Merge from trunk
[bpt/emacs.git] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Andrew Choi (akochoi@mac.com). */
21
22 /* Documentation note.
23
24 Consult the following documents/files for a description of the
25 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
26 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
27 mach header (-h option) and the load commands (-l option) in a
28 Mach-O file. The tool nm on Mac OS X displays the symbol table in
29 a Mach-O file. For examples of unexec for the Mach-O format, see
30 the file unexnext.c in the GNU Emacs distribution, the file
31 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
32 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
33 contains the source code for malloc_freezedry and malloc_jumpstart.
34 Read that to see what they do. This file was written completely
35 from scratch, making use of information from the above sources. */
36
37 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
38 memory allocator. All calls to malloc, realloc, and free in Emacs
39 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
40 this file. When temacs is run, all memory requests are handled in
41 the zone EmacsZone. The Darwin memory allocator library calls
42 maintain the data structures to manage this zone. Dumping writes
43 its contents to data segments of the executable file. When emacs
44 is run, the loader recreates the contents of the zone in memory.
45 However since the initialization routine of the zone memory
46 allocator is run again, this `zone' can no longer be used as a
47 heap. That is why emacs uses the ordinary malloc system call to
48 allocate memory. Also, when a block of memory needs to be
49 reallocated and the new size is larger than the old one, a new
50 block must be obtained by malloc and the old contents copied to
51 it. */
52
53 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
54 (possible causes of future bugs if changed).
55
56 The file offset of the start of the __TEXT segment is zero. Since
57 the Mach header and load commands are located at the beginning of a
58 Mach-O file, copying the contents of the __TEXT segment from the
59 input file overwrites them in the output file. Despite this,
60 unexec works fine as written below because the segment load command
61 for __TEXT appears, and is therefore processed, before all other
62 load commands except the segment load command for __PAGEZERO, which
63 remains unchanged.
64
65 Although the file offset of the start of the __TEXT segment is
66 zero, none of the sections it contains actually start there. In
67 fact, the earliest one starts a few hundred bytes beyond the end of
68 the last load command. The linker option -headerpad controls the
69 minimum size of this padding. Its setting can be changed in
70 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
71 load commands for the newly created __DATA segments (at 56 bytes
72 each). Unexec fails if there is not enough room for these new
73 segments.
74
75 The __TEXT segment contains the sections __text, __cstring,
76 __picsymbol_stub, and __const and the __DATA segment contains the
77 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
78 and __common. The other segments do not contain any sections.
79 These sections are copied from the input file to the output file,
80 except for __data, __bss, and __common, which are dumped from
81 memory. The types of the sections __bss and __common are changed
82 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
83 their relative order in the input and output files remain
84 unchanged. Otherwise all n_sect fields in the nlist records in the
85 symbol table (specified by the LC_SYMTAB load command) will have to
86 be changed accordingly.
87 */
88
89 #include <stdio.h>
90 #include <stdlib.h>
91 #include <fcntl.h>
92 #include <stdarg.h>
93 #include <sys/types.h>
94 #include <unistd.h>
95 #include <mach/mach.h>
96 #include <mach-o/loader.h>
97 #include <mach-o/reloc.h>
98 #if defined (__ppc__)
99 #include <mach-o/ppc/reloc.h>
100 #endif
101 #include <config.h>
102 #undef malloc
103 #undef realloc
104 #undef free
105 #ifdef HAVE_MALLOC_MALLOC_H
106 #include <malloc/malloc.h>
107 #else
108 #include <objc/malloc.h>
109 #endif
110
111 #include <assert.h>
112
113 #ifdef _LP64
114 #define mach_header mach_header_64
115 #define segment_command segment_command_64
116 #undef VM_REGION_BASIC_INFO_COUNT
117 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
118 #undef VM_REGION_BASIC_INFO
119 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
120 #undef LC_SEGMENT
121 #define LC_SEGMENT LC_SEGMENT_64
122 #define vm_region vm_region_64
123 #define section section_64
124 #undef MH_MAGIC
125 #define MH_MAGIC MH_MAGIC_64
126 #endif
127
128 #define VERBOSE 1
129
130 /* Size of buffer used to copy data from the input file to the output
131 file in function unexec_copy. */
132 #define UNEXEC_COPY_BUFSZ 1024
133
134 /* Regions with memory addresses above this value are assumed to be
135 mapped to dynamically loaded libraries and will not be dumped. */
136 #define VM_DATA_TOP (20 * 1024 * 1024)
137
138 /* Type of an element on the list of regions to be dumped. */
139 struct region_t {
140 vm_address_t address;
141 vm_size_t size;
142 vm_prot_t protection;
143 vm_prot_t max_protection;
144
145 struct region_t *next;
146 };
147
148 /* Head and tail of the list of regions to be dumped. */
149 static struct region_t *region_list_head = 0;
150 static struct region_t *region_list_tail = 0;
151
152 /* Pointer to array of load commands. */
153 static struct load_command **lca;
154
155 /* Number of load commands. */
156 static int nlc;
157
158 /* The highest VM address of segments loaded by the input file.
159 Regions with addresses beyond this are assumed to be allocated
160 dynamically and thus require dumping. */
161 static vm_address_t infile_lc_highest_addr = 0;
162
163 /* The lowest file offset used by the all sections in the __TEXT
164 segments. This leaves room at the beginning of the file to store
165 the Mach-O header. Check this value against header size to ensure
166 the added load commands for the new __DATA segments did not
167 overwrite any of the sections in the __TEXT segment. */
168 static unsigned long text_seg_lowest_offset = 0x10000000;
169
170 /* Mach header. */
171 static struct mach_header mh;
172
173 /* Offset at which the next load command should be written. */
174 static unsigned long curr_header_offset = sizeof (struct mach_header);
175
176 /* Offset at which the next segment should be written. */
177 static unsigned long curr_file_offset = 0;
178
179 static unsigned long pagesize;
180 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
181
182 static int infd, outfd;
183
184 static int in_dumped_exec = 0;
185
186 static malloc_zone_t *emacs_zone;
187
188 /* file offset of input file's data segment */
189 static off_t data_segment_old_fileoff = 0;
190
191 static struct segment_command *data_segment_scp;
192
193 /* Read N bytes from infd into memory starting at address DEST.
194 Return true if successful, false otherwise. */
195 static int
196 unexec_read (void *dest, size_t n)
197 {
198 return n == read (infd, dest, n);
199 }
200
201 /* Write COUNT bytes from memory starting at address SRC to outfd
202 starting at offset DEST. Return true if successful, false
203 otherwise. */
204 static int
205 unexec_write (off_t dest, const void *src, size_t count)
206 {
207 if (lseek (outfd, dest, SEEK_SET) != dest)
208 return 0;
209
210 return write (outfd, src, count) == count;
211 }
212
213 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
214 Return true if successful, false otherwise. */
215 static int
216 unexec_write_zero (off_t dest, size_t count)
217 {
218 char buf[UNEXEC_COPY_BUFSZ];
219 ssize_t bytes;
220
221 memset (buf, 0, UNEXEC_COPY_BUFSZ);
222 if (lseek (outfd, dest, SEEK_SET) != dest)
223 return 0;
224
225 while (count > 0)
226 {
227 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
228 if (write (outfd, buf, bytes) != bytes)
229 return 0;
230 count -= bytes;
231 }
232
233 return 1;
234 }
235
236 /* Copy COUNT bytes from starting offset SRC in infd to starting
237 offset DEST in outfd. Return true if successful, false
238 otherwise. */
239 static int
240 unexec_copy (off_t dest, off_t src, ssize_t count)
241 {
242 ssize_t bytes_read;
243 ssize_t bytes_to_read;
244
245 char buf[UNEXEC_COPY_BUFSZ];
246
247 if (lseek (infd, src, SEEK_SET) != src)
248 return 0;
249
250 if (lseek (outfd, dest, SEEK_SET) != dest)
251 return 0;
252
253 while (count > 0)
254 {
255 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
256 bytes_read = read (infd, buf, bytes_to_read);
257 if (bytes_read <= 0)
258 return 0;
259 if (write (outfd, buf, bytes_read) != bytes_read)
260 return 0;
261 count -= bytes_read;
262 }
263
264 return 1;
265 }
266
267 /* Debugging and informational messages routines. */
268
269 static void
270 unexec_error (char *format, ...)
271 {
272 va_list ap;
273
274 va_start (ap, format);
275 fprintf (stderr, "unexec: ");
276 vfprintf (stderr, format, ap);
277 fprintf (stderr, "\n");
278 va_end (ap);
279 exit (1);
280 }
281
282 static void
283 print_prot (vm_prot_t prot)
284 {
285 if (prot == VM_PROT_NONE)
286 printf ("none");
287 else
288 {
289 putchar (prot & VM_PROT_READ ? 'r' : ' ');
290 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
291 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
292 putchar (' ');
293 }
294 }
295
296 static void
297 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
298 vm_prot_t max_prot)
299 {
300 printf ("%#10lx %#8lx ", (long) address, (long) size);
301 print_prot (prot);
302 putchar (' ');
303 print_prot (max_prot);
304 putchar ('\n');
305 }
306
307 static void
308 print_region_list (void)
309 {
310 struct region_t *r;
311
312 printf (" address size prot maxp\n");
313
314 for (r = region_list_head; r; r = r->next)
315 print_region (r->address, r->size, r->protection, r->max_protection);
316 }
317
318 static void
319 print_regions (void)
320 {
321 task_t target_task = mach_task_self ();
322 vm_address_t address = (vm_address_t) 0;
323 vm_size_t size;
324 struct vm_region_basic_info info;
325 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
326 mach_port_t object_name;
327
328 printf (" address size prot maxp\n");
329
330 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
331 (vm_region_info_t) &info, &info_count, &object_name)
332 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
333 {
334 print_region (address, size, info.protection, info.max_protection);
335
336 if (object_name != MACH_PORT_NULL)
337 mach_port_deallocate (target_task, object_name);
338
339 address += size;
340 }
341 }
342
343 /* Build the list of regions that need to be dumped. Regions with
344 addresses above VM_DATA_TOP are omitted. Adjacent regions with
345 identical protection are merged. Note that non-writable regions
346 cannot be omitted because they some regions created at run time are
347 read-only. */
348 static void
349 build_region_list (void)
350 {
351 task_t target_task = mach_task_self ();
352 vm_address_t address = (vm_address_t) 0;
353 vm_size_t size;
354 struct vm_region_basic_info info;
355 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
356 mach_port_t object_name;
357 struct region_t *r;
358
359 #if VERBOSE
360 printf ("--- List of All Regions ---\n");
361 printf (" address size prot maxp\n");
362 #endif
363
364 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
365 (vm_region_info_t) &info, &info_count, &object_name)
366 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
367 {
368 /* Done when we reach addresses of shared libraries, which are
369 loaded in high memory. */
370 if (address >= VM_DATA_TOP)
371 break;
372
373 #if VERBOSE
374 print_region (address, size, info.protection, info.max_protection);
375 #endif
376
377 /* If a region immediately follows the previous one (the one
378 most recently added to the list) and has identical
379 protection, merge it with the latter. Otherwise create a
380 new list element for it. */
381 if (region_list_tail
382 && info.protection == region_list_tail->protection
383 && info.max_protection == region_list_tail->max_protection
384 && region_list_tail->address + region_list_tail->size == address)
385 {
386 region_list_tail->size += size;
387 }
388 else
389 {
390 r = (struct region_t *) malloc (sizeof (struct region_t));
391
392 if (!r)
393 unexec_error ("cannot allocate region structure");
394
395 r->address = address;
396 r->size = size;
397 r->protection = info.protection;
398 r->max_protection = info.max_protection;
399
400 r->next = 0;
401 if (region_list_head == 0)
402 {
403 region_list_head = r;
404 region_list_tail = r;
405 }
406 else
407 {
408 region_list_tail->next = r;
409 region_list_tail = r;
410 }
411
412 /* Deallocate (unused) object name returned by
413 vm_region. */
414 if (object_name != MACH_PORT_NULL)
415 mach_port_deallocate (target_task, object_name);
416 }
417
418 address += size;
419 }
420
421 printf ("--- List of Regions to be Dumped ---\n");
422 print_region_list ();
423 }
424
425
426 #define MAX_UNEXEC_REGIONS 400
427
428 static int num_unexec_regions;
429 typedef struct {
430 vm_range_t range;
431 vm_size_t filesize;
432 } unexec_region_info;
433 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
434
435 static void
436 unexec_regions_recorder (task_t task, void *rr, unsigned type,
437 vm_range_t *ranges, unsigned num)
438 {
439 vm_address_t p;
440 vm_size_t filesize;
441
442 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
443 {
444 /* Subtract the size of trailing null bytes from filesize. It
445 can be smaller than vmsize in segment commands. In such a
446 case, trailing bytes are initialized with zeros. */
447 for (p = ranges->address + ranges->size; p > ranges->address; p--)
448 if (*(((char *) p)-1))
449 break;
450 filesize = p - ranges->address;
451
452 unexec_regions[num_unexec_regions].filesize = filesize;
453 unexec_regions[num_unexec_regions++].range = *ranges;
454 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
455 (long) filesize, (long) (ranges->size));
456 ranges++; num--;
457 }
458 }
459
460 static kern_return_t
461 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
462 {
463 *ptr = (void *) address;
464 return KERN_SUCCESS;
465 }
466
467 static void
468 find_emacs_zone_regions (void)
469 {
470 num_unexec_regions = 0;
471
472 emacs_zone->introspect->enumerator (mach_task_self(), 0,
473 MALLOC_PTR_REGION_RANGE_TYPE
474 | MALLOC_ADMIN_REGION_RANGE_TYPE,
475 (vm_address_t) emacs_zone,
476 unexec_reader,
477 unexec_regions_recorder);
478
479 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
480 unexec_error ("find_emacs_zone_regions: too many regions");
481 }
482
483 static int
484 unexec_regions_sort_compare (const void *a, const void *b)
485 {
486 vm_address_t aa = ((unexec_region_info *) a)->range.address;
487 vm_address_t bb = ((unexec_region_info *) b)->range.address;
488
489 if (aa < bb)
490 return -1;
491 else if (aa > bb)
492 return 1;
493 else
494 return 0;
495 }
496
497 static void
498 unexec_regions_merge (void)
499 {
500 int i, n;
501 unexec_region_info r;
502 vm_size_t padsize;
503
504 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
505 &unexec_regions_sort_compare);
506 n = 0;
507 r = unexec_regions[0];
508 padsize = r.range.address & (pagesize - 1);
509 if (padsize)
510 {
511 r.range.address -= padsize;
512 r.range.size += padsize;
513 r.filesize += padsize;
514 }
515 for (i = 1; i < num_unexec_regions; i++)
516 {
517 if (r.range.address + r.range.size == unexec_regions[i].range.address
518 && r.range.size - r.filesize < 2 * pagesize)
519 {
520 r.filesize = r.range.size + unexec_regions[i].filesize;
521 r.range.size += unexec_regions[i].range.size;
522 }
523 else
524 {
525 unexec_regions[n++] = r;
526 r = unexec_regions[i];
527 padsize = r.range.address & (pagesize - 1);
528 if (padsize)
529 {
530 if ((unexec_regions[n-1].range.address
531 + unexec_regions[n-1].range.size) == r.range.address)
532 unexec_regions[n-1].range.size -= padsize;
533
534 r.range.address -= padsize;
535 r.range.size += padsize;
536 r.filesize += padsize;
537 }
538 }
539 }
540 unexec_regions[n++] = r;
541 num_unexec_regions = n;
542 }
543
544
545 /* More informational messages routines. */
546
547 static void
548 print_load_command_name (int lc)
549 {
550 switch (lc)
551 {
552 case LC_SEGMENT:
553 #ifndef _LP64
554 printf ("LC_SEGMENT ");
555 #else
556 printf ("LC_SEGMENT_64 ");
557 #endif
558 break;
559 case LC_LOAD_DYLINKER:
560 printf ("LC_LOAD_DYLINKER ");
561 break;
562 case LC_LOAD_DYLIB:
563 printf ("LC_LOAD_DYLIB ");
564 break;
565 case LC_SYMTAB:
566 printf ("LC_SYMTAB ");
567 break;
568 case LC_DYSYMTAB:
569 printf ("LC_DYSYMTAB ");
570 break;
571 case LC_UNIXTHREAD:
572 printf ("LC_UNIXTHREAD ");
573 break;
574 case LC_PREBOUND_DYLIB:
575 printf ("LC_PREBOUND_DYLIB");
576 break;
577 case LC_TWOLEVEL_HINTS:
578 printf ("LC_TWOLEVEL_HINTS");
579 break;
580 #ifdef LC_UUID
581 case LC_UUID:
582 printf ("LC_UUID ");
583 break;
584 #endif
585 #ifdef LC_DYLD_INFO
586 case LC_DYLD_INFO:
587 printf ("LC_DYLD_INFO ");
588 break;
589 case LC_DYLD_INFO_ONLY:
590 printf ("LC_DYLD_INFO_ONLY");
591 break;
592 #endif
593 default:
594 printf ("unknown ");
595 }
596 }
597
598 static void
599 print_load_command (struct load_command *lc)
600 {
601 print_load_command_name (lc->cmd);
602 printf ("%8d", lc->cmdsize);
603
604 if (lc->cmd == LC_SEGMENT)
605 {
606 struct segment_command *scp;
607 struct section *sectp;
608 int j;
609
610 scp = (struct segment_command *) lc;
611 printf (" %-16.16s %#10lx %#8lx\n",
612 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
613
614 sectp = (struct section *) (scp + 1);
615 for (j = 0; j < scp->nsects; j++)
616 {
617 printf (" %-16.16s %#10lx %#8lx\n",
618 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
619 sectp++;
620 }
621 }
622 else
623 printf ("\n");
624 }
625
626 /* Read header and load commands from input file. Store the latter in
627 the global array lca. Store the total number of load commands in
628 global variable nlc. */
629 static void
630 read_load_commands (void)
631 {
632 int i;
633
634 if (!unexec_read (&mh, sizeof (struct mach_header)))
635 unexec_error ("cannot read mach-o header");
636
637 if (mh.magic != MH_MAGIC)
638 unexec_error ("input file not in Mach-O format");
639
640 if (mh.filetype != MH_EXECUTE)
641 unexec_error ("input Mach-O file is not an executable object file");
642
643 #if VERBOSE
644 printf ("--- Header Information ---\n");
645 printf ("Magic = 0x%08x\n", mh.magic);
646 printf ("CPUType = %d\n", mh.cputype);
647 printf ("CPUSubType = %d\n", mh.cpusubtype);
648 printf ("FileType = 0x%x\n", mh.filetype);
649 printf ("NCmds = %d\n", mh.ncmds);
650 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
651 printf ("Flags = 0x%08x\n", mh.flags);
652 #endif
653
654 nlc = mh.ncmds;
655 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
656
657 for (i = 0; i < nlc; i++)
658 {
659 struct load_command lc;
660 /* Load commands are variable-size: so read the command type and
661 size first and then read the rest. */
662 if (!unexec_read (&lc, sizeof (struct load_command)))
663 unexec_error ("cannot read load command");
664 lca[i] = (struct load_command *) malloc (lc.cmdsize);
665 memcpy (lca[i], &lc, sizeof (struct load_command));
666 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
667 unexec_error ("cannot read content of load command");
668 if (lc.cmd == LC_SEGMENT)
669 {
670 struct segment_command *scp = (struct segment_command *) lca[i];
671
672 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
673 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
674
675 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
676 {
677 struct section *sectp = (struct section *) (scp + 1);
678 int j;
679
680 for (j = 0; j < scp->nsects; j++)
681 if (sectp->offset < text_seg_lowest_offset)
682 text_seg_lowest_offset = sectp->offset;
683 }
684 }
685 }
686
687 printf ("Highest address of load commands in input file: %#8lx\n",
688 (unsigned long)infile_lc_highest_addr);
689
690 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
691 text_seg_lowest_offset);
692
693 printf ("--- List of Load Commands in Input File ---\n");
694 printf ("# cmd cmdsize name address size\n");
695
696 for (i = 0; i < nlc; i++)
697 {
698 printf ("%1d ", i);
699 print_load_command (lca[i]);
700 }
701 }
702
703 /* Copy a LC_SEGMENT load command other than the __DATA segment from
704 the input file to the output file, adjusting the file offset of the
705 segment and the file offsets of sections contained in it. */
706 static void
707 copy_segment (struct load_command *lc)
708 {
709 struct segment_command *scp = (struct segment_command *) lc;
710 unsigned long old_fileoff = scp->fileoff;
711 struct section *sectp;
712 int j;
713
714 scp->fileoff = curr_file_offset;
715
716 sectp = (struct section *) (scp + 1);
717 for (j = 0; j < scp->nsects; j++)
718 {
719 sectp->offset += curr_file_offset - old_fileoff;
720 sectp++;
721 }
722
723 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
724 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
725 (long) (scp->vmsize), (long) (scp->vmaddr));
726
727 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
728 unexec_error ("cannot copy segment from input to output file");
729 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
730
731 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
732 unexec_error ("cannot write load command to header");
733
734 curr_header_offset += lc->cmdsize;
735 }
736
737 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
738 file to the output file. We assume that only one such segment load
739 command exists in the input file and it contains the sections
740 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
741 __dyld. The first three of these should be dumped from memory and
742 the rest should be copied from the input file. Note that the
743 sections __bss and __common contain no data in the input file
744 because their flag fields have the value S_ZEROFILL. Dumping these
745 from memory makes it necessary to adjust file offset fields in
746 subsequently dumped load commands. Then, create new __DATA segment
747 load commands for regions on the region list other than the one
748 corresponding to the __DATA segment in the input file. */
749 static void
750 copy_data_segment (struct load_command *lc)
751 {
752 struct segment_command *scp = (struct segment_command *) lc;
753 struct section *sectp;
754 int j;
755 unsigned long header_offset, old_file_offset;
756
757 /* The new filesize of the segment is set to its vmsize because data
758 blocks for segments must start at region boundaries. Note that
759 this may leave unused locations at the end of the segment data
760 block because the total of the sizes of all sections in the
761 segment is generally smaller than vmsize. */
762 scp->filesize = scp->vmsize;
763
764 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
765 scp->segname, curr_file_offset, (long)(scp->filesize),
766 (long)(scp->vmsize), (long) (scp->vmaddr));
767
768 /* Offsets in the output file for writing the next section structure
769 and segment data block, respectively. */
770 header_offset = curr_header_offset + sizeof (struct segment_command);
771
772 sectp = (struct section *) (scp + 1);
773 for (j = 0; j < scp->nsects; j++)
774 {
775 old_file_offset = sectp->offset;
776 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
777 /* The __data section is dumped from memory. The __bss and
778 __common sections are also dumped from memory but their flag
779 fields require changing (from S_ZEROFILL to S_REGULAR). The
780 other three kinds of sections are just copied from the input
781 file. */
782 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
783 {
784 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
785 unexec_error ("cannot write section %s", SECT_DATA);
786 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
787 unexec_error ("cannot write section %s's header", SECT_DATA);
788 }
789 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
790 {
791 sectp->flags = S_REGULAR;
792 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
793 unexec_error ("cannot write section %s", sectp->sectname);
794 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
795 unexec_error ("cannot write section %s's header", sectp->sectname);
796 }
797 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
798 {
799 extern char *my_endbss_static;
800 unsigned long my_size;
801
802 sectp->flags = S_REGULAR;
803
804 /* Clear uninitialized local variables in statically linked
805 libraries. In particular, function pointers stored by
806 libSystemStub.a, which is introduced in Mac OS X 10.4 for
807 binary compatibility with respect to long double, are
808 cleared so that they will be reinitialized when the
809 dumped binary is executed on other versions of OS. */
810 my_size = (unsigned long)my_endbss_static - sectp->addr;
811 if (!(sectp->addr <= (unsigned long)my_endbss_static
812 && my_size <= sectp->size))
813 unexec_error ("my_endbss_static is not in section %s",
814 sectp->sectname);
815 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
816 unexec_error ("cannot write section %s", sectp->sectname);
817 if (!unexec_write_zero (sectp->offset + my_size,
818 sectp->size - my_size))
819 unexec_error ("cannot write section %s", sectp->sectname);
820 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
821 unexec_error ("cannot write section %s's header", sectp->sectname);
822 }
823 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
824 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
825 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
826 || strncmp (sectp->sectname, "__dyld", 16) == 0
827 || strncmp (sectp->sectname, "__const", 16) == 0
828 || strncmp (sectp->sectname, "__cfstring", 16) == 0
829 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
830 || strncmp (sectp->sectname, "__program_vars", 16) == 0
831 || strncmp (sectp->sectname, "__objc_", 7) == 0)
832 {
833 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
834 unexec_error ("cannot copy section %s", sectp->sectname);
835 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
836 unexec_error ("cannot write section %s's header", sectp->sectname);
837 }
838 else
839 unexec_error ("unrecognized section name in __DATA segment");
840
841 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
842 sectp->sectname, (long) (sectp->offset),
843 (long) (sectp->offset + sectp->size), (long) (sectp->size));
844
845 header_offset += sizeof (struct section);
846 sectp++;
847 }
848
849 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
850
851 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
852 unexec_error ("cannot write header of __DATA segment");
853 curr_header_offset += lc->cmdsize;
854
855 /* Create new __DATA segment load commands for regions on the region
856 list that do not corresponding to any segment load commands in
857 the input file.
858 */
859 for (j = 0; j < num_unexec_regions; j++)
860 {
861 struct segment_command sc;
862
863 sc.cmd = LC_SEGMENT;
864 sc.cmdsize = sizeof (struct segment_command);
865 strncpy (sc.segname, SEG_DATA, 16);
866 sc.vmaddr = unexec_regions[j].range.address;
867 sc.vmsize = unexec_regions[j].range.size;
868 sc.fileoff = curr_file_offset;
869 sc.filesize = unexec_regions[j].filesize;
870 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
871 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
872 sc.nsects = 0;
873 sc.flags = 0;
874
875 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
876 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
877 (long) (sc.vmsize), (long) (sc.vmaddr));
878
879 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
880 unexec_error ("cannot write new __DATA segment");
881 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
882
883 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
884 unexec_error ("cannot write new __DATA segment's header");
885 curr_header_offset += sc.cmdsize;
886 mh.ncmds++;
887 }
888 }
889
890 /* Copy a LC_SYMTAB load command from the input file to the output
891 file, adjusting the file offset fields. */
892 static void
893 copy_symtab (struct load_command *lc, long delta)
894 {
895 struct symtab_command *stp = (struct symtab_command *) lc;
896
897 stp->symoff += delta;
898 stp->stroff += delta;
899
900 printf ("Writing LC_SYMTAB command\n");
901
902 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
903 unexec_error ("cannot write symtab command to header");
904
905 curr_header_offset += lc->cmdsize;
906 }
907
908 /* Fix up relocation entries. */
909 static void
910 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
911 {
912 int i, unreloc_count;
913 struct relocation_info reloc_info;
914 struct scattered_relocation_info *sc_reloc_info
915 = (struct scattered_relocation_info *) &reloc_info;
916 vm_address_t location;
917
918 for (unreloc_count = 0, i = 0; i < nrel; i++)
919 {
920 if (lseek (infd, reloff, L_SET) != reloff)
921 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
922 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
923 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
924 reloff += sizeof (reloc_info);
925
926 if (sc_reloc_info->r_scattered == 0)
927 switch (reloc_info.r_type)
928 {
929 case GENERIC_RELOC_VANILLA:
930 location = base + reloc_info.r_address;
931 if (location >= data_segment_scp->vmaddr
932 && location < (data_segment_scp->vmaddr
933 + data_segment_scp->vmsize))
934 {
935 off_t src_off = data_segment_old_fileoff
936 + (location - data_segment_scp->vmaddr);
937 off_t dst_off = data_segment_scp->fileoff
938 + (location - data_segment_scp->vmaddr);
939
940 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
941 unexec_error ("unrelocate: %s:%d cannot copy original value",
942 name, i);
943 unreloc_count++;
944 }
945 break;
946 default:
947 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
948 name, i, reloc_info.r_type);
949 }
950 else
951 switch (sc_reloc_info->r_type)
952 {
953 #if defined (__ppc__)
954 case PPC_RELOC_PB_LA_PTR:
955 /* nothing to do for prebound lazy pointer */
956 break;
957 #endif
958 default:
959 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
960 name, i, sc_reloc_info->r_type);
961 }
962 }
963
964 if (nrel > 0)
965 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
966 unreloc_count, nrel, name);
967 }
968
969 #if __ppc64__
970 /* Rebase r_address in the relocation table. */
971 static void
972 rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
973 {
974 int i;
975 struct relocation_info reloc_info;
976 struct scattered_relocation_info *sc_reloc_info
977 = (struct scattered_relocation_info *) &reloc_info;
978
979 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
980 {
981 if (lseek (infd, reloff - linkedit_delta, L_SET)
982 != reloff - linkedit_delta)
983 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
984 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
985 unexec_error ("rebase_reloc_table: cannot read reloc_info");
986
987 if (sc_reloc_info->r_scattered == 0
988 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
989 {
990 reloc_info.r_address -= diff;
991 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
992 unexec_error ("rebase_reloc_table: cannot write reloc_info");
993 }
994 }
995 }
996 #endif
997
998 /* Copy a LC_DYSYMTAB load command from the input file to the output
999 file, adjusting the file offset fields. */
1000 static void
1001 copy_dysymtab (struct load_command *lc, long delta)
1002 {
1003 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1004 vm_address_t base;
1005
1006 #ifdef _LP64
1007 #if __ppc64__
1008 {
1009 int i;
1010
1011 base = 0;
1012 for (i = 0; i < nlc; i++)
1013 if (lca[i]->cmd == LC_SEGMENT)
1014 {
1015 struct segment_command *scp = (struct segment_command *) lca[i];
1016
1017 if (scp->vmaddr + scp->vmsize > 0x100000000
1018 && (scp->initprot & VM_PROT_WRITE) != 0)
1019 {
1020 base = data_segment_scp->vmaddr;
1021 break;
1022 }
1023 }
1024 }
1025 #else
1026 /* First writable segment address. */
1027 base = data_segment_scp->vmaddr;
1028 #endif
1029 #else
1030 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1031 base = 0;
1032 #endif
1033
1034 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1035 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1036
1037 if (dstp->nextrel > 0) {
1038 dstp->extreloff += delta;
1039 }
1040
1041 if (dstp->nlocrel > 0) {
1042 dstp->locreloff += delta;
1043 }
1044
1045 if (dstp->nindirectsyms > 0)
1046 dstp->indirectsymoff += delta;
1047
1048 printf ("Writing LC_DYSYMTAB command\n");
1049
1050 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1051 unexec_error ("cannot write symtab command to header");
1052
1053 curr_header_offset += lc->cmdsize;
1054
1055 #if __ppc64__
1056 /* Check if the relocation base needs to be changed. */
1057 if (base == 0)
1058 {
1059 vm_address_t newbase = 0;
1060 int i;
1061
1062 for (i = 0; i < num_unexec_regions; i++)
1063 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1064 > 0x100000000)
1065 {
1066 newbase = data_segment_scp->vmaddr;
1067 break;
1068 }
1069
1070 if (newbase)
1071 {
1072 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1073 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1074 }
1075 }
1076 #endif
1077 }
1078
1079 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1080 file, adjusting the file offset fields. */
1081 static void
1082 copy_twolevelhints (struct load_command *lc, long delta)
1083 {
1084 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1085
1086 if (tlhp->nhints > 0) {
1087 tlhp->offset += delta;
1088 }
1089
1090 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1091
1092 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1093 unexec_error ("cannot write two level hint command to header");
1094
1095 curr_header_offset += lc->cmdsize;
1096 }
1097
1098 #ifdef LC_DYLD_INFO
1099 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1100 file, adjusting the file offset fields. */
1101 static void
1102 copy_dyld_info (struct load_command *lc, long delta)
1103 {
1104 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1105
1106 if (dip->rebase_off > 0)
1107 dip->rebase_off += delta;
1108 if (dip->bind_off > 0)
1109 dip->bind_off += delta;
1110 if (dip->weak_bind_off > 0)
1111 dip->weak_bind_off += delta;
1112 if (dip->lazy_bind_off > 0)
1113 dip->lazy_bind_off += delta;
1114 if (dip->export_off > 0)
1115 dip->export_off += delta;
1116
1117 printf ("Writing ");
1118 print_load_command_name (lc->cmd);
1119 printf (" command\n");
1120
1121 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1122 unexec_error ("cannot write dyld info command to header");
1123
1124 curr_header_offset += lc->cmdsize;
1125 }
1126 #endif
1127
1128 /* Copy other kinds of load commands from the input file to the output
1129 file, ones that do not require adjustments of file offsets. */
1130 static void
1131 copy_other (struct load_command *lc)
1132 {
1133 printf ("Writing ");
1134 print_load_command_name (lc->cmd);
1135 printf (" command\n");
1136
1137 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1138 unexec_error ("cannot write symtab command to header");
1139
1140 curr_header_offset += lc->cmdsize;
1141 }
1142
1143 /* Loop through all load commands and dump them. Then write the Mach
1144 header. */
1145 static void
1146 dump_it (void)
1147 {
1148 int i;
1149 long linkedit_delta = 0;
1150
1151 printf ("--- Load Commands written to Output File ---\n");
1152
1153 for (i = 0; i < nlc; i++)
1154 switch (lca[i]->cmd)
1155 {
1156 case LC_SEGMENT:
1157 {
1158 struct segment_command *scp = (struct segment_command *) lca[i];
1159 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1160 {
1161 /* save data segment file offset and segment_command for
1162 unrelocate */
1163 if (data_segment_old_fileoff)
1164 unexec_error ("cannot handle multiple DATA segments"
1165 " in input file");
1166 data_segment_old_fileoff = scp->fileoff;
1167 data_segment_scp = scp;
1168
1169 copy_data_segment (lca[i]);
1170 }
1171 else
1172 {
1173 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1174 {
1175 if (linkedit_delta)
1176 unexec_error ("cannot handle multiple LINKEDIT segments"
1177 " in input file");
1178 linkedit_delta = curr_file_offset - scp->fileoff;
1179 }
1180
1181 copy_segment (lca[i]);
1182 }
1183 }
1184 break;
1185 case LC_SYMTAB:
1186 copy_symtab (lca[i], linkedit_delta);
1187 break;
1188 case LC_DYSYMTAB:
1189 copy_dysymtab (lca[i], linkedit_delta);
1190 break;
1191 case LC_TWOLEVEL_HINTS:
1192 copy_twolevelhints (lca[i], linkedit_delta);
1193 break;
1194 #ifdef LC_DYLD_INFO
1195 case LC_DYLD_INFO:
1196 case LC_DYLD_INFO_ONLY:
1197 copy_dyld_info (lca[i], linkedit_delta);
1198 break;
1199 #endif
1200 default:
1201 copy_other (lca[i]);
1202 break;
1203 }
1204
1205 if (curr_header_offset > text_seg_lowest_offset)
1206 unexec_error ("not enough room for load commands for new __DATA segments");
1207
1208 printf ("%ld unused bytes follow Mach-O header\n",
1209 text_seg_lowest_offset - curr_header_offset);
1210
1211 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1212 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1213 unexec_error ("cannot write final header contents");
1214 }
1215
1216 /* Take a snapshot of Emacs and make a Mach-O format executable file
1217 from it. The file names of the output and input files are outfile
1218 and infile, respectively. The three other parameters are
1219 ignored. */
1220 void
1221 unexec (char *outfile, char *infile, void *start_data, void *start_bss,
1222 void *entry_address)
1223 {
1224 if (in_dumped_exec)
1225 unexec_error ("Unexec from a dumped executable is not supported.");
1226
1227 pagesize = getpagesize ();
1228 infd = open (infile, O_RDONLY, 0);
1229 if (infd < 0)
1230 {
1231 unexec_error ("cannot open input file `%s'", infile);
1232 }
1233
1234 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1235 if (outfd < 0)
1236 {
1237 close (infd);
1238 unexec_error ("cannot open output file `%s'", outfile);
1239 }
1240
1241 build_region_list ();
1242 read_load_commands ();
1243
1244 find_emacs_zone_regions ();
1245 unexec_regions_merge ();
1246
1247 in_dumped_exec = 1;
1248
1249 dump_it ();
1250
1251 close (outfd);
1252 }
1253
1254
1255 void
1256 unexec_init_emacs_zone (void)
1257 {
1258 emacs_zone = malloc_create_zone (0, 0);
1259 malloc_set_zone_name (emacs_zone, "EmacsZone");
1260 }
1261
1262 #ifndef MACOSX_MALLOC_MULT16
1263 #define MACOSX_MALLOC_MULT16 1
1264 #endif
1265
1266 typedef struct unexec_malloc_header {
1267 union {
1268 char c[8];
1269 size_t size;
1270 } u;
1271 } unexec_malloc_header_t;
1272
1273 #if MACOSX_MALLOC_MULT16
1274
1275 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1276
1277 #else
1278
1279 int
1280 ptr_in_unexec_regions (void *ptr)
1281 {
1282 int i;
1283
1284 for (i = 0; i < num_unexec_regions; i++)
1285 if ((vm_address_t) ptr - unexec_regions[i].range.address
1286 < unexec_regions[i].range.size)
1287 return 1;
1288
1289 return 0;
1290 }
1291
1292 #endif
1293
1294 void *
1295 unexec_malloc (size_t size)
1296 {
1297 if (in_dumped_exec)
1298 {
1299 void *p;
1300
1301 p = malloc (size);
1302 #if MACOSX_MALLOC_MULT16
1303 assert (((vm_address_t) p % 16) == 0);
1304 #endif
1305 return p;
1306 }
1307 else
1308 {
1309 unexec_malloc_header_t *ptr;
1310
1311 ptr = (unexec_malloc_header_t *)
1312 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1313 ptr->u.size = size;
1314 ptr++;
1315 #if MACOSX_MALLOC_MULT16
1316 assert (((vm_address_t) ptr % 16) == 8);
1317 #endif
1318 return (void *) ptr;
1319 }
1320 }
1321
1322 void *
1323 unexec_realloc (void *old_ptr, size_t new_size)
1324 {
1325 if (in_dumped_exec)
1326 {
1327 void *p;
1328
1329 if (ptr_in_unexec_regions (old_ptr))
1330 {
1331 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1332 size_t size = new_size > old_size ? old_size : new_size;
1333
1334 p = (size_t *) malloc (new_size);
1335 if (size)
1336 memcpy (p, old_ptr, size);
1337 }
1338 else
1339 {
1340 p = realloc (old_ptr, new_size);
1341 }
1342 #if MACOSX_MALLOC_MULT16
1343 assert (((vm_address_t) p % 16) == 0);
1344 #endif
1345 return p;
1346 }
1347 else
1348 {
1349 unexec_malloc_header_t *ptr;
1350
1351 ptr = (unexec_malloc_header_t *)
1352 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1353 new_size + sizeof (unexec_malloc_header_t));
1354 ptr->u.size = new_size;
1355 ptr++;
1356 #if MACOSX_MALLOC_MULT16
1357 assert (((vm_address_t) ptr % 16) == 8);
1358 #endif
1359 return (void *) ptr;
1360 }
1361 }
1362
1363 void
1364 unexec_free (void *ptr)
1365 {
1366 if (ptr == NULL)
1367 return;
1368 if (in_dumped_exec)
1369 {
1370 if (!ptr_in_unexec_regions (ptr))
1371 free (ptr);
1372 }
1373 else
1374 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1375 }
1376
1377 /* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
1378 (do not change this comment) */