(Faccessible_keymaps): Really initialize i_byte.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #ifdef STDC_HEADERS
25 #include <stdlib.h>
26 #endif
27 #undef NULL
28 #include "lisp.h"
29 #include "commands.h"
30 #include "buffer.h"
31 #include "charset.h"
32 #include "keyboard.h"
33 #include "termhooks.h"
34 #include "blockinput.h"
35 #include "puresize.h"
36
37 #define min(a, b) ((a) < (b) ? (a) : (b))
38
39 /* The number of elements in keymap vectors. */
40 #define DENSE_TABLE_SIZE (0200)
41
42 /* Actually allocate storage for these variables */
43
44 Lisp_Object current_global_map; /* Current global keymap */
45
46 Lisp_Object global_map; /* default global key bindings */
47
48 Lisp_Object meta_map; /* The keymap used for globally bound
49 ESC-prefixed default commands */
50
51 Lisp_Object control_x_map; /* The keymap used for globally bound
52 C-x-prefixed default commands */
53
54 /* was MinibufLocalMap */
55 Lisp_Object Vminibuffer_local_map;
56 /* The keymap used by the minibuf for local
57 bindings when spaces are allowed in the
58 minibuf */
59
60 /* was MinibufLocalNSMap */
61 Lisp_Object Vminibuffer_local_ns_map;
62 /* The keymap used by the minibuf for local
63 bindings when spaces are not encouraged
64 in the minibuf */
65
66 /* keymap used for minibuffers when doing completion */
67 /* was MinibufLocalCompletionMap */
68 Lisp_Object Vminibuffer_local_completion_map;
69
70 /* keymap used for minibuffers when doing completion and require a match */
71 /* was MinibufLocalMustMatchMap */
72 Lisp_Object Vminibuffer_local_must_match_map;
73
74 /* Alist of minor mode variables and keymaps. */
75 Lisp_Object Vminor_mode_map_alist;
76
77 /* Alist of major-mode-specific overrides for
78 minor mode variables and keymaps. */
79 Lisp_Object Vminor_mode_overriding_map_alist;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
96
97 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
98 in a string key sequence is equivalent to prefixing with this
99 character. */
100 extern Lisp_Object meta_prefix_char;
101
102 extern Lisp_Object Voverriding_local_map;
103
104 static Lisp_Object define_as_prefix ();
105 static Lisp_Object describe_buffer_bindings ();
106 static void describe_command (), describe_translation ();
107 static void describe_map ();
108 \f
109 /* Keymap object support - constructors and predicates. */
110
111 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
112 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
113 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
114 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
115 mouse events, and any other things that appear in the input stream.\n\
116 All entries in it are initially nil, meaning \"command undefined\".\n\n\
117 The optional arg STRING supplies a menu name for the keymap\n\
118 in case you use it as a menu with `x-popup-menu'.")
119 (string)
120 Lisp_Object string;
121 {
122 Lisp_Object tail;
123 if (!NILP (string))
124 tail = Fcons (string, Qnil);
125 else
126 tail = Qnil;
127 return Fcons (Qkeymap,
128 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
129 }
130
131 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
132 "Construct and return a new sparse-keymap list.\n\
133 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
134 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
135 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
136 Initially the alist is nil.\n\n\
137 The optional arg STRING supplies a menu name for the keymap\n\
138 in case you use it as a menu with `x-popup-menu'.")
139 (string)
140 Lisp_Object string;
141 {
142 if (!NILP (string))
143 return Fcons (Qkeymap, Fcons (string, Qnil));
144 return Fcons (Qkeymap, Qnil);
145 }
146
147 /* This function is used for installing the standard key bindings
148 at initialization time.
149
150 For example:
151
152 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
153
154 void
155 initial_define_key (keymap, key, defname)
156 Lisp_Object keymap;
157 int key;
158 char *defname;
159 {
160 store_in_keymap (keymap, make_number (key), intern (defname));
161 }
162
163 void
164 initial_define_lispy_key (keymap, keyname, defname)
165 Lisp_Object keymap;
166 char *keyname;
167 char *defname;
168 {
169 store_in_keymap (keymap, intern (keyname), intern (defname));
170 }
171
172 /* Define character fromchar in map frommap as an alias for character
173 tochar in map tomap. Subsequent redefinitions of the latter WILL
174 affect the former. */
175
176 #if 0
177 void
178 synkey (frommap, fromchar, tomap, tochar)
179 struct Lisp_Vector *frommap, *tomap;
180 int fromchar, tochar;
181 {
182 Lisp_Object v, c;
183 XSETVECTOR (v, tomap);
184 XSETFASTINT (c, tochar);
185 frommap->contents[fromchar] = Fcons (v, c);
186 }
187 #endif /* 0 */
188
189 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
190 "Return t if OBJECT is a keymap.\n\
191 \n\
192 A keymap is a list (keymap . ALIST),\n\
193 or a symbol whose function definition is itself a keymap.\n\
194 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
195 a vector of densely packed bindings for small character codes\n\
196 is also allowed as an element.")
197 (object)
198 Lisp_Object object;
199 {
200 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
201 }
202
203 /* Check that OBJECT is a keymap (after dereferencing through any
204 symbols). If it is, return it.
205
206 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
207 is an autoload form, do the autoload and try again.
208 If AUTOLOAD is nonzero, callers must assume GC is possible.
209
210 ERROR controls how we respond if OBJECT isn't a keymap.
211 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
212
213 Note that most of the time, we don't want to pursue autoloads.
214 Functions like Faccessible_keymaps which scan entire keymap trees
215 shouldn't load every autoloaded keymap. I'm not sure about this,
216 but it seems to me that only read_key_sequence, Flookup_key, and
217 Fdefine_key should cause keymaps to be autoloaded. */
218
219 Lisp_Object
220 get_keymap_1 (object, error, autoload)
221 Lisp_Object object;
222 int error, autoload;
223 {
224 Lisp_Object tem;
225
226 autoload_retry:
227 tem = indirect_function (object);
228 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
229 return tem;
230
231 /* Should we do an autoload? Autoload forms for keymaps have
232 Qkeymap as their fifth element. */
233 if (autoload
234 && SYMBOLP (object)
235 && CONSP (tem)
236 && EQ (XCONS (tem)->car, Qautoload))
237 {
238 Lisp_Object tail;
239
240 tail = Fnth (make_number (4), tem);
241 if (EQ (tail, Qkeymap))
242 {
243 struct gcpro gcpro1, gcpro2;
244
245 GCPRO2 (tem, object);
246 do_autoload (tem, object);
247 UNGCPRO;
248
249 goto autoload_retry;
250 }
251 }
252
253 if (error)
254 wrong_type_argument (Qkeymapp, object);
255 else
256 return Qnil;
257 }
258
259
260 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
261 If OBJECT doesn't denote a keymap at all, signal an error. */
262 Lisp_Object
263 get_keymap (object)
264 Lisp_Object object;
265 {
266 return get_keymap_1 (object, 1, 0);
267 }
268 \f
269 /* Return the parent map of the keymap MAP, or nil if it has none.
270 We assume that MAP is a valid keymap. */
271
272 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
273 "Return the parent keymap of KEYMAP.")
274 (keymap)
275 Lisp_Object keymap;
276 {
277 Lisp_Object list;
278
279 keymap = get_keymap_1 (keymap, 1, 1);
280
281 /* Skip past the initial element `keymap'. */
282 list = XCONS (keymap)->cdr;
283 for (; CONSP (list); list = XCONS (list)->cdr)
284 {
285 /* See if there is another `keymap'. */
286 if (EQ (Qkeymap, XCONS (list)->car))
287 return list;
288 }
289
290 return Qnil;
291 }
292
293 /* Set the parent keymap of MAP to PARENT. */
294
295 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
296 "Modify KEYMAP to set its parent map to PARENT.\n\
297 PARENT should be nil or another keymap.")
298 (keymap, parent)
299 Lisp_Object keymap, parent;
300 {
301 Lisp_Object list, prev;
302 int i;
303
304 keymap = get_keymap_1 (keymap, 1, 1);
305 if (!NILP (parent))
306 parent = get_keymap_1 (parent, 1, 1);
307
308 /* Skip past the initial element `keymap'. */
309 prev = keymap;
310 while (1)
311 {
312 list = XCONS (prev)->cdr;
313 /* If there is a parent keymap here, replace it.
314 If we came to the end, add the parent in PREV. */
315 if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
316 {
317 /* If we already have the right parent, return now
318 so that we avoid the loops below. */
319 if (EQ (XCONS (prev)->cdr, parent))
320 return parent;
321
322 XCONS (prev)->cdr = parent;
323 break;
324 }
325 prev = list;
326 }
327
328 /* Scan through for submaps, and set their parents too. */
329
330 for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
331 {
332 /* Stop the scan when we come to the parent. */
333 if (EQ (XCONS (list)->car, Qkeymap))
334 break;
335
336 /* If this element holds a prefix map, deal with it. */
337 if (CONSP (XCONS (list)->car)
338 && CONSP (XCONS (XCONS (list)->car)->cdr))
339 fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
340 XCONS (XCONS (list)->car)->cdr);
341
342 if (VECTORP (XCONS (list)->car))
343 for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
344 if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
345 fix_submap_inheritance (keymap, make_number (i),
346 XVECTOR (XCONS (list)->car)->contents[i]);
347
348 if (CHAR_TABLE_P (XCONS (list)->car))
349 {
350 Lisp_Object indices[3];
351
352 map_char_table (fix_submap_inheritance, Qnil, XCONS (list)->car,
353 keymap, 0, indices);
354 }
355 }
356
357 return parent;
358 }
359
360 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
361 if EVENT is also a prefix in MAP's parent,
362 make sure that SUBMAP inherits that definition as its own parent. */
363
364 void
365 fix_submap_inheritance (map, event, submap)
366 Lisp_Object map, event, submap;
367 {
368 Lisp_Object map_parent, parent_entry;
369
370 /* SUBMAP is a cons that we found as a key binding.
371 Discard the other things found in a menu key binding. */
372
373 if (CONSP (submap))
374 {
375 /* May be an old format menu item */
376 if (STRINGP (XCONS (submap)->car))
377 {
378 submap = XCONS (submap)->cdr;
379 /* Also remove a menu help string, if any,
380 following the menu item name. */
381 if (CONSP (submap) && STRINGP (XCONS (submap)->car))
382 submap = XCONS (submap)->cdr;
383 /* Also remove the sublist that caches key equivalences, if any. */
384 if (CONSP (submap)
385 && CONSP (XCONS (submap)->car))
386 {
387 Lisp_Object carcar;
388 carcar = XCONS (XCONS (submap)->car)->car;
389 if (NILP (carcar) || VECTORP (carcar))
390 submap = XCONS (submap)->cdr;
391 }
392 }
393
394 /* Or a new format menu item */
395 else if (EQ (XCONS (submap)->car, Qmenu_item)
396 && CONSP (XCONS (submap)->cdr))
397 {
398 submap = XCONS (XCONS (submap)->cdr)->cdr;
399 if (CONSP (submap))
400 submap = XCONS (submap)->car;
401 }
402 }
403
404 /* If it isn't a keymap now, there's no work to do. */
405 if (! CONSP (submap)
406 || ! EQ (XCONS (submap)->car, Qkeymap))
407 return;
408
409 map_parent = Fkeymap_parent (map);
410 if (! NILP (map_parent))
411 parent_entry = access_keymap (map_parent, event, 0, 0);
412 else
413 parent_entry = Qnil;
414
415 /* If MAP's parent has something other than a keymap,
416 our own submap shadows it completely, so use nil as SUBMAP's parent. */
417 if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
418 parent_entry = Qnil;
419
420 if (! EQ (parent_entry, submap))
421 Fset_keymap_parent (submap, parent_entry);
422 }
423 \f
424 /* Look up IDX in MAP. IDX may be any sort of event.
425 Note that this does only one level of lookup; IDX must be a single
426 event, not a sequence.
427
428 If T_OK is non-zero, bindings for Qt are treated as default
429 bindings; any key left unmentioned by other tables and bindings is
430 given the binding of Qt.
431
432 If T_OK is zero, bindings for Qt are not treated specially.
433
434 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
435
436 Lisp_Object
437 access_keymap (map, idx, t_ok, noinherit)
438 Lisp_Object map;
439 Lisp_Object idx;
440 int t_ok;
441 int noinherit;
442 {
443 int noprefix = 0;
444 Lisp_Object val;
445
446 /* If idx is a list (some sort of mouse click, perhaps?),
447 the index we want to use is the car of the list, which
448 ought to be a symbol. */
449 idx = EVENT_HEAD (idx);
450
451 /* If idx is a symbol, it might have modifiers, which need to
452 be put in the canonical order. */
453 if (SYMBOLP (idx))
454 idx = reorder_modifiers (idx);
455 else if (INTEGERP (idx))
456 /* Clobber the high bits that can be present on a machine
457 with more than 24 bits of integer. */
458 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
459
460 {
461 Lisp_Object tail;
462 Lisp_Object t_binding;
463
464 t_binding = Qnil;
465 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
466 {
467 Lisp_Object binding;
468
469 binding = XCONS (tail)->car;
470 if (SYMBOLP (binding))
471 {
472 /* If NOINHERIT, stop finding prefix definitions
473 after we pass a second occurrence of the `keymap' symbol. */
474 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
475 noprefix = 1;
476 }
477 else if (CONSP (binding))
478 {
479 if (EQ (XCONS (binding)->car, idx))
480 {
481 val = XCONS (binding)->cdr;
482 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
483 return Qnil;
484 if (CONSP (val))
485 fix_submap_inheritance (map, idx, val);
486 return val;
487 }
488 if (t_ok && EQ (XCONS (binding)->car, Qt))
489 t_binding = XCONS (binding)->cdr;
490 }
491 else if (VECTORP (binding))
492 {
493 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
494 {
495 val = XVECTOR (binding)->contents[XFASTINT (idx)];
496 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
497 return Qnil;
498 if (CONSP (val))
499 fix_submap_inheritance (map, idx, val);
500 return val;
501 }
502 }
503 else if (CHAR_TABLE_P (binding))
504 {
505 /* Character codes with modifiers
506 are not included in a char-table.
507 All character codes without modifiers are included. */
508 if (NATNUMP (idx)
509 && ! (XFASTINT (idx)
510 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
511 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
512 {
513 val = Faref (binding, idx);
514 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
515 return Qnil;
516 if (CONSP (val))
517 fix_submap_inheritance (map, idx, val);
518 return val;
519 }
520 }
521
522 QUIT;
523 }
524
525 return t_binding;
526 }
527 }
528
529 /* Given OBJECT which was found in a slot in a keymap,
530 trace indirect definitions to get the actual definition of that slot.
531 An indirect definition is a list of the form
532 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
533 and INDEX is the object to look up in KEYMAP to yield the definition.
534
535 Also if OBJECT has a menu string as the first element,
536 remove that. Also remove a menu help string as second element.
537
538 If AUTOLOAD is nonzero, load autoloadable keymaps
539 that are referred to with indirection. */
540
541 Lisp_Object
542 get_keyelt (object, autoload)
543 register Lisp_Object object;
544 int autoload;
545 {
546 while (1)
547 {
548 register Lisp_Object map, tem;
549
550 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
551 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
552 tem = Fkeymapp (map);
553 if (!NILP (tem))
554 {
555 Lisp_Object key;
556 key = Fcdr (object);
557 if (INTEGERP (key) && (XINT (key) & meta_modifier))
558 {
559 object = access_keymap (map, meta_prefix_char, 0, 0);
560 map = get_keymap_1 (object, 0, autoload);
561 object = access_keymap (map,
562 make_number (XINT (key) & ~meta_modifier),
563 0, 0);
564 }
565 else
566 object = access_keymap (map, key, 0, 0);
567 }
568
569 else if (!(CONSP (object)))
570 /* This is really the value. */
571 return object;
572
573 /* If the keymap contents looks like (STRING . DEFN),
574 use DEFN.
575 Keymap alist elements like (CHAR MENUSTRING . DEFN)
576 will be used by HierarKey menus. */
577 else if (STRINGP (XCONS (object)->car))
578 {
579 object = XCONS (object)->cdr;
580 /* Also remove a menu help string, if any,
581 following the menu item name. */
582 if (CONSP (object) && STRINGP (XCONS (object)->car))
583 object = XCONS (object)->cdr;
584 /* Also remove the sublist that caches key equivalences, if any. */
585 if (CONSP (object)
586 && CONSP (XCONS (object)->car))
587 {
588 Lisp_Object carcar;
589 carcar = XCONS (XCONS (object)->car)->car;
590 if (NILP (carcar) || VECTORP (carcar))
591 object = XCONS (object)->cdr;
592 }
593 }
594
595 /* If the keymap contents looks like (menu-item name . DEFN)
596 or (menu-item name DEFN ...) then use DEFN.
597 This is a new format menu item.
598 */
599 else if (EQ (XCONS (object)->car, Qmenu_item)
600 && CONSP (XCONS (object)->cdr))
601 {
602 object = XCONS (XCONS (object)->cdr)->cdr;
603 if (CONSP (object))
604 object = XCONS (object)->car;
605 }
606
607 else
608 /* Anything else is really the value. */
609 return object;
610 }
611 }
612
613 Lisp_Object
614 store_in_keymap (keymap, idx, def)
615 Lisp_Object keymap;
616 register Lisp_Object idx;
617 register Lisp_Object def;
618 {
619 /* If we are preparing to dump, and DEF is a menu element
620 with a menu item indicator, copy it to ensure it is not pure. */
621 if (CONSP (def) && PURE_P (def)
622 && (EQ (XCONS (def)->car, Qmenu_item) || STRINGP (XCONS (def)->car)))
623 def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
624
625 if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
626 error ("attempt to define a key in a non-keymap");
627
628 /* If idx is a list (some sort of mouse click, perhaps?),
629 the index we want to use is the car of the list, which
630 ought to be a symbol. */
631 idx = EVENT_HEAD (idx);
632
633 /* If idx is a symbol, it might have modifiers, which need to
634 be put in the canonical order. */
635 if (SYMBOLP (idx))
636 idx = reorder_modifiers (idx);
637 else if (INTEGERP (idx))
638 /* Clobber the high bits that can be present on a machine
639 with more than 24 bits of integer. */
640 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
641
642 /* Scan the keymap for a binding of idx. */
643 {
644 Lisp_Object tail;
645
646 /* The cons after which we should insert new bindings. If the
647 keymap has a table element, we record its position here, so new
648 bindings will go after it; this way, the table will stay
649 towards the front of the alist and character lookups in dense
650 keymaps will remain fast. Otherwise, this just points at the
651 front of the keymap. */
652 Lisp_Object insertion_point;
653
654 insertion_point = keymap;
655 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
656 {
657 Lisp_Object elt;
658
659 elt = XCONS (tail)->car;
660 if (VECTORP (elt))
661 {
662 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
663 {
664 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
665 return def;
666 }
667 insertion_point = tail;
668 }
669 else if (CHAR_TABLE_P (elt))
670 {
671 /* Character codes with modifiers
672 are not included in a char-table.
673 All character codes without modifiers are included. */
674 if (NATNUMP (idx)
675 && ! (XFASTINT (idx)
676 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
677 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
678 {
679 Faset (elt, idx, def);
680 return def;
681 }
682 insertion_point = tail;
683 }
684 else if (CONSP (elt))
685 {
686 if (EQ (idx, XCONS (elt)->car))
687 {
688 XCONS (elt)->cdr = def;
689 return def;
690 }
691 }
692 else if (SYMBOLP (elt))
693 {
694 /* If we find a 'keymap' symbol in the spine of KEYMAP,
695 then we must have found the start of a second keymap
696 being used as the tail of KEYMAP, and a binding for IDX
697 should be inserted before it. */
698 if (EQ (elt, Qkeymap))
699 goto keymap_end;
700 }
701
702 QUIT;
703 }
704
705 keymap_end:
706 /* We have scanned the entire keymap, and not found a binding for
707 IDX. Let's add one. */
708 XCONS (insertion_point)->cdr
709 = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
710 }
711
712 return def;
713 }
714
715 void
716 copy_keymap_1 (chartable, idx, elt)
717 Lisp_Object chartable, idx, elt;
718 {
719 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
720 Faset (chartable, idx, Fcopy_keymap (elt));
721 }
722
723 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
724 "Return a copy of the keymap KEYMAP.\n\
725 The copy starts out with the same definitions of KEYMAP,\n\
726 but changing either the copy or KEYMAP does not affect the other.\n\
727 Any key definitions that are subkeymaps are recursively copied.\n\
728 However, a key definition which is a symbol whose definition is a keymap\n\
729 is not copied.")
730 (keymap)
731 Lisp_Object keymap;
732 {
733 register Lisp_Object copy, tail;
734
735 copy = Fcopy_alist (get_keymap (keymap));
736
737 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
738 {
739 Lisp_Object elt;
740
741 elt = XCONS (tail)->car;
742 if (CHAR_TABLE_P (elt))
743 {
744 Lisp_Object indices[3];
745
746 elt = Fcopy_sequence (elt);
747 XCONS (tail)->car = elt;
748
749 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
750 }
751 else if (VECTORP (elt))
752 {
753 int i;
754
755 elt = Fcopy_sequence (elt);
756 XCONS (tail)->car = elt;
757
758 for (i = 0; i < XVECTOR (elt)->size; i++)
759 if (!SYMBOLP (XVECTOR (elt)->contents[i])
760 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
761 XVECTOR (elt)->contents[i]
762 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
763 }
764 else if (CONSP (elt) && CONSP (XCONS (elt)->cdr))
765 {
766 Lisp_Object tem;
767 tem = XCONS (elt)->cdr;
768
769 /* Is this a new format menu item. */
770 if (EQ (XCONS (tem)->car,Qmenu_item))
771 {
772 /* Copy cell with menu-item marker. */
773 XCONS (elt)->cdr
774 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
775 elt = XCONS (elt)->cdr;
776 tem = XCONS (elt)->cdr;
777 if (CONSP (tem))
778 {
779 /* Copy cell with menu-item name. */
780 XCONS (elt)->cdr
781 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
782 elt = XCONS (elt)->cdr;
783 tem = XCONS (elt)->cdr;
784 };
785 if (CONSP (tem))
786 {
787 /* Copy cell with binding and if the binding is a keymap,
788 copy that. */
789 XCONS (elt)->cdr
790 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
791 elt = XCONS (elt)->cdr;
792 tem = XCONS (elt)->car;
793 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
794 XCONS (elt)->car = Fcopy_keymap (tem);
795 tem = XCONS (elt)->cdr;
796 if (CONSP (tem) && CONSP (XCONS (tem)->car))
797 /* Delete cache for key equivalences. */
798 XCONS (elt)->cdr = XCONS (tem)->cdr;
799 }
800 }
801 else
802 {
803 /* It may be an old fomat menu item.
804 Skip the optional menu string.
805 */
806 if (STRINGP (XCONS (tem)->car))
807 {
808 /* Copy the cell, since copy-alist didn't go this deep. */
809 XCONS (elt)->cdr
810 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
811 elt = XCONS (elt)->cdr;
812 tem = XCONS (elt)->cdr;
813 /* Also skip the optional menu help string. */
814 if (CONSP (tem) && STRINGP (XCONS (tem)->car))
815 {
816 XCONS (elt)->cdr
817 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
818 elt = XCONS (elt)->cdr;
819 tem = XCONS (elt)->cdr;
820 }
821 /* There may also be a list that caches key equivalences.
822 Just delete it for the new keymap. */
823 if (CONSP (tem)
824 && CONSP (XCONS (tem)->car)
825 && (NILP (XCONS (XCONS (tem)->car)->car)
826 || VECTORP (XCONS (XCONS (tem)->car)->car)))
827 XCONS (elt)->cdr = XCONS (tem)->cdr;
828 }
829 if (CONSP (elt)
830 && ! SYMBOLP (XCONS (elt)->cdr)
831 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
832 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
833 }
834
835 }
836 }
837
838 return copy;
839 }
840 \f
841 /* Simple Keymap mutators and accessors. */
842
843 /* GC is possible in this function if it autoloads a keymap. */
844
845 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
846 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
847 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
848 meaning a sequence of keystrokes and events.\n\
849 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
850 can be included if you use a vector.\n\
851 DEF is anything that can be a key's definition:\n\
852 nil (means key is undefined in this keymap),\n\
853 a command (a Lisp function suitable for interactive calling)\n\
854 a string (treated as a keyboard macro),\n\
855 a keymap (to define a prefix key),\n\
856 a symbol. When the key is looked up, the symbol will stand for its\n\
857 function definition, which should at that time be one of the above,\n\
858 or another symbol whose function definition is used, etc.\n\
859 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
860 (DEFN should be a valid definition in its own right),\n\
861 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
862 \n\
863 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
864 the front of KEYMAP.")
865 (keymap, key, def)
866 Lisp_Object keymap;
867 Lisp_Object key;
868 Lisp_Object def;
869 {
870 register int idx;
871 register Lisp_Object c;
872 register Lisp_Object tem;
873 register Lisp_Object cmd;
874 int metized = 0;
875 int meta_bit;
876 int length;
877 struct gcpro gcpro1, gcpro2, gcpro3;
878
879 keymap = get_keymap_1 (keymap, 1, 1);
880
881 if (!VECTORP (key) && !STRINGP (key))
882 key = wrong_type_argument (Qarrayp, key);
883
884 length = XFASTINT (Flength (key));
885 if (length == 0)
886 return Qnil;
887
888 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
889 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
890
891 GCPRO3 (keymap, key, def);
892
893 if (VECTORP (key))
894 meta_bit = meta_modifier;
895 else
896 meta_bit = 0x80;
897
898 idx = 0;
899 while (1)
900 {
901 c = Faref (key, make_number (idx));
902
903 if (CONSP (c) && lucid_event_type_list_p (c))
904 c = Fevent_convert_list (c);
905
906 if (INTEGERP (c)
907 && (XINT (c) & meta_bit)
908 && !metized)
909 {
910 c = meta_prefix_char;
911 metized = 1;
912 }
913 else
914 {
915 if (INTEGERP (c))
916 XSETINT (c, XINT (c) & ~meta_bit);
917
918 metized = 0;
919 idx++;
920 }
921
922 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
923 error ("Key sequence contains invalid events");
924
925 if (idx == length)
926 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
927
928 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
929
930 /* If this key is undefined, make it a prefix. */
931 if (NILP (cmd))
932 cmd = define_as_prefix (keymap, c);
933
934 keymap = get_keymap_1 (cmd, 0, 1);
935 if (NILP (keymap))
936 /* We must use Fkey_description rather than just passing key to
937 error; key might be a vector, not a string. */
938 error ("Key sequence %s uses invalid prefix characters",
939 XSTRING (Fkey_description (key))->data);
940 }
941 }
942
943 /* Value is number if KEY is too long; NIL if valid but has no definition. */
944 /* GC is possible in this function if it autoloads a keymap. */
945
946 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
947 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
948 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
949 \n\
950 A number as value means KEY is \"too long\";\n\
951 that is, characters or symbols in it except for the last one\n\
952 fail to be a valid sequence of prefix characters in KEYMAP.\n\
953 The number is how many characters at the front of KEY\n\
954 it takes to reach a non-prefix command.\n\
955 \n\
956 Normally, `lookup-key' ignores bindings for t, which act as default\n\
957 bindings, used when nothing else in the keymap applies; this makes it\n\
958 usable as a general function for probing keymaps. However, if the\n\
959 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
960 recognize the default bindings, just as `read-key-sequence' does.")
961 (keymap, key, accept_default)
962 register Lisp_Object keymap;
963 Lisp_Object key;
964 Lisp_Object accept_default;
965 {
966 register int idx;
967 register Lisp_Object tem;
968 register Lisp_Object cmd;
969 register Lisp_Object c;
970 int metized = 0;
971 int length;
972 int t_ok = ! NILP (accept_default);
973 int meta_bit;
974 struct gcpro gcpro1;
975
976 keymap = get_keymap_1 (keymap, 1, 1);
977
978 if (!VECTORP (key) && !STRINGP (key))
979 key = wrong_type_argument (Qarrayp, key);
980
981 length = XFASTINT (Flength (key));
982 if (length == 0)
983 return keymap;
984
985 if (VECTORP (key))
986 meta_bit = meta_modifier;
987 else
988 meta_bit = 0x80;
989
990 GCPRO1 (key);
991
992 idx = 0;
993 while (1)
994 {
995 c = Faref (key, make_number (idx));
996
997 if (CONSP (c) && lucid_event_type_list_p (c))
998 c = Fevent_convert_list (c);
999
1000 if (INTEGERP (c)
1001 && (XINT (c) & meta_bit)
1002 && !metized)
1003 {
1004 c = meta_prefix_char;
1005 metized = 1;
1006 }
1007 else
1008 {
1009 if (INTEGERP (c))
1010 XSETINT (c, XINT (c) & ~meta_bit);
1011
1012 metized = 0;
1013 idx++;
1014 }
1015
1016 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1017 if (idx == length)
1018 RETURN_UNGCPRO (cmd);
1019
1020 keymap = get_keymap_1 (cmd, 0, 1);
1021 if (NILP (keymap))
1022 RETURN_UNGCPRO (make_number (idx));
1023
1024 QUIT;
1025 }
1026 }
1027
1028 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1029 Assume that currently it does not define C at all.
1030 Return the keymap. */
1031
1032 static Lisp_Object
1033 define_as_prefix (keymap, c)
1034 Lisp_Object keymap, c;
1035 {
1036 Lisp_Object inherit, cmd;
1037
1038 cmd = Fmake_sparse_keymap (Qnil);
1039 /* If this key is defined as a prefix in an inherited keymap,
1040 make it a prefix in this map, and make its definition
1041 inherit the other prefix definition. */
1042 inherit = access_keymap (keymap, c, 0, 0);
1043 #if 0
1044 /* This code is needed to do the right thing in the following case:
1045 keymap A inherits from B,
1046 you define KEY as a prefix in A,
1047 then later you define KEY as a prefix in B.
1048 We want the old prefix definition in A to inherit from that in B.
1049 It is hard to do that retroactively, so this code
1050 creates the prefix in B right away.
1051
1052 But it turns out that this code causes problems immediately
1053 when the prefix in A is defined: it causes B to define KEY
1054 as a prefix with no subcommands.
1055
1056 So I took out this code. */
1057 if (NILP (inherit))
1058 {
1059 /* If there's an inherited keymap
1060 and it doesn't define this key,
1061 make it define this key. */
1062 Lisp_Object tail;
1063
1064 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
1065 if (EQ (XCONS (tail)->car, Qkeymap))
1066 break;
1067
1068 if (!NILP (tail))
1069 inherit = define_as_prefix (tail, c);
1070 }
1071 #endif
1072
1073 cmd = nconc2 (cmd, inherit);
1074 store_in_keymap (keymap, c, cmd);
1075
1076 return cmd;
1077 }
1078
1079 /* Append a key to the end of a key sequence. We always make a vector. */
1080
1081 Lisp_Object
1082 append_key (key_sequence, key)
1083 Lisp_Object key_sequence, key;
1084 {
1085 Lisp_Object args[2];
1086
1087 args[0] = key_sequence;
1088
1089 args[1] = Fcons (key, Qnil);
1090 return Fvconcat (2, args);
1091 }
1092
1093 \f
1094 /* Global, local, and minor mode keymap stuff. */
1095
1096 /* We can't put these variables inside current_minor_maps, since under
1097 some systems, static gets macro-defined to be the empty string.
1098 Ickypoo. */
1099 static Lisp_Object *cmm_modes, *cmm_maps;
1100 static int cmm_size;
1101
1102 /* Error handler used in current_minor_maps. */
1103 static Lisp_Object
1104 current_minor_maps_error ()
1105 {
1106 return Qnil;
1107 }
1108
1109 /* Store a pointer to an array of the keymaps of the currently active
1110 minor modes in *buf, and return the number of maps it contains.
1111
1112 This function always returns a pointer to the same buffer, and may
1113 free or reallocate it, so if you want to keep it for a long time or
1114 hand it out to lisp code, copy it. This procedure will be called
1115 for every key sequence read, so the nice lispy approach (return a
1116 new assoclist, list, what have you) for each invocation would
1117 result in a lot of consing over time.
1118
1119 If we used xrealloc/xmalloc and ran out of memory, they would throw
1120 back to the command loop, which would try to read a key sequence,
1121 which would call this function again, resulting in an infinite
1122 loop. Instead, we'll use realloc/malloc and silently truncate the
1123 list, let the key sequence be read, and hope some other piece of
1124 code signals the error. */
1125 int
1126 current_minor_maps (modeptr, mapptr)
1127 Lisp_Object **modeptr, **mapptr;
1128 {
1129 int i = 0;
1130 int list_number = 0;
1131 Lisp_Object alist, assoc, var, val;
1132 Lisp_Object lists[2];
1133
1134 lists[0] = Vminor_mode_overriding_map_alist;
1135 lists[1] = Vminor_mode_map_alist;
1136
1137 for (list_number = 0; list_number < 2; list_number++)
1138 for (alist = lists[list_number];
1139 CONSP (alist);
1140 alist = XCONS (alist)->cdr)
1141 if ((assoc = XCONS (alist)->car, CONSP (assoc))
1142 && (var = XCONS (assoc)->car, SYMBOLP (var))
1143 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1144 && ! NILP (val))
1145 {
1146 Lisp_Object temp;
1147
1148 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1149 and also an entry in Vminor_mode_map_alist,
1150 ignore the latter. */
1151 if (list_number == 1)
1152 {
1153 val = assq_no_quit (var, lists[0]);
1154 if (!NILP (val))
1155 break;
1156 }
1157
1158 if (i >= cmm_size)
1159 {
1160 Lisp_Object *newmodes, *newmaps;
1161
1162 if (cmm_maps)
1163 {
1164 BLOCK_INPUT;
1165 cmm_size *= 2;
1166 newmodes
1167 = (Lisp_Object *) realloc (cmm_modes,
1168 cmm_size * sizeof (Lisp_Object));
1169 newmaps
1170 = (Lisp_Object *) realloc (cmm_maps,
1171 cmm_size * sizeof (Lisp_Object));
1172 UNBLOCK_INPUT;
1173 }
1174 else
1175 {
1176 BLOCK_INPUT;
1177 cmm_size = 30;
1178 newmodes
1179 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1180 newmaps
1181 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1182 UNBLOCK_INPUT;
1183 }
1184
1185 if (newmaps && newmodes)
1186 {
1187 cmm_modes = newmodes;
1188 cmm_maps = newmaps;
1189 }
1190 else
1191 break;
1192 }
1193
1194 /* Get the keymap definition--or nil if it is not defined. */
1195 temp = internal_condition_case_1 (Findirect_function,
1196 XCONS (assoc)->cdr,
1197 Qerror, current_minor_maps_error);
1198 if (!NILP (temp))
1199 {
1200 cmm_modes[i] = var;
1201 cmm_maps [i] = temp;
1202 i++;
1203 }
1204 }
1205
1206 if (modeptr) *modeptr = cmm_modes;
1207 if (mapptr) *mapptr = cmm_maps;
1208 return i;
1209 }
1210
1211 /* GC is possible in this function if it autoloads a keymap. */
1212
1213 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1214 "Return the binding for command KEY in current keymaps.\n\
1215 KEY is a string or vector, a sequence of keystrokes.\n\
1216 The binding is probably a symbol with a function definition.\n\
1217 \n\
1218 Normally, `key-binding' ignores bindings for t, which act as default\n\
1219 bindings, used when nothing else in the keymap applies; this makes it\n\
1220 usable as a general function for probing keymaps. However, if the\n\
1221 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1222 recognize the default bindings, just as `read-key-sequence' does.")
1223 (key, accept_default)
1224 Lisp_Object key, accept_default;
1225 {
1226 Lisp_Object *maps, value;
1227 int nmaps, i;
1228 struct gcpro gcpro1;
1229
1230 GCPRO1 (key);
1231
1232 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1233 {
1234 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1235 key, accept_default);
1236 if (! NILP (value) && !INTEGERP (value))
1237 RETURN_UNGCPRO (value);
1238 }
1239 else if (!NILP (Voverriding_local_map))
1240 {
1241 value = Flookup_key (Voverriding_local_map, key, accept_default);
1242 if (! NILP (value) && !INTEGERP (value))
1243 RETURN_UNGCPRO (value);
1244 }
1245 else
1246 {
1247 Lisp_Object local;
1248
1249 nmaps = current_minor_maps (0, &maps);
1250 /* Note that all these maps are GCPRO'd
1251 in the places where we found them. */
1252
1253 for (i = 0; i < nmaps; i++)
1254 if (! NILP (maps[i]))
1255 {
1256 value = Flookup_key (maps[i], key, accept_default);
1257 if (! NILP (value) && !INTEGERP (value))
1258 RETURN_UNGCPRO (value);
1259 }
1260
1261 local = get_local_map (PT, current_buffer);
1262
1263 if (! NILP (local))
1264 {
1265 value = Flookup_key (local, key, accept_default);
1266 if (! NILP (value) && !INTEGERP (value))
1267 RETURN_UNGCPRO (value);
1268 }
1269 }
1270
1271 value = Flookup_key (current_global_map, key, accept_default);
1272 UNGCPRO;
1273 if (! NILP (value) && !INTEGERP (value))
1274 return value;
1275
1276 return Qnil;
1277 }
1278
1279 /* GC is possible in this function if it autoloads a keymap. */
1280
1281 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1282 "Return the binding for command KEYS in current local keymap only.\n\
1283 KEYS is a string, a sequence of keystrokes.\n\
1284 The binding is probably a symbol with a function definition.\n\
1285 \n\
1286 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1287 bindings; see the description of `lookup-key' for more details about this.")
1288 (keys, accept_default)
1289 Lisp_Object keys, accept_default;
1290 {
1291 register Lisp_Object map;
1292 map = current_buffer->keymap;
1293 if (NILP (map))
1294 return Qnil;
1295 return Flookup_key (map, keys, accept_default);
1296 }
1297
1298 /* GC is possible in this function if it autoloads a keymap. */
1299
1300 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1301 "Return the binding for command KEYS in current global keymap only.\n\
1302 KEYS is a string, a sequence of keystrokes.\n\
1303 The binding is probably a symbol with a function definition.\n\
1304 This function's return values are the same as those of lookup-key\n\
1305 \(which see).\n\
1306 \n\
1307 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1308 bindings; see the description of `lookup-key' for more details about this.")
1309 (keys, accept_default)
1310 Lisp_Object keys, accept_default;
1311 {
1312 return Flookup_key (current_global_map, keys, accept_default);
1313 }
1314
1315 /* GC is possible in this function if it autoloads a keymap. */
1316
1317 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1318 "Find the visible minor mode bindings of KEY.\n\
1319 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1320 the symbol which names the minor mode binding KEY, and BINDING is\n\
1321 KEY's definition in that mode. In particular, if KEY has no\n\
1322 minor-mode bindings, return nil. If the first binding is a\n\
1323 non-prefix, all subsequent bindings will be omitted, since they would\n\
1324 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1325 that come after prefix bindings.\n\
1326 \n\
1327 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1328 bindings; see the description of `lookup-key' for more details about this.")
1329 (key, accept_default)
1330 Lisp_Object key, accept_default;
1331 {
1332 Lisp_Object *modes, *maps;
1333 int nmaps;
1334 Lisp_Object binding;
1335 int i, j;
1336 struct gcpro gcpro1, gcpro2;
1337
1338 nmaps = current_minor_maps (&modes, &maps);
1339 /* Note that all these maps are GCPRO'd
1340 in the places where we found them. */
1341
1342 binding = Qnil;
1343 GCPRO2 (key, binding);
1344
1345 for (i = j = 0; i < nmaps; i++)
1346 if (! NILP (maps[i])
1347 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1348 && !INTEGERP (binding))
1349 {
1350 if (! NILP (get_keymap (binding)))
1351 maps[j++] = Fcons (modes[i], binding);
1352 else if (j == 0)
1353 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1354 }
1355
1356 UNGCPRO;
1357 return Flist (j, maps);
1358 }
1359
1360 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1361 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1362 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1363 If a second optional argument MAPVAR is given, the map is stored as\n\
1364 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1365 as a function.\n\
1366 The third optional argument NAME, if given, supplies a menu name\n\
1367 string for the map. This is required to use the keymap as a menu.")
1368 (command, mapvar, name)
1369 Lisp_Object command, mapvar, name;
1370 {
1371 Lisp_Object map;
1372 map = Fmake_sparse_keymap (name);
1373 Ffset (command, map);
1374 if (!NILP (mapvar))
1375 Fset (mapvar, map);
1376 else
1377 Fset (command, map);
1378 return command;
1379 }
1380
1381 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1382 "Select KEYMAP as the global keymap.")
1383 (keymap)
1384 Lisp_Object keymap;
1385 {
1386 keymap = get_keymap (keymap);
1387 current_global_map = keymap;
1388
1389 return Qnil;
1390 }
1391
1392 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1393 "Select KEYMAP as the local keymap.\n\
1394 If KEYMAP is nil, that means no local keymap.")
1395 (keymap)
1396 Lisp_Object keymap;
1397 {
1398 if (!NILP (keymap))
1399 keymap = get_keymap (keymap);
1400
1401 current_buffer->keymap = keymap;
1402
1403 return Qnil;
1404 }
1405
1406 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1407 "Return current buffer's local keymap, or nil if it has none.")
1408 ()
1409 {
1410 return current_buffer->keymap;
1411 }
1412
1413 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1414 "Return the current global keymap.")
1415 ()
1416 {
1417 return current_global_map;
1418 }
1419
1420 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1421 "Return a list of keymaps for the minor modes of the current buffer.")
1422 ()
1423 {
1424 Lisp_Object *maps;
1425 int nmaps = current_minor_maps (0, &maps);
1426
1427 return Flist (nmaps, maps);
1428 }
1429 \f
1430 /* Help functions for describing and documenting keymaps. */
1431
1432 static void accessible_keymaps_char_table ();
1433
1434 /* This function cannot GC. */
1435
1436 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1437 1, 2, 0,
1438 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1439 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1440 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1441 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1442 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1443 then the value includes only maps for prefixes that start with PREFIX.")
1444 (keymap, prefix)
1445 Lisp_Object keymap, prefix;
1446 {
1447 Lisp_Object maps, good_maps, tail;
1448 int prefixlen = 0;
1449
1450 /* no need for gcpro because we don't autoload any keymaps. */
1451
1452 if (!NILP (prefix))
1453 prefixlen = XINT (Flength (prefix));
1454
1455 if (!NILP (prefix))
1456 {
1457 /* If a prefix was specified, start with the keymap (if any) for
1458 that prefix, so we don't waste time considering other prefixes. */
1459 Lisp_Object tem;
1460 tem = Flookup_key (keymap, prefix, Qt);
1461 /* Flookup_key may give us nil, or a number,
1462 if the prefix is not defined in this particular map.
1463 It might even give us a list that isn't a keymap. */
1464 tem = get_keymap_1 (tem, 0, 0);
1465 if (!NILP (tem))
1466 {
1467 /* Convert PREFIX to a vector now, so that later on
1468 we don't have to deal with the possibility of a string. */
1469 if (STRINGP (prefix))
1470 {
1471 int i, i_byte, c;
1472 Lisp_Object copy;
1473
1474 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1475 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1476 {
1477 int i_before = i;
1478 if (STRING_MULTIBYTE (prefix))
1479 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1480 else
1481 {
1482 c = XSTRING (prefix)->data[i++];
1483 if (c & 0200)
1484 c ^= 0200 | meta_modifier;
1485 }
1486 XVECTOR (copy)->contents[i_before] = make_number (c);
1487 }
1488 prefix = copy;
1489 }
1490 maps = Fcons (Fcons (prefix, tem), Qnil);
1491 }
1492 else
1493 return Qnil;
1494 }
1495 else
1496 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1497 get_keymap (keymap)),
1498 Qnil);
1499
1500 /* For each map in the list maps,
1501 look at any other maps it points to,
1502 and stick them at the end if they are not already in the list.
1503
1504 This is a breadth-first traversal, where tail is the queue of
1505 nodes, and maps accumulates a list of all nodes visited. */
1506
1507 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1508 {
1509 register Lisp_Object thisseq, thismap;
1510 Lisp_Object last;
1511 /* Does the current sequence end in the meta-prefix-char? */
1512 int is_metized;
1513
1514 thisseq = Fcar (Fcar (tail));
1515 thismap = Fcdr (Fcar (tail));
1516 last = make_number (XINT (Flength (thisseq)) - 1);
1517 is_metized = (XINT (last) >= 0
1518 /* Don't metize the last char of PREFIX. */
1519 && XINT (last) >= prefixlen
1520 && EQ (Faref (thisseq, last), meta_prefix_char));
1521
1522 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1523 {
1524 Lisp_Object elt;
1525
1526 elt = XCONS (thismap)->car;
1527
1528 QUIT;
1529
1530 if (CHAR_TABLE_P (elt))
1531 {
1532 Lisp_Object indices[3];
1533
1534 map_char_table (accessible_keymaps_char_table, Qnil,
1535 elt, Fcons (maps, Fcons (tail, thisseq)),
1536 0, indices);
1537 }
1538 else if (VECTORP (elt))
1539 {
1540 register int i;
1541
1542 /* Vector keymap. Scan all the elements. */
1543 for (i = 0; i < XVECTOR (elt)->size; i++)
1544 {
1545 register Lisp_Object tem;
1546 register Lisp_Object cmd;
1547
1548 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1549 if (NILP (cmd)) continue;
1550 tem = Fkeymapp (cmd);
1551 if (!NILP (tem))
1552 {
1553 cmd = get_keymap (cmd);
1554 /* Ignore keymaps that are already added to maps. */
1555 tem = Frassq (cmd, maps);
1556 if (NILP (tem))
1557 {
1558 /* If the last key in thisseq is meta-prefix-char,
1559 turn it into a meta-ized keystroke. We know
1560 that the event we're about to append is an
1561 ascii keystroke since we're processing a
1562 keymap table. */
1563 if (is_metized)
1564 {
1565 int meta_bit = meta_modifier;
1566 tem = Fcopy_sequence (thisseq);
1567
1568 Faset (tem, last, make_number (i | meta_bit));
1569
1570 /* This new sequence is the same length as
1571 thisseq, so stick it in the list right
1572 after this one. */
1573 XCONS (tail)->cdr
1574 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1575 }
1576 else
1577 {
1578 tem = append_key (thisseq, make_number (i));
1579 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1580 }
1581 }
1582 }
1583 }
1584 }
1585 else if (CONSP (elt))
1586 {
1587 register Lisp_Object cmd, tem, filter;
1588
1589 cmd = get_keyelt (XCONS (elt)->cdr, 0);
1590 /* Ignore definitions that aren't keymaps themselves. */
1591 tem = Fkeymapp (cmd);
1592 if (!NILP (tem))
1593 {
1594 /* Ignore keymaps that have been seen already. */
1595 cmd = get_keymap (cmd);
1596 tem = Frassq (cmd, maps);
1597 if (NILP (tem))
1598 {
1599 /* Let elt be the event defined by this map entry. */
1600 elt = XCONS (elt)->car;
1601
1602 /* If the last key in thisseq is meta-prefix-char, and
1603 this entry is a binding for an ascii keystroke,
1604 turn it into a meta-ized keystroke. */
1605 if (is_metized && INTEGERP (elt))
1606 {
1607 Lisp_Object element;
1608
1609 element = thisseq;
1610 tem = Fvconcat (1, &element);
1611 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1612 XINT (elt) | meta_modifier);
1613
1614 /* This new sequence is the same length as
1615 thisseq, so stick it in the list right
1616 after this one. */
1617 XCONS (tail)->cdr
1618 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1619 }
1620 else
1621 nconc2 (tail,
1622 Fcons (Fcons (append_key (thisseq, elt), cmd),
1623 Qnil));
1624 }
1625 }
1626 }
1627 }
1628 }
1629
1630 if (NILP (prefix))
1631 return maps;
1632
1633 /* Now find just the maps whose access prefixes start with PREFIX. */
1634
1635 good_maps = Qnil;
1636 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1637 {
1638 Lisp_Object elt, thisseq;
1639 elt = XCONS (maps)->car;
1640 thisseq = XCONS (elt)->car;
1641 /* The access prefix must be at least as long as PREFIX,
1642 and the first elements must match those of PREFIX. */
1643 if (XINT (Flength (thisseq)) >= prefixlen)
1644 {
1645 int i;
1646 for (i = 0; i < prefixlen; i++)
1647 {
1648 Lisp_Object i1;
1649 XSETFASTINT (i1, i);
1650 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1651 break;
1652 }
1653 if (i == prefixlen)
1654 good_maps = Fcons (elt, good_maps);
1655 }
1656 }
1657
1658 return Fnreverse (good_maps);
1659 }
1660
1661 static void
1662 accessible_keymaps_char_table (args, index, cmd)
1663 Lisp_Object args, index, cmd;
1664 {
1665 Lisp_Object tem;
1666 Lisp_Object maps, tail, thisseq;
1667
1668 if (NILP (cmd))
1669 return;
1670
1671 maps = XCONS (args)->car;
1672 tail = XCONS (XCONS (args)->cdr)->car;
1673 thisseq = XCONS (XCONS (args)->cdr)->cdr;
1674
1675 tem = Fkeymapp (cmd);
1676 if (!NILP (tem))
1677 {
1678 cmd = get_keymap (cmd);
1679 /* Ignore keymaps that are already added to maps. */
1680 tem = Frassq (cmd, maps);
1681 if (NILP (tem))
1682 {
1683 tem = append_key (thisseq, index);
1684 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1685 }
1686 }
1687 }
1688 \f
1689 Lisp_Object Qsingle_key_description, Qkey_description;
1690
1691 /* This function cannot GC. */
1692
1693 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1694 "Return a pretty description of key-sequence KEYS.\n\
1695 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1696 spaces are put between sequence elements, etc.")
1697 (keys)
1698 Lisp_Object keys;
1699 {
1700 int len;
1701 int i, i_byte;
1702 Lisp_Object sep;
1703 Lisp_Object *args;
1704
1705 if (STRINGP (keys))
1706 {
1707 Lisp_Object vector;
1708 vector = Fmake_vector (Flength (keys), Qnil);
1709 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1710 {
1711 int c;
1712 int i_before = i;
1713
1714 if (STRING_MULTIBYTE (keys))
1715 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1716 else
1717 {
1718 c = XSTRING (keys)->data[i++];
1719 if (c & 0200)
1720 c ^= 0200 | meta_modifier;
1721 }
1722
1723 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1724 }
1725 keys = vector;
1726 }
1727
1728 if (VECTORP (keys))
1729 {
1730 /* In effect, this computes
1731 (mapconcat 'single-key-description keys " ")
1732 but we shouldn't use mapconcat because it can do GC. */
1733
1734 len = XVECTOR (keys)->size;
1735 sep = build_string (" ");
1736 /* This has one extra element at the end that we don't pass to Fconcat. */
1737 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1738
1739 for (i = 0; i < len; i++)
1740 {
1741 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1742 args[i * 2 + 1] = sep;
1743 }
1744 }
1745 else if (CONSP (keys))
1746 {
1747 /* In effect, this computes
1748 (mapconcat 'single-key-description keys " ")
1749 but we shouldn't use mapconcat because it can do GC. */
1750
1751 len = XFASTINT (Flength (keys));
1752 sep = build_string (" ");
1753 /* This has one extra element at the end that we don't pass to Fconcat. */
1754 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1755
1756 for (i = 0; i < len; i++)
1757 {
1758 args[i * 2] = Fsingle_key_description (XCONS (keys)->car);
1759 args[i * 2 + 1] = sep;
1760 keys = XCONS (keys)->cdr;
1761 }
1762 }
1763 else
1764 keys = wrong_type_argument (Qarrayp, keys);
1765
1766 return Fconcat (len * 2 - 1, args);
1767 }
1768
1769 char *
1770 push_key_description (c, p)
1771 register unsigned int c;
1772 register char *p;
1773 {
1774 /* Clear all the meaningless bits above the meta bit. */
1775 c &= meta_modifier | ~ - meta_modifier;
1776
1777 if (c & alt_modifier)
1778 {
1779 *p++ = 'A';
1780 *p++ = '-';
1781 c -= alt_modifier;
1782 }
1783 if (c & ctrl_modifier)
1784 {
1785 *p++ = 'C';
1786 *p++ = '-';
1787 c -= ctrl_modifier;
1788 }
1789 if (c & hyper_modifier)
1790 {
1791 *p++ = 'H';
1792 *p++ = '-';
1793 c -= hyper_modifier;
1794 }
1795 if (c & meta_modifier)
1796 {
1797 *p++ = 'M';
1798 *p++ = '-';
1799 c -= meta_modifier;
1800 }
1801 if (c & shift_modifier)
1802 {
1803 *p++ = 'S';
1804 *p++ = '-';
1805 c -= shift_modifier;
1806 }
1807 if (c & super_modifier)
1808 {
1809 *p++ = 's';
1810 *p++ = '-';
1811 c -= super_modifier;
1812 }
1813 if (c < 040)
1814 {
1815 if (c == 033)
1816 {
1817 *p++ = 'E';
1818 *p++ = 'S';
1819 *p++ = 'C';
1820 }
1821 else if (c == '\t')
1822 {
1823 *p++ = 'T';
1824 *p++ = 'A';
1825 *p++ = 'B';
1826 }
1827 else if (c == Ctl ('M'))
1828 {
1829 *p++ = 'R';
1830 *p++ = 'E';
1831 *p++ = 'T';
1832 }
1833 else
1834 {
1835 *p++ = 'C';
1836 *p++ = '-';
1837 if (c > 0 && c <= Ctl ('Z'))
1838 *p++ = c + 0140;
1839 else
1840 *p++ = c + 0100;
1841 }
1842 }
1843 else if (c == 0177)
1844 {
1845 *p++ = 'D';
1846 *p++ = 'E';
1847 *p++ = 'L';
1848 }
1849 else if (c == ' ')
1850 {
1851 *p++ = 'S';
1852 *p++ = 'P';
1853 *p++ = 'C';
1854 }
1855 else if (c < 128
1856 || (NILP (current_buffer->enable_multibyte_characters)
1857 && SINGLE_BYTE_CHAR_P (c)))
1858 *p++ = c;
1859 else
1860 {
1861 if (! NILP (current_buffer->enable_multibyte_characters))
1862 c = unibyte_char_to_multibyte (c);
1863
1864 if (NILP (current_buffer->enable_multibyte_characters)
1865 || SINGLE_BYTE_CHAR_P (c)
1866 || ! char_valid_p (c, 0))
1867 {
1868 int bit_offset;
1869 *p++ = '\\';
1870 /* The biggest character code uses 19 bits. */
1871 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1872 {
1873 if (c >= (1 << bit_offset))
1874 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1875 }
1876 }
1877 else
1878 {
1879 unsigned char work[4], *str;
1880 int i = CHAR_STRING (c, work, str);
1881 bcopy (str, p, i);
1882 p += i;
1883 }
1884 }
1885
1886 return p;
1887 }
1888
1889 /* This function cannot GC. */
1890
1891 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1892 "Return a pretty description of command character KEY.\n\
1893 Control characters turn into C-whatever, etc.")
1894 (key)
1895 Lisp_Object key;
1896 {
1897 if (CONSP (key) && lucid_event_type_list_p (key))
1898 key = Fevent_convert_list (key);
1899
1900 key = EVENT_HEAD (key);
1901
1902 if (INTEGERP (key)) /* Normal character */
1903 {
1904 unsigned int charset, c1, c2;
1905 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1906
1907 if (SINGLE_BYTE_CHAR_P (without_bits))
1908 charset = 0;
1909 else
1910 SPLIT_NON_ASCII_CHAR (without_bits, charset, c1, c2);
1911
1912 if (charset
1913 && CHARSET_DEFINED_P (charset)
1914 && ((c1 >= 0 && c1 < 32)
1915 || (c2 >= 0 && c2 < 32)))
1916 {
1917 /* Handle a generic character. */
1918 Lisp_Object name;
1919 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1920 CHECK_STRING (name, 0);
1921 return concat2 (build_string ("Character set "), name);
1922 }
1923 else
1924 {
1925 char tem[20];
1926
1927 *push_key_description (XUINT (key), tem) = 0;
1928 return build_string (tem);
1929 }
1930 }
1931 else if (SYMBOLP (key)) /* Function key or event-symbol */
1932 return Fsymbol_name (key);
1933 else if (STRINGP (key)) /* Buffer names in the menubar. */
1934 return Fcopy_sequence (key);
1935 else
1936 error ("KEY must be an integer, cons, symbol, or string");
1937 }
1938
1939 char *
1940 push_text_char_description (c, p)
1941 register unsigned int c;
1942 register char *p;
1943 {
1944 if (c >= 0200)
1945 {
1946 *p++ = 'M';
1947 *p++ = '-';
1948 c -= 0200;
1949 }
1950 if (c < 040)
1951 {
1952 *p++ = '^';
1953 *p++ = c + 64; /* 'A' - 1 */
1954 }
1955 else if (c == 0177)
1956 {
1957 *p++ = '^';
1958 *p++ = '?';
1959 }
1960 else
1961 *p++ = c;
1962 return p;
1963 }
1964
1965 /* This function cannot GC. */
1966
1967 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1968 "Return a pretty description of file-character CHARACTER.\n\
1969 Control characters turn into \"^char\", etc.")
1970 (character)
1971 Lisp_Object character;
1972 {
1973 char tem[6];
1974
1975 CHECK_NUMBER (character, 0);
1976
1977 if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
1978 {
1979 unsigned char *str;
1980 int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
1981
1982 return make_multibyte_string (str, 1, len);
1983 }
1984
1985 *push_text_char_description (XINT (character) & 0377, tem) = 0;
1986
1987 return build_string (tem);
1988 }
1989
1990 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1991 a meta bit. */
1992 static int
1993 ascii_sequence_p (seq)
1994 Lisp_Object seq;
1995 {
1996 int i;
1997 int len = XINT (Flength (seq));
1998
1999 for (i = 0; i < len; i++)
2000 {
2001 Lisp_Object ii, elt;
2002
2003 XSETFASTINT (ii, i);
2004 elt = Faref (seq, ii);
2005
2006 if (!INTEGERP (elt)
2007 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2008 return 0;
2009 }
2010
2011 return 1;
2012 }
2013
2014 \f
2015 /* where-is - finding a command in a set of keymaps. */
2016
2017 static Lisp_Object where_is_internal_1 ();
2018 static void where_is_internal_2 ();
2019
2020 /* This function can GC if Flookup_key autoloads any keymaps. */
2021
2022 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2023 "Return list of keys that invoke DEFINITION.\n\
2024 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2025 If KEYMAP is nil, search all the currently active keymaps.\n\
2026 \n\
2027 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2028 rather than a list of all possible key sequences.\n\
2029 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2030 no matter what it is.\n\
2031 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2032 and entirely reject menu bindings.\n\
2033 \n\
2034 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2035 to other keymaps or slots. This makes it possible to search for an\n\
2036 indirect definition itself.")
2037 (definition, keymap, firstonly, noindirect)
2038 Lisp_Object definition, keymap;
2039 Lisp_Object firstonly, noindirect;
2040 {
2041 Lisp_Object maps;
2042 Lisp_Object found, sequences;
2043 Lisp_Object keymap1;
2044 int keymap_specified = !NILP (keymap);
2045 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2046 /* 1 means ignore all menu bindings entirely. */
2047 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2048
2049 /* Find keymaps accessible from `keymap' or the current
2050 context. But don't muck with the value of `keymap',
2051 because `where_is_internal_1' uses it to check for
2052 shadowed bindings. */
2053 keymap1 = keymap;
2054 if (! keymap_specified)
2055 {
2056 #ifdef USE_TEXT_PROPERTIES
2057 keymap1 = get_local_map (PT, current_buffer);
2058 #else
2059 keymap1 = current_buffer->keymap;
2060 #endif
2061 }
2062
2063 if (!NILP (keymap1))
2064 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2065 Faccessible_keymaps (get_keymap (current_global_map),
2066 Qnil));
2067 else
2068 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2069
2070 /* Put the minor mode keymaps on the front. */
2071 if (! keymap_specified)
2072 {
2073 Lisp_Object minors;
2074 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2075 while (!NILP (minors))
2076 {
2077 maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
2078 Qnil),
2079 maps);
2080 minors = XCONS (minors)->cdr;
2081 }
2082 }
2083
2084 GCPRO5 (definition, keymap, maps, found, sequences);
2085 found = Qnil;
2086 sequences = Qnil;
2087
2088 for (; !NILP (maps); maps = Fcdr (maps))
2089 {
2090 /* Key sequence to reach map, and the map that it reaches */
2091 register Lisp_Object this, map;
2092
2093 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2094 [M-CHAR] sequences, check if last character of the sequence
2095 is the meta-prefix char. */
2096 Lisp_Object last;
2097 int last_is_meta;
2098
2099 this = Fcar (Fcar (maps));
2100 map = Fcdr (Fcar (maps));
2101 last = make_number (XINT (Flength (this)) - 1);
2102 last_is_meta = (XINT (last) >= 0
2103 && EQ (Faref (this, last), meta_prefix_char));
2104
2105 QUIT;
2106
2107 while (CONSP (map))
2108 {
2109 /* Because the code we want to run on each binding is rather
2110 large, we don't want to have two separate loop bodies for
2111 sparse keymap bindings and tables; we want to iterate one
2112 loop body over both keymap and vector bindings.
2113
2114 For this reason, if Fcar (map) is a vector, we don't
2115 advance map to the next element until i indicates that we
2116 have finished off the vector. */
2117 Lisp_Object elt, key, binding;
2118 elt = XCONS (map)->car;
2119 map = XCONS (map)->cdr;
2120
2121 sequences = Qnil;
2122
2123 QUIT;
2124
2125 /* Set key and binding to the current key and binding, and
2126 advance map and i to the next binding. */
2127 if (VECTORP (elt))
2128 {
2129 Lisp_Object sequence;
2130 int i;
2131 /* In a vector, look at each element. */
2132 for (i = 0; i < XVECTOR (elt)->size; i++)
2133 {
2134 binding = XVECTOR (elt)->contents[i];
2135 XSETFASTINT (key, i);
2136 sequence = where_is_internal_1 (binding, key, definition,
2137 noindirect, keymap, this,
2138 last, nomenus, last_is_meta);
2139 if (!NILP (sequence))
2140 sequences = Fcons (sequence, sequences);
2141 }
2142 }
2143 else if (CHAR_TABLE_P (elt))
2144 {
2145 Lisp_Object indices[3];
2146 Lisp_Object args;
2147
2148 args = Fcons (Fcons (Fcons (definition, noindirect),
2149 Fcons (keymap, Qnil)),
2150 Fcons (Fcons (this, last),
2151 Fcons (make_number (nomenus),
2152 make_number (last_is_meta))));
2153
2154 map_char_table (where_is_internal_2, Qnil, elt, args,
2155 0, indices);
2156 sequences = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2157 }
2158 else if (CONSP (elt))
2159 {
2160 Lisp_Object sequence;
2161
2162 key = XCONS (elt)->car;
2163 binding = XCONS (elt)->cdr;
2164
2165 sequence = where_is_internal_1 (binding, key, definition,
2166 noindirect, keymap, this,
2167 last, nomenus, last_is_meta);
2168 if (!NILP (sequence))
2169 sequences = Fcons (sequence, sequences);
2170 }
2171
2172
2173 for (; ! NILP (sequences); sequences = XCONS (sequences)->cdr)
2174 {
2175 Lisp_Object sequence;
2176
2177 sequence = XCONS (sequences)->car;
2178
2179 /* It is a true unshadowed match. Record it, unless it's already
2180 been seen (as could happen when inheriting keymaps). */
2181 if (NILP (Fmember (sequence, found)))
2182 found = Fcons (sequence, found);
2183
2184 /* If firstonly is Qnon_ascii, then we can return the first
2185 binding we find. If firstonly is not Qnon_ascii but not
2186 nil, then we should return the first ascii-only binding
2187 we find. */
2188 if (EQ (firstonly, Qnon_ascii))
2189 RETURN_UNGCPRO (sequence);
2190 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2191 RETURN_UNGCPRO (sequence);
2192 }
2193 }
2194 }
2195
2196 UNGCPRO;
2197
2198 found = Fnreverse (found);
2199
2200 /* firstonly may have been t, but we may have gone all the way through
2201 the keymaps without finding an all-ASCII key sequence. So just
2202 return the best we could find. */
2203 if (! NILP (firstonly))
2204 return Fcar (found);
2205
2206 return found;
2207 }
2208
2209 /* This is the function that Fwhere_is_internal calls using map_char_table.
2210 ARGS has the form
2211 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2212 .
2213 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2214 Since map_char_table doesn't really use the return value from this function,
2215 we the result append to RESULT, the slot in ARGS. */
2216
2217 static void
2218 where_is_internal_2 (args, key, binding)
2219 Lisp_Object args, key, binding;
2220 {
2221 Lisp_Object definition, noindirect, keymap, this, last;
2222 Lisp_Object result, sequence;
2223 int nomenus, last_is_meta;
2224
2225 result = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2226 definition = XCONS (XCONS (XCONS (args)->car)->car)->car;
2227 noindirect = XCONS (XCONS (XCONS (args)->car)->car)->cdr;
2228 keymap = XCONS (XCONS (XCONS (args)->car)->cdr)->car;
2229 this = XCONS (XCONS (XCONS (args)->cdr)->car)->car;
2230 last = XCONS (XCONS (XCONS (args)->cdr)->car)->cdr;
2231 nomenus = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->car);
2232 last_is_meta = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->cdr);
2233
2234 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2235 this, last, nomenus, last_is_meta);
2236
2237 if (!NILP (sequence))
2238 XCONS (XCONS (XCONS (args)->car)->cdr)->cdr
2239 = Fcons (sequence, result);
2240 }
2241
2242 static Lisp_Object
2243 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2244 nomenus, last_is_meta)
2245 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2246 int nomenus, last_is_meta;
2247 {
2248 Lisp_Object sequence;
2249 int keymap_specified = !NILP (keymap);
2250
2251 /* Search through indirections unless that's not wanted. */
2252 if (NILP (noindirect))
2253 {
2254 if (nomenus)
2255 {
2256 while (1)
2257 {
2258 Lisp_Object map, tem;
2259 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2260 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2261 tem = Fkeymapp (map);
2262 if (!NILP (tem))
2263 definition = access_keymap (map, Fcdr (definition), 0, 0);
2264 else
2265 break;
2266 }
2267 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2268 if (CONSP (definition)
2269 && (EQ (XCONS (definition)->car,Qmenu_item)
2270 || STRINGP (XCONS (definition)->car)))
2271 return Qnil;
2272 }
2273 else
2274 binding = get_keyelt (binding, 0);
2275 }
2276
2277 /* End this iteration if this element does not match
2278 the target. */
2279
2280 if (CONSP (definition))
2281 {
2282 Lisp_Object tem;
2283 tem = Fequal (binding, definition);
2284 if (NILP (tem))
2285 return Qnil;
2286 }
2287 else
2288 if (!EQ (binding, definition))
2289 return Qnil;
2290
2291 /* We have found a match.
2292 Construct the key sequence where we found it. */
2293 if (INTEGERP (key) && last_is_meta)
2294 {
2295 sequence = Fcopy_sequence (this);
2296 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2297 }
2298 else
2299 sequence = append_key (this, key);
2300
2301 /* Verify that this key binding is not shadowed by another
2302 binding for the same key, before we say it exists.
2303
2304 Mechanism: look for local definition of this key and if
2305 it is defined and does not match what we found then
2306 ignore this key.
2307
2308 Either nil or number as value from Flookup_key
2309 means undefined. */
2310 if (keymap_specified)
2311 {
2312 binding = Flookup_key (keymap, sequence, Qnil);
2313 if (!NILP (binding) && !INTEGERP (binding))
2314 {
2315 if (CONSP (definition))
2316 {
2317 Lisp_Object tem;
2318 tem = Fequal (binding, definition);
2319 if (NILP (tem))
2320 return Qnil;
2321 }
2322 else
2323 if (!EQ (binding, definition))
2324 return Qnil;
2325 }
2326 }
2327 else
2328 {
2329 binding = Fkey_binding (sequence, Qnil);
2330 if (!EQ (binding, definition))
2331 return Qnil;
2332 }
2333
2334 return sequence;
2335 }
2336 \f
2337 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2338
2339 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2340 "Show a list of all defined keys, and their definitions.\n\
2341 We put that list in a buffer, and display the buffer.\n\
2342 \n\
2343 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2344 \(Ordinarily these are omitted from the output.)\n\
2345 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2346 then we display only bindings that start with that prefix.")
2347 (menus, prefix)
2348 Lisp_Object menus, prefix;
2349 {
2350 register Lisp_Object thisbuf;
2351 XSETBUFFER (thisbuf, current_buffer);
2352 internal_with_output_to_temp_buffer ("*Help*",
2353 describe_buffer_bindings,
2354 list3 (thisbuf, prefix, menus));
2355 return Qnil;
2356 }
2357
2358 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2359
2360 static Lisp_Object
2361 describe_buffer_bindings (arg)
2362 Lisp_Object arg;
2363 {
2364 Lisp_Object descbuf, prefix, shadow;
2365 int nomenu;
2366 register Lisp_Object start1;
2367 struct gcpro gcpro1;
2368
2369 char *alternate_heading
2370 = "\
2371 Keyboard translations:\n\n\
2372 You type Translation\n\
2373 -------- -----------\n";
2374
2375 descbuf = XCONS (arg)->car;
2376 arg = XCONS (arg)->cdr;
2377 prefix = XCONS (arg)->car;
2378 arg = XCONS (arg)->cdr;
2379 nomenu = NILP (XCONS (arg)->car);
2380
2381 shadow = Qnil;
2382 GCPRO1 (shadow);
2383
2384 Fset_buffer (Vstandard_output);
2385
2386 /* Report on alternates for keys. */
2387 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2388 {
2389 int c;
2390 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2391 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2392
2393 for (c = 0; c < translate_len; c++)
2394 if (translate[c] != c)
2395 {
2396 char buf[20];
2397 char *bufend;
2398
2399 if (alternate_heading)
2400 {
2401 insert_string (alternate_heading);
2402 alternate_heading = 0;
2403 }
2404
2405 bufend = push_key_description (translate[c], buf);
2406 insert (buf, bufend - buf);
2407 Findent_to (make_number (16), make_number (1));
2408 bufend = push_key_description (c, buf);
2409 insert (buf, bufend - buf);
2410
2411 insert ("\n", 1);
2412 }
2413
2414 insert ("\n", 1);
2415 }
2416
2417 if (!NILP (Vkey_translation_map))
2418 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2419 "Key translations", nomenu, 1, 0);
2420
2421 {
2422 int i, nmaps;
2423 Lisp_Object *modes, *maps;
2424
2425 /* Temporarily switch to descbuf, so that we can get that buffer's
2426 minor modes correctly. */
2427 Fset_buffer (descbuf);
2428
2429 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2430 || !NILP (Voverriding_local_map))
2431 nmaps = 0;
2432 else
2433 nmaps = current_minor_maps (&modes, &maps);
2434 Fset_buffer (Vstandard_output);
2435
2436 /* Print the minor mode maps. */
2437 for (i = 0; i < nmaps; i++)
2438 {
2439 /* The title for a minor mode keymap
2440 is constructed at run time.
2441 We let describe_map_tree do the actual insertion
2442 because it takes care of other features when doing so. */
2443 char *title, *p;
2444
2445 if (!SYMBOLP (modes[i]))
2446 abort();
2447
2448 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2449 *p++ = '`';
2450 bcopy (XSYMBOL (modes[i])->name->data, p,
2451 XSYMBOL (modes[i])->name->size);
2452 p += XSYMBOL (modes[i])->name->size;
2453 *p++ = '\'';
2454 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2455 p += sizeof (" Minor Mode Bindings") - 1;
2456 *p = 0;
2457
2458 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2459 shadow = Fcons (maps[i], shadow);
2460 }
2461 }
2462
2463 /* Print the (major mode) local map. */
2464 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2465 start1 = current_kboard->Voverriding_terminal_local_map;
2466 else if (!NILP (Voverriding_local_map))
2467 start1 = Voverriding_local_map;
2468 else
2469 start1 = XBUFFER (descbuf)->keymap;
2470
2471 if (!NILP (start1))
2472 {
2473 describe_map_tree (start1, 1, shadow, prefix,
2474 "Major Mode Bindings", nomenu, 0, 0);
2475 shadow = Fcons (start1, shadow);
2476 }
2477
2478 describe_map_tree (current_global_map, 1, shadow, prefix,
2479 "Global Bindings", nomenu, 0, 1);
2480
2481 /* Print the function-key-map translations under this prefix. */
2482 if (!NILP (Vfunction_key_map))
2483 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2484 "Function key map translations", nomenu, 1, 0);
2485
2486 call0 (intern ("help-mode"));
2487 Fset_buffer (descbuf);
2488 UNGCPRO;
2489 return Qnil;
2490 }
2491
2492 /* Insert a description of the key bindings in STARTMAP,
2493 followed by those of all maps reachable through STARTMAP.
2494 If PARTIAL is nonzero, omit certain "uninteresting" commands
2495 (such as `undefined').
2496 If SHADOW is non-nil, it is a list of maps;
2497 don't mention keys which would be shadowed by any of them.
2498 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2499 TITLE, if not 0, is a string to insert at the beginning.
2500 TITLE should not end with a colon or a newline; we supply that.
2501 If NOMENU is not 0, then omit menu-bar commands.
2502
2503 If TRANSL is nonzero, the definitions are actually key translations
2504 so print strings and vectors differently.
2505
2506 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2507 to look through. */
2508
2509 void
2510 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2511 always_title)
2512 Lisp_Object startmap, shadow, prefix;
2513 int partial;
2514 char *title;
2515 int nomenu;
2516 int transl;
2517 int always_title;
2518 {
2519 Lisp_Object maps, orig_maps, seen, sub_shadows;
2520 struct gcpro gcpro1, gcpro2, gcpro3;
2521 int something = 0;
2522 char *key_heading
2523 = "\
2524 key binding\n\
2525 --- -------\n";
2526
2527 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2528 seen = Qnil;
2529 sub_shadows = Qnil;
2530 GCPRO3 (maps, seen, sub_shadows);
2531
2532 if (nomenu)
2533 {
2534 Lisp_Object list;
2535
2536 /* Delete from MAPS each element that is for the menu bar. */
2537 for (list = maps; !NILP (list); list = XCONS (list)->cdr)
2538 {
2539 Lisp_Object elt, prefix, tem;
2540
2541 elt = Fcar (list);
2542 prefix = Fcar (elt);
2543 if (XVECTOR (prefix)->size >= 1)
2544 {
2545 tem = Faref (prefix, make_number (0));
2546 if (EQ (tem, Qmenu_bar))
2547 maps = Fdelq (elt, maps);
2548 }
2549 }
2550 }
2551
2552 if (!NILP (maps) || always_title)
2553 {
2554 if (title)
2555 {
2556 insert_string (title);
2557 if (!NILP (prefix))
2558 {
2559 insert_string (" Starting With ");
2560 insert1 (Fkey_description (prefix));
2561 }
2562 insert_string (":\n");
2563 }
2564 insert_string (key_heading);
2565 something = 1;
2566 }
2567
2568 for (; !NILP (maps); maps = Fcdr (maps))
2569 {
2570 register Lisp_Object elt, prefix, tail;
2571
2572 elt = Fcar (maps);
2573 prefix = Fcar (elt);
2574
2575 sub_shadows = Qnil;
2576
2577 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2578 {
2579 Lisp_Object shmap;
2580
2581 shmap = XCONS (tail)->car;
2582
2583 /* If the sequence by which we reach this keymap is zero-length,
2584 then the shadow map for this keymap is just SHADOW. */
2585 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2586 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2587 ;
2588 /* If the sequence by which we reach this keymap actually has
2589 some elements, then the sequence's definition in SHADOW is
2590 what we should use. */
2591 else
2592 {
2593 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2594 if (INTEGERP (shmap))
2595 shmap = Qnil;
2596 }
2597
2598 /* If shmap is not nil and not a keymap,
2599 it completely shadows this map, so don't
2600 describe this map at all. */
2601 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2602 goto skip;
2603
2604 if (!NILP (shmap))
2605 sub_shadows = Fcons (shmap, sub_shadows);
2606 }
2607
2608 /* Maps we have already listed in this loop shadow this map. */
2609 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2610 {
2611 Lisp_Object tem;
2612 tem = Fequal (Fcar (XCAR (tail)), prefix);
2613 if (! NILP (tem))
2614 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2615 }
2616
2617 describe_map (Fcdr (elt), prefix,
2618 transl ? describe_translation : describe_command,
2619 partial, sub_shadows, &seen, nomenu);
2620
2621 skip: ;
2622 }
2623
2624 if (something)
2625 insert_string ("\n");
2626
2627 UNGCPRO;
2628 }
2629
2630 static int previous_description_column;
2631
2632 static void
2633 describe_command (definition)
2634 Lisp_Object definition;
2635 {
2636 register Lisp_Object tem1;
2637 int column = current_column ();
2638 int description_column;
2639
2640 /* If column 16 is no good, go to col 32;
2641 but don't push beyond that--go to next line instead. */
2642 if (column > 30)
2643 {
2644 insert_char ('\n');
2645 description_column = 32;
2646 }
2647 else if (column > 14 || (column > 10 && previous_description_column == 32))
2648 description_column = 32;
2649 else
2650 description_column = 16;
2651
2652 Findent_to (make_number (description_column), make_number (1));
2653 previous_description_column = description_column;
2654
2655 if (SYMBOLP (definition))
2656 {
2657 XSETSTRING (tem1, XSYMBOL (definition)->name);
2658 insert1 (tem1);
2659 insert_string ("\n");
2660 }
2661 else if (STRINGP (definition) || VECTORP (definition))
2662 insert_string ("Keyboard Macro\n");
2663 else
2664 {
2665 tem1 = Fkeymapp (definition);
2666 if (!NILP (tem1))
2667 insert_string ("Prefix Command\n");
2668 else
2669 insert_string ("??\n");
2670 }
2671 }
2672
2673 static void
2674 describe_translation (definition)
2675 Lisp_Object definition;
2676 {
2677 register Lisp_Object tem1;
2678
2679 Findent_to (make_number (16), make_number (1));
2680
2681 if (SYMBOLP (definition))
2682 {
2683 XSETSTRING (tem1, XSYMBOL (definition)->name);
2684 insert1 (tem1);
2685 insert_string ("\n");
2686 }
2687 else if (STRINGP (definition) || VECTORP (definition))
2688 {
2689 insert1 (Fkey_description (definition));
2690 insert_string ("\n");
2691 }
2692 else
2693 {
2694 tem1 = Fkeymapp (definition);
2695 if (!NILP (tem1))
2696 insert_string ("Prefix Command\n");
2697 else
2698 insert_string ("??\n");
2699 }
2700 }
2701
2702 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2703 Returns the first non-nil binding found in any of those maps. */
2704
2705 static Lisp_Object
2706 shadow_lookup (shadow, key, flag)
2707 Lisp_Object shadow, key, flag;
2708 {
2709 Lisp_Object tail, value;
2710
2711 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2712 {
2713 value = Flookup_key (XCONS (tail)->car, key, flag);
2714 if (!NILP (value))
2715 return value;
2716 }
2717 return Qnil;
2718 }
2719
2720 /* Describe the contents of map MAP, assuming that this map itself is
2721 reached by the sequence of prefix keys KEYS (a string or vector).
2722 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2723
2724 static void
2725 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2726 register Lisp_Object map;
2727 Lisp_Object keys;
2728 void (*elt_describer) P_ ((Lisp_Object));
2729 int partial;
2730 Lisp_Object shadow;
2731 Lisp_Object *seen;
2732 int nomenu;
2733 {
2734 Lisp_Object elt_prefix;
2735 Lisp_Object tail, definition, event;
2736 Lisp_Object tem;
2737 Lisp_Object suppress;
2738 Lisp_Object kludge;
2739 int first = 1;
2740 struct gcpro gcpro1, gcpro2, gcpro3;
2741
2742 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2743 {
2744 /* Call Fkey_description first, to avoid GC bug for the other string. */
2745 tem = Fkey_description (keys);
2746 elt_prefix = concat2 (tem, build_string (" "));
2747 }
2748 else
2749 elt_prefix = Qnil;
2750
2751 if (partial)
2752 suppress = intern ("suppress-keymap");
2753
2754 /* This vector gets used to present single keys to Flookup_key. Since
2755 that is done once per keymap element, we don't want to cons up a
2756 fresh vector every time. */
2757 kludge = Fmake_vector (make_number (1), Qnil);
2758 definition = Qnil;
2759
2760 GCPRO3 (elt_prefix, definition, kludge);
2761
2762 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
2763 {
2764 QUIT;
2765
2766 if (VECTORP (XCONS (tail)->car)
2767 || CHAR_TABLE_P (XCONS (tail)->car))
2768 describe_vector (XCONS (tail)->car,
2769 elt_prefix, elt_describer, partial, shadow, map,
2770 (int *)0, 0);
2771 else if (CONSP (XCONS (tail)->car))
2772 {
2773 event = XCONS (XCONS (tail)->car)->car;
2774
2775 /* Ignore bindings whose "keys" are not really valid events.
2776 (We get these in the frames and buffers menu.) */
2777 if (! (SYMBOLP (event) || INTEGERP (event)))
2778 continue;
2779
2780 if (nomenu && EQ (event, Qmenu_bar))
2781 continue;
2782
2783 definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
2784
2785 /* Don't show undefined commands or suppressed commands. */
2786 if (NILP (definition)) continue;
2787 if (SYMBOLP (definition) && partial)
2788 {
2789 tem = Fget (definition, suppress);
2790 if (!NILP (tem))
2791 continue;
2792 }
2793
2794 /* Don't show a command that isn't really visible
2795 because a local definition of the same key shadows it. */
2796
2797 XVECTOR (kludge)->contents[0] = event;
2798 if (!NILP (shadow))
2799 {
2800 tem = shadow_lookup (shadow, kludge, Qt);
2801 if (!NILP (tem)) continue;
2802 }
2803
2804 tem = Flookup_key (map, kludge, Qt);
2805 if (! EQ (tem, definition)) continue;
2806
2807 if (first)
2808 {
2809 previous_description_column = 0;
2810 insert ("\n", 1);
2811 first = 0;
2812 }
2813
2814 if (!NILP (elt_prefix))
2815 insert1 (elt_prefix);
2816
2817 /* THIS gets the string to describe the character EVENT. */
2818 insert1 (Fsingle_key_description (event));
2819
2820 /* Print a description of the definition of this character.
2821 elt_describer will take care of spacing out far enough
2822 for alignment purposes. */
2823 (*elt_describer) (definition);
2824 }
2825 else if (EQ (XCONS (tail)->car, Qkeymap))
2826 {
2827 /* The same keymap might be in the structure twice, if we're
2828 using an inherited keymap. So skip anything we've already
2829 encountered. */
2830 tem = Fassq (tail, *seen);
2831 if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
2832 break;
2833 *seen = Fcons (Fcons (tail, keys), *seen);
2834 }
2835 }
2836
2837 UNGCPRO;
2838 }
2839
2840 static void
2841 describe_vector_princ (elt)
2842 Lisp_Object elt;
2843 {
2844 Findent_to (make_number (16), make_number (1));
2845 Fprinc (elt, Qnil);
2846 Fterpri (Qnil);
2847 }
2848
2849 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2850 "Insert a description of contents of VECTOR.\n\
2851 This is text showing the elements of vector matched against indices.")
2852 (vector)
2853 Lisp_Object vector;
2854 {
2855 int count = specpdl_ptr - specpdl;
2856
2857 specbind (Qstandard_output, Fcurrent_buffer ());
2858 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2859 describe_vector (vector, Qnil, describe_vector_princ, 0,
2860 Qnil, Qnil, (int *)0, 0);
2861
2862 return unbind_to (count, Qnil);
2863 }
2864
2865 /* Insert in the current buffer a description of the contents of VECTOR.
2866 We call ELT_DESCRIBER to insert the description of one value found
2867 in VECTOR.
2868
2869 ELT_PREFIX describes what "comes before" the keys or indices defined
2870 by this vector. This is a human-readable string whose size
2871 is not necessarily related to the situation.
2872
2873 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2874 leads to this keymap.
2875
2876 If the vector is a chartable, ELT_PREFIX is the vector
2877 of bytes that lead to the character set or portion of a character
2878 set described by this chartable.
2879
2880 If PARTIAL is nonzero, it means do not mention suppressed commands
2881 (that assumes the vector is in a keymap).
2882
2883 SHADOW is a list of keymaps that shadow this map.
2884 If it is non-nil, then we look up the key in those maps
2885 and we don't mention it now if it is defined by any of them.
2886
2887 ENTIRE_MAP is the keymap in which this vector appears.
2888 If the definition in effect in the whole map does not match
2889 the one in this vector, we ignore this one.
2890
2891 When describing a sub-char-table, INDICES is a list of
2892 indices at higher levels in this char-table,
2893 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2894
2895 void
2896 describe_vector (vector, elt_prefix, elt_describer,
2897 partial, shadow, entire_map,
2898 indices, char_table_depth)
2899 register Lisp_Object vector;
2900 Lisp_Object elt_prefix;
2901 void (*elt_describer) P_ ((Lisp_Object));
2902 int partial;
2903 Lisp_Object shadow;
2904 Lisp_Object entire_map;
2905 int *indices;
2906 int char_table_depth;
2907 {
2908 Lisp_Object definition;
2909 Lisp_Object tem2;
2910 register int i;
2911 Lisp_Object suppress;
2912 Lisp_Object kludge;
2913 int first = 1;
2914 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2915 /* Range of elements to be handled. */
2916 int from, to;
2917 /* A flag to tell if a leaf in this level of char-table is not a
2918 generic character (i.e. a complete multibyte character). */
2919 int complete_char;
2920 int character;
2921 int starting_i;
2922
2923 if (indices == 0)
2924 indices = (int *) alloca (3 * sizeof (int));
2925
2926 definition = Qnil;
2927
2928 /* This vector gets used to present single keys to Flookup_key. Since
2929 that is done once per vector element, we don't want to cons up a
2930 fresh vector every time. */
2931 kludge = Fmake_vector (make_number (1), Qnil);
2932 GCPRO3 (elt_prefix, definition, kludge);
2933
2934 if (partial)
2935 suppress = intern ("suppress-keymap");
2936
2937 if (CHAR_TABLE_P (vector))
2938 {
2939 if (char_table_depth == 0)
2940 {
2941 /* VECTOR is a top level char-table. */
2942 complete_char = 1;
2943 from = 0;
2944 to = CHAR_TABLE_ORDINARY_SLOTS;
2945 }
2946 else
2947 {
2948 /* VECTOR is a sub char-table. */
2949 if (char_table_depth >= 3)
2950 /* A char-table is never that deep. */
2951 error ("Too deep char table");
2952
2953 complete_char
2954 = (CHARSET_VALID_P (indices[0])
2955 && ((CHARSET_DIMENSION (indices[0]) == 1
2956 && char_table_depth == 1)
2957 || char_table_depth == 2));
2958
2959 /* Meaningful elements are from 32th to 127th. */
2960 from = 32;
2961 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2962 }
2963 }
2964 else
2965 {
2966 /* This does the right thing for ordinary vectors. */
2967
2968 complete_char = 1;
2969 from = 0;
2970 to = XVECTOR (vector)->size;
2971 }
2972
2973 for (i = from; i < to; i++)
2974 {
2975 QUIT;
2976
2977 if (CHAR_TABLE_P (vector))
2978 {
2979 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
2980 complete_char = 0;
2981
2982 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
2983 && !CHARSET_DEFINED_P (i - 128))
2984 continue;
2985
2986 definition
2987 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
2988 }
2989 else
2990 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
2991
2992 if (NILP (definition)) continue;
2993
2994 /* Don't mention suppressed commands. */
2995 if (SYMBOLP (definition) && partial)
2996 {
2997 Lisp_Object tem;
2998
2999 tem = Fget (definition, suppress);
3000
3001 if (!NILP (tem)) continue;
3002 }
3003
3004 /* Set CHARACTER to the character this entry describes, if any.
3005 Also update *INDICES. */
3006 if (CHAR_TABLE_P (vector))
3007 {
3008 indices[char_table_depth] = i;
3009
3010 if (char_table_depth == 0)
3011 {
3012 character = i;
3013 indices[0] = i - 128;
3014 }
3015 else if (complete_char)
3016 {
3017 character
3018 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3019 }
3020 else
3021 character = 0;
3022 }
3023 else
3024 character = i;
3025
3026 /* If this binding is shadowed by some other map, ignore it. */
3027 if (!NILP (shadow) && complete_char)
3028 {
3029 Lisp_Object tem;
3030
3031 XVECTOR (kludge)->contents[0] = make_number (character);
3032 tem = shadow_lookup (shadow, kludge, Qt);
3033
3034 if (!NILP (tem)) continue;
3035 }
3036
3037 /* Ignore this definition if it is shadowed by an earlier
3038 one in the same keymap. */
3039 if (!NILP (entire_map) && complete_char)
3040 {
3041 Lisp_Object tem;
3042
3043 XVECTOR (kludge)->contents[0] = make_number (character);
3044 tem = Flookup_key (entire_map, kludge, Qt);
3045
3046 if (! EQ (tem, definition))
3047 continue;
3048 }
3049
3050 if (first)
3051 {
3052 if (char_table_depth == 0)
3053 insert ("\n", 1);
3054 first = 0;
3055 }
3056
3057 /* For a sub char-table, show the depth by indentation.
3058 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3059 if (char_table_depth > 0)
3060 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3061
3062 /* Output the prefix that applies to every entry in this map. */
3063 if (!NILP (elt_prefix))
3064 insert1 (elt_prefix);
3065
3066 /* Insert or describe the character this slot is for,
3067 or a description of what it is for. */
3068 if (SUB_CHAR_TABLE_P (vector))
3069 {
3070 if (complete_char)
3071 insert_char (character);
3072 else
3073 {
3074 /* We need an octal representation for this block of
3075 characters. */
3076 char work[16];
3077 sprintf (work, "(row %d)", i);
3078 insert (work, strlen (work));
3079 }
3080 }
3081 else if (CHAR_TABLE_P (vector))
3082 {
3083 if (complete_char)
3084 insert1 (Fsingle_key_description (make_number (character)));
3085 else
3086 {
3087 /* Print the information for this character set. */
3088 insert_string ("<");
3089 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3090 if (STRINGP (tem2))
3091 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3092 STRING_BYTES (XSTRING (tem2)), 0);
3093 else
3094 insert ("?", 1);
3095 insert (">", 1);
3096 }
3097 }
3098 else
3099 {
3100 insert1 (Fsingle_key_description (make_number (character)));
3101 }
3102
3103 /* If we find a sub char-table within a char-table,
3104 scan it recursively; it defines the details for
3105 a character set or a portion of a character set. */
3106 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3107 {
3108 insert ("\n", 1);
3109 describe_vector (definition, elt_prefix, elt_describer,
3110 partial, shadow, entire_map,
3111 indices, char_table_depth + 1);
3112 continue;
3113 }
3114
3115 starting_i = i;
3116
3117 /* Find all consecutive characters or rows that have the same
3118 definition. But, for elements of a top level char table, if
3119 they are for charsets, we had better describe one by one even
3120 if they have the same definition. */
3121 if (CHAR_TABLE_P (vector))
3122 {
3123 int limit = to;
3124
3125 if (char_table_depth == 0)
3126 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3127
3128 while (i + 1 < limit
3129 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3130 !NILP (tem2))
3131 && !NILP (Fequal (tem2, definition)))
3132 i++;
3133 }
3134 else
3135 while (i + 1 < to
3136 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3137 !NILP (tem2))
3138 && !NILP (Fequal (tem2, definition)))
3139 i++;
3140
3141
3142 /* If we have a range of more than one character,
3143 print where the range reaches to. */
3144
3145 if (i != starting_i)
3146 {
3147 insert (" .. ", 4);
3148
3149 if (!NILP (elt_prefix))
3150 insert1 (elt_prefix);
3151
3152 if (CHAR_TABLE_P (vector))
3153 {
3154 if (char_table_depth == 0)
3155 {
3156 insert1 (Fsingle_key_description (make_number (i)));
3157 }
3158 else if (complete_char)
3159 {
3160 indices[char_table_depth] = i;
3161 character
3162 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3163 insert_char (character);
3164 }
3165 else
3166 {
3167 /* We need an octal representation for this block of
3168 characters. */
3169 char work[16];
3170 sprintf (work, "(row %d)", i);
3171 insert (work, strlen (work));
3172 }
3173 }
3174 else
3175 {
3176 insert1 (Fsingle_key_description (make_number (i)));
3177 }
3178 }
3179
3180 /* Print a description of the definition of this character.
3181 elt_describer will take care of spacing out far enough
3182 for alignment purposes. */
3183 (*elt_describer) (definition);
3184 }
3185
3186 /* For (sub) char-table, print `defalt' slot at last. */
3187 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3188 {
3189 insert (" ", char_table_depth * 2);
3190 insert_string ("<<default>>");
3191 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3192 }
3193
3194 UNGCPRO;
3195 }
3196 \f
3197 /* Apropos - finding all symbols whose names match a regexp. */
3198 Lisp_Object apropos_predicate;
3199 Lisp_Object apropos_accumulate;
3200
3201 static void
3202 apropos_accum (symbol, string)
3203 Lisp_Object symbol, string;
3204 {
3205 register Lisp_Object tem;
3206
3207 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3208 if (!NILP (tem) && !NILP (apropos_predicate))
3209 tem = call1 (apropos_predicate, symbol);
3210 if (!NILP (tem))
3211 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3212 }
3213
3214 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3215 "Show all symbols whose names contain match for REGEXP.\n\
3216 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3217 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3218 Return list of symbols found.")
3219 (regexp, predicate)
3220 Lisp_Object regexp, predicate;
3221 {
3222 struct gcpro gcpro1, gcpro2;
3223 CHECK_STRING (regexp, 0);
3224 apropos_predicate = predicate;
3225 GCPRO2 (apropos_predicate, apropos_accumulate);
3226 apropos_accumulate = Qnil;
3227 map_obarray (Vobarray, apropos_accum, regexp);
3228 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3229 UNGCPRO;
3230 return apropos_accumulate;
3231 }
3232 \f
3233 void
3234 syms_of_keymap ()
3235 {
3236 Lisp_Object tem;
3237
3238 Qkeymap = intern ("keymap");
3239 staticpro (&Qkeymap);
3240
3241 /* Now we are ready to set up this property, so we can
3242 create char tables. */
3243 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3244
3245 /* Initialize the keymaps standardly used.
3246 Each one is the value of a Lisp variable, and is also
3247 pointed to by a C variable */
3248
3249 global_map = Fmake_keymap (Qnil);
3250 Fset (intern ("global-map"), global_map);
3251
3252 current_global_map = global_map;
3253 staticpro (&global_map);
3254 staticpro (&current_global_map);
3255
3256 meta_map = Fmake_keymap (Qnil);
3257 Fset (intern ("esc-map"), meta_map);
3258 Ffset (intern ("ESC-prefix"), meta_map);
3259
3260 control_x_map = Fmake_keymap (Qnil);
3261 Fset (intern ("ctl-x-map"), control_x_map);
3262 Ffset (intern ("Control-X-prefix"), control_x_map);
3263
3264 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3265 "List of commands given new key bindings recently.\n\
3266 This is used for internal purposes during Emacs startup;\n\
3267 don't alter it yourself.");
3268 Vdefine_key_rebound_commands = Qt;
3269
3270 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3271 "Default keymap to use when reading from the minibuffer.");
3272 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3273
3274 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3275 "Local keymap for the minibuffer when spaces are not allowed.");
3276 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3277
3278 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3279 "Local keymap for minibuffer input with completion.");
3280 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3281
3282 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3283 "Local keymap for minibuffer input with completion, for exact match.");
3284 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3285
3286 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3287 "Alist of keymaps to use for minor modes.\n\
3288 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3289 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3290 If two active keymaps bind the same key, the keymap appearing earlier\n\
3291 in the list takes precedence.");
3292 Vminor_mode_map_alist = Qnil;
3293
3294 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3295 "Alist of keymaps to use for minor modes, in current major mode.\n\
3296 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3297 used the same way (and before `minor-mode-map-alist'); however,\n\
3298 it is provided for major modes to bind locally.");
3299 Vminor_mode_overriding_map_alist = Qnil;
3300
3301 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3302 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3303 This allows Emacs to recognize function keys sent from ASCII\n\
3304 terminals at any point in a key sequence.\n\
3305 \n\
3306 The `read-key-sequence' function replaces any subsequence bound by\n\
3307 `function-key-map' with its binding. More precisely, when the active\n\
3308 keymaps have no binding for the current key sequence but\n\
3309 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3310 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3311 continues with the new sequence.\n\
3312 \n\
3313 The events that come from bindings in `function-key-map' are not\n\
3314 themselves looked up in `function-key-map'.\n\
3315 \n\
3316 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3317 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3318 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3319 key, typing `ESC O P x' would return [f1 x].");
3320 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3321
3322 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3323 "Keymap of key translations that can override keymaps.\n\
3324 This keymap works like `function-key-map', but comes after that,\n\
3325 and applies even for keys that have ordinary bindings.");
3326 Vkey_translation_map = Qnil;
3327
3328 Qsingle_key_description = intern ("single-key-description");
3329 staticpro (&Qsingle_key_description);
3330
3331 Qkey_description = intern ("key-description");
3332 staticpro (&Qkey_description);
3333
3334 Qkeymapp = intern ("keymapp");
3335 staticpro (&Qkeymapp);
3336
3337 Qnon_ascii = intern ("non-ascii");
3338 staticpro (&Qnon_ascii);
3339
3340 Qmenu_item = intern ("menu-item");
3341 staticpro (&Qmenu_item);
3342
3343 defsubr (&Skeymapp);
3344 defsubr (&Skeymap_parent);
3345 defsubr (&Sset_keymap_parent);
3346 defsubr (&Smake_keymap);
3347 defsubr (&Smake_sparse_keymap);
3348 defsubr (&Scopy_keymap);
3349 defsubr (&Skey_binding);
3350 defsubr (&Slocal_key_binding);
3351 defsubr (&Sglobal_key_binding);
3352 defsubr (&Sminor_mode_key_binding);
3353 defsubr (&Sdefine_key);
3354 defsubr (&Slookup_key);
3355 defsubr (&Sdefine_prefix_command);
3356 defsubr (&Suse_global_map);
3357 defsubr (&Suse_local_map);
3358 defsubr (&Scurrent_local_map);
3359 defsubr (&Scurrent_global_map);
3360 defsubr (&Scurrent_minor_mode_maps);
3361 defsubr (&Saccessible_keymaps);
3362 defsubr (&Skey_description);
3363 defsubr (&Sdescribe_vector);
3364 defsubr (&Ssingle_key_description);
3365 defsubr (&Stext_char_description);
3366 defsubr (&Swhere_is_internal);
3367 defsubr (&Sdescribe_bindings_internal);
3368 defsubr (&Sapropos_internal);
3369 }
3370
3371 void
3372 keys_of_keymap ()
3373 {
3374 Lisp_Object tem;
3375
3376 initial_define_key (global_map, 033, "ESC-prefix");
3377 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3378 }