Doc fixes.
[bpt/emacs.git] / lisp / emacs-lisp / cl-extra.el
1 ;;; cl-extra.el --- Common Lisp features, part 2 -*-byte-compile-dynamic: t;-*-
2
3 ;; Copyright (C) 1993 Free Software Foundation, Inc.
4
5 ;; Author: Dave Gillespie <daveg@synaptics.com>
6 ;; Version: 2.02
7 ;; Keywords: extensions
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
25
26 ;;; Commentary:
27
28 ;; These are extensions to Emacs Lisp that provide a degree of
29 ;; Common Lisp compatibility, beyond what is already built-in
30 ;; in Emacs Lisp.
31 ;;
32 ;; This package was written by Dave Gillespie; it is a complete
33 ;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
34 ;;
35 ;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
36 ;;
37 ;; Bug reports, comments, and suggestions are welcome!
38
39 ;; This file contains portions of the Common Lisp extensions
40 ;; package which are autoloaded since they are relatively obscure.
41
42 ;; See cl.el for Change Log.
43
44
45 ;;; Code:
46
47 (or (memq 'cl-19 features)
48 (error "Tried to load `cl-extra' before `cl'!"))
49
50
51 ;;; We define these here so that this file can compile without having
52 ;;; loaded the cl.el file already.
53
54 (defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
55 (defmacro cl-pop (place)
56 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))
57
58 (defvar cl-emacs-type)
59
60
61 ;;; Type coercion.
62
63 (defun coerce (x type)
64 "Coerce OBJECT to type TYPE.
65 TYPE is a Common Lisp type specifier."
66 (cond ((eq type 'list) (if (listp x) x (append x nil)))
67 ((eq type 'vector) (if (vectorp x) x (vconcat x)))
68 ((eq type 'string) (if (stringp x) x (concat x)))
69 ((eq type 'array) (if (arrayp x) x (vconcat x)))
70 ((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0))
71 ((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type))
72 ((eq type 'float) (float x))
73 ((typep x type) x)
74 (t (error "Can't coerce %s to type %s" x type))))
75
76
77 ;;; Predicates.
78
79 (defun equalp (x y)
80 "T if two Lisp objects have similar structures and contents.
81 This is like `equal', except that it accepts numerically equal
82 numbers of different types (float vs. integer), and also compares
83 strings case-insensitively."
84 (cond ((eq x y) t)
85 ((stringp x)
86 (and (stringp y) (= (length x) (length y))
87 (or (string-equal x y)
88 (string-equal (downcase x) (downcase y))))) ; lazy but simple!
89 ((numberp x)
90 (and (numberp y) (= x y)))
91 ((consp x)
92 (while (and (consp x) (consp y) (equalp (car x) (car y)))
93 (setq x (cdr x) y (cdr y)))
94 (and (not (consp x)) (equalp x y)))
95 ((vectorp x)
96 (and (vectorp y) (= (length x) (length y))
97 (let ((i (length x)))
98 (while (and (>= (setq i (1- i)) 0)
99 (equalp (aref x i) (aref y i))))
100 (< i 0))))
101 (t (equal x y))))
102
103
104 ;;; Control structures.
105
106 (defun cl-mapcar-many (cl-func cl-seqs)
107 (if (cdr (cdr cl-seqs))
108 (let* ((cl-res nil)
109 (cl-n (apply 'min (mapcar 'length cl-seqs)))
110 (cl-i 0)
111 (cl-args (copy-sequence cl-seqs))
112 cl-p1 cl-p2)
113 (setq cl-seqs (copy-sequence cl-seqs))
114 (while (< cl-i cl-n)
115 (setq cl-p1 cl-seqs cl-p2 cl-args)
116 (while cl-p1
117 (setcar cl-p2
118 (if (consp (car cl-p1))
119 (prog1 (car (car cl-p1))
120 (setcar cl-p1 (cdr (car cl-p1))))
121 (aref (car cl-p1) cl-i)))
122 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))
123 (cl-push (apply cl-func cl-args) cl-res)
124 (setq cl-i (1+ cl-i)))
125 (nreverse cl-res))
126 (let ((cl-res nil)
127 (cl-x (car cl-seqs))
128 (cl-y (nth 1 cl-seqs)))
129 (let ((cl-n (min (length cl-x) (length cl-y)))
130 (cl-i -1))
131 (while (< (setq cl-i (1+ cl-i)) cl-n)
132 (cl-push (funcall cl-func
133 (if (consp cl-x) (cl-pop cl-x) (aref cl-x cl-i))
134 (if (consp cl-y) (cl-pop cl-y) (aref cl-y cl-i)))
135 cl-res)))
136 (nreverse cl-res))))
137
138 (defun map (cl-type cl-func cl-seq &rest cl-rest)
139 "Map a function across one or more sequences, returning a sequence.
140 TYPE is the sequence type to return, FUNC is the function, and SEQS
141 are the argument sequences."
142 (let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest)))
143 (and cl-type (coerce cl-res cl-type))))
144
145 (defun maplist (cl-func cl-list &rest cl-rest)
146 "Map FUNC to each sublist of LIST or LISTS.
147 Like `mapcar', except applies to lists and their cdr's rather than to
148 the elements themselves."
149 (if cl-rest
150 (let ((cl-res nil)
151 (cl-args (cons cl-list (copy-sequence cl-rest)))
152 cl-p)
153 (while (not (memq nil cl-args))
154 (cl-push (apply cl-func cl-args) cl-res)
155 (setq cl-p cl-args)
156 (while cl-p (setcar cl-p (cdr (cl-pop cl-p)) )))
157 (nreverse cl-res))
158 (let ((cl-res nil))
159 (while cl-list
160 (cl-push (funcall cl-func cl-list) cl-res)
161 (setq cl-list (cdr cl-list)))
162 (nreverse cl-res))))
163
164 (defun mapc (cl-func cl-seq &rest cl-rest)
165 "Like `mapcar', but does not accumulate values returned by the function."
166 (if cl-rest
167 (apply 'map nil cl-func cl-seq cl-rest)
168 (mapcar cl-func cl-seq))
169 cl-seq)
170
171 (defun mapl (cl-func cl-list &rest cl-rest)
172 "Like `maplist', but does not accumulate values returned by the function."
173 (if cl-rest
174 (apply 'maplist cl-func cl-list cl-rest)
175 (let ((cl-p cl-list))
176 (while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p)))))
177 cl-list)
178
179 (defun mapcan (cl-func cl-seq &rest cl-rest)
180 "Like `mapcar', but nconc's together the values returned by the function."
181 (apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest)))
182
183 (defun mapcon (cl-func cl-list &rest cl-rest)
184 "Like `maplist', but nconc's together the values returned by the function."
185 (apply 'nconc (apply 'maplist cl-func cl-list cl-rest)))
186
187 (defun some (cl-pred cl-seq &rest cl-rest)
188 "Return true if PREDICATE is true of any element of SEQ or SEQs.
189 If so, return the true (non-nil) value returned by PREDICATE."
190 (if (or cl-rest (nlistp cl-seq))
191 (catch 'cl-some
192 (apply 'map nil
193 (function (lambda (&rest cl-x)
194 (let ((cl-res (apply cl-pred cl-x)))
195 (if cl-res (throw 'cl-some cl-res)))))
196 cl-seq cl-rest) nil)
197 (let ((cl-x nil))
198 (while (and cl-seq (not (setq cl-x (funcall cl-pred (cl-pop cl-seq))))))
199 cl-x)))
200
201 (defun every (cl-pred cl-seq &rest cl-rest)
202 "Return true if PREDICATE is true of every element of SEQ or SEQs."
203 (if (or cl-rest (nlistp cl-seq))
204 (catch 'cl-every
205 (apply 'map nil
206 (function (lambda (&rest cl-x)
207 (or (apply cl-pred cl-x) (throw 'cl-every nil))))
208 cl-seq cl-rest) t)
209 (while (and cl-seq (funcall cl-pred (car cl-seq)))
210 (setq cl-seq (cdr cl-seq)))
211 (null cl-seq)))
212
213 (defun notany (cl-pred cl-seq &rest cl-rest)
214 "Return true if PREDICATE is false of every element of SEQ or SEQs."
215 (not (apply 'some cl-pred cl-seq cl-rest)))
216
217 (defun notevery (cl-pred cl-seq &rest cl-rest)
218 "Return true if PREDICATE is false of some element of SEQ or SEQs."
219 (not (apply 'every cl-pred cl-seq cl-rest)))
220
221 ;;; Support for `loop'.
222 (defun cl-map-keymap (cl-func cl-map)
223 (while (symbolp cl-map) (setq cl-map (symbol-function cl-map)))
224 (if (eq cl-emacs-type 'lucid) (funcall 'map-keymap cl-func cl-map)
225 (if (listp cl-map)
226 (let ((cl-p cl-map))
227 (while (consp (setq cl-p (cdr cl-p)))
228 (cond ((consp (car cl-p))
229 (funcall cl-func (car (car cl-p)) (cdr (car cl-p))))
230 ((vectorp (car cl-p))
231 (cl-map-keymap cl-func (car cl-p)))
232 ((eq (car cl-p) 'keymap)
233 (setq cl-p nil)))))
234 (let ((cl-i -1))
235 (while (< (setq cl-i (1+ cl-i)) (length cl-map))
236 (if (aref cl-map cl-i)
237 (funcall cl-func cl-i (aref cl-map cl-i))))))))
238
239 (defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base)
240 (or cl-base
241 (setq cl-base (copy-sequence (if (eq cl-emacs-type 18) "0" [0]))))
242 (cl-map-keymap
243 (function
244 (lambda (cl-key cl-bind)
245 (aset cl-base (1- (length cl-base)) cl-key)
246 (if (keymapp cl-bind)
247 (cl-map-keymap-recursively
248 cl-func-rec cl-bind
249 (funcall (if (eq cl-emacs-type 18) 'concat 'vconcat)
250 cl-base (list 0)))
251 (funcall cl-func-rec cl-base cl-bind))))
252 cl-map))
253
254 (defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end)
255 (or cl-what (setq cl-what (current-buffer)))
256 (if (bufferp cl-what)
257 (let (cl-mark cl-mark2 (cl-next t) cl-next2)
258 (save-excursion
259 (set-buffer cl-what)
260 (setq cl-mark (copy-marker (or cl-start (point-min))))
261 (setq cl-mark2 (and cl-end (copy-marker cl-end))))
262 (while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2)))
263 (setq cl-next (and (fboundp 'next-property-change)
264 (if cl-prop (next-single-property-change
265 cl-mark cl-prop cl-what)
266 (next-property-change cl-mark cl-what)))
267 cl-next2 (or cl-next (save-excursion
268 (set-buffer cl-what) (point-max))))
269 (funcall cl-func (prog1 (marker-position cl-mark)
270 (set-marker cl-mark cl-next2))
271 (if cl-mark2 (min cl-next2 cl-mark2) cl-next2)))
272 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))
273 (or cl-start (setq cl-start 0))
274 (or cl-end (setq cl-end (length cl-what)))
275 (while (< cl-start cl-end)
276 (let ((cl-next (or (and (fboundp 'next-property-change)
277 (if cl-prop (next-single-property-change
278 cl-start cl-prop cl-what)
279 (next-property-change cl-start cl-what)))
280 cl-end)))
281 (funcall cl-func cl-start (min cl-next cl-end))
282 (setq cl-start cl-next)))))
283
284 (defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg)
285 (or cl-buffer (setq cl-buffer (current-buffer)))
286 (if (fboundp 'overlay-lists)
287
288 ;; This is the preferred algorithm, though overlay-lists is undocumented.
289 (let (cl-ovl)
290 (save-excursion
291 (set-buffer cl-buffer)
292 (setq cl-ovl (overlay-lists))
293 (if cl-start (setq cl-start (copy-marker cl-start)))
294 (if cl-end (setq cl-end (copy-marker cl-end))))
295 (setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl)))
296 (while (and cl-ovl
297 (or (not (overlay-start (car cl-ovl)))
298 (and cl-end (>= (overlay-start (car cl-ovl)) cl-end))
299 (and cl-start (<= (overlay-end (car cl-ovl)) cl-start))
300 (not (funcall cl-func (car cl-ovl) cl-arg))))
301 (setq cl-ovl (cdr cl-ovl)))
302 (if cl-start (set-marker cl-start nil))
303 (if cl-end (set-marker cl-end nil)))
304
305 ;; This alternate algorithm fails to find zero-length overlays.
306 (let ((cl-mark (save-excursion (set-buffer cl-buffer)
307 (copy-marker (or cl-start (point-min)))))
308 (cl-mark2 (and cl-end (save-excursion (set-buffer cl-buffer)
309 (copy-marker cl-end))))
310 cl-pos cl-ovl)
311 (while (save-excursion
312 (and (setq cl-pos (marker-position cl-mark))
313 (< cl-pos (or cl-mark2 (point-max)))
314 (progn
315 (set-buffer cl-buffer)
316 (setq cl-ovl (overlays-at cl-pos))
317 (set-marker cl-mark (next-overlay-change cl-pos)))))
318 (while (and cl-ovl
319 (or (/= (overlay-start (car cl-ovl)) cl-pos)
320 (not (and (funcall cl-func (car cl-ovl) cl-arg)
321 (set-marker cl-mark nil)))))
322 (setq cl-ovl (cdr cl-ovl))))
323 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))))
324
325 ;;; Support for `setf'.
326 (defun cl-set-frame-visible-p (frame val)
327 (cond ((null val) (make-frame-invisible frame))
328 ((eq val 'icon) (iconify-frame frame))
329 (t (make-frame-visible frame)))
330 val)
331
332 ;;; Support for `progv'.
333 (defvar cl-progv-save)
334 (defun cl-progv-before (syms values)
335 (while syms
336 (cl-push (if (boundp (car syms))
337 (cons (car syms) (symbol-value (car syms)))
338 (car syms)) cl-progv-save)
339 (if values
340 (set (cl-pop syms) (cl-pop values))
341 (makunbound (cl-pop syms)))))
342
343 (defun cl-progv-after ()
344 (while cl-progv-save
345 (if (consp (car cl-progv-save))
346 (set (car (car cl-progv-save)) (cdr (car cl-progv-save)))
347 (makunbound (car cl-progv-save)))
348 (cl-pop cl-progv-save)))
349
350
351 ;;; Numbers.
352
353 (defun gcd (&rest args)
354 "Return the greatest common divisor of the arguments."
355 (let ((a (abs (or (cl-pop args) 0))))
356 (while args
357 (let ((b (abs (cl-pop args))))
358 (while (> b 0) (setq b (% a (setq a b))))))
359 a))
360
361 (defun lcm (&rest args)
362 "Return the least common multiple of the arguments."
363 (if (memq 0 args)
364 0
365 (let ((a (abs (or (cl-pop args) 1))))
366 (while args
367 (let ((b (abs (cl-pop args))))
368 (setq a (* (/ a (gcd a b)) b))))
369 a)))
370
371 (defun isqrt (a)
372 "Return the integer square root of the argument."
373 (if (and (integerp a) (> a 0))
374 (let ((g (cond ((<= a 100) 10) ((<= a 10000) 100)
375 ((<= a 1000000) 1000) (t a)))
376 g2)
377 (while (< (setq g2 (/ (+ g (/ a g)) 2)) g)
378 (setq g g2))
379 g)
380 (if (eq a 0) 0 (signal 'arith-error nil))))
381
382 (defun cl-expt (x y)
383 "Return X raised to the power of Y. Works only for integer arguments."
384 (if (<= y 0) (if (= y 0) 1 (if (memq x '(-1 1)) (cl-expt x (- y)) 0))
385 (* (if (= (% y 2) 0) 1 x) (cl-expt (* x x) (/ y 2)))))
386 (or (and (fboundp 'expt) (subrp (symbol-function 'expt)))
387 (defalias 'expt 'cl-expt))
388
389 (defun floor* (x &optional y)
390 "Return a list of the floor of X and the fractional part of X.
391 With two arguments, return floor and remainder of their quotient."
392 (let ((q (floor x y)))
393 (list q (- x (if y (* y q) q)))))
394
395 (defun ceiling* (x &optional y)
396 "Return a list of the ceiling of X and the fractional part of X.
397 With two arguments, return ceiling and remainder of their quotient."
398 (let ((res (floor* x y)))
399 (if (= (car (cdr res)) 0) res
400 (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
401
402 (defun truncate* (x &optional y)
403 "Return a list of the integer part of X and the fractional part of X.
404 With two arguments, return truncation and remainder of their quotient."
405 (if (eq (>= x 0) (or (null y) (>= y 0)))
406 (floor* x y) (ceiling* x y)))
407
408 (defun round* (x &optional y)
409 "Return a list of X rounded to the nearest integer and the remainder.
410 With two arguments, return rounding and remainder of their quotient."
411 (if y
412 (if (and (integerp x) (integerp y))
413 (let* ((hy (/ y 2))
414 (res (floor* (+ x hy) y)))
415 (if (and (= (car (cdr res)) 0)
416 (= (+ hy hy) y)
417 (/= (% (car res) 2) 0))
418 (list (1- (car res)) hy)
419 (list (car res) (- (car (cdr res)) hy))))
420 (let ((q (round (/ x y))))
421 (list q (- x (* q y)))))
422 (if (integerp x) (list x 0)
423 (let ((q (round x)))
424 (list q (- x q))))))
425
426 (defun mod* (x y)
427 "The remainder of X divided by Y, with the same sign as Y."
428 (nth 1 (floor* x y)))
429
430 (defun rem* (x y)
431 "The remainder of X divided by Y, with the same sign as X."
432 (nth 1 (truncate* x y)))
433
434 (defun signum (a)
435 "Return 1 if A is positive, -1 if negative, 0 if zero."
436 (cond ((> a 0) 1) ((< a 0) -1) (t 0)))
437
438
439 ;; Random numbers.
440
441 (defvar *random-state*)
442 (defun random* (lim &optional state)
443 "Return a random nonnegative number less than LIM, an integer or float.
444 Optional second arg STATE is a random-state object."
445 (or state (setq state *random-state*))
446 ;; Inspired by "ran3" from Numerical Recipes. Additive congruential method.
447 (let ((vec (aref state 3)))
448 (if (integerp vec)
449 (let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1) ii)
450 (aset state 3 (setq vec (make-vector 55 nil)))
451 (aset vec 0 j)
452 (while (> (setq i (% (+ i 21) 55)) 0)
453 (aset vec i (setq j (prog1 k (setq k (- j k))))))
454 (while (< (setq i (1+ i)) 200) (random* 2 state))))
455 (let* ((i (aset state 1 (% (1+ (aref state 1)) 55)))
456 (j (aset state 2 (% (1+ (aref state 2)) 55)))
457 (n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j))))))
458 (if (integerp lim)
459 (if (<= lim 512) (% n lim)
460 (if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state))))
461 (let ((mask 1023))
462 (while (< mask (1- lim)) (setq mask (1+ (+ mask mask))))
463 (if (< (setq n (logand n mask)) lim) n (random* lim state))))
464 (* (/ n '8388608e0) lim)))))
465
466 (defun make-random-state (&optional state)
467 "Return a copy of random-state STATE, or of `*random-state*' if omitted.
468 If STATE is t, return a new state object seeded from the time of day."
469 (cond ((null state) (make-random-state *random-state*))
470 ((vectorp state) (cl-copy-tree state t))
471 ((integerp state) (vector 'cl-random-state-tag -1 30 state))
472 (t (make-random-state (cl-random-time)))))
473
474 (defun random-state-p (object)
475 "Return t if OBJECT is a random-state object."
476 (and (vectorp object) (= (length object) 4)
477 (eq (aref object 0) 'cl-random-state-tag)))
478
479
480 ;; Implementation limits.
481
482 (defun cl-finite-do (func a b)
483 (condition-case err
484 (let ((res (funcall func a b))) ; check for IEEE infinity
485 (and (numberp res) (/= res (/ res 2)) res))
486 (arith-error nil)))
487
488 (defvar most-positive-float)
489 (defvar most-negative-float)
490 (defvar least-positive-float)
491 (defvar least-negative-float)
492 (defvar least-positive-normalized-float)
493 (defvar least-negative-normalized-float)
494 (defvar float-epsilon)
495 (defvar float-negative-epsilon)
496
497 (defun cl-float-limits ()
498 (or most-positive-float (not (numberp '2e1))
499 (let ((x '2e0) y z)
500 ;; Find maximum exponent (first two loops are optimizations)
501 (while (cl-finite-do '* x x) (setq x (* x x)))
502 (while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2))))
503 (while (cl-finite-do '+ x x) (setq x (+ x x)))
504 (setq z x y (/ x 2))
505 ;; Now fill in 1's in the mantissa.
506 (while (and (cl-finite-do '+ x y) (/= (+ x y) x))
507 (setq x (+ x y) y (/ y 2)))
508 (setq most-positive-float x
509 most-negative-float (- x))
510 ;; Divide down until mantissa starts rounding.
511 (setq x (/ x z) y (/ 16 z) x (* x y))
512 (while (condition-case err (and (= x (* (/ x 2) 2)) (> (/ y 2) 0))
513 (arith-error nil))
514 (setq x (/ x 2) y (/ y 2)))
515 (setq least-positive-normalized-float y
516 least-negative-normalized-float (- y))
517 ;; Divide down until value underflows to zero.
518 (setq x (/ 1 z) y x)
519 (while (condition-case err (> (/ x 2) 0) (arith-error nil))
520 (setq x (/ x 2)))
521 (setq least-positive-float x
522 least-negative-float (- x))
523 (setq x '1e0)
524 (while (/= (+ '1e0 x) '1e0) (setq x (/ x 2)))
525 (setq float-epsilon (* x 2))
526 (setq x '1e0)
527 (while (/= (- '1e0 x) '1e0) (setq x (/ x 2)))
528 (setq float-negative-epsilon (* x 2))))
529 nil)
530
531
532 ;;; Sequence functions.
533
534 (defun subseq (seq start &optional end)
535 "Return the subsequence of SEQ from START to END.
536 If END is omitted, it defaults to the length of the sequence.
537 If START or END is negative, it counts from the end."
538 (if (stringp seq) (substring seq start end)
539 (let (len)
540 (and end (< end 0) (setq end (+ end (setq len (length seq)))))
541 (if (< start 0) (setq start (+ start (or len (setq len (length seq))))))
542 (cond ((listp seq)
543 (if (> start 0) (setq seq (nthcdr start seq)))
544 (if end
545 (let ((res nil))
546 (while (>= (setq end (1- end)) start)
547 (cl-push (cl-pop seq) res))
548 (nreverse res))
549 (copy-sequence seq)))
550 (t
551 (or end (setq end (or len (length seq))))
552 (let ((res (make-vector (max (- end start) 0) nil))
553 (i 0))
554 (while (< start end)
555 (aset res i (aref seq start))
556 (setq i (1+ i) start (1+ start)))
557 res))))))
558
559 (defun concatenate (type &rest seqs)
560 "Concatenate, into a sequence of type TYPE, the argument SEQUENCES."
561 (cond ((eq type 'vector) (apply 'vconcat seqs))
562 ((eq type 'string) (apply 'concat seqs))
563 ((eq type 'list) (apply 'append (append seqs '(nil))))
564 (t (error "Not a sequence type name: %s" type))))
565
566
567 ;;; List functions.
568
569 (defun revappend (x y)
570 "Equivalent to (append (reverse X) Y)."
571 (nconc (reverse x) y))
572
573 (defun nreconc (x y)
574 "Equivalent to (nconc (nreverse X) Y)."
575 (nconc (nreverse x) y))
576
577 (defun list-length (x)
578 "Return the length of a list. Return nil if list is circular."
579 (let ((n 0) (fast x) (slow x))
580 (while (and (cdr fast) (not (and (eq fast slow) (> n 0))))
581 (setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow)))
582 (if fast (if (cdr fast) nil (1+ n)) n)))
583
584 (defun tailp (sublist list)
585 "Return true if SUBLIST is a tail of LIST."
586 (while (and (consp list) (not (eq sublist list)))
587 (setq list (cdr list)))
588 (if (numberp sublist) (equal sublist list) (eq sublist list)))
589
590 (defun cl-copy-tree (tree &optional vecp)
591 "Make a copy of TREE.
592 If TREE is a cons cell, this recursively copies both its car and its cdr.
593 Contrast to copy-sequence, which copies only along the cdrs. With second
594 argument VECP, this copies vectors as well as conses."
595 (if (consp tree)
596 (let ((p (setq tree (copy-list tree))))
597 (while (consp p)
598 (if (or (consp (car p)) (and vecp (vectorp (car p))))
599 (setcar p (cl-copy-tree (car p) vecp)))
600 (or (listp (cdr p)) (setcdr p (cl-copy-tree (cdr p) vecp)))
601 (cl-pop p)))
602 (if (and vecp (vectorp tree))
603 (let ((i (length (setq tree (copy-sequence tree)))))
604 (while (>= (setq i (1- i)) 0)
605 (aset tree i (cl-copy-tree (aref tree i) vecp))))))
606 tree)
607 (or (and (fboundp 'copy-tree) (subrp (symbol-function 'copy-tree)))
608 (defalias 'copy-tree 'cl-copy-tree))
609
610
611 ;;; Property lists.
612
613 (defun get* (sym tag &optional def) ; See compiler macro in cl-macs.el
614 "Return the value of SYMBOL's PROPNAME property, or DEFAULT if none."
615 (or (get sym tag)
616 (and def
617 (let ((plist (symbol-plist sym)))
618 (while (and plist (not (eq (car plist) tag)))
619 (setq plist (cdr (cdr plist))))
620 (if plist (car (cdr plist)) def)))))
621
622 (defun getf (plist tag &optional def)
623 "Search PROPLIST for property PROPNAME; return its value or DEFAULT.
624 PROPLIST is a list of the sort returned by `symbol-plist'."
625 (setplist '--cl-getf-symbol-- plist)
626 (or (get '--cl-getf-symbol-- tag)
627 (and def (get* '--cl-getf-symbol-- tag def))))
628
629 (defun cl-set-getf (plist tag val)
630 (let ((p plist))
631 (while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p))))
632 (if p (progn (setcar (cdr p) val) plist) (list* tag val plist))))
633
634 (defun cl-do-remf (plist tag)
635 (let ((p (cdr plist)))
636 (while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p))))
637 (and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t))))
638
639 (defun cl-remprop (sym tag)
640 "Remove from SYMBOL's plist the property PROP and its value."
641 (let ((plist (symbol-plist sym)))
642 (if (and plist (eq tag (car plist)))
643 (progn (setplist sym (cdr (cdr plist))) t)
644 (cl-do-remf plist tag))))
645 (or (and (fboundp 'remprop) (subrp (symbol-function 'remprop)))
646 (defalias 'remprop 'cl-remprop))
647
648
649
650 ;;; Hash tables.
651
652 (defun make-hash-table (&rest cl-keys)
653 "Make an empty Common Lisp-style hash-table.
654 If :test is `eq', this can use Lucid Emacs built-in hash-tables.
655 In non-Lucid Emacs, or with non-`eq' test, this internally uses a-lists.
656 Keywords supported: :test :size
657 The Common Lisp keywords :rehash-size and :rehash-threshold are ignored."
658 (let ((cl-test (or (car (cdr (memq ':test cl-keys))) 'eql))
659 (cl-size (or (car (cdr (memq ':size cl-keys))) 20)))
660 (if (and (eq cl-test 'eq) (fboundp 'make-hashtable))
661 (funcall 'make-hashtable cl-size)
662 (list 'cl-hash-table-tag cl-test
663 (if (> cl-size 1) (make-vector cl-size 0)
664 (let ((sym (make-symbol "--hashsym--"))) (set sym nil) sym))
665 0))))
666
667 (defvar cl-lucid-hash-tag
668 (if (and (fboundp 'make-hashtable) (vectorp (make-hashtable 1)))
669 (aref (make-hashtable 1) 0) (make-symbol "--cl-hash-tag--")))
670
671 (defun hash-table-p (x)
672 "Return t if OBJECT is a hash table."
673 (or (eq (car-safe x) 'cl-hash-table-tag)
674 (and (vectorp x) (= (length x) 4) (eq (aref x 0) cl-lucid-hash-tag))
675 (and (fboundp 'hashtablep) (funcall 'hashtablep x))))
676
677 (defun cl-not-hash-table (x &optional y &rest z)
678 (signal 'wrong-type-argument (list 'hash-table-p (or y x))))
679
680 (defun cl-hash-lookup (key table)
681 (or (eq (car-safe table) 'cl-hash-table-tag) (cl-not-hash-table table))
682 (let* ((array (nth 2 table)) (test (car (cdr table))) (str key) sym)
683 (if (symbolp array) (setq str nil sym (symbol-value array))
684 (while (or (consp str) (and (vectorp str) (> (length str) 0)))
685 (setq str (elt str 0)))
686 (cond ((stringp str) (if (eq test 'equalp) (setq str (downcase str))))
687 ((symbolp str) (setq str (symbol-name str)))
688 ((and (numberp str) (> str -8000000) (< str 8000000))
689 (or (integerp str) (setq str (truncate str)))
690 (setq str (aref ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
691 "11" "12" "13" "14" "15"] (logand str 15))))
692 (t (setq str "*")))
693 (setq sym (symbol-value (intern-soft str array))))
694 (list (and sym (cond ((or (eq test 'eq)
695 (and (eq test 'eql) (not (numberp key))))
696 (assq key sym))
697 ((memq test '(eql equal)) (assoc key sym))
698 (t (assoc* key sym ':test test))))
699 sym str)))
700
701 (defvar cl-builtin-gethash
702 (if (and (fboundp 'gethash) (subrp (symbol-function 'gethash)))
703 (symbol-function 'gethash) 'cl-not-hash-table))
704 (defvar cl-builtin-remhash
705 (if (and (fboundp 'remhash) (subrp (symbol-function 'remhash)))
706 (symbol-function 'remhash) 'cl-not-hash-table))
707 (defvar cl-builtin-clrhash
708 (if (and (fboundp 'clrhash) (subrp (symbol-function 'clrhash)))
709 (symbol-function 'clrhash) 'cl-not-hash-table))
710 (defvar cl-builtin-maphash
711 (if (and (fboundp 'maphash) (subrp (symbol-function 'maphash)))
712 (symbol-function 'maphash) 'cl-not-hash-table))
713
714 (defun cl-gethash (key table &optional def)
715 "Look up KEY in HASH-TABLE; return corresponding value, or DEFAULT."
716 (if (consp table)
717 (let ((found (cl-hash-lookup key table)))
718 (if (car found) (cdr (car found)) def))
719 (funcall cl-builtin-gethash key table def)))
720 (defalias 'gethash 'cl-gethash)
721
722 (defun cl-puthash (key val table)
723 (if (consp table)
724 (let ((found (cl-hash-lookup key table)))
725 (if (car found) (setcdr (car found) val)
726 (if (nth 2 found)
727 (progn
728 (if (> (nth 3 table) (* (length (nth 2 table)) 3))
729 (let ((new-table (make-vector (nth 3 table) 0)))
730 (mapatoms (function
731 (lambda (sym)
732 (set (intern (symbol-name sym) new-table)
733 (symbol-value sym))))
734 (nth 2 table))
735 (setcar (cdr (cdr table)) new-table)))
736 (set (intern (nth 2 found) (nth 2 table))
737 (cons (cons key val) (nth 1 found))))
738 (set (nth 2 table) (cons (cons key val) (nth 1 found))))
739 (setcar (cdr (cdr (cdr table))) (1+ (nth 3 table)))))
740 (funcall 'puthash key val table)) val)
741
742 (defun cl-remhash (key table)
743 "Remove KEY from HASH-TABLE."
744 (if (consp table)
745 (let ((found (cl-hash-lookup key table)))
746 (and (car found)
747 (let ((del (delq (car found) (nth 1 found))))
748 (setcar (cdr (cdr (cdr table))) (1- (nth 3 table)))
749 (if (nth 2 found) (set (intern (nth 2 found) (nth 2 table)) del)
750 (set (nth 2 table) del)) t)))
751 (prog1 (not (eq (funcall cl-builtin-gethash key table '--cl--) '--cl--))
752 (funcall cl-builtin-remhash key table))))
753 (defalias 'remhash 'cl-remhash)
754
755 (defun cl-clrhash (table)
756 "Clear HASH-TABLE."
757 (if (consp table)
758 (progn
759 (or (hash-table-p table) (cl-not-hash-table table))
760 (if (symbolp (nth 2 table)) (set (nth 2 table) nil)
761 (setcar (cdr (cdr table)) (make-vector (length (nth 2 table)) 0)))
762 (setcar (cdr (cdr (cdr table))) 0))
763 (funcall cl-builtin-clrhash table))
764 nil)
765 (defalias 'clrhash 'cl-clrhash)
766
767 (defun cl-maphash (cl-func cl-table)
768 "Call FUNCTION on keys and values from HASH-TABLE."
769 (or (hash-table-p cl-table) (cl-not-hash-table cl-table))
770 (if (consp cl-table)
771 (mapatoms (function (lambda (cl-x)
772 (setq cl-x (symbol-value cl-x))
773 (while cl-x
774 (funcall cl-func (car (car cl-x))
775 (cdr (car cl-x)))
776 (setq cl-x (cdr cl-x)))))
777 (if (symbolp (nth 2 cl-table))
778 (vector (nth 2 cl-table)) (nth 2 cl-table)))
779 (funcall cl-builtin-maphash cl-func cl-table)))
780 (defalias 'maphash 'cl-maphash)
781
782 (defun hash-table-count (table)
783 "Return the number of entries in HASH-TABLE."
784 (or (hash-table-p table) (cl-not-hash-table table))
785 (if (consp table) (nth 3 table) (funcall 'hashtable-fullness table)))
786
787
788 ;;; Some debugging aids.
789
790 (defun cl-prettyprint (form)
791 "Insert a pretty-printed rendition of a Lisp FORM in current buffer."
792 (let ((pt (point)) last)
793 (insert "\n" (prin1-to-string form) "\n")
794 (setq last (point))
795 (goto-char (1+ pt))
796 (while (search-forward "(quote " last t)
797 (delete-backward-char 7)
798 (insert "'")
799 (forward-sexp)
800 (delete-char 1))
801 (goto-char (1+ pt))
802 (cl-do-prettyprint)))
803
804 (defun cl-do-prettyprint ()
805 (skip-chars-forward " ")
806 (if (looking-at "(")
807 (let ((skip (or (looking-at "((") (looking-at "(prog")
808 (looking-at "(unwind-protect ")
809 (looking-at "(function (")
810 (looking-at "(cl-block-wrapper ")))
811 (two (or (looking-at "(defun ") (looking-at "(defmacro ")))
812 (let (or (looking-at "(let\\*? ") (looking-at "(while ")))
813 (set (looking-at "(p?set[qf] ")))
814 (if (or skip let
815 (progn
816 (forward-sexp)
817 (and (>= (current-column) 78) (progn (backward-sexp) t))))
818 (let ((nl t))
819 (forward-char 1)
820 (cl-do-prettyprint)
821 (or skip (looking-at ")") (cl-do-prettyprint))
822 (or (not two) (looking-at ")") (cl-do-prettyprint))
823 (while (not (looking-at ")"))
824 (if set (setq nl (not nl)))
825 (if nl (insert "\n"))
826 (lisp-indent-line)
827 (cl-do-prettyprint))
828 (forward-char 1))))
829 (forward-sexp)))
830
831 (defvar cl-macroexpand-cmacs nil)
832 (defvar cl-closure-vars nil)
833
834 (defun cl-macroexpand-all (form &optional env)
835 "Expand all macro calls through a Lisp FORM.
836 This also does some trivial optimizations to make the form prettier."
837 (while (or (not (eq form (setq form (macroexpand form env))))
838 (and cl-macroexpand-cmacs
839 (not (eq form (setq form (compiler-macroexpand form)))))))
840 (cond ((not (consp form)) form)
841 ((memq (car form) '(let let*))
842 (if (null (nth 1 form))
843 (cl-macroexpand-all (cons 'progn (cddr form)) env)
844 (let ((letf nil) (res nil) (lets (cadr form)))
845 (while lets
846 (cl-push (if (consp (car lets))
847 (let ((exp (cl-macroexpand-all (caar lets) env)))
848 (or (symbolp exp) (setq letf t))
849 (cons exp (cl-macroexpand-body (cdar lets) env)))
850 (let ((exp (cl-macroexpand-all (car lets) env)))
851 (if (symbolp exp) exp
852 (setq letf t) (list exp nil)))) res)
853 (setq lets (cdr lets)))
854 (list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form))
855 (nreverse res) (cl-macroexpand-body (cddr form) env)))))
856 ((eq (car form) 'cond)
857 (cons (car form)
858 (mapcar (function (lambda (x) (cl-macroexpand-body x env)))
859 (cdr form))))
860 ((eq (car form) 'condition-case)
861 (list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env)
862 (mapcar (function
863 (lambda (x)
864 (cons (car x) (cl-macroexpand-body (cdr x) env))))
865 (cdddr form))))
866 ((memq (car form) '(quote function))
867 (if (eq (car-safe (nth 1 form)) 'lambda)
868 (let ((body (cl-macroexpand-body (cddadr form) env)))
869 (if (and cl-closure-vars (eq (car form) 'function)
870 (cl-expr-contains-any body cl-closure-vars))
871 (let* ((new (mapcar 'gensym cl-closure-vars))
872 (sub (pairlis cl-closure-vars new)) (decls nil))
873 (while (or (stringp (car body))
874 (eq (car-safe (car body)) 'interactive))
875 (cl-push (list 'quote (cl-pop body)) decls))
876 (put (car (last cl-closure-vars)) 'used t)
877 (append
878 (list 'list '(quote lambda) '(quote (&rest --cl-rest--)))
879 (sublis sub (nreverse decls))
880 (list
881 (list* 'list '(quote apply)
882 (list 'list '(quote quote)
883 (list 'function
884 (list* 'lambda
885 (append new (cadadr form))
886 (sublis sub body))))
887 (nconc (mapcar (function
888 (lambda (x)
889 (list 'list '(quote quote) x)))
890 cl-closure-vars)
891 '((quote --cl-rest--)))))))
892 (list (car form) (list* 'lambda (cadadr form) body))))
893 (let ((found (assq (cadr form) env)))
894 (if (eq (cadr (caddr found)) 'cl-labels-args)
895 (cl-macroexpand-all (cadr (caddr (cadddr found))) env)
896 form))))
897 ((memq (car form) '(defun defmacro))
898 (list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env)))
899 ((and (eq (car form) 'progn) (not (cddr form)))
900 (cl-macroexpand-all (nth 1 form) env))
901 ((eq (car form) 'setq)
902 (let* ((args (cl-macroexpand-body (cdr form) env)) (p args))
903 (while (and p (symbolp (car p))) (setq p (cddr p)))
904 (if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args))))
905 (t (cons (car form) (cl-macroexpand-body (cdr form) env)))))
906
907 (defun cl-macroexpand-body (body &optional env)
908 (mapcar (function (lambda (x) (cl-macroexpand-all x env))) body))
909
910 (defun cl-prettyexpand (form &optional full)
911 (message "Expanding...")
912 (let ((cl-macroexpand-cmacs full) (cl-compiling-file full)
913 (byte-compile-macro-environment nil))
914 (setq form (cl-macroexpand-all form
915 (and (not full) '((block) (eval-when)))))
916 (message "Formatting...")
917 (prog1 (cl-prettyprint form)
918 (message ""))))
919
920
921
922 (run-hooks 'cl-extra-load-hook)
923
924 ;;; cl-extra.el ends here