Merge from trunk
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
96
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
101
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
108
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
113
114 static pthread_mutex_t alloc_mutex;
115
116 #define BLOCK_INPUT_ALLOC \
117 do \
118 { \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
122 } \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
126 { \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
130 } \
131 while (0)
132
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
134
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
137
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 /* Value of _bytes_used, when spare_memory was freed. */
141
142 static __malloc_size_t bytes_used_when_full;
143
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
146
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
150
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
154
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
159
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 static char *stack_copy;
258 static int stack_copy_size;
259
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
263 static int ignore_warnings;
264
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
266
267 /* Hook run after GC has finished. */
268
269 Lisp_Object Qpost_gc_hook;
270
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
283
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288
289 extern int message_enable_multibyte;
290
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
294
295 enum mem_type
296 {
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
309 };
310
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
413
414
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
418
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
420
421 /* Recording what needs to be marked for gc. */
422
423 struct gcpro *gcprolist;
424
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
427
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
430
431 /* Index of next unused slot in staticvec. */
432
433 static int staticidx = 0;
434
435 static POINTER_TYPE *pure_alloc (size_t, int);
436
437
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
444
445
446 \f
447 /************************************************************************
448 Malloc
449 ************************************************************************/
450
451 /* Function malloc calls this if it finds we are near exhausting storage. */
452
453 void
454 malloc_warning (const char *str)
455 {
456 pending_malloc_warning = str;
457 }
458
459
460 /* Display an already-pending malloc warning. */
461
462 void
463 display_malloc_warning (void)
464 {
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
470 }
471
472
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (void)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
494
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
498 }
499
500
501 #ifdef XMALLOC_OVERRUN_CHECK
502
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
505
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
512 */
513
514
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
516
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
521
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
527
528 /* Macros to insert and extract the block size in the header. */
529
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
535
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
541
542
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
554
555 (time passes).
556
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
561
562 static int check_depth;
563
564 /* Like malloc, but wraps allocated block with header and trailer. */
565
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
569 {
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
572
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
575 {
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
582 }
583 --check_depth;
584 return (POINTER_TYPE *)val;
585 }
586
587
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
590
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
595 {
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
598
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
604 {
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
615
616 if (val && check_depth == 1)
617 {
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
624 }
625 --check_depth;
626 return (POINTER_TYPE *)val;
627 }
628
629 /* Like free, but checks block for overrun. */
630
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
634 {
635 unsigned char *val = (unsigned char *)block;
636
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
643 {
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
656 }
657
658 free (val);
659 --check_depth;
660 }
661
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
669
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
679
680 /* Like malloc but check for no memory and block interrupt input.. */
681
682 POINTER_TYPE *
683 xmalloc (size_t size)
684 {
685 register POINTER_TYPE *val;
686
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
690
691 if (!val && size)
692 memory_full ();
693 return val;
694 }
695
696
697 /* Like realloc but check for no memory and block interrupt input.. */
698
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
701 {
702 register POINTER_TYPE *val;
703
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
712
713 if (!val && size) memory_full ();
714 return val;
715 }
716
717
718 /* Like free but block interrupt input. */
719
720 void
721 xfree (POINTER_TYPE *block)
722 {
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
731 }
732
733
734 /* Like strdup, but uses xmalloc. */
735
736 char *
737 xstrdup (const char *s)
738 {
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
743 }
744
745
746 /* Unwind for SAFE_ALLOCA */
747
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
750 {
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
752
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
758 }
759
760
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
764
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
768
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
771 {
772 register void *val;
773
774 MALLOC_BLOCK_INPUT;
775
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
779
780 val = (void *) malloc (nbytes);
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
791 {
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
795 }
796 }
797 #endif
798
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
803
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
808 }
809
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
812
813 static void
814 lisp_free (POINTER_TYPE *block)
815 {
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
822 }
823
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
827
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
834
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
837
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
851
852 /* Internal data structures and constants. */
853
854 #define ABLOCKS_SIZE 16
855
856 /* An aligned block of memory. */
857 struct ablock
858 {
859 union
860 {
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
879 };
880
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
883 {
884 struct ablock blocks[ABLOCKS_SIZE];
885 };
886
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
889
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
894
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
897
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
905
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
908
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
914 {
915 void *base, *val;
916 struct ablocks *abase;
917
918 eassert (nbytes <= BLOCK_BYTES);
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 if (!free_ablock)
927 {
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
930
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
937
938 #ifdef USE_POSIX_MEMALIGN
939 {
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
944 }
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
949
950 if (base == 0)
951 {
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
954 }
955
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
959
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
964
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
970 {
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
975 {
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
980 }
981 }
982 #endif
983
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
987 {
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
991 }
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
993
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
999 }
1000
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1005
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1010
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1014
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1017 }
1018
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1021 {
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1024
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1034
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1040
1041 while (*tem)
1042 {
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1044 {
1045 i++;
1046 *tem = (*tem)->x.next_free;
1047 }
1048 else
1049 tem = &(*tem)->x.next_free;
1050 }
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1057 }
1058 MALLOC_UNBLOCK_INPUT;
1059 }
1060
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1063
1064 struct buffer *
1065 allocate_buffer (void)
1066 {
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1073 }
1074
1075 \f
1076 #ifndef SYSTEM_MALLOC
1077
1078 /* Arranging to disable input signals while we're in malloc.
1079
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1087
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1091
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1101
1102 static __malloc_size_t bytes_used_when_reconsidered;
1103
1104 /* This function is used as the hook for free to call. */
1105
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1108 {
1109 BLOCK_INPUT_ALLOC;
1110
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1113 {
1114 struct mem_node *m;
1115
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1118 {
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1122 }
1123 else
1124 {
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1127 }
1128 }
1129 #endif /* GC_MALLOC_CHECK */
1130
1131 __free_hook = old_free_hook;
1132 free (ptr);
1133
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1146
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1149 }
1150
1151
1152 /* This function is the malloc hook that Emacs uses. */
1153
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1156 {
1157 void *value;
1158
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1167
1168 value = (void *) malloc (size);
1169
1170 #ifdef GC_MALLOC_CHECK
1171 {
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1174 {
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1181 }
1182
1183 if (!dont_register_blocks)
1184 {
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 }
1188 }
1189 #endif /* GC_MALLOC_CHECK */
1190
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1193
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1196 }
1197
1198
1199 /* This function is the realloc hook that Emacs uses. */
1200
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1203 {
1204 void *value;
1205
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1208
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1211 {
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1214 {
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1219 }
1220
1221 mem_delete (m);
1222 }
1223
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1225
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 value = (void *) realloc (ptr, size);
1231
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1234
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1241 }
1242
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 }
1246
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1249
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1252
1253 return value;
1254 }
1255
1256
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1262
1263 void
1264 reset_malloc_hooks ()
1265 {
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1269 }
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1271
1272
1273 /* Called from main to set up malloc to use our hooks. */
1274
1275 void
1276 uninterrupt_malloc (void)
1277 {
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1281
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1293
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1297
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1301
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1305 }
1306
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1309
1310
1311 \f
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1315
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1318
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1321
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1324
1325 struct interval_block
1326 {
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1330 };
1331
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1334
1335 static struct interval_block *interval_block;
1336
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1339
1340 static int interval_block_index;
1341
1342 /* Number of free and live intervals. */
1343
1344 static int total_free_intervals, total_intervals;
1345
1346 /* List of free intervals. */
1347
1348 INTERVAL interval_free_list;
1349
1350 /* Total number of interval blocks now in use. */
1351
1352 static int n_interval_blocks;
1353
1354
1355 /* Initialize interval allocation. */
1356
1357 static void
1358 init_intervals (void)
1359 {
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1364 }
1365
1366
1367 /* Return a new interval. */
1368
1369 INTERVAL
1370 make_interval (void)
1371 {
1372 INTERVAL val;
1373
1374 /* eassert (!handling_signal); */
1375
1376 MALLOC_BLOCK_INPUT;
1377
1378 if (interval_free_list)
1379 {
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1382 }
1383 else
1384 {
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1386 {
1387 register struct interval_block *newi;
1388
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1391
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1396 }
1397 val = &interval_block->intervals[interval_block_index++];
1398 }
1399
1400 MALLOC_UNBLOCK_INPUT;
1401
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1407 }
1408
1409
1410 /* Mark Lisp objects in interval I. */
1411
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1414 {
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1418 }
1419
1420
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1423
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1426 {
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1430
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1432 }
1433
1434
1435 /* Mark the interval tree rooted in I. */
1436
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1442
1443
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1449
1450 \f
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1456 {
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1461 }
1462 #endif
1463 \f
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1467
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1474
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1478
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1483
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1490
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1493
1494 #define SBLOCK_SIZE 8188
1495
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1498
1499 #define LARGE_STRING_BYTES 1024
1500
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1503
1504 struct sdata
1505 {
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1513
1514 #ifdef GC_CHECK_STRING_BYTES
1515
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1518
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1521
1522 #else /* not GC_CHECK_STRING_BYTES */
1523
1524 union
1525 {
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1532
1533
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1536
1537 #endif /* not GC_CHECK_STRING_BYTES */
1538 };
1539
1540
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1545
1546 struct sblock
1547 {
1548 /* Next in list. */
1549 struct sblock *next;
1550
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1554
1555 /* Start of data. */
1556 struct sdata first_data;
1557 };
1558
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1561
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1564
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1567
1568 struct string_block
1569 {
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1573 };
1574
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1578
1579 static struct sblock *oldest_sblock, *current_sblock;
1580
1581 /* List of sblocks for large strings. */
1582
1583 static struct sblock *large_sblocks;
1584
1585 /* List of string_block structures, and how many there are. */
1586
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1589
1590 /* Free-list of Lisp_Strings. */
1591
1592 static struct Lisp_String *string_free_list;
1593
1594 /* Number of live and free Lisp_Strings. */
1595
1596 static int total_strings, total_free_strings;
1597
1598 /* Number of bytes used by live strings. */
1599
1600 static EMACS_INT total_string_size;
1601
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1605
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1607
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1618
1619 #else /* not GC_CHECK_STRING_BYTES */
1620
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1623
1624 #endif /* not GC_CHECK_STRING_BYTES */
1625
1626
1627 #ifdef GC_CHECK_STRING_OVERRUN
1628
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1632
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1636
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1640
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1644
1645 #ifdef GC_CHECK_STRING_BYTES
1646
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
1654 #else /* not GC_CHECK_STRING_BYTES */
1655
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1689
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691
1692
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1694
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1697 {
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1700
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1706 }
1707
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1709
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1713 {
1714 struct sdata *from, *end, *from_end;
1715
1716 end = b->next_free;
1717
1718 for (from = &b->first_data; from < end; from = from_end)
1719 {
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1723
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1728
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1733
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 }
1737 }
1738
1739
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1743
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1747 {
1748 if (all_p)
1749 {
1750 struct sblock *b;
1751
1752 for (b = large_sblocks; b; b = b->next)
1753 {
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1757 }
1758
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1761 }
1762 else
1763 check_sblock (current_sblock);
1764 }
1765
1766 #endif /* GC_CHECK_STRING_BYTES */
1767
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1769
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1772
1773 static void
1774 check_string_free_list ()
1775 {
1776 struct Lisp_String *s;
1777
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1781 {
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1785 }
1786 }
1787 #else
1788 #define check_string_free_list()
1789 #endif
1790
1791 /* Return a new Lisp_String. */
1792
1793 static struct Lisp_String *
1794 allocate_string (void)
1795 {
1796 struct Lisp_String *s;
1797
1798 /* eassert (!handling_signal); */
1799
1800 MALLOC_BLOCK_INPUT;
1801
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1805 {
1806 struct string_block *b;
1807 int i;
1808
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1814
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1816 {
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1820 }
1821
1822 total_free_strings += STRING_BLOCK_SIZE;
1823 }
1824
1825 check_string_free_list ();
1826
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1830
1831 MALLOC_UNBLOCK_INPUT;
1832
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1835
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1840
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1843 {
1844 if (++check_string_bytes_count == 200)
1845 {
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1848 }
1849 else
1850 check_string_bytes (0);
1851 }
1852 #endif /* GC_CHECK_STRING_BYTES */
1853
1854 return s;
1855 }
1856
1857
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1863
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1867 {
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1871
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1877
1878 MALLOC_BLOCK_INPUT;
1879
1880 if (nbytes > LARGE_STRING_BYTES)
1881 {
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1883
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1888
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1896
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1898
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1903
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1908 }
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1913 {
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1919
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1925 }
1926 else
1927 b = current_sblock;
1928
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1931
1932 MALLOC_UNBLOCK_INPUT;
1933
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1945
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1950 {
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1953 }
1954
1955 consing_since_gc += needed;
1956 }
1957
1958
1959 /* Sweep and compact strings. */
1960
1961 static void
1962 sweep_strings (void)
1963 {
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1966
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1970
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1973 {
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1976
1977 next = b->next;
1978
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1980 {
1981 struct Lisp_String *s = b->strings + i;
1982
1983 if (s->data)
1984 {
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1987 {
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1990
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1993
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1996 }
1997 else
1998 {
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2001
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2012
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2016
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2021 }
2022 }
2023 else
2024 {
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2029 }
2030 }
2031
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2036 {
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2040 }
2041 else
2042 {
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2046 }
2047 }
2048
2049 check_string_free_list ();
2050
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2054
2055 check_string_free_list ();
2056 }
2057
2058
2059 /* Free dead large strings. */
2060
2061 static void
2062 free_large_strings (void)
2063 {
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2066
2067 for (b = large_sblocks; b; b = next)
2068 {
2069 next = b->next;
2070
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2074 {
2075 b->next = live_blocks;
2076 live_blocks = b;
2077 }
2078 }
2079
2080 large_sblocks = live_blocks;
2081 }
2082
2083
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2086
2087 static void
2088 compact_small_strings (void)
2089 {
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2093
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2099
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2104 {
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2107
2108 for (from = &b->first_data; from < end; from = from_end)
2109 {
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2113
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2121
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2126
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2129
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2132
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2139
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2142 {
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2146 {
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2152 }
2153
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2156 {
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2160 }
2161
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2164 }
2165 }
2166 }
2167
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2171 {
2172 next = b->next;
2173 lisp_free (b);
2174 }
2175
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2179 }
2180
2181
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2187 {
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2192
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2195
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2198 {
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2205 }
2206 else
2207 {
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2211
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2219 {
2220 memcpy (p, str, len);
2221 p += len;
2222 }
2223 }
2224
2225 *p = 0;
2226 return val;
2227 }
2228
2229
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2234 {
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2240
2241 CHECK_NATNUM (length);
2242
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2244
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2248
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2252
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2257
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2260
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2264
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269
2270 return val;
2271 }
2272
2273
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2280 {
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2283
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2300 {
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 STRING_SET_UNIBYTE (val);
2305 return val;
2306 }
2307
2308
2309 /* Make a multibyte string from NCHARS characters occupying NBYTES
2310 bytes at CONTENTS. */
2311
2312 Lisp_Object
2313 make_multibyte_string (const char *contents,
2314 EMACS_INT nchars, EMACS_INT nbytes)
2315 {
2316 register Lisp_Object val;
2317 val = make_uninit_multibyte_string (nchars, nbytes);
2318 memcpy (SDATA (val), contents, nbytes);
2319 return val;
2320 }
2321
2322
2323 /* Make a string from NCHARS characters occupying NBYTES bytes at
2324 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325
2326 Lisp_Object
2327 make_string_from_bytes (const char *contents,
2328 EMACS_INT nchars, EMACS_INT nbytes)
2329 {
2330 register Lisp_Object val;
2331 val = make_uninit_multibyte_string (nchars, nbytes);
2332 memcpy (SDATA (val), contents, nbytes);
2333 if (SBYTES (val) == SCHARS (val))
2334 STRING_SET_UNIBYTE (val);
2335 return val;
2336 }
2337
2338
2339 /* Make a string from NCHARS characters occupying NBYTES bytes at
2340 CONTENTS. The argument MULTIBYTE controls whether to label the
2341 string as multibyte. If NCHARS is negative, it counts the number of
2342 characters by itself. */
2343
2344 Lisp_Object
2345 make_specified_string (const char *contents,
2346 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 {
2348 register Lisp_Object val;
2349
2350 if (nchars < 0)
2351 {
2352 if (multibyte)
2353 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2354 nbytes);
2355 else
2356 nchars = nbytes;
2357 }
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 memcpy (SDATA (val), contents, nbytes);
2360 if (!multibyte)
2361 STRING_SET_UNIBYTE (val);
2362 return val;
2363 }
2364
2365
2366 /* Make a string from the data at STR, treating it as multibyte if the
2367 data warrants. */
2368
2369 Lisp_Object
2370 build_string (const char *str)
2371 {
2372 return make_string (str, strlen (str));
2373 }
2374
2375
2376 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2377 occupying LENGTH bytes. */
2378
2379 Lisp_Object
2380 make_uninit_string (EMACS_INT length)
2381 {
2382 Lisp_Object val;
2383
2384 if (!length)
2385 return empty_unibyte_string;
2386 val = make_uninit_multibyte_string (length, length);
2387 STRING_SET_UNIBYTE (val);
2388 return val;
2389 }
2390
2391
2392 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2393 which occupy NBYTES bytes. */
2394
2395 Lisp_Object
2396 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2397 {
2398 Lisp_Object string;
2399 struct Lisp_String *s;
2400
2401 if (nchars < 0)
2402 abort ();
2403 if (!nbytes)
2404 return empty_multibyte_string;
2405
2406 s = allocate_string ();
2407 allocate_string_data (s, nchars, nbytes);
2408 XSETSTRING (string, s);
2409 string_chars_consed += nbytes;
2410 return string;
2411 }
2412
2413
2414 \f
2415 /***********************************************************************
2416 Float Allocation
2417 ***********************************************************************/
2418
2419 /* We store float cells inside of float_blocks, allocating a new
2420 float_block with malloc whenever necessary. Float cells reclaimed
2421 by GC are put on a free list to be reallocated before allocating
2422 any new float cells from the latest float_block. */
2423
2424 #define FLOAT_BLOCK_SIZE \
2425 (((BLOCK_BYTES - sizeof (struct float_block *) \
2426 /* The compiler might add padding at the end. */ \
2427 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2428 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2429
2430 #define GETMARKBIT(block,n) \
2431 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2432 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2433 & 1)
2434
2435 #define SETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2438
2439 #define UNSETMARKBIT(block,n) \
2440 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2441 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2442
2443 #define FLOAT_BLOCK(fptr) \
2444 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2445
2446 #define FLOAT_INDEX(fptr) \
2447 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2448
2449 struct float_block
2450 {
2451 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2452 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2453 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2454 struct float_block *next;
2455 };
2456
2457 #define FLOAT_MARKED_P(fptr) \
2458 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459
2460 #define FLOAT_MARK(fptr) \
2461 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462
2463 #define FLOAT_UNMARK(fptr) \
2464 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2465
2466 /* Current float_block. */
2467
2468 struct float_block *float_block;
2469
2470 /* Index of first unused Lisp_Float in the current float_block. */
2471
2472 int float_block_index;
2473
2474 /* Total number of float blocks now in use. */
2475
2476 int n_float_blocks;
2477
2478 /* Free-list of Lisp_Floats. */
2479
2480 struct Lisp_Float *float_free_list;
2481
2482
2483 /* Initialize float allocation. */
2484
2485 static void
2486 init_float (void)
2487 {
2488 float_block = NULL;
2489 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2490 float_free_list = 0;
2491 n_float_blocks = 0;
2492 }
2493
2494
2495 /* Return a new float object with value FLOAT_VALUE. */
2496
2497 Lisp_Object
2498 make_float (double float_value)
2499 {
2500 register Lisp_Object val;
2501
2502 /* eassert (!handling_signal); */
2503
2504 MALLOC_BLOCK_INPUT;
2505
2506 if (float_free_list)
2507 {
2508 /* We use the data field for chaining the free list
2509 so that we won't use the same field that has the mark bit. */
2510 XSETFLOAT (val, float_free_list);
2511 float_free_list = float_free_list->u.chain;
2512 }
2513 else
2514 {
2515 if (float_block_index == FLOAT_BLOCK_SIZE)
2516 {
2517 register struct float_block *new;
2518
2519 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2520 MEM_TYPE_FLOAT);
2521 new->next = float_block;
2522 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2523 float_block = new;
2524 float_block_index = 0;
2525 n_float_blocks++;
2526 }
2527 XSETFLOAT (val, &float_block->floats[float_block_index]);
2528 float_block_index++;
2529 }
2530
2531 MALLOC_UNBLOCK_INPUT;
2532
2533 XFLOAT_INIT (val, float_value);
2534 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2535 consing_since_gc += sizeof (struct Lisp_Float);
2536 floats_consed++;
2537 return val;
2538 }
2539
2540
2541 \f
2542 /***********************************************************************
2543 Cons Allocation
2544 ***********************************************************************/
2545
2546 /* We store cons cells inside of cons_blocks, allocating a new
2547 cons_block with malloc whenever necessary. Cons cells reclaimed by
2548 GC are put on a free list to be reallocated before allocating
2549 any new cons cells from the latest cons_block. */
2550
2551 #define CONS_BLOCK_SIZE \
2552 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2553 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2554
2555 #define CONS_BLOCK(fptr) \
2556 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2557
2558 #define CONS_INDEX(fptr) \
2559 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2560
2561 struct cons_block
2562 {
2563 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2564 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2565 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2566 struct cons_block *next;
2567 };
2568
2569 #define CONS_MARKED_P(fptr) \
2570 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571
2572 #define CONS_MARK(fptr) \
2573 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574
2575 #define CONS_UNMARK(fptr) \
2576 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2577
2578 /* Current cons_block. */
2579
2580 struct cons_block *cons_block;
2581
2582 /* Index of first unused Lisp_Cons in the current block. */
2583
2584 int cons_block_index;
2585
2586 /* Free-list of Lisp_Cons structures. */
2587
2588 struct Lisp_Cons *cons_free_list;
2589
2590 /* Total number of cons blocks now in use. */
2591
2592 static int n_cons_blocks;
2593
2594
2595 /* Initialize cons allocation. */
2596
2597 static void
2598 init_cons (void)
2599 {
2600 cons_block = NULL;
2601 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2602 cons_free_list = 0;
2603 n_cons_blocks = 0;
2604 }
2605
2606
2607 /* Explicitly free a cons cell by putting it on the free-list. */
2608
2609 void
2610 free_cons (struct Lisp_Cons *ptr)
2611 {
2612 ptr->u.chain = cons_free_list;
2613 #if GC_MARK_STACK
2614 ptr->car = Vdead;
2615 #endif
2616 cons_free_list = ptr;
2617 }
2618
2619 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2620 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2621 (Lisp_Object car, Lisp_Object cdr)
2622 {
2623 register Lisp_Object val;
2624
2625 /* eassert (!handling_signal); */
2626
2627 MALLOC_BLOCK_INPUT;
2628
2629 if (cons_free_list)
2630 {
2631 /* We use the cdr for chaining the free list
2632 so that we won't use the same field that has the mark bit. */
2633 XSETCONS (val, cons_free_list);
2634 cons_free_list = cons_free_list->u.chain;
2635 }
2636 else
2637 {
2638 if (cons_block_index == CONS_BLOCK_SIZE)
2639 {
2640 register struct cons_block *new;
2641 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2642 MEM_TYPE_CONS);
2643 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2644 new->next = cons_block;
2645 cons_block = new;
2646 cons_block_index = 0;
2647 n_cons_blocks++;
2648 }
2649 XSETCONS (val, &cons_block->conses[cons_block_index]);
2650 cons_block_index++;
2651 }
2652
2653 MALLOC_UNBLOCK_INPUT;
2654
2655 XSETCAR (val, car);
2656 XSETCDR (val, cdr);
2657 eassert (!CONS_MARKED_P (XCONS (val)));
2658 consing_since_gc += sizeof (struct Lisp_Cons);
2659 cons_cells_consed++;
2660 return val;
2661 }
2662
2663 /* Get an error now if there's any junk in the cons free list. */
2664 void
2665 check_cons_list (void)
2666 {
2667 #ifdef GC_CHECK_CONS_LIST
2668 struct Lisp_Cons *tail = cons_free_list;
2669
2670 while (tail)
2671 tail = tail->u.chain;
2672 #endif
2673 }
2674
2675 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2676
2677 Lisp_Object
2678 list1 (Lisp_Object arg1)
2679 {
2680 return Fcons (arg1, Qnil);
2681 }
2682
2683 Lisp_Object
2684 list2 (Lisp_Object arg1, Lisp_Object arg2)
2685 {
2686 return Fcons (arg1, Fcons (arg2, Qnil));
2687 }
2688
2689
2690 Lisp_Object
2691 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2692 {
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2694 }
2695
2696
2697 Lisp_Object
2698 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2699 {
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2701 }
2702
2703
2704 Lisp_Object
2705 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2706 {
2707 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2708 Fcons (arg5, Qnil)))));
2709 }
2710
2711
2712 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2713 doc: /* Return a newly created list with specified arguments as elements.
2714 Any number of arguments, even zero arguments, are allowed.
2715 usage: (list &rest OBJECTS) */)
2716 (int nargs, register Lisp_Object *args)
2717 {
2718 register Lisp_Object val;
2719 val = Qnil;
2720
2721 while (nargs > 0)
2722 {
2723 nargs--;
2724 val = Fcons (args[nargs], val);
2725 }
2726 return val;
2727 }
2728
2729
2730 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2731 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2732 (register Lisp_Object length, Lisp_Object init)
2733 {
2734 register Lisp_Object val;
2735 register EMACS_INT size;
2736
2737 CHECK_NATNUM (length);
2738 size = XFASTINT (length);
2739
2740 val = Qnil;
2741 while (size > 0)
2742 {
2743 val = Fcons (init, val);
2744 --size;
2745
2746 if (size > 0)
2747 {
2748 val = Fcons (init, val);
2749 --size;
2750
2751 if (size > 0)
2752 {
2753 val = Fcons (init, val);
2754 --size;
2755
2756 if (size > 0)
2757 {
2758 val = Fcons (init, val);
2759 --size;
2760
2761 if (size > 0)
2762 {
2763 val = Fcons (init, val);
2764 --size;
2765 }
2766 }
2767 }
2768 }
2769
2770 QUIT;
2771 }
2772
2773 return val;
2774 }
2775
2776
2777 \f
2778 /***********************************************************************
2779 Vector Allocation
2780 ***********************************************************************/
2781
2782 /* Singly-linked list of all vectors. */
2783
2784 static struct Lisp_Vector *all_vectors;
2785
2786 /* Total number of vector-like objects now in use. */
2787
2788 static int n_vectors;
2789
2790
2791 /* Value is a pointer to a newly allocated Lisp_Vector structure
2792 with room for LEN Lisp_Objects. */
2793
2794 static struct Lisp_Vector *
2795 allocate_vectorlike (EMACS_INT len)
2796 {
2797 struct Lisp_Vector *p;
2798 size_t nbytes;
2799
2800 MALLOC_BLOCK_INPUT;
2801
2802 #ifdef DOUG_LEA_MALLOC
2803 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2804 because mapped region contents are not preserved in
2805 a dumped Emacs. */
2806 mallopt (M_MMAP_MAX, 0);
2807 #endif
2808
2809 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2810 /* eassert (!handling_signal); */
2811
2812 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2813 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2814
2815 #ifdef DOUG_LEA_MALLOC
2816 /* Back to a reasonable maximum of mmap'ed areas. */
2817 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2818 #endif
2819
2820 consing_since_gc += nbytes;
2821 vector_cells_consed += len;
2822
2823 p->next = all_vectors;
2824 all_vectors = p;
2825
2826 MALLOC_UNBLOCK_INPUT;
2827
2828 ++n_vectors;
2829 return p;
2830 }
2831
2832
2833 /* Allocate a vector with NSLOTS slots. */
2834
2835 struct Lisp_Vector *
2836 allocate_vector (EMACS_INT nslots)
2837 {
2838 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2839 v->size = nslots;
2840 return v;
2841 }
2842
2843
2844 /* Allocate other vector-like structures. */
2845
2846 struct Lisp_Vector *
2847 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2848 {
2849 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2850 EMACS_INT i;
2851
2852 /* Only the first lisplen slots will be traced normally by the GC. */
2853 v->size = lisplen;
2854 for (i = 0; i < lisplen; ++i)
2855 v->contents[i] = Qnil;
2856
2857 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2858 return v;
2859 }
2860
2861 struct Lisp_Hash_Table *
2862 allocate_hash_table (void)
2863 {
2864 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2865 }
2866
2867
2868 struct window *
2869 allocate_window (void)
2870 {
2871 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2872 }
2873
2874
2875 struct terminal *
2876 allocate_terminal (void)
2877 {
2878 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2879 next_terminal, PVEC_TERMINAL);
2880 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2881 memset (&t->next_terminal, 0,
2882 (char*) (t + 1) - (char*) &t->next_terminal);
2883
2884 return t;
2885 }
2886
2887 struct frame *
2888 allocate_frame (void)
2889 {
2890 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2891 face_cache, PVEC_FRAME);
2892 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2893 memset (&f->face_cache, 0,
2894 (char *) (f + 1) - (char *) &f->face_cache);
2895 return f;
2896 }
2897
2898
2899 struct Lisp_Process *
2900 allocate_process (void)
2901 {
2902 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2903 }
2904
2905
2906 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2907 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2908 See also the function `vector'. */)
2909 (register Lisp_Object length, Lisp_Object init)
2910 {
2911 Lisp_Object vector;
2912 register EMACS_INT sizei;
2913 register EMACS_INT index;
2914 register struct Lisp_Vector *p;
2915
2916 CHECK_NATNUM (length);
2917 sizei = XFASTINT (length);
2918
2919 p = allocate_vector (sizei);
2920 for (index = 0; index < sizei; index++)
2921 p->contents[index] = init;
2922
2923 XSETVECTOR (vector, p);
2924 return vector;
2925 }
2926
2927
2928 /* Return a new `function vector' containing KIND as the first element,
2929 followed by NUM_NIL_SLOTS nil elements, and further elements copied from
2930 the vector PARAMS of length NUM_PARAMS (so the total length of the
2931 resulting vector is 1 + NUM_NIL_SLOTS + NUM_PARAMS).
2932
2933 If NUM_PARAMS is zero, then PARAMS may be NULL.
2934
2935 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2936 See the function `funvec' for more detail. */
2937
2938 Lisp_Object
2939 make_funvec (Lisp_Object kind, int num_nil_slots, int num_params,
2940 Lisp_Object *params)
2941 {
2942 int param_index;
2943 Lisp_Object funvec;
2944
2945 funvec = Fmake_vector (make_number (1 + num_nil_slots + num_params), Qnil);
2946
2947 ASET (funvec, 0, kind);
2948
2949 for (param_index = 0; param_index < num_params; param_index++)
2950 ASET (funvec, 1 + num_nil_slots + param_index, params[param_index]);
2951
2952 XSETPVECTYPE (XVECTOR (funvec), PVEC_FUNVEC);
2953 XSETFUNVEC (funvec, XVECTOR (funvec));
2954
2955 return funvec;
2956 }
2957
2958
2959 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2960 doc: /* Return a newly created vector with specified arguments as elements.
2961 Any number of arguments, even zero arguments, are allowed.
2962 usage: (vector &rest OBJECTS) */)
2963 (register int nargs, Lisp_Object *args)
2964 {
2965 register Lisp_Object len, val;
2966 register int index;
2967 register struct Lisp_Vector *p;
2968
2969 XSETFASTINT (len, nargs);
2970 val = Fmake_vector (len, Qnil);
2971 p = XVECTOR (val);
2972 for (index = 0; index < nargs; index++)
2973 p->contents[index] = args[index];
2974 return val;
2975 }
2976
2977
2978 DEFUN ("funvec", Ffunvec, Sfunvec, 1, MANY, 0,
2979 doc: /* Return a newly created `function vector' of type KIND.
2980 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2981 KIND indicates the kind of funvec, and determines its behavior when called.
2982 The meaning of the remaining arguments depends on KIND. Currently
2983 implemented values of KIND, and their meaning, are:
2984
2985 A list -- A byte-compiled function. See `make-byte-code' for the usual
2986 way to create byte-compiled functions.
2987
2988 `curry' -- A curried function. Remaining arguments are a function to
2989 call, and arguments to prepend to user arguments at the
2990 time of the call; see the `curry' function.
2991
2992 usage: (funvec KIND &rest PARAMS) */)
2993 (int nargs, Lisp_Object *args)
2994 {
2995 return make_funvec (args[0], 0, nargs - 1, args + 1);
2996 }
2997
2998
2999 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3000 doc: /* Create a byte-code object with specified arguments as elements.
3001 The arguments should be the arglist, bytecode-string, constant vector,
3002 stack size, (optional) doc string, and (optional) interactive spec.
3003 The first four arguments are required; at most six have any
3004 significance.
3005 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3006 (register int nargs, Lisp_Object *args)
3007 {
3008 register Lisp_Object len, val;
3009 register int index;
3010 register struct Lisp_Vector *p;
3011
3012 /* Make sure the arg-list is really a list, as that's what's used to
3013 distinguish a byte-compiled object from other funvecs. */
3014 CHECK_LIST (args[0]);
3015
3016 XSETFASTINT (len, nargs);
3017 if (!NILP (Vpurify_flag))
3018 val = make_pure_vector ((EMACS_INT) nargs);
3019 else
3020 val = Fmake_vector (len, Qnil);
3021
3022 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3023 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3024 earlier because they produced a raw 8-bit string for byte-code
3025 and now such a byte-code string is loaded as multibyte while
3026 raw 8-bit characters converted to multibyte form. Thus, now we
3027 must convert them back to the original unibyte form. */
3028 args[1] = Fstring_as_unibyte (args[1]);
3029
3030 p = XVECTOR (val);
3031 for (index = 0; index < nargs; index++)
3032 {
3033 if (!NILP (Vpurify_flag))
3034 args[index] = Fpurecopy (args[index]);
3035 p->contents[index] = args[index];
3036 }
3037 XSETPVECTYPE (p, PVEC_FUNVEC);
3038 XSETFUNVEC (val, p);
3039 return val;
3040 }
3041
3042
3043 \f
3044 /***********************************************************************
3045 Symbol Allocation
3046 ***********************************************************************/
3047
3048 /* Each symbol_block is just under 1020 bytes long, since malloc
3049 really allocates in units of powers of two and uses 4 bytes for its
3050 own overhead. */
3051
3052 #define SYMBOL_BLOCK_SIZE \
3053 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3054
3055 struct symbol_block
3056 {
3057 /* Place `symbols' first, to preserve alignment. */
3058 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3059 struct symbol_block *next;
3060 };
3061
3062 /* Current symbol block and index of first unused Lisp_Symbol
3063 structure in it. */
3064
3065 static struct symbol_block *symbol_block;
3066 static int symbol_block_index;
3067
3068 /* List of free symbols. */
3069
3070 static struct Lisp_Symbol *symbol_free_list;
3071
3072 /* Total number of symbol blocks now in use. */
3073
3074 static int n_symbol_blocks;
3075
3076
3077 /* Initialize symbol allocation. */
3078
3079 static void
3080 init_symbol (void)
3081 {
3082 symbol_block = NULL;
3083 symbol_block_index = SYMBOL_BLOCK_SIZE;
3084 symbol_free_list = 0;
3085 n_symbol_blocks = 0;
3086 }
3087
3088
3089 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3090 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3091 Its value and function definition are void, and its property list is nil. */)
3092 (Lisp_Object name)
3093 {
3094 register Lisp_Object val;
3095 register struct Lisp_Symbol *p;
3096
3097 CHECK_STRING (name);
3098
3099 /* eassert (!handling_signal); */
3100
3101 MALLOC_BLOCK_INPUT;
3102
3103 if (symbol_free_list)
3104 {
3105 XSETSYMBOL (val, symbol_free_list);
3106 symbol_free_list = symbol_free_list->next;
3107 }
3108 else
3109 {
3110 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3111 {
3112 struct symbol_block *new;
3113 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3114 MEM_TYPE_SYMBOL);
3115 new->next = symbol_block;
3116 symbol_block = new;
3117 symbol_block_index = 0;
3118 n_symbol_blocks++;
3119 }
3120 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3121 symbol_block_index++;
3122 }
3123
3124 MALLOC_UNBLOCK_INPUT;
3125
3126 p = XSYMBOL (val);
3127 p->xname = name;
3128 p->plist = Qnil;
3129 p->redirect = SYMBOL_PLAINVAL;
3130 SET_SYMBOL_VAL (p, Qunbound);
3131 p->function = Qunbound;
3132 p->next = NULL;
3133 p->gcmarkbit = 0;
3134 p->interned = SYMBOL_UNINTERNED;
3135 p->constant = 0;
3136 p->declared_special = 0;
3137 consing_since_gc += sizeof (struct Lisp_Symbol);
3138 symbols_consed++;
3139 return val;
3140 }
3141
3142
3143 \f
3144 /***********************************************************************
3145 Marker (Misc) Allocation
3146 ***********************************************************************/
3147
3148 /* Allocation of markers and other objects that share that structure.
3149 Works like allocation of conses. */
3150
3151 #define MARKER_BLOCK_SIZE \
3152 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3153
3154 struct marker_block
3155 {
3156 /* Place `markers' first, to preserve alignment. */
3157 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3158 struct marker_block *next;
3159 };
3160
3161 static struct marker_block *marker_block;
3162 static int marker_block_index;
3163
3164 static union Lisp_Misc *marker_free_list;
3165
3166 /* Total number of marker blocks now in use. */
3167
3168 static int n_marker_blocks;
3169
3170 static void
3171 init_marker (void)
3172 {
3173 marker_block = NULL;
3174 marker_block_index = MARKER_BLOCK_SIZE;
3175 marker_free_list = 0;
3176 n_marker_blocks = 0;
3177 }
3178
3179 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3180
3181 Lisp_Object
3182 allocate_misc (void)
3183 {
3184 Lisp_Object val;
3185
3186 /* eassert (!handling_signal); */
3187
3188 MALLOC_BLOCK_INPUT;
3189
3190 if (marker_free_list)
3191 {
3192 XSETMISC (val, marker_free_list);
3193 marker_free_list = marker_free_list->u_free.chain;
3194 }
3195 else
3196 {
3197 if (marker_block_index == MARKER_BLOCK_SIZE)
3198 {
3199 struct marker_block *new;
3200 new = (struct marker_block *) lisp_malloc (sizeof *new,
3201 MEM_TYPE_MISC);
3202 new->next = marker_block;
3203 marker_block = new;
3204 marker_block_index = 0;
3205 n_marker_blocks++;
3206 total_free_markers += MARKER_BLOCK_SIZE;
3207 }
3208 XSETMISC (val, &marker_block->markers[marker_block_index]);
3209 marker_block_index++;
3210 }
3211
3212 MALLOC_UNBLOCK_INPUT;
3213
3214 --total_free_markers;
3215 consing_since_gc += sizeof (union Lisp_Misc);
3216 misc_objects_consed++;
3217 XMISCANY (val)->gcmarkbit = 0;
3218 return val;
3219 }
3220
3221 /* Free a Lisp_Misc object */
3222
3223 void
3224 free_misc (Lisp_Object misc)
3225 {
3226 XMISCTYPE (misc) = Lisp_Misc_Free;
3227 XMISC (misc)->u_free.chain = marker_free_list;
3228 marker_free_list = XMISC (misc);
3229
3230 total_free_markers++;
3231 }
3232
3233 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3234 INTEGER. This is used to package C values to call record_unwind_protect.
3235 The unwind function can get the C values back using XSAVE_VALUE. */
3236
3237 Lisp_Object
3238 make_save_value (void *pointer, int integer)
3239 {
3240 register Lisp_Object val;
3241 register struct Lisp_Save_Value *p;
3242
3243 val = allocate_misc ();
3244 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3245 p = XSAVE_VALUE (val);
3246 p->pointer = pointer;
3247 p->integer = integer;
3248 p->dogc = 0;
3249 return val;
3250 }
3251
3252 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3253 doc: /* Return a newly allocated marker which does not point at any place. */)
3254 (void)
3255 {
3256 register Lisp_Object val;
3257 register struct Lisp_Marker *p;
3258
3259 val = allocate_misc ();
3260 XMISCTYPE (val) = Lisp_Misc_Marker;
3261 p = XMARKER (val);
3262 p->buffer = 0;
3263 p->bytepos = 0;
3264 p->charpos = 0;
3265 p->next = NULL;
3266 p->insertion_type = 0;
3267 return val;
3268 }
3269
3270 /* Put MARKER back on the free list after using it temporarily. */
3271
3272 void
3273 free_marker (Lisp_Object marker)
3274 {
3275 unchain_marker (XMARKER (marker));
3276 free_misc (marker);
3277 }
3278
3279 \f
3280 /* Return a newly created vector or string with specified arguments as
3281 elements. If all the arguments are characters that can fit
3282 in a string of events, make a string; otherwise, make a vector.
3283
3284 Any number of arguments, even zero arguments, are allowed. */
3285
3286 Lisp_Object
3287 make_event_array (register int nargs, Lisp_Object *args)
3288 {
3289 int i;
3290
3291 for (i = 0; i < nargs; i++)
3292 /* The things that fit in a string
3293 are characters that are in 0...127,
3294 after discarding the meta bit and all the bits above it. */
3295 if (!INTEGERP (args[i])
3296 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3297 return Fvector (nargs, args);
3298
3299 /* Since the loop exited, we know that all the things in it are
3300 characters, so we can make a string. */
3301 {
3302 Lisp_Object result;
3303
3304 result = Fmake_string (make_number (nargs), make_number (0));
3305 for (i = 0; i < nargs; i++)
3306 {
3307 SSET (result, i, XINT (args[i]));
3308 /* Move the meta bit to the right place for a string char. */
3309 if (XINT (args[i]) & CHAR_META)
3310 SSET (result, i, SREF (result, i) | 0x80);
3311 }
3312
3313 return result;
3314 }
3315 }
3316
3317
3318 \f
3319 /************************************************************************
3320 Memory Full Handling
3321 ************************************************************************/
3322
3323
3324 /* Called if malloc returns zero. */
3325
3326 void
3327 memory_full (void)
3328 {
3329 int i;
3330
3331 Vmemory_full = Qt;
3332
3333 memory_full_cons_threshold = sizeof (struct cons_block);
3334
3335 /* The first time we get here, free the spare memory. */
3336 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3337 if (spare_memory[i])
3338 {
3339 if (i == 0)
3340 free (spare_memory[i]);
3341 else if (i >= 1 && i <= 4)
3342 lisp_align_free (spare_memory[i]);
3343 else
3344 lisp_free (spare_memory[i]);
3345 spare_memory[i] = 0;
3346 }
3347
3348 /* Record the space now used. When it decreases substantially,
3349 we can refill the memory reserve. */
3350 #ifndef SYSTEM_MALLOC
3351 bytes_used_when_full = BYTES_USED;
3352 #endif
3353
3354 /* This used to call error, but if we've run out of memory, we could
3355 get infinite recursion trying to build the string. */
3356 xsignal (Qnil, Vmemory_signal_data);
3357 }
3358
3359 /* If we released our reserve (due to running out of memory),
3360 and we have a fair amount free once again,
3361 try to set aside another reserve in case we run out once more.
3362
3363 This is called when a relocatable block is freed in ralloc.c,
3364 and also directly from this file, in case we're not using ralloc.c. */
3365
3366 void
3367 refill_memory_reserve (void)
3368 {
3369 #ifndef SYSTEM_MALLOC
3370 if (spare_memory[0] == 0)
3371 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3372 if (spare_memory[1] == 0)
3373 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3374 MEM_TYPE_CONS);
3375 if (spare_memory[2] == 0)
3376 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3377 MEM_TYPE_CONS);
3378 if (spare_memory[3] == 0)
3379 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3380 MEM_TYPE_CONS);
3381 if (spare_memory[4] == 0)
3382 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3383 MEM_TYPE_CONS);
3384 if (spare_memory[5] == 0)
3385 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3386 MEM_TYPE_STRING);
3387 if (spare_memory[6] == 0)
3388 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3389 MEM_TYPE_STRING);
3390 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3391 Vmemory_full = Qnil;
3392 #endif
3393 }
3394 \f
3395 /************************************************************************
3396 C Stack Marking
3397 ************************************************************************/
3398
3399 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3400
3401 /* Conservative C stack marking requires a method to identify possibly
3402 live Lisp objects given a pointer value. We do this by keeping
3403 track of blocks of Lisp data that are allocated in a red-black tree
3404 (see also the comment of mem_node which is the type of nodes in
3405 that tree). Function lisp_malloc adds information for an allocated
3406 block to the red-black tree with calls to mem_insert, and function
3407 lisp_free removes it with mem_delete. Functions live_string_p etc
3408 call mem_find to lookup information about a given pointer in the
3409 tree, and use that to determine if the pointer points to a Lisp
3410 object or not. */
3411
3412 /* Initialize this part of alloc.c. */
3413
3414 static void
3415 mem_init (void)
3416 {
3417 mem_z.left = mem_z.right = MEM_NIL;
3418 mem_z.parent = NULL;
3419 mem_z.color = MEM_BLACK;
3420 mem_z.start = mem_z.end = NULL;
3421 mem_root = MEM_NIL;
3422 }
3423
3424
3425 /* Value is a pointer to the mem_node containing START. Value is
3426 MEM_NIL if there is no node in the tree containing START. */
3427
3428 static INLINE struct mem_node *
3429 mem_find (void *start)
3430 {
3431 struct mem_node *p;
3432
3433 if (start < min_heap_address || start > max_heap_address)
3434 return MEM_NIL;
3435
3436 /* Make the search always successful to speed up the loop below. */
3437 mem_z.start = start;
3438 mem_z.end = (char *) start + 1;
3439
3440 p = mem_root;
3441 while (start < p->start || start >= p->end)
3442 p = start < p->start ? p->left : p->right;
3443 return p;
3444 }
3445
3446
3447 /* Insert a new node into the tree for a block of memory with start
3448 address START, end address END, and type TYPE. Value is a
3449 pointer to the node that was inserted. */
3450
3451 static struct mem_node *
3452 mem_insert (void *start, void *end, enum mem_type type)
3453 {
3454 struct mem_node *c, *parent, *x;
3455
3456 if (min_heap_address == NULL || start < min_heap_address)
3457 min_heap_address = start;
3458 if (max_heap_address == NULL || end > max_heap_address)
3459 max_heap_address = end;
3460
3461 /* See where in the tree a node for START belongs. In this
3462 particular application, it shouldn't happen that a node is already
3463 present. For debugging purposes, let's check that. */
3464 c = mem_root;
3465 parent = NULL;
3466
3467 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3468
3469 while (c != MEM_NIL)
3470 {
3471 if (start >= c->start && start < c->end)
3472 abort ();
3473 parent = c;
3474 c = start < c->start ? c->left : c->right;
3475 }
3476
3477 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3478
3479 while (c != MEM_NIL)
3480 {
3481 parent = c;
3482 c = start < c->start ? c->left : c->right;
3483 }
3484
3485 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3486
3487 /* Create a new node. */
3488 #ifdef GC_MALLOC_CHECK
3489 x = (struct mem_node *) _malloc_internal (sizeof *x);
3490 if (x == NULL)
3491 abort ();
3492 #else
3493 x = (struct mem_node *) xmalloc (sizeof *x);
3494 #endif
3495 x->start = start;
3496 x->end = end;
3497 x->type = type;
3498 x->parent = parent;
3499 x->left = x->right = MEM_NIL;
3500 x->color = MEM_RED;
3501
3502 /* Insert it as child of PARENT or install it as root. */
3503 if (parent)
3504 {
3505 if (start < parent->start)
3506 parent->left = x;
3507 else
3508 parent->right = x;
3509 }
3510 else
3511 mem_root = x;
3512
3513 /* Re-establish red-black tree properties. */
3514 mem_insert_fixup (x);
3515
3516 return x;
3517 }
3518
3519
3520 /* Re-establish the red-black properties of the tree, and thereby
3521 balance the tree, after node X has been inserted; X is always red. */
3522
3523 static void
3524 mem_insert_fixup (struct mem_node *x)
3525 {
3526 while (x != mem_root && x->parent->color == MEM_RED)
3527 {
3528 /* X is red and its parent is red. This is a violation of
3529 red-black tree property #3. */
3530
3531 if (x->parent == x->parent->parent->left)
3532 {
3533 /* We're on the left side of our grandparent, and Y is our
3534 "uncle". */
3535 struct mem_node *y = x->parent->parent->right;
3536
3537 if (y->color == MEM_RED)
3538 {
3539 /* Uncle and parent are red but should be black because
3540 X is red. Change the colors accordingly and proceed
3541 with the grandparent. */
3542 x->parent->color = MEM_BLACK;
3543 y->color = MEM_BLACK;
3544 x->parent->parent->color = MEM_RED;
3545 x = x->parent->parent;
3546 }
3547 else
3548 {
3549 /* Parent and uncle have different colors; parent is
3550 red, uncle is black. */
3551 if (x == x->parent->right)
3552 {
3553 x = x->parent;
3554 mem_rotate_left (x);
3555 }
3556
3557 x->parent->color = MEM_BLACK;
3558 x->parent->parent->color = MEM_RED;
3559 mem_rotate_right (x->parent->parent);
3560 }
3561 }
3562 else
3563 {
3564 /* This is the symmetrical case of above. */
3565 struct mem_node *y = x->parent->parent->left;
3566
3567 if (y->color == MEM_RED)
3568 {
3569 x->parent->color = MEM_BLACK;
3570 y->color = MEM_BLACK;
3571 x->parent->parent->color = MEM_RED;
3572 x = x->parent->parent;
3573 }
3574 else
3575 {
3576 if (x == x->parent->left)
3577 {
3578 x = x->parent;
3579 mem_rotate_right (x);
3580 }
3581
3582 x->parent->color = MEM_BLACK;
3583 x->parent->parent->color = MEM_RED;
3584 mem_rotate_left (x->parent->parent);
3585 }
3586 }
3587 }
3588
3589 /* The root may have been changed to red due to the algorithm. Set
3590 it to black so that property #5 is satisfied. */
3591 mem_root->color = MEM_BLACK;
3592 }
3593
3594
3595 /* (x) (y)
3596 / \ / \
3597 a (y) ===> (x) c
3598 / \ / \
3599 b c a b */
3600
3601 static void
3602 mem_rotate_left (struct mem_node *x)
3603 {
3604 struct mem_node *y;
3605
3606 /* Turn y's left sub-tree into x's right sub-tree. */
3607 y = x->right;
3608 x->right = y->left;
3609 if (y->left != MEM_NIL)
3610 y->left->parent = x;
3611
3612 /* Y's parent was x's parent. */
3613 if (y != MEM_NIL)
3614 y->parent = x->parent;
3615
3616 /* Get the parent to point to y instead of x. */
3617 if (x->parent)
3618 {
3619 if (x == x->parent->left)
3620 x->parent->left = y;
3621 else
3622 x->parent->right = y;
3623 }
3624 else
3625 mem_root = y;
3626
3627 /* Put x on y's left. */
3628 y->left = x;
3629 if (x != MEM_NIL)
3630 x->parent = y;
3631 }
3632
3633
3634 /* (x) (Y)
3635 / \ / \
3636 (y) c ===> a (x)
3637 / \ / \
3638 a b b c */
3639
3640 static void
3641 mem_rotate_right (struct mem_node *x)
3642 {
3643 struct mem_node *y = x->left;
3644
3645 x->left = y->right;
3646 if (y->right != MEM_NIL)
3647 y->right->parent = x;
3648
3649 if (y != MEM_NIL)
3650 y->parent = x->parent;
3651 if (x->parent)
3652 {
3653 if (x == x->parent->right)
3654 x->parent->right = y;
3655 else
3656 x->parent->left = y;
3657 }
3658 else
3659 mem_root = y;
3660
3661 y->right = x;
3662 if (x != MEM_NIL)
3663 x->parent = y;
3664 }
3665
3666
3667 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3668
3669 static void
3670 mem_delete (struct mem_node *z)
3671 {
3672 struct mem_node *x, *y;
3673
3674 if (!z || z == MEM_NIL)
3675 return;
3676
3677 if (z->left == MEM_NIL || z->right == MEM_NIL)
3678 y = z;
3679 else
3680 {
3681 y = z->right;
3682 while (y->left != MEM_NIL)
3683 y = y->left;
3684 }
3685
3686 if (y->left != MEM_NIL)
3687 x = y->left;
3688 else
3689 x = y->right;
3690
3691 x->parent = y->parent;
3692 if (y->parent)
3693 {
3694 if (y == y->parent->left)
3695 y->parent->left = x;
3696 else
3697 y->parent->right = x;
3698 }
3699 else
3700 mem_root = x;
3701
3702 if (y != z)
3703 {
3704 z->start = y->start;
3705 z->end = y->end;
3706 z->type = y->type;
3707 }
3708
3709 if (y->color == MEM_BLACK)
3710 mem_delete_fixup (x);
3711
3712 #ifdef GC_MALLOC_CHECK
3713 _free_internal (y);
3714 #else
3715 xfree (y);
3716 #endif
3717 }
3718
3719
3720 /* Re-establish the red-black properties of the tree, after a
3721 deletion. */
3722
3723 static void
3724 mem_delete_fixup (struct mem_node *x)
3725 {
3726 while (x != mem_root && x->color == MEM_BLACK)
3727 {
3728 if (x == x->parent->left)
3729 {
3730 struct mem_node *w = x->parent->right;
3731
3732 if (w->color == MEM_RED)
3733 {
3734 w->color = MEM_BLACK;
3735 x->parent->color = MEM_RED;
3736 mem_rotate_left (x->parent);
3737 w = x->parent->right;
3738 }
3739
3740 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3741 {
3742 w->color = MEM_RED;
3743 x = x->parent;
3744 }
3745 else
3746 {
3747 if (w->right->color == MEM_BLACK)
3748 {
3749 w->left->color = MEM_BLACK;
3750 w->color = MEM_RED;
3751 mem_rotate_right (w);
3752 w = x->parent->right;
3753 }
3754 w->color = x->parent->color;
3755 x->parent->color = MEM_BLACK;
3756 w->right->color = MEM_BLACK;
3757 mem_rotate_left (x->parent);
3758 x = mem_root;
3759 }
3760 }
3761 else
3762 {
3763 struct mem_node *w = x->parent->left;
3764
3765 if (w->color == MEM_RED)
3766 {
3767 w->color = MEM_BLACK;
3768 x->parent->color = MEM_RED;
3769 mem_rotate_right (x->parent);
3770 w = x->parent->left;
3771 }
3772
3773 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3774 {
3775 w->color = MEM_RED;
3776 x = x->parent;
3777 }
3778 else
3779 {
3780 if (w->left->color == MEM_BLACK)
3781 {
3782 w->right->color = MEM_BLACK;
3783 w->color = MEM_RED;
3784 mem_rotate_left (w);
3785 w = x->parent->left;
3786 }
3787
3788 w->color = x->parent->color;
3789 x->parent->color = MEM_BLACK;
3790 w->left->color = MEM_BLACK;
3791 mem_rotate_right (x->parent);
3792 x = mem_root;
3793 }
3794 }
3795 }
3796
3797 x->color = MEM_BLACK;
3798 }
3799
3800
3801 /* Value is non-zero if P is a pointer to a live Lisp string on
3802 the heap. M is a pointer to the mem_block for P. */
3803
3804 static INLINE int
3805 live_string_p (struct mem_node *m, void *p)
3806 {
3807 if (m->type == MEM_TYPE_STRING)
3808 {
3809 struct string_block *b = (struct string_block *) m->start;
3810 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3811
3812 /* P must point to the start of a Lisp_String structure, and it
3813 must not be on the free-list. */
3814 return (offset >= 0
3815 && offset % sizeof b->strings[0] == 0
3816 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3817 && ((struct Lisp_String *) p)->data != NULL);
3818 }
3819 else
3820 return 0;
3821 }
3822
3823
3824 /* Value is non-zero if P is a pointer to a live Lisp cons on
3825 the heap. M is a pointer to the mem_block for P. */
3826
3827 static INLINE int
3828 live_cons_p (struct mem_node *m, void *p)
3829 {
3830 if (m->type == MEM_TYPE_CONS)
3831 {
3832 struct cons_block *b = (struct cons_block *) m->start;
3833 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3834
3835 /* P must point to the start of a Lisp_Cons, not be
3836 one of the unused cells in the current cons block,
3837 and not be on the free-list. */
3838 return (offset >= 0
3839 && offset % sizeof b->conses[0] == 0
3840 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3841 && (b != cons_block
3842 || offset / sizeof b->conses[0] < cons_block_index)
3843 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3844 }
3845 else
3846 return 0;
3847 }
3848
3849
3850 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3851 the heap. M is a pointer to the mem_block for P. */
3852
3853 static INLINE int
3854 live_symbol_p (struct mem_node *m, void *p)
3855 {
3856 if (m->type == MEM_TYPE_SYMBOL)
3857 {
3858 struct symbol_block *b = (struct symbol_block *) m->start;
3859 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3860
3861 /* P must point to the start of a Lisp_Symbol, not be
3862 one of the unused cells in the current symbol block,
3863 and not be on the free-list. */
3864 return (offset >= 0
3865 && offset % sizeof b->symbols[0] == 0
3866 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3867 && (b != symbol_block
3868 || offset / sizeof b->symbols[0] < symbol_block_index)
3869 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3870 }
3871 else
3872 return 0;
3873 }
3874
3875
3876 /* Value is non-zero if P is a pointer to a live Lisp float on
3877 the heap. M is a pointer to the mem_block for P. */
3878
3879 static INLINE int
3880 live_float_p (struct mem_node *m, void *p)
3881 {
3882 if (m->type == MEM_TYPE_FLOAT)
3883 {
3884 struct float_block *b = (struct float_block *) m->start;
3885 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3886
3887 /* P must point to the start of a Lisp_Float and not be
3888 one of the unused cells in the current float block. */
3889 return (offset >= 0
3890 && offset % sizeof b->floats[0] == 0
3891 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3892 && (b != float_block
3893 || offset / sizeof b->floats[0] < float_block_index));
3894 }
3895 else
3896 return 0;
3897 }
3898
3899
3900 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3901 the heap. M is a pointer to the mem_block for P. */
3902
3903 static INLINE int
3904 live_misc_p (struct mem_node *m, void *p)
3905 {
3906 if (m->type == MEM_TYPE_MISC)
3907 {
3908 struct marker_block *b = (struct marker_block *) m->start;
3909 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3910
3911 /* P must point to the start of a Lisp_Misc, not be
3912 one of the unused cells in the current misc block,
3913 and not be on the free-list. */
3914 return (offset >= 0
3915 && offset % sizeof b->markers[0] == 0
3916 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3917 && (b != marker_block
3918 || offset / sizeof b->markers[0] < marker_block_index)
3919 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3920 }
3921 else
3922 return 0;
3923 }
3924
3925
3926 /* Value is non-zero if P is a pointer to a live vector-like object.
3927 M is a pointer to the mem_block for P. */
3928
3929 static INLINE int
3930 live_vector_p (struct mem_node *m, void *p)
3931 {
3932 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3933 }
3934
3935
3936 /* Value is non-zero if P is a pointer to a live buffer. M is a
3937 pointer to the mem_block for P. */
3938
3939 static INLINE int
3940 live_buffer_p (struct mem_node *m, void *p)
3941 {
3942 /* P must point to the start of the block, and the buffer
3943 must not have been killed. */
3944 return (m->type == MEM_TYPE_BUFFER
3945 && p == m->start
3946 && !NILP (((struct buffer *) p)->name));
3947 }
3948
3949 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3950
3951 #if GC_MARK_STACK
3952
3953 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3954
3955 /* Array of objects that are kept alive because the C stack contains
3956 a pattern that looks like a reference to them . */
3957
3958 #define MAX_ZOMBIES 10
3959 static Lisp_Object zombies[MAX_ZOMBIES];
3960
3961 /* Number of zombie objects. */
3962
3963 static int nzombies;
3964
3965 /* Number of garbage collections. */
3966
3967 static int ngcs;
3968
3969 /* Average percentage of zombies per collection. */
3970
3971 static double avg_zombies;
3972
3973 /* Max. number of live and zombie objects. */
3974
3975 static int max_live, max_zombies;
3976
3977 /* Average number of live objects per GC. */
3978
3979 static double avg_live;
3980
3981 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3982 doc: /* Show information about live and zombie objects. */)
3983 (void)
3984 {
3985 Lisp_Object args[8], zombie_list = Qnil;
3986 int i;
3987 for (i = 0; i < nzombies; i++)
3988 zombie_list = Fcons (zombies[i], zombie_list);
3989 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3990 args[1] = make_number (ngcs);
3991 args[2] = make_float (avg_live);
3992 args[3] = make_float (avg_zombies);
3993 args[4] = make_float (avg_zombies / avg_live / 100);
3994 args[5] = make_number (max_live);
3995 args[6] = make_number (max_zombies);
3996 args[7] = zombie_list;
3997 return Fmessage (8, args);
3998 }
3999
4000 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4001
4002
4003 /* Mark OBJ if we can prove it's a Lisp_Object. */
4004
4005 static INLINE void
4006 mark_maybe_object (Lisp_Object obj)
4007 {
4008 void *po;
4009 struct mem_node *m;
4010
4011 if (INTEGERP (obj))
4012 return;
4013
4014 po = (void *) XPNTR (obj);
4015 m = mem_find (po);
4016
4017 if (m != MEM_NIL)
4018 {
4019 int mark_p = 0;
4020
4021 switch (XTYPE (obj))
4022 {
4023 case Lisp_String:
4024 mark_p = (live_string_p (m, po)
4025 && !STRING_MARKED_P ((struct Lisp_String *) po));
4026 break;
4027
4028 case Lisp_Cons:
4029 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4030 break;
4031
4032 case Lisp_Symbol:
4033 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4034 break;
4035
4036 case Lisp_Float:
4037 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4038 break;
4039
4040 case Lisp_Vectorlike:
4041 /* Note: can't check BUFFERP before we know it's a
4042 buffer because checking that dereferences the pointer
4043 PO which might point anywhere. */
4044 if (live_vector_p (m, po))
4045 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4046 else if (live_buffer_p (m, po))
4047 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4048 break;
4049
4050 case Lisp_Misc:
4051 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4052 break;
4053
4054 default:
4055 break;
4056 }
4057
4058 if (mark_p)
4059 {
4060 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4061 if (nzombies < MAX_ZOMBIES)
4062 zombies[nzombies] = obj;
4063 ++nzombies;
4064 #endif
4065 mark_object (obj);
4066 }
4067 }
4068 }
4069
4070
4071 /* If P points to Lisp data, mark that as live if it isn't already
4072 marked. */
4073
4074 static INLINE void
4075 mark_maybe_pointer (void *p)
4076 {
4077 struct mem_node *m;
4078
4079 /* Quickly rule out some values which can't point to Lisp data. */
4080 if ((EMACS_INT) p %
4081 #ifdef USE_LSB_TAG
4082 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4083 #else
4084 2 /* We assume that Lisp data is aligned on even addresses. */
4085 #endif
4086 )
4087 return;
4088
4089 m = mem_find (p);
4090 if (m != MEM_NIL)
4091 {
4092 Lisp_Object obj = Qnil;
4093
4094 switch (m->type)
4095 {
4096 case MEM_TYPE_NON_LISP:
4097 /* Nothing to do; not a pointer to Lisp memory. */
4098 break;
4099
4100 case MEM_TYPE_BUFFER:
4101 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4102 XSETVECTOR (obj, p);
4103 break;
4104
4105 case MEM_TYPE_CONS:
4106 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4107 XSETCONS (obj, p);
4108 break;
4109
4110 case MEM_TYPE_STRING:
4111 if (live_string_p (m, p)
4112 && !STRING_MARKED_P ((struct Lisp_String *) p))
4113 XSETSTRING (obj, p);
4114 break;
4115
4116 case MEM_TYPE_MISC:
4117 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4118 XSETMISC (obj, p);
4119 break;
4120
4121 case MEM_TYPE_SYMBOL:
4122 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4123 XSETSYMBOL (obj, p);
4124 break;
4125
4126 case MEM_TYPE_FLOAT:
4127 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4128 XSETFLOAT (obj, p);
4129 break;
4130
4131 case MEM_TYPE_VECTORLIKE:
4132 if (live_vector_p (m, p))
4133 {
4134 Lisp_Object tem;
4135 XSETVECTOR (tem, p);
4136 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4137 obj = tem;
4138 }
4139 break;
4140
4141 default:
4142 abort ();
4143 }
4144
4145 if (!NILP (obj))
4146 mark_object (obj);
4147 }
4148 }
4149
4150
4151 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4152 or END+OFFSET..START. */
4153
4154 static void
4155 mark_memory (void *start, void *end, int offset)
4156 {
4157 Lisp_Object *p;
4158 void **pp;
4159
4160 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4161 nzombies = 0;
4162 #endif
4163
4164 /* Make START the pointer to the start of the memory region,
4165 if it isn't already. */
4166 if (end < start)
4167 {
4168 void *tem = start;
4169 start = end;
4170 end = tem;
4171 }
4172
4173 /* Mark Lisp_Objects. */
4174 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4175 mark_maybe_object (*p);
4176
4177 /* Mark Lisp data pointed to. This is necessary because, in some
4178 situations, the C compiler optimizes Lisp objects away, so that
4179 only a pointer to them remains. Example:
4180
4181 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4182 ()
4183 {
4184 Lisp_Object obj = build_string ("test");
4185 struct Lisp_String *s = XSTRING (obj);
4186 Fgarbage_collect ();
4187 fprintf (stderr, "test `%s'\n", s->data);
4188 return Qnil;
4189 }
4190
4191 Here, `obj' isn't really used, and the compiler optimizes it
4192 away. The only reference to the life string is through the
4193 pointer `s'. */
4194
4195 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4196 mark_maybe_pointer (*pp);
4197 }
4198
4199 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4200 the GCC system configuration. In gcc 3.2, the only systems for
4201 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4202 by others?) and ns32k-pc532-min. */
4203
4204 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4205
4206 static int setjmp_tested_p, longjmps_done;
4207
4208 #define SETJMP_WILL_LIKELY_WORK "\
4209 \n\
4210 Emacs garbage collector has been changed to use conservative stack\n\
4211 marking. Emacs has determined that the method it uses to do the\n\
4212 marking will likely work on your system, but this isn't sure.\n\
4213 \n\
4214 If you are a system-programmer, or can get the help of a local wizard\n\
4215 who is, please take a look at the function mark_stack in alloc.c, and\n\
4216 verify that the methods used are appropriate for your system.\n\
4217 \n\
4218 Please mail the result to <emacs-devel@gnu.org>.\n\
4219 "
4220
4221 #define SETJMP_WILL_NOT_WORK "\
4222 \n\
4223 Emacs garbage collector has been changed to use conservative stack\n\
4224 marking. Emacs has determined that the default method it uses to do the\n\
4225 marking will not work on your system. We will need a system-dependent\n\
4226 solution for your system.\n\
4227 \n\
4228 Please take a look at the function mark_stack in alloc.c, and\n\
4229 try to find a way to make it work on your system.\n\
4230 \n\
4231 Note that you may get false negatives, depending on the compiler.\n\
4232 In particular, you need to use -O with GCC for this test.\n\
4233 \n\
4234 Please mail the result to <emacs-devel@gnu.org>.\n\
4235 "
4236
4237
4238 /* Perform a quick check if it looks like setjmp saves registers in a
4239 jmp_buf. Print a message to stderr saying so. When this test
4240 succeeds, this is _not_ a proof that setjmp is sufficient for
4241 conservative stack marking. Only the sources or a disassembly
4242 can prove that. */
4243
4244 static void
4245 test_setjmp (void)
4246 {
4247 char buf[10];
4248 register int x;
4249 jmp_buf jbuf;
4250 int result = 0;
4251
4252 /* Arrange for X to be put in a register. */
4253 sprintf (buf, "1");
4254 x = strlen (buf);
4255 x = 2 * x - 1;
4256
4257 setjmp (jbuf);
4258 if (longjmps_done == 1)
4259 {
4260 /* Came here after the longjmp at the end of the function.
4261
4262 If x == 1, the longjmp has restored the register to its
4263 value before the setjmp, and we can hope that setjmp
4264 saves all such registers in the jmp_buf, although that
4265 isn't sure.
4266
4267 For other values of X, either something really strange is
4268 taking place, or the setjmp just didn't save the register. */
4269
4270 if (x == 1)
4271 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4272 else
4273 {
4274 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4275 exit (1);
4276 }
4277 }
4278
4279 ++longjmps_done;
4280 x = 2;
4281 if (longjmps_done == 1)
4282 longjmp (jbuf, 1);
4283 }
4284
4285 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4286
4287
4288 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4289
4290 /* Abort if anything GCPRO'd doesn't survive the GC. */
4291
4292 static void
4293 check_gcpros (void)
4294 {
4295 struct gcpro *p;
4296 int i;
4297
4298 for (p = gcprolist; p; p = p->next)
4299 for (i = 0; i < p->nvars; ++i)
4300 if (!survives_gc_p (p->var[i]))
4301 /* FIXME: It's not necessarily a bug. It might just be that the
4302 GCPRO is unnecessary or should release the object sooner. */
4303 abort ();
4304 }
4305
4306 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4307
4308 static void
4309 dump_zombies (void)
4310 {
4311 int i;
4312
4313 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4314 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4315 {
4316 fprintf (stderr, " %d = ", i);
4317 debug_print (zombies[i]);
4318 }
4319 }
4320
4321 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4322
4323
4324 /* Mark live Lisp objects on the C stack.
4325
4326 There are several system-dependent problems to consider when
4327 porting this to new architectures:
4328
4329 Processor Registers
4330
4331 We have to mark Lisp objects in CPU registers that can hold local
4332 variables or are used to pass parameters.
4333
4334 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4335 something that either saves relevant registers on the stack, or
4336 calls mark_maybe_object passing it each register's contents.
4337
4338 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4339 implementation assumes that calling setjmp saves registers we need
4340 to see in a jmp_buf which itself lies on the stack. This doesn't
4341 have to be true! It must be verified for each system, possibly
4342 by taking a look at the source code of setjmp.
4343
4344 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4345 can use it as a machine independent method to store all registers
4346 to the stack. In this case the macros described in the previous
4347 two paragraphs are not used.
4348
4349 Stack Layout
4350
4351 Architectures differ in the way their processor stack is organized.
4352 For example, the stack might look like this
4353
4354 +----------------+
4355 | Lisp_Object | size = 4
4356 +----------------+
4357 | something else | size = 2
4358 +----------------+
4359 | Lisp_Object | size = 4
4360 +----------------+
4361 | ... |
4362
4363 In such a case, not every Lisp_Object will be aligned equally. To
4364 find all Lisp_Object on the stack it won't be sufficient to walk
4365 the stack in steps of 4 bytes. Instead, two passes will be
4366 necessary, one starting at the start of the stack, and a second
4367 pass starting at the start of the stack + 2. Likewise, if the
4368 minimal alignment of Lisp_Objects on the stack is 1, four passes
4369 would be necessary, each one starting with one byte more offset
4370 from the stack start.
4371
4372 The current code assumes by default that Lisp_Objects are aligned
4373 equally on the stack. */
4374
4375 static void
4376 mark_stack (void)
4377 {
4378 int i;
4379 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4380 union aligned_jmpbuf {
4381 Lisp_Object o;
4382 jmp_buf j;
4383 } j;
4384 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4385 void *end;
4386
4387 #ifdef HAVE___BUILTIN_UNWIND_INIT
4388 /* Force callee-saved registers and register windows onto the stack.
4389 This is the preferred method if available, obviating the need for
4390 machine dependent methods. */
4391 __builtin_unwind_init ();
4392 end = &end;
4393 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4394 /* This trick flushes the register windows so that all the state of
4395 the process is contained in the stack. */
4396 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4397 needed on ia64 too. See mach_dep.c, where it also says inline
4398 assembler doesn't work with relevant proprietary compilers. */
4399 #ifdef __sparc__
4400 #if defined (__sparc64__) && defined (__FreeBSD__)
4401 /* FreeBSD does not have a ta 3 handler. */
4402 asm ("flushw");
4403 #else
4404 asm ("ta 3");
4405 #endif
4406 #endif
4407
4408 /* Save registers that we need to see on the stack. We need to see
4409 registers used to hold register variables and registers used to
4410 pass parameters. */
4411 #ifdef GC_SAVE_REGISTERS_ON_STACK
4412 GC_SAVE_REGISTERS_ON_STACK (end);
4413 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4414
4415 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4416 setjmp will definitely work, test it
4417 and print a message with the result
4418 of the test. */
4419 if (!setjmp_tested_p)
4420 {
4421 setjmp_tested_p = 1;
4422 test_setjmp ();
4423 }
4424 #endif /* GC_SETJMP_WORKS */
4425
4426 setjmp (j.j);
4427 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4428 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4429 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4430
4431 /* This assumes that the stack is a contiguous region in memory. If
4432 that's not the case, something has to be done here to iterate
4433 over the stack segments. */
4434 #ifndef GC_LISP_OBJECT_ALIGNMENT
4435 #ifdef __GNUC__
4436 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4437 #else
4438 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4439 #endif
4440 #endif
4441 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4442 mark_memory (stack_base, end, i);
4443 /* Allow for marking a secondary stack, like the register stack on the
4444 ia64. */
4445 #ifdef GC_MARK_SECONDARY_STACK
4446 GC_MARK_SECONDARY_STACK ();
4447 #endif
4448
4449 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4450 check_gcpros ();
4451 #endif
4452 }
4453
4454 #endif /* GC_MARK_STACK != 0 */
4455
4456
4457 /* Determine whether it is safe to access memory at address P. */
4458 static int
4459 valid_pointer_p (void *p)
4460 {
4461 #ifdef WINDOWSNT
4462 return w32_valid_pointer_p (p, 16);
4463 #else
4464 int fd;
4465
4466 /* Obviously, we cannot just access it (we would SEGV trying), so we
4467 trick the o/s to tell us whether p is a valid pointer.
4468 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4469 not validate p in that case. */
4470
4471 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4472 {
4473 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4474 emacs_close (fd);
4475 unlink ("__Valid__Lisp__Object__");
4476 return valid;
4477 }
4478
4479 return -1;
4480 #endif
4481 }
4482
4483 /* Return 1 if OBJ is a valid lisp object.
4484 Return 0 if OBJ is NOT a valid lisp object.
4485 Return -1 if we cannot validate OBJ.
4486 This function can be quite slow,
4487 so it should only be used in code for manual debugging. */
4488
4489 int
4490 valid_lisp_object_p (Lisp_Object obj)
4491 {
4492 void *p;
4493 #if GC_MARK_STACK
4494 struct mem_node *m;
4495 #endif
4496
4497 if (INTEGERP (obj))
4498 return 1;
4499
4500 p = (void *) XPNTR (obj);
4501 if (PURE_POINTER_P (p))
4502 return 1;
4503
4504 #if !GC_MARK_STACK
4505 return valid_pointer_p (p);
4506 #else
4507
4508 m = mem_find (p);
4509
4510 if (m == MEM_NIL)
4511 {
4512 int valid = valid_pointer_p (p);
4513 if (valid <= 0)
4514 return valid;
4515
4516 if (SUBRP (obj))
4517 return 1;
4518
4519 return 0;
4520 }
4521
4522 switch (m->type)
4523 {
4524 case MEM_TYPE_NON_LISP:
4525 return 0;
4526
4527 case MEM_TYPE_BUFFER:
4528 return live_buffer_p (m, p);
4529
4530 case MEM_TYPE_CONS:
4531 return live_cons_p (m, p);
4532
4533 case MEM_TYPE_STRING:
4534 return live_string_p (m, p);
4535
4536 case MEM_TYPE_MISC:
4537 return live_misc_p (m, p);
4538
4539 case MEM_TYPE_SYMBOL:
4540 return live_symbol_p (m, p);
4541
4542 case MEM_TYPE_FLOAT:
4543 return live_float_p (m, p);
4544
4545 case MEM_TYPE_VECTORLIKE:
4546 return live_vector_p (m, p);
4547
4548 default:
4549 break;
4550 }
4551
4552 return 0;
4553 #endif
4554 }
4555
4556
4557
4558 \f
4559 /***********************************************************************
4560 Pure Storage Management
4561 ***********************************************************************/
4562
4563 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4564 pointer to it. TYPE is the Lisp type for which the memory is
4565 allocated. TYPE < 0 means it's not used for a Lisp object. */
4566
4567 static POINTER_TYPE *
4568 pure_alloc (size_t size, int type)
4569 {
4570 POINTER_TYPE *result;
4571 #ifdef USE_LSB_TAG
4572 size_t alignment = (1 << GCTYPEBITS);
4573 #else
4574 size_t alignment = sizeof (EMACS_INT);
4575
4576 /* Give Lisp_Floats an extra alignment. */
4577 if (type == Lisp_Float)
4578 {
4579 #if defined __GNUC__ && __GNUC__ >= 2
4580 alignment = __alignof (struct Lisp_Float);
4581 #else
4582 alignment = sizeof (struct Lisp_Float);
4583 #endif
4584 }
4585 #endif
4586
4587 again:
4588 if (type >= 0)
4589 {
4590 /* Allocate space for a Lisp object from the beginning of the free
4591 space with taking account of alignment. */
4592 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4593 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4594 }
4595 else
4596 {
4597 /* Allocate space for a non-Lisp object from the end of the free
4598 space. */
4599 pure_bytes_used_non_lisp += size;
4600 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4601 }
4602 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4603
4604 if (pure_bytes_used <= pure_size)
4605 return result;
4606
4607 /* Don't allocate a large amount here,
4608 because it might get mmap'd and then its address
4609 might not be usable. */
4610 purebeg = (char *) xmalloc (10000);
4611 pure_size = 10000;
4612 pure_bytes_used_before_overflow += pure_bytes_used - size;
4613 pure_bytes_used = 0;
4614 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4615 goto again;
4616 }
4617
4618
4619 /* Print a warning if PURESIZE is too small. */
4620
4621 void
4622 check_pure_size (void)
4623 {
4624 if (pure_bytes_used_before_overflow)
4625 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4626 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4627 }
4628
4629
4630 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4631 the non-Lisp data pool of the pure storage, and return its start
4632 address. Return NULL if not found. */
4633
4634 static char *
4635 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4636 {
4637 int i;
4638 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4639 const unsigned char *p;
4640 char *non_lisp_beg;
4641
4642 if (pure_bytes_used_non_lisp < nbytes + 1)
4643 return NULL;
4644
4645 /* Set up the Boyer-Moore table. */
4646 skip = nbytes + 1;
4647 for (i = 0; i < 256; i++)
4648 bm_skip[i] = skip;
4649
4650 p = (const unsigned char *) data;
4651 while (--skip > 0)
4652 bm_skip[*p++] = skip;
4653
4654 last_char_skip = bm_skip['\0'];
4655
4656 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4657 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4658
4659 /* See the comments in the function `boyer_moore' (search.c) for the
4660 use of `infinity'. */
4661 infinity = pure_bytes_used_non_lisp + 1;
4662 bm_skip['\0'] = infinity;
4663
4664 p = (const unsigned char *) non_lisp_beg + nbytes;
4665 start = 0;
4666 do
4667 {
4668 /* Check the last character (== '\0'). */
4669 do
4670 {
4671 start += bm_skip[*(p + start)];
4672 }
4673 while (start <= start_max);
4674
4675 if (start < infinity)
4676 /* Couldn't find the last character. */
4677 return NULL;
4678
4679 /* No less than `infinity' means we could find the last
4680 character at `p[start - infinity]'. */
4681 start -= infinity;
4682
4683 /* Check the remaining characters. */
4684 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4685 /* Found. */
4686 return non_lisp_beg + start;
4687
4688 start += last_char_skip;
4689 }
4690 while (start <= start_max);
4691
4692 return NULL;
4693 }
4694
4695
4696 /* Return a string allocated in pure space. DATA is a buffer holding
4697 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4698 non-zero means make the result string multibyte.
4699
4700 Must get an error if pure storage is full, since if it cannot hold
4701 a large string it may be able to hold conses that point to that
4702 string; then the string is not protected from gc. */
4703
4704 Lisp_Object
4705 make_pure_string (const char *data,
4706 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4707 {
4708 Lisp_Object string;
4709 struct Lisp_String *s;
4710
4711 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4712 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4713 if (s->data == NULL)
4714 {
4715 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4716 memcpy (s->data, data, nbytes);
4717 s->data[nbytes] = '\0';
4718 }
4719 s->size = nchars;
4720 s->size_byte = multibyte ? nbytes : -1;
4721 s->intervals = NULL_INTERVAL;
4722 XSETSTRING (string, s);
4723 return string;
4724 }
4725
4726 /* Return a string a string allocated in pure space. Do not allocate
4727 the string data, just point to DATA. */
4728
4729 Lisp_Object
4730 make_pure_c_string (const char *data)
4731 {
4732 Lisp_Object string;
4733 struct Lisp_String *s;
4734 EMACS_INT nchars = strlen (data);
4735
4736 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4737 s->size = nchars;
4738 s->size_byte = -1;
4739 s->data = (unsigned char *) data;
4740 s->intervals = NULL_INTERVAL;
4741 XSETSTRING (string, s);
4742 return string;
4743 }
4744
4745 /* Return a cons allocated from pure space. Give it pure copies
4746 of CAR as car and CDR as cdr. */
4747
4748 Lisp_Object
4749 pure_cons (Lisp_Object car, Lisp_Object cdr)
4750 {
4751 register Lisp_Object new;
4752 struct Lisp_Cons *p;
4753
4754 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4755 XSETCONS (new, p);
4756 XSETCAR (new, Fpurecopy (car));
4757 XSETCDR (new, Fpurecopy (cdr));
4758 return new;
4759 }
4760
4761
4762 /* Value is a float object with value NUM allocated from pure space. */
4763
4764 static Lisp_Object
4765 make_pure_float (double num)
4766 {
4767 register Lisp_Object new;
4768 struct Lisp_Float *p;
4769
4770 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4771 XSETFLOAT (new, p);
4772 XFLOAT_INIT (new, num);
4773 return new;
4774 }
4775
4776
4777 /* Return a vector with room for LEN Lisp_Objects allocated from
4778 pure space. */
4779
4780 Lisp_Object
4781 make_pure_vector (EMACS_INT len)
4782 {
4783 Lisp_Object new;
4784 struct Lisp_Vector *p;
4785 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4786
4787 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4788 XSETVECTOR (new, p);
4789 XVECTOR (new)->size = len;
4790 return new;
4791 }
4792
4793
4794 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4795 doc: /* Make a copy of object OBJ in pure storage.
4796 Recursively copies contents of vectors and cons cells.
4797 Does not copy symbols. Copies strings without text properties. */)
4798 (register Lisp_Object obj)
4799 {
4800 if (NILP (Vpurify_flag))
4801 return obj;
4802
4803 if (PURE_POINTER_P (XPNTR (obj)))
4804 return obj;
4805
4806 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4807 {
4808 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4809 if (!NILP (tmp))
4810 return tmp;
4811 }
4812
4813 if (CONSP (obj))
4814 obj = pure_cons (XCAR (obj), XCDR (obj));
4815 else if (FLOATP (obj))
4816 obj = make_pure_float (XFLOAT_DATA (obj));
4817 else if (STRINGP (obj))
4818 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4819 SBYTES (obj),
4820 STRING_MULTIBYTE (obj));
4821 else if (FUNVECP (obj) || VECTORP (obj))
4822 {
4823 register struct Lisp_Vector *vec;
4824 register EMACS_INT i;
4825 EMACS_INT size;
4826
4827 size = XVECTOR (obj)->size;
4828 if (size & PSEUDOVECTOR_FLAG)
4829 size &= PSEUDOVECTOR_SIZE_MASK;
4830 vec = XVECTOR (make_pure_vector (size));
4831 for (i = 0; i < size; i++)
4832 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4833 if (FUNVECP (obj))
4834 {
4835 XSETPVECTYPE (vec, PVEC_FUNVEC);
4836 XSETFUNVEC (obj, vec);
4837 }
4838 else
4839 XSETVECTOR (obj, vec);
4840 }
4841 else if (MARKERP (obj))
4842 error ("Attempt to copy a marker to pure storage");
4843 else
4844 /* Not purified, don't hash-cons. */
4845 return obj;
4846
4847 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4848 Fputhash (obj, obj, Vpurify_flag);
4849
4850 return obj;
4851 }
4852
4853
4854 \f
4855 /***********************************************************************
4856 Protection from GC
4857 ***********************************************************************/
4858
4859 /* Put an entry in staticvec, pointing at the variable with address
4860 VARADDRESS. */
4861
4862 void
4863 staticpro (Lisp_Object *varaddress)
4864 {
4865 staticvec[staticidx++] = varaddress;
4866 if (staticidx >= NSTATICS)
4867 abort ();
4868 }
4869
4870 \f
4871 /***********************************************************************
4872 Protection from GC
4873 ***********************************************************************/
4874
4875 /* Temporarily prevent garbage collection. */
4876
4877 int
4878 inhibit_garbage_collection (void)
4879 {
4880 int count = SPECPDL_INDEX ();
4881 int nbits = min (VALBITS, BITS_PER_INT);
4882
4883 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4884 return count;
4885 }
4886
4887
4888 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4889 doc: /* Reclaim storage for Lisp objects no longer needed.
4890 Garbage collection happens automatically if you cons more than
4891 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4892 `garbage-collect' normally returns a list with info on amount of space in use:
4893 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4894 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4895 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4896 (USED-STRINGS . FREE-STRINGS))
4897 However, if there was overflow in pure space, `garbage-collect'
4898 returns nil, because real GC can't be done. */)
4899 (void)
4900 {
4901 register struct specbinding *bind;
4902 struct catchtag *catch;
4903 struct handler *handler;
4904 char stack_top_variable;
4905 register int i;
4906 int message_p;
4907 Lisp_Object total[8];
4908 int count = SPECPDL_INDEX ();
4909 EMACS_TIME t1, t2, t3;
4910
4911 if (abort_on_gc)
4912 abort ();
4913
4914 /* Can't GC if pure storage overflowed because we can't determine
4915 if something is a pure object or not. */
4916 if (pure_bytes_used_before_overflow)
4917 return Qnil;
4918
4919 CHECK_CONS_LIST ();
4920
4921 /* Don't keep undo information around forever.
4922 Do this early on, so it is no problem if the user quits. */
4923 {
4924 register struct buffer *nextb = all_buffers;
4925
4926 while (nextb)
4927 {
4928 /* If a buffer's undo list is Qt, that means that undo is
4929 turned off in that buffer. Calling truncate_undo_list on
4930 Qt tends to return NULL, which effectively turns undo back on.
4931 So don't call truncate_undo_list if undo_list is Qt. */
4932 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4933 truncate_undo_list (nextb);
4934
4935 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4936 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4937 && ! nextb->text->inhibit_shrinking)
4938 {
4939 /* If a buffer's gap size is more than 10% of the buffer
4940 size, or larger than 2000 bytes, then shrink it
4941 accordingly. Keep a minimum size of 20 bytes. */
4942 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4943
4944 if (nextb->text->gap_size > size)
4945 {
4946 struct buffer *save_current = current_buffer;
4947 current_buffer = nextb;
4948 make_gap (-(nextb->text->gap_size - size));
4949 current_buffer = save_current;
4950 }
4951 }
4952
4953 nextb = nextb->next;
4954 }
4955 }
4956
4957 EMACS_GET_TIME (t1);
4958
4959 /* In case user calls debug_print during GC,
4960 don't let that cause a recursive GC. */
4961 consing_since_gc = 0;
4962
4963 /* Save what's currently displayed in the echo area. */
4964 message_p = push_message ();
4965 record_unwind_protect (pop_message_unwind, Qnil);
4966
4967 /* Save a copy of the contents of the stack, for debugging. */
4968 #if MAX_SAVE_STACK > 0
4969 if (NILP (Vpurify_flag))
4970 {
4971 i = &stack_top_variable - stack_bottom;
4972 if (i < 0) i = -i;
4973 if (i < MAX_SAVE_STACK)
4974 {
4975 if (stack_copy == 0)
4976 stack_copy = (char *) xmalloc (stack_copy_size = i);
4977 else if (stack_copy_size < i)
4978 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4979 if (stack_copy)
4980 {
4981 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4982 memcpy (stack_copy, stack_bottom, i);
4983 else
4984 memcpy (stack_copy, &stack_top_variable, i);
4985 }
4986 }
4987 }
4988 #endif /* MAX_SAVE_STACK > 0 */
4989
4990 if (garbage_collection_messages)
4991 message1_nolog ("Garbage collecting...");
4992
4993 BLOCK_INPUT;
4994
4995 shrink_regexp_cache ();
4996
4997 gc_in_progress = 1;
4998
4999 /* clear_marks (); */
5000
5001 /* Mark all the special slots that serve as the roots of accessibility. */
5002
5003 for (i = 0; i < staticidx; i++)
5004 mark_object (*staticvec[i]);
5005
5006 for (bind = specpdl; bind != specpdl_ptr; bind++)
5007 {
5008 mark_object (bind->symbol);
5009 mark_object (bind->old_value);
5010 }
5011 mark_terminals ();
5012 mark_kboards ();
5013 mark_ttys ();
5014
5015 #ifdef USE_GTK
5016 {
5017 extern void xg_mark_data (void);
5018 xg_mark_data ();
5019 }
5020 #endif
5021
5022 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5023 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5024 mark_stack ();
5025 #else
5026 {
5027 register struct gcpro *tail;
5028 for (tail = gcprolist; tail; tail = tail->next)
5029 for (i = 0; i < tail->nvars; i++)
5030 mark_object (tail->var[i]);
5031 }
5032 #endif
5033
5034 mark_byte_stack ();
5035 for (catch = catchlist; catch; catch = catch->next)
5036 {
5037 mark_object (catch->tag);
5038 mark_object (catch->val);
5039 }
5040 for (handler = handlerlist; handler; handler = handler->next)
5041 {
5042 mark_object (handler->handler);
5043 mark_object (handler->var);
5044 }
5045 mark_backtrace ();
5046
5047 #ifdef HAVE_WINDOW_SYSTEM
5048 mark_fringe_data ();
5049 #endif
5050
5051 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5052 mark_stack ();
5053 #endif
5054
5055 /* Everything is now marked, except for the things that require special
5056 finalization, i.e. the undo_list.
5057 Look thru every buffer's undo list
5058 for elements that update markers that were not marked,
5059 and delete them. */
5060 {
5061 register struct buffer *nextb = all_buffers;
5062
5063 while (nextb)
5064 {
5065 /* If a buffer's undo list is Qt, that means that undo is
5066 turned off in that buffer. Calling truncate_undo_list on
5067 Qt tends to return NULL, which effectively turns undo back on.
5068 So don't call truncate_undo_list if undo_list is Qt. */
5069 if (! EQ (nextb->undo_list, Qt))
5070 {
5071 Lisp_Object tail, prev;
5072 tail = nextb->undo_list;
5073 prev = Qnil;
5074 while (CONSP (tail))
5075 {
5076 if (CONSP (XCAR (tail))
5077 && MARKERP (XCAR (XCAR (tail)))
5078 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5079 {
5080 if (NILP (prev))
5081 nextb->undo_list = tail = XCDR (tail);
5082 else
5083 {
5084 tail = XCDR (tail);
5085 XSETCDR (prev, tail);
5086 }
5087 }
5088 else
5089 {
5090 prev = tail;
5091 tail = XCDR (tail);
5092 }
5093 }
5094 }
5095 /* Now that we have stripped the elements that need not be in the
5096 undo_list any more, we can finally mark the list. */
5097 mark_object (nextb->undo_list);
5098
5099 nextb = nextb->next;
5100 }
5101 }
5102
5103 gc_sweep ();
5104
5105 /* Clear the mark bits that we set in certain root slots. */
5106
5107 unmark_byte_stack ();
5108 VECTOR_UNMARK (&buffer_defaults);
5109 VECTOR_UNMARK (&buffer_local_symbols);
5110
5111 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5112 dump_zombies ();
5113 #endif
5114
5115 UNBLOCK_INPUT;
5116
5117 CHECK_CONS_LIST ();
5118
5119 /* clear_marks (); */
5120 gc_in_progress = 0;
5121
5122 consing_since_gc = 0;
5123 if (gc_cons_threshold < 10000)
5124 gc_cons_threshold = 10000;
5125
5126 if (FLOATP (Vgc_cons_percentage))
5127 { /* Set gc_cons_combined_threshold. */
5128 EMACS_INT total = 0;
5129
5130 total += total_conses * sizeof (struct Lisp_Cons);
5131 total += total_symbols * sizeof (struct Lisp_Symbol);
5132 total += total_markers * sizeof (union Lisp_Misc);
5133 total += total_string_size;
5134 total += total_vector_size * sizeof (Lisp_Object);
5135 total += total_floats * sizeof (struct Lisp_Float);
5136 total += total_intervals * sizeof (struct interval);
5137 total += total_strings * sizeof (struct Lisp_String);
5138
5139 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5140 }
5141 else
5142 gc_relative_threshold = 0;
5143
5144 if (garbage_collection_messages)
5145 {
5146 if (message_p || minibuf_level > 0)
5147 restore_message ();
5148 else
5149 message1_nolog ("Garbage collecting...done");
5150 }
5151
5152 unbind_to (count, Qnil);
5153
5154 total[0] = Fcons (make_number (total_conses),
5155 make_number (total_free_conses));
5156 total[1] = Fcons (make_number (total_symbols),
5157 make_number (total_free_symbols));
5158 total[2] = Fcons (make_number (total_markers),
5159 make_number (total_free_markers));
5160 total[3] = make_number (total_string_size);
5161 total[4] = make_number (total_vector_size);
5162 total[5] = Fcons (make_number (total_floats),
5163 make_number (total_free_floats));
5164 total[6] = Fcons (make_number (total_intervals),
5165 make_number (total_free_intervals));
5166 total[7] = Fcons (make_number (total_strings),
5167 make_number (total_free_strings));
5168
5169 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5170 {
5171 /* Compute average percentage of zombies. */
5172 double nlive = 0;
5173
5174 for (i = 0; i < 7; ++i)
5175 if (CONSP (total[i]))
5176 nlive += XFASTINT (XCAR (total[i]));
5177
5178 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5179 max_live = max (nlive, max_live);
5180 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5181 max_zombies = max (nzombies, max_zombies);
5182 ++ngcs;
5183 }
5184 #endif
5185
5186 if (!NILP (Vpost_gc_hook))
5187 {
5188 int count = inhibit_garbage_collection ();
5189 safe_run_hooks (Qpost_gc_hook);
5190 unbind_to (count, Qnil);
5191 }
5192
5193 /* Accumulate statistics. */
5194 EMACS_GET_TIME (t2);
5195 EMACS_SUB_TIME (t3, t2, t1);
5196 if (FLOATP (Vgc_elapsed))
5197 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5198 EMACS_SECS (t3) +
5199 EMACS_USECS (t3) * 1.0e-6);
5200 gcs_done++;
5201
5202 return Flist (sizeof total / sizeof *total, total);
5203 }
5204
5205
5206 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5207 only interesting objects referenced from glyphs are strings. */
5208
5209 static void
5210 mark_glyph_matrix (struct glyph_matrix *matrix)
5211 {
5212 struct glyph_row *row = matrix->rows;
5213 struct glyph_row *end = row + matrix->nrows;
5214
5215 for (; row < end; ++row)
5216 if (row->enabled_p)
5217 {
5218 int area;
5219 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5220 {
5221 struct glyph *glyph = row->glyphs[area];
5222 struct glyph *end_glyph = glyph + row->used[area];
5223
5224 for (; glyph < end_glyph; ++glyph)
5225 if (STRINGP (glyph->object)
5226 && !STRING_MARKED_P (XSTRING (glyph->object)))
5227 mark_object (glyph->object);
5228 }
5229 }
5230 }
5231
5232
5233 /* Mark Lisp faces in the face cache C. */
5234
5235 static void
5236 mark_face_cache (struct face_cache *c)
5237 {
5238 if (c)
5239 {
5240 int i, j;
5241 for (i = 0; i < c->used; ++i)
5242 {
5243 struct face *face = FACE_FROM_ID (c->f, i);
5244
5245 if (face)
5246 {
5247 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5248 mark_object (face->lface[j]);
5249 }
5250 }
5251 }
5252 }
5253
5254
5255 \f
5256 /* Mark reference to a Lisp_Object.
5257 If the object referred to has not been seen yet, recursively mark
5258 all the references contained in it. */
5259
5260 #define LAST_MARKED_SIZE 500
5261 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5262 int last_marked_index;
5263
5264 /* For debugging--call abort when we cdr down this many
5265 links of a list, in mark_object. In debugging,
5266 the call to abort will hit a breakpoint.
5267 Normally this is zero and the check never goes off. */
5268 static int mark_object_loop_halt;
5269
5270 static void
5271 mark_vectorlike (struct Lisp_Vector *ptr)
5272 {
5273 register EMACS_UINT size = ptr->size;
5274 register EMACS_UINT i;
5275
5276 eassert (!VECTOR_MARKED_P (ptr));
5277 VECTOR_MARK (ptr); /* Else mark it */
5278 if (size & PSEUDOVECTOR_FLAG)
5279 size &= PSEUDOVECTOR_SIZE_MASK;
5280
5281 /* Note that this size is not the memory-footprint size, but only
5282 the number of Lisp_Object fields that we should trace.
5283 The distinction is used e.g. by Lisp_Process which places extra
5284 non-Lisp_Object fields at the end of the structure. */
5285 for (i = 0; i < size; i++) /* and then mark its elements */
5286 mark_object (ptr->contents[i]);
5287 }
5288
5289 /* Like mark_vectorlike but optimized for char-tables (and
5290 sub-char-tables) assuming that the contents are mostly integers or
5291 symbols. */
5292
5293 static void
5294 mark_char_table (struct Lisp_Vector *ptr)
5295 {
5296 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5297 register EMACS_UINT i;
5298
5299 eassert (!VECTOR_MARKED_P (ptr));
5300 VECTOR_MARK (ptr);
5301 for (i = 0; i < size; i++)
5302 {
5303 Lisp_Object val = ptr->contents[i];
5304
5305 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5306 continue;
5307 if (SUB_CHAR_TABLE_P (val))
5308 {
5309 if (! VECTOR_MARKED_P (XVECTOR (val)))
5310 mark_char_table (XVECTOR (val));
5311 }
5312 else
5313 mark_object (val);
5314 }
5315 }
5316
5317 void
5318 mark_object (Lisp_Object arg)
5319 {
5320 register Lisp_Object obj = arg;
5321 #ifdef GC_CHECK_MARKED_OBJECTS
5322 void *po;
5323 struct mem_node *m;
5324 #endif
5325 int cdr_count = 0;
5326
5327 loop:
5328
5329 if (PURE_POINTER_P (XPNTR (obj)))
5330 return;
5331
5332 last_marked[last_marked_index++] = obj;
5333 if (last_marked_index == LAST_MARKED_SIZE)
5334 last_marked_index = 0;
5335
5336 /* Perform some sanity checks on the objects marked here. Abort if
5337 we encounter an object we know is bogus. This increases GC time
5338 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5339 #ifdef GC_CHECK_MARKED_OBJECTS
5340
5341 po = (void *) XPNTR (obj);
5342
5343 /* Check that the object pointed to by PO is known to be a Lisp
5344 structure allocated from the heap. */
5345 #define CHECK_ALLOCATED() \
5346 do { \
5347 m = mem_find (po); \
5348 if (m == MEM_NIL) \
5349 abort (); \
5350 } while (0)
5351
5352 /* Check that the object pointed to by PO is live, using predicate
5353 function LIVEP. */
5354 #define CHECK_LIVE(LIVEP) \
5355 do { \
5356 if (!LIVEP (m, po)) \
5357 abort (); \
5358 } while (0)
5359
5360 /* Check both of the above conditions. */
5361 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5362 do { \
5363 CHECK_ALLOCATED (); \
5364 CHECK_LIVE (LIVEP); \
5365 } while (0) \
5366
5367 #else /* not GC_CHECK_MARKED_OBJECTS */
5368
5369 #define CHECK_ALLOCATED() (void) 0
5370 #define CHECK_LIVE(LIVEP) (void) 0
5371 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5372
5373 #endif /* not GC_CHECK_MARKED_OBJECTS */
5374
5375 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5376 {
5377 case Lisp_String:
5378 {
5379 register struct Lisp_String *ptr = XSTRING (obj);
5380 if (STRING_MARKED_P (ptr))
5381 break;
5382 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5383 MARK_INTERVAL_TREE (ptr->intervals);
5384 MARK_STRING (ptr);
5385 #ifdef GC_CHECK_STRING_BYTES
5386 /* Check that the string size recorded in the string is the
5387 same as the one recorded in the sdata structure. */
5388 CHECK_STRING_BYTES (ptr);
5389 #endif /* GC_CHECK_STRING_BYTES */
5390 }
5391 break;
5392
5393 case Lisp_Vectorlike:
5394 if (VECTOR_MARKED_P (XVECTOR (obj)))
5395 break;
5396 #ifdef GC_CHECK_MARKED_OBJECTS
5397 m = mem_find (po);
5398 if (m == MEM_NIL && !SUBRP (obj)
5399 && po != &buffer_defaults
5400 && po != &buffer_local_symbols)
5401 abort ();
5402 #endif /* GC_CHECK_MARKED_OBJECTS */
5403
5404 if (BUFFERP (obj))
5405 {
5406 #ifdef GC_CHECK_MARKED_OBJECTS
5407 if (po != &buffer_defaults && po != &buffer_local_symbols)
5408 {
5409 struct buffer *b;
5410 for (b = all_buffers; b && b != po; b = b->next)
5411 ;
5412 if (b == NULL)
5413 abort ();
5414 }
5415 #endif /* GC_CHECK_MARKED_OBJECTS */
5416 mark_buffer (obj);
5417 }
5418 else if (SUBRP (obj))
5419 break;
5420 else if (FUNVECP (obj) && FUNVEC_COMPILED_P (obj))
5421 /* We could treat this just like a vector, but it is better to
5422 save the COMPILED_CONSTANTS element for last and avoid
5423 recursion there. */
5424 {
5425 register struct Lisp_Vector *ptr = XVECTOR (obj);
5426 register EMACS_UINT size = ptr->size;
5427 register EMACS_UINT i;
5428
5429 CHECK_LIVE (live_vector_p);
5430 VECTOR_MARK (ptr); /* Else mark it */
5431 size &= PSEUDOVECTOR_SIZE_MASK;
5432 for (i = 0; i < size; i++) /* and then mark its elements */
5433 {
5434 if (i != COMPILED_CONSTANTS)
5435 mark_object (ptr->contents[i]);
5436 }
5437 obj = ptr->contents[COMPILED_CONSTANTS];
5438 goto loop;
5439 }
5440 else if (FRAMEP (obj))
5441 {
5442 register struct frame *ptr = XFRAME (obj);
5443 mark_vectorlike (XVECTOR (obj));
5444 mark_face_cache (ptr->face_cache);
5445 }
5446 else if (WINDOWP (obj))
5447 {
5448 register struct Lisp_Vector *ptr = XVECTOR (obj);
5449 struct window *w = XWINDOW (obj);
5450 mark_vectorlike (ptr);
5451 /* Mark glyphs for leaf windows. Marking window matrices is
5452 sufficient because frame matrices use the same glyph
5453 memory. */
5454 if (NILP (w->hchild)
5455 && NILP (w->vchild)
5456 && w->current_matrix)
5457 {
5458 mark_glyph_matrix (w->current_matrix);
5459 mark_glyph_matrix (w->desired_matrix);
5460 }
5461 }
5462 else if (HASH_TABLE_P (obj))
5463 {
5464 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5465 mark_vectorlike ((struct Lisp_Vector *)h);
5466 /* If hash table is not weak, mark all keys and values.
5467 For weak tables, mark only the vector. */
5468 if (NILP (h->weak))
5469 mark_object (h->key_and_value);
5470 else
5471 VECTOR_MARK (XVECTOR (h->key_and_value));
5472 }
5473 else if (CHAR_TABLE_P (obj))
5474 mark_char_table (XVECTOR (obj));
5475 else
5476 mark_vectorlike (XVECTOR (obj));
5477 break;
5478
5479 case Lisp_Symbol:
5480 {
5481 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5482 struct Lisp_Symbol *ptrx;
5483
5484 if (ptr->gcmarkbit)
5485 break;
5486 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5487 ptr->gcmarkbit = 1;
5488 mark_object (ptr->function);
5489 mark_object (ptr->plist);
5490 switch (ptr->redirect)
5491 {
5492 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5493 case SYMBOL_VARALIAS:
5494 {
5495 Lisp_Object tem;
5496 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5497 mark_object (tem);
5498 break;
5499 }
5500 case SYMBOL_LOCALIZED:
5501 {
5502 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5503 /* If the value is forwarded to a buffer or keyboard field,
5504 these are marked when we see the corresponding object.
5505 And if it's forwarded to a C variable, either it's not
5506 a Lisp_Object var, or it's staticpro'd already. */
5507 mark_object (blv->where);
5508 mark_object (blv->valcell);
5509 mark_object (blv->defcell);
5510 break;
5511 }
5512 case SYMBOL_FORWARDED:
5513 /* If the value is forwarded to a buffer or keyboard field,
5514 these are marked when we see the corresponding object.
5515 And if it's forwarded to a C variable, either it's not
5516 a Lisp_Object var, or it's staticpro'd already. */
5517 break;
5518 default: abort ();
5519 }
5520 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5521 MARK_STRING (XSTRING (ptr->xname));
5522 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5523
5524 ptr = ptr->next;
5525 if (ptr)
5526 {
5527 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5528 XSETSYMBOL (obj, ptrx);
5529 goto loop;
5530 }
5531 }
5532 break;
5533
5534 case Lisp_Misc:
5535 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5536 if (XMISCANY (obj)->gcmarkbit)
5537 break;
5538 XMISCANY (obj)->gcmarkbit = 1;
5539
5540 switch (XMISCTYPE (obj))
5541 {
5542
5543 case Lisp_Misc_Marker:
5544 /* DO NOT mark thru the marker's chain.
5545 The buffer's markers chain does not preserve markers from gc;
5546 instead, markers are removed from the chain when freed by gc. */
5547 break;
5548
5549 case Lisp_Misc_Save_Value:
5550 #if GC_MARK_STACK
5551 {
5552 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5553 /* If DOGC is set, POINTER is the address of a memory
5554 area containing INTEGER potential Lisp_Objects. */
5555 if (ptr->dogc)
5556 {
5557 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5558 int nelt;
5559 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5560 mark_maybe_object (*p);
5561 }
5562 }
5563 #endif
5564 break;
5565
5566 case Lisp_Misc_Overlay:
5567 {
5568 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5569 mark_object (ptr->start);
5570 mark_object (ptr->end);
5571 mark_object (ptr->plist);
5572 if (ptr->next)
5573 {
5574 XSETMISC (obj, ptr->next);
5575 goto loop;
5576 }
5577 }
5578 break;
5579
5580 default:
5581 abort ();
5582 }
5583 break;
5584
5585 case Lisp_Cons:
5586 {
5587 register struct Lisp_Cons *ptr = XCONS (obj);
5588 if (CONS_MARKED_P (ptr))
5589 break;
5590 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5591 CONS_MARK (ptr);
5592 /* If the cdr is nil, avoid recursion for the car. */
5593 if (EQ (ptr->u.cdr, Qnil))
5594 {
5595 obj = ptr->car;
5596 cdr_count = 0;
5597 goto loop;
5598 }
5599 mark_object (ptr->car);
5600 obj = ptr->u.cdr;
5601 cdr_count++;
5602 if (cdr_count == mark_object_loop_halt)
5603 abort ();
5604 goto loop;
5605 }
5606
5607 case Lisp_Float:
5608 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5609 FLOAT_MARK (XFLOAT (obj));
5610 break;
5611
5612 case_Lisp_Int:
5613 break;
5614
5615 default:
5616 abort ();
5617 }
5618
5619 #undef CHECK_LIVE
5620 #undef CHECK_ALLOCATED
5621 #undef CHECK_ALLOCATED_AND_LIVE
5622 }
5623
5624 /* Mark the pointers in a buffer structure. */
5625
5626 static void
5627 mark_buffer (Lisp_Object buf)
5628 {
5629 register struct buffer *buffer = XBUFFER (buf);
5630 register Lisp_Object *ptr, tmp;
5631 Lisp_Object base_buffer;
5632
5633 eassert (!VECTOR_MARKED_P (buffer));
5634 VECTOR_MARK (buffer);
5635
5636 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5637
5638 /* For now, we just don't mark the undo_list. It's done later in
5639 a special way just before the sweep phase, and after stripping
5640 some of its elements that are not needed any more. */
5641
5642 if (buffer->overlays_before)
5643 {
5644 XSETMISC (tmp, buffer->overlays_before);
5645 mark_object (tmp);
5646 }
5647 if (buffer->overlays_after)
5648 {
5649 XSETMISC (tmp, buffer->overlays_after);
5650 mark_object (tmp);
5651 }
5652
5653 /* buffer-local Lisp variables start at `undo_list',
5654 tho only the ones from `name' on are GC'd normally. */
5655 for (ptr = &buffer->name;
5656 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5657 ptr++)
5658 mark_object (*ptr);
5659
5660 /* If this is an indirect buffer, mark its base buffer. */
5661 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5662 {
5663 XSETBUFFER (base_buffer, buffer->base_buffer);
5664 mark_buffer (base_buffer);
5665 }
5666 }
5667
5668 /* Mark the Lisp pointers in the terminal objects.
5669 Called by the Fgarbage_collector. */
5670
5671 static void
5672 mark_terminals (void)
5673 {
5674 struct terminal *t;
5675 for (t = terminal_list; t; t = t->next_terminal)
5676 {
5677 eassert (t->name != NULL);
5678 #ifdef HAVE_WINDOW_SYSTEM
5679 /* If a terminal object is reachable from a stacpro'ed object,
5680 it might have been marked already. Make sure the image cache
5681 gets marked. */
5682 mark_image_cache (t->image_cache);
5683 #endif /* HAVE_WINDOW_SYSTEM */
5684 if (!VECTOR_MARKED_P (t))
5685 mark_vectorlike ((struct Lisp_Vector *)t);
5686 }
5687 }
5688
5689
5690
5691 /* Value is non-zero if OBJ will survive the current GC because it's
5692 either marked or does not need to be marked to survive. */
5693
5694 int
5695 survives_gc_p (Lisp_Object obj)
5696 {
5697 int survives_p;
5698
5699 switch (XTYPE (obj))
5700 {
5701 case_Lisp_Int:
5702 survives_p = 1;
5703 break;
5704
5705 case Lisp_Symbol:
5706 survives_p = XSYMBOL (obj)->gcmarkbit;
5707 break;
5708
5709 case Lisp_Misc:
5710 survives_p = XMISCANY (obj)->gcmarkbit;
5711 break;
5712
5713 case Lisp_String:
5714 survives_p = STRING_MARKED_P (XSTRING (obj));
5715 break;
5716
5717 case Lisp_Vectorlike:
5718 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5719 break;
5720
5721 case Lisp_Cons:
5722 survives_p = CONS_MARKED_P (XCONS (obj));
5723 break;
5724
5725 case Lisp_Float:
5726 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5727 break;
5728
5729 default:
5730 abort ();
5731 }
5732
5733 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5734 }
5735
5736
5737 \f
5738 /* Sweep: find all structures not marked, and free them. */
5739
5740 static void
5741 gc_sweep (void)
5742 {
5743 /* Remove or mark entries in weak hash tables.
5744 This must be done before any object is unmarked. */
5745 sweep_weak_hash_tables ();
5746
5747 sweep_strings ();
5748 #ifdef GC_CHECK_STRING_BYTES
5749 if (!noninteractive)
5750 check_string_bytes (1);
5751 #endif
5752
5753 /* Put all unmarked conses on free list */
5754 {
5755 register struct cons_block *cblk;
5756 struct cons_block **cprev = &cons_block;
5757 register int lim = cons_block_index;
5758 register int num_free = 0, num_used = 0;
5759
5760 cons_free_list = 0;
5761
5762 for (cblk = cons_block; cblk; cblk = *cprev)
5763 {
5764 register int i = 0;
5765 int this_free = 0;
5766 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5767
5768 /* Scan the mark bits an int at a time. */
5769 for (i = 0; i <= ilim; i++)
5770 {
5771 if (cblk->gcmarkbits[i] == -1)
5772 {
5773 /* Fast path - all cons cells for this int are marked. */
5774 cblk->gcmarkbits[i] = 0;
5775 num_used += BITS_PER_INT;
5776 }
5777 else
5778 {
5779 /* Some cons cells for this int are not marked.
5780 Find which ones, and free them. */
5781 int start, pos, stop;
5782
5783 start = i * BITS_PER_INT;
5784 stop = lim - start;
5785 if (stop > BITS_PER_INT)
5786 stop = BITS_PER_INT;
5787 stop += start;
5788
5789 for (pos = start; pos < stop; pos++)
5790 {
5791 if (!CONS_MARKED_P (&cblk->conses[pos]))
5792 {
5793 this_free++;
5794 cblk->conses[pos].u.chain = cons_free_list;
5795 cons_free_list = &cblk->conses[pos];
5796 #if GC_MARK_STACK
5797 cons_free_list->car = Vdead;
5798 #endif
5799 }
5800 else
5801 {
5802 num_used++;
5803 CONS_UNMARK (&cblk->conses[pos]);
5804 }
5805 }
5806 }
5807 }
5808
5809 lim = CONS_BLOCK_SIZE;
5810 /* If this block contains only free conses and we have already
5811 seen more than two blocks worth of free conses then deallocate
5812 this block. */
5813 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5814 {
5815 *cprev = cblk->next;
5816 /* Unhook from the free list. */
5817 cons_free_list = cblk->conses[0].u.chain;
5818 lisp_align_free (cblk);
5819 n_cons_blocks--;
5820 }
5821 else
5822 {
5823 num_free += this_free;
5824 cprev = &cblk->next;
5825 }
5826 }
5827 total_conses = num_used;
5828 total_free_conses = num_free;
5829 }
5830
5831 /* Put all unmarked floats on free list */
5832 {
5833 register struct float_block *fblk;
5834 struct float_block **fprev = &float_block;
5835 register int lim = float_block_index;
5836 register int num_free = 0, num_used = 0;
5837
5838 float_free_list = 0;
5839
5840 for (fblk = float_block; fblk; fblk = *fprev)
5841 {
5842 register int i;
5843 int this_free = 0;
5844 for (i = 0; i < lim; i++)
5845 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5846 {
5847 this_free++;
5848 fblk->floats[i].u.chain = float_free_list;
5849 float_free_list = &fblk->floats[i];
5850 }
5851 else
5852 {
5853 num_used++;
5854 FLOAT_UNMARK (&fblk->floats[i]);
5855 }
5856 lim = FLOAT_BLOCK_SIZE;
5857 /* If this block contains only free floats and we have already
5858 seen more than two blocks worth of free floats then deallocate
5859 this block. */
5860 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5861 {
5862 *fprev = fblk->next;
5863 /* Unhook from the free list. */
5864 float_free_list = fblk->floats[0].u.chain;
5865 lisp_align_free (fblk);
5866 n_float_blocks--;
5867 }
5868 else
5869 {
5870 num_free += this_free;
5871 fprev = &fblk->next;
5872 }
5873 }
5874 total_floats = num_used;
5875 total_free_floats = num_free;
5876 }
5877
5878 /* Put all unmarked intervals on free list */
5879 {
5880 register struct interval_block *iblk;
5881 struct interval_block **iprev = &interval_block;
5882 register int lim = interval_block_index;
5883 register int num_free = 0, num_used = 0;
5884
5885 interval_free_list = 0;
5886
5887 for (iblk = interval_block; iblk; iblk = *iprev)
5888 {
5889 register int i;
5890 int this_free = 0;
5891
5892 for (i = 0; i < lim; i++)
5893 {
5894 if (!iblk->intervals[i].gcmarkbit)
5895 {
5896 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5897 interval_free_list = &iblk->intervals[i];
5898 this_free++;
5899 }
5900 else
5901 {
5902 num_used++;
5903 iblk->intervals[i].gcmarkbit = 0;
5904 }
5905 }
5906 lim = INTERVAL_BLOCK_SIZE;
5907 /* If this block contains only free intervals and we have already
5908 seen more than two blocks worth of free intervals then
5909 deallocate this block. */
5910 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5911 {
5912 *iprev = iblk->next;
5913 /* Unhook from the free list. */
5914 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5915 lisp_free (iblk);
5916 n_interval_blocks--;
5917 }
5918 else
5919 {
5920 num_free += this_free;
5921 iprev = &iblk->next;
5922 }
5923 }
5924 total_intervals = num_used;
5925 total_free_intervals = num_free;
5926 }
5927
5928 /* Put all unmarked symbols on free list */
5929 {
5930 register struct symbol_block *sblk;
5931 struct symbol_block **sprev = &symbol_block;
5932 register int lim = symbol_block_index;
5933 register int num_free = 0, num_used = 0;
5934
5935 symbol_free_list = NULL;
5936
5937 for (sblk = symbol_block; sblk; sblk = *sprev)
5938 {
5939 int this_free = 0;
5940 struct Lisp_Symbol *sym = sblk->symbols;
5941 struct Lisp_Symbol *end = sym + lim;
5942
5943 for (; sym < end; ++sym)
5944 {
5945 /* Check if the symbol was created during loadup. In such a case
5946 it might be pointed to by pure bytecode which we don't trace,
5947 so we conservatively assume that it is live. */
5948 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5949
5950 if (!sym->gcmarkbit && !pure_p)
5951 {
5952 if (sym->redirect == SYMBOL_LOCALIZED)
5953 xfree (SYMBOL_BLV (sym));
5954 sym->next = symbol_free_list;
5955 symbol_free_list = sym;
5956 #if GC_MARK_STACK
5957 symbol_free_list->function = Vdead;
5958 #endif
5959 ++this_free;
5960 }
5961 else
5962 {
5963 ++num_used;
5964 if (!pure_p)
5965 UNMARK_STRING (XSTRING (sym->xname));
5966 sym->gcmarkbit = 0;
5967 }
5968 }
5969
5970 lim = SYMBOL_BLOCK_SIZE;
5971 /* If this block contains only free symbols and we have already
5972 seen more than two blocks worth of free symbols then deallocate
5973 this block. */
5974 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5975 {
5976 *sprev = sblk->next;
5977 /* Unhook from the free list. */
5978 symbol_free_list = sblk->symbols[0].next;
5979 lisp_free (sblk);
5980 n_symbol_blocks--;
5981 }
5982 else
5983 {
5984 num_free += this_free;
5985 sprev = &sblk->next;
5986 }
5987 }
5988 total_symbols = num_used;
5989 total_free_symbols = num_free;
5990 }
5991
5992 /* Put all unmarked misc's on free list.
5993 For a marker, first unchain it from the buffer it points into. */
5994 {
5995 register struct marker_block *mblk;
5996 struct marker_block **mprev = &marker_block;
5997 register int lim = marker_block_index;
5998 register int num_free = 0, num_used = 0;
5999
6000 marker_free_list = 0;
6001
6002 for (mblk = marker_block; mblk; mblk = *mprev)
6003 {
6004 register int i;
6005 int this_free = 0;
6006
6007 for (i = 0; i < lim; i++)
6008 {
6009 if (!mblk->markers[i].u_any.gcmarkbit)
6010 {
6011 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6012 unchain_marker (&mblk->markers[i].u_marker);
6013 /* Set the type of the freed object to Lisp_Misc_Free.
6014 We could leave the type alone, since nobody checks it,
6015 but this might catch bugs faster. */
6016 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6017 mblk->markers[i].u_free.chain = marker_free_list;
6018 marker_free_list = &mblk->markers[i];
6019 this_free++;
6020 }
6021 else
6022 {
6023 num_used++;
6024 mblk->markers[i].u_any.gcmarkbit = 0;
6025 }
6026 }
6027 lim = MARKER_BLOCK_SIZE;
6028 /* If this block contains only free markers and we have already
6029 seen more than two blocks worth of free markers then deallocate
6030 this block. */
6031 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6032 {
6033 *mprev = mblk->next;
6034 /* Unhook from the free list. */
6035 marker_free_list = mblk->markers[0].u_free.chain;
6036 lisp_free (mblk);
6037 n_marker_blocks--;
6038 }
6039 else
6040 {
6041 num_free += this_free;
6042 mprev = &mblk->next;
6043 }
6044 }
6045
6046 total_markers = num_used;
6047 total_free_markers = num_free;
6048 }
6049
6050 /* Free all unmarked buffers */
6051 {
6052 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6053
6054 while (buffer)
6055 if (!VECTOR_MARKED_P (buffer))
6056 {
6057 if (prev)
6058 prev->next = buffer->next;
6059 else
6060 all_buffers = buffer->next;
6061 next = buffer->next;
6062 lisp_free (buffer);
6063 buffer = next;
6064 }
6065 else
6066 {
6067 VECTOR_UNMARK (buffer);
6068 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6069 prev = buffer, buffer = buffer->next;
6070 }
6071 }
6072
6073 /* Free all unmarked vectors */
6074 {
6075 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6076 total_vector_size = 0;
6077
6078 while (vector)
6079 if (!VECTOR_MARKED_P (vector))
6080 {
6081 if (prev)
6082 prev->next = vector->next;
6083 else
6084 all_vectors = vector->next;
6085 next = vector->next;
6086 lisp_free (vector);
6087 n_vectors--;
6088 vector = next;
6089
6090 }
6091 else
6092 {
6093 VECTOR_UNMARK (vector);
6094 if (vector->size & PSEUDOVECTOR_FLAG)
6095 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6096 else
6097 total_vector_size += vector->size;
6098 prev = vector, vector = vector->next;
6099 }
6100 }
6101
6102 #ifdef GC_CHECK_STRING_BYTES
6103 if (!noninteractive)
6104 check_string_bytes (1);
6105 #endif
6106 }
6107
6108
6109
6110 \f
6111 /* Debugging aids. */
6112
6113 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6114 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6115 This may be helpful in debugging Emacs's memory usage.
6116 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6117 (void)
6118 {
6119 Lisp_Object end;
6120
6121 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6122
6123 return end;
6124 }
6125
6126 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6127 doc: /* Return a list of counters that measure how much consing there has been.
6128 Each of these counters increments for a certain kind of object.
6129 The counters wrap around from the largest positive integer to zero.
6130 Garbage collection does not decrease them.
6131 The elements of the value are as follows:
6132 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6133 All are in units of 1 = one object consed
6134 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6135 objects consed.
6136 MISCS include overlays, markers, and some internal types.
6137 Frames, windows, buffers, and subprocesses count as vectors
6138 (but the contents of a buffer's text do not count here). */)
6139 (void)
6140 {
6141 Lisp_Object consed[8];
6142
6143 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6144 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6145 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6146 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6147 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6148 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6149 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6150 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6151
6152 return Flist (8, consed);
6153 }
6154
6155 int suppress_checking;
6156
6157 void
6158 die (const char *msg, const char *file, int line)
6159 {
6160 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6161 file, line, msg);
6162 abort ();
6163 }
6164 \f
6165 /* Initialization */
6166
6167 void
6168 init_alloc_once (void)
6169 {
6170 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6171 purebeg = PUREBEG;
6172 pure_size = PURESIZE;
6173 pure_bytes_used = 0;
6174 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6175 pure_bytes_used_before_overflow = 0;
6176
6177 /* Initialize the list of free aligned blocks. */
6178 free_ablock = NULL;
6179
6180 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6181 mem_init ();
6182 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6183 #endif
6184
6185 all_vectors = 0;
6186 ignore_warnings = 1;
6187 #ifdef DOUG_LEA_MALLOC
6188 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6189 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6190 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6191 #endif
6192 init_strings ();
6193 init_cons ();
6194 init_symbol ();
6195 init_marker ();
6196 init_float ();
6197 init_intervals ();
6198 init_weak_hash_tables ();
6199
6200 #ifdef REL_ALLOC
6201 malloc_hysteresis = 32;
6202 #else
6203 malloc_hysteresis = 0;
6204 #endif
6205
6206 refill_memory_reserve ();
6207
6208 ignore_warnings = 0;
6209 gcprolist = 0;
6210 byte_stack_list = 0;
6211 staticidx = 0;
6212 consing_since_gc = 0;
6213 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6214 gc_relative_threshold = 0;
6215 }
6216
6217 void
6218 init_alloc (void)
6219 {
6220 gcprolist = 0;
6221 byte_stack_list = 0;
6222 #if GC_MARK_STACK
6223 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6224 setjmp_tested_p = longjmps_done = 0;
6225 #endif
6226 #endif
6227 Vgc_elapsed = make_float (0.0);
6228 gcs_done = 0;
6229 }
6230
6231 void
6232 syms_of_alloc (void)
6233 {
6234 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6235 doc: /* *Number of bytes of consing between garbage collections.
6236 Garbage collection can happen automatically once this many bytes have been
6237 allocated since the last garbage collection. All data types count.
6238
6239 Garbage collection happens automatically only when `eval' is called.
6240
6241 By binding this temporarily to a large number, you can effectively
6242 prevent garbage collection during a part of the program.
6243 See also `gc-cons-percentage'. */);
6244
6245 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6246 doc: /* *Portion of the heap used for allocation.
6247 Garbage collection can happen automatically once this portion of the heap
6248 has been allocated since the last garbage collection.
6249 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6250 Vgc_cons_percentage = make_float (0.1);
6251
6252 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6253 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6254
6255 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6256 doc: /* Number of cons cells that have been consed so far. */);
6257
6258 DEFVAR_INT ("floats-consed", floats_consed,
6259 doc: /* Number of floats that have been consed so far. */);
6260
6261 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6262 doc: /* Number of vector cells that have been consed so far. */);
6263
6264 DEFVAR_INT ("symbols-consed", symbols_consed,
6265 doc: /* Number of symbols that have been consed so far. */);
6266
6267 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6268 doc: /* Number of string characters that have been consed so far. */);
6269
6270 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6271 doc: /* Number of miscellaneous objects that have been consed so far. */);
6272
6273 DEFVAR_INT ("intervals-consed", intervals_consed,
6274 doc: /* Number of intervals that have been consed so far. */);
6275
6276 DEFVAR_INT ("strings-consed", strings_consed,
6277 doc: /* Number of strings that have been consed so far. */);
6278
6279 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6280 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6281 This means that certain objects should be allocated in shared (pure) space.
6282 It can also be set to a hash-table, in which case this table is used to
6283 do hash-consing of the objects allocated to pure space. */);
6284
6285 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6286 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6287 garbage_collection_messages = 0;
6288
6289 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6290 doc: /* Hook run after garbage collection has finished. */);
6291 Vpost_gc_hook = Qnil;
6292 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6293 staticpro (&Qpost_gc_hook);
6294
6295 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6296 doc: /* Precomputed `signal' argument for memory-full error. */);
6297 /* We build this in advance because if we wait until we need it, we might
6298 not be able to allocate the memory to hold it. */
6299 Vmemory_signal_data
6300 = pure_cons (Qerror,
6301 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6302
6303 DEFVAR_LISP ("memory-full", Vmemory_full,
6304 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6305 Vmemory_full = Qnil;
6306
6307 staticpro (&Qgc_cons_threshold);
6308 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6309
6310 staticpro (&Qchar_table_extra_slots);
6311 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6312
6313 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6314 doc: /* Accumulated time elapsed in garbage collections.
6315 The time is in seconds as a floating point value. */);
6316 DEFVAR_INT ("gcs-done", gcs_done,
6317 doc: /* Accumulated number of garbage collections done. */);
6318
6319 defsubr (&Scons);
6320 defsubr (&Slist);
6321 defsubr (&Svector);
6322 defsubr (&Sfunvec);
6323 defsubr (&Smake_byte_code);
6324 defsubr (&Smake_list);
6325 defsubr (&Smake_vector);
6326 defsubr (&Smake_string);
6327 defsubr (&Smake_bool_vector);
6328 defsubr (&Smake_symbol);
6329 defsubr (&Smake_marker);
6330 defsubr (&Spurecopy);
6331 defsubr (&Sgarbage_collect);
6332 defsubr (&Smemory_limit);
6333 defsubr (&Smemory_use_counts);
6334
6335 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6336 defsubr (&Sgc_status);
6337 #endif
6338 }