Variadic C functions now count arguments with size_t, not int.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
10
11 This file is part of GNU Emacs.
12
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
17
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25
26 /*** TABLE OF CONTENTS ***
27
28 0. General comments
29 1. Preamble
30 2. Emacs' internal format (emacs-utf-8) handlers
31 3. UTF-8 handlers
32 4. UTF-16 handlers
33 5. Charset-base coding systems handlers
34 6. emacs-mule (old Emacs' internal format) handlers
35 7. ISO2022 handlers
36 8. Shift-JIS and BIG5 handlers
37 9. CCL handlers
38 10. C library functions
39 11. Emacs Lisp library functions
40 12. Postamble
41
42 */
43
44 /*** 0. General comments ***
45
46
47 CODING SYSTEM
48
49 A coding system is an object for an encoding mechanism that contains
50 information about how to convert byte sequences to character
51 sequences and vice versa. When we say "decode", it means converting
52 a byte sequence of a specific coding system into a character
53 sequence that is represented by Emacs' internal coding system
54 `emacs-utf-8', and when we say "encode", it means converting a
55 character sequence of emacs-utf-8 to a byte sequence of a specific
56 coding system.
57
58 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
59 C level, a coding system is represented by a vector of attributes
60 stored in the hash table Vcharset_hash_table. The conversion from
61 coding system symbol to attributes vector is done by looking up
62 Vcharset_hash_table by the symbol.
63
64 Coding systems are classified into the following types depending on
65 the encoding mechanism. Here's a brief description of the types.
66
67 o UTF-8
68
69 o UTF-16
70
71 o Charset-base coding system
72
73 A coding system defined by one or more (coded) character sets.
74 Decoding and encoding are done by a code converter defined for each
75 character set.
76
77 o Old Emacs internal format (emacs-mule)
78
79 The coding system adopted by old versions of Emacs (20 and 21).
80
81 o ISO2022-base coding system
82
83 The most famous coding system for multiple character sets. X's
84 Compound Text, various EUCs (Extended Unix Code), and coding systems
85 used in the Internet communication such as ISO-2022-JP are all
86 variants of ISO2022.
87
88 o SJIS (or Shift-JIS or MS-Kanji-Code)
89
90 A coding system to encode character sets: ASCII, JISX0201, and
91 JISX0208. Widely used for PC's in Japan. Details are described in
92 section 8.
93
94 o BIG5
95
96 A coding system to encode character sets: ASCII and Big5. Widely
97 used for Chinese (mainly in Taiwan and Hong Kong). Details are
98 described in section 8. In this file, when we write "big5" (all
99 lowercase), we mean the coding system, and when we write "Big5"
100 (capitalized), we mean the character set.
101
102 o CCL
103
104 If a user wants to decode/encode text encoded in a coding system
105 not listed above, he can supply a decoder and an encoder for it in
106 CCL (Code Conversion Language) programs. Emacs executes the CCL
107 program while decoding/encoding.
108
109 o Raw-text
110
111 A coding system for text containing raw eight-bit data. Emacs
112 treats each byte of source text as a character (except for
113 end-of-line conversion).
114
115 o No-conversion
116
117 Like raw text, but don't do end-of-line conversion.
118
119
120 END-OF-LINE FORMAT
121
122 How text end-of-line is encoded depends on operating system. For
123 instance, Unix's format is just one byte of LF (line-feed) code,
124 whereas DOS's format is two-byte sequence of `carriage-return' and
125 `line-feed' codes. MacOS's format is usually one byte of
126 `carriage-return'.
127
128 Since text character encoding and end-of-line encoding are
129 independent, any coding system described above can take any format
130 of end-of-line (except for no-conversion).
131
132 STRUCT CODING_SYSTEM
133
134 Before using a coding system for code conversion (i.e. decoding and
135 encoding), we setup a structure of type `struct coding_system'.
136 This structure keeps various information about a specific code
137 conversion (e.g. the location of source and destination data).
138
139 */
140
141 /* COMMON MACROS */
142
143
144 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
145
146 These functions check if a byte sequence specified as a source in
147 CODING conforms to the format of XXX, and update the members of
148 DETECT_INFO.
149
150 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
151
152 Below is the template of these functions. */
153
154 #if 0
155 static int
156 detect_coding_XXX (struct coding_system *coding,
157 struct coding_detection_info *detect_info)
158 {
159 const unsigned char *src = coding->source;
160 const unsigned char *src_end = coding->source + coding->src_bytes;
161 int multibytep = coding->src_multibyte;
162 int consumed_chars = 0;
163 int found = 0;
164 ...;
165
166 while (1)
167 {
168 /* Get one byte from the source. If the source is exhausted, jump
169 to no_more_source:. */
170 ONE_MORE_BYTE (c);
171
172 if (! __C_conforms_to_XXX___ (c))
173 break;
174 if (! __C_strongly_suggests_XXX__ (c))
175 found = CATEGORY_MASK_XXX;
176 }
177 /* The byte sequence is invalid for XXX. */
178 detect_info->rejected |= CATEGORY_MASK_XXX;
179 return 0;
180
181 no_more_source:
182 /* The source exhausted successfully. */
183 detect_info->found |= found;
184 return 1;
185 }
186 #endif
187
188 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
189
190 These functions decode a byte sequence specified as a source by
191 CODING. The resulting multibyte text goes to a place pointed to by
192 CODING->charbuf, the length of which should not exceed
193 CODING->charbuf_size;
194
195 These functions set the information of original and decoded texts in
196 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
197 They also set CODING->result to one of CODING_RESULT_XXX indicating
198 how the decoding is finished.
199
200 Below is the template of these functions. */
201
202 #if 0
203 static void
204 decode_coding_XXXX (struct coding_system *coding)
205 {
206 const unsigned char *src = coding->source + coding->consumed;
207 const unsigned char *src_end = coding->source + coding->src_bytes;
208 /* SRC_BASE remembers the start position in source in each loop.
209 The loop will be exited when there's not enough source code, or
210 when there's no room in CHARBUF for a decoded character. */
211 const unsigned char *src_base;
212 /* A buffer to produce decoded characters. */
213 int *charbuf = coding->charbuf + coding->charbuf_used;
214 int *charbuf_end = coding->charbuf + coding->charbuf_size;
215 int multibytep = coding->src_multibyte;
216
217 while (1)
218 {
219 src_base = src;
220 if (charbuf < charbuf_end)
221 /* No more room to produce a decoded character. */
222 break;
223 ONE_MORE_BYTE (c);
224 /* Decode it. */
225 }
226
227 no_more_source:
228 if (src_base < src_end
229 && coding->mode & CODING_MODE_LAST_BLOCK)
230 /* If the source ends by partial bytes to construct a character,
231 treat them as eight-bit raw data. */
232 while (src_base < src_end && charbuf < charbuf_end)
233 *charbuf++ = *src_base++;
234 /* Remember how many bytes and characters we consumed. If the
235 source is multibyte, the bytes and chars are not identical. */
236 coding->consumed = coding->consumed_char = src_base - coding->source;
237 /* Remember how many characters we produced. */
238 coding->charbuf_used = charbuf - coding->charbuf;
239 }
240 #endif
241
242 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
243
244 These functions encode SRC_BYTES length text at SOURCE of Emacs'
245 internal multibyte format by CODING. The resulting byte sequence
246 goes to a place pointed to by DESTINATION, the length of which
247 should not exceed DST_BYTES.
248
249 These functions set the information of original and encoded texts in
250 the members produced, produced_char, consumed, and consumed_char of
251 the structure *CODING. They also set the member result to one of
252 CODING_RESULT_XXX indicating how the encoding finished.
253
254 DST_BYTES zero means that source area and destination area are
255 overlapped, which means that we can produce a encoded text until it
256 reaches at the head of not-yet-encoded source text.
257
258 Below is a template of these functions. */
259 #if 0
260 static void
261 encode_coding_XXX (struct coding_system *coding)
262 {
263 int multibytep = coding->dst_multibyte;
264 int *charbuf = coding->charbuf;
265 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
266 unsigned char *dst = coding->destination + coding->produced;
267 unsigned char *dst_end = coding->destination + coding->dst_bytes;
268 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
269 int produced_chars = 0;
270
271 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
272 {
273 int c = *charbuf;
274 /* Encode C into DST, and increment DST. */
275 }
276 label_no_more_destination:
277 /* How many chars and bytes we produced. */
278 coding->produced_char += produced_chars;
279 coding->produced = dst - coding->destination;
280 }
281 #endif
282
283 \f
284 /*** 1. Preamble ***/
285
286 #include <config.h>
287 #include <stdio.h>
288 #include <setjmp.h>
289
290 #include "lisp.h"
291 #include "buffer.h"
292 #include "character.h"
293 #include "charset.h"
294 #include "ccl.h"
295 #include "composite.h"
296 #include "coding.h"
297 #include "window.h"
298 #include "frame.h"
299 #include "termhooks.h"
300
301 Lisp_Object Vcoding_system_hash_table;
302
303 Lisp_Object Qcoding_system, Qcoding_aliases, Qeol_type;
304 Lisp_Object Qunix, Qdos;
305 Lisp_Object Qbuffer_file_coding_system;
306 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
307 Lisp_Object Qdefault_char;
308 Lisp_Object Qno_conversion, Qundecided;
309 Lisp_Object Qcharset, Qiso_2022, Qutf_8, Qutf_16, Qshift_jis, Qbig5;
310 Lisp_Object Qbig, Qlittle;
311 Lisp_Object Qcoding_system_history;
312 Lisp_Object Qvalid_codes;
313 Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
314 Lisp_Object QCdecode_translation_table, QCencode_translation_table;
315 Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
316 Lisp_Object QCascii_compatible_p;
317
318 Lisp_Object Qcall_process, Qcall_process_region;
319 Lisp_Object Qstart_process, Qopen_network_stream;
320 Lisp_Object Qtarget_idx;
321
322 Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
323 Lisp_Object Qinterrupted, Qinsufficient_memory;
324
325 /* If a symbol has this property, evaluate the value to define the
326 symbol as a coding system. */
327 static Lisp_Object Qcoding_system_define_form;
328
329 /* Format of end-of-line decided by system. This is Qunix on
330 Unix and Mac, Qdos on DOS/Windows.
331 This has an effect only for external encoding (i.e. for output to
332 file and process), not for in-buffer or Lisp string encoding. */
333 static Lisp_Object system_eol_type;
334
335 #ifdef emacs
336
337 Lisp_Object Qcoding_system_p, Qcoding_system_error;
338
339 /* Coding system emacs-mule and raw-text are for converting only
340 end-of-line format. */
341 Lisp_Object Qemacs_mule, Qraw_text;
342 Lisp_Object Qutf_8_emacs;
343
344 /* Coding-systems are handed between Emacs Lisp programs and C internal
345 routines by the following three variables. */
346 /* Coding system to be used to encode text for terminal display when
347 terminal coding system is nil. */
348 struct coding_system safe_terminal_coding;
349
350 #endif /* emacs */
351
352 Lisp_Object Qtranslation_table;
353 Lisp_Object Qtranslation_table_id;
354 Lisp_Object Qtranslation_table_for_decode;
355 Lisp_Object Qtranslation_table_for_encode;
356
357 /* Two special coding systems. */
358 Lisp_Object Vsjis_coding_system;
359 Lisp_Object Vbig5_coding_system;
360
361 /* ISO2022 section */
362
363 #define CODING_ISO_INITIAL(coding, reg) \
364 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
365 coding_attr_iso_initial), \
366 reg)))
367
368
369 #define CODING_ISO_REQUEST(coding, charset_id) \
370 (((charset_id) <= (coding)->max_charset_id \
371 ? ((coding)->safe_charsets[charset_id] != 255 \
372 ? (coding)->safe_charsets[charset_id] \
373 : -1) \
374 : -1))
375
376
377 #define CODING_ISO_FLAGS(coding) \
378 ((coding)->spec.iso_2022.flags)
379 #define CODING_ISO_DESIGNATION(coding, reg) \
380 ((coding)->spec.iso_2022.current_designation[reg])
381 #define CODING_ISO_INVOCATION(coding, plane) \
382 ((coding)->spec.iso_2022.current_invocation[plane])
383 #define CODING_ISO_SINGLE_SHIFTING(coding) \
384 ((coding)->spec.iso_2022.single_shifting)
385 #define CODING_ISO_BOL(coding) \
386 ((coding)->spec.iso_2022.bol)
387 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
388 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
389 #define CODING_ISO_CMP_STATUS(coding) \
390 (&(coding)->spec.iso_2022.cmp_status)
391 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
392 ((coding)->spec.iso_2022.ctext_extended_segment_len)
393 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
394 ((coding)->spec.iso_2022.embedded_utf_8)
395
396 /* Control characters of ISO2022. */
397 /* code */ /* function */
398 #define ISO_CODE_SO 0x0E /* shift-out */
399 #define ISO_CODE_SI 0x0F /* shift-in */
400 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
401 #define ISO_CODE_ESC 0x1B /* escape */
402 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
403 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
404 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
405
406 /* All code (1-byte) of ISO2022 is classified into one of the
407 followings. */
408 enum iso_code_class_type
409 {
410 ISO_control_0, /* Control codes in the range
411 0x00..0x1F and 0x7F, except for the
412 following 5 codes. */
413 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
414 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
415 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
416 ISO_escape, /* ISO_CODE_SO (0x1B) */
417 ISO_control_1, /* Control codes in the range
418 0x80..0x9F, except for the
419 following 3 codes. */
420 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
421 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
422 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
423 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
424 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
425 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
426 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
427 };
428
429 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
430 `iso-flags' attribute of an iso2022 coding system. */
431
432 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
433 instead of the correct short-form sequence (e.g. ESC $ A). */
434 #define CODING_ISO_FLAG_LONG_FORM 0x0001
435
436 /* If set, reset graphic planes and registers at end-of-line to the
437 initial state. */
438 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
439
440 /* If set, reset graphic planes and registers before any control
441 characters to the initial state. */
442 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
443
444 /* If set, encode by 7-bit environment. */
445 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
446
447 /* If set, use locking-shift function. */
448 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
449
450 /* If set, use single-shift function. Overwrite
451 CODING_ISO_FLAG_LOCKING_SHIFT. */
452 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
453
454 /* If set, use designation escape sequence. */
455 #define CODING_ISO_FLAG_DESIGNATION 0x0040
456
457 /* If set, produce revision number sequence. */
458 #define CODING_ISO_FLAG_REVISION 0x0080
459
460 /* If set, produce ISO6429's direction specifying sequence. */
461 #define CODING_ISO_FLAG_DIRECTION 0x0100
462
463 /* If set, assume designation states are reset at beginning of line on
464 output. */
465 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
466
467 /* If set, designation sequence should be placed at beginning of line
468 on output. */
469 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
470
471 /* If set, do not encode unsafe characters on output. */
472 #define CODING_ISO_FLAG_SAFE 0x0800
473
474 /* If set, extra latin codes (128..159) are accepted as a valid code
475 on input. */
476 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
477
478 #define CODING_ISO_FLAG_COMPOSITION 0x2000
479
480 /* #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000 */
481
482 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
483
484 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
485
486 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
487
488 /* A character to be produced on output if encoding of the original
489 character is prohibited by CODING_ISO_FLAG_SAFE. */
490 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
491
492 /* UTF-8 section */
493 #define CODING_UTF_8_BOM(coding) \
494 ((coding)->spec.utf_8_bom)
495
496 /* UTF-16 section */
497 #define CODING_UTF_16_BOM(coding) \
498 ((coding)->spec.utf_16.bom)
499
500 #define CODING_UTF_16_ENDIAN(coding) \
501 ((coding)->spec.utf_16.endian)
502
503 #define CODING_UTF_16_SURROGATE(coding) \
504 ((coding)->spec.utf_16.surrogate)
505
506
507 /* CCL section */
508 #define CODING_CCL_DECODER(coding) \
509 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
510 #define CODING_CCL_ENCODER(coding) \
511 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
512 #define CODING_CCL_VALIDS(coding) \
513 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
514
515 /* Index for each coding category in `coding_categories' */
516
517 enum coding_category
518 {
519 coding_category_iso_7,
520 coding_category_iso_7_tight,
521 coding_category_iso_8_1,
522 coding_category_iso_8_2,
523 coding_category_iso_7_else,
524 coding_category_iso_8_else,
525 coding_category_utf_8_auto,
526 coding_category_utf_8_nosig,
527 coding_category_utf_8_sig,
528 coding_category_utf_16_auto,
529 coding_category_utf_16_be,
530 coding_category_utf_16_le,
531 coding_category_utf_16_be_nosig,
532 coding_category_utf_16_le_nosig,
533 coding_category_charset,
534 coding_category_sjis,
535 coding_category_big5,
536 coding_category_ccl,
537 coding_category_emacs_mule,
538 /* All above are targets of code detection. */
539 coding_category_raw_text,
540 coding_category_undecided,
541 coding_category_max
542 };
543
544 /* Definitions of flag bits used in detect_coding_XXXX. */
545 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
546 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
547 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
548 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
549 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
550 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
551 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
552 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
553 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
554 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
555 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
556 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
557 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
558 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
559 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
560 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
561 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
562 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
563 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
564 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
565
566 /* This value is returned if detect_coding_mask () find nothing other
567 than ASCII characters. */
568 #define CATEGORY_MASK_ANY \
569 (CATEGORY_MASK_ISO_7 \
570 | CATEGORY_MASK_ISO_7_TIGHT \
571 | CATEGORY_MASK_ISO_8_1 \
572 | CATEGORY_MASK_ISO_8_2 \
573 | CATEGORY_MASK_ISO_7_ELSE \
574 | CATEGORY_MASK_ISO_8_ELSE \
575 | CATEGORY_MASK_UTF_8_AUTO \
576 | CATEGORY_MASK_UTF_8_NOSIG \
577 | CATEGORY_MASK_UTF_8_SIG \
578 | CATEGORY_MASK_UTF_16_AUTO \
579 | CATEGORY_MASK_UTF_16_BE \
580 | CATEGORY_MASK_UTF_16_LE \
581 | CATEGORY_MASK_UTF_16_BE_NOSIG \
582 | CATEGORY_MASK_UTF_16_LE_NOSIG \
583 | CATEGORY_MASK_CHARSET \
584 | CATEGORY_MASK_SJIS \
585 | CATEGORY_MASK_BIG5 \
586 | CATEGORY_MASK_CCL \
587 | CATEGORY_MASK_EMACS_MULE)
588
589
590 #define CATEGORY_MASK_ISO_7BIT \
591 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
592
593 #define CATEGORY_MASK_ISO_8BIT \
594 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
595
596 #define CATEGORY_MASK_ISO_ELSE \
597 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
598
599 #define CATEGORY_MASK_ISO_ESCAPE \
600 (CATEGORY_MASK_ISO_7 \
601 | CATEGORY_MASK_ISO_7_TIGHT \
602 | CATEGORY_MASK_ISO_7_ELSE \
603 | CATEGORY_MASK_ISO_8_ELSE)
604
605 #define CATEGORY_MASK_ISO \
606 ( CATEGORY_MASK_ISO_7BIT \
607 | CATEGORY_MASK_ISO_8BIT \
608 | CATEGORY_MASK_ISO_ELSE)
609
610 #define CATEGORY_MASK_UTF_16 \
611 (CATEGORY_MASK_UTF_16_AUTO \
612 | CATEGORY_MASK_UTF_16_BE \
613 | CATEGORY_MASK_UTF_16_LE \
614 | CATEGORY_MASK_UTF_16_BE_NOSIG \
615 | CATEGORY_MASK_UTF_16_LE_NOSIG)
616
617 #define CATEGORY_MASK_UTF_8 \
618 (CATEGORY_MASK_UTF_8_AUTO \
619 | CATEGORY_MASK_UTF_8_NOSIG \
620 | CATEGORY_MASK_UTF_8_SIG)
621
622 /* Table of coding categories (Lisp symbols). This variable is for
623 internal use only. */
624 static Lisp_Object Vcoding_category_table;
625
626 /* Table of coding-categories ordered by priority. */
627 static enum coding_category coding_priorities[coding_category_max];
628
629 /* Nth element is a coding context for the coding system bound to the
630 Nth coding category. */
631 static struct coding_system coding_categories[coding_category_max];
632
633 /*** Commonly used macros and functions ***/
634
635 #ifndef min
636 #define min(a, b) ((a) < (b) ? (a) : (b))
637 #endif
638 #ifndef max
639 #define max(a, b) ((a) > (b) ? (a) : (b))
640 #endif
641
642 #define CODING_GET_INFO(coding, attrs, charset_list) \
643 do { \
644 (attrs) = CODING_ID_ATTRS ((coding)->id); \
645 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
646 } while (0)
647
648
649 /* Safely get one byte from the source text pointed by SRC which ends
650 at SRC_END, and set C to that byte. If there are not enough bytes
651 in the source, it jumps to `no_more_source'. If multibytep is
652 nonzero, and a multibyte character is found at SRC, set C to the
653 negative value of the character code. The caller should declare
654 and set these variables appropriately in advance:
655 src, src_end, multibytep */
656
657 #define ONE_MORE_BYTE(c) \
658 do { \
659 if (src == src_end) \
660 { \
661 if (src_base < src) \
662 record_conversion_result \
663 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
664 goto no_more_source; \
665 } \
666 c = *src++; \
667 if (multibytep && (c & 0x80)) \
668 { \
669 if ((c & 0xFE) == 0xC0) \
670 c = ((c & 1) << 6) | *src++; \
671 else \
672 { \
673 src--; \
674 c = - string_char (src, &src, NULL); \
675 record_conversion_result \
676 (coding, CODING_RESULT_INVALID_SRC); \
677 } \
678 } \
679 consumed_chars++; \
680 } while (0)
681
682 /* Safely get two bytes from the source text pointed by SRC which ends
683 at SRC_END, and set C1 and C2 to those bytes while skipping the
684 heading multibyte characters. If there are not enough bytes in the
685 source, it jumps to `no_more_source'. If multibytep is nonzero and
686 a multibyte character is found for C2, set C2 to the negative value
687 of the character code. The caller should declare and set these
688 variables appropriately in advance:
689 src, src_end, multibytep
690 It is intended that this macro is used in detect_coding_utf_16. */
691
692 #define TWO_MORE_BYTES(c1, c2) \
693 do { \
694 do { \
695 if (src == src_end) \
696 goto no_more_source; \
697 c1 = *src++; \
698 if (multibytep && (c1 & 0x80)) \
699 { \
700 if ((c1 & 0xFE) == 0xC0) \
701 c1 = ((c1 & 1) << 6) | *src++; \
702 else \
703 { \
704 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
705 c1 = -1; \
706 } \
707 } \
708 } while (c1 < 0); \
709 if (src == src_end) \
710 goto no_more_source; \
711 c2 = *src++; \
712 if (multibytep && (c2 & 0x80)) \
713 { \
714 if ((c2 & 0xFE) == 0xC0) \
715 c2 = ((c2 & 1) << 6) | *src++; \
716 else \
717 c2 = -1; \
718 } \
719 } while (0)
720
721
722 /* Store a byte C in the place pointed by DST and increment DST to the
723 next free point, and increment PRODUCED_CHARS. The caller should
724 assure that C is 0..127, and declare and set the variable `dst'
725 appropriately in advance.
726 */
727
728
729 #define EMIT_ONE_ASCII_BYTE(c) \
730 do { \
731 produced_chars++; \
732 *dst++ = (c); \
733 } while (0)
734
735
736 /* Like EMIT_ONE_ASCII_BYTE but store two bytes; C1 and C2. */
737
738 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
739 do { \
740 produced_chars += 2; \
741 *dst++ = (c1), *dst++ = (c2); \
742 } while (0)
743
744
745 /* Store a byte C in the place pointed by DST and increment DST to the
746 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
747 nonzero, store in an appropriate multibyte from. The caller should
748 declare and set the variables `dst' and `multibytep' appropriately
749 in advance. */
750
751 #define EMIT_ONE_BYTE(c) \
752 do { \
753 produced_chars++; \
754 if (multibytep) \
755 { \
756 int ch = (c); \
757 if (ch >= 0x80) \
758 ch = BYTE8_TO_CHAR (ch); \
759 CHAR_STRING_ADVANCE (ch, dst); \
760 } \
761 else \
762 *dst++ = (c); \
763 } while (0)
764
765
766 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
767
768 #define EMIT_TWO_BYTES(c1, c2) \
769 do { \
770 produced_chars += 2; \
771 if (multibytep) \
772 { \
773 int ch; \
774 \
775 ch = (c1); \
776 if (ch >= 0x80) \
777 ch = BYTE8_TO_CHAR (ch); \
778 CHAR_STRING_ADVANCE (ch, dst); \
779 ch = (c2); \
780 if (ch >= 0x80) \
781 ch = BYTE8_TO_CHAR (ch); \
782 CHAR_STRING_ADVANCE (ch, dst); \
783 } \
784 else \
785 { \
786 *dst++ = (c1); \
787 *dst++ = (c2); \
788 } \
789 } while (0)
790
791
792 #define EMIT_THREE_BYTES(c1, c2, c3) \
793 do { \
794 EMIT_ONE_BYTE (c1); \
795 EMIT_TWO_BYTES (c2, c3); \
796 } while (0)
797
798
799 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
800 do { \
801 EMIT_TWO_BYTES (c1, c2); \
802 EMIT_TWO_BYTES (c3, c4); \
803 } while (0)
804
805
806 /* Prototypes for static functions. */
807 static void record_conversion_result (struct coding_system *coding,
808 enum coding_result_code result);
809 static int detect_coding_utf_8 (struct coding_system *,
810 struct coding_detection_info *info);
811 static void decode_coding_utf_8 (struct coding_system *);
812 static int encode_coding_utf_8 (struct coding_system *);
813
814 static int detect_coding_utf_16 (struct coding_system *,
815 struct coding_detection_info *info);
816 static void decode_coding_utf_16 (struct coding_system *);
817 static int encode_coding_utf_16 (struct coding_system *);
818
819 static int detect_coding_iso_2022 (struct coding_system *,
820 struct coding_detection_info *info);
821 static void decode_coding_iso_2022 (struct coding_system *);
822 static int encode_coding_iso_2022 (struct coding_system *);
823
824 static int detect_coding_emacs_mule (struct coding_system *,
825 struct coding_detection_info *info);
826 static void decode_coding_emacs_mule (struct coding_system *);
827 static int encode_coding_emacs_mule (struct coding_system *);
828
829 static int detect_coding_sjis (struct coding_system *,
830 struct coding_detection_info *info);
831 static void decode_coding_sjis (struct coding_system *);
832 static int encode_coding_sjis (struct coding_system *);
833
834 static int detect_coding_big5 (struct coding_system *,
835 struct coding_detection_info *info);
836 static void decode_coding_big5 (struct coding_system *);
837 static int encode_coding_big5 (struct coding_system *);
838
839 static int detect_coding_ccl (struct coding_system *,
840 struct coding_detection_info *info);
841 static void decode_coding_ccl (struct coding_system *);
842 static int encode_coding_ccl (struct coding_system *);
843
844 static void decode_coding_raw_text (struct coding_system *);
845 static int encode_coding_raw_text (struct coding_system *);
846
847 static void coding_set_source (struct coding_system *);
848 static void coding_set_destination (struct coding_system *);
849 static void coding_alloc_by_realloc (struct coding_system *, EMACS_INT);
850 static void coding_alloc_by_making_gap (struct coding_system *,
851 EMACS_INT, EMACS_INT);
852 static unsigned char *alloc_destination (struct coding_system *,
853 EMACS_INT, unsigned char *);
854 static void setup_iso_safe_charsets (Lisp_Object);
855 static unsigned char *encode_designation_at_bol (struct coding_system *,
856 int *, int *,
857 unsigned char *);
858 static int detect_eol (const unsigned char *,
859 EMACS_INT, enum coding_category);
860 static Lisp_Object adjust_coding_eol_type (struct coding_system *, int);
861 static void decode_eol (struct coding_system *);
862 static Lisp_Object get_translation_table (Lisp_Object, int, int *);
863 static Lisp_Object get_translation (Lisp_Object, int *, int *);
864 static int produce_chars (struct coding_system *, Lisp_Object, int);
865 static INLINE void produce_charset (struct coding_system *, int *,
866 EMACS_INT);
867 static void produce_annotation (struct coding_system *, EMACS_INT);
868 static int decode_coding (struct coding_system *);
869 static INLINE int *handle_composition_annotation (EMACS_INT, EMACS_INT,
870 struct coding_system *,
871 int *, EMACS_INT *);
872 static INLINE int *handle_charset_annotation (EMACS_INT, EMACS_INT,
873 struct coding_system *,
874 int *, EMACS_INT *);
875 static void consume_chars (struct coding_system *, Lisp_Object, int);
876 static int encode_coding (struct coding_system *);
877 static Lisp_Object make_conversion_work_buffer (int);
878 static Lisp_Object code_conversion_restore (Lisp_Object);
879 static INLINE int char_encodable_p (int, Lisp_Object);
880 static Lisp_Object make_subsidiaries (Lisp_Object);
881
882 static void
883 record_conversion_result (struct coding_system *coding,
884 enum coding_result_code result)
885 {
886 coding->result = result;
887 switch (result)
888 {
889 case CODING_RESULT_INSUFFICIENT_SRC:
890 Vlast_code_conversion_error = Qinsufficient_source;
891 break;
892 case CODING_RESULT_INCONSISTENT_EOL:
893 Vlast_code_conversion_error = Qinconsistent_eol;
894 break;
895 case CODING_RESULT_INVALID_SRC:
896 Vlast_code_conversion_error = Qinvalid_source;
897 break;
898 case CODING_RESULT_INTERRUPT:
899 Vlast_code_conversion_error = Qinterrupted;
900 break;
901 case CODING_RESULT_INSUFFICIENT_MEM:
902 Vlast_code_conversion_error = Qinsufficient_memory;
903 break;
904 case CODING_RESULT_INSUFFICIENT_DST:
905 /* Don't record this error in Vlast_code_conversion_error
906 because it happens just temporarily and is resolved when the
907 whole conversion is finished. */
908 break;
909 case CODING_RESULT_SUCCESS:
910 break;
911 default:
912 Vlast_code_conversion_error = intern ("Unknown error");
913 }
914 }
915
916 /* This wrapper macro is used to preserve validity of pointers into
917 buffer text across calls to decode_char, which could cause
918 relocation of buffers if it loads a charset map, because loading a
919 charset map allocates large structures. */
920 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
921 do { \
922 charset_map_loaded = 0; \
923 c = DECODE_CHAR (charset, code); \
924 if (charset_map_loaded) \
925 { \
926 const unsigned char *orig = coding->source; \
927 EMACS_INT offset; \
928 \
929 coding_set_source (coding); \
930 offset = coding->source - orig; \
931 src += offset; \
932 src_base += offset; \
933 src_end += offset; \
934 } \
935 } while (0)
936
937
938 /* If there are at least BYTES length of room at dst, allocate memory
939 for coding->destination and update dst and dst_end. We don't have
940 to take care of coding->source which will be relocated. It is
941 handled by calling coding_set_source in encode_coding. */
942
943 #define ASSURE_DESTINATION(bytes) \
944 do { \
945 if (dst + (bytes) >= dst_end) \
946 { \
947 int more_bytes = charbuf_end - charbuf + (bytes); \
948 \
949 dst = alloc_destination (coding, more_bytes, dst); \
950 dst_end = coding->destination + coding->dst_bytes; \
951 } \
952 } while (0)
953
954
955 /* Store multibyte form of the character C in P, and advance P to the
956 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
957 never calls MAYBE_UNIFY_CHAR. */
958
959 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
960 do { \
961 if ((c) <= MAX_1_BYTE_CHAR) \
962 *(p)++ = (c); \
963 else if ((c) <= MAX_2_BYTE_CHAR) \
964 *(p)++ = (0xC0 | ((c) >> 6)), \
965 *(p)++ = (0x80 | ((c) & 0x3F)); \
966 else if ((c) <= MAX_3_BYTE_CHAR) \
967 *(p)++ = (0xE0 | ((c) >> 12)), \
968 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
969 *(p)++ = (0x80 | ((c) & 0x3F)); \
970 else if ((c) <= MAX_4_BYTE_CHAR) \
971 *(p)++ = (0xF0 | (c >> 18)), \
972 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
973 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
974 *(p)++ = (0x80 | (c & 0x3F)); \
975 else if ((c) <= MAX_5_BYTE_CHAR) \
976 *(p)++ = 0xF8, \
977 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
978 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
979 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
980 *(p)++ = (0x80 | (c & 0x3F)); \
981 else \
982 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
983 } while (0)
984
985
986 /* Return the character code of character whose multibyte form is at
987 P, and advance P to the end of the multibyte form. This is like
988 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
989
990 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
991 (!((p)[0] & 0x80) \
992 ? *(p)++ \
993 : ! ((p)[0] & 0x20) \
994 ? ((p) += 2, \
995 ((((p)[-2] & 0x1F) << 6) \
996 | ((p)[-1] & 0x3F) \
997 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
998 : ! ((p)[0] & 0x10) \
999 ? ((p) += 3, \
1000 ((((p)[-3] & 0x0F) << 12) \
1001 | (((p)[-2] & 0x3F) << 6) \
1002 | ((p)[-1] & 0x3F))) \
1003 : ! ((p)[0] & 0x08) \
1004 ? ((p) += 4, \
1005 ((((p)[-4] & 0xF) << 18) \
1006 | (((p)[-3] & 0x3F) << 12) \
1007 | (((p)[-2] & 0x3F) << 6) \
1008 | ((p)[-1] & 0x3F))) \
1009 : ((p) += 5, \
1010 ((((p)[-4] & 0x3F) << 18) \
1011 | (((p)[-3] & 0x3F) << 12) \
1012 | (((p)[-2] & 0x3F) << 6) \
1013 | ((p)[-1] & 0x3F))))
1014
1015
1016 static void
1017 coding_set_source (struct coding_system *coding)
1018 {
1019 if (BUFFERP (coding->src_object))
1020 {
1021 struct buffer *buf = XBUFFER (coding->src_object);
1022
1023 if (coding->src_pos < 0)
1024 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1025 else
1026 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1027 }
1028 else if (STRINGP (coding->src_object))
1029 {
1030 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1031 }
1032 else
1033 {
1034 /* Otherwise, the source is C string and is never relocated
1035 automatically. Thus we don't have to update anything. */
1036 }
1037 }
1038
1039 static void
1040 coding_set_destination (struct coding_system *coding)
1041 {
1042 if (BUFFERP (coding->dst_object))
1043 {
1044 if (coding->src_pos < 0)
1045 {
1046 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1047 coding->dst_bytes = (GAP_END_ADDR
1048 - (coding->src_bytes - coding->consumed)
1049 - coding->destination);
1050 }
1051 else
1052 {
1053 /* We are sure that coding->dst_pos_byte is before the gap
1054 of the buffer. */
1055 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1056 + coding->dst_pos_byte - BEG_BYTE);
1057 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1058 - coding->destination);
1059 }
1060 }
1061 else
1062 {
1063 /* Otherwise, the destination is C string and is never relocated
1064 automatically. Thus we don't have to update anything. */
1065 }
1066 }
1067
1068
1069 static void
1070 coding_alloc_by_realloc (struct coding_system *coding, EMACS_INT bytes)
1071 {
1072 coding->destination = (unsigned char *) xrealloc (coding->destination,
1073 coding->dst_bytes + bytes);
1074 coding->dst_bytes += bytes;
1075 }
1076
1077 static void
1078 coding_alloc_by_making_gap (struct coding_system *coding,
1079 EMACS_INT gap_head_used, EMACS_INT bytes)
1080 {
1081 if (EQ (coding->src_object, coding->dst_object))
1082 {
1083 /* The gap may contain the produced data at the head and not-yet
1084 consumed data at the tail. To preserve those data, we at
1085 first make the gap size to zero, then increase the gap
1086 size. */
1087 EMACS_INT add = GAP_SIZE;
1088
1089 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1090 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1091 make_gap (bytes);
1092 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1093 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1094 }
1095 else
1096 {
1097 Lisp_Object this_buffer;
1098
1099 this_buffer = Fcurrent_buffer ();
1100 set_buffer_internal (XBUFFER (coding->dst_object));
1101 make_gap (bytes);
1102 set_buffer_internal (XBUFFER (this_buffer));
1103 }
1104 }
1105
1106
1107 static unsigned char *
1108 alloc_destination (struct coding_system *coding, EMACS_INT nbytes,
1109 unsigned char *dst)
1110 {
1111 EMACS_INT offset = dst - coding->destination;
1112
1113 if (BUFFERP (coding->dst_object))
1114 {
1115 struct buffer *buf = XBUFFER (coding->dst_object);
1116
1117 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1118 }
1119 else
1120 coding_alloc_by_realloc (coding, nbytes);
1121 coding_set_destination (coding);
1122 dst = coding->destination + offset;
1123 return dst;
1124 }
1125
1126 /** Macros for annotations. */
1127
1128 /* An annotation data is stored in the array coding->charbuf in this
1129 format:
1130 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1131 LENGTH is the number of elements in the annotation.
1132 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1133 NCHARS is the number of characters in the text annotated.
1134
1135 The format of the following elements depend on ANNOTATION_MASK.
1136
1137 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1138 follows:
1139 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1140
1141 NBYTES is the number of bytes specified in the header part of
1142 old-style emacs-mule encoding, or 0 for the other kind of
1143 composition.
1144
1145 METHOD is one of enum composition_method.
1146
1147 Optional COMPOSITION-COMPONENTS are characters and composition
1148 rules.
1149
1150 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1151 follows.
1152
1153 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1154 recover from an invalid annotation, and should be skipped by
1155 produce_annotation. */
1156
1157 /* Maximum length of the header of annotation data. */
1158 #define MAX_ANNOTATION_LENGTH 5
1159
1160 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1161 do { \
1162 *(buf)++ = -(len); \
1163 *(buf)++ = (mask); \
1164 *(buf)++ = (nchars); \
1165 coding->annotated = 1; \
1166 } while (0);
1167
1168 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1169 do { \
1170 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1171 *buf++ = nbytes; \
1172 *buf++ = method; \
1173 } while (0)
1174
1175
1176 #define ADD_CHARSET_DATA(buf, nchars, id) \
1177 do { \
1178 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1179 *buf++ = id; \
1180 } while (0)
1181
1182 \f
1183 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1184
1185
1186
1187 \f
1188 /*** 3. UTF-8 ***/
1189
1190 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1191 Check if a text is encoded in UTF-8. If it is, return 1, else
1192 return 0. */
1193
1194 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1195 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1196 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1197 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1198 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1199 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1200
1201 #define UTF_8_BOM_1 0xEF
1202 #define UTF_8_BOM_2 0xBB
1203 #define UTF_8_BOM_3 0xBF
1204
1205 static int
1206 detect_coding_utf_8 (struct coding_system *coding,
1207 struct coding_detection_info *detect_info)
1208 {
1209 const unsigned char *src = coding->source, *src_base;
1210 const unsigned char *src_end = coding->source + coding->src_bytes;
1211 int multibytep = coding->src_multibyte;
1212 int consumed_chars = 0;
1213 int bom_found = 0;
1214 int found = 0;
1215
1216 detect_info->checked |= CATEGORY_MASK_UTF_8;
1217 /* A coding system of this category is always ASCII compatible. */
1218 src += coding->head_ascii;
1219
1220 while (1)
1221 {
1222 int c, c1, c2, c3, c4;
1223
1224 src_base = src;
1225 ONE_MORE_BYTE (c);
1226 if (c < 0 || UTF_8_1_OCTET_P (c))
1227 continue;
1228 ONE_MORE_BYTE (c1);
1229 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1230 break;
1231 if (UTF_8_2_OCTET_LEADING_P (c))
1232 {
1233 found = 1;
1234 continue;
1235 }
1236 ONE_MORE_BYTE (c2);
1237 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1238 break;
1239 if (UTF_8_3_OCTET_LEADING_P (c))
1240 {
1241 found = 1;
1242 if (src_base == coding->source
1243 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1244 bom_found = 1;
1245 continue;
1246 }
1247 ONE_MORE_BYTE (c3);
1248 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1249 break;
1250 if (UTF_8_4_OCTET_LEADING_P (c))
1251 {
1252 found = 1;
1253 continue;
1254 }
1255 ONE_MORE_BYTE (c4);
1256 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1257 break;
1258 if (UTF_8_5_OCTET_LEADING_P (c))
1259 {
1260 found = 1;
1261 continue;
1262 }
1263 break;
1264 }
1265 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1266 return 0;
1267
1268 no_more_source:
1269 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1270 {
1271 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1272 return 0;
1273 }
1274 if (bom_found)
1275 {
1276 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1277 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1278 }
1279 else
1280 {
1281 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1282 if (found)
1283 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1284 }
1285 return 1;
1286 }
1287
1288
1289 static void
1290 decode_coding_utf_8 (struct coding_system *coding)
1291 {
1292 const unsigned char *src = coding->source + coding->consumed;
1293 const unsigned char *src_end = coding->source + coding->src_bytes;
1294 const unsigned char *src_base;
1295 int *charbuf = coding->charbuf + coding->charbuf_used;
1296 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1297 int consumed_chars = 0, consumed_chars_base = 0;
1298 int multibytep = coding->src_multibyte;
1299 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1300 Lisp_Object attr, charset_list;
1301 int eol_dos =
1302 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1303 int byte_after_cr = -1;
1304
1305 CODING_GET_INFO (coding, attr, charset_list);
1306
1307 if (bom != utf_without_bom)
1308 {
1309 int c1, c2, c3;
1310
1311 src_base = src;
1312 ONE_MORE_BYTE (c1);
1313 if (! UTF_8_3_OCTET_LEADING_P (c1))
1314 src = src_base;
1315 else
1316 {
1317 ONE_MORE_BYTE (c2);
1318 if (! UTF_8_EXTRA_OCTET_P (c2))
1319 src = src_base;
1320 else
1321 {
1322 ONE_MORE_BYTE (c3);
1323 if (! UTF_8_EXTRA_OCTET_P (c3))
1324 src = src_base;
1325 else
1326 {
1327 if ((c1 != UTF_8_BOM_1)
1328 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1329 src = src_base;
1330 else
1331 CODING_UTF_8_BOM (coding) = utf_without_bom;
1332 }
1333 }
1334 }
1335 }
1336 CODING_UTF_8_BOM (coding) = utf_without_bom;
1337
1338 while (1)
1339 {
1340 int c, c1, c2, c3, c4, c5;
1341
1342 src_base = src;
1343 consumed_chars_base = consumed_chars;
1344
1345 if (charbuf >= charbuf_end)
1346 {
1347 if (byte_after_cr >= 0)
1348 src_base--;
1349 break;
1350 }
1351
1352 if (byte_after_cr >= 0)
1353 c1 = byte_after_cr, byte_after_cr = -1;
1354 else
1355 ONE_MORE_BYTE (c1);
1356 if (c1 < 0)
1357 {
1358 c = - c1;
1359 }
1360 else if (UTF_8_1_OCTET_P (c1))
1361 {
1362 if (eol_dos && c1 == '\r')
1363 ONE_MORE_BYTE (byte_after_cr);
1364 c = c1;
1365 }
1366 else
1367 {
1368 ONE_MORE_BYTE (c2);
1369 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1370 goto invalid_code;
1371 if (UTF_8_2_OCTET_LEADING_P (c1))
1372 {
1373 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1374 /* Reject overlong sequences here and below. Encoders
1375 producing them are incorrect, they can be misleading,
1376 and they mess up read/write invariance. */
1377 if (c < 128)
1378 goto invalid_code;
1379 }
1380 else
1381 {
1382 ONE_MORE_BYTE (c3);
1383 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1384 goto invalid_code;
1385 if (UTF_8_3_OCTET_LEADING_P (c1))
1386 {
1387 c = (((c1 & 0xF) << 12)
1388 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1389 if (c < 0x800
1390 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1391 goto invalid_code;
1392 }
1393 else
1394 {
1395 ONE_MORE_BYTE (c4);
1396 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1397 goto invalid_code;
1398 if (UTF_8_4_OCTET_LEADING_P (c1))
1399 {
1400 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1401 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1402 if (c < 0x10000)
1403 goto invalid_code;
1404 }
1405 else
1406 {
1407 ONE_MORE_BYTE (c5);
1408 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1409 goto invalid_code;
1410 if (UTF_8_5_OCTET_LEADING_P (c1))
1411 {
1412 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1413 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1414 | (c5 & 0x3F));
1415 if ((c > MAX_CHAR) || (c < 0x200000))
1416 goto invalid_code;
1417 }
1418 else
1419 goto invalid_code;
1420 }
1421 }
1422 }
1423 }
1424
1425 *charbuf++ = c;
1426 continue;
1427
1428 invalid_code:
1429 src = src_base;
1430 consumed_chars = consumed_chars_base;
1431 ONE_MORE_BYTE (c);
1432 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1433 coding->errors++;
1434 }
1435
1436 no_more_source:
1437 coding->consumed_char += consumed_chars_base;
1438 coding->consumed = src_base - coding->source;
1439 coding->charbuf_used = charbuf - coding->charbuf;
1440 }
1441
1442
1443 static int
1444 encode_coding_utf_8 (struct coding_system *coding)
1445 {
1446 int multibytep = coding->dst_multibyte;
1447 int *charbuf = coding->charbuf;
1448 int *charbuf_end = charbuf + coding->charbuf_used;
1449 unsigned char *dst = coding->destination + coding->produced;
1450 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1451 int produced_chars = 0;
1452 int c;
1453
1454 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1455 {
1456 ASSURE_DESTINATION (3);
1457 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1458 CODING_UTF_8_BOM (coding) = utf_without_bom;
1459 }
1460
1461 if (multibytep)
1462 {
1463 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1464
1465 while (charbuf < charbuf_end)
1466 {
1467 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1468
1469 ASSURE_DESTINATION (safe_room);
1470 c = *charbuf++;
1471 if (CHAR_BYTE8_P (c))
1472 {
1473 c = CHAR_TO_BYTE8 (c);
1474 EMIT_ONE_BYTE (c);
1475 }
1476 else
1477 {
1478 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1479 for (p = str; p < pend; p++)
1480 EMIT_ONE_BYTE (*p);
1481 }
1482 }
1483 }
1484 else
1485 {
1486 int safe_room = MAX_MULTIBYTE_LENGTH;
1487
1488 while (charbuf < charbuf_end)
1489 {
1490 ASSURE_DESTINATION (safe_room);
1491 c = *charbuf++;
1492 if (CHAR_BYTE8_P (c))
1493 *dst++ = CHAR_TO_BYTE8 (c);
1494 else
1495 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1496 produced_chars++;
1497 }
1498 }
1499 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1500 coding->produced_char += produced_chars;
1501 coding->produced = dst - coding->destination;
1502 return 0;
1503 }
1504
1505
1506 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1507 Check if a text is encoded in one of UTF-16 based coding systems.
1508 If it is, return 1, else return 0. */
1509
1510 #define UTF_16_HIGH_SURROGATE_P(val) \
1511 (((val) & 0xFC00) == 0xD800)
1512
1513 #define UTF_16_LOW_SURROGATE_P(val) \
1514 (((val) & 0xFC00) == 0xDC00)
1515
1516
1517 static int
1518 detect_coding_utf_16 (struct coding_system *coding,
1519 struct coding_detection_info *detect_info)
1520 {
1521 const unsigned char *src = coding->source;
1522 const unsigned char *src_end = coding->source + coding->src_bytes;
1523 int multibytep = coding->src_multibyte;
1524 int c1, c2;
1525
1526 detect_info->checked |= CATEGORY_MASK_UTF_16;
1527 if (coding->mode & CODING_MODE_LAST_BLOCK
1528 && (coding->src_chars & 1))
1529 {
1530 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1531 return 0;
1532 }
1533
1534 TWO_MORE_BYTES (c1, c2);
1535 if ((c1 == 0xFF) && (c2 == 0xFE))
1536 {
1537 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1538 | CATEGORY_MASK_UTF_16_AUTO);
1539 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1540 | CATEGORY_MASK_UTF_16_BE_NOSIG
1541 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1542 }
1543 else if ((c1 == 0xFE) && (c2 == 0xFF))
1544 {
1545 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1546 | CATEGORY_MASK_UTF_16_AUTO);
1547 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1548 | CATEGORY_MASK_UTF_16_BE_NOSIG
1549 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1550 }
1551 else if (c2 < 0)
1552 {
1553 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1554 return 0;
1555 }
1556 else
1557 {
1558 /* We check the dispersion of Eth and Oth bytes where E is even and
1559 O is odd. If both are high, we assume binary data.*/
1560 unsigned char e[256], o[256];
1561 unsigned e_num = 1, o_num = 1;
1562
1563 memset (e, 0, 256);
1564 memset (o, 0, 256);
1565 e[c1] = 1;
1566 o[c2] = 1;
1567
1568 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1569 |CATEGORY_MASK_UTF_16_BE
1570 | CATEGORY_MASK_UTF_16_LE);
1571
1572 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1573 != CATEGORY_MASK_UTF_16)
1574 {
1575 TWO_MORE_BYTES (c1, c2);
1576 if (c2 < 0)
1577 break;
1578 if (! e[c1])
1579 {
1580 e[c1] = 1;
1581 e_num++;
1582 if (e_num >= 128)
1583 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1584 }
1585 if (! o[c2])
1586 {
1587 o[c2] = 1;
1588 o_num++;
1589 if (o_num >= 128)
1590 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1591 }
1592 }
1593 return 0;
1594 }
1595
1596 no_more_source:
1597 return 1;
1598 }
1599
1600 static void
1601 decode_coding_utf_16 (struct coding_system *coding)
1602 {
1603 const unsigned char *src = coding->source + coding->consumed;
1604 const unsigned char *src_end = coding->source + coding->src_bytes;
1605 const unsigned char *src_base;
1606 int *charbuf = coding->charbuf + coding->charbuf_used;
1607 /* We may produces at most 3 chars in one loop. */
1608 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1609 int consumed_chars = 0, consumed_chars_base = 0;
1610 int multibytep = coding->src_multibyte;
1611 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1612 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1613 int surrogate = CODING_UTF_16_SURROGATE (coding);
1614 Lisp_Object attr, charset_list;
1615 int eol_dos =
1616 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1617 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1618
1619 CODING_GET_INFO (coding, attr, charset_list);
1620
1621 if (bom == utf_with_bom)
1622 {
1623 int c, c1, c2;
1624
1625 src_base = src;
1626 ONE_MORE_BYTE (c1);
1627 ONE_MORE_BYTE (c2);
1628 c = (c1 << 8) | c2;
1629
1630 if (endian == utf_16_big_endian
1631 ? c != 0xFEFF : c != 0xFFFE)
1632 {
1633 /* The first two bytes are not BOM. Treat them as bytes
1634 for a normal character. */
1635 src = src_base;
1636 coding->errors++;
1637 }
1638 CODING_UTF_16_BOM (coding) = utf_without_bom;
1639 }
1640 else if (bom == utf_detect_bom)
1641 {
1642 /* We have already tried to detect BOM and failed in
1643 detect_coding. */
1644 CODING_UTF_16_BOM (coding) = utf_without_bom;
1645 }
1646
1647 while (1)
1648 {
1649 int c, c1, c2;
1650
1651 src_base = src;
1652 consumed_chars_base = consumed_chars;
1653
1654 if (charbuf >= charbuf_end)
1655 {
1656 if (byte_after_cr1 >= 0)
1657 src_base -= 2;
1658 break;
1659 }
1660
1661 if (byte_after_cr1 >= 0)
1662 c1 = byte_after_cr1, byte_after_cr1 = -1;
1663 else
1664 ONE_MORE_BYTE (c1);
1665 if (c1 < 0)
1666 {
1667 *charbuf++ = -c1;
1668 continue;
1669 }
1670 if (byte_after_cr2 >= 0)
1671 c2 = byte_after_cr2, byte_after_cr2 = -1;
1672 else
1673 ONE_MORE_BYTE (c2);
1674 if (c2 < 0)
1675 {
1676 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1677 *charbuf++ = -c2;
1678 continue;
1679 }
1680 c = (endian == utf_16_big_endian
1681 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1682
1683 if (surrogate)
1684 {
1685 if (! UTF_16_LOW_SURROGATE_P (c))
1686 {
1687 if (endian == utf_16_big_endian)
1688 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1689 else
1690 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1691 *charbuf++ = c1;
1692 *charbuf++ = c2;
1693 coding->errors++;
1694 if (UTF_16_HIGH_SURROGATE_P (c))
1695 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1696 else
1697 *charbuf++ = c;
1698 }
1699 else
1700 {
1701 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1702 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1703 *charbuf++ = 0x10000 + c;
1704 }
1705 }
1706 else
1707 {
1708 if (UTF_16_HIGH_SURROGATE_P (c))
1709 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1710 else
1711 {
1712 if (eol_dos && c == '\r')
1713 {
1714 ONE_MORE_BYTE (byte_after_cr1);
1715 ONE_MORE_BYTE (byte_after_cr2);
1716 }
1717 *charbuf++ = c;
1718 }
1719 }
1720 }
1721
1722 no_more_source:
1723 coding->consumed_char += consumed_chars_base;
1724 coding->consumed = src_base - coding->source;
1725 coding->charbuf_used = charbuf - coding->charbuf;
1726 }
1727
1728 static int
1729 encode_coding_utf_16 (struct coding_system *coding)
1730 {
1731 int multibytep = coding->dst_multibyte;
1732 int *charbuf = coding->charbuf;
1733 int *charbuf_end = charbuf + coding->charbuf_used;
1734 unsigned char *dst = coding->destination + coding->produced;
1735 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1736 int safe_room = 8;
1737 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1738 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1739 int produced_chars = 0;
1740 Lisp_Object attrs, charset_list;
1741 int c;
1742
1743 CODING_GET_INFO (coding, attrs, charset_list);
1744
1745 if (bom != utf_without_bom)
1746 {
1747 ASSURE_DESTINATION (safe_room);
1748 if (big_endian)
1749 EMIT_TWO_BYTES (0xFE, 0xFF);
1750 else
1751 EMIT_TWO_BYTES (0xFF, 0xFE);
1752 CODING_UTF_16_BOM (coding) = utf_without_bom;
1753 }
1754
1755 while (charbuf < charbuf_end)
1756 {
1757 ASSURE_DESTINATION (safe_room);
1758 c = *charbuf++;
1759 if (c > MAX_UNICODE_CHAR)
1760 c = coding->default_char;
1761
1762 if (c < 0x10000)
1763 {
1764 if (big_endian)
1765 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1766 else
1767 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1768 }
1769 else
1770 {
1771 int c1, c2;
1772
1773 c -= 0x10000;
1774 c1 = (c >> 10) + 0xD800;
1775 c2 = (c & 0x3FF) + 0xDC00;
1776 if (big_endian)
1777 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1778 else
1779 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1780 }
1781 }
1782 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1783 coding->produced = dst - coding->destination;
1784 coding->produced_char += produced_chars;
1785 return 0;
1786 }
1787
1788 \f
1789 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1790
1791 /* Emacs' internal format for representation of multiple character
1792 sets is a kind of multi-byte encoding, i.e. characters are
1793 represented by variable-length sequences of one-byte codes.
1794
1795 ASCII characters and control characters (e.g. `tab', `newline') are
1796 represented by one-byte sequences which are their ASCII codes, in
1797 the range 0x00 through 0x7F.
1798
1799 8-bit characters of the range 0x80..0x9F are represented by
1800 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1801 code + 0x20).
1802
1803 8-bit characters of the range 0xA0..0xFF are represented by
1804 one-byte sequences which are their 8-bit code.
1805
1806 The other characters are represented by a sequence of `base
1807 leading-code', optional `extended leading-code', and one or two
1808 `position-code's. The length of the sequence is determined by the
1809 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1810 whereas extended leading-code and position-code take the range 0xA0
1811 through 0xFF. See `charset.h' for more details about leading-code
1812 and position-code.
1813
1814 --- CODE RANGE of Emacs' internal format ---
1815 character set range
1816 ------------- -----
1817 ascii 0x00..0x7F
1818 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1819 eight-bit-graphic 0xA0..0xBF
1820 ELSE 0x81..0x9D + [0xA0..0xFF]+
1821 ---------------------------------------------
1822
1823 As this is the internal character representation, the format is
1824 usually not used externally (i.e. in a file or in a data sent to a
1825 process). But, it is possible to have a text externally in this
1826 format (i.e. by encoding by the coding system `emacs-mule').
1827
1828 In that case, a sequence of one-byte codes has a slightly different
1829 form.
1830
1831 At first, all characters in eight-bit-control are represented by
1832 one-byte sequences which are their 8-bit code.
1833
1834 Next, character composition data are represented by the byte
1835 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1836 where,
1837 METHOD is 0xF2 plus one of composition method (enum
1838 composition_method),
1839
1840 BYTES is 0xA0 plus a byte length of this composition data,
1841
1842 CHARS is 0xA0 plus a number of characters composed by this
1843 data,
1844
1845 COMPONENTs are characters of multibyte form or composition
1846 rules encoded by two-byte of ASCII codes.
1847
1848 In addition, for backward compatibility, the following formats are
1849 also recognized as composition data on decoding.
1850
1851 0x80 MSEQ ...
1852 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1853
1854 Here,
1855 MSEQ is a multibyte form but in these special format:
1856 ASCII: 0xA0 ASCII_CODE+0x80,
1857 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1858 RULE is a one byte code of the range 0xA0..0xF0 that
1859 represents a composition rule.
1860 */
1861
1862 char emacs_mule_bytes[256];
1863
1864
1865 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1866 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1867 else return 0. */
1868
1869 static int
1870 detect_coding_emacs_mule (struct coding_system *coding,
1871 struct coding_detection_info *detect_info)
1872 {
1873 const unsigned char *src = coding->source, *src_base;
1874 const unsigned char *src_end = coding->source + coding->src_bytes;
1875 int multibytep = coding->src_multibyte;
1876 int consumed_chars = 0;
1877 int c;
1878 int found = 0;
1879
1880 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1881 /* A coding system of this category is always ASCII compatible. */
1882 src += coding->head_ascii;
1883
1884 while (1)
1885 {
1886 src_base = src;
1887 ONE_MORE_BYTE (c);
1888 if (c < 0)
1889 continue;
1890 if (c == 0x80)
1891 {
1892 /* Perhaps the start of composite character. We simply skip
1893 it because analyzing it is too heavy for detecting. But,
1894 at least, we check that the composite character
1895 constitutes of more than 4 bytes. */
1896 const unsigned char *src_start;
1897
1898 repeat:
1899 src_start = src;
1900 do
1901 {
1902 ONE_MORE_BYTE (c);
1903 }
1904 while (c >= 0xA0);
1905
1906 if (src - src_start <= 4)
1907 break;
1908 found = CATEGORY_MASK_EMACS_MULE;
1909 if (c == 0x80)
1910 goto repeat;
1911 }
1912
1913 if (c < 0x80)
1914 {
1915 if (c < 0x20
1916 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
1917 break;
1918 }
1919 else
1920 {
1921 int more_bytes = emacs_mule_bytes[c] - 1;
1922
1923 while (more_bytes > 0)
1924 {
1925 ONE_MORE_BYTE (c);
1926 if (c < 0xA0)
1927 {
1928 src--; /* Unread the last byte. */
1929 break;
1930 }
1931 more_bytes--;
1932 }
1933 if (more_bytes != 0)
1934 break;
1935 found = CATEGORY_MASK_EMACS_MULE;
1936 }
1937 }
1938 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1939 return 0;
1940
1941 no_more_source:
1942 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1943 {
1944 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1945 return 0;
1946 }
1947 detect_info->found |= found;
1948 return 1;
1949 }
1950
1951
1952 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
1953 character. If CMP_STATUS indicates that we must expect MSEQ or
1954 RULE described above, decode it and return the negative value of
1955 the decoded character or rule. If an invalid byte is found, return
1956 -1. If SRC is too short, return -2. */
1957
1958 static int
1959 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
1960 int *nbytes, int *nchars, int *id,
1961 struct composition_status *cmp_status)
1962 {
1963 const unsigned char *src_end = coding->source + coding->src_bytes;
1964 const unsigned char *src_base = src;
1965 int multibytep = coding->src_multibyte;
1966 int charset_ID;
1967 unsigned code;
1968 int c;
1969 int consumed_chars = 0;
1970 int mseq_found = 0;
1971
1972 ONE_MORE_BYTE (c);
1973 if (c < 0)
1974 {
1975 c = -c;
1976 charset_ID = emacs_mule_charset[0];
1977 }
1978 else
1979 {
1980 if (c >= 0xA0)
1981 {
1982 if (cmp_status->state != COMPOSING_NO
1983 && cmp_status->old_form)
1984 {
1985 if (cmp_status->state == COMPOSING_CHAR)
1986 {
1987 if (c == 0xA0)
1988 {
1989 ONE_MORE_BYTE (c);
1990 c -= 0x80;
1991 if (c < 0)
1992 goto invalid_code;
1993 }
1994 else
1995 c -= 0x20;
1996 mseq_found = 1;
1997 }
1998 else
1999 {
2000 *nbytes = src - src_base;
2001 *nchars = consumed_chars;
2002 return -c;
2003 }
2004 }
2005 else
2006 goto invalid_code;
2007 }
2008
2009 switch (emacs_mule_bytes[c])
2010 {
2011 case 2:
2012 if ((charset_ID = emacs_mule_charset[c]) < 0)
2013 goto invalid_code;
2014 ONE_MORE_BYTE (c);
2015 if (c < 0xA0)
2016 goto invalid_code;
2017 code = c & 0x7F;
2018 break;
2019
2020 case 3:
2021 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2022 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2023 {
2024 ONE_MORE_BYTE (c);
2025 if (c < 0xA0 || (charset_ID = emacs_mule_charset[c]) < 0)
2026 goto invalid_code;
2027 ONE_MORE_BYTE (c);
2028 if (c < 0xA0)
2029 goto invalid_code;
2030 code = c & 0x7F;
2031 }
2032 else
2033 {
2034 if ((charset_ID = emacs_mule_charset[c]) < 0)
2035 goto invalid_code;
2036 ONE_MORE_BYTE (c);
2037 if (c < 0xA0)
2038 goto invalid_code;
2039 code = (c & 0x7F) << 8;
2040 ONE_MORE_BYTE (c);
2041 if (c < 0xA0)
2042 goto invalid_code;
2043 code |= c & 0x7F;
2044 }
2045 break;
2046
2047 case 4:
2048 ONE_MORE_BYTE (c);
2049 if (c < 0 || (charset_ID = emacs_mule_charset[c]) < 0)
2050 goto invalid_code;
2051 ONE_MORE_BYTE (c);
2052 if (c < 0xA0)
2053 goto invalid_code;
2054 code = (c & 0x7F) << 8;
2055 ONE_MORE_BYTE (c);
2056 if (c < 0xA0)
2057 goto invalid_code;
2058 code |= c & 0x7F;
2059 break;
2060
2061 case 1:
2062 code = c;
2063 charset_ID = ASCII_BYTE_P (code) ? charset_ascii : charset_eight_bit;
2064 break;
2065
2066 default:
2067 abort ();
2068 }
2069 CODING_DECODE_CHAR (coding, src, src_base, src_end,
2070 CHARSET_FROM_ID (charset_ID), code, c);
2071 if (c < 0)
2072 goto invalid_code;
2073 }
2074 *nbytes = src - src_base;
2075 *nchars = consumed_chars;
2076 if (id)
2077 *id = charset_ID;
2078 return (mseq_found ? -c : c);
2079
2080 no_more_source:
2081 return -2;
2082
2083 invalid_code:
2084 return -1;
2085 }
2086
2087
2088 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2089
2090 /* Handle these composition sequence ('|': the end of header elements,
2091 BYTES and CHARS >= 0xA0):
2092
2093 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2094 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2095 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2096
2097 and these old form:
2098
2099 (4) relative composition: 0x80 | MSEQ ... MSEQ
2100 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2101
2102 When the starter 0x80 and the following header elements are found,
2103 this annotation header is produced.
2104
2105 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2106
2107 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2108 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2109
2110 Then, upon reading the following elements, these codes are produced
2111 until the composition end is found:
2112
2113 (1) CHAR ... CHAR
2114 (2) ALT ... ALT CHAR ... CHAR
2115 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2116 (4) CHAR ... CHAR
2117 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2118
2119 When the composition end is found, LENGTH and NCHARS in the
2120 annotation header is updated as below:
2121
2122 (1) LENGTH: unchanged, NCHARS: unchanged
2123 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2124 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2125 (4) LENGTH: unchanged, NCHARS: number of CHARs
2126 (5) LENGTH: unchanged, NCHARS: number of CHARs
2127
2128 If an error is found while composing, the annotation header is
2129 changed to the original composition header (plus filler -1s) as
2130 below:
2131
2132 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2133 (5) [ 0x80 0xFF -1 -1- -1 ]
2134
2135 and the sequence [ -2 DECODED-RULE ] is changed to the original
2136 byte sequence as below:
2137 o the original byte sequence is B: [ B -1 ]
2138 o the original byte sequence is B1 B2: [ B1 B2 ]
2139
2140 Most of the routines are implemented by macros because many
2141 variables and labels in the caller decode_coding_emacs_mule must be
2142 accessible, and they are usually called just once (thus doesn't
2143 increase the size of compiled object). */
2144
2145 /* Decode a composition rule represented by C as a component of
2146 composition sequence of Emacs 20 style. Set RULE to the decoded
2147 rule. */
2148
2149 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2150 do { \
2151 int gref, nref; \
2152 \
2153 c -= 0xA0; \
2154 if (c < 0 || c >= 81) \
2155 goto invalid_code; \
2156 gref = c / 9, nref = c % 9; \
2157 if (gref == 4) gref = 10; \
2158 if (nref == 4) nref = 10; \
2159 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2160 } while (0)
2161
2162
2163 /* Decode a composition rule represented by C and the following byte
2164 at SRC as a component of composition sequence of Emacs 21 style.
2165 Set RULE to the decoded rule. */
2166
2167 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2168 do { \
2169 int gref, nref; \
2170 \
2171 gref = c - 0x20; \
2172 if (gref < 0 || gref >= 81) \
2173 goto invalid_code; \
2174 ONE_MORE_BYTE (c); \
2175 nref = c - 0x20; \
2176 if (nref < 0 || nref >= 81) \
2177 goto invalid_code; \
2178 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2179 } while (0)
2180
2181
2182 /* Start of Emacs 21 style format. The first three bytes at SRC are
2183 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2184 byte length of this composition information, CHARS is the number of
2185 characters composed by this composition. */
2186
2187 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2188 do { \
2189 enum composition_method method = c - 0xF2; \
2190 int nbytes, nchars; \
2191 \
2192 ONE_MORE_BYTE (c); \
2193 if (c < 0) \
2194 goto invalid_code; \
2195 nbytes = c - 0xA0; \
2196 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2197 goto invalid_code; \
2198 ONE_MORE_BYTE (c); \
2199 nchars = c - 0xA0; \
2200 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2201 goto invalid_code; \
2202 cmp_status->old_form = 0; \
2203 cmp_status->method = method; \
2204 if (method == COMPOSITION_RELATIVE) \
2205 cmp_status->state = COMPOSING_CHAR; \
2206 else \
2207 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2208 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2209 cmp_status->nchars = nchars; \
2210 cmp_status->ncomps = nbytes - 4; \
2211 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2212 } while (0)
2213
2214
2215 /* Start of Emacs 20 style format for relative composition. */
2216
2217 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2218 do { \
2219 cmp_status->old_form = 1; \
2220 cmp_status->method = COMPOSITION_RELATIVE; \
2221 cmp_status->state = COMPOSING_CHAR; \
2222 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2223 cmp_status->nchars = cmp_status->ncomps = 0; \
2224 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2225 } while (0)
2226
2227
2228 /* Start of Emacs 20 style format for rule-base composition. */
2229
2230 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2231 do { \
2232 cmp_status->old_form = 1; \
2233 cmp_status->method = COMPOSITION_WITH_RULE; \
2234 cmp_status->state = COMPOSING_CHAR; \
2235 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2236 cmp_status->nchars = cmp_status->ncomps = 0; \
2237 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2238 } while (0)
2239
2240
2241 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2242 do { \
2243 const unsigned char *current_src = src; \
2244 \
2245 ONE_MORE_BYTE (c); \
2246 if (c < 0) \
2247 goto invalid_code; \
2248 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2249 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2250 DECODE_EMACS_MULE_21_COMPOSITION (); \
2251 else if (c < 0xA0) \
2252 goto invalid_code; \
2253 else if (c < 0xC0) \
2254 { \
2255 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2256 /* Re-read C as a composition component. */ \
2257 src = current_src; \
2258 } \
2259 else if (c == 0xFF) \
2260 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2261 else \
2262 goto invalid_code; \
2263 } while (0)
2264
2265 #define EMACS_MULE_COMPOSITION_END() \
2266 do { \
2267 int idx = - cmp_status->length; \
2268 \
2269 if (cmp_status->old_form) \
2270 charbuf[idx + 2] = cmp_status->nchars; \
2271 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2272 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2273 cmp_status->state = COMPOSING_NO; \
2274 } while (0)
2275
2276
2277 static int
2278 emacs_mule_finish_composition (int *charbuf,
2279 struct composition_status *cmp_status)
2280 {
2281 int idx = - cmp_status->length;
2282 int new_chars;
2283
2284 if (cmp_status->old_form && cmp_status->nchars > 0)
2285 {
2286 charbuf[idx + 2] = cmp_status->nchars;
2287 new_chars = 0;
2288 if (cmp_status->method == COMPOSITION_WITH_RULE
2289 && cmp_status->state == COMPOSING_CHAR)
2290 {
2291 /* The last rule was invalid. */
2292 int rule = charbuf[-1] + 0xA0;
2293
2294 charbuf[-2] = BYTE8_TO_CHAR (rule);
2295 charbuf[-1] = -1;
2296 new_chars = 1;
2297 }
2298 }
2299 else
2300 {
2301 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2302
2303 if (cmp_status->method == COMPOSITION_WITH_RULE)
2304 {
2305 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2306 charbuf[idx++] = -3;
2307 charbuf[idx++] = 0;
2308 new_chars = 1;
2309 }
2310 else
2311 {
2312 int nchars = charbuf[idx + 1] + 0xA0;
2313 int nbytes = charbuf[idx + 2] + 0xA0;
2314
2315 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2316 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2317 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2318 charbuf[idx++] = -1;
2319 new_chars = 4;
2320 }
2321 }
2322 cmp_status->state = COMPOSING_NO;
2323 return new_chars;
2324 }
2325
2326 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2327 do { \
2328 if (cmp_status->state != COMPOSING_NO) \
2329 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2330 } while (0)
2331
2332
2333 static void
2334 decode_coding_emacs_mule (struct coding_system *coding)
2335 {
2336 const unsigned char *src = coding->source + coding->consumed;
2337 const unsigned char *src_end = coding->source + coding->src_bytes;
2338 const unsigned char *src_base;
2339 int *charbuf = coding->charbuf + coding->charbuf_used;
2340 /* We may produce two annotations (charset and composition) in one
2341 loop and one more charset annotation at the end. */
2342 int *charbuf_end
2343 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2344 int consumed_chars = 0, consumed_chars_base;
2345 int multibytep = coding->src_multibyte;
2346 Lisp_Object attrs, charset_list;
2347 int char_offset = coding->produced_char;
2348 int last_offset = char_offset;
2349 int last_id = charset_ascii;
2350 int eol_dos =
2351 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2352 int byte_after_cr = -1;
2353 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2354
2355 CODING_GET_INFO (coding, attrs, charset_list);
2356
2357 if (cmp_status->state != COMPOSING_NO)
2358 {
2359 int i;
2360
2361 for (i = 0; i < cmp_status->length; i++)
2362 *charbuf++ = cmp_status->carryover[i];
2363 coding->annotated = 1;
2364 }
2365
2366 while (1)
2367 {
2368 int c, id IF_LINT (= 0);
2369
2370 src_base = src;
2371 consumed_chars_base = consumed_chars;
2372
2373 if (charbuf >= charbuf_end)
2374 {
2375 if (byte_after_cr >= 0)
2376 src_base--;
2377 break;
2378 }
2379
2380 if (byte_after_cr >= 0)
2381 c = byte_after_cr, byte_after_cr = -1;
2382 else
2383 ONE_MORE_BYTE (c);
2384
2385 if (c < 0 || c == 0x80)
2386 {
2387 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2388 if (c < 0)
2389 {
2390 *charbuf++ = -c;
2391 char_offset++;
2392 }
2393 else
2394 DECODE_EMACS_MULE_COMPOSITION_START ();
2395 continue;
2396 }
2397
2398 if (c < 0x80)
2399 {
2400 if (eol_dos && c == '\r')
2401 ONE_MORE_BYTE (byte_after_cr);
2402 id = charset_ascii;
2403 if (cmp_status->state != COMPOSING_NO)
2404 {
2405 if (cmp_status->old_form)
2406 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2407 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2408 cmp_status->ncomps--;
2409 }
2410 }
2411 else
2412 {
2413 int nchars IF_LINT (= 0), nbytes IF_LINT (= 0);
2414 /* emacs_mule_char can load a charset map from a file, which
2415 allocates a large structure and might cause buffer text
2416 to be relocated as result. Thus, we need to remember the
2417 original pointer to buffer text, and fix up all related
2418 pointers after the call. */
2419 const unsigned char *orig = coding->source;
2420 EMACS_INT offset;
2421
2422 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2423 cmp_status);
2424 offset = coding->source - orig;
2425 if (offset)
2426 {
2427 src += offset;
2428 src_base += offset;
2429 src_end += offset;
2430 }
2431 if (c < 0)
2432 {
2433 if (c == -1)
2434 goto invalid_code;
2435 if (c == -2)
2436 break;
2437 }
2438 src = src_base + nbytes;
2439 consumed_chars = consumed_chars_base + nchars;
2440 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2441 cmp_status->ncomps -= nchars;
2442 }
2443
2444 /* Now if C >= 0, we found a normally encoded character, if C <
2445 0, we found an old-style composition component character or
2446 rule. */
2447
2448 if (cmp_status->state == COMPOSING_NO)
2449 {
2450 if (last_id != id)
2451 {
2452 if (last_id != charset_ascii)
2453 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2454 last_id);
2455 last_id = id;
2456 last_offset = char_offset;
2457 }
2458 *charbuf++ = c;
2459 char_offset++;
2460 }
2461 else if (cmp_status->state == COMPOSING_CHAR)
2462 {
2463 if (cmp_status->old_form)
2464 {
2465 if (c >= 0)
2466 {
2467 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2468 *charbuf++ = c;
2469 char_offset++;
2470 }
2471 else
2472 {
2473 *charbuf++ = -c;
2474 cmp_status->nchars++;
2475 cmp_status->length++;
2476 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2477 EMACS_MULE_COMPOSITION_END ();
2478 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2479 cmp_status->state = COMPOSING_RULE;
2480 }
2481 }
2482 else
2483 {
2484 *charbuf++ = c;
2485 cmp_status->length++;
2486 cmp_status->nchars--;
2487 if (cmp_status->nchars == 0)
2488 EMACS_MULE_COMPOSITION_END ();
2489 }
2490 }
2491 else if (cmp_status->state == COMPOSING_RULE)
2492 {
2493 int rule;
2494
2495 if (c >= 0)
2496 {
2497 EMACS_MULE_COMPOSITION_END ();
2498 *charbuf++ = c;
2499 char_offset++;
2500 }
2501 else
2502 {
2503 c = -c;
2504 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2505 if (rule < 0)
2506 goto invalid_code;
2507 *charbuf++ = -2;
2508 *charbuf++ = rule;
2509 cmp_status->length += 2;
2510 cmp_status->state = COMPOSING_CHAR;
2511 }
2512 }
2513 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2514 {
2515 *charbuf++ = c;
2516 cmp_status->length++;
2517 if (cmp_status->ncomps == 0)
2518 cmp_status->state = COMPOSING_CHAR;
2519 else if (cmp_status->ncomps > 0)
2520 {
2521 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2522 cmp_status->state = COMPOSING_COMPONENT_RULE;
2523 }
2524 else
2525 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2526 }
2527 else /* COMPOSING_COMPONENT_RULE */
2528 {
2529 int rule;
2530
2531 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2532 if (rule < 0)
2533 goto invalid_code;
2534 *charbuf++ = -2;
2535 *charbuf++ = rule;
2536 cmp_status->length += 2;
2537 cmp_status->ncomps--;
2538 if (cmp_status->ncomps > 0)
2539 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2540 else
2541 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2542 }
2543 continue;
2544
2545 invalid_code:
2546 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2547 src = src_base;
2548 consumed_chars = consumed_chars_base;
2549 ONE_MORE_BYTE (c);
2550 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2551 char_offset++;
2552 coding->errors++;
2553 }
2554
2555 no_more_source:
2556 if (cmp_status->state != COMPOSING_NO)
2557 {
2558 if (coding->mode & CODING_MODE_LAST_BLOCK)
2559 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2560 else
2561 {
2562 int i;
2563
2564 charbuf -= cmp_status->length;
2565 for (i = 0; i < cmp_status->length; i++)
2566 cmp_status->carryover[i] = charbuf[i];
2567 }
2568 }
2569 if (last_id != charset_ascii)
2570 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2571 coding->consumed_char += consumed_chars_base;
2572 coding->consumed = src_base - coding->source;
2573 coding->charbuf_used = charbuf - coding->charbuf;
2574 }
2575
2576
2577 #define EMACS_MULE_LEADING_CODES(id, codes) \
2578 do { \
2579 if (id < 0xA0) \
2580 codes[0] = id, codes[1] = 0; \
2581 else if (id < 0xE0) \
2582 codes[0] = 0x9A, codes[1] = id; \
2583 else if (id < 0xF0) \
2584 codes[0] = 0x9B, codes[1] = id; \
2585 else if (id < 0xF5) \
2586 codes[0] = 0x9C, codes[1] = id; \
2587 else \
2588 codes[0] = 0x9D, codes[1] = id; \
2589 } while (0);
2590
2591
2592 static int
2593 encode_coding_emacs_mule (struct coding_system *coding)
2594 {
2595 int multibytep = coding->dst_multibyte;
2596 int *charbuf = coding->charbuf;
2597 int *charbuf_end = charbuf + coding->charbuf_used;
2598 unsigned char *dst = coding->destination + coding->produced;
2599 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2600 int safe_room = 8;
2601 int produced_chars = 0;
2602 Lisp_Object attrs, charset_list;
2603 int c;
2604 int preferred_charset_id = -1;
2605
2606 CODING_GET_INFO (coding, attrs, charset_list);
2607 if (! EQ (charset_list, Vemacs_mule_charset_list))
2608 {
2609 CODING_ATTR_CHARSET_LIST (attrs)
2610 = charset_list = Vemacs_mule_charset_list;
2611 }
2612
2613 while (charbuf < charbuf_end)
2614 {
2615 ASSURE_DESTINATION (safe_room);
2616 c = *charbuf++;
2617
2618 if (c < 0)
2619 {
2620 /* Handle an annotation. */
2621 switch (*charbuf)
2622 {
2623 case CODING_ANNOTATE_COMPOSITION_MASK:
2624 /* Not yet implemented. */
2625 break;
2626 case CODING_ANNOTATE_CHARSET_MASK:
2627 preferred_charset_id = charbuf[3];
2628 if (preferred_charset_id >= 0
2629 && NILP (Fmemq (make_number (preferred_charset_id),
2630 charset_list)))
2631 preferred_charset_id = -1;
2632 break;
2633 default:
2634 abort ();
2635 }
2636 charbuf += -c - 1;
2637 continue;
2638 }
2639
2640 if (ASCII_CHAR_P (c))
2641 EMIT_ONE_ASCII_BYTE (c);
2642 else if (CHAR_BYTE8_P (c))
2643 {
2644 c = CHAR_TO_BYTE8 (c);
2645 EMIT_ONE_BYTE (c);
2646 }
2647 else
2648 {
2649 struct charset *charset;
2650 unsigned code;
2651 int dimension;
2652 int emacs_mule_id;
2653 unsigned char leading_codes[2];
2654
2655 if (preferred_charset_id >= 0)
2656 {
2657 charset = CHARSET_FROM_ID (preferred_charset_id);
2658 if (CHAR_CHARSET_P (c, charset))
2659 code = ENCODE_CHAR (charset, c);
2660 else
2661 charset = char_charset (c, charset_list, &code);
2662 }
2663 else
2664 charset = char_charset (c, charset_list, &code);
2665 if (! charset)
2666 {
2667 c = coding->default_char;
2668 if (ASCII_CHAR_P (c))
2669 {
2670 EMIT_ONE_ASCII_BYTE (c);
2671 continue;
2672 }
2673 charset = char_charset (c, charset_list, &code);
2674 }
2675 dimension = CHARSET_DIMENSION (charset);
2676 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2677 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2678 EMIT_ONE_BYTE (leading_codes[0]);
2679 if (leading_codes[1])
2680 EMIT_ONE_BYTE (leading_codes[1]);
2681 if (dimension == 1)
2682 EMIT_ONE_BYTE (code | 0x80);
2683 else
2684 {
2685 code |= 0x8080;
2686 EMIT_ONE_BYTE (code >> 8);
2687 EMIT_ONE_BYTE (code & 0xFF);
2688 }
2689 }
2690 }
2691 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2692 coding->produced_char += produced_chars;
2693 coding->produced = dst - coding->destination;
2694 return 0;
2695 }
2696
2697 \f
2698 /*** 7. ISO2022 handlers ***/
2699
2700 /* The following note describes the coding system ISO2022 briefly.
2701 Since the intention of this note is to help understand the
2702 functions in this file, some parts are NOT ACCURATE or are OVERLY
2703 SIMPLIFIED. For thorough understanding, please refer to the
2704 original document of ISO2022. This is equivalent to the standard
2705 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2706
2707 ISO2022 provides many mechanisms to encode several character sets
2708 in 7-bit and 8-bit environments. For 7-bit environments, all text
2709 is encoded using bytes less than 128. This may make the encoded
2710 text a little bit longer, but the text passes more easily through
2711 several types of gateway, some of which strip off the MSB (Most
2712 Significant Bit).
2713
2714 There are two kinds of character sets: control character sets and
2715 graphic character sets. The former contain control characters such
2716 as `newline' and `escape' to provide control functions (control
2717 functions are also provided by escape sequences). The latter
2718 contain graphic characters such as 'A' and '-'. Emacs recognizes
2719 two control character sets and many graphic character sets.
2720
2721 Graphic character sets are classified into one of the following
2722 four classes, according to the number of bytes (DIMENSION) and
2723 number of characters in one dimension (CHARS) of the set:
2724 - DIMENSION1_CHARS94
2725 - DIMENSION1_CHARS96
2726 - DIMENSION2_CHARS94
2727 - DIMENSION2_CHARS96
2728
2729 In addition, each character set is assigned an identification tag,
2730 unique for each set, called the "final character" (denoted as <F>
2731 hereafter). The <F> of each character set is decided by ECMA(*)
2732 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2733 (0x30..0x3F are for private use only).
2734
2735 Note (*): ECMA = European Computer Manufacturers Association
2736
2737 Here are examples of graphic character sets [NAME(<F>)]:
2738 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2739 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2740 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2741 o DIMENSION2_CHARS96 -- none for the moment
2742
2743 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2744 C0 [0x00..0x1F] -- control character plane 0
2745 GL [0x20..0x7F] -- graphic character plane 0
2746 C1 [0x80..0x9F] -- control character plane 1
2747 GR [0xA0..0xFF] -- graphic character plane 1
2748
2749 A control character set is directly designated and invoked to C0 or
2750 C1 by an escape sequence. The most common case is that:
2751 - ISO646's control character set is designated/invoked to C0, and
2752 - ISO6429's control character set is designated/invoked to C1,
2753 and usually these designations/invocations are omitted in encoded
2754 text. In a 7-bit environment, only C0 can be used, and a control
2755 character for C1 is encoded by an appropriate escape sequence to
2756 fit into the environment. All control characters for C1 are
2757 defined to have corresponding escape sequences.
2758
2759 A graphic character set is at first designated to one of four
2760 graphic registers (G0 through G3), then these graphic registers are
2761 invoked to GL or GR. These designations and invocations can be
2762 done independently. The most common case is that G0 is invoked to
2763 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2764 these invocations and designations are omitted in encoded text.
2765 In a 7-bit environment, only GL can be used.
2766
2767 When a graphic character set of CHARS94 is invoked to GL, codes
2768 0x20 and 0x7F of the GL area work as control characters SPACE and
2769 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2770 be used.
2771
2772 There are two ways of invocation: locking-shift and single-shift.
2773 With locking-shift, the invocation lasts until the next different
2774 invocation, whereas with single-shift, the invocation affects the
2775 following character only and doesn't affect the locking-shift
2776 state. Invocations are done by the following control characters or
2777 escape sequences:
2778
2779 ----------------------------------------------------------------------
2780 abbrev function cntrl escape seq description
2781 ----------------------------------------------------------------------
2782 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2783 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2784 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2785 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2786 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2787 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2788 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2789 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2790 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2791 ----------------------------------------------------------------------
2792 (*) These are not used by any known coding system.
2793
2794 Control characters for these functions are defined by macros
2795 ISO_CODE_XXX in `coding.h'.
2796
2797 Designations are done by the following escape sequences:
2798 ----------------------------------------------------------------------
2799 escape sequence description
2800 ----------------------------------------------------------------------
2801 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2802 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2803 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2804 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2805 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2806 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2807 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2808 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2809 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2810 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2811 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2812 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2813 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2814 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2815 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2816 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2817 ----------------------------------------------------------------------
2818
2819 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2820 of dimension 1, chars 94, and final character <F>, etc...
2821
2822 Note (*): Although these designations are not allowed in ISO2022,
2823 Emacs accepts them on decoding, and produces them on encoding
2824 CHARS96 character sets in a coding system which is characterized as
2825 7-bit environment, non-locking-shift, and non-single-shift.
2826
2827 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2828 '(' must be omitted. We refer to this as "short-form" hereafter.
2829
2830 Now you may notice that there are a lot of ways of encoding the
2831 same multilingual text in ISO2022. Actually, there exist many
2832 coding systems such as Compound Text (used in X11's inter client
2833 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2834 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2835 localized platforms), and all of these are variants of ISO2022.
2836
2837 In addition to the above, Emacs handles two more kinds of escape
2838 sequences: ISO6429's direction specification and Emacs' private
2839 sequence for specifying character composition.
2840
2841 ISO6429's direction specification takes the following form:
2842 o CSI ']' -- end of the current direction
2843 o CSI '0' ']' -- end of the current direction
2844 o CSI '1' ']' -- start of left-to-right text
2845 o CSI '2' ']' -- start of right-to-left text
2846 The control character CSI (0x9B: control sequence introducer) is
2847 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2848
2849 Character composition specification takes the following form:
2850 o ESC '0' -- start relative composition
2851 o ESC '1' -- end composition
2852 o ESC '2' -- start rule-base composition (*)
2853 o ESC '3' -- start relative composition with alternate chars (**)
2854 o ESC '4' -- start rule-base composition with alternate chars (**)
2855 Since these are not standard escape sequences of any ISO standard,
2856 the use of them with these meanings is restricted to Emacs only.
2857
2858 (*) This form is used only in Emacs 20.7 and older versions,
2859 but newer versions can safely decode it.
2860 (**) This form is used only in Emacs 21.1 and newer versions,
2861 and older versions can't decode it.
2862
2863 Here's a list of example usages of these composition escape
2864 sequences (categorized by `enum composition_method').
2865
2866 COMPOSITION_RELATIVE:
2867 ESC 0 CHAR [ CHAR ] ESC 1
2868 COMPOSITION_WITH_RULE:
2869 ESC 2 CHAR [ RULE CHAR ] ESC 1
2870 COMPOSITION_WITH_ALTCHARS:
2871 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2872 COMPOSITION_WITH_RULE_ALTCHARS:
2873 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2874
2875 enum iso_code_class_type iso_code_class[256];
2876
2877 #define SAFE_CHARSET_P(coding, id) \
2878 ((id) <= (coding)->max_charset_id \
2879 && (coding)->safe_charsets[id] != 255)
2880
2881 static void
2882 setup_iso_safe_charsets (Lisp_Object attrs)
2883 {
2884 Lisp_Object charset_list, safe_charsets;
2885 Lisp_Object request;
2886 Lisp_Object reg_usage;
2887 Lisp_Object tail;
2888 int reg94, reg96;
2889 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2890 int max_charset_id;
2891
2892 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2893 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2894 && ! EQ (charset_list, Viso_2022_charset_list))
2895 {
2896 CODING_ATTR_CHARSET_LIST (attrs)
2897 = charset_list = Viso_2022_charset_list;
2898 ASET (attrs, coding_attr_safe_charsets, Qnil);
2899 }
2900
2901 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
2902 return;
2903
2904 max_charset_id = 0;
2905 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2906 {
2907 int id = XINT (XCAR (tail));
2908 if (max_charset_id < id)
2909 max_charset_id = id;
2910 }
2911
2912 safe_charsets = make_uninit_string (max_charset_id + 1);
2913 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
2914 request = AREF (attrs, coding_attr_iso_request);
2915 reg_usage = AREF (attrs, coding_attr_iso_usage);
2916 reg94 = XINT (XCAR (reg_usage));
2917 reg96 = XINT (XCDR (reg_usage));
2918
2919 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2920 {
2921 Lisp_Object id;
2922 Lisp_Object reg;
2923 struct charset *charset;
2924
2925 id = XCAR (tail);
2926 charset = CHARSET_FROM_ID (XINT (id));
2927 reg = Fcdr (Fassq (id, request));
2928 if (! NILP (reg))
2929 SSET (safe_charsets, XINT (id), XINT (reg));
2930 else if (charset->iso_chars_96)
2931 {
2932 if (reg96 < 4)
2933 SSET (safe_charsets, XINT (id), reg96);
2934 }
2935 else
2936 {
2937 if (reg94 < 4)
2938 SSET (safe_charsets, XINT (id), reg94);
2939 }
2940 }
2941 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
2942 }
2943
2944
2945 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2946 Check if a text is encoded in one of ISO-2022 based coding systems.
2947 If it is, return 1, else return 0. */
2948
2949 static int
2950 detect_coding_iso_2022 (struct coding_system *coding,
2951 struct coding_detection_info *detect_info)
2952 {
2953 const unsigned char *src = coding->source, *src_base = src;
2954 const unsigned char *src_end = coding->source + coding->src_bytes;
2955 int multibytep = coding->src_multibyte;
2956 int single_shifting = 0;
2957 int id;
2958 int c, c1;
2959 int consumed_chars = 0;
2960 int i;
2961 int rejected = 0;
2962 int found = 0;
2963 int composition_count = -1;
2964
2965 detect_info->checked |= CATEGORY_MASK_ISO;
2966
2967 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
2968 {
2969 struct coding_system *this = &(coding_categories[i]);
2970 Lisp_Object attrs, val;
2971
2972 if (this->id < 0)
2973 continue;
2974 attrs = CODING_ID_ATTRS (this->id);
2975 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
2976 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
2977 setup_iso_safe_charsets (attrs);
2978 val = CODING_ATTR_SAFE_CHARSETS (attrs);
2979 this->max_charset_id = SCHARS (val) - 1;
2980 this->safe_charsets = SDATA (val);
2981 }
2982
2983 /* A coding system of this category is always ASCII compatible. */
2984 src += coding->head_ascii;
2985
2986 while (rejected != CATEGORY_MASK_ISO)
2987 {
2988 src_base = src;
2989 ONE_MORE_BYTE (c);
2990 switch (c)
2991 {
2992 case ISO_CODE_ESC:
2993 if (inhibit_iso_escape_detection)
2994 break;
2995 single_shifting = 0;
2996 ONE_MORE_BYTE (c);
2997 if (c == 'N' || c == 'O')
2998 {
2999 /* ESC <Fe> for SS2 or SS3. */
3000 single_shifting = 1;
3001 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3002 }
3003 else if (c == '1')
3004 {
3005 /* End of composition. */
3006 if (composition_count < 0
3007 || composition_count > MAX_COMPOSITION_COMPONENTS)
3008 /* Invalid */
3009 break;
3010 composition_count = -1;
3011 found |= CATEGORY_MASK_ISO;
3012 }
3013 else if (c >= '0' && c <= '4')
3014 {
3015 /* ESC <Fp> for start/end composition. */
3016 composition_count = 0;
3017 }
3018 else
3019 {
3020 if (c >= '(' && c <= '/')
3021 {
3022 /* Designation sequence for a charset of dimension 1. */
3023 ONE_MORE_BYTE (c1);
3024 if (c1 < ' ' || c1 >= 0x80
3025 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3026 /* Invalid designation sequence. Just ignore. */
3027 break;
3028 }
3029 else if (c == '$')
3030 {
3031 /* Designation sequence for a charset of dimension 2. */
3032 ONE_MORE_BYTE (c);
3033 if (c >= '@' && c <= 'B')
3034 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3035 id = iso_charset_table[1][0][c];
3036 else if (c >= '(' && c <= '/')
3037 {
3038 ONE_MORE_BYTE (c1);
3039 if (c1 < ' ' || c1 >= 0x80
3040 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3041 /* Invalid designation sequence. Just ignore. */
3042 break;
3043 }
3044 else
3045 /* Invalid designation sequence. Just ignore it. */
3046 break;
3047 }
3048 else
3049 {
3050 /* Invalid escape sequence. Just ignore it. */
3051 break;
3052 }
3053
3054 /* We found a valid designation sequence for CHARSET. */
3055 rejected |= CATEGORY_MASK_ISO_8BIT;
3056 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3057 id))
3058 found |= CATEGORY_MASK_ISO_7;
3059 else
3060 rejected |= CATEGORY_MASK_ISO_7;
3061 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3062 id))
3063 found |= CATEGORY_MASK_ISO_7_TIGHT;
3064 else
3065 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3066 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3067 id))
3068 found |= CATEGORY_MASK_ISO_7_ELSE;
3069 else
3070 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3071 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3072 id))
3073 found |= CATEGORY_MASK_ISO_8_ELSE;
3074 else
3075 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3076 }
3077 break;
3078
3079 case ISO_CODE_SO:
3080 case ISO_CODE_SI:
3081 /* Locking shift out/in. */
3082 if (inhibit_iso_escape_detection)
3083 break;
3084 single_shifting = 0;
3085 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3086 break;
3087
3088 case ISO_CODE_CSI:
3089 /* Control sequence introducer. */
3090 single_shifting = 0;
3091 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3092 found |= CATEGORY_MASK_ISO_8_ELSE;
3093 goto check_extra_latin;
3094
3095 case ISO_CODE_SS2:
3096 case ISO_CODE_SS3:
3097 /* Single shift. */
3098 if (inhibit_iso_escape_detection)
3099 break;
3100 single_shifting = 0;
3101 rejected |= CATEGORY_MASK_ISO_7BIT;
3102 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3103 & CODING_ISO_FLAG_SINGLE_SHIFT)
3104 {
3105 found |= CATEGORY_MASK_ISO_8_1;
3106 single_shifting = 1;
3107 }
3108 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3109 & CODING_ISO_FLAG_SINGLE_SHIFT)
3110 {
3111 found |= CATEGORY_MASK_ISO_8_2;
3112 single_shifting = 1;
3113 }
3114 if (single_shifting)
3115 break;
3116 check_extra_latin:
3117 if (! VECTORP (Vlatin_extra_code_table)
3118 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3119 {
3120 rejected = CATEGORY_MASK_ISO;
3121 break;
3122 }
3123 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3124 & CODING_ISO_FLAG_LATIN_EXTRA)
3125 found |= CATEGORY_MASK_ISO_8_1;
3126 else
3127 rejected |= CATEGORY_MASK_ISO_8_1;
3128 rejected |= CATEGORY_MASK_ISO_8_2;
3129 break;
3130
3131 default:
3132 if (c < 0)
3133 continue;
3134 if (c < 0x80)
3135 {
3136 if (composition_count >= 0)
3137 composition_count++;
3138 single_shifting = 0;
3139 break;
3140 }
3141 if (c >= 0xA0)
3142 {
3143 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3144 found |= CATEGORY_MASK_ISO_8_1;
3145 /* Check the length of succeeding codes of the range
3146 0xA0..0FF. If the byte length is even, we include
3147 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3148 only when we are not single shifting. */
3149 if (! single_shifting
3150 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3151 {
3152 int len = 1;
3153 while (src < src_end)
3154 {
3155 src_base = src;
3156 ONE_MORE_BYTE (c);
3157 if (c < 0xA0)
3158 {
3159 src = src_base;
3160 break;
3161 }
3162 len++;
3163 }
3164
3165 if (len & 1 && src < src_end)
3166 {
3167 rejected |= CATEGORY_MASK_ISO_8_2;
3168 if (composition_count >= 0)
3169 composition_count += len;
3170 }
3171 else
3172 {
3173 found |= CATEGORY_MASK_ISO_8_2;
3174 if (composition_count >= 0)
3175 composition_count += len / 2;
3176 }
3177 }
3178 break;
3179 }
3180 }
3181 }
3182 detect_info->rejected |= CATEGORY_MASK_ISO;
3183 return 0;
3184
3185 no_more_source:
3186 detect_info->rejected |= rejected;
3187 detect_info->found |= (found & ~rejected);
3188 return 1;
3189 }
3190
3191
3192 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3193 escape sequence should be kept. */
3194 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3195 do { \
3196 int id, prev; \
3197 \
3198 if (final < '0' || final >= 128 \
3199 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3200 || !SAFE_CHARSET_P (coding, id)) \
3201 { \
3202 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3203 chars_96 = -1; \
3204 break; \
3205 } \
3206 prev = CODING_ISO_DESIGNATION (coding, reg); \
3207 if (id == charset_jisx0201_roman) \
3208 { \
3209 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3210 id = charset_ascii; \
3211 } \
3212 else if (id == charset_jisx0208_1978) \
3213 { \
3214 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3215 id = charset_jisx0208; \
3216 } \
3217 CODING_ISO_DESIGNATION (coding, reg) = id; \
3218 /* If there was an invalid designation to REG previously, and this \
3219 designation is ASCII to REG, we should keep this designation \
3220 sequence. */ \
3221 if (prev == -2 && id == charset_ascii) \
3222 chars_96 = -1; \
3223 } while (0)
3224
3225
3226 /* Handle these composition sequence (ALT: alternate char):
3227
3228 (1) relative composition: ESC 0 CHAR ... ESC 1
3229 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3230 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3231 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3232
3233 When the start sequence (ESC 0/2/3/4) is found, this annotation
3234 header is produced.
3235
3236 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3237
3238 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3239 produced until the end sequence (ESC 1) is found:
3240
3241 (1) CHAR ... CHAR
3242 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3243 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3244 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3245
3246 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3247 annotation header is updated as below:
3248
3249 (1) LENGTH: unchanged, NCHARS: number of CHARs
3250 (2) LENGTH: unchanged, NCHARS: number of CHARs
3251 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3252 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3253
3254 If an error is found while composing, the annotation header is
3255 changed to:
3256
3257 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3258
3259 and the sequence [ -2 DECODED-RULE ] is changed to the original
3260 byte sequence as below:
3261 o the original byte sequence is B: [ B -1 ]
3262 o the original byte sequence is B1 B2: [ B1 B2 ]
3263 and the sequence [ -1 -1 ] is changed to the original byte
3264 sequence:
3265 [ ESC '0' ]
3266 */
3267
3268 /* Decode a composition rule C1 and maybe one more byte from the
3269 source, and set RULE to the encoded composition rule, NBYTES to the
3270 length of the composition rule. If the rule is invalid, set RULE
3271 to some negative value. */
3272
3273 #define DECODE_COMPOSITION_RULE(rule, nbytes) \
3274 do { \
3275 rule = c1 - 32; \
3276 if (rule < 0) \
3277 break; \
3278 if (rule < 81) /* old format (before ver.21) */ \
3279 { \
3280 int gref = (rule) / 9; \
3281 int nref = (rule) % 9; \
3282 if (gref == 4) gref = 10; \
3283 if (nref == 4) nref = 10; \
3284 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3285 nbytes = 1; \
3286 } \
3287 else /* new format (after ver.21) */ \
3288 { \
3289 int b; \
3290 \
3291 ONE_MORE_BYTE (b); \
3292 rule = COMPOSITION_ENCODE_RULE (rule - 81, b - 32); \
3293 if (rule >= 0) \
3294 rule += 0x100; /* to destinguish it from the old format */ \
3295 nbytes = 2; \
3296 } \
3297 } while (0)
3298
3299 #define ENCODE_COMPOSITION_RULE(rule) \
3300 do { \
3301 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3302 \
3303 if (rule < 0x100) /* old format */ \
3304 { \
3305 if (gref == 10) gref = 4; \
3306 if (nref == 10) nref = 4; \
3307 charbuf[idx] = 32 + gref * 9 + nref; \
3308 charbuf[idx + 1] = -1; \
3309 new_chars++; \
3310 } \
3311 else /* new format */ \
3312 { \
3313 charbuf[idx] = 32 + 81 + gref; \
3314 charbuf[idx + 1] = 32 + nref; \
3315 new_chars += 2; \
3316 } \
3317 } while (0)
3318
3319 /* Finish the current composition as invalid. */
3320
3321 static int finish_composition (int *, struct composition_status *);
3322
3323 static int
3324 finish_composition (int *charbuf, struct composition_status *cmp_status)
3325 {
3326 int idx = - cmp_status->length;
3327 int new_chars;
3328
3329 /* Recover the original ESC sequence */
3330 charbuf[idx++] = ISO_CODE_ESC;
3331 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3332 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3333 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3334 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3335 : '4');
3336 charbuf[idx++] = -2;
3337 charbuf[idx++] = 0;
3338 charbuf[idx++] = -1;
3339 new_chars = cmp_status->nchars;
3340 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3341 for (; idx < 0; idx++)
3342 {
3343 int elt = charbuf[idx];
3344
3345 if (elt == -2)
3346 {
3347 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3348 idx++;
3349 }
3350 else if (elt == -1)
3351 {
3352 charbuf[idx++] = ISO_CODE_ESC;
3353 charbuf[idx] = '0';
3354 new_chars += 2;
3355 }
3356 }
3357 cmp_status->state = COMPOSING_NO;
3358 return new_chars;
3359 }
3360
3361 /* If characters are under composition, finish the composition. */
3362 #define MAYBE_FINISH_COMPOSITION() \
3363 do { \
3364 if (cmp_status->state != COMPOSING_NO) \
3365 char_offset += finish_composition (charbuf, cmp_status); \
3366 } while (0)
3367
3368 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3369
3370 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3371 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3372 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3373 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3374
3375 Produce this annotation sequence now:
3376
3377 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3378 */
3379
3380 #define DECODE_COMPOSITION_START(c1) \
3381 do { \
3382 if (c1 == '0' \
3383 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3384 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3385 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3386 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3387 { \
3388 *charbuf++ = -1; \
3389 *charbuf++= -1; \
3390 cmp_status->state = COMPOSING_CHAR; \
3391 cmp_status->length += 2; \
3392 } \
3393 else \
3394 { \
3395 MAYBE_FINISH_COMPOSITION (); \
3396 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3397 : c1 == '2' ? COMPOSITION_WITH_RULE \
3398 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3399 : COMPOSITION_WITH_RULE_ALTCHARS); \
3400 cmp_status->state \
3401 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3402 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3403 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3404 cmp_status->nchars = cmp_status->ncomps = 0; \
3405 coding->annotated = 1; \
3406 } \
3407 } while (0)
3408
3409
3410 /* Handle composition end sequence ESC 1. */
3411
3412 #define DECODE_COMPOSITION_END() \
3413 do { \
3414 if (cmp_status->nchars == 0 \
3415 || ((cmp_status->state == COMPOSING_CHAR) \
3416 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3417 { \
3418 MAYBE_FINISH_COMPOSITION (); \
3419 goto invalid_code; \
3420 } \
3421 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3422 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3423 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3424 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3425 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3426 char_offset += cmp_status->nchars; \
3427 cmp_status->state = COMPOSING_NO; \
3428 } while (0)
3429
3430 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3431
3432 #define STORE_COMPOSITION_RULE(rule) \
3433 do { \
3434 *charbuf++ = -2; \
3435 *charbuf++ = rule; \
3436 cmp_status->length += 2; \
3437 cmp_status->state--; \
3438 } while (0)
3439
3440 /* Store a composed char or a component char C in charbuf, and update
3441 cmp_status. */
3442
3443 #define STORE_COMPOSITION_CHAR(c) \
3444 do { \
3445 *charbuf++ = (c); \
3446 cmp_status->length++; \
3447 if (cmp_status->state == COMPOSING_CHAR) \
3448 cmp_status->nchars++; \
3449 else \
3450 cmp_status->ncomps++; \
3451 if (cmp_status->method == COMPOSITION_WITH_RULE \
3452 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3453 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3454 cmp_status->state++; \
3455 } while (0)
3456
3457
3458 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3459
3460 static void
3461 decode_coding_iso_2022 (struct coding_system *coding)
3462 {
3463 const unsigned char *src = coding->source + coding->consumed;
3464 const unsigned char *src_end = coding->source + coding->src_bytes;
3465 const unsigned char *src_base;
3466 int *charbuf = coding->charbuf + coding->charbuf_used;
3467 /* We may produce two annotations (charset and composition) in one
3468 loop and one more charset annotation at the end. */
3469 int *charbuf_end
3470 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3471 int consumed_chars = 0, consumed_chars_base;
3472 int multibytep = coding->src_multibyte;
3473 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3474 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3475 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3476 int charset_id_2, charset_id_3;
3477 struct charset *charset;
3478 int c;
3479 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3480 Lisp_Object attrs, charset_list;
3481 int char_offset = coding->produced_char;
3482 int last_offset = char_offset;
3483 int last_id = charset_ascii;
3484 int eol_dos =
3485 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3486 int byte_after_cr = -1;
3487 int i;
3488
3489 CODING_GET_INFO (coding, attrs, charset_list);
3490 setup_iso_safe_charsets (attrs);
3491 /* Charset list may have been changed. */
3492 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
3493 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3494
3495 if (cmp_status->state != COMPOSING_NO)
3496 {
3497 for (i = 0; i < cmp_status->length; i++)
3498 *charbuf++ = cmp_status->carryover[i];
3499 coding->annotated = 1;
3500 }
3501
3502 while (1)
3503 {
3504 int c1, c2, c3;
3505
3506 src_base = src;
3507 consumed_chars_base = consumed_chars;
3508
3509 if (charbuf >= charbuf_end)
3510 {
3511 if (byte_after_cr >= 0)
3512 src_base--;
3513 break;
3514 }
3515
3516 if (byte_after_cr >= 0)
3517 c1 = byte_after_cr, byte_after_cr = -1;
3518 else
3519 ONE_MORE_BYTE (c1);
3520 if (c1 < 0)
3521 goto invalid_code;
3522
3523 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3524 {
3525 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3526 char_offset++;
3527 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3528 continue;
3529 }
3530
3531 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3532 {
3533 if (c1 == ISO_CODE_ESC)
3534 {
3535 if (src + 1 >= src_end)
3536 goto no_more_source;
3537 *charbuf++ = ISO_CODE_ESC;
3538 char_offset++;
3539 if (src[0] == '%' && src[1] == '@')
3540 {
3541 src += 2;
3542 consumed_chars += 2;
3543 char_offset += 2;
3544 /* We are sure charbuf can contain two more chars. */
3545 *charbuf++ = '%';
3546 *charbuf++ = '@';
3547 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3548 }
3549 }
3550 else
3551 {
3552 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3553 char_offset++;
3554 }
3555 continue;
3556 }
3557
3558 if ((cmp_status->state == COMPOSING_RULE
3559 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3560 && c1 != ISO_CODE_ESC)
3561 {
3562 int rule, nbytes;
3563
3564 DECODE_COMPOSITION_RULE (rule, nbytes);
3565 if (rule < 0)
3566 goto invalid_code;
3567 STORE_COMPOSITION_RULE (rule);
3568 continue;
3569 }
3570
3571 /* We produce at most one character. */
3572 switch (iso_code_class [c1])
3573 {
3574 case ISO_0x20_or_0x7F:
3575 if (charset_id_0 < 0
3576 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3577 /* This is SPACE or DEL. */
3578 charset = CHARSET_FROM_ID (charset_ascii);
3579 else
3580 charset = CHARSET_FROM_ID (charset_id_0);
3581 break;
3582
3583 case ISO_graphic_plane_0:
3584 if (charset_id_0 < 0)
3585 charset = CHARSET_FROM_ID (charset_ascii);
3586 else
3587 charset = CHARSET_FROM_ID (charset_id_0);
3588 break;
3589
3590 case ISO_0xA0_or_0xFF:
3591 if (charset_id_1 < 0
3592 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3593 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3594 goto invalid_code;
3595 /* This is a graphic character, we fall down ... */
3596
3597 case ISO_graphic_plane_1:
3598 if (charset_id_1 < 0)
3599 goto invalid_code;
3600 charset = CHARSET_FROM_ID (charset_id_1);
3601 break;
3602
3603 case ISO_control_0:
3604 if (eol_dos && c1 == '\r')
3605 ONE_MORE_BYTE (byte_after_cr);
3606 MAYBE_FINISH_COMPOSITION ();
3607 charset = CHARSET_FROM_ID (charset_ascii);
3608 break;
3609
3610 case ISO_control_1:
3611 goto invalid_code;
3612
3613 case ISO_shift_out:
3614 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3615 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3616 goto invalid_code;
3617 CODING_ISO_INVOCATION (coding, 0) = 1;
3618 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3619 continue;
3620
3621 case ISO_shift_in:
3622 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3623 goto invalid_code;
3624 CODING_ISO_INVOCATION (coding, 0) = 0;
3625 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3626 continue;
3627
3628 case ISO_single_shift_2_7:
3629 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3630 goto invalid_code;
3631 case ISO_single_shift_2:
3632 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3633 goto invalid_code;
3634 /* SS2 is handled as an escape sequence of ESC 'N' */
3635 c1 = 'N';
3636 goto label_escape_sequence;
3637
3638 case ISO_single_shift_3:
3639 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3640 goto invalid_code;
3641 /* SS2 is handled as an escape sequence of ESC 'O' */
3642 c1 = 'O';
3643 goto label_escape_sequence;
3644
3645 case ISO_control_sequence_introducer:
3646 /* CSI is handled as an escape sequence of ESC '[' ... */
3647 c1 = '[';
3648 goto label_escape_sequence;
3649
3650 case ISO_escape:
3651 ONE_MORE_BYTE (c1);
3652 label_escape_sequence:
3653 /* Escape sequences handled here are invocation,
3654 designation, direction specification, and character
3655 composition specification. */
3656 switch (c1)
3657 {
3658 case '&': /* revision of following character set */
3659 ONE_MORE_BYTE (c1);
3660 if (!(c1 >= '@' && c1 <= '~'))
3661 goto invalid_code;
3662 ONE_MORE_BYTE (c1);
3663 if (c1 != ISO_CODE_ESC)
3664 goto invalid_code;
3665 ONE_MORE_BYTE (c1);
3666 goto label_escape_sequence;
3667
3668 case '$': /* designation of 2-byte character set */
3669 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3670 goto invalid_code;
3671 {
3672 int reg, chars96;
3673
3674 ONE_MORE_BYTE (c1);
3675 if (c1 >= '@' && c1 <= 'B')
3676 { /* designation of JISX0208.1978, GB2312.1980,
3677 or JISX0208.1980 */
3678 reg = 0, chars96 = 0;
3679 }
3680 else if (c1 >= 0x28 && c1 <= 0x2B)
3681 { /* designation of DIMENSION2_CHARS94 character set */
3682 reg = c1 - 0x28, chars96 = 0;
3683 ONE_MORE_BYTE (c1);
3684 }
3685 else if (c1 >= 0x2C && c1 <= 0x2F)
3686 { /* designation of DIMENSION2_CHARS96 character set */
3687 reg = c1 - 0x2C, chars96 = 1;
3688 ONE_MORE_BYTE (c1);
3689 }
3690 else
3691 goto invalid_code;
3692 DECODE_DESIGNATION (reg, 2, chars96, c1);
3693 /* We must update these variables now. */
3694 if (reg == 0)
3695 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3696 else if (reg == 1)
3697 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3698 if (chars96 < 0)
3699 goto invalid_code;
3700 }
3701 continue;
3702
3703 case 'n': /* invocation of locking-shift-2 */
3704 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3705 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3706 goto invalid_code;
3707 CODING_ISO_INVOCATION (coding, 0) = 2;
3708 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3709 continue;
3710
3711 case 'o': /* invocation of locking-shift-3 */
3712 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3713 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3714 goto invalid_code;
3715 CODING_ISO_INVOCATION (coding, 0) = 3;
3716 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3717 continue;
3718
3719 case 'N': /* invocation of single-shift-2 */
3720 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3721 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3722 goto invalid_code;
3723 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3724 if (charset_id_2 < 0)
3725 charset = CHARSET_FROM_ID (charset_ascii);
3726 else
3727 charset = CHARSET_FROM_ID (charset_id_2);
3728 ONE_MORE_BYTE (c1);
3729 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3730 goto invalid_code;
3731 break;
3732
3733 case 'O': /* invocation of single-shift-3 */
3734 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3735 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3736 goto invalid_code;
3737 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3738 if (charset_id_3 < 0)
3739 charset = CHARSET_FROM_ID (charset_ascii);
3740 else
3741 charset = CHARSET_FROM_ID (charset_id_3);
3742 ONE_MORE_BYTE (c1);
3743 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3744 goto invalid_code;
3745 break;
3746
3747 case '0': case '2': case '3': case '4': /* start composition */
3748 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3749 goto invalid_code;
3750 if (last_id != charset_ascii)
3751 {
3752 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3753 last_id = charset_ascii;
3754 last_offset = char_offset;
3755 }
3756 DECODE_COMPOSITION_START (c1);
3757 continue;
3758
3759 case '1': /* end composition */
3760 if (cmp_status->state == COMPOSING_NO)
3761 goto invalid_code;
3762 DECODE_COMPOSITION_END ();
3763 continue;
3764
3765 case '[': /* specification of direction */
3766 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3767 goto invalid_code;
3768 /* For the moment, nested direction is not supported.
3769 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3770 left-to-right, and nonzero means right-to-left. */
3771 ONE_MORE_BYTE (c1);
3772 switch (c1)
3773 {
3774 case ']': /* end of the current direction */
3775 coding->mode &= ~CODING_MODE_DIRECTION;
3776
3777 case '0': /* end of the current direction */
3778 case '1': /* start of left-to-right direction */
3779 ONE_MORE_BYTE (c1);
3780 if (c1 == ']')
3781 coding->mode &= ~CODING_MODE_DIRECTION;
3782 else
3783 goto invalid_code;
3784 break;
3785
3786 case '2': /* start of right-to-left direction */
3787 ONE_MORE_BYTE (c1);
3788 if (c1 == ']')
3789 coding->mode |= CODING_MODE_DIRECTION;
3790 else
3791 goto invalid_code;
3792 break;
3793
3794 default:
3795 goto invalid_code;
3796 }
3797 continue;
3798
3799 case '%':
3800 ONE_MORE_BYTE (c1);
3801 if (c1 == '/')
3802 {
3803 /* CTEXT extended segment:
3804 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3805 We keep these bytes as is for the moment.
3806 They may be decoded by post-read-conversion. */
3807 int dim, M, L;
3808 int size;
3809
3810 ONE_MORE_BYTE (dim);
3811 if (dim < '0' || dim > '4')
3812 goto invalid_code;
3813 ONE_MORE_BYTE (M);
3814 if (M < 128)
3815 goto invalid_code;
3816 ONE_MORE_BYTE (L);
3817 if (L < 128)
3818 goto invalid_code;
3819 size = ((M - 128) * 128) + (L - 128);
3820 if (charbuf + 6 > charbuf_end)
3821 goto break_loop;
3822 *charbuf++ = ISO_CODE_ESC;
3823 *charbuf++ = '%';
3824 *charbuf++ = '/';
3825 *charbuf++ = dim;
3826 *charbuf++ = BYTE8_TO_CHAR (M);
3827 *charbuf++ = BYTE8_TO_CHAR (L);
3828 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3829 }
3830 else if (c1 == 'G')
3831 {
3832 /* XFree86 extension for embedding UTF-8 in CTEXT:
3833 ESC % G --UTF-8-BYTES-- ESC % @
3834 We keep these bytes as is for the moment.
3835 They may be decoded by post-read-conversion. */
3836 if (charbuf + 3 > charbuf_end)
3837 goto break_loop;
3838 *charbuf++ = ISO_CODE_ESC;
3839 *charbuf++ = '%';
3840 *charbuf++ = 'G';
3841 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3842 }
3843 else
3844 goto invalid_code;
3845 continue;
3846 break;
3847
3848 default:
3849 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3850 goto invalid_code;
3851 {
3852 int reg, chars96;
3853
3854 if (c1 >= 0x28 && c1 <= 0x2B)
3855 { /* designation of DIMENSION1_CHARS94 character set */
3856 reg = c1 - 0x28, chars96 = 0;
3857 ONE_MORE_BYTE (c1);
3858 }
3859 else if (c1 >= 0x2C && c1 <= 0x2F)
3860 { /* designation of DIMENSION1_CHARS96 character set */
3861 reg = c1 - 0x2C, chars96 = 1;
3862 ONE_MORE_BYTE (c1);
3863 }
3864 else
3865 goto invalid_code;
3866 DECODE_DESIGNATION (reg, 1, chars96, c1);
3867 /* We must update these variables now. */
3868 if (reg == 0)
3869 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3870 else if (reg == 1)
3871 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3872 if (chars96 < 0)
3873 goto invalid_code;
3874 }
3875 continue;
3876 }
3877 break;
3878
3879 default:
3880 abort ();
3881 }
3882
3883 if (cmp_status->state == COMPOSING_NO
3884 && charset->id != charset_ascii
3885 && last_id != charset->id)
3886 {
3887 if (last_id != charset_ascii)
3888 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3889 last_id = charset->id;
3890 last_offset = char_offset;
3891 }
3892
3893 /* Now we know CHARSET and 1st position code C1 of a character.
3894 Produce a decoded character while getting 2nd and 3rd
3895 position codes C2, C3 if necessary. */
3896 if (CHARSET_DIMENSION (charset) > 1)
3897 {
3898 ONE_MORE_BYTE (c2);
3899 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3900 || ((c1 & 0x80) != (c2 & 0x80)))
3901 /* C2 is not in a valid range. */
3902 goto invalid_code;
3903 if (CHARSET_DIMENSION (charset) == 2)
3904 c1 = (c1 << 8) | c2;
3905 else
3906 {
3907 ONE_MORE_BYTE (c3);
3908 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3909 || ((c1 & 0x80) != (c3 & 0x80)))
3910 /* C3 is not in a valid range. */
3911 goto invalid_code;
3912 c1 = (c1 << 16) | (c2 << 8) | c2;
3913 }
3914 }
3915 c1 &= 0x7F7F7F;
3916 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
3917 if (c < 0)
3918 {
3919 MAYBE_FINISH_COMPOSITION ();
3920 for (; src_base < src; src_base++, char_offset++)
3921 {
3922 if (ASCII_BYTE_P (*src_base))
3923 *charbuf++ = *src_base;
3924 else
3925 *charbuf++ = BYTE8_TO_CHAR (*src_base);
3926 }
3927 }
3928 else if (cmp_status->state == COMPOSING_NO)
3929 {
3930 *charbuf++ = c;
3931 char_offset++;
3932 }
3933 else if ((cmp_status->state == COMPOSING_CHAR
3934 ? cmp_status->nchars
3935 : cmp_status->ncomps)
3936 >= MAX_COMPOSITION_COMPONENTS)
3937 {
3938 /* Too long composition. */
3939 MAYBE_FINISH_COMPOSITION ();
3940 *charbuf++ = c;
3941 char_offset++;
3942 }
3943 else
3944 STORE_COMPOSITION_CHAR (c);
3945 continue;
3946
3947 invalid_code:
3948 MAYBE_FINISH_COMPOSITION ();
3949 src = src_base;
3950 consumed_chars = consumed_chars_base;
3951 ONE_MORE_BYTE (c);
3952 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
3953 char_offset++;
3954 coding->errors++;
3955 continue;
3956
3957 break_loop:
3958 break;
3959 }
3960
3961 no_more_source:
3962 if (cmp_status->state != COMPOSING_NO)
3963 {
3964 if (coding->mode & CODING_MODE_LAST_BLOCK)
3965 MAYBE_FINISH_COMPOSITION ();
3966 else
3967 {
3968 charbuf -= cmp_status->length;
3969 for (i = 0; i < cmp_status->length; i++)
3970 cmp_status->carryover[i] = charbuf[i];
3971 }
3972 }
3973 else if (last_id != charset_ascii)
3974 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3975 coding->consumed_char += consumed_chars_base;
3976 coding->consumed = src_base - coding->source;
3977 coding->charbuf_used = charbuf - coding->charbuf;
3978 }
3979
3980
3981 /* ISO2022 encoding stuff. */
3982
3983 /*
3984 It is not enough to say just "ISO2022" on encoding, we have to
3985 specify more details. In Emacs, each coding system of ISO2022
3986 variant has the following specifications:
3987 1. Initial designation to G0 thru G3.
3988 2. Allows short-form designation?
3989 3. ASCII should be designated to G0 before control characters?
3990 4. ASCII should be designated to G0 at end of line?
3991 5. 7-bit environment or 8-bit environment?
3992 6. Use locking-shift?
3993 7. Use Single-shift?
3994 And the following two are only for Japanese:
3995 8. Use ASCII in place of JIS0201-1976-Roman?
3996 9. Use JISX0208-1983 in place of JISX0208-1978?
3997 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
3998 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
3999 details.
4000 */
4001
4002 /* Produce codes (escape sequence) for designating CHARSET to graphic
4003 register REG at DST, and increment DST. If <final-char> of CHARSET is
4004 '@', 'A', or 'B' and the coding system CODING allows, produce
4005 designation sequence of short-form. */
4006
4007 #define ENCODE_DESIGNATION(charset, reg, coding) \
4008 do { \
4009 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4010 const char *intermediate_char_94 = "()*+"; \
4011 const char *intermediate_char_96 = ",-./"; \
4012 int revision = -1; \
4013 \
4014 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4015 revision = CHARSET_ISO_REVISION (charset); \
4016 \
4017 if (revision >= 0) \
4018 { \
4019 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4020 EMIT_ONE_BYTE ('@' + revision); \
4021 } \
4022 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4023 if (CHARSET_DIMENSION (charset) == 1) \
4024 { \
4025 int b; \
4026 if (! CHARSET_ISO_CHARS_96 (charset)) \
4027 b = intermediate_char_94[reg]; \
4028 else \
4029 b = intermediate_char_96[reg]; \
4030 EMIT_ONE_ASCII_BYTE (b); \
4031 } \
4032 else \
4033 { \
4034 EMIT_ONE_ASCII_BYTE ('$'); \
4035 if (! CHARSET_ISO_CHARS_96 (charset)) \
4036 { \
4037 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4038 || reg != 0 \
4039 || final_char < '@' || final_char > 'B') \
4040 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4041 } \
4042 else \
4043 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4044 } \
4045 EMIT_ONE_ASCII_BYTE (final_char); \
4046 \
4047 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4048 } while (0)
4049
4050
4051 /* The following two macros produce codes (control character or escape
4052 sequence) for ISO2022 single-shift functions (single-shift-2 and
4053 single-shift-3). */
4054
4055 #define ENCODE_SINGLE_SHIFT_2 \
4056 do { \
4057 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4058 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4059 else \
4060 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4061 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4062 } while (0)
4063
4064
4065 #define ENCODE_SINGLE_SHIFT_3 \
4066 do { \
4067 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4068 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4069 else \
4070 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4071 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4072 } while (0)
4073
4074
4075 /* The following four macros produce codes (control character or
4076 escape sequence) for ISO2022 locking-shift functions (shift-in,
4077 shift-out, locking-shift-2, and locking-shift-3). */
4078
4079 #define ENCODE_SHIFT_IN \
4080 do { \
4081 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4082 CODING_ISO_INVOCATION (coding, 0) = 0; \
4083 } while (0)
4084
4085
4086 #define ENCODE_SHIFT_OUT \
4087 do { \
4088 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4089 CODING_ISO_INVOCATION (coding, 0) = 1; \
4090 } while (0)
4091
4092
4093 #define ENCODE_LOCKING_SHIFT_2 \
4094 do { \
4095 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4096 CODING_ISO_INVOCATION (coding, 0) = 2; \
4097 } while (0)
4098
4099
4100 #define ENCODE_LOCKING_SHIFT_3 \
4101 do { \
4102 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4103 CODING_ISO_INVOCATION (coding, 0) = 3; \
4104 } while (0)
4105
4106
4107 /* Produce codes for a DIMENSION1 character whose character set is
4108 CHARSET and whose position-code is C1. Designation and invocation
4109 sequences are also produced in advance if necessary. */
4110
4111 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4112 do { \
4113 int id = CHARSET_ID (charset); \
4114 \
4115 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4116 && id == charset_ascii) \
4117 { \
4118 id = charset_jisx0201_roman; \
4119 charset = CHARSET_FROM_ID (id); \
4120 } \
4121 \
4122 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4123 { \
4124 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4125 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4126 else \
4127 EMIT_ONE_BYTE (c1 | 0x80); \
4128 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4129 break; \
4130 } \
4131 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4132 { \
4133 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4134 break; \
4135 } \
4136 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4137 { \
4138 EMIT_ONE_BYTE (c1 | 0x80); \
4139 break; \
4140 } \
4141 else \
4142 /* Since CHARSET is not yet invoked to any graphic planes, we \
4143 must invoke it, or, at first, designate it to some graphic \
4144 register. Then repeat the loop to actually produce the \
4145 character. */ \
4146 dst = encode_invocation_designation (charset, coding, dst, \
4147 &produced_chars); \
4148 } while (1)
4149
4150
4151 /* Produce codes for a DIMENSION2 character whose character set is
4152 CHARSET and whose position-codes are C1 and C2. Designation and
4153 invocation codes are also produced in advance if necessary. */
4154
4155 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4156 do { \
4157 int id = CHARSET_ID (charset); \
4158 \
4159 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4160 && id == charset_jisx0208) \
4161 { \
4162 id = charset_jisx0208_1978; \
4163 charset = CHARSET_FROM_ID (id); \
4164 } \
4165 \
4166 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4167 { \
4168 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4169 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4170 else \
4171 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4172 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4173 break; \
4174 } \
4175 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4176 { \
4177 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4178 break; \
4179 } \
4180 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4181 { \
4182 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4183 break; \
4184 } \
4185 else \
4186 /* Since CHARSET is not yet invoked to any graphic planes, we \
4187 must invoke it, or, at first, designate it to some graphic \
4188 register. Then repeat the loop to actually produce the \
4189 character. */ \
4190 dst = encode_invocation_designation (charset, coding, dst, \
4191 &produced_chars); \
4192 } while (1)
4193
4194
4195 #define ENCODE_ISO_CHARACTER(charset, c) \
4196 do { \
4197 int code = ENCODE_CHAR ((charset), (c)); \
4198 \
4199 if (CHARSET_DIMENSION (charset) == 1) \
4200 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4201 else \
4202 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4203 } while (0)
4204
4205
4206 /* Produce designation and invocation codes at a place pointed by DST
4207 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4208 Return new DST. */
4209
4210 static unsigned char *
4211 encode_invocation_designation (struct charset *charset,
4212 struct coding_system *coding,
4213 unsigned char *dst, int *p_nchars)
4214 {
4215 int multibytep = coding->dst_multibyte;
4216 int produced_chars = *p_nchars;
4217 int reg; /* graphic register number */
4218 int id = CHARSET_ID (charset);
4219
4220 /* At first, check designations. */
4221 for (reg = 0; reg < 4; reg++)
4222 if (id == CODING_ISO_DESIGNATION (coding, reg))
4223 break;
4224
4225 if (reg >= 4)
4226 {
4227 /* CHARSET is not yet designated to any graphic registers. */
4228 /* At first check the requested designation. */
4229 reg = CODING_ISO_REQUEST (coding, id);
4230 if (reg < 0)
4231 /* Since CHARSET requests no special designation, designate it
4232 to graphic register 0. */
4233 reg = 0;
4234
4235 ENCODE_DESIGNATION (charset, reg, coding);
4236 }
4237
4238 if (CODING_ISO_INVOCATION (coding, 0) != reg
4239 && CODING_ISO_INVOCATION (coding, 1) != reg)
4240 {
4241 /* Since the graphic register REG is not invoked to any graphic
4242 planes, invoke it to graphic plane 0. */
4243 switch (reg)
4244 {
4245 case 0: /* graphic register 0 */
4246 ENCODE_SHIFT_IN;
4247 break;
4248
4249 case 1: /* graphic register 1 */
4250 ENCODE_SHIFT_OUT;
4251 break;
4252
4253 case 2: /* graphic register 2 */
4254 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4255 ENCODE_SINGLE_SHIFT_2;
4256 else
4257 ENCODE_LOCKING_SHIFT_2;
4258 break;
4259
4260 case 3: /* graphic register 3 */
4261 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4262 ENCODE_SINGLE_SHIFT_3;
4263 else
4264 ENCODE_LOCKING_SHIFT_3;
4265 break;
4266 }
4267 }
4268
4269 *p_nchars = produced_chars;
4270 return dst;
4271 }
4272
4273
4274 /* Produce codes for designation and invocation to reset the graphic
4275 planes and registers to initial state. */
4276 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4277 do { \
4278 int reg; \
4279 struct charset *charset; \
4280 \
4281 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4282 ENCODE_SHIFT_IN; \
4283 for (reg = 0; reg < 4; reg++) \
4284 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4285 && (CODING_ISO_DESIGNATION (coding, reg) \
4286 != CODING_ISO_INITIAL (coding, reg))) \
4287 { \
4288 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4289 ENCODE_DESIGNATION (charset, reg, coding); \
4290 } \
4291 } while (0)
4292
4293
4294 /* Produce designation sequences of charsets in the line started from
4295 SRC to a place pointed by DST, and return updated DST.
4296
4297 If the current block ends before any end-of-line, we may fail to
4298 find all the necessary designations. */
4299
4300 static unsigned char *
4301 encode_designation_at_bol (struct coding_system *coding, int *charbuf,
4302 int *charbuf_end, unsigned char *dst)
4303 {
4304 struct charset *charset;
4305 /* Table of charsets to be designated to each graphic register. */
4306 int r[4];
4307 int c, found = 0, reg;
4308 int produced_chars = 0;
4309 int multibytep = coding->dst_multibyte;
4310 Lisp_Object attrs;
4311 Lisp_Object charset_list;
4312
4313 attrs = CODING_ID_ATTRS (coding->id);
4314 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4315 if (EQ (charset_list, Qiso_2022))
4316 charset_list = Viso_2022_charset_list;
4317
4318 for (reg = 0; reg < 4; reg++)
4319 r[reg] = -1;
4320
4321 while (found < 4)
4322 {
4323 int id;
4324
4325 c = *charbuf++;
4326 if (c == '\n')
4327 break;
4328 charset = char_charset (c, charset_list, NULL);
4329 id = CHARSET_ID (charset);
4330 reg = CODING_ISO_REQUEST (coding, id);
4331 if (reg >= 0 && r[reg] < 0)
4332 {
4333 found++;
4334 r[reg] = id;
4335 }
4336 }
4337
4338 if (found)
4339 {
4340 for (reg = 0; reg < 4; reg++)
4341 if (r[reg] >= 0
4342 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4343 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4344 }
4345
4346 return dst;
4347 }
4348
4349 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4350
4351 static int
4352 encode_coding_iso_2022 (struct coding_system *coding)
4353 {
4354 int multibytep = coding->dst_multibyte;
4355 int *charbuf = coding->charbuf;
4356 int *charbuf_end = charbuf + coding->charbuf_used;
4357 unsigned char *dst = coding->destination + coding->produced;
4358 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4359 int safe_room = 16;
4360 int bol_designation
4361 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4362 && CODING_ISO_BOL (coding));
4363 int produced_chars = 0;
4364 Lisp_Object attrs, eol_type, charset_list;
4365 int ascii_compatible;
4366 int c;
4367 int preferred_charset_id = -1;
4368
4369 CODING_GET_INFO (coding, attrs, charset_list);
4370 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4371 if (VECTORP (eol_type))
4372 eol_type = Qunix;
4373
4374 setup_iso_safe_charsets (attrs);
4375 /* Charset list may have been changed. */
4376 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4377 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4378
4379 ascii_compatible
4380 = (! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
4381 && ! (CODING_ISO_FLAGS (coding) & (CODING_ISO_FLAG_DESIGNATION
4382 | CODING_ISO_FLAG_LOCKING_SHIFT)));
4383
4384 while (charbuf < charbuf_end)
4385 {
4386 ASSURE_DESTINATION (safe_room);
4387
4388 if (bol_designation)
4389 {
4390 unsigned char *dst_prev = dst;
4391
4392 /* We have to produce designation sequences if any now. */
4393 dst = encode_designation_at_bol (coding, charbuf, charbuf_end, dst);
4394 bol_designation = 0;
4395 /* We are sure that designation sequences are all ASCII bytes. */
4396 produced_chars += dst - dst_prev;
4397 }
4398
4399 c = *charbuf++;
4400
4401 if (c < 0)
4402 {
4403 /* Handle an annotation. */
4404 switch (*charbuf)
4405 {
4406 case CODING_ANNOTATE_COMPOSITION_MASK:
4407 /* Not yet implemented. */
4408 break;
4409 case CODING_ANNOTATE_CHARSET_MASK:
4410 preferred_charset_id = charbuf[2];
4411 if (preferred_charset_id >= 0
4412 && NILP (Fmemq (make_number (preferred_charset_id),
4413 charset_list)))
4414 preferred_charset_id = -1;
4415 break;
4416 default:
4417 abort ();
4418 }
4419 charbuf += -c - 1;
4420 continue;
4421 }
4422
4423 /* Now encode the character C. */
4424 if (c < 0x20 || c == 0x7F)
4425 {
4426 if (c == '\n'
4427 || (c == '\r' && EQ (eol_type, Qmac)))
4428 {
4429 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4430 ENCODE_RESET_PLANE_AND_REGISTER ();
4431 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4432 {
4433 int i;
4434
4435 for (i = 0; i < 4; i++)
4436 CODING_ISO_DESIGNATION (coding, i)
4437 = CODING_ISO_INITIAL (coding, i);
4438 }
4439 bol_designation
4440 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4441 }
4442 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4443 ENCODE_RESET_PLANE_AND_REGISTER ();
4444 EMIT_ONE_ASCII_BYTE (c);
4445 }
4446 else if (ASCII_CHAR_P (c))
4447 {
4448 if (ascii_compatible)
4449 EMIT_ONE_ASCII_BYTE (c);
4450 else
4451 {
4452 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4453 ENCODE_ISO_CHARACTER (charset, c);
4454 }
4455 }
4456 else if (CHAR_BYTE8_P (c))
4457 {
4458 c = CHAR_TO_BYTE8 (c);
4459 EMIT_ONE_BYTE (c);
4460 }
4461 else
4462 {
4463 struct charset *charset;
4464
4465 if (preferred_charset_id >= 0)
4466 {
4467 charset = CHARSET_FROM_ID (preferred_charset_id);
4468 if (! CHAR_CHARSET_P (c, charset))
4469 charset = char_charset (c, charset_list, NULL);
4470 }
4471 else
4472 charset = char_charset (c, charset_list, NULL);
4473 if (!charset)
4474 {
4475 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4476 {
4477 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4478 charset = CHARSET_FROM_ID (charset_ascii);
4479 }
4480 else
4481 {
4482 c = coding->default_char;
4483 charset = char_charset (c, charset_list, NULL);
4484 }
4485 }
4486 ENCODE_ISO_CHARACTER (charset, c);
4487 }
4488 }
4489
4490 if (coding->mode & CODING_MODE_LAST_BLOCK
4491 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4492 {
4493 ASSURE_DESTINATION (safe_room);
4494 ENCODE_RESET_PLANE_AND_REGISTER ();
4495 }
4496 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4497 CODING_ISO_BOL (coding) = bol_designation;
4498 coding->produced_char += produced_chars;
4499 coding->produced = dst - coding->destination;
4500 return 0;
4501 }
4502
4503 \f
4504 /*** 8,9. SJIS and BIG5 handlers ***/
4505
4506 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4507 quite widely. So, for the moment, Emacs supports them in the bare
4508 C code. But, in the future, they may be supported only by CCL. */
4509
4510 /* SJIS is a coding system encoding three character sets: ASCII, right
4511 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4512 as is. A character of charset katakana-jisx0201 is encoded by
4513 "position-code + 0x80". A character of charset japanese-jisx0208
4514 is encoded in 2-byte but two position-codes are divided and shifted
4515 so that it fit in the range below.
4516
4517 --- CODE RANGE of SJIS ---
4518 (character set) (range)
4519 ASCII 0x00 .. 0x7F
4520 KATAKANA-JISX0201 0xA0 .. 0xDF
4521 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4522 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4523 -------------------------------
4524
4525 */
4526
4527 /* BIG5 is a coding system encoding two character sets: ASCII and
4528 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4529 character set and is encoded in two-byte.
4530
4531 --- CODE RANGE of BIG5 ---
4532 (character set) (range)
4533 ASCII 0x00 .. 0x7F
4534 Big5 (1st byte) 0xA1 .. 0xFE
4535 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4536 --------------------------
4537
4538 */
4539
4540 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4541 Check if a text is encoded in SJIS. If it is, return
4542 CATEGORY_MASK_SJIS, else return 0. */
4543
4544 static int
4545 detect_coding_sjis (struct coding_system *coding,
4546 struct coding_detection_info *detect_info)
4547 {
4548 const unsigned char *src = coding->source, *src_base;
4549 const unsigned char *src_end = coding->source + coding->src_bytes;
4550 int multibytep = coding->src_multibyte;
4551 int consumed_chars = 0;
4552 int found = 0;
4553 int c;
4554 Lisp_Object attrs, charset_list;
4555 int max_first_byte_of_2_byte_code;
4556
4557 CODING_GET_INFO (coding, attrs, charset_list);
4558 max_first_byte_of_2_byte_code
4559 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4560
4561 detect_info->checked |= CATEGORY_MASK_SJIS;
4562 /* A coding system of this category is always ASCII compatible. */
4563 src += coding->head_ascii;
4564
4565 while (1)
4566 {
4567 src_base = src;
4568 ONE_MORE_BYTE (c);
4569 if (c < 0x80)
4570 continue;
4571 if ((c >= 0x81 && c <= 0x9F)
4572 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4573 {
4574 ONE_MORE_BYTE (c);
4575 if (c < 0x40 || c == 0x7F || c > 0xFC)
4576 break;
4577 found = CATEGORY_MASK_SJIS;
4578 }
4579 else if (c >= 0xA0 && c < 0xE0)
4580 found = CATEGORY_MASK_SJIS;
4581 else
4582 break;
4583 }
4584 detect_info->rejected |= CATEGORY_MASK_SJIS;
4585 return 0;
4586
4587 no_more_source:
4588 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4589 {
4590 detect_info->rejected |= CATEGORY_MASK_SJIS;
4591 return 0;
4592 }
4593 detect_info->found |= found;
4594 return 1;
4595 }
4596
4597 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4598 Check if a text is encoded in BIG5. If it is, return
4599 CATEGORY_MASK_BIG5, else return 0. */
4600
4601 static int
4602 detect_coding_big5 (struct coding_system *coding,
4603 struct coding_detection_info *detect_info)
4604 {
4605 const unsigned char *src = coding->source, *src_base;
4606 const unsigned char *src_end = coding->source + coding->src_bytes;
4607 int multibytep = coding->src_multibyte;
4608 int consumed_chars = 0;
4609 int found = 0;
4610 int c;
4611
4612 detect_info->checked |= CATEGORY_MASK_BIG5;
4613 /* A coding system of this category is always ASCII compatible. */
4614 src += coding->head_ascii;
4615
4616 while (1)
4617 {
4618 src_base = src;
4619 ONE_MORE_BYTE (c);
4620 if (c < 0x80)
4621 continue;
4622 if (c >= 0xA1)
4623 {
4624 ONE_MORE_BYTE (c);
4625 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4626 return 0;
4627 found = CATEGORY_MASK_BIG5;
4628 }
4629 else
4630 break;
4631 }
4632 detect_info->rejected |= CATEGORY_MASK_BIG5;
4633 return 0;
4634
4635 no_more_source:
4636 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4637 {
4638 detect_info->rejected |= CATEGORY_MASK_BIG5;
4639 return 0;
4640 }
4641 detect_info->found |= found;
4642 return 1;
4643 }
4644
4645 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4646 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4647
4648 static void
4649 decode_coding_sjis (struct coding_system *coding)
4650 {
4651 const unsigned char *src = coding->source + coding->consumed;
4652 const unsigned char *src_end = coding->source + coding->src_bytes;
4653 const unsigned char *src_base;
4654 int *charbuf = coding->charbuf + coding->charbuf_used;
4655 /* We may produce one charset annotation in one loop and one more at
4656 the end. */
4657 int *charbuf_end
4658 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4659 int consumed_chars = 0, consumed_chars_base;
4660 int multibytep = coding->src_multibyte;
4661 struct charset *charset_roman, *charset_kanji, *charset_kana;
4662 struct charset *charset_kanji2;
4663 Lisp_Object attrs, charset_list, val;
4664 int char_offset = coding->produced_char;
4665 int last_offset = char_offset;
4666 int last_id = charset_ascii;
4667 int eol_dos =
4668 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4669 int byte_after_cr = -1;
4670
4671 CODING_GET_INFO (coding, attrs, charset_list);
4672
4673 val = charset_list;
4674 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4675 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4676 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4677 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4678
4679 while (1)
4680 {
4681 int c, c1;
4682 struct charset *charset;
4683
4684 src_base = src;
4685 consumed_chars_base = consumed_chars;
4686
4687 if (charbuf >= charbuf_end)
4688 {
4689 if (byte_after_cr >= 0)
4690 src_base--;
4691 break;
4692 }
4693
4694 if (byte_after_cr >= 0)
4695 c = byte_after_cr, byte_after_cr = -1;
4696 else
4697 ONE_MORE_BYTE (c);
4698 if (c < 0)
4699 goto invalid_code;
4700 if (c < 0x80)
4701 {
4702 if (eol_dos && c == '\r')
4703 ONE_MORE_BYTE (byte_after_cr);
4704 charset = charset_roman;
4705 }
4706 else if (c == 0x80 || c == 0xA0)
4707 goto invalid_code;
4708 else if (c >= 0xA1 && c <= 0xDF)
4709 {
4710 /* SJIS -> JISX0201-Kana */
4711 c &= 0x7F;
4712 charset = charset_kana;
4713 }
4714 else if (c <= 0xEF)
4715 {
4716 /* SJIS -> JISX0208 */
4717 ONE_MORE_BYTE (c1);
4718 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4719 goto invalid_code;
4720 c = (c << 8) | c1;
4721 SJIS_TO_JIS (c);
4722 charset = charset_kanji;
4723 }
4724 else if (c <= 0xFC && charset_kanji2)
4725 {
4726 /* SJIS -> JISX0213-2 */
4727 ONE_MORE_BYTE (c1);
4728 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4729 goto invalid_code;
4730 c = (c << 8) | c1;
4731 SJIS_TO_JIS2 (c);
4732 charset = charset_kanji2;
4733 }
4734 else
4735 goto invalid_code;
4736 if (charset->id != charset_ascii
4737 && last_id != charset->id)
4738 {
4739 if (last_id != charset_ascii)
4740 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4741 last_id = charset->id;
4742 last_offset = char_offset;
4743 }
4744 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4745 *charbuf++ = c;
4746 char_offset++;
4747 continue;
4748
4749 invalid_code:
4750 src = src_base;
4751 consumed_chars = consumed_chars_base;
4752 ONE_MORE_BYTE (c);
4753 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4754 char_offset++;
4755 coding->errors++;
4756 }
4757
4758 no_more_source:
4759 if (last_id != charset_ascii)
4760 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4761 coding->consumed_char += consumed_chars_base;
4762 coding->consumed = src_base - coding->source;
4763 coding->charbuf_used = charbuf - coding->charbuf;
4764 }
4765
4766 static void
4767 decode_coding_big5 (struct coding_system *coding)
4768 {
4769 const unsigned char *src = coding->source + coding->consumed;
4770 const unsigned char *src_end = coding->source + coding->src_bytes;
4771 const unsigned char *src_base;
4772 int *charbuf = coding->charbuf + coding->charbuf_used;
4773 /* We may produce one charset annotation in one loop and one more at
4774 the end. */
4775 int *charbuf_end
4776 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4777 int consumed_chars = 0, consumed_chars_base;
4778 int multibytep = coding->src_multibyte;
4779 struct charset *charset_roman, *charset_big5;
4780 Lisp_Object attrs, charset_list, val;
4781 int char_offset = coding->produced_char;
4782 int last_offset = char_offset;
4783 int last_id = charset_ascii;
4784 int eol_dos =
4785 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4786 int byte_after_cr = -1;
4787
4788 CODING_GET_INFO (coding, attrs, charset_list);
4789 val = charset_list;
4790 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4791 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4792
4793 while (1)
4794 {
4795 int c, c1;
4796 struct charset *charset;
4797
4798 src_base = src;
4799 consumed_chars_base = consumed_chars;
4800
4801 if (charbuf >= charbuf_end)
4802 {
4803 if (byte_after_cr >= 0)
4804 src_base--;
4805 break;
4806 }
4807
4808 if (byte_after_cr >= 0)
4809 c = byte_after_cr, byte_after_cr = -1;
4810 else
4811 ONE_MORE_BYTE (c);
4812
4813 if (c < 0)
4814 goto invalid_code;
4815 if (c < 0x80)
4816 {
4817 if (eol_dos && c == '\r')
4818 ONE_MORE_BYTE (byte_after_cr);
4819 charset = charset_roman;
4820 }
4821 else
4822 {
4823 /* BIG5 -> Big5 */
4824 if (c < 0xA1 || c > 0xFE)
4825 goto invalid_code;
4826 ONE_MORE_BYTE (c1);
4827 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4828 goto invalid_code;
4829 c = c << 8 | c1;
4830 charset = charset_big5;
4831 }
4832 if (charset->id != charset_ascii
4833 && last_id != charset->id)
4834 {
4835 if (last_id != charset_ascii)
4836 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4837 last_id = charset->id;
4838 last_offset = char_offset;
4839 }
4840 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4841 *charbuf++ = c;
4842 char_offset++;
4843 continue;
4844
4845 invalid_code:
4846 src = src_base;
4847 consumed_chars = consumed_chars_base;
4848 ONE_MORE_BYTE (c);
4849 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4850 char_offset++;
4851 coding->errors++;
4852 }
4853
4854 no_more_source:
4855 if (last_id != charset_ascii)
4856 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4857 coding->consumed_char += consumed_chars_base;
4858 coding->consumed = src_base - coding->source;
4859 coding->charbuf_used = charbuf - coding->charbuf;
4860 }
4861
4862 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4863 This function can encode charsets `ascii', `katakana-jisx0201',
4864 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4865 are sure that all these charsets are registered as official charset
4866 (i.e. do not have extended leading-codes). Characters of other
4867 charsets are produced without any encoding. If SJIS_P is 1, encode
4868 SJIS text, else encode BIG5 text. */
4869
4870 static int
4871 encode_coding_sjis (struct coding_system *coding)
4872 {
4873 int multibytep = coding->dst_multibyte;
4874 int *charbuf = coding->charbuf;
4875 int *charbuf_end = charbuf + coding->charbuf_used;
4876 unsigned char *dst = coding->destination + coding->produced;
4877 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4878 int safe_room = 4;
4879 int produced_chars = 0;
4880 Lisp_Object attrs, charset_list, val;
4881 int ascii_compatible;
4882 struct charset *charset_roman, *charset_kanji, *charset_kana;
4883 struct charset *charset_kanji2;
4884 int c;
4885
4886 CODING_GET_INFO (coding, attrs, charset_list);
4887 val = charset_list;
4888 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4889 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4890 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4891 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4892
4893 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4894
4895 while (charbuf < charbuf_end)
4896 {
4897 ASSURE_DESTINATION (safe_room);
4898 c = *charbuf++;
4899 /* Now encode the character C. */
4900 if (ASCII_CHAR_P (c) && ascii_compatible)
4901 EMIT_ONE_ASCII_BYTE (c);
4902 else if (CHAR_BYTE8_P (c))
4903 {
4904 c = CHAR_TO_BYTE8 (c);
4905 EMIT_ONE_BYTE (c);
4906 }
4907 else
4908 {
4909 unsigned code;
4910 struct charset *charset = char_charset (c, charset_list, &code);
4911
4912 if (!charset)
4913 {
4914 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4915 {
4916 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4917 charset = CHARSET_FROM_ID (charset_ascii);
4918 }
4919 else
4920 {
4921 c = coding->default_char;
4922 charset = char_charset (c, charset_list, &code);
4923 }
4924 }
4925 if (code == CHARSET_INVALID_CODE (charset))
4926 abort ();
4927 if (charset == charset_kanji)
4928 {
4929 int c1, c2;
4930 JIS_TO_SJIS (code);
4931 c1 = code >> 8, c2 = code & 0xFF;
4932 EMIT_TWO_BYTES (c1, c2);
4933 }
4934 else if (charset == charset_kana)
4935 EMIT_ONE_BYTE (code | 0x80);
4936 else if (charset_kanji2 && charset == charset_kanji2)
4937 {
4938 int c1, c2;
4939
4940 c1 = code >> 8;
4941 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
4942 || c1 == 0x28
4943 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
4944 {
4945 JIS_TO_SJIS2 (code);
4946 c1 = code >> 8, c2 = code & 0xFF;
4947 EMIT_TWO_BYTES (c1, c2);
4948 }
4949 else
4950 EMIT_ONE_ASCII_BYTE (code & 0x7F);
4951 }
4952 else
4953 EMIT_ONE_ASCII_BYTE (code & 0x7F);
4954 }
4955 }
4956 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4957 coding->produced_char += produced_chars;
4958 coding->produced = dst - coding->destination;
4959 return 0;
4960 }
4961
4962 static int
4963 encode_coding_big5 (struct coding_system *coding)
4964 {
4965 int multibytep = coding->dst_multibyte;
4966 int *charbuf = coding->charbuf;
4967 int *charbuf_end = charbuf + coding->charbuf_used;
4968 unsigned char *dst = coding->destination + coding->produced;
4969 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4970 int safe_room = 4;
4971 int produced_chars = 0;
4972 Lisp_Object attrs, charset_list, val;
4973 int ascii_compatible;
4974 struct charset *charset_roman, *charset_big5;
4975 int c;
4976
4977 CODING_GET_INFO (coding, attrs, charset_list);
4978 val = charset_list;
4979 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4980 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4981 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4982
4983 while (charbuf < charbuf_end)
4984 {
4985 ASSURE_DESTINATION (safe_room);
4986 c = *charbuf++;
4987 /* Now encode the character C. */
4988 if (ASCII_CHAR_P (c) && ascii_compatible)
4989 EMIT_ONE_ASCII_BYTE (c);
4990 else if (CHAR_BYTE8_P (c))
4991 {
4992 c = CHAR_TO_BYTE8 (c);
4993 EMIT_ONE_BYTE (c);
4994 }
4995 else
4996 {
4997 unsigned code;
4998 struct charset *charset = char_charset (c, charset_list, &code);
4999
5000 if (! charset)
5001 {
5002 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5003 {
5004 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5005 charset = CHARSET_FROM_ID (charset_ascii);
5006 }
5007 else
5008 {
5009 c = coding->default_char;
5010 charset = char_charset (c, charset_list, &code);
5011 }
5012 }
5013 if (code == CHARSET_INVALID_CODE (charset))
5014 abort ();
5015 if (charset == charset_big5)
5016 {
5017 int c1, c2;
5018
5019 c1 = code >> 8, c2 = code & 0xFF;
5020 EMIT_TWO_BYTES (c1, c2);
5021 }
5022 else
5023 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5024 }
5025 }
5026 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5027 coding->produced_char += produced_chars;
5028 coding->produced = dst - coding->destination;
5029 return 0;
5030 }
5031
5032 \f
5033 /*** 10. CCL handlers ***/
5034
5035 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5036 Check if a text is encoded in a coding system of which
5037 encoder/decoder are written in CCL program. If it is, return
5038 CATEGORY_MASK_CCL, else return 0. */
5039
5040 static int
5041 detect_coding_ccl (struct coding_system *coding,
5042 struct coding_detection_info *detect_info)
5043 {
5044 const unsigned char *src = coding->source, *src_base;
5045 const unsigned char *src_end = coding->source + coding->src_bytes;
5046 int multibytep = coding->src_multibyte;
5047 int consumed_chars = 0;
5048 int found = 0;
5049 unsigned char *valids;
5050 int head_ascii = coding->head_ascii;
5051 Lisp_Object attrs;
5052
5053 detect_info->checked |= CATEGORY_MASK_CCL;
5054
5055 coding = &coding_categories[coding_category_ccl];
5056 valids = CODING_CCL_VALIDS (coding);
5057 attrs = CODING_ID_ATTRS (coding->id);
5058 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5059 src += head_ascii;
5060
5061 while (1)
5062 {
5063 int c;
5064
5065 src_base = src;
5066 ONE_MORE_BYTE (c);
5067 if (c < 0 || ! valids[c])
5068 break;
5069 if ((valids[c] > 1))
5070 found = CATEGORY_MASK_CCL;
5071 }
5072 detect_info->rejected |= CATEGORY_MASK_CCL;
5073 return 0;
5074
5075 no_more_source:
5076 detect_info->found |= found;
5077 return 1;
5078 }
5079
5080 static void
5081 decode_coding_ccl (struct coding_system *coding)
5082 {
5083 const unsigned char *src = coding->source + coding->consumed;
5084 const unsigned char *src_end = coding->source + coding->src_bytes;
5085 int *charbuf = coding->charbuf + coding->charbuf_used;
5086 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5087 int consumed_chars = 0;
5088 int multibytep = coding->src_multibyte;
5089 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5090 int source_charbuf[1024];
5091 int source_byteidx[1025];
5092 Lisp_Object attrs, charset_list;
5093
5094 CODING_GET_INFO (coding, attrs, charset_list);
5095
5096 while (1)
5097 {
5098 const unsigned char *p = src;
5099 int i = 0;
5100
5101 if (multibytep)
5102 {
5103 while (i < 1024 && p < src_end)
5104 {
5105 source_byteidx[i] = p - src;
5106 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5107 }
5108 source_byteidx[i] = p - src;
5109 }
5110 else
5111 while (i < 1024 && p < src_end)
5112 source_charbuf[i++] = *p++;
5113
5114 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5115 ccl->last_block = 1;
5116 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5117 charset_list);
5118 charbuf += ccl->produced;
5119 if (multibytep)
5120 src += source_byteidx[ccl->consumed];
5121 else
5122 src += ccl->consumed;
5123 consumed_chars += ccl->consumed;
5124 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5125 break;
5126 }
5127
5128 switch (ccl->status)
5129 {
5130 case CCL_STAT_SUSPEND_BY_SRC:
5131 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5132 break;
5133 case CCL_STAT_SUSPEND_BY_DST:
5134 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5135 break;
5136 case CCL_STAT_QUIT:
5137 case CCL_STAT_INVALID_CMD:
5138 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5139 break;
5140 default:
5141 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5142 break;
5143 }
5144 coding->consumed_char += consumed_chars;
5145 coding->consumed = src - coding->source;
5146 coding->charbuf_used = charbuf - coding->charbuf;
5147 }
5148
5149 static int
5150 encode_coding_ccl (struct coding_system *coding)
5151 {
5152 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5153 int multibytep = coding->dst_multibyte;
5154 int *charbuf = coding->charbuf;
5155 int *charbuf_end = charbuf + coding->charbuf_used;
5156 unsigned char *dst = coding->destination + coding->produced;
5157 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5158 int destination_charbuf[1024];
5159 int i, produced_chars = 0;
5160 Lisp_Object attrs, charset_list;
5161
5162 CODING_GET_INFO (coding, attrs, charset_list);
5163 if (coding->consumed_char == coding->src_chars
5164 && coding->mode & CODING_MODE_LAST_BLOCK)
5165 ccl->last_block = 1;
5166
5167 while (charbuf < charbuf_end)
5168 {
5169 ccl_driver (ccl, charbuf, destination_charbuf,
5170 charbuf_end - charbuf, 1024, charset_list);
5171 if (multibytep)
5172 {
5173 ASSURE_DESTINATION (ccl->produced * 2);
5174 for (i = 0; i < ccl->produced; i++)
5175 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5176 }
5177 else
5178 {
5179 ASSURE_DESTINATION (ccl->produced);
5180 for (i = 0; i < ccl->produced; i++)
5181 *dst++ = destination_charbuf[i] & 0xFF;
5182 produced_chars += ccl->produced;
5183 }
5184 charbuf += ccl->consumed;
5185 if (ccl->status == CCL_STAT_QUIT
5186 || ccl->status == CCL_STAT_INVALID_CMD)
5187 break;
5188 }
5189
5190 switch (ccl->status)
5191 {
5192 case CCL_STAT_SUSPEND_BY_SRC:
5193 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5194 break;
5195 case CCL_STAT_SUSPEND_BY_DST:
5196 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5197 break;
5198 case CCL_STAT_QUIT:
5199 case CCL_STAT_INVALID_CMD:
5200 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5201 break;
5202 default:
5203 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5204 break;
5205 }
5206
5207 coding->produced_char += produced_chars;
5208 coding->produced = dst - coding->destination;
5209 return 0;
5210 }
5211
5212
5213 \f
5214 /*** 10, 11. no-conversion handlers ***/
5215
5216 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5217
5218 static void
5219 decode_coding_raw_text (struct coding_system *coding)
5220 {
5221 int eol_dos =
5222 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5223
5224 coding->chars_at_source = 1;
5225 coding->consumed_char = coding->src_chars;
5226 coding->consumed = coding->src_bytes;
5227 if (eol_dos && coding->source[coding->src_bytes - 1] == '\r')
5228 {
5229 coding->consumed_char--;
5230 coding->consumed--;
5231 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5232 }
5233 else
5234 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5235 }
5236
5237 static int
5238 encode_coding_raw_text (struct coding_system *coding)
5239 {
5240 int multibytep = coding->dst_multibyte;
5241 int *charbuf = coding->charbuf;
5242 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5243 unsigned char *dst = coding->destination + coding->produced;
5244 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5245 int produced_chars = 0;
5246 int c;
5247
5248 if (multibytep)
5249 {
5250 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5251
5252 if (coding->src_multibyte)
5253 while (charbuf < charbuf_end)
5254 {
5255 ASSURE_DESTINATION (safe_room);
5256 c = *charbuf++;
5257 if (ASCII_CHAR_P (c))
5258 EMIT_ONE_ASCII_BYTE (c);
5259 else if (CHAR_BYTE8_P (c))
5260 {
5261 c = CHAR_TO_BYTE8 (c);
5262 EMIT_ONE_BYTE (c);
5263 }
5264 else
5265 {
5266 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5267
5268 CHAR_STRING_ADVANCE (c, p1);
5269 do
5270 {
5271 EMIT_ONE_BYTE (*p0);
5272 p0++;
5273 }
5274 while (p0 < p1);
5275 }
5276 }
5277 else
5278 while (charbuf < charbuf_end)
5279 {
5280 ASSURE_DESTINATION (safe_room);
5281 c = *charbuf++;
5282 EMIT_ONE_BYTE (c);
5283 }
5284 }
5285 else
5286 {
5287 if (coding->src_multibyte)
5288 {
5289 int safe_room = MAX_MULTIBYTE_LENGTH;
5290
5291 while (charbuf < charbuf_end)
5292 {
5293 ASSURE_DESTINATION (safe_room);
5294 c = *charbuf++;
5295 if (ASCII_CHAR_P (c))
5296 *dst++ = c;
5297 else if (CHAR_BYTE8_P (c))
5298 *dst++ = CHAR_TO_BYTE8 (c);
5299 else
5300 CHAR_STRING_ADVANCE (c, dst);
5301 }
5302 }
5303 else
5304 {
5305 ASSURE_DESTINATION (charbuf_end - charbuf);
5306 while (charbuf < charbuf_end && dst < dst_end)
5307 *dst++ = *charbuf++;
5308 }
5309 produced_chars = dst - (coding->destination + coding->produced);
5310 }
5311 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5312 coding->produced_char += produced_chars;
5313 coding->produced = dst - coding->destination;
5314 return 0;
5315 }
5316
5317 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5318 Check if a text is encoded in a charset-based coding system. If it
5319 is, return 1, else return 0. */
5320
5321 static int
5322 detect_coding_charset (struct coding_system *coding,
5323 struct coding_detection_info *detect_info)
5324 {
5325 const unsigned char *src = coding->source, *src_base;
5326 const unsigned char *src_end = coding->source + coding->src_bytes;
5327 int multibytep = coding->src_multibyte;
5328 int consumed_chars = 0;
5329 Lisp_Object attrs, valids, name;
5330 int found = 0;
5331 int head_ascii = coding->head_ascii;
5332 int check_latin_extra = 0;
5333
5334 detect_info->checked |= CATEGORY_MASK_CHARSET;
5335
5336 coding = &coding_categories[coding_category_charset];
5337 attrs = CODING_ID_ATTRS (coding->id);
5338 valids = AREF (attrs, coding_attr_charset_valids);
5339 name = CODING_ID_NAME (coding->id);
5340 if (strncmp (SSDATA (SYMBOL_NAME (name)),
5341 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5342 || strncmp (SSDATA (SYMBOL_NAME (name)),
5343 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5344 check_latin_extra = 1;
5345
5346 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5347 src += head_ascii;
5348
5349 while (1)
5350 {
5351 int c;
5352 Lisp_Object val;
5353 struct charset *charset;
5354 int dim, idx;
5355
5356 src_base = src;
5357 ONE_MORE_BYTE (c);
5358 if (c < 0)
5359 continue;
5360 val = AREF (valids, c);
5361 if (NILP (val))
5362 break;
5363 if (c >= 0x80)
5364 {
5365 if (c < 0xA0
5366 && check_latin_extra
5367 && (!VECTORP (Vlatin_extra_code_table)
5368 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5369 break;
5370 found = CATEGORY_MASK_CHARSET;
5371 }
5372 if (INTEGERP (val))
5373 {
5374 charset = CHARSET_FROM_ID (XFASTINT (val));
5375 dim = CHARSET_DIMENSION (charset);
5376 for (idx = 1; idx < dim; idx++)
5377 {
5378 if (src == src_end)
5379 goto too_short;
5380 ONE_MORE_BYTE (c);
5381 if (c < charset->code_space[(dim - 1 - idx) * 2]
5382 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5383 break;
5384 }
5385 if (idx < dim)
5386 break;
5387 }
5388 else
5389 {
5390 idx = 1;
5391 for (; CONSP (val); val = XCDR (val))
5392 {
5393 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5394 dim = CHARSET_DIMENSION (charset);
5395 while (idx < dim)
5396 {
5397 if (src == src_end)
5398 goto too_short;
5399 ONE_MORE_BYTE (c);
5400 if (c < charset->code_space[(dim - 1 - idx) * 4]
5401 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5402 break;
5403 idx++;
5404 }
5405 if (idx == dim)
5406 {
5407 val = Qnil;
5408 break;
5409 }
5410 }
5411 if (CONSP (val))
5412 break;
5413 }
5414 }
5415 too_short:
5416 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5417 return 0;
5418
5419 no_more_source:
5420 detect_info->found |= found;
5421 return 1;
5422 }
5423
5424 static void
5425 decode_coding_charset (struct coding_system *coding)
5426 {
5427 const unsigned char *src = coding->source + coding->consumed;
5428 const unsigned char *src_end = coding->source + coding->src_bytes;
5429 const unsigned char *src_base;
5430 int *charbuf = coding->charbuf + coding->charbuf_used;
5431 /* We may produce one charset annotation in one loop and one more at
5432 the end. */
5433 int *charbuf_end
5434 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5435 int consumed_chars = 0, consumed_chars_base;
5436 int multibytep = coding->src_multibyte;
5437 Lisp_Object attrs, charset_list, valids;
5438 int char_offset = coding->produced_char;
5439 int last_offset = char_offset;
5440 int last_id = charset_ascii;
5441 int eol_dos =
5442 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5443 int byte_after_cr = -1;
5444
5445 CODING_GET_INFO (coding, attrs, charset_list);
5446 valids = AREF (attrs, coding_attr_charset_valids);
5447
5448 while (1)
5449 {
5450 int c;
5451 Lisp_Object val;
5452 struct charset *charset;
5453 int dim;
5454 int len = 1;
5455 unsigned code;
5456
5457 src_base = src;
5458 consumed_chars_base = consumed_chars;
5459
5460 if (charbuf >= charbuf_end)
5461 {
5462 if (byte_after_cr >= 0)
5463 src_base--;
5464 break;
5465 }
5466
5467 if (byte_after_cr >= 0)
5468 {
5469 c = byte_after_cr;
5470 byte_after_cr = -1;
5471 }
5472 else
5473 {
5474 ONE_MORE_BYTE (c);
5475 if (eol_dos && c == '\r')
5476 ONE_MORE_BYTE (byte_after_cr);
5477 }
5478 if (c < 0)
5479 goto invalid_code;
5480 code = c;
5481
5482 val = AREF (valids, c);
5483 if (! INTEGERP (val) && ! CONSP (val))
5484 goto invalid_code;
5485 if (INTEGERP (val))
5486 {
5487 charset = CHARSET_FROM_ID (XFASTINT (val));
5488 dim = CHARSET_DIMENSION (charset);
5489 while (len < dim)
5490 {
5491 ONE_MORE_BYTE (c);
5492 code = (code << 8) | c;
5493 len++;
5494 }
5495 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5496 charset, code, c);
5497 }
5498 else
5499 {
5500 /* VAL is a list of charset IDs. It is assured that the
5501 list is sorted by charset dimensions (smaller one
5502 comes first). */
5503 while (CONSP (val))
5504 {
5505 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5506 dim = CHARSET_DIMENSION (charset);
5507 while (len < dim)
5508 {
5509 ONE_MORE_BYTE (c);
5510 code = (code << 8) | c;
5511 len++;
5512 }
5513 CODING_DECODE_CHAR (coding, src, src_base,
5514 src_end, charset, code, c);
5515 if (c >= 0)
5516 break;
5517 val = XCDR (val);
5518 }
5519 }
5520 if (c < 0)
5521 goto invalid_code;
5522 if (charset->id != charset_ascii
5523 && last_id != charset->id)
5524 {
5525 if (last_id != charset_ascii)
5526 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5527 last_id = charset->id;
5528 last_offset = char_offset;
5529 }
5530
5531 *charbuf++ = c;
5532 char_offset++;
5533 continue;
5534
5535 invalid_code:
5536 src = src_base;
5537 consumed_chars = consumed_chars_base;
5538 ONE_MORE_BYTE (c);
5539 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5540 char_offset++;
5541 coding->errors++;
5542 }
5543
5544 no_more_source:
5545 if (last_id != charset_ascii)
5546 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5547 coding->consumed_char += consumed_chars_base;
5548 coding->consumed = src_base - coding->source;
5549 coding->charbuf_used = charbuf - coding->charbuf;
5550 }
5551
5552 static int
5553 encode_coding_charset (struct coding_system *coding)
5554 {
5555 int multibytep = coding->dst_multibyte;
5556 int *charbuf = coding->charbuf;
5557 int *charbuf_end = charbuf + coding->charbuf_used;
5558 unsigned char *dst = coding->destination + coding->produced;
5559 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5560 int safe_room = MAX_MULTIBYTE_LENGTH;
5561 int produced_chars = 0;
5562 Lisp_Object attrs, charset_list;
5563 int ascii_compatible;
5564 int c;
5565
5566 CODING_GET_INFO (coding, attrs, charset_list);
5567 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5568
5569 while (charbuf < charbuf_end)
5570 {
5571 struct charset *charset;
5572 unsigned code;
5573
5574 ASSURE_DESTINATION (safe_room);
5575 c = *charbuf++;
5576 if (ascii_compatible && ASCII_CHAR_P (c))
5577 EMIT_ONE_ASCII_BYTE (c);
5578 else if (CHAR_BYTE8_P (c))
5579 {
5580 c = CHAR_TO_BYTE8 (c);
5581 EMIT_ONE_BYTE (c);
5582 }
5583 else
5584 {
5585 charset = char_charset (c, charset_list, &code);
5586 if (charset)
5587 {
5588 if (CHARSET_DIMENSION (charset) == 1)
5589 EMIT_ONE_BYTE (code);
5590 else if (CHARSET_DIMENSION (charset) == 2)
5591 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5592 else if (CHARSET_DIMENSION (charset) == 3)
5593 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5594 else
5595 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5596 (code >> 8) & 0xFF, code & 0xFF);
5597 }
5598 else
5599 {
5600 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5601 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5602 else
5603 c = coding->default_char;
5604 EMIT_ONE_BYTE (c);
5605 }
5606 }
5607 }
5608
5609 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5610 coding->produced_char += produced_chars;
5611 coding->produced = dst - coding->destination;
5612 return 0;
5613 }
5614
5615 \f
5616 /*** 7. C library functions ***/
5617
5618 /* Setup coding context CODING from information about CODING_SYSTEM.
5619 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5620 CODING_SYSTEM is invalid, signal an error. */
5621
5622 void
5623 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5624 {
5625 Lisp_Object attrs;
5626 Lisp_Object eol_type;
5627 Lisp_Object coding_type;
5628 Lisp_Object val;
5629
5630 if (NILP (coding_system))
5631 coding_system = Qundecided;
5632
5633 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5634
5635 attrs = CODING_ID_ATTRS (coding->id);
5636 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5637
5638 coding->mode = 0;
5639 coding->head_ascii = -1;
5640 if (VECTORP (eol_type))
5641 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5642 | CODING_REQUIRE_DETECTION_MASK);
5643 else if (! EQ (eol_type, Qunix))
5644 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5645 | CODING_REQUIRE_ENCODING_MASK);
5646 else
5647 coding->common_flags = 0;
5648 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5649 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5650 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5651 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5652 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5653 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5654
5655 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5656 coding->max_charset_id = SCHARS (val) - 1;
5657 coding->safe_charsets = SDATA (val);
5658 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5659 coding->carryover_bytes = 0;
5660
5661 coding_type = CODING_ATTR_TYPE (attrs);
5662 if (EQ (coding_type, Qundecided))
5663 {
5664 coding->detector = NULL;
5665 coding->decoder = decode_coding_raw_text;
5666 coding->encoder = encode_coding_raw_text;
5667 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5668 }
5669 else if (EQ (coding_type, Qiso_2022))
5670 {
5671 int i;
5672 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5673
5674 /* Invoke graphic register 0 to plane 0. */
5675 CODING_ISO_INVOCATION (coding, 0) = 0;
5676 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5677 CODING_ISO_INVOCATION (coding, 1)
5678 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5679 /* Setup the initial status of designation. */
5680 for (i = 0; i < 4; i++)
5681 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5682 /* Not single shifting initially. */
5683 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5684 /* Beginning of buffer should also be regarded as bol. */
5685 CODING_ISO_BOL (coding) = 1;
5686 coding->detector = detect_coding_iso_2022;
5687 coding->decoder = decode_coding_iso_2022;
5688 coding->encoder = encode_coding_iso_2022;
5689 if (flags & CODING_ISO_FLAG_SAFE)
5690 coding->mode |= CODING_MODE_SAFE_ENCODING;
5691 coding->common_flags
5692 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5693 | CODING_REQUIRE_FLUSHING_MASK);
5694 if (flags & CODING_ISO_FLAG_COMPOSITION)
5695 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5696 if (flags & CODING_ISO_FLAG_DESIGNATION)
5697 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5698 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5699 {
5700 setup_iso_safe_charsets (attrs);
5701 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5702 coding->max_charset_id = SCHARS (val) - 1;
5703 coding->safe_charsets = SDATA (val);
5704 }
5705 CODING_ISO_FLAGS (coding) = flags;
5706 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5707 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5708 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5709 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5710 }
5711 else if (EQ (coding_type, Qcharset))
5712 {
5713 coding->detector = detect_coding_charset;
5714 coding->decoder = decode_coding_charset;
5715 coding->encoder = encode_coding_charset;
5716 coding->common_flags
5717 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5718 }
5719 else if (EQ (coding_type, Qutf_8))
5720 {
5721 val = AREF (attrs, coding_attr_utf_bom);
5722 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5723 : EQ (val, Qt) ? utf_with_bom
5724 : utf_without_bom);
5725 coding->detector = detect_coding_utf_8;
5726 coding->decoder = decode_coding_utf_8;
5727 coding->encoder = encode_coding_utf_8;
5728 coding->common_flags
5729 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5730 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5731 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5732 }
5733 else if (EQ (coding_type, Qutf_16))
5734 {
5735 val = AREF (attrs, coding_attr_utf_bom);
5736 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5737 : EQ (val, Qt) ? utf_with_bom
5738 : utf_without_bom);
5739 val = AREF (attrs, coding_attr_utf_16_endian);
5740 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5741 : utf_16_little_endian);
5742 CODING_UTF_16_SURROGATE (coding) = 0;
5743 coding->detector = detect_coding_utf_16;
5744 coding->decoder = decode_coding_utf_16;
5745 coding->encoder = encode_coding_utf_16;
5746 coding->common_flags
5747 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5748 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5749 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5750 }
5751 else if (EQ (coding_type, Qccl))
5752 {
5753 coding->detector = detect_coding_ccl;
5754 coding->decoder = decode_coding_ccl;
5755 coding->encoder = encode_coding_ccl;
5756 coding->common_flags
5757 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5758 | CODING_REQUIRE_FLUSHING_MASK);
5759 }
5760 else if (EQ (coding_type, Qemacs_mule))
5761 {
5762 coding->detector = detect_coding_emacs_mule;
5763 coding->decoder = decode_coding_emacs_mule;
5764 coding->encoder = encode_coding_emacs_mule;
5765 coding->common_flags
5766 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5767 coding->spec.emacs_mule.full_support = 1;
5768 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5769 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5770 {
5771 Lisp_Object tail, safe_charsets;
5772 int max_charset_id = 0;
5773
5774 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5775 tail = XCDR (tail))
5776 if (max_charset_id < XFASTINT (XCAR (tail)))
5777 max_charset_id = XFASTINT (XCAR (tail));
5778 safe_charsets = make_uninit_string (max_charset_id + 1);
5779 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5780 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5781 tail = XCDR (tail))
5782 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5783 coding->max_charset_id = max_charset_id;
5784 coding->safe_charsets = SDATA (safe_charsets);
5785 coding->spec.emacs_mule.full_support = 1;
5786 }
5787 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5788 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5789 }
5790 else if (EQ (coding_type, Qshift_jis))
5791 {
5792 coding->detector = detect_coding_sjis;
5793 coding->decoder = decode_coding_sjis;
5794 coding->encoder = encode_coding_sjis;
5795 coding->common_flags
5796 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5797 }
5798 else if (EQ (coding_type, Qbig5))
5799 {
5800 coding->detector = detect_coding_big5;
5801 coding->decoder = decode_coding_big5;
5802 coding->encoder = encode_coding_big5;
5803 coding->common_flags
5804 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5805 }
5806 else /* EQ (coding_type, Qraw_text) */
5807 {
5808 coding->detector = NULL;
5809 coding->decoder = decode_coding_raw_text;
5810 coding->encoder = encode_coding_raw_text;
5811 if (! EQ (eol_type, Qunix))
5812 {
5813 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5814 if (! VECTORP (eol_type))
5815 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5816 }
5817
5818 }
5819
5820 return;
5821 }
5822
5823 /* Return a list of charsets supported by CODING. */
5824
5825 Lisp_Object
5826 coding_charset_list (struct coding_system *coding)
5827 {
5828 Lisp_Object attrs, charset_list;
5829
5830 CODING_GET_INFO (coding, attrs, charset_list);
5831 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5832 {
5833 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5834
5835 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5836 charset_list = Viso_2022_charset_list;
5837 }
5838 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5839 {
5840 charset_list = Vemacs_mule_charset_list;
5841 }
5842 return charset_list;
5843 }
5844
5845
5846 /* Return a list of charsets supported by CODING-SYSTEM. */
5847
5848 Lisp_Object
5849 coding_system_charset_list (Lisp_Object coding_system)
5850 {
5851 int id;
5852 Lisp_Object attrs, charset_list;
5853
5854 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5855 attrs = CODING_ID_ATTRS (id);
5856
5857 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5858 {
5859 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5860
5861 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5862 charset_list = Viso_2022_charset_list;
5863 else
5864 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5865 }
5866 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5867 {
5868 charset_list = Vemacs_mule_charset_list;
5869 }
5870 else
5871 {
5872 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5873 }
5874 return charset_list;
5875 }
5876
5877
5878 /* Return raw-text or one of its subsidiaries that has the same
5879 eol_type as CODING-SYSTEM. */
5880
5881 Lisp_Object
5882 raw_text_coding_system (Lisp_Object coding_system)
5883 {
5884 Lisp_Object spec, attrs;
5885 Lisp_Object eol_type, raw_text_eol_type;
5886
5887 if (NILP (coding_system))
5888 return Qraw_text;
5889 spec = CODING_SYSTEM_SPEC (coding_system);
5890 attrs = AREF (spec, 0);
5891
5892 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
5893 return coding_system;
5894
5895 eol_type = AREF (spec, 2);
5896 if (VECTORP (eol_type))
5897 return Qraw_text;
5898 spec = CODING_SYSTEM_SPEC (Qraw_text);
5899 raw_text_eol_type = AREF (spec, 2);
5900 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
5901 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
5902 : AREF (raw_text_eol_type, 2));
5903 }
5904
5905
5906 /* If CODING_SYSTEM doesn't specify end-of-line format, return one of
5907 the subsidiary that has the same eol-spec as PARENT (if it is not
5908 nil and specifies end-of-line format) or the system's setting
5909 (system_eol_type). */
5910
5911 Lisp_Object
5912 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
5913 {
5914 Lisp_Object spec, eol_type;
5915
5916 if (NILP (coding_system))
5917 coding_system = Qraw_text;
5918 spec = CODING_SYSTEM_SPEC (coding_system);
5919 eol_type = AREF (spec, 2);
5920 if (VECTORP (eol_type))
5921 {
5922 Lisp_Object parent_eol_type;
5923
5924 if (! NILP (parent))
5925 {
5926 Lisp_Object parent_spec;
5927
5928 parent_spec = CODING_SYSTEM_SPEC (parent);
5929 parent_eol_type = AREF (parent_spec, 2);
5930 if (VECTORP (parent_eol_type))
5931 parent_eol_type = system_eol_type;
5932 }
5933 else
5934 parent_eol_type = system_eol_type;
5935 if (EQ (parent_eol_type, Qunix))
5936 coding_system = AREF (eol_type, 0);
5937 else if (EQ (parent_eol_type, Qdos))
5938 coding_system = AREF (eol_type, 1);
5939 else if (EQ (parent_eol_type, Qmac))
5940 coding_system = AREF (eol_type, 2);
5941 }
5942 return coding_system;
5943 }
5944
5945
5946 /* Check if text-conversion and eol-conversion of CODING_SYSTEM are
5947 decided for writing to a process. If not, complement them, and
5948 return a new coding system. */
5949
5950 Lisp_Object
5951 complement_process_encoding_system (Lisp_Object coding_system)
5952 {
5953 Lisp_Object coding_base = Qnil, eol_base = Qnil;
5954 Lisp_Object spec, attrs;
5955 int i;
5956
5957 for (i = 0; i < 3; i++)
5958 {
5959 if (i == 1)
5960 coding_system = CDR_SAFE (Vdefault_process_coding_system);
5961 else if (i == 2)
5962 coding_system = preferred_coding_system ();
5963 spec = CODING_SYSTEM_SPEC (coding_system);
5964 if (NILP (spec))
5965 continue;
5966 attrs = AREF (spec, 0);
5967 if (NILP (coding_base) && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
5968 coding_base = CODING_ATTR_BASE_NAME (attrs);
5969 if (NILP (eol_base) && ! VECTORP (AREF (spec, 2)))
5970 eol_base = coding_system;
5971 if (! NILP (coding_base) && ! NILP (eol_base))
5972 break;
5973 }
5974
5975 if (i > 0)
5976 /* The original CODING_SYSTEM didn't specify text-conversion or
5977 eol-conversion. Be sure that we return a fully complemented
5978 coding system. */
5979 coding_system = coding_inherit_eol_type (coding_base, eol_base);
5980 return coding_system;
5981 }
5982
5983
5984 /* Emacs has a mechanism to automatically detect a coding system if it
5985 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
5986 it's impossible to distinguish some coding systems accurately
5987 because they use the same range of codes. So, at first, coding
5988 systems are categorized into 7, those are:
5989
5990 o coding-category-emacs-mule
5991
5992 The category for a coding system which has the same code range
5993 as Emacs' internal format. Assigned the coding-system (Lisp
5994 symbol) `emacs-mule' by default.
5995
5996 o coding-category-sjis
5997
5998 The category for a coding system which has the same code range
5999 as SJIS. Assigned the coding-system (Lisp
6000 symbol) `japanese-shift-jis' by default.
6001
6002 o coding-category-iso-7
6003
6004 The category for a coding system which has the same code range
6005 as ISO2022 of 7-bit environment. This doesn't use any locking
6006 shift and single shift functions. This can encode/decode all
6007 charsets. Assigned the coding-system (Lisp symbol)
6008 `iso-2022-7bit' by default.
6009
6010 o coding-category-iso-7-tight
6011
6012 Same as coding-category-iso-7 except that this can
6013 encode/decode only the specified charsets.
6014
6015 o coding-category-iso-8-1
6016
6017 The category for a coding system which has the same code range
6018 as ISO2022 of 8-bit environment and graphic plane 1 used only
6019 for DIMENSION1 charset. This doesn't use any locking shift
6020 and single shift functions. Assigned the coding-system (Lisp
6021 symbol) `iso-latin-1' by default.
6022
6023 o coding-category-iso-8-2
6024
6025 The category for a coding system which has the same code range
6026 as ISO2022 of 8-bit environment and graphic plane 1 used only
6027 for DIMENSION2 charset. This doesn't use any locking shift
6028 and single shift functions. Assigned the coding-system (Lisp
6029 symbol) `japanese-iso-8bit' by default.
6030
6031 o coding-category-iso-7-else
6032
6033 The category for a coding system which has the same code range
6034 as ISO2022 of 7-bit environment but uses locking shift or
6035 single shift functions. Assigned the coding-system (Lisp
6036 symbol) `iso-2022-7bit-lock' by default.
6037
6038 o coding-category-iso-8-else
6039
6040 The category for a coding system which has the same code range
6041 as ISO2022 of 8-bit environment but uses locking shift or
6042 single shift functions. Assigned the coding-system (Lisp
6043 symbol) `iso-2022-8bit-ss2' by default.
6044
6045 o coding-category-big5
6046
6047 The category for a coding system which has the same code range
6048 as BIG5. Assigned the coding-system (Lisp symbol)
6049 `cn-big5' by default.
6050
6051 o coding-category-utf-8
6052
6053 The category for a coding system which has the same code range
6054 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6055 symbol) `utf-8' by default.
6056
6057 o coding-category-utf-16-be
6058
6059 The category for a coding system in which a text has an
6060 Unicode signature (cf. Unicode Standard) in the order of BIG
6061 endian at the head. Assigned the coding-system (Lisp symbol)
6062 `utf-16-be' by default.
6063
6064 o coding-category-utf-16-le
6065
6066 The category for a coding system in which a text has an
6067 Unicode signature (cf. Unicode Standard) in the order of
6068 LITTLE endian at the head. Assigned the coding-system (Lisp
6069 symbol) `utf-16-le' by default.
6070
6071 o coding-category-ccl
6072
6073 The category for a coding system of which encoder/decoder is
6074 written in CCL programs. The default value is nil, i.e., no
6075 coding system is assigned.
6076
6077 o coding-category-binary
6078
6079 The category for a coding system not categorized in any of the
6080 above. Assigned the coding-system (Lisp symbol)
6081 `no-conversion' by default.
6082
6083 Each of them is a Lisp symbol and the value is an actual
6084 `coding-system's (this is also a Lisp symbol) assigned by a user.
6085 What Emacs does actually is to detect a category of coding system.
6086 Then, it uses a `coding-system' assigned to it. If Emacs can't
6087 decide only one possible category, it selects a category of the
6088 highest priority. Priorities of categories are also specified by a
6089 user in a Lisp variable `coding-category-list'.
6090
6091 */
6092
6093 #define EOL_SEEN_NONE 0
6094 #define EOL_SEEN_LF 1
6095 #define EOL_SEEN_CR 2
6096 #define EOL_SEEN_CRLF 4
6097
6098 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6099 SOURCE is encoded. If CATEGORY is one of
6100 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6101 two-byte, else they are encoded by one-byte.
6102
6103 Return one of EOL_SEEN_XXX. */
6104
6105 #define MAX_EOL_CHECK_COUNT 3
6106
6107 static int
6108 detect_eol (const unsigned char *source, EMACS_INT src_bytes,
6109 enum coding_category category)
6110 {
6111 const unsigned char *src = source, *src_end = src + src_bytes;
6112 unsigned char c;
6113 int total = 0;
6114 int eol_seen = EOL_SEEN_NONE;
6115
6116 if ((1 << category) & CATEGORY_MASK_UTF_16)
6117 {
6118 int msb, lsb;
6119
6120 msb = category == (coding_category_utf_16_le
6121 | coding_category_utf_16_le_nosig);
6122 lsb = 1 - msb;
6123
6124 while (src + 1 < src_end)
6125 {
6126 c = src[lsb];
6127 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6128 {
6129 int this_eol;
6130
6131 if (c == '\n')
6132 this_eol = EOL_SEEN_LF;
6133 else if (src + 3 >= src_end
6134 || src[msb + 2] != 0
6135 || src[lsb + 2] != '\n')
6136 this_eol = EOL_SEEN_CR;
6137 else
6138 {
6139 this_eol = EOL_SEEN_CRLF;
6140 src += 2;
6141 }
6142
6143 if (eol_seen == EOL_SEEN_NONE)
6144 /* This is the first end-of-line. */
6145 eol_seen = this_eol;
6146 else if (eol_seen != this_eol)
6147 {
6148 /* The found type is different from what found before.
6149 Allow for stray ^M characters in DOS EOL files. */
6150 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6151 || (eol_seen == EOL_SEEN_CRLF
6152 && this_eol == EOL_SEEN_CR))
6153 eol_seen = EOL_SEEN_CRLF;
6154 else
6155 {
6156 eol_seen = EOL_SEEN_LF;
6157 break;
6158 }
6159 }
6160 if (++total == MAX_EOL_CHECK_COUNT)
6161 break;
6162 }
6163 src += 2;
6164 }
6165 }
6166 else
6167 while (src < src_end)
6168 {
6169 c = *src++;
6170 if (c == '\n' || c == '\r')
6171 {
6172 int this_eol;
6173
6174 if (c == '\n')
6175 this_eol = EOL_SEEN_LF;
6176 else if (src >= src_end || *src != '\n')
6177 this_eol = EOL_SEEN_CR;
6178 else
6179 this_eol = EOL_SEEN_CRLF, src++;
6180
6181 if (eol_seen == EOL_SEEN_NONE)
6182 /* This is the first end-of-line. */
6183 eol_seen = this_eol;
6184 else if (eol_seen != this_eol)
6185 {
6186 /* The found type is different from what found before.
6187 Allow for stray ^M characters in DOS EOL files. */
6188 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6189 || (eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR))
6190 eol_seen = EOL_SEEN_CRLF;
6191 else
6192 {
6193 eol_seen = EOL_SEEN_LF;
6194 break;
6195 }
6196 }
6197 if (++total == MAX_EOL_CHECK_COUNT)
6198 break;
6199 }
6200 }
6201 return eol_seen;
6202 }
6203
6204
6205 static Lisp_Object
6206 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6207 {
6208 Lisp_Object eol_type;
6209
6210 eol_type = CODING_ID_EOL_TYPE (coding->id);
6211 if (eol_seen & EOL_SEEN_LF)
6212 {
6213 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6214 eol_type = Qunix;
6215 }
6216 else if (eol_seen & EOL_SEEN_CRLF)
6217 {
6218 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6219 eol_type = Qdos;
6220 }
6221 else if (eol_seen & EOL_SEEN_CR)
6222 {
6223 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6224 eol_type = Qmac;
6225 }
6226 return eol_type;
6227 }
6228
6229 /* Detect how a text specified in CODING is encoded. If a coding
6230 system is detected, update fields of CODING by the detected coding
6231 system. */
6232
6233 void
6234 detect_coding (struct coding_system *coding)
6235 {
6236 const unsigned char *src, *src_end;
6237 int saved_mode = coding->mode;
6238
6239 coding->consumed = coding->consumed_char = 0;
6240 coding->produced = coding->produced_char = 0;
6241 coding_set_source (coding);
6242
6243 src_end = coding->source + coding->src_bytes;
6244 coding->head_ascii = 0;
6245
6246 /* If we have not yet decided the text encoding type, detect it
6247 now. */
6248 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6249 {
6250 int c, i;
6251 struct coding_detection_info detect_info;
6252 int null_byte_found = 0, eight_bit_found = 0;
6253
6254 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6255 for (src = coding->source; src < src_end; src++)
6256 {
6257 c = *src;
6258 if (c & 0x80)
6259 {
6260 eight_bit_found = 1;
6261 if (null_byte_found)
6262 break;
6263 }
6264 else if (c < 0x20)
6265 {
6266 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6267 && ! inhibit_iso_escape_detection
6268 && ! detect_info.checked)
6269 {
6270 if (detect_coding_iso_2022 (coding, &detect_info))
6271 {
6272 /* We have scanned the whole data. */
6273 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6274 {
6275 /* We didn't find an 8-bit code. We may
6276 have found a null-byte, but it's very
6277 rare that a binary file conforms to
6278 ISO-2022. */
6279 src = src_end;
6280 coding->head_ascii = src - coding->source;
6281 }
6282 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6283 break;
6284 }
6285 }
6286 else if (! c && !inhibit_null_byte_detection)
6287 {
6288 null_byte_found = 1;
6289 if (eight_bit_found)
6290 break;
6291 }
6292 if (! eight_bit_found)
6293 coding->head_ascii++;
6294 }
6295 else if (! eight_bit_found)
6296 coding->head_ascii++;
6297 }
6298
6299 if (null_byte_found || eight_bit_found
6300 || coding->head_ascii < coding->src_bytes
6301 || detect_info.found)
6302 {
6303 enum coding_category category;
6304 struct coding_system *this;
6305
6306 if (coding->head_ascii == coding->src_bytes)
6307 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6308 for (i = 0; i < coding_category_raw_text; i++)
6309 {
6310 category = coding_priorities[i];
6311 this = coding_categories + category;
6312 if (detect_info.found & (1 << category))
6313 break;
6314 }
6315 else
6316 {
6317 if (null_byte_found)
6318 {
6319 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6320 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6321 }
6322 for (i = 0; i < coding_category_raw_text; i++)
6323 {
6324 category = coding_priorities[i];
6325 this = coding_categories + category;
6326 if (this->id < 0)
6327 {
6328 /* No coding system of this category is defined. */
6329 detect_info.rejected |= (1 << category);
6330 }
6331 else if (category >= coding_category_raw_text)
6332 continue;
6333 else if (detect_info.checked & (1 << category))
6334 {
6335 if (detect_info.found & (1 << category))
6336 break;
6337 }
6338 else if ((*(this->detector)) (coding, &detect_info)
6339 && detect_info.found & (1 << category))
6340 {
6341 if (category == coding_category_utf_16_auto)
6342 {
6343 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6344 category = coding_category_utf_16_le;
6345 else
6346 category = coding_category_utf_16_be;
6347 }
6348 break;
6349 }
6350 }
6351 }
6352
6353 if (i < coding_category_raw_text)
6354 setup_coding_system (CODING_ID_NAME (this->id), coding);
6355 else if (null_byte_found)
6356 setup_coding_system (Qno_conversion, coding);
6357 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6358 == CATEGORY_MASK_ANY)
6359 setup_coding_system (Qraw_text, coding);
6360 else if (detect_info.rejected)
6361 for (i = 0; i < coding_category_raw_text; i++)
6362 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6363 {
6364 this = coding_categories + coding_priorities[i];
6365 setup_coding_system (CODING_ID_NAME (this->id), coding);
6366 break;
6367 }
6368 }
6369 }
6370 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6371 == coding_category_utf_8_auto)
6372 {
6373 Lisp_Object coding_systems;
6374 struct coding_detection_info detect_info;
6375
6376 coding_systems
6377 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6378 detect_info.found = detect_info.rejected = 0;
6379 coding->head_ascii = 0;
6380 if (CONSP (coding_systems)
6381 && detect_coding_utf_8 (coding, &detect_info))
6382 {
6383 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6384 setup_coding_system (XCAR (coding_systems), coding);
6385 else
6386 setup_coding_system (XCDR (coding_systems), coding);
6387 }
6388 }
6389 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6390 == coding_category_utf_16_auto)
6391 {
6392 Lisp_Object coding_systems;
6393 struct coding_detection_info detect_info;
6394
6395 coding_systems
6396 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6397 detect_info.found = detect_info.rejected = 0;
6398 coding->head_ascii = 0;
6399 if (CONSP (coding_systems)
6400 && detect_coding_utf_16 (coding, &detect_info))
6401 {
6402 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6403 setup_coding_system (XCAR (coding_systems), coding);
6404 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6405 setup_coding_system (XCDR (coding_systems), coding);
6406 }
6407 }
6408 coding->mode = saved_mode;
6409 }
6410
6411
6412 static void
6413 decode_eol (struct coding_system *coding)
6414 {
6415 Lisp_Object eol_type;
6416 unsigned char *p, *pbeg, *pend;
6417
6418 eol_type = CODING_ID_EOL_TYPE (coding->id);
6419 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6420 return;
6421
6422 if (NILP (coding->dst_object))
6423 pbeg = coding->destination;
6424 else
6425 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6426 pend = pbeg + coding->produced;
6427
6428 if (VECTORP (eol_type))
6429 {
6430 int eol_seen = EOL_SEEN_NONE;
6431
6432 for (p = pbeg; p < pend; p++)
6433 {
6434 if (*p == '\n')
6435 eol_seen |= EOL_SEEN_LF;
6436 else if (*p == '\r')
6437 {
6438 if (p + 1 < pend && *(p + 1) == '\n')
6439 {
6440 eol_seen |= EOL_SEEN_CRLF;
6441 p++;
6442 }
6443 else
6444 eol_seen |= EOL_SEEN_CR;
6445 }
6446 }
6447 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6448 if ((eol_seen & EOL_SEEN_CRLF) != 0
6449 && (eol_seen & EOL_SEEN_CR) != 0
6450 && (eol_seen & EOL_SEEN_LF) == 0)
6451 eol_seen = EOL_SEEN_CRLF;
6452 else if (eol_seen != EOL_SEEN_NONE
6453 && eol_seen != EOL_SEEN_LF
6454 && eol_seen != EOL_SEEN_CRLF
6455 && eol_seen != EOL_SEEN_CR)
6456 eol_seen = EOL_SEEN_LF;
6457 if (eol_seen != EOL_SEEN_NONE)
6458 eol_type = adjust_coding_eol_type (coding, eol_seen);
6459 }
6460
6461 if (EQ (eol_type, Qmac))
6462 {
6463 for (p = pbeg; p < pend; p++)
6464 if (*p == '\r')
6465 *p = '\n';
6466 }
6467 else if (EQ (eol_type, Qdos))
6468 {
6469 int n = 0;
6470
6471 if (NILP (coding->dst_object))
6472 {
6473 /* Start deleting '\r' from the tail to minimize the memory
6474 movement. */
6475 for (p = pend - 2; p >= pbeg; p--)
6476 if (*p == '\r')
6477 {
6478 memmove (p, p + 1, pend-- - p - 1);
6479 n++;
6480 }
6481 }
6482 else
6483 {
6484 int pos_byte = coding->dst_pos_byte;
6485 int pos = coding->dst_pos;
6486 int pos_end = pos + coding->produced_char - 1;
6487
6488 while (pos < pos_end)
6489 {
6490 p = BYTE_POS_ADDR (pos_byte);
6491 if (*p == '\r' && p[1] == '\n')
6492 {
6493 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6494 n++;
6495 pos_end--;
6496 }
6497 pos++;
6498 if (coding->dst_multibyte)
6499 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6500 else
6501 pos_byte++;
6502 }
6503 }
6504 coding->produced -= n;
6505 coding->produced_char -= n;
6506 }
6507 }
6508
6509
6510 /* Return a translation table (or list of them) from coding system
6511 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6512 decoding (ENCODEP is zero). */
6513
6514 static Lisp_Object
6515 get_translation_table (Lisp_Object attrs, int encodep, int *max_lookup)
6516 {
6517 Lisp_Object standard, translation_table;
6518 Lisp_Object val;
6519
6520 if (NILP (Venable_character_translation))
6521 {
6522 if (max_lookup)
6523 *max_lookup = 0;
6524 return Qnil;
6525 }
6526 if (encodep)
6527 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6528 standard = Vstandard_translation_table_for_encode;
6529 else
6530 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6531 standard = Vstandard_translation_table_for_decode;
6532 if (NILP (translation_table))
6533 translation_table = standard;
6534 else
6535 {
6536 if (SYMBOLP (translation_table))
6537 translation_table = Fget (translation_table, Qtranslation_table);
6538 else if (CONSP (translation_table))
6539 {
6540 translation_table = Fcopy_sequence (translation_table);
6541 for (val = translation_table; CONSP (val); val = XCDR (val))
6542 if (SYMBOLP (XCAR (val)))
6543 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6544 }
6545 if (CHAR_TABLE_P (standard))
6546 {
6547 if (CONSP (translation_table))
6548 translation_table = nconc2 (translation_table,
6549 Fcons (standard, Qnil));
6550 else
6551 translation_table = Fcons (translation_table,
6552 Fcons (standard, Qnil));
6553 }
6554 }
6555
6556 if (max_lookup)
6557 {
6558 *max_lookup = 1;
6559 if (CHAR_TABLE_P (translation_table)
6560 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6561 {
6562 val = XCHAR_TABLE (translation_table)->extras[1];
6563 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6564 *max_lookup = XFASTINT (val);
6565 }
6566 else if (CONSP (translation_table))
6567 {
6568 Lisp_Object tail;
6569
6570 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6571 if (CHAR_TABLE_P (XCAR (tail))
6572 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6573 {
6574 Lisp_Object tailval = XCHAR_TABLE (XCAR (tail))->extras[1];
6575 if (NATNUMP (tailval) && *max_lookup < XFASTINT (tailval))
6576 *max_lookup = XFASTINT (tailval);
6577 }
6578 }
6579 }
6580 return translation_table;
6581 }
6582
6583 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6584 do { \
6585 trans = Qnil; \
6586 if (CHAR_TABLE_P (table)) \
6587 { \
6588 trans = CHAR_TABLE_REF (table, c); \
6589 if (CHARACTERP (trans)) \
6590 c = XFASTINT (trans), trans = Qnil; \
6591 } \
6592 else if (CONSP (table)) \
6593 { \
6594 Lisp_Object tail; \
6595 \
6596 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6597 if (CHAR_TABLE_P (XCAR (tail))) \
6598 { \
6599 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6600 if (CHARACTERP (trans)) \
6601 c = XFASTINT (trans), trans = Qnil; \
6602 else if (! NILP (trans)) \
6603 break; \
6604 } \
6605 } \
6606 } while (0)
6607
6608
6609 /* Return a translation of character(s) at BUF according to TRANS.
6610 TRANS is TO-CHAR or ((FROM . TO) ...) where
6611 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6612 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6613 translation is found, and Qnil if not found..
6614 If BUF is too short to lookup characters in FROM, return Qt. */
6615
6616 static Lisp_Object
6617 get_translation (Lisp_Object trans, int *buf, int *buf_end)
6618 {
6619
6620 if (INTEGERP (trans))
6621 return trans;
6622 for (; CONSP (trans); trans = XCDR (trans))
6623 {
6624 Lisp_Object val = XCAR (trans);
6625 Lisp_Object from = XCAR (val);
6626 int len = ASIZE (from);
6627 int i;
6628
6629 for (i = 0; i < len; i++)
6630 {
6631 if (buf + i == buf_end)
6632 return Qt;
6633 if (XINT (AREF (from, i)) != buf[i])
6634 break;
6635 }
6636 if (i == len)
6637 return val;
6638 }
6639 return Qnil;
6640 }
6641
6642
6643 static int
6644 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6645 int last_block)
6646 {
6647 unsigned char *dst = coding->destination + coding->produced;
6648 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6649 EMACS_INT produced;
6650 EMACS_INT produced_chars = 0;
6651 int carryover = 0;
6652
6653 if (! coding->chars_at_source)
6654 {
6655 /* Source characters are in coding->charbuf. */
6656 int *buf = coding->charbuf;
6657 int *buf_end = buf + coding->charbuf_used;
6658
6659 if (EQ (coding->src_object, coding->dst_object))
6660 {
6661 coding_set_source (coding);
6662 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6663 }
6664
6665 while (buf < buf_end)
6666 {
6667 int c = *buf, i;
6668
6669 if (c >= 0)
6670 {
6671 int from_nchars = 1, to_nchars = 1;
6672 Lisp_Object trans = Qnil;
6673
6674 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6675 if (! NILP (trans))
6676 {
6677 trans = get_translation (trans, buf, buf_end);
6678 if (INTEGERP (trans))
6679 c = XINT (trans);
6680 else if (CONSP (trans))
6681 {
6682 from_nchars = ASIZE (XCAR (trans));
6683 trans = XCDR (trans);
6684 if (INTEGERP (trans))
6685 c = XINT (trans);
6686 else
6687 {
6688 to_nchars = ASIZE (trans);
6689 c = XINT (AREF (trans, 0));
6690 }
6691 }
6692 else if (EQ (trans, Qt) && ! last_block)
6693 break;
6694 }
6695
6696 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6697 {
6698 dst = alloc_destination (coding,
6699 buf_end - buf
6700 + MAX_MULTIBYTE_LENGTH * to_nchars,
6701 dst);
6702 if (EQ (coding->src_object, coding->dst_object))
6703 {
6704 coding_set_source (coding);
6705 dst_end = (((unsigned char *) coding->source)
6706 + coding->consumed);
6707 }
6708 else
6709 dst_end = coding->destination + coding->dst_bytes;
6710 }
6711
6712 for (i = 0; i < to_nchars; i++)
6713 {
6714 if (i > 0)
6715 c = XINT (AREF (trans, i));
6716 if (coding->dst_multibyte
6717 || ! CHAR_BYTE8_P (c))
6718 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6719 else
6720 *dst++ = CHAR_TO_BYTE8 (c);
6721 }
6722 produced_chars += to_nchars;
6723 buf += from_nchars;
6724 }
6725 else
6726 /* This is an annotation datum. (-C) is the length. */
6727 buf += -c;
6728 }
6729 carryover = buf_end - buf;
6730 }
6731 else
6732 {
6733 /* Source characters are at coding->source. */
6734 const unsigned char *src = coding->source;
6735 const unsigned char *src_end = src + coding->consumed;
6736
6737 if (EQ (coding->dst_object, coding->src_object))
6738 dst_end = (unsigned char *) src;
6739 if (coding->src_multibyte != coding->dst_multibyte)
6740 {
6741 if (coding->src_multibyte)
6742 {
6743 int multibytep = 1;
6744 EMACS_INT consumed_chars = 0;
6745
6746 while (1)
6747 {
6748 const unsigned char *src_base = src;
6749 int c;
6750
6751 ONE_MORE_BYTE (c);
6752 if (dst == dst_end)
6753 {
6754 if (EQ (coding->src_object, coding->dst_object))
6755 dst_end = (unsigned char *) src;
6756 if (dst == dst_end)
6757 {
6758 EMACS_INT offset = src - coding->source;
6759
6760 dst = alloc_destination (coding, src_end - src + 1,
6761 dst);
6762 dst_end = coding->destination + coding->dst_bytes;
6763 coding_set_source (coding);
6764 src = coding->source + offset;
6765 src_end = coding->source + coding->src_bytes;
6766 if (EQ (coding->src_object, coding->dst_object))
6767 dst_end = (unsigned char *) src;
6768 }
6769 }
6770 *dst++ = c;
6771 produced_chars++;
6772 }
6773 no_more_source:
6774 ;
6775 }
6776 else
6777 while (src < src_end)
6778 {
6779 int multibytep = 1;
6780 int c = *src++;
6781
6782 if (dst >= dst_end - 1)
6783 {
6784 if (EQ (coding->src_object, coding->dst_object))
6785 dst_end = (unsigned char *) src;
6786 if (dst >= dst_end - 1)
6787 {
6788 EMACS_INT offset = src - coding->source;
6789 EMACS_INT more_bytes;
6790
6791 if (EQ (coding->src_object, coding->dst_object))
6792 more_bytes = ((src_end - src) / 2) + 2;
6793 else
6794 more_bytes = src_end - src + 2;
6795 dst = alloc_destination (coding, more_bytes, dst);
6796 dst_end = coding->destination + coding->dst_bytes;
6797 coding_set_source (coding);
6798 src = coding->source + offset;
6799 src_end = coding->source + coding->src_bytes;
6800 if (EQ (coding->src_object, coding->dst_object))
6801 dst_end = (unsigned char *) src;
6802 }
6803 }
6804 EMIT_ONE_BYTE (c);
6805 }
6806 }
6807 else
6808 {
6809 if (!EQ (coding->src_object, coding->dst_object))
6810 {
6811 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6812
6813 if (require > 0)
6814 {
6815 EMACS_INT offset = src - coding->source;
6816
6817 dst = alloc_destination (coding, require, dst);
6818 coding_set_source (coding);
6819 src = coding->source + offset;
6820 src_end = coding->source + coding->src_bytes;
6821 }
6822 }
6823 produced_chars = coding->consumed_char;
6824 while (src < src_end)
6825 *dst++ = *src++;
6826 }
6827 }
6828
6829 produced = dst - (coding->destination + coding->produced);
6830 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6831 insert_from_gap (produced_chars, produced);
6832 coding->produced += produced;
6833 coding->produced_char += produced_chars;
6834 return carryover;
6835 }
6836
6837 /* Compose text in CODING->object according to the annotation data at
6838 CHARBUF. CHARBUF is an array:
6839 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6840 */
6841
6842 static INLINE void
6843 produce_composition (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6844 {
6845 int len;
6846 EMACS_INT to;
6847 enum composition_method method;
6848 Lisp_Object components;
6849
6850 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6851 to = pos + charbuf[2];
6852 method = (enum composition_method) (charbuf[4]);
6853
6854 if (method == COMPOSITION_RELATIVE)
6855 components = Qnil;
6856 else
6857 {
6858 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6859 int i, j;
6860
6861 if (method == COMPOSITION_WITH_RULE)
6862 len = charbuf[2] * 3 - 2;
6863 charbuf += MAX_ANNOTATION_LENGTH;
6864 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6865 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6866 {
6867 if (charbuf[i] >= 0)
6868 args[j] = make_number (charbuf[i]);
6869 else
6870 {
6871 i++;
6872 args[j] = make_number (charbuf[i] % 0x100);
6873 }
6874 }
6875 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6876 }
6877 compose_text (pos, to, components, Qnil, coding->dst_object);
6878 }
6879
6880
6881 /* Put `charset' property on text in CODING->object according to
6882 the annotation data at CHARBUF. CHARBUF is an array:
6883 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
6884 */
6885
6886 static INLINE void
6887 produce_charset (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6888 {
6889 EMACS_INT from = pos - charbuf[2];
6890 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
6891
6892 Fput_text_property (make_number (from), make_number (pos),
6893 Qcharset, CHARSET_NAME (charset),
6894 coding->dst_object);
6895 }
6896
6897
6898 #define CHARBUF_SIZE 0x4000
6899
6900 #define ALLOC_CONVERSION_WORK_AREA(coding) \
6901 do { \
6902 int size = CHARBUF_SIZE; \
6903 \
6904 coding->charbuf = NULL; \
6905 while (size > 1024) \
6906 { \
6907 coding->charbuf = (int *) alloca (sizeof (int) * size); \
6908 if (coding->charbuf) \
6909 break; \
6910 size >>= 1; \
6911 } \
6912 if (! coding->charbuf) \
6913 { \
6914 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
6915 return coding->result; \
6916 } \
6917 coding->charbuf_size = size; \
6918 } while (0)
6919
6920
6921 static void
6922 produce_annotation (struct coding_system *coding, EMACS_INT pos)
6923 {
6924 int *charbuf = coding->charbuf;
6925 int *charbuf_end = charbuf + coding->charbuf_used;
6926
6927 if (NILP (coding->dst_object))
6928 return;
6929
6930 while (charbuf < charbuf_end)
6931 {
6932 if (*charbuf >= 0)
6933 pos++, charbuf++;
6934 else
6935 {
6936 int len = -*charbuf;
6937
6938 if (len > 2)
6939 switch (charbuf[1])
6940 {
6941 case CODING_ANNOTATE_COMPOSITION_MASK:
6942 produce_composition (coding, charbuf, pos);
6943 break;
6944 case CODING_ANNOTATE_CHARSET_MASK:
6945 produce_charset (coding, charbuf, pos);
6946 break;
6947 }
6948 charbuf += len;
6949 }
6950 }
6951 }
6952
6953 /* Decode the data at CODING->src_object into CODING->dst_object.
6954 CODING->src_object is a buffer, a string, or nil.
6955 CODING->dst_object is a buffer.
6956
6957 If CODING->src_object is a buffer, it must be the current buffer.
6958 In this case, if CODING->src_pos is positive, it is a position of
6959 the source text in the buffer, otherwise, the source text is in the
6960 gap area of the buffer, and CODING->src_pos specifies the offset of
6961 the text from GPT (which must be the same as PT). If this is the
6962 same buffer as CODING->dst_object, CODING->src_pos must be
6963 negative.
6964
6965 If CODING->src_object is a string, CODING->src_pos is an index to
6966 that string.
6967
6968 If CODING->src_object is nil, CODING->source must already point to
6969 the non-relocatable memory area. In this case, CODING->src_pos is
6970 an offset from CODING->source.
6971
6972 The decoded data is inserted at the current point of the buffer
6973 CODING->dst_object.
6974 */
6975
6976 static int
6977 decode_coding (struct coding_system *coding)
6978 {
6979 Lisp_Object attrs;
6980 Lisp_Object undo_list;
6981 Lisp_Object translation_table;
6982 struct ccl_spec cclspec;
6983 int carryover;
6984 int i;
6985
6986 if (BUFFERP (coding->src_object)
6987 && coding->src_pos > 0
6988 && coding->src_pos < GPT
6989 && coding->src_pos + coding->src_chars > GPT)
6990 move_gap_both (coding->src_pos, coding->src_pos_byte);
6991
6992 undo_list = Qt;
6993 if (BUFFERP (coding->dst_object))
6994 {
6995 if (current_buffer != XBUFFER (coding->dst_object))
6996 set_buffer_internal (XBUFFER (coding->dst_object));
6997 if (GPT != PT)
6998 move_gap_both (PT, PT_BYTE);
6999 undo_list = BVAR (current_buffer, undo_list);
7000 BVAR (current_buffer, undo_list) = Qt;
7001 }
7002
7003 coding->consumed = coding->consumed_char = 0;
7004 coding->produced = coding->produced_char = 0;
7005 coding->chars_at_source = 0;
7006 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7007 coding->errors = 0;
7008
7009 ALLOC_CONVERSION_WORK_AREA (coding);
7010
7011 attrs = CODING_ID_ATTRS (coding->id);
7012 translation_table = get_translation_table (attrs, 0, NULL);
7013
7014 carryover = 0;
7015 if (coding->decoder == decode_coding_ccl)
7016 {
7017 coding->spec.ccl = &cclspec;
7018 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7019 }
7020 do
7021 {
7022 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7023
7024 coding_set_source (coding);
7025 coding->annotated = 0;
7026 coding->charbuf_used = carryover;
7027 (*(coding->decoder)) (coding);
7028 coding_set_destination (coding);
7029 carryover = produce_chars (coding, translation_table, 0);
7030 if (coding->annotated)
7031 produce_annotation (coding, pos);
7032 for (i = 0; i < carryover; i++)
7033 coding->charbuf[i]
7034 = coding->charbuf[coding->charbuf_used - carryover + i];
7035 }
7036 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7037 || (coding->consumed < coding->src_bytes
7038 && (coding->result == CODING_RESULT_SUCCESS
7039 || coding->result == CODING_RESULT_INVALID_SRC)));
7040
7041 if (carryover > 0)
7042 {
7043 coding_set_destination (coding);
7044 coding->charbuf_used = carryover;
7045 produce_chars (coding, translation_table, 1);
7046 }
7047
7048 coding->carryover_bytes = 0;
7049 if (coding->consumed < coding->src_bytes)
7050 {
7051 int nbytes = coding->src_bytes - coding->consumed;
7052 const unsigned char *src;
7053
7054 coding_set_source (coding);
7055 coding_set_destination (coding);
7056 src = coding->source + coding->consumed;
7057
7058 if (coding->mode & CODING_MODE_LAST_BLOCK)
7059 {
7060 /* Flush out unprocessed data as binary chars. We are sure
7061 that the number of data is less than the size of
7062 coding->charbuf. */
7063 coding->charbuf_used = 0;
7064 coding->chars_at_source = 0;
7065
7066 while (nbytes-- > 0)
7067 {
7068 int c = *src++;
7069
7070 if (c & 0x80)
7071 c = BYTE8_TO_CHAR (c);
7072 coding->charbuf[coding->charbuf_used++] = c;
7073 }
7074 produce_chars (coding, Qnil, 1);
7075 }
7076 else
7077 {
7078 /* Record unprocessed bytes in coding->carryover. We are
7079 sure that the number of data is less than the size of
7080 coding->carryover. */
7081 unsigned char *p = coding->carryover;
7082
7083 if (nbytes > sizeof coding->carryover)
7084 nbytes = sizeof coding->carryover;
7085 coding->carryover_bytes = nbytes;
7086 while (nbytes-- > 0)
7087 *p++ = *src++;
7088 }
7089 coding->consumed = coding->src_bytes;
7090 }
7091
7092 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7093 && !inhibit_eol_conversion)
7094 decode_eol (coding);
7095 if (BUFFERP (coding->dst_object))
7096 {
7097 BVAR (current_buffer, undo_list) = undo_list;
7098 record_insert (coding->dst_pos, coding->produced_char);
7099 }
7100 return coding->result;
7101 }
7102
7103
7104 /* Extract an annotation datum from a composition starting at POS and
7105 ending before LIMIT of CODING->src_object (buffer or string), store
7106 the data in BUF, set *STOP to a starting position of the next
7107 composition (if any) or to LIMIT, and return the address of the
7108 next element of BUF.
7109
7110 If such an annotation is not found, set *STOP to a starting
7111 position of a composition after POS (if any) or to LIMIT, and
7112 return BUF. */
7113
7114 static INLINE int *
7115 handle_composition_annotation (EMACS_INT pos, EMACS_INT limit,
7116 struct coding_system *coding, int *buf,
7117 EMACS_INT *stop)
7118 {
7119 EMACS_INT start, end;
7120 Lisp_Object prop;
7121
7122 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7123 || end > limit)
7124 *stop = limit;
7125 else if (start > pos)
7126 *stop = start;
7127 else
7128 {
7129 if (start == pos)
7130 {
7131 /* We found a composition. Store the corresponding
7132 annotation data in BUF. */
7133 int *head = buf;
7134 enum composition_method method = COMPOSITION_METHOD (prop);
7135 int nchars = COMPOSITION_LENGTH (prop);
7136
7137 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7138 if (method != COMPOSITION_RELATIVE)
7139 {
7140 Lisp_Object components;
7141 int len, i, i_byte;
7142
7143 components = COMPOSITION_COMPONENTS (prop);
7144 if (VECTORP (components))
7145 {
7146 len = XVECTOR (components)->size;
7147 for (i = 0; i < len; i++)
7148 *buf++ = XINT (AREF (components, i));
7149 }
7150 else if (STRINGP (components))
7151 {
7152 len = SCHARS (components);
7153 i = i_byte = 0;
7154 while (i < len)
7155 {
7156 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7157 buf++;
7158 }
7159 }
7160 else if (INTEGERP (components))
7161 {
7162 len = 1;
7163 *buf++ = XINT (components);
7164 }
7165 else if (CONSP (components))
7166 {
7167 for (len = 0; CONSP (components);
7168 len++, components = XCDR (components))
7169 *buf++ = XINT (XCAR (components));
7170 }
7171 else
7172 abort ();
7173 *head -= len;
7174 }
7175 }
7176
7177 if (find_composition (end, limit, &start, &end, &prop,
7178 coding->src_object)
7179 && end <= limit)
7180 *stop = start;
7181 else
7182 *stop = limit;
7183 }
7184 return buf;
7185 }
7186
7187
7188 /* Extract an annotation datum from a text property `charset' at POS of
7189 CODING->src_object (buffer of string), store the data in BUF, set
7190 *STOP to the position where the value of `charset' property changes
7191 (limiting by LIMIT), and return the address of the next element of
7192 BUF.
7193
7194 If the property value is nil, set *STOP to the position where the
7195 property value is non-nil (limiting by LIMIT), and return BUF. */
7196
7197 static INLINE int *
7198 handle_charset_annotation (EMACS_INT pos, EMACS_INT limit,
7199 struct coding_system *coding, int *buf,
7200 EMACS_INT *stop)
7201 {
7202 Lisp_Object val, next;
7203 int id;
7204
7205 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7206 if (! NILP (val) && CHARSETP (val))
7207 id = XINT (CHARSET_SYMBOL_ID (val));
7208 else
7209 id = -1;
7210 ADD_CHARSET_DATA (buf, 0, id);
7211 next = Fnext_single_property_change (make_number (pos), Qcharset,
7212 coding->src_object,
7213 make_number (limit));
7214 *stop = XINT (next);
7215 return buf;
7216 }
7217
7218
7219 static void
7220 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7221 int max_lookup)
7222 {
7223 int *buf = coding->charbuf;
7224 int *buf_end = coding->charbuf + coding->charbuf_size;
7225 const unsigned char *src = coding->source + coding->consumed;
7226 const unsigned char *src_end = coding->source + coding->src_bytes;
7227 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7228 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7229 int multibytep = coding->src_multibyte;
7230 Lisp_Object eol_type;
7231 int c;
7232 EMACS_INT stop, stop_composition, stop_charset;
7233 int *lookup_buf = NULL;
7234
7235 if (! NILP (translation_table))
7236 lookup_buf = alloca (sizeof (int) * max_lookup);
7237
7238 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7239 if (VECTORP (eol_type))
7240 eol_type = Qunix;
7241
7242 /* Note: composition handling is not yet implemented. */
7243 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7244
7245 if (NILP (coding->src_object))
7246 stop = stop_composition = stop_charset = end_pos;
7247 else
7248 {
7249 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7250 stop = stop_composition = pos;
7251 else
7252 stop = stop_composition = end_pos;
7253 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7254 stop = stop_charset = pos;
7255 else
7256 stop_charset = end_pos;
7257 }
7258
7259 /* Compensate for CRLF and conversion. */
7260 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7261 while (buf < buf_end)
7262 {
7263 Lisp_Object trans;
7264
7265 if (pos == stop)
7266 {
7267 if (pos == end_pos)
7268 break;
7269 if (pos == stop_composition)
7270 buf = handle_composition_annotation (pos, end_pos, coding,
7271 buf, &stop_composition);
7272 if (pos == stop_charset)
7273 buf = handle_charset_annotation (pos, end_pos, coding,
7274 buf, &stop_charset);
7275 stop = (stop_composition < stop_charset
7276 ? stop_composition : stop_charset);
7277 }
7278
7279 if (! multibytep)
7280 {
7281 EMACS_INT bytes;
7282
7283 if (coding->encoder == encode_coding_raw_text
7284 || coding->encoder == encode_coding_ccl)
7285 c = *src++, pos++;
7286 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7287 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7288 else
7289 c = BYTE8_TO_CHAR (*src), src++, pos++;
7290 }
7291 else
7292 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7293 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7294 c = '\n';
7295 if (! EQ (eol_type, Qunix))
7296 {
7297 if (c == '\n')
7298 {
7299 if (EQ (eol_type, Qdos))
7300 *buf++ = '\r';
7301 else
7302 c = '\r';
7303 }
7304 }
7305
7306 trans = Qnil;
7307 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7308 if (NILP (trans))
7309 *buf++ = c;
7310 else
7311 {
7312 int from_nchars = 1, to_nchars = 1;
7313 int *lookup_buf_end;
7314 const unsigned char *p = src;
7315 int i;
7316
7317 lookup_buf[0] = c;
7318 for (i = 1; i < max_lookup && p < src_end; i++)
7319 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7320 lookup_buf_end = lookup_buf + i;
7321 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7322 if (INTEGERP (trans))
7323 c = XINT (trans);
7324 else if (CONSP (trans))
7325 {
7326 from_nchars = ASIZE (XCAR (trans));
7327 trans = XCDR (trans);
7328 if (INTEGERP (trans))
7329 c = XINT (trans);
7330 else
7331 {
7332 to_nchars = ASIZE (trans);
7333 if (buf + to_nchars > buf_end)
7334 break;
7335 c = XINT (AREF (trans, 0));
7336 }
7337 }
7338 else
7339 break;
7340 *buf++ = c;
7341 for (i = 1; i < to_nchars; i++)
7342 *buf++ = XINT (AREF (trans, i));
7343 for (i = 1; i < from_nchars; i++, pos++)
7344 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7345 }
7346 }
7347
7348 coding->consumed = src - coding->source;
7349 coding->consumed_char = pos - coding->src_pos;
7350 coding->charbuf_used = buf - coding->charbuf;
7351 coding->chars_at_source = 0;
7352 }
7353
7354
7355 /* Encode the text at CODING->src_object into CODING->dst_object.
7356 CODING->src_object is a buffer or a string.
7357 CODING->dst_object is a buffer or nil.
7358
7359 If CODING->src_object is a buffer, it must be the current buffer.
7360 In this case, if CODING->src_pos is positive, it is a position of
7361 the source text in the buffer, otherwise. the source text is in the
7362 gap area of the buffer, and coding->src_pos specifies the offset of
7363 the text from GPT (which must be the same as PT). If this is the
7364 same buffer as CODING->dst_object, CODING->src_pos must be
7365 negative and CODING should not have `pre-write-conversion'.
7366
7367 If CODING->src_object is a string, CODING should not have
7368 `pre-write-conversion'.
7369
7370 If CODING->dst_object is a buffer, the encoded data is inserted at
7371 the current point of that buffer.
7372
7373 If CODING->dst_object is nil, the encoded data is placed at the
7374 memory area specified by CODING->destination. */
7375
7376 static int
7377 encode_coding (struct coding_system *coding)
7378 {
7379 Lisp_Object attrs;
7380 Lisp_Object translation_table;
7381 int max_lookup;
7382 struct ccl_spec cclspec;
7383
7384 attrs = CODING_ID_ATTRS (coding->id);
7385 if (coding->encoder == encode_coding_raw_text)
7386 translation_table = Qnil, max_lookup = 0;
7387 else
7388 translation_table = get_translation_table (attrs, 1, &max_lookup);
7389
7390 if (BUFFERP (coding->dst_object))
7391 {
7392 set_buffer_internal (XBUFFER (coding->dst_object));
7393 coding->dst_multibyte
7394 = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7395 }
7396
7397 coding->consumed = coding->consumed_char = 0;
7398 coding->produced = coding->produced_char = 0;
7399 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7400 coding->errors = 0;
7401
7402 ALLOC_CONVERSION_WORK_AREA (coding);
7403
7404 if (coding->encoder == encode_coding_ccl)
7405 {
7406 coding->spec.ccl = &cclspec;
7407 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7408 }
7409 do {
7410 coding_set_source (coding);
7411 consume_chars (coding, translation_table, max_lookup);
7412 coding_set_destination (coding);
7413 (*(coding->encoder)) (coding);
7414 } while (coding->consumed_char < coding->src_chars);
7415
7416 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7417 insert_from_gap (coding->produced_char, coding->produced);
7418
7419 return (coding->result);
7420 }
7421
7422
7423 /* Name (or base name) of work buffer for code conversion. */
7424 static Lisp_Object Vcode_conversion_workbuf_name;
7425
7426 /* A working buffer used by the top level conversion. Once it is
7427 created, it is never destroyed. It has the name
7428 Vcode_conversion_workbuf_name. The other working buffers are
7429 destroyed after the use is finished, and their names are modified
7430 versions of Vcode_conversion_workbuf_name. */
7431 static Lisp_Object Vcode_conversion_reused_workbuf;
7432
7433 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7434 static int reused_workbuf_in_use;
7435
7436
7437 /* Return a working buffer of code conversion. MULTIBYTE specifies the
7438 multibyteness of returning buffer. */
7439
7440 static Lisp_Object
7441 make_conversion_work_buffer (int multibyte)
7442 {
7443 Lisp_Object name, workbuf;
7444 struct buffer *current;
7445
7446 if (reused_workbuf_in_use++)
7447 {
7448 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7449 workbuf = Fget_buffer_create (name);
7450 }
7451 else
7452 {
7453 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7454 Vcode_conversion_reused_workbuf
7455 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7456 workbuf = Vcode_conversion_reused_workbuf;
7457 }
7458 current = current_buffer;
7459 set_buffer_internal (XBUFFER (workbuf));
7460 /* We can't allow modification hooks to run in the work buffer. For
7461 instance, directory_files_internal assumes that file decoding
7462 doesn't compile new regexps. */
7463 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7464 Ferase_buffer ();
7465 BVAR (current_buffer, undo_list) = Qt;
7466 BVAR (current_buffer, enable_multibyte_characters) = multibyte ? Qt : Qnil;
7467 set_buffer_internal (current);
7468 return workbuf;
7469 }
7470
7471
7472 static Lisp_Object
7473 code_conversion_restore (Lisp_Object arg)
7474 {
7475 Lisp_Object current, workbuf;
7476 struct gcpro gcpro1;
7477
7478 GCPRO1 (arg);
7479 current = XCAR (arg);
7480 workbuf = XCDR (arg);
7481 if (! NILP (workbuf))
7482 {
7483 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7484 reused_workbuf_in_use = 0;
7485 else if (! NILP (Fbuffer_live_p (workbuf)))
7486 Fkill_buffer (workbuf);
7487 }
7488 set_buffer_internal (XBUFFER (current));
7489 UNGCPRO;
7490 return Qnil;
7491 }
7492
7493 Lisp_Object
7494 code_conversion_save (int with_work_buf, int multibyte)
7495 {
7496 Lisp_Object workbuf = Qnil;
7497
7498 if (with_work_buf)
7499 workbuf = make_conversion_work_buffer (multibyte);
7500 record_unwind_protect (code_conversion_restore,
7501 Fcons (Fcurrent_buffer (), workbuf));
7502 return workbuf;
7503 }
7504
7505 int
7506 decode_coding_gap (struct coding_system *coding,
7507 EMACS_INT chars, EMACS_INT bytes)
7508 {
7509 int count = SPECPDL_INDEX ();
7510 Lisp_Object attrs;
7511
7512 code_conversion_save (0, 0);
7513
7514 coding->src_object = Fcurrent_buffer ();
7515 coding->src_chars = chars;
7516 coding->src_bytes = bytes;
7517 coding->src_pos = -chars;
7518 coding->src_pos_byte = -bytes;
7519 coding->src_multibyte = chars < bytes;
7520 coding->dst_object = coding->src_object;
7521 coding->dst_pos = PT;
7522 coding->dst_pos_byte = PT_BYTE;
7523 coding->dst_multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7524
7525 if (CODING_REQUIRE_DETECTION (coding))
7526 detect_coding (coding);
7527
7528 coding->mode |= CODING_MODE_LAST_BLOCK;
7529 current_buffer->text->inhibit_shrinking = 1;
7530 decode_coding (coding);
7531 current_buffer->text->inhibit_shrinking = 0;
7532
7533 attrs = CODING_ID_ATTRS (coding->id);
7534 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7535 {
7536 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7537 Lisp_Object val;
7538
7539 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7540 val = call1 (CODING_ATTR_POST_READ (attrs),
7541 make_number (coding->produced_char));
7542 CHECK_NATNUM (val);
7543 coding->produced_char += Z - prev_Z;
7544 coding->produced += Z_BYTE - prev_Z_BYTE;
7545 }
7546
7547 unbind_to (count, Qnil);
7548 return coding->result;
7549 }
7550
7551 int
7552 encode_coding_gap (struct coding_system *coding,
7553 EMACS_INT chars, EMACS_INT bytes)
7554 {
7555 int count = SPECPDL_INDEX ();
7556
7557 code_conversion_save (0, 0);
7558
7559 coding->src_object = Fcurrent_buffer ();
7560 coding->src_chars = chars;
7561 coding->src_bytes = bytes;
7562 coding->src_pos = -chars;
7563 coding->src_pos_byte = -bytes;
7564 coding->src_multibyte = chars < bytes;
7565 coding->dst_object = coding->src_object;
7566 coding->dst_pos = PT;
7567 coding->dst_pos_byte = PT_BYTE;
7568
7569 encode_coding (coding);
7570
7571 unbind_to (count, Qnil);
7572 return coding->result;
7573 }
7574
7575
7576 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7577 SRC_OBJECT into DST_OBJECT by coding context CODING.
7578
7579 SRC_OBJECT is a buffer, a string, or Qnil.
7580
7581 If it is a buffer, the text is at point of the buffer. FROM and TO
7582 are positions in the buffer.
7583
7584 If it is a string, the text is at the beginning of the string.
7585 FROM and TO are indices to the string.
7586
7587 If it is nil, the text is at coding->source. FROM and TO are
7588 indices to coding->source.
7589
7590 DST_OBJECT is a buffer, Qt, or Qnil.
7591
7592 If it is a buffer, the decoded text is inserted at point of the
7593 buffer. If the buffer is the same as SRC_OBJECT, the source text
7594 is deleted.
7595
7596 If it is Qt, a string is made from the decoded text, and
7597 set in CODING->dst_object.
7598
7599 If it is Qnil, the decoded text is stored at CODING->destination.
7600 The caller must allocate CODING->dst_bytes bytes at
7601 CODING->destination by xmalloc. If the decoded text is longer than
7602 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7603 */
7604
7605 void
7606 decode_coding_object (struct coding_system *coding,
7607 Lisp_Object src_object,
7608 EMACS_INT from, EMACS_INT from_byte,
7609 EMACS_INT to, EMACS_INT to_byte,
7610 Lisp_Object dst_object)
7611 {
7612 int count = SPECPDL_INDEX ();
7613 unsigned char *destination IF_LINT (= NULL);
7614 EMACS_INT dst_bytes IF_LINT (= 0);
7615 EMACS_INT chars = to - from;
7616 EMACS_INT bytes = to_byte - from_byte;
7617 Lisp_Object attrs;
7618 int saved_pt = -1, saved_pt_byte IF_LINT (= 0);
7619 int need_marker_adjustment = 0;
7620 Lisp_Object old_deactivate_mark;
7621
7622 old_deactivate_mark = Vdeactivate_mark;
7623
7624 if (NILP (dst_object))
7625 {
7626 destination = coding->destination;
7627 dst_bytes = coding->dst_bytes;
7628 }
7629
7630 coding->src_object = src_object;
7631 coding->src_chars = chars;
7632 coding->src_bytes = bytes;
7633 coding->src_multibyte = chars < bytes;
7634
7635 if (STRINGP (src_object))
7636 {
7637 coding->src_pos = from;
7638 coding->src_pos_byte = from_byte;
7639 }
7640 else if (BUFFERP (src_object))
7641 {
7642 set_buffer_internal (XBUFFER (src_object));
7643 if (from != GPT)
7644 move_gap_both (from, from_byte);
7645 if (EQ (src_object, dst_object))
7646 {
7647 struct Lisp_Marker *tail;
7648
7649 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7650 {
7651 tail->need_adjustment
7652 = tail->charpos == (tail->insertion_type ? from : to);
7653 need_marker_adjustment |= tail->need_adjustment;
7654 }
7655 saved_pt = PT, saved_pt_byte = PT_BYTE;
7656 TEMP_SET_PT_BOTH (from, from_byte);
7657 current_buffer->text->inhibit_shrinking = 1;
7658 del_range_both (from, from_byte, to, to_byte, 1);
7659 coding->src_pos = -chars;
7660 coding->src_pos_byte = -bytes;
7661 }
7662 else
7663 {
7664 coding->src_pos = from;
7665 coding->src_pos_byte = from_byte;
7666 }
7667 }
7668
7669 if (CODING_REQUIRE_DETECTION (coding))
7670 detect_coding (coding);
7671 attrs = CODING_ID_ATTRS (coding->id);
7672
7673 if (EQ (dst_object, Qt)
7674 || (! NILP (CODING_ATTR_POST_READ (attrs))
7675 && NILP (dst_object)))
7676 {
7677 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7678 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7679 coding->dst_pos = BEG;
7680 coding->dst_pos_byte = BEG_BYTE;
7681 }
7682 else if (BUFFERP (dst_object))
7683 {
7684 code_conversion_save (0, 0);
7685 coding->dst_object = dst_object;
7686 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7687 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7688 coding->dst_multibyte
7689 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
7690 }
7691 else
7692 {
7693 code_conversion_save (0, 0);
7694 coding->dst_object = Qnil;
7695 /* Most callers presume this will return a multibyte result, and they
7696 won't use `binary' or `raw-text' anyway, so let's not worry about
7697 CODING_FOR_UNIBYTE. */
7698 coding->dst_multibyte = 1;
7699 }
7700
7701 decode_coding (coding);
7702
7703 if (BUFFERP (coding->dst_object))
7704 set_buffer_internal (XBUFFER (coding->dst_object));
7705
7706 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7707 {
7708 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7709 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7710 Lisp_Object val;
7711
7712 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7713 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7714 old_deactivate_mark);
7715 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7716 make_number (coding->produced_char));
7717 UNGCPRO;
7718 CHECK_NATNUM (val);
7719 coding->produced_char += Z - prev_Z;
7720 coding->produced += Z_BYTE - prev_Z_BYTE;
7721 }
7722
7723 if (EQ (dst_object, Qt))
7724 {
7725 coding->dst_object = Fbuffer_string ();
7726 }
7727 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7728 {
7729 set_buffer_internal (XBUFFER (coding->dst_object));
7730 if (dst_bytes < coding->produced)
7731 {
7732 destination = xrealloc (destination, coding->produced);
7733 if (! destination)
7734 {
7735 record_conversion_result (coding,
7736 CODING_RESULT_INSUFFICIENT_MEM);
7737 unbind_to (count, Qnil);
7738 return;
7739 }
7740 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7741 move_gap_both (BEGV, BEGV_BYTE);
7742 memcpy (destination, BEGV_ADDR, coding->produced);
7743 coding->destination = destination;
7744 }
7745 }
7746
7747 if (saved_pt >= 0)
7748 {
7749 /* This is the case of:
7750 (BUFFERP (src_object) && EQ (src_object, dst_object))
7751 As we have moved PT while replacing the original buffer
7752 contents, we must recover it now. */
7753 set_buffer_internal (XBUFFER (src_object));
7754 current_buffer->text->inhibit_shrinking = 0;
7755 if (saved_pt < from)
7756 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7757 else if (saved_pt < from + chars)
7758 TEMP_SET_PT_BOTH (from, from_byte);
7759 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
7760 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7761 saved_pt_byte + (coding->produced - bytes));
7762 else
7763 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7764 saved_pt_byte + (coding->produced - bytes));
7765
7766 if (need_marker_adjustment)
7767 {
7768 struct Lisp_Marker *tail;
7769
7770 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7771 if (tail->need_adjustment)
7772 {
7773 tail->need_adjustment = 0;
7774 if (tail->insertion_type)
7775 {
7776 tail->bytepos = from_byte;
7777 tail->charpos = from;
7778 }
7779 else
7780 {
7781 tail->bytepos = from_byte + coding->produced;
7782 tail->charpos
7783 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
7784 ? tail->bytepos : from + coding->produced_char);
7785 }
7786 }
7787 }
7788 }
7789
7790 Vdeactivate_mark = old_deactivate_mark;
7791 unbind_to (count, coding->dst_object);
7792 }
7793
7794
7795 void
7796 encode_coding_object (struct coding_system *coding,
7797 Lisp_Object src_object,
7798 EMACS_INT from, EMACS_INT from_byte,
7799 EMACS_INT to, EMACS_INT to_byte,
7800 Lisp_Object dst_object)
7801 {
7802 int count = SPECPDL_INDEX ();
7803 EMACS_INT chars = to - from;
7804 EMACS_INT bytes = to_byte - from_byte;
7805 Lisp_Object attrs;
7806 int saved_pt = -1, saved_pt_byte IF_LINT (= 0);
7807 int need_marker_adjustment = 0;
7808 int kill_src_buffer = 0;
7809 Lisp_Object old_deactivate_mark;
7810
7811 old_deactivate_mark = Vdeactivate_mark;
7812
7813 coding->src_object = src_object;
7814 coding->src_chars = chars;
7815 coding->src_bytes = bytes;
7816 coding->src_multibyte = chars < bytes;
7817
7818 attrs = CODING_ID_ATTRS (coding->id);
7819
7820 if (EQ (src_object, dst_object))
7821 {
7822 struct Lisp_Marker *tail;
7823
7824 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7825 {
7826 tail->need_adjustment
7827 = tail->charpos == (tail->insertion_type ? from : to);
7828 need_marker_adjustment |= tail->need_adjustment;
7829 }
7830 }
7831
7832 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7833 {
7834 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7835 set_buffer_internal (XBUFFER (coding->src_object));
7836 if (STRINGP (src_object))
7837 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7838 else if (BUFFERP (src_object))
7839 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7840 else
7841 insert_1_both ((char *) coding->source + from, chars, bytes, 0, 0, 0);
7842
7843 if (EQ (src_object, dst_object))
7844 {
7845 set_buffer_internal (XBUFFER (src_object));
7846 saved_pt = PT, saved_pt_byte = PT_BYTE;
7847 del_range_both (from, from_byte, to, to_byte, 1);
7848 set_buffer_internal (XBUFFER (coding->src_object));
7849 }
7850
7851 {
7852 Lisp_Object args[3];
7853 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7854
7855 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7856 old_deactivate_mark);
7857 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7858 args[1] = make_number (BEG);
7859 args[2] = make_number (Z);
7860 safe_call (3, args);
7861 UNGCPRO;
7862 }
7863 if (XBUFFER (coding->src_object) != current_buffer)
7864 kill_src_buffer = 1;
7865 coding->src_object = Fcurrent_buffer ();
7866 if (BEG != GPT)
7867 move_gap_both (BEG, BEG_BYTE);
7868 coding->src_chars = Z - BEG;
7869 coding->src_bytes = Z_BYTE - BEG_BYTE;
7870 coding->src_pos = BEG;
7871 coding->src_pos_byte = BEG_BYTE;
7872 coding->src_multibyte = Z < Z_BYTE;
7873 }
7874 else if (STRINGP (src_object))
7875 {
7876 code_conversion_save (0, 0);
7877 coding->src_pos = from;
7878 coding->src_pos_byte = from_byte;
7879 }
7880 else if (BUFFERP (src_object))
7881 {
7882 code_conversion_save (0, 0);
7883 set_buffer_internal (XBUFFER (src_object));
7884 if (EQ (src_object, dst_object))
7885 {
7886 saved_pt = PT, saved_pt_byte = PT_BYTE;
7887 coding->src_object = del_range_1 (from, to, 1, 1);
7888 coding->src_pos = 0;
7889 coding->src_pos_byte = 0;
7890 }
7891 else
7892 {
7893 if (from < GPT && to >= GPT)
7894 move_gap_both (from, from_byte);
7895 coding->src_pos = from;
7896 coding->src_pos_byte = from_byte;
7897 }
7898 }
7899 else
7900 code_conversion_save (0, 0);
7901
7902 if (BUFFERP (dst_object))
7903 {
7904 coding->dst_object = dst_object;
7905 if (EQ (src_object, dst_object))
7906 {
7907 coding->dst_pos = from;
7908 coding->dst_pos_byte = from_byte;
7909 }
7910 else
7911 {
7912 struct buffer *current = current_buffer;
7913
7914 set_buffer_temp (XBUFFER (dst_object));
7915 coding->dst_pos = PT;
7916 coding->dst_pos_byte = PT_BYTE;
7917 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
7918 set_buffer_temp (current);
7919 }
7920 coding->dst_multibyte
7921 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
7922 }
7923 else if (EQ (dst_object, Qt))
7924 {
7925 coding->dst_object = Qnil;
7926 coding->dst_bytes = coding->src_chars;
7927 if (coding->dst_bytes == 0)
7928 coding->dst_bytes = 1;
7929 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
7930 coding->dst_multibyte = 0;
7931 }
7932 else
7933 {
7934 coding->dst_object = Qnil;
7935 coding->dst_multibyte = 0;
7936 }
7937
7938 encode_coding (coding);
7939
7940 if (EQ (dst_object, Qt))
7941 {
7942 if (BUFFERP (coding->dst_object))
7943 coding->dst_object = Fbuffer_string ();
7944 else
7945 {
7946 coding->dst_object
7947 = make_unibyte_string ((char *) coding->destination,
7948 coding->produced);
7949 xfree (coding->destination);
7950 }
7951 }
7952
7953 if (saved_pt >= 0)
7954 {
7955 /* This is the case of:
7956 (BUFFERP (src_object) && EQ (src_object, dst_object))
7957 As we have moved PT while replacing the original buffer
7958 contents, we must recover it now. */
7959 set_buffer_internal (XBUFFER (src_object));
7960 if (saved_pt < from)
7961 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7962 else if (saved_pt < from + chars)
7963 TEMP_SET_PT_BOTH (from, from_byte);
7964 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
7965 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7966 saved_pt_byte + (coding->produced - bytes));
7967 else
7968 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7969 saved_pt_byte + (coding->produced - bytes));
7970
7971 if (need_marker_adjustment)
7972 {
7973 struct Lisp_Marker *tail;
7974
7975 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7976 if (tail->need_adjustment)
7977 {
7978 tail->need_adjustment = 0;
7979 if (tail->insertion_type)
7980 {
7981 tail->bytepos = from_byte;
7982 tail->charpos = from;
7983 }
7984 else
7985 {
7986 tail->bytepos = from_byte + coding->produced;
7987 tail->charpos
7988 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
7989 ? tail->bytepos : from + coding->produced_char);
7990 }
7991 }
7992 }
7993 }
7994
7995 if (kill_src_buffer)
7996 Fkill_buffer (coding->src_object);
7997
7998 Vdeactivate_mark = old_deactivate_mark;
7999 unbind_to (count, Qnil);
8000 }
8001
8002
8003 Lisp_Object
8004 preferred_coding_system (void)
8005 {
8006 int id = coding_categories[coding_priorities[0]].id;
8007
8008 return CODING_ID_NAME (id);
8009 }
8010
8011 \f
8012 #ifdef emacs
8013 /*** 8. Emacs Lisp library functions ***/
8014
8015 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8016 doc: /* Return t if OBJECT is nil or a coding-system.
8017 See the documentation of `define-coding-system' for information
8018 about coding-system objects. */)
8019 (Lisp_Object object)
8020 {
8021 if (NILP (object)
8022 || CODING_SYSTEM_ID (object) >= 0)
8023 return Qt;
8024 if (! SYMBOLP (object)
8025 || NILP (Fget (object, Qcoding_system_define_form)))
8026 return Qnil;
8027 return Qt;
8028 }
8029
8030 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8031 Sread_non_nil_coding_system, 1, 1, 0,
8032 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8033 (Lisp_Object prompt)
8034 {
8035 Lisp_Object val;
8036 do
8037 {
8038 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8039 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8040 }
8041 while (SCHARS (val) == 0);
8042 return (Fintern (val, Qnil));
8043 }
8044
8045 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8046 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8047 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8048 Ignores case when completing coding systems (all Emacs coding systems
8049 are lower-case). */)
8050 (Lisp_Object prompt, Lisp_Object default_coding_system)
8051 {
8052 Lisp_Object val;
8053 int count = SPECPDL_INDEX ();
8054
8055 if (SYMBOLP (default_coding_system))
8056 default_coding_system = SYMBOL_NAME (default_coding_system);
8057 specbind (Qcompletion_ignore_case, Qt);
8058 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8059 Qt, Qnil, Qcoding_system_history,
8060 default_coding_system, Qnil);
8061 unbind_to (count, Qnil);
8062 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8063 }
8064
8065 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8066 1, 1, 0,
8067 doc: /* Check validity of CODING-SYSTEM.
8068 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8069 It is valid if it is nil or a symbol defined as a coding system by the
8070 function `define-coding-system'. */)
8071 (Lisp_Object coding_system)
8072 {
8073 Lisp_Object define_form;
8074
8075 define_form = Fget (coding_system, Qcoding_system_define_form);
8076 if (! NILP (define_form))
8077 {
8078 Fput (coding_system, Qcoding_system_define_form, Qnil);
8079 safe_eval (define_form);
8080 }
8081 if (!NILP (Fcoding_system_p (coding_system)))
8082 return coding_system;
8083 xsignal1 (Qcoding_system_error, coding_system);
8084 }
8085
8086 \f
8087 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8088 HIGHEST is nonzero, return the coding system of the highest
8089 priority among the detected coding systems. Otherwise return a
8090 list of detected coding systems sorted by their priorities. If
8091 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8092 multibyte form but contains only ASCII and eight-bit chars.
8093 Otherwise, the bytes are raw bytes.
8094
8095 CODING-SYSTEM controls the detection as below:
8096
8097 If it is nil, detect both text-format and eol-format. If the
8098 text-format part of CODING-SYSTEM is already specified
8099 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8100 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8101 detect only text-format. */
8102
8103 Lisp_Object
8104 detect_coding_system (const unsigned char *src,
8105 EMACS_INT src_chars, EMACS_INT src_bytes,
8106 int highest, int multibytep,
8107 Lisp_Object coding_system)
8108 {
8109 const unsigned char *src_end = src + src_bytes;
8110 Lisp_Object attrs, eol_type;
8111 Lisp_Object val = Qnil;
8112 struct coding_system coding;
8113 int id;
8114 struct coding_detection_info detect_info;
8115 enum coding_category base_category;
8116 int null_byte_found = 0, eight_bit_found = 0;
8117
8118 if (NILP (coding_system))
8119 coding_system = Qundecided;
8120 setup_coding_system (coding_system, &coding);
8121 attrs = CODING_ID_ATTRS (coding.id);
8122 eol_type = CODING_ID_EOL_TYPE (coding.id);
8123 coding_system = CODING_ATTR_BASE_NAME (attrs);
8124
8125 coding.source = src;
8126 coding.src_chars = src_chars;
8127 coding.src_bytes = src_bytes;
8128 coding.src_multibyte = multibytep;
8129 coding.consumed = 0;
8130 coding.mode |= CODING_MODE_LAST_BLOCK;
8131 coding.head_ascii = 0;
8132
8133 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8134
8135 /* At first, detect text-format if necessary. */
8136 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8137 if (base_category == coding_category_undecided)
8138 {
8139 enum coding_category category IF_LINT (= 0);
8140 struct coding_system *this IF_LINT (= NULL);
8141 int c, i;
8142
8143 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8144 for (; src < src_end; src++)
8145 {
8146 c = *src;
8147 if (c & 0x80)
8148 {
8149 eight_bit_found = 1;
8150 if (null_byte_found)
8151 break;
8152 }
8153 else if (c < 0x20)
8154 {
8155 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8156 && ! inhibit_iso_escape_detection
8157 && ! detect_info.checked)
8158 {
8159 if (detect_coding_iso_2022 (&coding, &detect_info))
8160 {
8161 /* We have scanned the whole data. */
8162 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8163 {
8164 /* We didn't find an 8-bit code. We may
8165 have found a null-byte, but it's very
8166 rare that a binary file confirm to
8167 ISO-2022. */
8168 src = src_end;
8169 coding.head_ascii = src - coding.source;
8170 }
8171 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8172 break;
8173 }
8174 }
8175 else if (! c && !inhibit_null_byte_detection)
8176 {
8177 null_byte_found = 1;
8178 if (eight_bit_found)
8179 break;
8180 }
8181 if (! eight_bit_found)
8182 coding.head_ascii++;
8183 }
8184 else if (! eight_bit_found)
8185 coding.head_ascii++;
8186 }
8187
8188 if (null_byte_found || eight_bit_found
8189 || coding.head_ascii < coding.src_bytes
8190 || detect_info.found)
8191 {
8192 if (coding.head_ascii == coding.src_bytes)
8193 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8194 for (i = 0; i < coding_category_raw_text; i++)
8195 {
8196 category = coding_priorities[i];
8197 this = coding_categories + category;
8198 if (detect_info.found & (1 << category))
8199 break;
8200 }
8201 else
8202 {
8203 if (null_byte_found)
8204 {
8205 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8206 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8207 }
8208 for (i = 0; i < coding_category_raw_text; i++)
8209 {
8210 category = coding_priorities[i];
8211 this = coding_categories + category;
8212
8213 if (this->id < 0)
8214 {
8215 /* No coding system of this category is defined. */
8216 detect_info.rejected |= (1 << category);
8217 }
8218 else if (category >= coding_category_raw_text)
8219 continue;
8220 else if (detect_info.checked & (1 << category))
8221 {
8222 if (highest
8223 && (detect_info.found & (1 << category)))
8224 break;
8225 }
8226 else if ((*(this->detector)) (&coding, &detect_info)
8227 && highest
8228 && (detect_info.found & (1 << category)))
8229 {
8230 if (category == coding_category_utf_16_auto)
8231 {
8232 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8233 category = coding_category_utf_16_le;
8234 else
8235 category = coding_category_utf_16_be;
8236 }
8237 break;
8238 }
8239 }
8240 }
8241 }
8242
8243 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8244 || null_byte_found)
8245 {
8246 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8247 id = CODING_SYSTEM_ID (Qno_conversion);
8248 val = Fcons (make_number (id), Qnil);
8249 }
8250 else if (! detect_info.rejected && ! detect_info.found)
8251 {
8252 detect_info.found = CATEGORY_MASK_ANY;
8253 id = coding_categories[coding_category_undecided].id;
8254 val = Fcons (make_number (id), Qnil);
8255 }
8256 else if (highest)
8257 {
8258 if (detect_info.found)
8259 {
8260 detect_info.found = 1 << category;
8261 val = Fcons (make_number (this->id), Qnil);
8262 }
8263 else
8264 for (i = 0; i < coding_category_raw_text; i++)
8265 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8266 {
8267 detect_info.found = 1 << coding_priorities[i];
8268 id = coding_categories[coding_priorities[i]].id;
8269 val = Fcons (make_number (id), Qnil);
8270 break;
8271 }
8272 }
8273 else
8274 {
8275 int mask = detect_info.rejected | detect_info.found;
8276 int found = 0;
8277
8278 for (i = coding_category_raw_text - 1; i >= 0; i--)
8279 {
8280 category = coding_priorities[i];
8281 if (! (mask & (1 << category)))
8282 {
8283 found |= 1 << category;
8284 id = coding_categories[category].id;
8285 if (id >= 0)
8286 val = Fcons (make_number (id), val);
8287 }
8288 }
8289 for (i = coding_category_raw_text - 1; i >= 0; i--)
8290 {
8291 category = coding_priorities[i];
8292 if (detect_info.found & (1 << category))
8293 {
8294 id = coding_categories[category].id;
8295 val = Fcons (make_number (id), val);
8296 }
8297 }
8298 detect_info.found |= found;
8299 }
8300 }
8301 else if (base_category == coding_category_utf_8_auto)
8302 {
8303 if (detect_coding_utf_8 (&coding, &detect_info))
8304 {
8305 struct coding_system *this;
8306
8307 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8308 this = coding_categories + coding_category_utf_8_sig;
8309 else
8310 this = coding_categories + coding_category_utf_8_nosig;
8311 val = Fcons (make_number (this->id), Qnil);
8312 }
8313 }
8314 else if (base_category == coding_category_utf_16_auto)
8315 {
8316 if (detect_coding_utf_16 (&coding, &detect_info))
8317 {
8318 struct coding_system *this;
8319
8320 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8321 this = coding_categories + coding_category_utf_16_le;
8322 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8323 this = coding_categories + coding_category_utf_16_be;
8324 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8325 this = coding_categories + coding_category_utf_16_be_nosig;
8326 else
8327 this = coding_categories + coding_category_utf_16_le_nosig;
8328 val = Fcons (make_number (this->id), Qnil);
8329 }
8330 }
8331 else
8332 {
8333 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8334 val = Fcons (make_number (coding.id), Qnil);
8335 }
8336
8337 /* Then, detect eol-format if necessary. */
8338 {
8339 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8340 Lisp_Object tail;
8341
8342 if (VECTORP (eol_type))
8343 {
8344 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8345 {
8346 if (null_byte_found)
8347 normal_eol = EOL_SEEN_LF;
8348 else
8349 normal_eol = detect_eol (coding.source, src_bytes,
8350 coding_category_raw_text);
8351 }
8352 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8353 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8354 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8355 coding_category_utf_16_be);
8356 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8357 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8358 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8359 coding_category_utf_16_le);
8360 }
8361 else
8362 {
8363 if (EQ (eol_type, Qunix))
8364 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8365 else if (EQ (eol_type, Qdos))
8366 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8367 else
8368 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8369 }
8370
8371 for (tail = val; CONSP (tail); tail = XCDR (tail))
8372 {
8373 enum coding_category category;
8374 int this_eol;
8375
8376 id = XINT (XCAR (tail));
8377 attrs = CODING_ID_ATTRS (id);
8378 category = XINT (CODING_ATTR_CATEGORY (attrs));
8379 eol_type = CODING_ID_EOL_TYPE (id);
8380 if (VECTORP (eol_type))
8381 {
8382 if (category == coding_category_utf_16_be
8383 || category == coding_category_utf_16_be_nosig)
8384 this_eol = utf_16_be_eol;
8385 else if (category == coding_category_utf_16_le
8386 || category == coding_category_utf_16_le_nosig)
8387 this_eol = utf_16_le_eol;
8388 else
8389 this_eol = normal_eol;
8390
8391 if (this_eol == EOL_SEEN_LF)
8392 XSETCAR (tail, AREF (eol_type, 0));
8393 else if (this_eol == EOL_SEEN_CRLF)
8394 XSETCAR (tail, AREF (eol_type, 1));
8395 else if (this_eol == EOL_SEEN_CR)
8396 XSETCAR (tail, AREF (eol_type, 2));
8397 else
8398 XSETCAR (tail, CODING_ID_NAME (id));
8399 }
8400 else
8401 XSETCAR (tail, CODING_ID_NAME (id));
8402 }
8403 }
8404
8405 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8406 }
8407
8408
8409 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8410 2, 3, 0,
8411 doc: /* Detect coding system of the text in the region between START and END.
8412 Return a list of possible coding systems ordered by priority.
8413 The coding systems to try and their priorities follows what
8414 the function `coding-system-priority-list' (which see) returns.
8415
8416 If only ASCII characters are found (except for such ISO-2022 control
8417 characters as ESC), it returns a list of single element `undecided'
8418 or its subsidiary coding system according to a detected end-of-line
8419 format.
8420
8421 If optional argument HIGHEST is non-nil, return the coding system of
8422 highest priority. */)
8423 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8424 {
8425 int from, to;
8426 int from_byte, to_byte;
8427
8428 CHECK_NUMBER_COERCE_MARKER (start);
8429 CHECK_NUMBER_COERCE_MARKER (end);
8430
8431 validate_region (&start, &end);
8432 from = XINT (start), to = XINT (end);
8433 from_byte = CHAR_TO_BYTE (from);
8434 to_byte = CHAR_TO_BYTE (to);
8435
8436 if (from < GPT && to >= GPT)
8437 move_gap_both (to, to_byte);
8438
8439 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8440 to - from, to_byte - from_byte,
8441 !NILP (highest),
8442 !NILP (BVAR (current_buffer
8443 , enable_multibyte_characters)),
8444 Qnil);
8445 }
8446
8447 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8448 1, 2, 0,
8449 doc: /* Detect coding system of the text in STRING.
8450 Return a list of possible coding systems ordered by priority.
8451 The coding systems to try and their priorities follows what
8452 the function `coding-system-priority-list' (which see) returns.
8453
8454 If only ASCII characters are found (except for such ISO-2022 control
8455 characters as ESC), it returns a list of single element `undecided'
8456 or its subsidiary coding system according to a detected end-of-line
8457 format.
8458
8459 If optional argument HIGHEST is non-nil, return the coding system of
8460 highest priority. */)
8461 (Lisp_Object string, Lisp_Object highest)
8462 {
8463 CHECK_STRING (string);
8464
8465 return detect_coding_system (SDATA (string),
8466 SCHARS (string), SBYTES (string),
8467 !NILP (highest), STRING_MULTIBYTE (string),
8468 Qnil);
8469 }
8470
8471
8472 static INLINE int
8473 char_encodable_p (int c, Lisp_Object attrs)
8474 {
8475 Lisp_Object tail;
8476 struct charset *charset;
8477 Lisp_Object translation_table;
8478
8479 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8480 if (! NILP (translation_table))
8481 c = translate_char (translation_table, c);
8482 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8483 CONSP (tail); tail = XCDR (tail))
8484 {
8485 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8486 if (CHAR_CHARSET_P (c, charset))
8487 break;
8488 }
8489 return (! NILP (tail));
8490 }
8491
8492
8493 /* Return a list of coding systems that safely encode the text between
8494 START and END. If EXCLUDE is non-nil, it is a list of coding
8495 systems not to check. The returned list doesn't contain any such
8496 coding systems. In any case, if the text contains only ASCII or is
8497 unibyte, return t. */
8498
8499 DEFUN ("find-coding-systems-region-internal",
8500 Ffind_coding_systems_region_internal,
8501 Sfind_coding_systems_region_internal, 2, 3, 0,
8502 doc: /* Internal use only. */)
8503 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8504 {
8505 Lisp_Object coding_attrs_list, safe_codings;
8506 EMACS_INT start_byte, end_byte;
8507 const unsigned char *p, *pbeg, *pend;
8508 int c;
8509 Lisp_Object tail, elt, work_table;
8510
8511 if (STRINGP (start))
8512 {
8513 if (!STRING_MULTIBYTE (start)
8514 || SCHARS (start) == SBYTES (start))
8515 return Qt;
8516 start_byte = 0;
8517 end_byte = SBYTES (start);
8518 }
8519 else
8520 {
8521 CHECK_NUMBER_COERCE_MARKER (start);
8522 CHECK_NUMBER_COERCE_MARKER (end);
8523 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8524 args_out_of_range (start, end);
8525 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8526 return Qt;
8527 start_byte = CHAR_TO_BYTE (XINT (start));
8528 end_byte = CHAR_TO_BYTE (XINT (end));
8529 if (XINT (end) - XINT (start) == end_byte - start_byte)
8530 return Qt;
8531
8532 if (XINT (start) < GPT && XINT (end) > GPT)
8533 {
8534 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8535 move_gap_both (XINT (start), start_byte);
8536 else
8537 move_gap_both (XINT (end), end_byte);
8538 }
8539 }
8540
8541 coding_attrs_list = Qnil;
8542 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8543 if (NILP (exclude)
8544 || NILP (Fmemq (XCAR (tail), exclude)))
8545 {
8546 Lisp_Object attrs;
8547
8548 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8549 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8550 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8551 {
8552 ASET (attrs, coding_attr_trans_tbl,
8553 get_translation_table (attrs, 1, NULL));
8554 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8555 }
8556 }
8557
8558 if (STRINGP (start))
8559 p = pbeg = SDATA (start);
8560 else
8561 p = pbeg = BYTE_POS_ADDR (start_byte);
8562 pend = p + (end_byte - start_byte);
8563
8564 while (p < pend && ASCII_BYTE_P (*p)) p++;
8565 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8566
8567 work_table = Fmake_char_table (Qnil, Qnil);
8568 while (p < pend)
8569 {
8570 if (ASCII_BYTE_P (*p))
8571 p++;
8572 else
8573 {
8574 c = STRING_CHAR_ADVANCE (p);
8575 if (!NILP (char_table_ref (work_table, c)))
8576 /* This character was already checked. Ignore it. */
8577 continue;
8578
8579 charset_map_loaded = 0;
8580 for (tail = coding_attrs_list; CONSP (tail);)
8581 {
8582 elt = XCAR (tail);
8583 if (NILP (elt))
8584 tail = XCDR (tail);
8585 else if (char_encodable_p (c, elt))
8586 tail = XCDR (tail);
8587 else if (CONSP (XCDR (tail)))
8588 {
8589 XSETCAR (tail, XCAR (XCDR (tail)));
8590 XSETCDR (tail, XCDR (XCDR (tail)));
8591 }
8592 else
8593 {
8594 XSETCAR (tail, Qnil);
8595 tail = XCDR (tail);
8596 }
8597 }
8598 if (charset_map_loaded)
8599 {
8600 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8601
8602 if (STRINGP (start))
8603 pbeg = SDATA (start);
8604 else
8605 pbeg = BYTE_POS_ADDR (start_byte);
8606 p = pbeg + p_offset;
8607 pend = pbeg + pend_offset;
8608 }
8609 char_table_set (work_table, c, Qt);
8610 }
8611 }
8612
8613 safe_codings = list2 (Qraw_text, Qno_conversion);
8614 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8615 if (! NILP (XCAR (tail)))
8616 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8617
8618 return safe_codings;
8619 }
8620
8621
8622 DEFUN ("unencodable-char-position", Funencodable_char_position,
8623 Sunencodable_char_position, 3, 5, 0,
8624 doc: /*
8625 Return position of first un-encodable character in a region.
8626 START and END specify the region and CODING-SYSTEM specifies the
8627 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8628
8629 If optional 4th argument COUNT is non-nil, it specifies at most how
8630 many un-encodable characters to search. In this case, the value is a
8631 list of positions.
8632
8633 If optional 5th argument STRING is non-nil, it is a string to search
8634 for un-encodable characters. In that case, START and END are indexes
8635 to the string. */)
8636 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object count, Lisp_Object string)
8637 {
8638 int n;
8639 struct coding_system coding;
8640 Lisp_Object attrs, charset_list, translation_table;
8641 Lisp_Object positions;
8642 int from, to;
8643 const unsigned char *p, *stop, *pend;
8644 int ascii_compatible;
8645
8646 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8647 attrs = CODING_ID_ATTRS (coding.id);
8648 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8649 return Qnil;
8650 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8651 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8652 translation_table = get_translation_table (attrs, 1, NULL);
8653
8654 if (NILP (string))
8655 {
8656 validate_region (&start, &end);
8657 from = XINT (start);
8658 to = XINT (end);
8659 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
8660 || (ascii_compatible
8661 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8662 return Qnil;
8663 p = CHAR_POS_ADDR (from);
8664 pend = CHAR_POS_ADDR (to);
8665 if (from < GPT && to >= GPT)
8666 stop = GPT_ADDR;
8667 else
8668 stop = pend;
8669 }
8670 else
8671 {
8672 CHECK_STRING (string);
8673 CHECK_NATNUM (start);
8674 CHECK_NATNUM (end);
8675 from = XINT (start);
8676 to = XINT (end);
8677 if (from > to
8678 || to > SCHARS (string))
8679 args_out_of_range_3 (string, start, end);
8680 if (! STRING_MULTIBYTE (string))
8681 return Qnil;
8682 p = SDATA (string) + string_char_to_byte (string, from);
8683 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8684 if (ascii_compatible && (to - from) == (pend - p))
8685 return Qnil;
8686 }
8687
8688 if (NILP (count))
8689 n = 1;
8690 else
8691 {
8692 CHECK_NATNUM (count);
8693 n = XINT (count);
8694 }
8695
8696 positions = Qnil;
8697 while (1)
8698 {
8699 int c;
8700
8701 if (ascii_compatible)
8702 while (p < stop && ASCII_BYTE_P (*p))
8703 p++, from++;
8704 if (p >= stop)
8705 {
8706 if (p >= pend)
8707 break;
8708 stop = pend;
8709 p = GAP_END_ADDR;
8710 }
8711
8712 c = STRING_CHAR_ADVANCE (p);
8713 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8714 && ! char_charset (translate_char (translation_table, c),
8715 charset_list, NULL))
8716 {
8717 positions = Fcons (make_number (from), positions);
8718 n--;
8719 if (n == 0)
8720 break;
8721 }
8722
8723 from++;
8724 }
8725
8726 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8727 }
8728
8729
8730 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8731 Scheck_coding_systems_region, 3, 3, 0,
8732 doc: /* Check if the region is encodable by coding systems.
8733
8734 START and END are buffer positions specifying the region.
8735 CODING-SYSTEM-LIST is a list of coding systems to check.
8736
8737 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8738 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8739 whole region, POS0, POS1, ... are buffer positions where non-encodable
8740 characters are found.
8741
8742 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8743 value is nil.
8744
8745 START may be a string. In that case, check if the string is
8746 encodable, and the value contains indices to the string instead of
8747 buffer positions. END is ignored.
8748
8749 If the current buffer (or START if it is a string) is unibyte, the value
8750 is nil. */)
8751 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
8752 {
8753 Lisp_Object list;
8754 EMACS_INT start_byte, end_byte;
8755 int pos;
8756 const unsigned char *p, *pbeg, *pend;
8757 int c;
8758 Lisp_Object tail, elt, attrs;
8759
8760 if (STRINGP (start))
8761 {
8762 if (!STRING_MULTIBYTE (start)
8763 || SCHARS (start) == SBYTES (start))
8764 return Qnil;
8765 start_byte = 0;
8766 end_byte = SBYTES (start);
8767 pos = 0;
8768 }
8769 else
8770 {
8771 CHECK_NUMBER_COERCE_MARKER (start);
8772 CHECK_NUMBER_COERCE_MARKER (end);
8773 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8774 args_out_of_range (start, end);
8775 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8776 return Qnil;
8777 start_byte = CHAR_TO_BYTE (XINT (start));
8778 end_byte = CHAR_TO_BYTE (XINT (end));
8779 if (XINT (end) - XINT (start) == end_byte - start_byte)
8780 return Qnil;
8781
8782 if (XINT (start) < GPT && XINT (end) > GPT)
8783 {
8784 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8785 move_gap_both (XINT (start), start_byte);
8786 else
8787 move_gap_both (XINT (end), end_byte);
8788 }
8789 pos = XINT (start);
8790 }
8791
8792 list = Qnil;
8793 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8794 {
8795 elt = XCAR (tail);
8796 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8797 ASET (attrs, coding_attr_trans_tbl,
8798 get_translation_table (attrs, 1, NULL));
8799 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8800 }
8801
8802 if (STRINGP (start))
8803 p = pbeg = SDATA (start);
8804 else
8805 p = pbeg = BYTE_POS_ADDR (start_byte);
8806 pend = p + (end_byte - start_byte);
8807
8808 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8809 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8810
8811 while (p < pend)
8812 {
8813 if (ASCII_BYTE_P (*p))
8814 p++;
8815 else
8816 {
8817 c = STRING_CHAR_ADVANCE (p);
8818
8819 charset_map_loaded = 0;
8820 for (tail = list; CONSP (tail); tail = XCDR (tail))
8821 {
8822 elt = XCDR (XCAR (tail));
8823 if (! char_encodable_p (c, XCAR (elt)))
8824 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8825 }
8826 if (charset_map_loaded)
8827 {
8828 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8829
8830 if (STRINGP (start))
8831 pbeg = SDATA (start);
8832 else
8833 pbeg = BYTE_POS_ADDR (start_byte);
8834 p = pbeg + p_offset;
8835 pend = pbeg + pend_offset;
8836 }
8837 }
8838 pos++;
8839 }
8840
8841 tail = list;
8842 list = Qnil;
8843 for (; CONSP (tail); tail = XCDR (tail))
8844 {
8845 elt = XCAR (tail);
8846 if (CONSP (XCDR (XCDR (elt))))
8847 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8848 list);
8849 }
8850
8851 return list;
8852 }
8853
8854
8855 Lisp_Object
8856 code_convert_region (Lisp_Object start, Lisp_Object end,
8857 Lisp_Object coding_system, Lisp_Object dst_object,
8858 int encodep, int norecord)
8859 {
8860 struct coding_system coding;
8861 EMACS_INT from, from_byte, to, to_byte;
8862 Lisp_Object src_object;
8863
8864 CHECK_NUMBER_COERCE_MARKER (start);
8865 CHECK_NUMBER_COERCE_MARKER (end);
8866 if (NILP (coding_system))
8867 coding_system = Qno_conversion;
8868 else
8869 CHECK_CODING_SYSTEM (coding_system);
8870 src_object = Fcurrent_buffer ();
8871 if (NILP (dst_object))
8872 dst_object = src_object;
8873 else if (! EQ (dst_object, Qt))
8874 CHECK_BUFFER (dst_object);
8875
8876 validate_region (&start, &end);
8877 from = XFASTINT (start);
8878 from_byte = CHAR_TO_BYTE (from);
8879 to = XFASTINT (end);
8880 to_byte = CHAR_TO_BYTE (to);
8881
8882 setup_coding_system (coding_system, &coding);
8883 coding.mode |= CODING_MODE_LAST_BLOCK;
8884
8885 if (encodep)
8886 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8887 dst_object);
8888 else
8889 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8890 dst_object);
8891 if (! norecord)
8892 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
8893
8894 return (BUFFERP (dst_object)
8895 ? make_number (coding.produced_char)
8896 : coding.dst_object);
8897 }
8898
8899
8900 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
8901 3, 4, "r\nzCoding system: ",
8902 doc: /* Decode the current region from the specified coding system.
8903 When called from a program, takes four arguments:
8904 START, END, CODING-SYSTEM, and DESTINATION.
8905 START and END are buffer positions.
8906
8907 Optional 4th arguments DESTINATION specifies where the decoded text goes.
8908 If nil, the region between START and END is replaced by the decoded text.
8909 If buffer, the decoded text is inserted in that buffer after point (point
8910 does not move).
8911 In those cases, the length of the decoded text is returned.
8912 If DESTINATION is t, the decoded text is returned.
8913
8914 This function sets `last-coding-system-used' to the precise coding system
8915 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8916 not fully specified.) */)
8917 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
8918 {
8919 return code_convert_region (start, end, coding_system, destination, 0, 0);
8920 }
8921
8922 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
8923 3, 4, "r\nzCoding system: ",
8924 doc: /* Encode the current region by specified coding system.
8925 When called from a program, takes four arguments:
8926 START, END, CODING-SYSTEM and DESTINATION.
8927 START and END are buffer positions.
8928
8929 Optional 4th arguments DESTINATION specifies where the encoded text goes.
8930 If nil, the region between START and END is replace by the encoded text.
8931 If buffer, the encoded text is inserted in that buffer after point (point
8932 does not move).
8933 In those cases, the length of the encoded text is returned.
8934 If DESTINATION is t, the encoded text is returned.
8935
8936 This function sets `last-coding-system-used' to the precise coding system
8937 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8938 not fully specified.) */)
8939 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
8940 {
8941 return code_convert_region (start, end, coding_system, destination, 1, 0);
8942 }
8943
8944 Lisp_Object
8945 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
8946 Lisp_Object dst_object, int encodep, int nocopy, int norecord)
8947 {
8948 struct coding_system coding;
8949 EMACS_INT chars, bytes;
8950
8951 CHECK_STRING (string);
8952 if (NILP (coding_system))
8953 {
8954 if (! norecord)
8955 Vlast_coding_system_used = Qno_conversion;
8956 if (NILP (dst_object))
8957 return (nocopy ? Fcopy_sequence (string) : string);
8958 }
8959
8960 if (NILP (coding_system))
8961 coding_system = Qno_conversion;
8962 else
8963 CHECK_CODING_SYSTEM (coding_system);
8964 if (NILP (dst_object))
8965 dst_object = Qt;
8966 else if (! EQ (dst_object, Qt))
8967 CHECK_BUFFER (dst_object);
8968
8969 setup_coding_system (coding_system, &coding);
8970 coding.mode |= CODING_MODE_LAST_BLOCK;
8971 chars = SCHARS (string);
8972 bytes = SBYTES (string);
8973 if (encodep)
8974 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
8975 else
8976 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
8977 if (! norecord)
8978 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
8979
8980 return (BUFFERP (dst_object)
8981 ? make_number (coding.produced_char)
8982 : coding.dst_object);
8983 }
8984
8985
8986 /* Encode or decode STRING according to CODING_SYSTEM.
8987 Do not set Vlast_coding_system_used.
8988
8989 This function is called only from macros DECODE_FILE and
8990 ENCODE_FILE, thus we ignore character composition. */
8991
8992 Lisp_Object
8993 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
8994 int encodep)
8995 {
8996 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
8997 }
8998
8999
9000 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9001 2, 4, 0,
9002 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9003
9004 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9005 if the decoding operation is trivial.
9006
9007 Optional fourth arg BUFFER non-nil means that the decoded text is
9008 inserted in that buffer after point (point does not move). In this
9009 case, the return value is the length of the decoded text.
9010
9011 This function sets `last-coding-system-used' to the precise coding system
9012 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9013 not fully specified.) */)
9014 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9015 {
9016 return code_convert_string (string, coding_system, buffer,
9017 0, ! NILP (nocopy), 0);
9018 }
9019
9020 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9021 2, 4, 0,
9022 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9023
9024 Optional third arg NOCOPY non-nil means it is OK to return STRING
9025 itself if the encoding operation is trivial.
9026
9027 Optional fourth arg BUFFER non-nil means that the encoded text is
9028 inserted in that buffer after point (point does not move). In this
9029 case, the return value is the length of the encoded text.
9030
9031 This function sets `last-coding-system-used' to the precise coding system
9032 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9033 not fully specified.) */)
9034 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9035 {
9036 return code_convert_string (string, coding_system, buffer,
9037 1, ! NILP (nocopy), 1);
9038 }
9039
9040 \f
9041 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9042 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9043 Return the corresponding character. */)
9044 (Lisp_Object code)
9045 {
9046 Lisp_Object spec, attrs, val;
9047 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9048 int c;
9049
9050 CHECK_NATNUM (code);
9051 c = XFASTINT (code);
9052 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9053 attrs = AREF (spec, 0);
9054
9055 if (ASCII_BYTE_P (c)
9056 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9057 return code;
9058
9059 val = CODING_ATTR_CHARSET_LIST (attrs);
9060 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9061 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9062 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9063
9064 if (c <= 0x7F)
9065 charset = charset_roman;
9066 else if (c >= 0xA0 && c < 0xDF)
9067 {
9068 charset = charset_kana;
9069 c -= 0x80;
9070 }
9071 else
9072 {
9073 int c1 = c >> 8, c2 = c & 0xFF;
9074
9075 if (c1 < 0x81 || (c1 > 0x9F && c1 < 0xE0) || c1 > 0xEF
9076 || c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
9077 error ("Invalid code: %d", code);
9078 SJIS_TO_JIS (c);
9079 charset = charset_kanji;
9080 }
9081 c = DECODE_CHAR (charset, c);
9082 if (c < 0)
9083 error ("Invalid code: %d", code);
9084 return make_number (c);
9085 }
9086
9087
9088 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9089 doc: /* Encode a Japanese character CH to shift_jis encoding.
9090 Return the corresponding code in SJIS. */)
9091 (Lisp_Object ch)
9092 {
9093 Lisp_Object spec, attrs, charset_list;
9094 int c;
9095 struct charset *charset;
9096 unsigned code;
9097
9098 CHECK_CHARACTER (ch);
9099 c = XFASTINT (ch);
9100 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9101 attrs = AREF (spec, 0);
9102
9103 if (ASCII_CHAR_P (c)
9104 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9105 return ch;
9106
9107 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9108 charset = char_charset (c, charset_list, &code);
9109 if (code == CHARSET_INVALID_CODE (charset))
9110 error ("Can't encode by shift_jis encoding: %d", c);
9111 JIS_TO_SJIS (code);
9112
9113 return make_number (code);
9114 }
9115
9116 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9117 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9118 Return the corresponding character. */)
9119 (Lisp_Object code)
9120 {
9121 Lisp_Object spec, attrs, val;
9122 struct charset *charset_roman, *charset_big5, *charset;
9123 int c;
9124
9125 CHECK_NATNUM (code);
9126 c = XFASTINT (code);
9127 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9128 attrs = AREF (spec, 0);
9129
9130 if (ASCII_BYTE_P (c)
9131 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9132 return code;
9133
9134 val = CODING_ATTR_CHARSET_LIST (attrs);
9135 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9136 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9137
9138 if (c <= 0x7F)
9139 charset = charset_roman;
9140 else
9141 {
9142 int b1 = c >> 8, b2 = c & 0x7F;
9143 if (b1 < 0xA1 || b1 > 0xFE
9144 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9145 error ("Invalid code: %d", code);
9146 charset = charset_big5;
9147 }
9148 c = DECODE_CHAR (charset, (unsigned )c);
9149 if (c < 0)
9150 error ("Invalid code: %d", code);
9151 return make_number (c);
9152 }
9153
9154 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9155 doc: /* Encode the Big5 character CH to BIG5 coding system.
9156 Return the corresponding character code in Big5. */)
9157 (Lisp_Object ch)
9158 {
9159 Lisp_Object spec, attrs, charset_list;
9160 struct charset *charset;
9161 int c;
9162 unsigned code;
9163
9164 CHECK_CHARACTER (ch);
9165 c = XFASTINT (ch);
9166 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9167 attrs = AREF (spec, 0);
9168 if (ASCII_CHAR_P (c)
9169 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9170 return ch;
9171
9172 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9173 charset = char_charset (c, charset_list, &code);
9174 if (code == CHARSET_INVALID_CODE (charset))
9175 error ("Can't encode by Big5 encoding: %d", c);
9176
9177 return make_number (code);
9178 }
9179
9180 \f
9181 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9182 Sset_terminal_coding_system_internal, 1, 2, 0,
9183 doc: /* Internal use only. */)
9184 (Lisp_Object coding_system, Lisp_Object terminal)
9185 {
9186 struct terminal *term = get_terminal (terminal, 1);
9187 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (term);
9188 CHECK_SYMBOL (coding_system);
9189 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9190 /* We had better not send unsafe characters to terminal. */
9191 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9192 /* Character composition should be disabled. */
9193 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9194 terminal_coding->src_multibyte = 1;
9195 terminal_coding->dst_multibyte = 0;
9196 if (terminal_coding->common_flags & CODING_REQUIRE_ENCODING_MASK)
9197 term->charset_list = coding_charset_list (terminal_coding);
9198 else
9199 term->charset_list = Fcons (make_number (charset_ascii), Qnil);
9200 return Qnil;
9201 }
9202
9203 DEFUN ("set-safe-terminal-coding-system-internal",
9204 Fset_safe_terminal_coding_system_internal,
9205 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9206 doc: /* Internal use only. */)
9207 (Lisp_Object coding_system)
9208 {
9209 CHECK_SYMBOL (coding_system);
9210 setup_coding_system (Fcheck_coding_system (coding_system),
9211 &safe_terminal_coding);
9212 /* Character composition should be disabled. */
9213 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9214 safe_terminal_coding.src_multibyte = 1;
9215 safe_terminal_coding.dst_multibyte = 0;
9216 return Qnil;
9217 }
9218
9219 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9220 Sterminal_coding_system, 0, 1, 0,
9221 doc: /* Return coding system specified for terminal output on the given terminal.
9222 TERMINAL may be a terminal object, a frame, or nil for the selected
9223 frame's terminal device. */)
9224 (Lisp_Object terminal)
9225 {
9226 struct coding_system *terminal_coding
9227 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9228 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9229
9230 /* For backward compatibility, return nil if it is `undecided'. */
9231 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9232 }
9233
9234 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9235 Sset_keyboard_coding_system_internal, 1, 2, 0,
9236 doc: /* Internal use only. */)
9237 (Lisp_Object coding_system, Lisp_Object terminal)
9238 {
9239 struct terminal *t = get_terminal (terminal, 1);
9240 CHECK_SYMBOL (coding_system);
9241 if (NILP (coding_system))
9242 coding_system = Qno_conversion;
9243 else
9244 Fcheck_coding_system (coding_system);
9245 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9246 /* Character composition should be disabled. */
9247 TERMINAL_KEYBOARD_CODING (t)->common_flags
9248 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9249 return Qnil;
9250 }
9251
9252 DEFUN ("keyboard-coding-system",
9253 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9254 doc: /* Return coding system specified for decoding keyboard input. */)
9255 (Lisp_Object terminal)
9256 {
9257 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9258 (get_terminal (terminal, 1))->id);
9259 }
9260
9261 \f
9262 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9263 Sfind_operation_coding_system, 1, MANY, 0,
9264 doc: /* Choose a coding system for an operation based on the target name.
9265 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9266 DECODING-SYSTEM is the coding system to use for decoding
9267 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9268 for encoding (in case OPERATION does encoding).
9269
9270 The first argument OPERATION specifies an I/O primitive:
9271 For file I/O, `insert-file-contents' or `write-region'.
9272 For process I/O, `call-process', `call-process-region', or `start-process'.
9273 For network I/O, `open-network-stream'.
9274
9275 The remaining arguments should be the same arguments that were passed
9276 to the primitive. Depending on which primitive, one of those arguments
9277 is selected as the TARGET. For example, if OPERATION does file I/O,
9278 whichever argument specifies the file name is TARGET.
9279
9280 TARGET has a meaning which depends on OPERATION:
9281 For file I/O, TARGET is a file name (except for the special case below).
9282 For process I/O, TARGET is a process name.
9283 For network I/O, TARGET is a service name or a port number.
9284
9285 This function looks up what is specified for TARGET in
9286 `file-coding-system-alist', `process-coding-system-alist',
9287 or `network-coding-system-alist' depending on OPERATION.
9288 They may specify a coding system, a cons of coding systems,
9289 or a function symbol to call.
9290 In the last case, we call the function with one argument,
9291 which is a list of all the arguments given to this function.
9292 If the function can't decide a coding system, it can return
9293 `undecided' so that the normal code-detection is performed.
9294
9295 If OPERATION is `insert-file-contents', the argument corresponding to
9296 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9297 file name to look up, and BUFFER is a buffer that contains the file's
9298 contents (not yet decoded). If `file-coding-system-alist' specifies a
9299 function to call for FILENAME, that function should examine the
9300 contents of BUFFER instead of reading the file.
9301
9302 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9303 (size_t nargs, Lisp_Object *args)
9304 {
9305 Lisp_Object operation, target_idx, target, val;
9306 register Lisp_Object chain;
9307
9308 if (nargs < 2)
9309 error ("Too few arguments");
9310 operation = args[0];
9311 if (!SYMBOLP (operation)
9312 || !NATNUMP (target_idx = Fget (operation, Qtarget_idx)))
9313 error ("Invalid first argument");
9314 if (nargs < 1 + XFASTINT (target_idx))
9315 error ("Too few arguments for operation: %s",
9316 SDATA (SYMBOL_NAME (operation)));
9317 target = args[XFASTINT (target_idx) + 1];
9318 if (!(STRINGP (target)
9319 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9320 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9321 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9322 error ("Invalid %dth argument", XFASTINT (target_idx) + 1);
9323 if (CONSP (target))
9324 target = XCAR (target);
9325
9326 chain = ((EQ (operation, Qinsert_file_contents)
9327 || EQ (operation, Qwrite_region))
9328 ? Vfile_coding_system_alist
9329 : (EQ (operation, Qopen_network_stream)
9330 ? Vnetwork_coding_system_alist
9331 : Vprocess_coding_system_alist));
9332 if (NILP (chain))
9333 return Qnil;
9334
9335 for (; CONSP (chain); chain = XCDR (chain))
9336 {
9337 Lisp_Object elt;
9338
9339 elt = XCAR (chain);
9340 if (CONSP (elt)
9341 && ((STRINGP (target)
9342 && STRINGP (XCAR (elt))
9343 && fast_string_match (XCAR (elt), target) >= 0)
9344 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9345 {
9346 val = XCDR (elt);
9347 /* Here, if VAL is both a valid coding system and a valid
9348 function symbol, we return VAL as a coding system. */
9349 if (CONSP (val))
9350 return val;
9351 if (! SYMBOLP (val))
9352 return Qnil;
9353 if (! NILP (Fcoding_system_p (val)))
9354 return Fcons (val, val);
9355 if (! NILP (Ffboundp (val)))
9356 {
9357 /* We use call1 rather than safe_call1
9358 so as to get bug reports about functions called here
9359 which don't handle the current interface. */
9360 val = call1 (val, Flist (nargs, args));
9361 if (CONSP (val))
9362 return val;
9363 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9364 return Fcons (val, val);
9365 }
9366 return Qnil;
9367 }
9368 }
9369 return Qnil;
9370 }
9371
9372 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9373 Sset_coding_system_priority, 0, MANY, 0,
9374 doc: /* Assign higher priority to the coding systems given as arguments.
9375 If multiple coding systems belong to the same category,
9376 all but the first one are ignored.
9377
9378 usage: (set-coding-system-priority &rest coding-systems) */)
9379 (size_t nargs, Lisp_Object *args)
9380 {
9381 size_t i, j;
9382 int changed[coding_category_max];
9383 enum coding_category priorities[coding_category_max];
9384
9385 memset (changed, 0, sizeof changed);
9386
9387 for (i = j = 0; i < nargs; i++)
9388 {
9389 enum coding_category category;
9390 Lisp_Object spec, attrs;
9391
9392 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9393 attrs = AREF (spec, 0);
9394 category = XINT (CODING_ATTR_CATEGORY (attrs));
9395 if (changed[category])
9396 /* Ignore this coding system because a coding system of the
9397 same category already had a higher priority. */
9398 continue;
9399 changed[category] = 1;
9400 priorities[j++] = category;
9401 if (coding_categories[category].id >= 0
9402 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9403 setup_coding_system (args[i], &coding_categories[category]);
9404 Fset (AREF (Vcoding_category_table, category), args[i]);
9405 }
9406
9407 /* Now we have decided top J priorities. Reflect the order of the
9408 original priorities to the remaining priorities. */
9409
9410 for (i = j, j = 0; i < coding_category_max; i++, j++)
9411 {
9412 while (j < coding_category_max
9413 && changed[coding_priorities[j]])
9414 j++;
9415 if (j == coding_category_max)
9416 abort ();
9417 priorities[i] = coding_priorities[j];
9418 }
9419
9420 memcpy (coding_priorities, priorities, sizeof priorities);
9421
9422 /* Update `coding-category-list'. */
9423 Vcoding_category_list = Qnil;
9424 for (i = coding_category_max; i-- > 0; )
9425 Vcoding_category_list
9426 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9427 Vcoding_category_list);
9428
9429 return Qnil;
9430 }
9431
9432 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9433 Scoding_system_priority_list, 0, 1, 0,
9434 doc: /* Return a list of coding systems ordered by their priorities.
9435 The list contains a subset of coding systems; i.e. coding systems
9436 assigned to each coding category (see `coding-category-list').
9437
9438 HIGHESTP non-nil means just return the highest priority one. */)
9439 (Lisp_Object highestp)
9440 {
9441 int i;
9442 Lisp_Object val;
9443
9444 for (i = 0, val = Qnil; i < coding_category_max; i++)
9445 {
9446 enum coding_category category = coding_priorities[i];
9447 int id = coding_categories[category].id;
9448 Lisp_Object attrs;
9449
9450 if (id < 0)
9451 continue;
9452 attrs = CODING_ID_ATTRS (id);
9453 if (! NILP (highestp))
9454 return CODING_ATTR_BASE_NAME (attrs);
9455 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9456 }
9457 return Fnreverse (val);
9458 }
9459
9460 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9461
9462 static Lisp_Object
9463 make_subsidiaries (Lisp_Object base)
9464 {
9465 Lisp_Object subsidiaries;
9466 int base_name_len = SBYTES (SYMBOL_NAME (base));
9467 char *buf = (char *) alloca (base_name_len + 6);
9468 int i;
9469
9470 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
9471 subsidiaries = Fmake_vector (make_number (3), Qnil);
9472 for (i = 0; i < 3; i++)
9473 {
9474 memcpy (buf + base_name_len, suffixes[i], strlen (suffixes[i]) + 1);
9475 ASET (subsidiaries, i, intern (buf));
9476 }
9477 return subsidiaries;
9478 }
9479
9480
9481 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9482 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9483 doc: /* For internal use only.
9484 usage: (define-coding-system-internal ...) */)
9485 (size_t nargs, Lisp_Object *args)
9486 {
9487 Lisp_Object name;
9488 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9489 Lisp_Object attrs; /* Vector of attributes. */
9490 Lisp_Object eol_type;
9491 Lisp_Object aliases;
9492 Lisp_Object coding_type, charset_list, safe_charsets;
9493 enum coding_category category;
9494 Lisp_Object tail, val;
9495 int max_charset_id = 0;
9496 int i;
9497
9498 if (nargs < coding_arg_max)
9499 goto short_args;
9500
9501 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9502
9503 name = args[coding_arg_name];
9504 CHECK_SYMBOL (name);
9505 CODING_ATTR_BASE_NAME (attrs) = name;
9506
9507 val = args[coding_arg_mnemonic];
9508 if (! STRINGP (val))
9509 CHECK_CHARACTER (val);
9510 CODING_ATTR_MNEMONIC (attrs) = val;
9511
9512 coding_type = args[coding_arg_coding_type];
9513 CHECK_SYMBOL (coding_type);
9514 CODING_ATTR_TYPE (attrs) = coding_type;
9515
9516 charset_list = args[coding_arg_charset_list];
9517 if (SYMBOLP (charset_list))
9518 {
9519 if (EQ (charset_list, Qiso_2022))
9520 {
9521 if (! EQ (coding_type, Qiso_2022))
9522 error ("Invalid charset-list");
9523 charset_list = Viso_2022_charset_list;
9524 }
9525 else if (EQ (charset_list, Qemacs_mule))
9526 {
9527 if (! EQ (coding_type, Qemacs_mule))
9528 error ("Invalid charset-list");
9529 charset_list = Vemacs_mule_charset_list;
9530 }
9531 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9532 if (max_charset_id < XFASTINT (XCAR (tail)))
9533 max_charset_id = XFASTINT (XCAR (tail));
9534 }
9535 else
9536 {
9537 charset_list = Fcopy_sequence (charset_list);
9538 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9539 {
9540 struct charset *charset;
9541
9542 val = XCAR (tail);
9543 CHECK_CHARSET_GET_CHARSET (val, charset);
9544 if (EQ (coding_type, Qiso_2022)
9545 ? CHARSET_ISO_FINAL (charset) < 0
9546 : EQ (coding_type, Qemacs_mule)
9547 ? CHARSET_EMACS_MULE_ID (charset) < 0
9548 : 0)
9549 error ("Can't handle charset `%s'",
9550 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9551
9552 XSETCAR (tail, make_number (charset->id));
9553 if (max_charset_id < charset->id)
9554 max_charset_id = charset->id;
9555 }
9556 }
9557 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9558
9559 safe_charsets = make_uninit_string (max_charset_id + 1);
9560 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9561 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9562 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9563 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9564
9565 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9566
9567 val = args[coding_arg_decode_translation_table];
9568 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9569 CHECK_SYMBOL (val);
9570 CODING_ATTR_DECODE_TBL (attrs) = val;
9571
9572 val = args[coding_arg_encode_translation_table];
9573 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9574 CHECK_SYMBOL (val);
9575 CODING_ATTR_ENCODE_TBL (attrs) = val;
9576
9577 val = args[coding_arg_post_read_conversion];
9578 CHECK_SYMBOL (val);
9579 CODING_ATTR_POST_READ (attrs) = val;
9580
9581 val = args[coding_arg_pre_write_conversion];
9582 CHECK_SYMBOL (val);
9583 CODING_ATTR_PRE_WRITE (attrs) = val;
9584
9585 val = args[coding_arg_default_char];
9586 if (NILP (val))
9587 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9588 else
9589 {
9590 CHECK_CHARACTER (val);
9591 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9592 }
9593
9594 val = args[coding_arg_for_unibyte];
9595 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9596
9597 val = args[coding_arg_plist];
9598 CHECK_LIST (val);
9599 CODING_ATTR_PLIST (attrs) = val;
9600
9601 if (EQ (coding_type, Qcharset))
9602 {
9603 /* Generate a lisp vector of 256 elements. Each element is nil,
9604 integer, or a list of charset IDs.
9605
9606 If Nth element is nil, the byte code N is invalid in this
9607 coding system.
9608
9609 If Nth element is a number NUM, N is the first byte of a
9610 charset whose ID is NUM.
9611
9612 If Nth element is a list of charset IDs, N is the first byte
9613 of one of them. The list is sorted by dimensions of the
9614 charsets. A charset of smaller dimension comes first. */
9615 val = Fmake_vector (make_number (256), Qnil);
9616
9617 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9618 {
9619 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9620 int dim = CHARSET_DIMENSION (charset);
9621 int idx = (dim - 1) * 4;
9622
9623 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9624 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9625
9626 for (i = charset->code_space[idx];
9627 i <= charset->code_space[idx + 1]; i++)
9628 {
9629 Lisp_Object tmp, tmp2;
9630 int dim2;
9631
9632 tmp = AREF (val, i);
9633 if (NILP (tmp))
9634 tmp = XCAR (tail);
9635 else if (NUMBERP (tmp))
9636 {
9637 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9638 if (dim < dim2)
9639 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9640 else
9641 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9642 }
9643 else
9644 {
9645 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9646 {
9647 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9648 if (dim < dim2)
9649 break;
9650 }
9651 if (NILP (tmp2))
9652 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9653 else
9654 {
9655 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9656 XSETCAR (tmp2, XCAR (tail));
9657 }
9658 }
9659 ASET (val, i, tmp);
9660 }
9661 }
9662 ASET (attrs, coding_attr_charset_valids, val);
9663 category = coding_category_charset;
9664 }
9665 else if (EQ (coding_type, Qccl))
9666 {
9667 Lisp_Object valids;
9668
9669 if (nargs < coding_arg_ccl_max)
9670 goto short_args;
9671
9672 val = args[coding_arg_ccl_decoder];
9673 CHECK_CCL_PROGRAM (val);
9674 if (VECTORP (val))
9675 val = Fcopy_sequence (val);
9676 ASET (attrs, coding_attr_ccl_decoder, val);
9677
9678 val = args[coding_arg_ccl_encoder];
9679 CHECK_CCL_PROGRAM (val);
9680 if (VECTORP (val))
9681 val = Fcopy_sequence (val);
9682 ASET (attrs, coding_attr_ccl_encoder, val);
9683
9684 val = args[coding_arg_ccl_valids];
9685 valids = Fmake_string (make_number (256), make_number (0));
9686 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9687 {
9688 int from, to;
9689
9690 val = Fcar (tail);
9691 if (INTEGERP (val))
9692 {
9693 from = to = XINT (val);
9694 if (from < 0 || from > 255)
9695 args_out_of_range_3 (val, make_number (0), make_number (255));
9696 }
9697 else
9698 {
9699 CHECK_CONS (val);
9700 CHECK_NATNUM_CAR (val);
9701 CHECK_NATNUM_CDR (val);
9702 from = XINT (XCAR (val));
9703 if (from > 255)
9704 args_out_of_range_3 (XCAR (val),
9705 make_number (0), make_number (255));
9706 to = XINT (XCDR (val));
9707 if (to < from || to > 255)
9708 args_out_of_range_3 (XCDR (val),
9709 XCAR (val), make_number (255));
9710 }
9711 for (i = from; i <= to; i++)
9712 SSET (valids, i, 1);
9713 }
9714 ASET (attrs, coding_attr_ccl_valids, valids);
9715
9716 category = coding_category_ccl;
9717 }
9718 else if (EQ (coding_type, Qutf_16))
9719 {
9720 Lisp_Object bom, endian;
9721
9722 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9723
9724 if (nargs < coding_arg_utf16_max)
9725 goto short_args;
9726
9727 bom = args[coding_arg_utf16_bom];
9728 if (! NILP (bom) && ! EQ (bom, Qt))
9729 {
9730 CHECK_CONS (bom);
9731 val = XCAR (bom);
9732 CHECK_CODING_SYSTEM (val);
9733 val = XCDR (bom);
9734 CHECK_CODING_SYSTEM (val);
9735 }
9736 ASET (attrs, coding_attr_utf_bom, bom);
9737
9738 endian = args[coding_arg_utf16_endian];
9739 CHECK_SYMBOL (endian);
9740 if (NILP (endian))
9741 endian = Qbig;
9742 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9743 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9744 ASET (attrs, coding_attr_utf_16_endian, endian);
9745
9746 category = (CONSP (bom)
9747 ? coding_category_utf_16_auto
9748 : NILP (bom)
9749 ? (EQ (endian, Qbig)
9750 ? coding_category_utf_16_be_nosig
9751 : coding_category_utf_16_le_nosig)
9752 : (EQ (endian, Qbig)
9753 ? coding_category_utf_16_be
9754 : coding_category_utf_16_le));
9755 }
9756 else if (EQ (coding_type, Qiso_2022))
9757 {
9758 Lisp_Object initial, reg_usage, request, flags;
9759
9760 if (nargs < coding_arg_iso2022_max)
9761 goto short_args;
9762
9763 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9764 CHECK_VECTOR (initial);
9765 for (i = 0; i < 4; i++)
9766 {
9767 val = Faref (initial, make_number (i));
9768 if (! NILP (val))
9769 {
9770 struct charset *charset;
9771
9772 CHECK_CHARSET_GET_CHARSET (val, charset);
9773 ASET (initial, i, make_number (CHARSET_ID (charset)));
9774 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9775 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9776 }
9777 else
9778 ASET (initial, i, make_number (-1));
9779 }
9780
9781 reg_usage = args[coding_arg_iso2022_reg_usage];
9782 CHECK_CONS (reg_usage);
9783 CHECK_NUMBER_CAR (reg_usage);
9784 CHECK_NUMBER_CDR (reg_usage);
9785
9786 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9787 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9788 {
9789 int id;
9790 Lisp_Object tmp1;
9791
9792 val = Fcar (tail);
9793 CHECK_CONS (val);
9794 tmp1 = XCAR (val);
9795 CHECK_CHARSET_GET_ID (tmp1, id);
9796 CHECK_NATNUM_CDR (val);
9797 if (XINT (XCDR (val)) >= 4)
9798 error ("Invalid graphic register number: %d", XINT (XCDR (val)));
9799 XSETCAR (val, make_number (id));
9800 }
9801
9802 flags = args[coding_arg_iso2022_flags];
9803 CHECK_NATNUM (flags);
9804 i = XINT (flags);
9805 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9806 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9807
9808 ASET (attrs, coding_attr_iso_initial, initial);
9809 ASET (attrs, coding_attr_iso_usage, reg_usage);
9810 ASET (attrs, coding_attr_iso_request, request);
9811 ASET (attrs, coding_attr_iso_flags, flags);
9812 setup_iso_safe_charsets (attrs);
9813
9814 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9815 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9816 | CODING_ISO_FLAG_SINGLE_SHIFT))
9817 ? coding_category_iso_7_else
9818 : EQ (args[coding_arg_charset_list], Qiso_2022)
9819 ? coding_category_iso_7
9820 : coding_category_iso_7_tight);
9821 else
9822 {
9823 int id = XINT (AREF (initial, 1));
9824
9825 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9826 || EQ (args[coding_arg_charset_list], Qiso_2022)
9827 || id < 0)
9828 ? coding_category_iso_8_else
9829 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9830 ? coding_category_iso_8_1
9831 : coding_category_iso_8_2);
9832 }
9833 if (category != coding_category_iso_8_1
9834 && category != coding_category_iso_8_2)
9835 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9836 }
9837 else if (EQ (coding_type, Qemacs_mule))
9838 {
9839 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9840 ASET (attrs, coding_attr_emacs_mule_full, Qt);
9841 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9842 category = coding_category_emacs_mule;
9843 }
9844 else if (EQ (coding_type, Qshift_jis))
9845 {
9846
9847 struct charset *charset;
9848
9849 if (XINT (Flength (charset_list)) != 3
9850 && XINT (Flength (charset_list)) != 4)
9851 error ("There should be three or four charsets");
9852
9853 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9854 if (CHARSET_DIMENSION (charset) != 1)
9855 error ("Dimension of charset %s is not one",
9856 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9857 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9858 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9859
9860 charset_list = XCDR (charset_list);
9861 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9862 if (CHARSET_DIMENSION (charset) != 1)
9863 error ("Dimension of charset %s is not one",
9864 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9865
9866 charset_list = XCDR (charset_list);
9867 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9868 if (CHARSET_DIMENSION (charset) != 2)
9869 error ("Dimension of charset %s is not two",
9870 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9871
9872 charset_list = XCDR (charset_list);
9873 if (! NILP (charset_list))
9874 {
9875 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9876 if (CHARSET_DIMENSION (charset) != 2)
9877 error ("Dimension of charset %s is not two",
9878 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9879 }
9880
9881 category = coding_category_sjis;
9882 Vsjis_coding_system = name;
9883 }
9884 else if (EQ (coding_type, Qbig5))
9885 {
9886 struct charset *charset;
9887
9888 if (XINT (Flength (charset_list)) != 2)
9889 error ("There should be just two charsets");
9890
9891 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9892 if (CHARSET_DIMENSION (charset) != 1)
9893 error ("Dimension of charset %s is not one",
9894 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9895 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9896 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9897
9898 charset_list = XCDR (charset_list);
9899 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9900 if (CHARSET_DIMENSION (charset) != 2)
9901 error ("Dimension of charset %s is not two",
9902 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9903
9904 category = coding_category_big5;
9905 Vbig5_coding_system = name;
9906 }
9907 else if (EQ (coding_type, Qraw_text))
9908 {
9909 category = coding_category_raw_text;
9910 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9911 }
9912 else if (EQ (coding_type, Qutf_8))
9913 {
9914 Lisp_Object bom;
9915
9916 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9917
9918 if (nargs < coding_arg_utf8_max)
9919 goto short_args;
9920
9921 bom = args[coding_arg_utf8_bom];
9922 if (! NILP (bom) && ! EQ (bom, Qt))
9923 {
9924 CHECK_CONS (bom);
9925 val = XCAR (bom);
9926 CHECK_CODING_SYSTEM (val);
9927 val = XCDR (bom);
9928 CHECK_CODING_SYSTEM (val);
9929 }
9930 ASET (attrs, coding_attr_utf_bom, bom);
9931
9932 category = (CONSP (bom) ? coding_category_utf_8_auto
9933 : NILP (bom) ? coding_category_utf_8_nosig
9934 : coding_category_utf_8_sig);
9935 }
9936 else if (EQ (coding_type, Qundecided))
9937 category = coding_category_undecided;
9938 else
9939 error ("Invalid coding system type: %s",
9940 SDATA (SYMBOL_NAME (coding_type)));
9941
9942 CODING_ATTR_CATEGORY (attrs) = make_number (category);
9943 CODING_ATTR_PLIST (attrs)
9944 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
9945 CODING_ATTR_PLIST (attrs)));
9946 CODING_ATTR_PLIST (attrs)
9947 = Fcons (QCascii_compatible_p,
9948 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
9949 CODING_ATTR_PLIST (attrs)));
9950
9951 eol_type = args[coding_arg_eol_type];
9952 if (! NILP (eol_type)
9953 && ! EQ (eol_type, Qunix)
9954 && ! EQ (eol_type, Qdos)
9955 && ! EQ (eol_type, Qmac))
9956 error ("Invalid eol-type");
9957
9958 aliases = Fcons (name, Qnil);
9959
9960 if (NILP (eol_type))
9961 {
9962 eol_type = make_subsidiaries (name);
9963 for (i = 0; i < 3; i++)
9964 {
9965 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
9966
9967 this_name = AREF (eol_type, i);
9968 this_aliases = Fcons (this_name, Qnil);
9969 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
9970 this_spec = Fmake_vector (make_number (3), attrs);
9971 ASET (this_spec, 1, this_aliases);
9972 ASET (this_spec, 2, this_eol_type);
9973 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
9974 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
9975 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
9976 if (NILP (val))
9977 Vcoding_system_alist
9978 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
9979 Vcoding_system_alist);
9980 }
9981 }
9982
9983 spec_vec = Fmake_vector (make_number (3), attrs);
9984 ASET (spec_vec, 1, aliases);
9985 ASET (spec_vec, 2, eol_type);
9986
9987 Fputhash (name, spec_vec, Vcoding_system_hash_table);
9988 Vcoding_system_list = Fcons (name, Vcoding_system_list);
9989 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
9990 if (NILP (val))
9991 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
9992 Vcoding_system_alist);
9993
9994 {
9995 int id = coding_categories[category].id;
9996
9997 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
9998 setup_coding_system (name, &coding_categories[category]);
9999 }
10000
10001 return Qnil;
10002
10003 short_args:
10004 return Fsignal (Qwrong_number_of_arguments,
10005 Fcons (intern ("define-coding-system-internal"),
10006 make_number (nargs)));
10007 }
10008
10009
10010 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10011 3, 3, 0,
10012 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10013 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
10014 {
10015 Lisp_Object spec, attrs;
10016
10017 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10018 attrs = AREF (spec, 0);
10019 if (EQ (prop, QCmnemonic))
10020 {
10021 if (! STRINGP (val))
10022 CHECK_CHARACTER (val);
10023 CODING_ATTR_MNEMONIC (attrs) = val;
10024 }
10025 else if (EQ (prop, QCdefault_char))
10026 {
10027 if (NILP (val))
10028 val = make_number (' ');
10029 else
10030 CHECK_CHARACTER (val);
10031 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10032 }
10033 else if (EQ (prop, QCdecode_translation_table))
10034 {
10035 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10036 CHECK_SYMBOL (val);
10037 CODING_ATTR_DECODE_TBL (attrs) = val;
10038 }
10039 else if (EQ (prop, QCencode_translation_table))
10040 {
10041 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10042 CHECK_SYMBOL (val);
10043 CODING_ATTR_ENCODE_TBL (attrs) = val;
10044 }
10045 else if (EQ (prop, QCpost_read_conversion))
10046 {
10047 CHECK_SYMBOL (val);
10048 CODING_ATTR_POST_READ (attrs) = val;
10049 }
10050 else if (EQ (prop, QCpre_write_conversion))
10051 {
10052 CHECK_SYMBOL (val);
10053 CODING_ATTR_PRE_WRITE (attrs) = val;
10054 }
10055 else if (EQ (prop, QCascii_compatible_p))
10056 {
10057 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10058 }
10059
10060 CODING_ATTR_PLIST (attrs)
10061 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10062 return val;
10063 }
10064
10065
10066 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10067 Sdefine_coding_system_alias, 2, 2, 0,
10068 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10069 (Lisp_Object alias, Lisp_Object coding_system)
10070 {
10071 Lisp_Object spec, aliases, eol_type, val;
10072
10073 CHECK_SYMBOL (alias);
10074 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10075 aliases = AREF (spec, 1);
10076 /* ALIASES should be a list of length more than zero, and the first
10077 element is a base coding system. Append ALIAS at the tail of the
10078 list. */
10079 while (!NILP (XCDR (aliases)))
10080 aliases = XCDR (aliases);
10081 XSETCDR (aliases, Fcons (alias, Qnil));
10082
10083 eol_type = AREF (spec, 2);
10084 if (VECTORP (eol_type))
10085 {
10086 Lisp_Object subsidiaries;
10087 int i;
10088
10089 subsidiaries = make_subsidiaries (alias);
10090 for (i = 0; i < 3; i++)
10091 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10092 AREF (eol_type, i));
10093 }
10094
10095 Fputhash (alias, spec, Vcoding_system_hash_table);
10096 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10097 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10098 if (NILP (val))
10099 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10100 Vcoding_system_alist);
10101
10102 return Qnil;
10103 }
10104
10105 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10106 1, 1, 0,
10107 doc: /* Return the base of CODING-SYSTEM.
10108 Any alias or subsidiary coding system is not a base coding system. */)
10109 (Lisp_Object coding_system)
10110 {
10111 Lisp_Object spec, attrs;
10112
10113 if (NILP (coding_system))
10114 return (Qno_conversion);
10115 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10116 attrs = AREF (spec, 0);
10117 return CODING_ATTR_BASE_NAME (attrs);
10118 }
10119
10120 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10121 1, 1, 0,
10122 doc: "Return the property list of CODING-SYSTEM.")
10123 (Lisp_Object coding_system)
10124 {
10125 Lisp_Object spec, attrs;
10126
10127 if (NILP (coding_system))
10128 coding_system = Qno_conversion;
10129 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10130 attrs = AREF (spec, 0);
10131 return CODING_ATTR_PLIST (attrs);
10132 }
10133
10134
10135 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10136 1, 1, 0,
10137 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10138 (Lisp_Object coding_system)
10139 {
10140 Lisp_Object spec;
10141
10142 if (NILP (coding_system))
10143 coding_system = Qno_conversion;
10144 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10145 return AREF (spec, 1);
10146 }
10147
10148 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10149 Scoding_system_eol_type, 1, 1, 0,
10150 doc: /* Return eol-type of CODING-SYSTEM.
10151 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10152
10153 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10154 and CR respectively.
10155
10156 A vector value indicates that a format of end-of-line should be
10157 detected automatically. Nth element of the vector is the subsidiary
10158 coding system whose eol-type is N. */)
10159 (Lisp_Object coding_system)
10160 {
10161 Lisp_Object spec, eol_type;
10162 int n;
10163
10164 if (NILP (coding_system))
10165 coding_system = Qno_conversion;
10166 if (! CODING_SYSTEM_P (coding_system))
10167 return Qnil;
10168 spec = CODING_SYSTEM_SPEC (coding_system);
10169 eol_type = AREF (spec, 2);
10170 if (VECTORP (eol_type))
10171 return Fcopy_sequence (eol_type);
10172 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10173 return make_number (n);
10174 }
10175
10176 #endif /* emacs */
10177
10178 \f
10179 /*** 9. Post-amble ***/
10180
10181 void
10182 init_coding_once (void)
10183 {
10184 int i;
10185
10186 for (i = 0; i < coding_category_max; i++)
10187 {
10188 coding_categories[i].id = -1;
10189 coding_priorities[i] = i;
10190 }
10191
10192 /* ISO2022 specific initialize routine. */
10193 for (i = 0; i < 0x20; i++)
10194 iso_code_class[i] = ISO_control_0;
10195 for (i = 0x21; i < 0x7F; i++)
10196 iso_code_class[i] = ISO_graphic_plane_0;
10197 for (i = 0x80; i < 0xA0; i++)
10198 iso_code_class[i] = ISO_control_1;
10199 for (i = 0xA1; i < 0xFF; i++)
10200 iso_code_class[i] = ISO_graphic_plane_1;
10201 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10202 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10203 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10204 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10205 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10206 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10207 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10208 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10209 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10210
10211 for (i = 0; i < 256; i++)
10212 {
10213 emacs_mule_bytes[i] = 1;
10214 }
10215 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10216 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10217 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10218 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10219 }
10220
10221 #ifdef emacs
10222
10223 void
10224 syms_of_coding (void)
10225 {
10226 staticpro (&Vcoding_system_hash_table);
10227 {
10228 Lisp_Object args[2];
10229 args[0] = QCtest;
10230 args[1] = Qeq;
10231 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10232 }
10233
10234 staticpro (&Vsjis_coding_system);
10235 Vsjis_coding_system = Qnil;
10236
10237 staticpro (&Vbig5_coding_system);
10238 Vbig5_coding_system = Qnil;
10239
10240 staticpro (&Vcode_conversion_reused_workbuf);
10241 Vcode_conversion_reused_workbuf = Qnil;
10242
10243 staticpro (&Vcode_conversion_workbuf_name);
10244 Vcode_conversion_workbuf_name = make_pure_c_string (" *code-conversion-work*");
10245
10246 reused_workbuf_in_use = 0;
10247
10248 DEFSYM (Qcharset, "charset");
10249 DEFSYM (Qtarget_idx, "target-idx");
10250 DEFSYM (Qcoding_system_history, "coding-system-history");
10251 Fset (Qcoding_system_history, Qnil);
10252
10253 /* Target FILENAME is the first argument. */
10254 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10255 /* Target FILENAME is the third argument. */
10256 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10257
10258 DEFSYM (Qcall_process, "call-process");
10259 /* Target PROGRAM is the first argument. */
10260 Fput (Qcall_process, Qtarget_idx, make_number (0));
10261
10262 DEFSYM (Qcall_process_region, "call-process-region");
10263 /* Target PROGRAM is the third argument. */
10264 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10265
10266 DEFSYM (Qstart_process, "start-process");
10267 /* Target PROGRAM is the third argument. */
10268 Fput (Qstart_process, Qtarget_idx, make_number (2));
10269
10270 DEFSYM (Qopen_network_stream, "open-network-stream");
10271 /* Target SERVICE is the fourth argument. */
10272 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10273
10274 DEFSYM (Qcoding_system, "coding-system");
10275 DEFSYM (Qcoding_aliases, "coding-aliases");
10276
10277 DEFSYM (Qeol_type, "eol-type");
10278 DEFSYM (Qunix, "unix");
10279 DEFSYM (Qdos, "dos");
10280
10281 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10282 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10283 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10284 DEFSYM (Qdefault_char, "default-char");
10285 DEFSYM (Qundecided, "undecided");
10286 DEFSYM (Qno_conversion, "no-conversion");
10287 DEFSYM (Qraw_text, "raw-text");
10288
10289 DEFSYM (Qiso_2022, "iso-2022");
10290
10291 DEFSYM (Qutf_8, "utf-8");
10292 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10293
10294 DEFSYM (Qutf_16, "utf-16");
10295 DEFSYM (Qbig, "big");
10296 DEFSYM (Qlittle, "little");
10297
10298 DEFSYM (Qshift_jis, "shift-jis");
10299 DEFSYM (Qbig5, "big5");
10300
10301 DEFSYM (Qcoding_system_p, "coding-system-p");
10302
10303 DEFSYM (Qcoding_system_error, "coding-system-error");
10304 Fput (Qcoding_system_error, Qerror_conditions,
10305 pure_cons (Qcoding_system_error, pure_cons (Qerror, Qnil)));
10306 Fput (Qcoding_system_error, Qerror_message,
10307 make_pure_c_string ("Invalid coding system"));
10308
10309 /* Intern this now in case it isn't already done.
10310 Setting this variable twice is harmless.
10311 But don't staticpro it here--that is done in alloc.c. */
10312 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
10313
10314 DEFSYM (Qtranslation_table, "translation-table");
10315 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10316 DEFSYM (Qtranslation_table_id, "translation-table-id");
10317 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10318 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10319
10320 DEFSYM (Qvalid_codes, "valid-codes");
10321
10322 DEFSYM (Qemacs_mule, "emacs-mule");
10323
10324 DEFSYM (QCcategory, ":category");
10325 DEFSYM (QCmnemonic, ":mnemonic");
10326 DEFSYM (QCdefault_char, ":default-char");
10327 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10328 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10329 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10330 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10331 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10332
10333 Vcoding_category_table
10334 = Fmake_vector (make_number (coding_category_max), Qnil);
10335 staticpro (&Vcoding_category_table);
10336 /* Followings are target of code detection. */
10337 ASET (Vcoding_category_table, coding_category_iso_7,
10338 intern_c_string ("coding-category-iso-7"));
10339 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10340 intern_c_string ("coding-category-iso-7-tight"));
10341 ASET (Vcoding_category_table, coding_category_iso_8_1,
10342 intern_c_string ("coding-category-iso-8-1"));
10343 ASET (Vcoding_category_table, coding_category_iso_8_2,
10344 intern_c_string ("coding-category-iso-8-2"));
10345 ASET (Vcoding_category_table, coding_category_iso_7_else,
10346 intern_c_string ("coding-category-iso-7-else"));
10347 ASET (Vcoding_category_table, coding_category_iso_8_else,
10348 intern_c_string ("coding-category-iso-8-else"));
10349 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10350 intern_c_string ("coding-category-utf-8-auto"));
10351 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10352 intern_c_string ("coding-category-utf-8"));
10353 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10354 intern_c_string ("coding-category-utf-8-sig"));
10355 ASET (Vcoding_category_table, coding_category_utf_16_be,
10356 intern_c_string ("coding-category-utf-16-be"));
10357 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10358 intern_c_string ("coding-category-utf-16-auto"));
10359 ASET (Vcoding_category_table, coding_category_utf_16_le,
10360 intern_c_string ("coding-category-utf-16-le"));
10361 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10362 intern_c_string ("coding-category-utf-16-be-nosig"));
10363 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10364 intern_c_string ("coding-category-utf-16-le-nosig"));
10365 ASET (Vcoding_category_table, coding_category_charset,
10366 intern_c_string ("coding-category-charset"));
10367 ASET (Vcoding_category_table, coding_category_sjis,
10368 intern_c_string ("coding-category-sjis"));
10369 ASET (Vcoding_category_table, coding_category_big5,
10370 intern_c_string ("coding-category-big5"));
10371 ASET (Vcoding_category_table, coding_category_ccl,
10372 intern_c_string ("coding-category-ccl"));
10373 ASET (Vcoding_category_table, coding_category_emacs_mule,
10374 intern_c_string ("coding-category-emacs-mule"));
10375 /* Followings are NOT target of code detection. */
10376 ASET (Vcoding_category_table, coding_category_raw_text,
10377 intern_c_string ("coding-category-raw-text"));
10378 ASET (Vcoding_category_table, coding_category_undecided,
10379 intern_c_string ("coding-category-undecided"));
10380
10381 DEFSYM (Qinsufficient_source, "insufficient-source");
10382 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10383 DEFSYM (Qinvalid_source, "invalid-source");
10384 DEFSYM (Qinterrupted, "interrupted");
10385 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10386 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10387
10388 defsubr (&Scoding_system_p);
10389 defsubr (&Sread_coding_system);
10390 defsubr (&Sread_non_nil_coding_system);
10391 defsubr (&Scheck_coding_system);
10392 defsubr (&Sdetect_coding_region);
10393 defsubr (&Sdetect_coding_string);
10394 defsubr (&Sfind_coding_systems_region_internal);
10395 defsubr (&Sunencodable_char_position);
10396 defsubr (&Scheck_coding_systems_region);
10397 defsubr (&Sdecode_coding_region);
10398 defsubr (&Sencode_coding_region);
10399 defsubr (&Sdecode_coding_string);
10400 defsubr (&Sencode_coding_string);
10401 defsubr (&Sdecode_sjis_char);
10402 defsubr (&Sencode_sjis_char);
10403 defsubr (&Sdecode_big5_char);
10404 defsubr (&Sencode_big5_char);
10405 defsubr (&Sset_terminal_coding_system_internal);
10406 defsubr (&Sset_safe_terminal_coding_system_internal);
10407 defsubr (&Sterminal_coding_system);
10408 defsubr (&Sset_keyboard_coding_system_internal);
10409 defsubr (&Skeyboard_coding_system);
10410 defsubr (&Sfind_operation_coding_system);
10411 defsubr (&Sset_coding_system_priority);
10412 defsubr (&Sdefine_coding_system_internal);
10413 defsubr (&Sdefine_coding_system_alias);
10414 defsubr (&Scoding_system_put);
10415 defsubr (&Scoding_system_base);
10416 defsubr (&Scoding_system_plist);
10417 defsubr (&Scoding_system_aliases);
10418 defsubr (&Scoding_system_eol_type);
10419 defsubr (&Scoding_system_priority_list);
10420
10421 DEFVAR_LISP ("coding-system-list", Vcoding_system_list,
10422 doc: /* List of coding systems.
10423
10424 Do not alter the value of this variable manually. This variable should be
10425 updated by the functions `define-coding-system' and
10426 `define-coding-system-alias'. */);
10427 Vcoding_system_list = Qnil;
10428
10429 DEFVAR_LISP ("coding-system-alist", Vcoding_system_alist,
10430 doc: /* Alist of coding system names.
10431 Each element is one element list of coding system name.
10432 This variable is given to `completing-read' as COLLECTION argument.
10433
10434 Do not alter the value of this variable manually. This variable should be
10435 updated by the functions `make-coding-system' and
10436 `define-coding-system-alias'. */);
10437 Vcoding_system_alist = Qnil;
10438
10439 DEFVAR_LISP ("coding-category-list", Vcoding_category_list,
10440 doc: /* List of coding-categories (symbols) ordered by priority.
10441
10442 On detecting a coding system, Emacs tries code detection algorithms
10443 associated with each coding-category one by one in this order. When
10444 one algorithm agrees with a byte sequence of source text, the coding
10445 system bound to the corresponding coding-category is selected.
10446
10447 Don't modify this variable directly, but use `set-coding-system-priority'. */);
10448 {
10449 int i;
10450
10451 Vcoding_category_list = Qnil;
10452 for (i = coding_category_max - 1; i >= 0; i--)
10453 Vcoding_category_list
10454 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10455 Vcoding_category_list);
10456 }
10457
10458 DEFVAR_LISP ("coding-system-for-read", Vcoding_system_for_read,
10459 doc: /* Specify the coding system for read operations.
10460 It is useful to bind this variable with `let', but do not set it globally.
10461 If the value is a coding system, it is used for decoding on read operation.
10462 If not, an appropriate element is used from one of the coding system alists.
10463 There are three such tables: `file-coding-system-alist',
10464 `process-coding-system-alist', and `network-coding-system-alist'. */);
10465 Vcoding_system_for_read = Qnil;
10466
10467 DEFVAR_LISP ("coding-system-for-write", Vcoding_system_for_write,
10468 doc: /* Specify the coding system for write operations.
10469 Programs bind this variable with `let', but you should not set it globally.
10470 If the value is a coding system, it is used for encoding of output,
10471 when writing it to a file and when sending it to a file or subprocess.
10472
10473 If this does not specify a coding system, an appropriate element
10474 is used from one of the coding system alists.
10475 There are three such tables: `file-coding-system-alist',
10476 `process-coding-system-alist', and `network-coding-system-alist'.
10477 For output to files, if the above procedure does not specify a coding system,
10478 the value of `buffer-file-coding-system' is used. */);
10479 Vcoding_system_for_write = Qnil;
10480
10481 DEFVAR_LISP ("last-coding-system-used", Vlast_coding_system_used,
10482 doc: /*
10483 Coding system used in the latest file or process I/O. */);
10484 Vlast_coding_system_used = Qnil;
10485
10486 DEFVAR_LISP ("last-code-conversion-error", Vlast_code_conversion_error,
10487 doc: /*
10488 Error status of the last code conversion.
10489
10490 When an error was detected in the last code conversion, this variable
10491 is set to one of the following symbols.
10492 `insufficient-source'
10493 `inconsistent-eol'
10494 `invalid-source'
10495 `interrupted'
10496 `insufficient-memory'
10497 When no error was detected, the value doesn't change. So, to check
10498 the error status of a code conversion by this variable, you must
10499 explicitly set this variable to nil before performing code
10500 conversion. */);
10501 Vlast_code_conversion_error = Qnil;
10502
10503 DEFVAR_BOOL ("inhibit-eol-conversion", inhibit_eol_conversion,
10504 doc: /*
10505 *Non-nil means always inhibit code conversion of end-of-line format.
10506 See info node `Coding Systems' and info node `Text and Binary' concerning
10507 such conversion. */);
10508 inhibit_eol_conversion = 0;
10509
10510 DEFVAR_BOOL ("inherit-process-coding-system", inherit_process_coding_system,
10511 doc: /*
10512 Non-nil means process buffer inherits coding system of process output.
10513 Bind it to t if the process output is to be treated as if it were a file
10514 read from some filesystem. */);
10515 inherit_process_coding_system = 0;
10516
10517 DEFVAR_LISP ("file-coding-system-alist", Vfile_coding_system_alist,
10518 doc: /*
10519 Alist to decide a coding system to use for a file I/O operation.
10520 The format is ((PATTERN . VAL) ...),
10521 where PATTERN is a regular expression matching a file name,
10522 VAL is a coding system, a cons of coding systems, or a function symbol.
10523 If VAL is a coding system, it is used for both decoding and encoding
10524 the file contents.
10525 If VAL is a cons of coding systems, the car part is used for decoding,
10526 and the cdr part is used for encoding.
10527 If VAL is a function symbol, the function must return a coding system
10528 or a cons of coding systems which are used as above. The function is
10529 called with an argument that is a list of the arguments with which
10530 `find-operation-coding-system' was called. If the function can't decide
10531 a coding system, it can return `undecided' so that the normal
10532 code-detection is performed.
10533
10534 See also the function `find-operation-coding-system'
10535 and the variable `auto-coding-alist'. */);
10536 Vfile_coding_system_alist = Qnil;
10537
10538 DEFVAR_LISP ("process-coding-system-alist", Vprocess_coding_system_alist,
10539 doc: /*
10540 Alist to decide a coding system to use for a process I/O operation.
10541 The format is ((PATTERN . VAL) ...),
10542 where PATTERN is a regular expression matching a program name,
10543 VAL is a coding system, a cons of coding systems, or a function symbol.
10544 If VAL is a coding system, it is used for both decoding what received
10545 from the program and encoding what sent to the program.
10546 If VAL is a cons of coding systems, the car part is used for decoding,
10547 and the cdr part is used for encoding.
10548 If VAL is a function symbol, the function must return a coding system
10549 or a cons of coding systems which are used as above.
10550
10551 See also the function `find-operation-coding-system'. */);
10552 Vprocess_coding_system_alist = Qnil;
10553
10554 DEFVAR_LISP ("network-coding-system-alist", Vnetwork_coding_system_alist,
10555 doc: /*
10556 Alist to decide a coding system to use for a network I/O operation.
10557 The format is ((PATTERN . VAL) ...),
10558 where PATTERN is a regular expression matching a network service name
10559 or is a port number to connect to,
10560 VAL is a coding system, a cons of coding systems, or a function symbol.
10561 If VAL is a coding system, it is used for both decoding what received
10562 from the network stream and encoding what sent to the network stream.
10563 If VAL is a cons of coding systems, the car part is used for decoding,
10564 and the cdr part is used for encoding.
10565 If VAL is a function symbol, the function must return a coding system
10566 or a cons of coding systems which are used as above.
10567
10568 See also the function `find-operation-coding-system'. */);
10569 Vnetwork_coding_system_alist = Qnil;
10570
10571 DEFVAR_LISP ("locale-coding-system", Vlocale_coding_system,
10572 doc: /* Coding system to use with system messages.
10573 Also used for decoding keyboard input on X Window system. */);
10574 Vlocale_coding_system = Qnil;
10575
10576 /* The eol mnemonics are reset in startup.el system-dependently. */
10577 DEFVAR_LISP ("eol-mnemonic-unix", eol_mnemonic_unix,
10578 doc: /*
10579 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10580 eol_mnemonic_unix = make_pure_c_string (":");
10581
10582 DEFVAR_LISP ("eol-mnemonic-dos", eol_mnemonic_dos,
10583 doc: /*
10584 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10585 eol_mnemonic_dos = make_pure_c_string ("\\");
10586
10587 DEFVAR_LISP ("eol-mnemonic-mac", eol_mnemonic_mac,
10588 doc: /*
10589 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10590 eol_mnemonic_mac = make_pure_c_string ("/");
10591
10592 DEFVAR_LISP ("eol-mnemonic-undecided", eol_mnemonic_undecided,
10593 doc: /*
10594 *String displayed in mode line when end-of-line format is not yet determined. */);
10595 eol_mnemonic_undecided = make_pure_c_string (":");
10596
10597 DEFVAR_LISP ("enable-character-translation", Venable_character_translation,
10598 doc: /*
10599 *Non-nil enables character translation while encoding and decoding. */);
10600 Venable_character_translation = Qt;
10601
10602 DEFVAR_LISP ("standard-translation-table-for-decode",
10603 Vstandard_translation_table_for_decode,
10604 doc: /* Table for translating characters while decoding. */);
10605 Vstandard_translation_table_for_decode = Qnil;
10606
10607 DEFVAR_LISP ("standard-translation-table-for-encode",
10608 Vstandard_translation_table_for_encode,
10609 doc: /* Table for translating characters while encoding. */);
10610 Vstandard_translation_table_for_encode = Qnil;
10611
10612 DEFVAR_LISP ("charset-revision-table", Vcharset_revision_table,
10613 doc: /* Alist of charsets vs revision numbers.
10614 While encoding, if a charset (car part of an element) is found,
10615 designate it with the escape sequence identifying revision (cdr part
10616 of the element). */);
10617 Vcharset_revision_table = Qnil;
10618
10619 DEFVAR_LISP ("default-process-coding-system",
10620 Vdefault_process_coding_system,
10621 doc: /* Cons of coding systems used for process I/O by default.
10622 The car part is used for decoding a process output,
10623 the cdr part is used for encoding a text to be sent to a process. */);
10624 Vdefault_process_coding_system = Qnil;
10625
10626 DEFVAR_LISP ("latin-extra-code-table", Vlatin_extra_code_table,
10627 doc: /*
10628 Table of extra Latin codes in the range 128..159 (inclusive).
10629 This is a vector of length 256.
10630 If Nth element is non-nil, the existence of code N in a file
10631 \(or output of subprocess) doesn't prevent it to be detected as
10632 a coding system of ISO 2022 variant which has a flag
10633 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10634 or reading output of a subprocess.
10635 Only 128th through 159th elements have a meaning. */);
10636 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10637
10638 DEFVAR_LISP ("select-safe-coding-system-function",
10639 Vselect_safe_coding_system_function,
10640 doc: /*
10641 Function to call to select safe coding system for encoding a text.
10642
10643 If set, this function is called to force a user to select a proper
10644 coding system which can encode the text in the case that a default
10645 coding system used in each operation can't encode the text. The
10646 function should take care that the buffer is not modified while
10647 the coding system is being selected.
10648
10649 The default value is `select-safe-coding-system' (which see). */);
10650 Vselect_safe_coding_system_function = Qnil;
10651
10652 DEFVAR_BOOL ("coding-system-require-warning",
10653 coding_system_require_warning,
10654 doc: /* Internal use only.
10655 If non-nil, on writing a file, `select-safe-coding-system-function' is
10656 called even if `coding-system-for-write' is non-nil. The command
10657 `universal-coding-system-argument' binds this variable to t temporarily. */);
10658 coding_system_require_warning = 0;
10659
10660
10661 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10662 inhibit_iso_escape_detection,
10663 doc: /*
10664 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10665
10666 When Emacs reads text, it tries to detect how the text is encoded.
10667 This code detection is sensitive to escape sequences. If Emacs sees
10668 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10669 of the ISO2022 encodings, and decodes text by the corresponding coding
10670 system (e.g. `iso-2022-7bit').
10671
10672 However, there may be a case that you want to read escape sequences in
10673 a file as is. In such a case, you can set this variable to non-nil.
10674 Then the code detection will ignore any escape sequences, and no text is
10675 detected as encoded in some ISO-2022 encoding. The result is that all
10676 escape sequences become visible in a buffer.
10677
10678 The default value is nil, and it is strongly recommended not to change
10679 it. That is because many Emacs Lisp source files that contain
10680 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10681 in Emacs's distribution, and they won't be decoded correctly on
10682 reading if you suppress escape sequence detection.
10683
10684 The other way to read escape sequences in a file without decoding is
10685 to explicitly specify some coding system that doesn't use ISO-2022
10686 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10687 inhibit_iso_escape_detection = 0;
10688
10689 DEFVAR_BOOL ("inhibit-null-byte-detection",
10690 inhibit_null_byte_detection,
10691 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10692 By default, Emacs treats it as binary data, and does not attempt to
10693 decode it. The effect is as if you specified `no-conversion' for
10694 reading that text.
10695
10696 Set this to non-nil when a regular text happens to include null bytes.
10697 Examples are Index nodes of Info files and null-byte delimited output
10698 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10699 decode text as usual. */);
10700 inhibit_null_byte_detection = 0;
10701
10702 DEFVAR_LISP ("translation-table-for-input", Vtranslation_table_for_input,
10703 doc: /* Char table for translating self-inserting characters.
10704 This is applied to the result of input methods, not their input.
10705 See also `keyboard-translate-table'.
10706
10707 Use of this variable for character code unification was rendered
10708 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10709 internal character representation. */);
10710 Vtranslation_table_for_input = Qnil;
10711
10712 {
10713 Lisp_Object args[coding_arg_max];
10714 Lisp_Object plist[16];
10715 int i;
10716
10717 for (i = 0; i < coding_arg_max; i++)
10718 args[i] = Qnil;
10719
10720 plist[0] = intern_c_string (":name");
10721 plist[1] = args[coding_arg_name] = Qno_conversion;
10722 plist[2] = intern_c_string (":mnemonic");
10723 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10724 plist[4] = intern_c_string (":coding-type");
10725 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10726 plist[6] = intern_c_string (":ascii-compatible-p");
10727 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10728 plist[8] = intern_c_string (":default-char");
10729 plist[9] = args[coding_arg_default_char] = make_number (0);
10730 plist[10] = intern_c_string (":for-unibyte");
10731 plist[11] = args[coding_arg_for_unibyte] = Qt;
10732 plist[12] = intern_c_string (":docstring");
10733 plist[13] = make_pure_c_string ("Do no conversion.\n\
10734 \n\
10735 When you visit a file with this coding, the file is read into a\n\
10736 unibyte buffer as is, thus each byte of a file is treated as a\n\
10737 character.");
10738 plist[14] = intern_c_string (":eol-type");
10739 plist[15] = args[coding_arg_eol_type] = Qunix;
10740 args[coding_arg_plist] = Flist (16, plist);
10741 Fdefine_coding_system_internal (coding_arg_max, args);
10742
10743 plist[1] = args[coding_arg_name] = Qundecided;
10744 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10745 plist[5] = args[coding_arg_coding_type] = Qundecided;
10746 /* This is already set.
10747 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10748 plist[8] = intern_c_string (":charset-list");
10749 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10750 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10751 plist[13] = make_pure_c_string ("No conversion on encoding, automatic conversion on decoding.");
10752 plist[15] = args[coding_arg_eol_type] = Qnil;
10753 args[coding_arg_plist] = Flist (16, plist);
10754 Fdefine_coding_system_internal (coding_arg_max, args);
10755 }
10756
10757 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10758
10759 {
10760 int i;
10761
10762 for (i = 0; i < coding_category_max; i++)
10763 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10764 }
10765 #if defined (DOS_NT)
10766 system_eol_type = Qdos;
10767 #else
10768 system_eol_type = Qunix;
10769 #endif
10770 staticpro (&system_eol_type);
10771 }
10772
10773 char *
10774 emacs_strerror (int error_number)
10775 {
10776 char *str;
10777
10778 synchronize_system_messages_locale ();
10779 str = strerror (error_number);
10780
10781 if (! NILP (Vlocale_coding_system))
10782 {
10783 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10784 Vlocale_coding_system,
10785 0);
10786 str = SSDATA (dec);
10787 }
10788
10789 return str;
10790 }
10791
10792 #endif /* emacs */