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4750 doc: /* Make a copy of object OBJ in pure storage.
4751 Recursively copies contents of vectors and cons cells.
4752 Does not copy symbols. Copies strings without text properties. */)
4753 (register Lisp_Object obj)
4754 {
4755 if (NILP (Vpurify_flag))
4756 return obj;
4757
4758 if (PURE_POINTER_P (XPNTR (obj)))
4759 return obj;
4760
4761 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4762 {
4763 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4764 if (!NILP (tmp))
4765 return tmp;
4766 }
4767
4768 if (CONSP (obj))
4769 obj = pure_cons (XCAR (obj), XCDR (obj));
4770 else if (FLOATP (obj))
4771 obj = make_pure_float (XFLOAT_DATA (obj));
4772 else if (STRINGP (obj))
4773 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4774 SBYTES (obj),
4775 STRING_MULTIBYTE (obj));
4776 else if (COMPILEDP (obj) || VECTORP (obj))
4777 {
4778 register struct Lisp_Vector *vec;
4779 register EMACS_INT i;
4780 EMACS_INT size;
4781
4782 size = ASIZE (obj);
4783 if (size & PSEUDOVECTOR_FLAG)
4784 size &= PSEUDOVECTOR_SIZE_MASK;
4785 vec = XVECTOR (make_pure_vector (size));
4786 for (i = 0; i < size; i++)
4787 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4788 if (COMPILEDP (obj))
4789 {
4790 XSETPVECTYPE (vec, PVEC_COMPILED);
4791 XSETCOMPILED (obj, vec);
4792 }
4793 else
4794 XSETVECTOR (obj, vec);
4795 }
4796 else if (MARKERP (obj))
4797 error ("Attempt to copy a marker to pure storage");
4798 else
4799 /* Not purified, don't hash-cons. */
4800 return obj;
4801
4802 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4803 Fputhash (obj, obj, Vpurify_flag);
4804
4805 return obj;
4806 }
4807
4808
4809 \f
4810 /***********************************************************************
4811 Protection from GC
4812 ***********************************************************************/
4813
4814 /* Put an entry in staticvec, pointing at the variable with address
4815 VARADDRESS. */
4816
4817 void
4818 staticpro (Lisp_Object *varaddress)
4819 {
4820 staticvec[staticidx++] = varaddress;
4821 if (staticidx >= NSTATICS)
4822 abort ();
4823 }
4824
4825 \f
4826 /***********************************************************************
4827 Protection from GC
4828 ***********************************************************************/
4829
4830 /* Temporarily prevent garbage collection. */
4831
4832 int
4833 inhibit_garbage_collection (void)
4834 {
4835 int count = SPECPDL_INDEX ();
4836 int nbits = min (VALBITS, BITS_PER_INT);
4837
4838 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4839 return count;
4840 }
4841
4842
4843 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4844 doc: /* Reclaim storage for Lisp objects no longer needed.
4845 Garbage collection happens automatically if you cons more than
4846 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4847 `garbage-collect' normally returns a list with info on amount of space in use:
4848 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4849 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4850 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4851 (USED-STRINGS . FREE-STRINGS))
4852 However, if there was overflow in pure space, `garbage-collect'
4853 returns nil, because real GC can't be done. */)
4854 (void)
4855 {
4856 register struct specbinding *bind;
4857 char stack_top_variable;
4858 register size_t i;
4859 int message_p;
4860 Lisp_Object total[8];
4861 int count = SPECPDL_INDEX ();
4862 EMACS_TIME t1, t2, t3;
4863
4864 if (abort_on_gc)
4865 abort ();
4866
4867 /* Can't GC if pure storage overflowed because we can't determine
4868 if something is a pure object or not. */
4869 if (pure_bytes_used_before_overflow)
4870 return Qnil;
4871
4872 CHECK_CONS_LIST ();
4873
4874 /* Don't keep undo information around forever.
4875 Do this early on, so it is no problem if the user quits. */
4876 {
4877 register struct buffer *nextb = all_buffers;
4878
4879 while (nextb)
4880 {
4881 /* If a buffer's undo list is Qt, that means that undo is
4882 turned off in that buffer. Calling truncate_undo_list on
4883 Qt tends to return NULL, which effectively turns undo back on.
4884 So don't call truncate_undo_list if undo_list is Qt. */
4885 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4886 truncate_undo_list (nextb);
4887
4888 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4889 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4890 && ! nextb->text->inhibit_shrinking)
4891 {
4892 /* If a buffer's gap size is more than 10% of the buffer
4893 size, or larger than 2000 bytes, then shrink it
4894 accordingly. Keep a minimum size of 20 bytes. */
4895 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4896
4897 if (nextb->text->gap_size > size)
4898 {
4899 struct buffer *save_current = current_buffer;
4900 current_buffer = nextb;
4901 make_gap (-(nextb->text->gap_size - size));
4902 current_buffer = save_current;
4903 }
4904 }
4905
4906 nextb = nextb->header.next.buffer;
4907 }
4908 }
4909
4910 EMACS_GET_TIME (t1);
4911
4912 /* In case user calls debug_print during GC,
4913 don't let that cause a recursive GC. */
4914 consing_since_gc = 0;
4915
4916 /* Save what's currently displayed in the echo area. */
4917 message_p = push_message ();
4918 record_unwind_protect (pop_message_unwind, Qnil);
4919
4920 /* Save a copy of the contents of the stack, for debugging. */
4921 #if MAX_SAVE_STACK > 0
4922 if (NILP (Vpurify_flag))
4923 {
4924 char *stack;
4925 size_t stack_size;
4926 if (&stack_top_variable < stack_bottom)
4927 {
4928 stack = &stack_top_variable;
4929 stack_size = stack_bottom - &stack_top_variable;
4930 }
4931 else
4932 {
4933 stack = stack_bottom;
4934 stack_size = &stack_top_variable - stack_bottom;
4935 }
4936 if (stack_size <= MAX_SAVE_STACK)
4937 {
4938 if (stack_copy_size < stack_size)
4939 {
4940 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4941 stack_copy_size = stack_size;
4942 }
4943 memcpy (stack_copy, stack, stack_size);
4944 }
4945 }
4946 #endif /* MAX_SAVE_STACK > 0 */
4947
4948 if (garbage_collection_messages)
4949 message1_nolog ("Garbage collecting...");
4950
4951 BLOCK_INPUT;
4952
4953 shrink_regexp_cache ();
4954
4955 gc_in_progress = 1;
4956
4957 /* clear_marks (); */
4958
4959 /* Mark all the special slots that serve as the roots of accessibility. */
4960
4961 for (i = 0; i < staticidx; i++)
4962 mark_object (*staticvec[i]);
4963
4964 for (bind = specpdl; bind != specpdl_ptr; bind++)
4965 {
4966 mark_object (bind->symbol);
4967 mark_object (bind->old_value);
4968 }
4969 mark_terminals ();
4970 mark_kboards ();
4971 mark_ttys ();
4972
4973 #ifdef USE_GTK
4974 {
4975 extern void xg_mark_data (void);
4976 xg_mark_data ();
4977 }
4978 #endif
4979
4980 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4981 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4982 mark_stack ();
4983 #else
4984 {
4985 register struct gcpro *tail;
4986 for (tail = gcprolist; tail; tail = tail->next)
4987 for (i = 0; i < tail->nvars; i++)
4988 mark_object (tail->var[i]);
4989 }
4990 mark_byte_stack ();
4991 {
4992 struct catchtag *catch;
4993 struct handler *handler;
4994
4995 for (catch = catchlist; catch; catch = catch->next)
4996 {
4997 mark_object (catch->tag);
4998 mark_object (catch->val);
4999 }
5000 for (handler = handlerlist; handler; handler = handler->next)
5001 {
5002 mark_object (handler->handler);
5003 mark_object (handler->var);
5004 }
5005 }
5006 mark_backtrace ();
5007 #endif
5008
5009 #ifdef HAVE_WINDOW_SYSTEM
5010 mark_fringe_data ();
5011 #endif
5012
5013 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5014 mark_stack ();
5015 #endif
5016
5017 /* Everything is now marked, except for the things that require special
5018 finalization, i.e. the undo_list.
5019 Look thru every buffer's undo list
5020 for elements that update markers that were not marked,
5021 and delete them. */
5022 {
5023 register struct buffer *nextb = all_buffers;
5024
5025 while (nextb)
5026 {
5027 /* If a buffer's undo list is Qt, that means that undo is
5028 turned off in that buffer. Calling truncate_undo_list on
5029 Qt tends to return NULL, which effectively turns undo back on.
5030 So don't call truncate_undo_list if undo_list is Qt. */
5031 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5032 {
5033 Lisp_Object tail, prev;
5034 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5035 prev = Qnil;
5036 while (CONSP (tail))
5037 {
5038 if (CONSP (XCAR (tail))
5039 && MARKERP (XCAR (XCAR (tail)))
5040 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5041 {
5042 if (NILP (prev))
5043 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5044 else
5045 {
5046 tail = XCDR (tail);
5047 XSETCDR (prev, tail);
5048 }
5049 }
5050 else
5051 {
5052 prev = tail;
5053 tail = XCDR (tail);
5054 }
5055 }
5056 }
5057 /* Now that we have stripped the elements that need not be in the
5058 undo_list any more, we can finally mark the list. */
5059 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5060
5061 nextb = nextb->header.next.buffer;
5062 }
5063 }
5064
5065 gc_sweep ();
5066
5067 /* Clear the mark bits that we set in certain root slots. */
5068
5069 unmark_byte_stack ();
5070 VECTOR_UNMARK (&buffer_defaults);
5071 VECTOR_UNMARK (&buffer_local_symbols);
5072
5073 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 dump_zombies ();
5075 #endif
5076
5077 UNBLOCK_INPUT;
5078
5079 CHECK_CONS_LIST ();
5080
5081 /* clear_marks (); */
5082 gc_in_progress = 0;
5083
5084 consing_since_gc = 0;
5085 if (gc_cons_threshold < 10000)
5086 gc_cons_threshold = 10000;
5087
5088 if (FLOATP (Vgc_cons_percentage))
5089 { /* Set gc_cons_combined_threshold. */
5090 EMACS_INT tot = 0;
5091
5092 tot += total_conses * sizeof (struct Lisp_Cons);
5093 tot += total_symbols * sizeof (struct Lisp_Symbol);
5094 tot += total_markers * sizeof (union Lisp_Misc);
5095 tot += total_string_size;
5096 tot += total_vector_size * sizeof (Lisp_Object);
5097 tot += total_floats * sizeof (struct Lisp_Float);
5098 tot += total_intervals * sizeof (struct interval);
5099 tot += total_strings * sizeof (struct Lisp_String);
5100
5101 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5102 }
5103 else
5104 gc_relative_threshold = 0;
5105
5106 if (garbage_collection_messages)
5107 {
5108 if (message_p || minibuf_level > 0)
5109 restore_message ();
5110 else
5111 message1_nolog ("Garbage collecting...done");
5112 }
5113
5114 unbind_to (count, Qnil);
5115
5116 total[0] = Fcons (make_number (total_conses),
5117 make_number (total_free_conses));
5118 total[1] = Fcons (make_number (total_symbols),
5119 make_number (total_free_symbols));
5120 total[2] = Fcons (make_number (total_markers),
5121 make_number (total_free_markers));
5122 total[3] = make_number (total_string_size);
5123 total[4] = make_number (total_vector_size);
5124 total[5] = Fcons (make_number (total_floats),
5125 make_number (total_free_floats));
5126 total[6] = Fcons (make_number (total_intervals),
5127 make_number (total_free_intervals));
5128 total[7] = Fcons (make_number (total_strings),
5129 make_number (total_free_strings));
5130
5131 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5132 {
5133 /* Compute average percentage of zombies. */
5134 double nlive = 0;
5135
5136 for (i = 0; i < 7; ++i)
5137 if (CONSP (total[i]))
5138 nlive += XFASTINT (XCAR (total[i]));
5139
5140 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5141 max_live = max (nlive, max_live);
5142 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5143 max_zombies = max (nzombies, max_zombies);
5144 ++ngcs;
5145 }
5146 #endif
5147
5148 if (!NILP (Vpost_gc_hook))
5149 {
5150 int gc_count = inhibit_garbage_collection ();
5151 safe_run_hooks (Qpost_gc_hook);
5152 unbind_to (gc_count, Qnil);
5153 }
5154
5155 /* Accumulate statistics. */
5156 EMACS_GET_TIME (t2);
5157 EMACS_SUB_TIME (t3, t2, t1);
5158 if (FLOATP (Vgc_elapsed))
5159 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5160 EMACS_SECS (t3) +
5161 EMACS_USECS (t3) * 1.0e-6);
5162 gcs_done++;
5163
5164 return Flist (sizeof total / sizeof *total, total);
5165 }
5166
5167
5168 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5169 only interesting objects referenced from glyphs are strings. */
5170
5171 static void
5172 mark_glyph_matrix (struct glyph_matrix *matrix)
5173 {
5174 struct glyph_row *row = matrix->rows;
5175 struct glyph_row *end = row + matrix->nrows;
5176
5177 for (; row < end; ++row)
5178 if (row->enabled_p)
5179 {
5180 int area;
5181 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5182 {
5183 struct glyph *glyph = row->glyphs[area];
5184 struct glyph *end_glyph = glyph + row->used[area];
5185
5186 for (; glyph < end_glyph; ++glyph)
5187 if (STRINGP (glyph->object)
5188 && !STRING_MARKED_P (XSTRING (glyph->object)))
5189 mark_object (glyph->object);
5190 }
5191 }
5192 }
5193
5194
5195 /* Mark Lisp faces in the face cache C. */
5196
5197 static void
5198 mark_face_cache (struct face_cache *c)
5199 {
5200 if (c)
5201 {
5202 int i, j;
5203 for (i = 0; i < c->used; ++i)
5204 {
5205 struct face *face = FACE_FROM_ID (c->f, i);
5206
5207 if (face)
5208 {
5209 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5210 mark_object (face->lface[j]);
5211 }
5212 }
5213 }
5214 }
5215
5216
5217 \f
5218 /* Mark reference to a Lisp_Object.
5219 If the object referred to has not been seen yet, recursively mark
5220 all the references contained in it. */
5221
5222 #define LAST_MARKED_SIZE 500
5223 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5224 static int last_marked_index;
5225
5226 /* For debugging--call abort when we cdr down this many
5227 links of a list, in mark_object. In debugging,
5228 the call to abort will hit a breakpoint.
5229 Normally this is zero and the check never goes off. */
5230 static size_t mark_object_loop_halt;
5231
5232 static void
5233 mark_vectorlike (struct Lisp_Vector *ptr)
5234 {
5235 register EMACS_UINT size = ptr->header.size;
5236 register EMACS_UINT i;
5237
5238 eassert (!VECTOR_MARKED_P (ptr));
5239 VECTOR_MARK (ptr); /* Else mark it */
5240 if (size & PSEUDOVECTOR_FLAG)
5241 size &= PSEUDOVECTOR_SIZE_MASK;
5242
5243 /* Note that this size is not the memory-footprint size, but only
5244 the number of Lisp_Object fields that we should trace.
5245 The distinction is used e.g. by Lisp_Process which places extra
5246 non-Lisp_Object fields at the end of the structure. */
5247 for (i = 0; i < size; i++) /* and then mark its elements */
5248 mark_object (ptr->contents[i]);
5249 }
5250
5251 /* Like mark_vectorlike but optimized for char-tables (and
5252 sub-char-tables) assuming that the contents are mostly integers or
5253 symbols. */
5254
5255 static void
5256 mark_char_table (struct Lisp_Vector *ptr)
5257 {
5258 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5259 register EMACS_UINT i;
5260
5261 eassert (!VECTOR_MARKED_P (ptr));
5262 VECTOR_MARK (ptr);
5263 for (i = 0; i < size; i++)
5264 {
5265 Lisp_Object val = ptr->contents[i];
5266
5267 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5268 continue;
5269 if (SUB_CHAR_TABLE_P (val))
5270 {
5271 if (! VECTOR_MARKED_P (XVECTOR (val)))
5272 mark_char_table (XVECTOR (val));
5273 }
5274 else
5275 mark_object (val);
5276 }
5277 }
5278
5279 void
5280 mark_object (Lisp_Object arg)
5281 {
5282 register Lisp_Object obj = arg;
5283 #ifdef GC_CHECK_MARKED_OBJECTS
5284 void *po;
5285 struct mem_node *m;
5286 #endif
5287 size_t cdr_count = 0;
5288
5289 loop:
5290
5291 if (PURE_POINTER_P (XPNTR (obj)))
5292 return;
5293
5294 last_marked[last_marked_index++] = obj;
5295 if (last_marked_index == LAST_MARKED_SIZE)
5296 last_marked_index = 0;
5297
5298 /* Perform some sanity checks on the objects marked here. Abort if
5299 we encounter an object we know is bogus. This increases GC time
5300 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5301 #ifdef GC_CHECK_MARKED_OBJECTS
5302
5303 po = (void *) XPNTR (obj);
5304
5305 /* Check that the object pointed to by PO is known to be a Lisp
5306 structure allocated from the heap. */
5307 #define CHECK_ALLOCATED() \
5308 do { \
5309 m = mem_find (po); \
5310 if (m == MEM_NIL) \
5311 abort (); \
5312 } while (0)
5313
5314 /* Check that the object pointed to by PO is live, using predicate
5315 function LIVEP. */
5316 #define CHECK_LIVE(LIVEP) \
5317 do { \
5318 if (!LIVEP (m, po)) \
5319 abort (); \
5320 } while (0)
5321
5322 /* Check both of the above conditions. */
5323 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5324 do { \
5325 CHECK_ALLOCATED (); \
5326 CHECK_LIVE (LIVEP); \
5327 } while (0) \
5328
5329 #else /* not GC_CHECK_MARKED_OBJECTS */
5330
5331 #define CHECK_LIVE(LIVEP) (void) 0
5332 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5333
5334 #endif /* not GC_CHECK_MARKED_OBJECTS */
5335
5336 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5337 {
5338 case Lisp_String:
5339 {
5340 register struct Lisp_String *ptr = XSTRING (obj);
5341 if (STRING_MARKED_P (ptr))
5342 break;
5343 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5344 MARK_INTERVAL_TREE (ptr->intervals);
5345 MARK_STRING (ptr);
5346 #ifdef GC_CHECK_STRING_BYTES
5347 /* Check that the string size recorded in the string is the
5348 same as the one recorded in the sdata structure. */
5349 CHECK_STRING_BYTES (ptr);
5350 #endif /* GC_CHECK_STRING_BYTES */
5351 }
5352 break;
5353
5354 case Lisp_Vectorlike:
5355 if (VECTOR_MARKED_P (XVECTOR (obj)))
5356 break;
5357 #ifdef GC_CHECK_MARKED_OBJECTS
5358 m = mem_find (po);
5359 if (m == MEM_NIL && !SUBRP (obj)
5360 && po != &buffer_defaults
5361 && po != &buffer_local_symbols)
5362 abort ();
5363 #endif /* GC_CHECK_MARKED_OBJECTS */
5364
5365 if (BUFFERP (obj))
5366 {
5367 #ifdef GC_CHECK_MARKED_OBJECTS
5368 if (po != &buffer_defaults && po != &buffer_local_symbols)
5369 {
5370 struct buffer *b;
5371 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5372 ;
5373 if (b == NULL)
5374 abort ();
5375 }
5376 #endif /* GC_CHECK_MARKED_OBJECTS */
5377 mark_buffer (obj);
5378 }
5379 else if (SUBRP (obj))
5380 break;
5381 else if (COMPILEDP (obj))
5382 /* We could treat this just like a vector, but it is better to
5383 save the COMPILED_CONSTANTS element for last and avoid
5384 recursion there. */
5385 {
5386 register struct Lisp_Vector *ptr = XVECTOR (obj);
5387 register EMACS_UINT size = ptr->header.size;
5388 register EMACS_UINT i;
5389
5390 CHECK_LIVE (live_vector_p);
5391 VECTOR_MARK (ptr); /* Else mark it */
5392 size &= PSEUDOVECTOR_SIZE_MASK;
5393 for (i = 0; i < size; i++) /* and then mark its elements */
5394 {
5395 if (i != COMPILED_CONSTANTS)
5396 mark_object (ptr->contents[i]);
5397 }
5398 obj = ptr->contents[COMPILED_CONSTANTS];
5399 goto loop;
5400 }
5401 else if (FRAMEP (obj))
5402 {
5403 register struct frame *ptr = XFRAME (obj);
5404 mark_vectorlike (XVECTOR (obj));
5405 mark_face_cache (ptr->face_cache);
5406 }
5407 else if (WINDOWP (obj))
5408 {
5409 register struct Lisp_Vector *ptr = XVECTOR (obj);
5410 struct window *w = XWINDOW (obj);
5411 mark_vectorlike (ptr);
5412 /* Mark glyphs for leaf windows. Marking window matrices is
5413 sufficient because frame matrices use the same glyph
5414 memory. */
5415 if (NILP (w->hchild)
5416 && NILP (w->vchild)
5417 && w->current_matrix)
5418 {
5419 mark_glyph_matrix (w->current_matrix);
5420 mark_glyph_matrix (w->desired_matrix);
5421 }
5422 }
5423 else if (HASH_TABLE_P (obj))
5424 {
5425 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5426 mark_vectorlike ((struct Lisp_Vector *)h);
5427 /* If hash table is not weak, mark all keys and values.
5428 For weak tables, mark only the vector. */
5429 if (NILP (h->weak))
5430 mark_object (h->key_and_value);
5431 else
5432 VECTOR_MARK (XVECTOR (h->key_and_value));
5433 }
5434 else if (CHAR_TABLE_P (obj))
5435 mark_char_table (XVECTOR (obj));
5436 else
5437 mark_vectorlike (XVECTOR (obj));
5438 break;
5439
5440 case Lisp_Symbol:
5441 {
5442 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5443 struct Lisp_Symbol *ptrx;
5444
5445 if (ptr->gcmarkbit)
5446 break;
5447 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5448 ptr->gcmarkbit = 1;
5449 mark_object (ptr->function);
5450 mark_object (ptr->plist);
5451 switch (ptr->redirect)
5452 {
5453 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5454 case SYMBOL_VARALIAS:
5455 {
5456 Lisp_Object tem;
5457 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5458 mark_object (tem);
5459 break;
5460 }
5461 case SYMBOL_LOCALIZED:
5462 {
5463 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5464 /* If the value is forwarded to a buffer or keyboard field,
5465 these are marked when we see the corresponding object.
5466 And if it's forwarded to a C variable, either it's not
5467 a Lisp_Object var, or it's staticpro'd already. */
5468 mark_object (blv->where);
5469 mark_object (blv->valcell);
5470 mark_object (blv->defcell);
5471 break;
5472 }
5473 case SYMBOL_FORWARDED:
5474 /* If the value is forwarded to a buffer or keyboard field,
5475 these are marked when we see the corresponding object.
5476 And if it's forwarded to a C variable, either it's not
5477 a Lisp_Object var, or it's staticpro'd already. */
5478 break;
5479 default: abort ();
5480 }
5481 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5482 MARK_STRING (XSTRING (ptr->xname));
5483 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5484
5485 ptr = ptr->next;
5486 if (ptr)
5487 {
5488 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5489 XSETSYMBOL (obj, ptrx);
5490 goto loop;
5491 }
5492 }
5493 break;
5494
5495 case Lisp_Misc:
5496 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5497 if (XMISCANY (obj)->gcmarkbit)
5498 break;
5499 XMISCANY (obj)->gcmarkbit = 1;
5500
5501 switch (XMISCTYPE (obj))
5502 {
5503
5504 case Lisp_Misc_Marker:
5505 /* DO NOT mark thru the marker's chain.
5506 The buffer's markers chain does not preserve markers from gc;
5507 instead, markers are removed from the chain when freed by gc. */
5508 break;
5509
5510 case Lisp_Misc_Save_Value:
5511 #if GC_MARK_STACK
5512 {
5513 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5514 /* If DOGC is set, POINTER is the address of a memory
5515 area containing INTEGER potential Lisp_Objects. */
5516 if (ptr->dogc)
5517 {
5518 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5519 int nelt;
5520 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5521 mark_maybe_object (*p);
5522 }
5523 }
5524 #endif
5525 break;
5526
5527 case Lisp_Misc_Overlay:
5528 {
5529 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5530 mark_object (ptr->start);
5531 mark_object (ptr->end);
5532 mark_object (ptr->plist);
5533 if (ptr->next)
5534 {
5535 XSETMISC (obj, ptr->next);
5536 goto loop;
5537 }
5538 }
5539 break;
5540
5541 default:
5542 abort ();
5543 }
5544 break;
5545
5546 case Lisp_Cons:
5547 {
5548 register struct Lisp_Cons *ptr = XCONS (obj);
5549 if (CONS_MARKED_P (ptr))
5550 break;
5551 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5552 CONS_MARK (ptr);
5553 /* If the cdr is nil, avoid recursion for the car. */
5554 if (EQ (ptr->u.cdr, Qnil))
5555 {
5556 obj = ptr->car;
5557 cdr_count = 0;
5558 goto loop;
5559 }
5560 mark_object (ptr->car);
5561 obj = ptr->u.cdr;
5562 cdr_count++;
5563 if (cdr_count == mark_object_loop_halt)
5564 abort ();
5565 goto loop;
5566 }
5567
5568 case Lisp_Float:
5569 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5570 FLOAT_MARK (XFLOAT (obj));
5571 break;
5572
5573 case_Lisp_Int:
5574 break;
5575
5576 default:
5577 abort ();
5578 }
5579
5580 #undef CHECK_LIVE
5581 #undef CHECK_ALLOCATED
5582 #undef CHECK_ALLOCATED_AND_LIVE
5583 }
5584
5585 /* Mark the pointers in a buffer structure. */
5586
5587 static void
5588 mark_buffer (Lisp_Object buf)
5589 {
5590 register struct buffer *buffer = XBUFFER (buf);
5591 register Lisp_Object *ptr, tmp;
5592 Lisp_Object base_buffer;
5593
5594 eassert (!VECTOR_MARKED_P (buffer));
5595 VECTOR_MARK (buffer);
5596
5597 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5598
5599 /* For now, we just don't mark the undo_list. It's done later in
5600 a special way just before the sweep phase, and after stripping
5601 some of its elements that are not needed any more. */
5602
5603 if (buffer->overlays_before)
5604 {
5605 XSETMISC (tmp, buffer->overlays_before);
5606 mark_object (tmp);
5607 }
5608 if (buffer->overlays_after)
5609 {
5610 XSETMISC (tmp, buffer->overlays_after);
5611 mark_object (tmp);
5612 }
5613
5614 /* buffer-local Lisp variables start at `undo_list',
5615 tho only the ones from `name' on are GC'd normally. */
5616 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5617 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5618 ptr++)
5619 mark_object (*ptr);
5620
5621 /* If this is an indirect buffer, mark its base buffer. */
5622 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5623 {
5624 XSETBUFFER (base_buffer, buffer->base_buffer);
5625 mark_buffer (base_buffer);
5626 }
5627 }
5628
5629 /* Mark the Lisp pointers in the terminal objects.
5630 Called by the Fgarbage_collector. */
5631
5632 static void
5633 mark_terminals (void)
5634 {
5635 struct terminal *t;
5636 for (t = terminal_list; t; t = t->next_terminal)
5637 {
5638 eassert (t->name != NULL);
5639 #ifdef HAVE_WINDOW_SYSTEM
5640 /* If a terminal object is reachable from a stacpro'ed object,
5641 it might have been marked already. Make sure the image cache
5642 gets marked. */
5643 mark_image_cache (t->image_cache);
5644 #endif /* HAVE_WINDOW_SYSTEM */
5645 if (!VECTOR_MARKED_P (t))
5646 mark_vectorlike ((struct Lisp_Vector *)t);
5647 }
5648 }
5649
5650
5651
5652 /* Value is non-zero if OBJ will survive the current GC because it's
5653 either marked or does not need to be marked to survive. */
5654
5655 int
5656 survives_gc_p (Lisp_Object obj)
5657 {
5658 int survives_p;
5659
5660 switch (XTYPE (obj))
5661 {
5662 case_Lisp_Int:
5663 survives_p = 1;
5664 break;
5665
5666 case Lisp_Symbol:
5667 survives_p = XSYMBOL (obj)->gcmarkbit;
5668 break;
5669
5670 case Lisp_Misc:
5671 survives_p = XMISCANY (obj)->gcmarkbit;
5672 break;
5673
5674 case Lisp_String:
5675 survives_p = STRING_MARKED_P (XSTRING (obj));
5676 break;
5677
5678 case Lisp_Vectorlike:
5679 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5680 break;
5681
5682 case Lisp_Cons:
5683 survives_p = CONS_MARKED_P (XCONS (obj));
5684 break;
5685
5686 case Lisp_Float:
5687 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5688 break;
5689
5690 default:
5691 abort ();
5692 }
5693
5694 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5695 }
5696
5697
5698 \f
5699 /* Sweep: find all structures not marked, and free them. */
5700
5701 static void
5702 gc_sweep (void)
5703 {
5704 /* Remove or mark entries in weak hash tables.
5705 This must be done before any object is unmarked. */
5706 sweep_weak_hash_tables ();
5707
5708 sweep_strings ();
5709 #ifdef GC_CHECK_STRING_BYTES
5710 if (!noninteractive)
5711 check_string_bytes (1);
5712 #endif
5713
5714 /* Put all unmarked conses on free list */
5715 {
5716 register struct cons_block *cblk;
5717 struct cons_block **cprev = &cons_block;
5718 register int lim = cons_block_index;
5719 register int num_free = 0, num_used = 0;
5720
5721 cons_free_list = 0;
5722
5723 for (cblk = cons_block; cblk; cblk = *cprev)
5724 {
5725 register int i = 0;
5726 int this_free = 0;
5727 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5728
5729 /* Scan the mark bits an int at a time. */
5730 for (i = 0; i <= ilim; i++)
5731 {
5732 if (cblk->gcmarkbits[i] == -1)
5733 {
5734 /* Fast path - all cons cells for this int are marked. */
5735 cblk->gcmarkbits[i] = 0;
5736 num_used += BITS_PER_INT;
5737 }
5738 else
5739 {
5740 /* Some cons cells for this int are not marked.
5741 Find which ones, and free them. */
5742 int start, pos, stop;
5743
5744 start = i * BITS_PER_INT;
5745 stop = lim - start;
5746 if (stop > BITS_PER_INT)
5747 stop = BITS_PER_INT;
5748 stop += start;
5749
5750 for (pos = start; pos < stop; pos++)
5751 {
5752 if (!CONS_MARKED_P (&cblk->conses[pos]))
5753 {
5754 this_free++;
5755 cblk->conses[pos].u.chain = cons_free_list;
5756 cons_free_list = &cblk->conses[pos];
5757 #if GC_MARK_STACK
5758 cons_free_list->car = Vdead;
5759 #endif
5760 }
5761 else
5762 {
5763 num_used++;
5764 CONS_UNMARK (&cblk->conses[pos]);
5765 }
5766 }
5767 }
5768 }
5769
5770 lim = CONS_BLOCK_SIZE;
5771 /* If this block contains only free conses and we have already
5772 seen more than two blocks worth of free conses then deallocate
5773 this block. */
5774 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5775 {
5776 *cprev = cblk->next;
5777 /* Unhook from the free list. */
5778 cons_free_list = cblk->conses[0].u.chain;
5779 lisp_align_free (cblk);
5780 n_cons_blocks--;
5781 }
5782 else
5783 {
5784 num_free += this_free;
5785 cprev = &cblk->next;
5786 }
5787 }
5788 total_conses = num_used;
5789 total_free_conses = num_free;
5790 }
5791
5792 /* Put all unmarked floats on free list */
5793 {
5794 register struct float_block *fblk;
5795 struct float_block **fprev = &float_block;
5796 register int lim = float_block_index;
5797 register int num_free = 0, num_used = 0;
5798
5799 float_free_list = 0;
5800
5801 for (fblk = float_block; fblk; fblk = *fprev)
5802 {
5803 register int i;
5804 int this_free = 0;
5805 for (i = 0; i < lim; i++)
5806 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5807 {
5808 this_free++;
5809 fblk->floats[i].u.chain = float_free_list;
5810 float_free_list = &fblk->floats[i];
5811 }
5812 else
5813 {
5814 num_used++;
5815 FLOAT_UNMARK (&fblk->floats[i]);
5816 }
5817 lim = FLOAT_BLOCK_SIZE;
5818 /* If this block contains only free floats and we have already
5819 seen more than two blocks worth of free floats then deallocate
5820 this block. */
5821 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5822 {
5823 *fprev = fblk->next;
5824 /* Unhook from the free list. */
5825 float_free_list = fblk->floats[0].u.chain;
5826 lisp_align_free (fblk);
5827 n_float_blocks--;
5828 }
5829 else
5830 {
5831 num_free += this_free;
5832 fprev = &fblk->next;
5833 }
5834 }
5835 total_floats = num_used;
5836 total_free_floats = num_free;
5837 }
5838
5839 /* Put all unmarked intervals on free list */
5840 {
5841 register struct interval_block *iblk;
5842 struct interval_block **iprev = &interval_block;
5843 register int lim = interval_block_index;
5844 register int num_free = 0, num_used = 0;
5845
5846 interval_free_list = 0;
5847
5848 for (iblk = interval_block; iblk; iblk = *iprev)
5849 {
5850 register int i;
5851 int this_free = 0;
5852
5853 for (i = 0; i < lim; i++)
5854 {
5855 if (!iblk->intervals[i].gcmarkbit)
5856 {
5857 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5858 interval_free_list = &iblk->intervals[i];
5859 this_free++;
5860 }
5861 else
5862 {
5863 num_used++;
5864 iblk->intervals[i].gcmarkbit = 0;
5865 }
5866 }
5867 lim = INTERVAL_BLOCK_SIZE;
5868 /* If this block contains only free intervals and we have already
5869 seen more than two blocks worth of free intervals then
5870 deallocate this block. */
5871 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5872 {
5873 *iprev = iblk->next;
5874 /* Unhook from the free list. */
5875 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5876 lisp_free (iblk);
5877 n_interval_blocks--;
5878 }
5879 else
5880 {
5881 num_free += this_free;
5882 iprev = &iblk->next;
5883 }
5884 }
5885 total_intervals = num_used;
5886 total_free_intervals = num_free;
5887 }
5888
5889 /* Put all unmarked symbols on free list */
5890 {
5891 register struct symbol_block *sblk;
5892 struct symbol_block **sprev = &symbol_block;
5893 register int lim = symbol_block_index;
5894 register int num_free = 0, num_used = 0;
5895
5896 symbol_free_list = NULL;
5897
5898 for (sblk = symbol_block; sblk; sblk = *sprev)
5899 {
5900 int this_free = 0;
5901 struct Lisp_Symbol *sym = sblk->symbols;
5902 struct Lisp_Symbol *end = sym + lim;
5903
5904 for (; sym < end; ++sym)
5905 {
5906 /* Check if the symbol was created during loadup. In such a case
5907 it might be pointed to by pure bytecode which we don't trace,
5908 so we conservatively assume that it is live. */
5909 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5910
5911 if (!sym->gcmarkbit && !pure_p)
5912 {
5913 if (sym->redirect == SYMBOL_LOCALIZED)
5914 xfree (SYMBOL_BLV (sym));
5915 sym->next = symbol_free_list;
5916 symbol_free_list = sym;
5917 #if GC_MARK_STACK
5918 symbol_free_list->function = Vdead;
5919 #endif
5920 ++this_free;
5921 }
5922 else
5923 {
5924 ++num_used;
5925 if (!pure_p)
5926 UNMARK_STRING (XSTRING (sym->xname));
5927 sym->gcmarkbit = 0;
5928 }
5929 }
5930
5931 lim = SYMBOL_BLOCK_SIZE;
5932 /* If this block contains only free symbols and we have already
5933 seen more than two blocks worth of free symbols then deallocate
5934 this block. */
5935 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5936 {
5937 *sprev = sblk->next;
5938 /* Unhook from the free list. */
5939 symbol_free_list = sblk->symbols[0].next;
5940 lisp_free (sblk);
5941 n_symbol_blocks--;
5942 }
5943 else
5944 {
5945 num_free += this_free;
5946 sprev = &sblk->next;
5947 }
5948 }
5949 total_symbols = num_used;
5950 total_free_symbols = num_free;
5951 }
5952
5953 /* Put all unmarked misc's on free list.
5954 For a marker, first unchain it from the buffer it points into. */
5955 {
5956 register struct marker_block *mblk;
5957 struct marker_block **mprev = &marker_block;
5958 register int lim = marker_block_index;
5959 register int num_free = 0, num_used = 0;
5960
5961 marker_free_list = 0;
5962
5963 for (mblk = marker_block; mblk; mblk = *mprev)
5964 {
5965 register int i;
5966 int this_free = 0;
5967
5968 for (i = 0; i < lim; i++)
5969 {
5970 if (!mblk->markers[i].u_any.gcmarkbit)
5971 {
5972 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5973 unchain_marker (&mblk->markers[i].u_marker);
5974 /* Set the type of the freed object to Lisp_Misc_Free.
5975 We could leave the type alone, since nobody checks it,
5976 but this might catch bugs faster. */
5977 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5978 mblk->markers[i].u_free.chain = marker_free_list;
5979 marker_free_list = &mblk->markers[i];
5980 this_free++;
5981 }
5982 else
5983 {
5984 num_used++;
5985 mblk->markers[i].u_any.gcmarkbit = 0;
5986 }
5987 }
5988 lim = MARKER_BLOCK_SIZE;
5989 /* If this block contains only free markers and we have already
5990 seen more than two blocks worth of free markers then deallocate
5991 this block. */
5992 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5993 {
5994 *mprev = mblk->next;
5995 /* Unhook from the free list. */
5996 marker_free_list = mblk->markers[0].u_free.chain;
5997 lisp_free (mblk);
5998 n_marker_blocks--;
5999 }
6000 else
6001 {
6002 num_free += this_free;
6003 mprev = &mblk->next;
6004 }
6005 }
6006
6007 total_markers = num_used;
6008 total_free_markers = num_free;
6009 }
6010
6011 /* Free all unmarked buffers */
6012 {
6013 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6014
6015 while (buffer)
6016 if (!VECTOR_MARKED_P (buffer))
6017 {
6018 if (prev)
6019 prev->header.next = buffer->header.next;
6020 else
6021 all_buffers = buffer->header.next.buffer;
6022 next = buffer->header.next.buffer;
6023 lisp_free (buffer);
6024 buffer = next;
6025 }
6026 else
6027 {
6028 VECTOR_UNMARK (buffer);
6029 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6030 prev = buffer, buffer = buffer->header.next.buffer;
6031 }
6032 }
6033
6034 /* Free all unmarked vectors */
6035 {
6036 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6037 total_vector_size = 0;
6038
6039 while (vector)
6040 if (!VECTOR_MARKED_P (vector))
6041 {
6042 if (prev)
6043 prev->header.next = vector->header.next;
6044 else
6045 all_vectors = vector->header.next.vector;
6046 next = vector->header.next.vector;
6047 lisp_free (vector);
6048 n_vectors--;
6049 vector = next;
6050
6051 }
6052 else
6053 {
6054 VECTOR_UNMARK (vector);
6055 if (vector->header.size & PSEUDOVECTOR_FLAG)
6056 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6057 else
6058 total_vector_size += vector->header.size;
6059 prev = vector, vector = vector->header.next.vector;
6060 }
6061 }
6062
6063 #ifdef GC_CHECK_STRING_BYTES
6064 if (!noninteractive)
6065 check_string_bytes (1);
6066 #endif
6067 }
6068
6069
6070
6071 \f
6072 /* Debugging aids. */
6073
6074 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6075 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6076 This may be helpful in debugging Emacs's memory usage.
6077 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6078 (void)
6079 {
6080 Lisp_Object end;
6081
6082 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6083
6084 return end;
6085 }
6086
6087 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6088 doc: /* Return a list of counters that measure how much consing there has been.
6089 Each of these counters increments for a certain kind of object.
6090 The counters wrap around from the largest positive integer to zero.
6091 Garbage collection does not decrease them.
6092 The elements of the value are as follows:
6093 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6094 All are in units of 1 = one object consed
6095 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6096 objects consed.
6097 MISCS include overlays, markers, and some internal types.
6098 Frames, windows, buffers, and subprocesses count as vectors
6099 (but the contents of a buffer's text do not count here). */)
6100 (void)
6101 {
6102 Lisp_Object consed[8];
6103
6104 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6105 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6106 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6107 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6108 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6109 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6110 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6111 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6112
6113 return Flist (8, consed);
6114 }
6115
6116 #ifdef ENABLE_CHECKING
6117 int suppress_checking;
6118
6119 void
6120 die (const char *msg, const char *file, int line)
6121 {
6122 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6123 file, line, msg);
6124 abort ();
6125 }
6126 #endif
6127 \f
6128 /* Initialization */
6129
6130 void
6131 init_alloc_once (void)
6132 {
6133 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6134 purebeg = PUREBEG;
6135 pure_size = PURESIZE;
6136 pure_bytes_used = 0;
6137 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6138 pure_bytes_used_before_overflow = 0;
6139
6140 /* Initialize the list of free aligned blocks. */
6141 free_ablock = NULL;
6142
6143 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6144 mem_init ();
6145 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6146 #endif
6147
6148 all_vectors = 0;
6149 ignore_warnings = 1;
6150 #ifdef DOUG_LEA_MALLOC
6151 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6152 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6153 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6154 #endif
6155 init_strings ();
6156 init_cons ();
6157 init_symbol ();
6158 init_marker ();
6159 init_float ();
6160 init_intervals ();
6161 init_weak_hash_tables ();
6162
6163 #ifdef REL_ALLOC
6164 malloc_hysteresis = 32;
6165 #else
6166 malloc_hysteresis = 0;
6167 #endif
6168
6169 refill_memory_reserve ();
6170
6171 ignore_warnings = 0;
6172 gcprolist = 0;
6173 byte_stack_list = 0;
6174 staticidx = 0;
6175 consing_since_gc = 0;
6176 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6177 gc_relative_threshold = 0;
6178 }
6179
6180 void
6181 init_alloc (void)
6182 {
6183 gcprolist = 0;
6184 byte_stack_list = 0;
6185 #if GC_MARK_STACK
6186 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6187 setjmp_tested_p = longjmps_done = 0;
6188 #endif
6189 #endif
6190 Vgc_elapsed = make_float (0.0);
6191 gcs_done = 0;
6192 }
6193
6194 void
6195 syms_of_alloc (void)
6196 {
6197 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6198 doc: /* *Number of bytes of consing between garbage collections.
6199 Garbage collection can happen automatically once this many bytes have been
6200 allocated since the last garbage collection. All data types count.
6201
6202 Garbage collection happens automatically only when `eval' is called.
6203
6204 By binding this temporarily to a large number, you can effectively
6205 prevent garbage collection during a part of the program.
6206 See also `gc-cons-percentage'. */);
6207
6208 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6209 doc: /* *Portion of the heap used for allocation.
6210 Garbage collection can happen automatically once this portion of the heap
6211 has been allocated since the last garbage collection.
6212 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6213 Vgc_cons_percentage = make_float (0.1);
6214
6215 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6216 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6217
6218 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6219 doc: /* Number of cons cells that have been consed so far. */);
6220
6221 DEFVAR_INT ("floats-consed", floats_consed,
6222 doc: /* Number of floats that have been consed so far. */);
6223
6224 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6225 doc: /* Number of vector cells that have been consed so far. */);
6226
6227 DEFVAR_INT ("symbols-consed", symbols_consed,
6228 doc: /* Number of symbols that have been consed so far. */);
6229
6230 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6231 doc: /* Number of string characters that have been consed so far. */);
6232
6233 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6234 doc: /* Number of miscellaneous objects that have been consed so far. */);
6235
6236 DEFVAR_INT ("intervals-consed", intervals_consed,
6237 doc: /* Number of intervals that have been consed so far. */);
6238
6239 DEFVAR_INT ("strings-consed", strings_consed,
6240 doc: /* Number of strings that have been consed so far. */);
6241
6242 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6243 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6244 This means that certain objects should be allocated in shared (pure) space.
6245 It can also be set to a hash-table, in which case this table is used to
6246 do hash-consing of the objects allocated to pure space. */);
6247
6248 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6249 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6250 garbage_collection_messages = 0;
6251
6252 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6253 doc: /* Hook run after garbage collection has finished. */);
6254 Vpost_gc_hook = Qnil;
6255 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6256 staticpro (&Qpost_gc_hook);
6257
6258 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6259 doc: /* Precomputed `signal' argument for memory-full error. */);
6260 /* We build this in advance because if we wait until we need it, we might
6261 not be able to allocate the memory to hold it. */
6262 Vmemory_signal_data
6263 = pure_cons (Qerror,
6264 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6265
6266 DEFVAR_LISP ("memory-full", Vmemory_full,
6267 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6268 Vmemory_full = Qnil;
6269
6270 staticpro (&Qgc_cons_threshold);
6271 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6272
6273 staticpro (&Qchar_table_extra_slots);
6274 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6275
6276 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6277 doc: /* Accumulated time elapsed in garbage collections.
6278 The time is in seconds as a floating point value. */);
6279 DEFVAR_INT ("gcs-done", gcs_done,
6280 doc: /* Accumulated number of garbage collections done. */);
6281
6282 defsubr (&Scons);
6283 defsubr (&Slist);
6284 defsubr (&Svector);
6285 defsubr (&Smake_byte_code);
6286 defsubr (&Smake_list);
6287 defsubr (&Smake_vector);
6288 defsubr (&Smake_string);
6289 defsubr (&Smake_bool_vector);
6290 defsubr (&Smake_symbol);
6291 defsubr (&Smake_marker);
6292 defsubr (&Spurecopy);
6293 defsubr (&Sgarbage_collect);
6294 defsubr (&Smemory_limit);
6295 defsubr (&Smemory_use_counts);
6296
6297 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6298 defsubr (&Sgc_status);
6299 #endif
6300 }