Rely on <unistd.h> to declare 'environ',
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
68 int, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82
83 void
84 init_editfns (void)
85 {
86 const char *user_name;
87 register char *p;
88 struct passwd *pw; /* password entry for the current user */
89 Lisp_Object tem;
90
91 /* Set up system_name even when dumping. */
92 init_system_name ();
93
94 #ifndef CANNOT_DUMP
95 /* Don't bother with this on initial start when just dumping out */
96 if (!initialized)
97 return;
98 #endif /* not CANNOT_DUMP */
99
100 pw = getpwuid (getuid ());
101 #ifdef MSDOS
102 /* We let the real user name default to "root" because that's quite
103 accurate on MSDOG and because it lets Emacs find the init file.
104 (The DVX libraries override the Djgpp libraries here.) */
105 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
106 #else
107 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
108 #endif
109
110 /* Get the effective user name, by consulting environment variables,
111 or the effective uid if those are unset. */
112 user_name = getenv ("LOGNAME");
113 if (!user_name)
114 #ifdef WINDOWSNT
115 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
116 #else /* WINDOWSNT */
117 user_name = getenv ("USER");
118 #endif /* WINDOWSNT */
119 if (!user_name)
120 {
121 pw = getpwuid (geteuid ());
122 user_name = pw ? pw->pw_name : "unknown";
123 }
124 Vuser_login_name = build_string (user_name);
125
126 /* If the user name claimed in the environment vars differs from
127 the real uid, use the claimed name to find the full name. */
128 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
129 if (! NILP (tem))
130 tem = Vuser_login_name;
131 else
132 {
133 uid_t euid = geteuid ();
134 tem = make_fixnum_or_float (euid);
135 }
136 Vuser_full_name = Fuser_full_name (tem);
137
138 p = getenv ("NAME");
139 if (p)
140 Vuser_full_name = build_string (p);
141 else if (NILP (Vuser_full_name))
142 Vuser_full_name = build_string ("unknown");
143
144 #ifdef HAVE_SYS_UTSNAME_H
145 {
146 struct utsname uts;
147 uname (&uts);
148 Voperating_system_release = build_string (uts.release);
149 }
150 #else
151 Voperating_system_release = Qnil;
152 #endif
153 }
154 \f
155 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
156 doc: /* Convert arg CHAR to a string containing that character.
157 usage: (char-to-string CHAR) */)
158 (Lisp_Object character)
159 {
160 int c, len;
161 unsigned char str[MAX_MULTIBYTE_LENGTH];
162
163 CHECK_CHARACTER (character);
164 c = XFASTINT (character);
165
166 len = CHAR_STRING (c, str);
167 return make_string_from_bytes ((char *) str, 1, len);
168 }
169
170 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
171 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
172 (Lisp_Object byte)
173 {
174 unsigned char b;
175 CHECK_NUMBER (byte);
176 if (XINT (byte) < 0 || XINT (byte) > 255)
177 error ("Invalid byte");
178 b = XINT (byte);
179 return make_string_from_bytes ((char *) &b, 1, 1);
180 }
181
182 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
183 doc: /* Return the first character in STRING. */)
184 (register Lisp_Object string)
185 {
186 register Lisp_Object val;
187 CHECK_STRING (string);
188 if (SCHARS (string))
189 {
190 if (STRING_MULTIBYTE (string))
191 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
192 else
193 XSETFASTINT (val, SREF (string, 0));
194 }
195 else
196 XSETFASTINT (val, 0);
197 return val;
198 }
199
200 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
201 doc: /* Return value of point, as an integer.
202 Beginning of buffer is position (point-min). */)
203 (void)
204 {
205 Lisp_Object temp;
206 XSETFASTINT (temp, PT);
207 return temp;
208 }
209
210 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
211 doc: /* Return value of point, as a marker object. */)
212 (void)
213 {
214 return build_marker (current_buffer, PT, PT_BYTE);
215 }
216
217 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
218 doc: /* Set point to POSITION, a number or marker.
219 Beginning of buffer is position (point-min), end is (point-max).
220
221 The return value is POSITION. */)
222 (register Lisp_Object position)
223 {
224 ptrdiff_t pos;
225
226 if (MARKERP (position)
227 && current_buffer == XMARKER (position)->buffer)
228 {
229 pos = marker_position (position);
230 if (pos < BEGV)
231 SET_PT_BOTH (BEGV, BEGV_BYTE);
232 else if (pos > ZV)
233 SET_PT_BOTH (ZV, ZV_BYTE);
234 else
235 SET_PT_BOTH (pos, marker_byte_position (position));
236
237 return position;
238 }
239
240 CHECK_NUMBER_COERCE_MARKER (position);
241
242 pos = clip_to_bounds (BEGV, XINT (position), ZV);
243 SET_PT (pos);
244 return position;
245 }
246
247
248 /* Return the start or end position of the region.
249 BEGINNINGP non-zero means return the start.
250 If there is no region active, signal an error. */
251
252 static Lisp_Object
253 region_limit (int beginningp)
254 {
255 Lisp_Object m;
256
257 if (!NILP (Vtransient_mark_mode)
258 && NILP (Vmark_even_if_inactive)
259 && NILP (BVAR (current_buffer, mark_active)))
260 xsignal0 (Qmark_inactive);
261
262 m = Fmarker_position (BVAR (current_buffer, mark));
263 if (NILP (m))
264 error ("The mark is not set now, so there is no region");
265
266 /* Clip to the current narrowing (bug#11770). */
267 return make_number ((PT < XFASTINT (m)) == (beginningp != 0)
268 ? PT
269 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
270 }
271
272 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
273 doc: /* Return the integer value of point or mark, whichever is smaller. */)
274 (void)
275 {
276 return region_limit (1);
277 }
278
279 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
280 doc: /* Return the integer value of point or mark, whichever is larger. */)
281 (void)
282 {
283 return region_limit (0);
284 }
285
286 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
287 doc: /* Return this buffer's mark, as a marker object.
288 Watch out! Moving this marker changes the mark position.
289 If you set the marker not to point anywhere, the buffer will have no mark. */)
290 (void)
291 {
292 return BVAR (current_buffer, mark);
293 }
294
295 \f
296 /* Find all the overlays in the current buffer that touch position POS.
297 Return the number found, and store them in a vector in VEC
298 of length LEN. */
299
300 static ptrdiff_t
301 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
302 {
303 Lisp_Object overlay, start, end;
304 struct Lisp_Overlay *tail;
305 ptrdiff_t startpos, endpos;
306 ptrdiff_t idx = 0;
307
308 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
309 {
310 XSETMISC (overlay, tail);
311
312 end = OVERLAY_END (overlay);
313 endpos = OVERLAY_POSITION (end);
314 if (endpos < pos)
315 break;
316 start = OVERLAY_START (overlay);
317 startpos = OVERLAY_POSITION (start);
318 if (startpos <= pos)
319 {
320 if (idx < len)
321 vec[idx] = overlay;
322 /* Keep counting overlays even if we can't return them all. */
323 idx++;
324 }
325 }
326
327 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
328 {
329 XSETMISC (overlay, tail);
330
331 start = OVERLAY_START (overlay);
332 startpos = OVERLAY_POSITION (start);
333 if (pos < startpos)
334 break;
335 end = OVERLAY_END (overlay);
336 endpos = OVERLAY_POSITION (end);
337 if (pos <= endpos)
338 {
339 if (idx < len)
340 vec[idx] = overlay;
341 idx++;
342 }
343 }
344
345 return idx;
346 }
347
348 /* Return the value of property PROP, in OBJECT at POSITION.
349 It's the value of PROP that a char inserted at POSITION would get.
350 OBJECT is optional and defaults to the current buffer.
351 If OBJECT is a buffer, then overlay properties are considered as well as
352 text properties.
353 If OBJECT is a window, then that window's buffer is used, but
354 window-specific overlays are considered only if they are associated
355 with OBJECT. */
356 Lisp_Object
357 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
358 {
359 CHECK_NUMBER_COERCE_MARKER (position);
360
361 if (NILP (object))
362 XSETBUFFER (object, current_buffer);
363 else if (WINDOWP (object))
364 object = XWINDOW (object)->buffer;
365
366 if (!BUFFERP (object))
367 /* pos-property only makes sense in buffers right now, since strings
368 have no overlays and no notion of insertion for which stickiness
369 could be obeyed. */
370 return Fget_text_property (position, prop, object);
371 else
372 {
373 EMACS_INT posn = XINT (position);
374 ptrdiff_t noverlays;
375 Lisp_Object *overlay_vec, tem;
376 struct buffer *obuf = current_buffer;
377
378 set_buffer_temp (XBUFFER (object));
379
380 /* First try with room for 40 overlays. */
381 noverlays = 40;
382 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
383 noverlays = overlays_around (posn, overlay_vec, noverlays);
384
385 /* If there are more than 40,
386 make enough space for all, and try again. */
387 if (noverlays > 40)
388 {
389 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
390 noverlays = overlays_around (posn, overlay_vec, noverlays);
391 }
392 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
393
394 set_buffer_temp (obuf);
395
396 /* Now check the overlays in order of decreasing priority. */
397 while (--noverlays >= 0)
398 {
399 Lisp_Object ol = overlay_vec[noverlays];
400 tem = Foverlay_get (ol, prop);
401 if (!NILP (tem))
402 {
403 /* Check the overlay is indeed active at point. */
404 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
405 if ((OVERLAY_POSITION (start) == posn
406 && XMARKER (start)->insertion_type == 1)
407 || (OVERLAY_POSITION (finish) == posn
408 && XMARKER (finish)->insertion_type == 0))
409 ; /* The overlay will not cover a char inserted at point. */
410 else
411 {
412 return tem;
413 }
414 }
415 }
416
417 { /* Now check the text properties. */
418 int stickiness = text_property_stickiness (prop, position, object);
419 if (stickiness > 0)
420 return Fget_text_property (position, prop, object);
421 else if (stickiness < 0
422 && XINT (position) > BUF_BEGV (XBUFFER (object)))
423 return Fget_text_property (make_number (XINT (position) - 1),
424 prop, object);
425 else
426 return Qnil;
427 }
428 }
429 }
430
431 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
432 the value of point is used instead. If BEG or END is null,
433 means don't store the beginning or end of the field.
434
435 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
436 results; they do not effect boundary behavior.
437
438 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
439 position of a field, then the beginning of the previous field is
440 returned instead of the beginning of POS's field (since the end of a
441 field is actually also the beginning of the next input field, this
442 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
443 true case, if two fields are separated by a field with the special
444 value `boundary', and POS lies within it, then the two separated
445 fields are considered to be adjacent, and POS between them, when
446 finding the beginning and ending of the "merged" field.
447
448 Either BEG or END may be 0, in which case the corresponding value
449 is not stored. */
450
451 static void
452 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
453 Lisp_Object beg_limit,
454 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
455 {
456 /* Fields right before and after the point. */
457 Lisp_Object before_field, after_field;
458 /* 1 if POS counts as the start of a field. */
459 int at_field_start = 0;
460 /* 1 if POS counts as the end of a field. */
461 int at_field_end = 0;
462
463 if (NILP (pos))
464 XSETFASTINT (pos, PT);
465 else
466 CHECK_NUMBER_COERCE_MARKER (pos);
467
468 after_field
469 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
470 before_field
471 = (XFASTINT (pos) > BEGV
472 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
473 Qfield, Qnil, NULL)
474 /* Using nil here would be a more obvious choice, but it would
475 fail when the buffer starts with a non-sticky field. */
476 : after_field);
477
478 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
479 and POS is at beginning of a field, which can also be interpreted
480 as the end of the previous field. Note that the case where if
481 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
482 more natural one; then we avoid treating the beginning of a field
483 specially. */
484 if (NILP (merge_at_boundary))
485 {
486 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
487 if (!EQ (field, after_field))
488 at_field_end = 1;
489 if (!EQ (field, before_field))
490 at_field_start = 1;
491 if (NILP (field) && at_field_start && at_field_end)
492 /* If an inserted char would have a nil field while the surrounding
493 text is non-nil, we're probably not looking at a
494 zero-length field, but instead at a non-nil field that's
495 not intended for editing (such as comint's prompts). */
496 at_field_end = at_field_start = 0;
497 }
498
499 /* Note about special `boundary' fields:
500
501 Consider the case where the point (`.') is between the fields `x' and `y':
502
503 xxxx.yyyy
504
505 In this situation, if merge_at_boundary is true, we consider the
506 `x' and `y' fields as forming one big merged field, and so the end
507 of the field is the end of `y'.
508
509 However, if `x' and `y' are separated by a special `boundary' field
510 (a field with a `field' char-property of 'boundary), then we ignore
511 this special field when merging adjacent fields. Here's the same
512 situation, but with a `boundary' field between the `x' and `y' fields:
513
514 xxx.BBBByyyy
515
516 Here, if point is at the end of `x', the beginning of `y', or
517 anywhere in-between (within the `boundary' field), we merge all
518 three fields and consider the beginning as being the beginning of
519 the `x' field, and the end as being the end of the `y' field. */
520
521 if (beg)
522 {
523 if (at_field_start)
524 /* POS is at the edge of a field, and we should consider it as
525 the beginning of the following field. */
526 *beg = XFASTINT (pos);
527 else
528 /* Find the previous field boundary. */
529 {
530 Lisp_Object p = pos;
531 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
532 /* Skip a `boundary' field. */
533 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
534 beg_limit);
535
536 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
537 beg_limit);
538 *beg = NILP (p) ? BEGV : XFASTINT (p);
539 }
540 }
541
542 if (end)
543 {
544 if (at_field_end)
545 /* POS is at the edge of a field, and we should consider it as
546 the end of the previous field. */
547 *end = XFASTINT (pos);
548 else
549 /* Find the next field boundary. */
550 {
551 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
552 /* Skip a `boundary' field. */
553 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
554 end_limit);
555
556 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
557 end_limit);
558 *end = NILP (pos) ? ZV : XFASTINT (pos);
559 }
560 }
561 }
562
563 \f
564 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
565 doc: /* Delete the field surrounding POS.
566 A field is a region of text with the same `field' property.
567 If POS is nil, the value of point is used for POS. */)
568 (Lisp_Object pos)
569 {
570 ptrdiff_t beg, end;
571 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
572 if (beg != end)
573 del_range (beg, end);
574 return Qnil;
575 }
576
577 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
578 doc: /* Return the contents of the field surrounding POS as a string.
579 A field is a region of text with the same `field' property.
580 If POS is nil, the value of point is used for POS. */)
581 (Lisp_Object pos)
582 {
583 ptrdiff_t beg, end;
584 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
585 return make_buffer_string (beg, end, 1);
586 }
587
588 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
589 doc: /* Return the contents of the field around POS, without text properties.
590 A field is a region of text with the same `field' property.
591 If POS is nil, the value of point is used for POS. */)
592 (Lisp_Object pos)
593 {
594 ptrdiff_t beg, end;
595 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
596 return make_buffer_string (beg, end, 0);
597 }
598
599 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
600 doc: /* Return the beginning of the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS.
603 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
604 field, then the beginning of the *previous* field is returned.
605 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
606 is before LIMIT, then LIMIT will be returned instead. */)
607 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
608 {
609 ptrdiff_t beg;
610 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
611 return make_number (beg);
612 }
613
614 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
615 doc: /* Return the end of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
619 then the end of the *following* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the end of the field
621 is after LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t end;
625 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
626 return make_number (end);
627 }
628
629 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
630 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
631 A field is a region of text with the same `field' property.
632
633 If NEW-POS is nil, then use the current point instead, and move point
634 to the resulting constrained position, in addition to returning that
635 position.
636
637 If OLD-POS is at the boundary of two fields, then the allowable
638 positions for NEW-POS depends on the value of the optional argument
639 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
640 constrained to the field that has the same `field' char-property
641 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
642 is non-nil, NEW-POS is constrained to the union of the two adjacent
643 fields. Additionally, if two fields are separated by another field with
644 the special value `boundary', then any point within this special field is
645 also considered to be `on the boundary'.
646
647 If the optional argument ONLY-IN-LINE is non-nil and constraining
648 NEW-POS would move it to a different line, NEW-POS is returned
649 unconstrained. This useful for commands that move by line, like
650 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
651 only in the case where they can still move to the right line.
652
653 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
654 a non-nil property of that name, then any field boundaries are ignored.
655
656 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
657 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
658 {
659 /* If non-zero, then the original point, before re-positioning. */
660 ptrdiff_t orig_point = 0;
661 int fwd;
662 Lisp_Object prev_old, prev_new;
663
664 if (NILP (new_pos))
665 /* Use the current point, and afterwards, set it. */
666 {
667 orig_point = PT;
668 XSETFASTINT (new_pos, PT);
669 }
670
671 CHECK_NUMBER_COERCE_MARKER (new_pos);
672 CHECK_NUMBER_COERCE_MARKER (old_pos);
673
674 fwd = (XINT (new_pos) > XINT (old_pos));
675
676 prev_old = make_number (XINT (old_pos) - 1);
677 prev_new = make_number (XINT (new_pos) - 1);
678
679 if (NILP (Vinhibit_field_text_motion)
680 && !EQ (new_pos, old_pos)
681 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
682 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
683 /* To recognize field boundaries, we must also look at the
684 previous positions; we could use `get_pos_property'
685 instead, but in itself that would fail inside non-sticky
686 fields (like comint prompts). */
687 || (XFASTINT (new_pos) > BEGV
688 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
689 || (XFASTINT (old_pos) > BEGV
690 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
691 && (NILP (inhibit_capture_property)
692 /* Field boundaries are again a problem; but now we must
693 decide the case exactly, so we need to call
694 `get_pos_property' as well. */
695 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
696 && (XFASTINT (old_pos) <= BEGV
697 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
698 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
699 /* It is possible that NEW_POS is not within the same field as
700 OLD_POS; try to move NEW_POS so that it is. */
701 {
702 ptrdiff_t shortage;
703 Lisp_Object field_bound;
704
705 if (fwd)
706 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
707 else
708 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
709
710 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
711 other side of NEW_POS, which would mean that NEW_POS is
712 already acceptable, and it's not necessary to constrain it
713 to FIELD_BOUND. */
714 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
715 /* NEW_POS should be constrained, but only if either
716 ONLY_IN_LINE is nil (in which case any constraint is OK),
717 or NEW_POS and FIELD_BOUND are on the same line (in which
718 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
719 && (NILP (only_in_line)
720 /* This is the ONLY_IN_LINE case, check that NEW_POS and
721 FIELD_BOUND are on the same line by seeing whether
722 there's an intervening newline or not. */
723 || (scan_buffer ('\n',
724 XFASTINT (new_pos), XFASTINT (field_bound),
725 fwd ? -1 : 1, &shortage, 1),
726 shortage != 0)))
727 /* Constrain NEW_POS to FIELD_BOUND. */
728 new_pos = field_bound;
729
730 if (orig_point && XFASTINT (new_pos) != orig_point)
731 /* The NEW_POS argument was originally nil, so automatically set PT. */
732 SET_PT (XFASTINT (new_pos));
733 }
734
735 return new_pos;
736 }
737
738 \f
739 DEFUN ("line-beginning-position",
740 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
741 doc: /* Return the character position of the first character on the current line.
742 With argument N not nil or 1, move forward N - 1 lines first.
743 If scan reaches end of buffer, return that position.
744
745 The returned position is of the first character in the logical order,
746 i.e. the one that has the smallest character position.
747
748 This function constrains the returned position to the current field
749 unless that would be on a different line than the original,
750 unconstrained result. If N is nil or 1, and a front-sticky field
751 starts at point, the scan stops as soon as it starts. To ignore field
752 boundaries bind `inhibit-field-text-motion' to t.
753
754 This function does not move point. */)
755 (Lisp_Object n)
756 {
757 ptrdiff_t orig, orig_byte, end;
758 ptrdiff_t count = SPECPDL_INDEX ();
759 specbind (Qinhibit_point_motion_hooks, Qt);
760
761 if (NILP (n))
762 XSETFASTINT (n, 1);
763 else
764 CHECK_NUMBER (n);
765
766 orig = PT;
767 orig_byte = PT_BYTE;
768 Fforward_line (make_number (XINT (n) - 1));
769 end = PT;
770
771 SET_PT_BOTH (orig, orig_byte);
772
773 unbind_to (count, Qnil);
774
775 /* Return END constrained to the current input field. */
776 return Fconstrain_to_field (make_number (end), make_number (orig),
777 XINT (n) != 1 ? Qt : Qnil,
778 Qt, Qnil);
779 }
780
781 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
782 doc: /* Return the character position of the last character on the current line.
783 With argument N not nil or 1, move forward N - 1 lines first.
784 If scan reaches end of buffer, return that position.
785
786 The returned position is of the last character in the logical order,
787 i.e. the character whose buffer position is the largest one.
788
789 This function constrains the returned position to the current field
790 unless that would be on a different line than the original,
791 unconstrained result. If N is nil or 1, and a rear-sticky field ends
792 at point, the scan stops as soon as it starts. To ignore field
793 boundaries bind `inhibit-field-text-motion' to t.
794
795 This function does not move point. */)
796 (Lisp_Object n)
797 {
798 ptrdiff_t clipped_n;
799 ptrdiff_t end_pos;
800 ptrdiff_t orig = PT;
801
802 if (NILP (n))
803 XSETFASTINT (n, 1);
804 else
805 CHECK_NUMBER (n);
806
807 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
808 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
809
810 /* Return END_POS constrained to the current input field. */
811 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
812 Qnil, Qt, Qnil);
813 }
814
815 \f
816 Lisp_Object
817 save_excursion_save (void)
818 {
819 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
820 == current_buffer);
821
822 return Fcons (Fpoint_marker (),
823 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
824 Fcons (visible ? Qt : Qnil,
825 Fcons (BVAR (current_buffer, mark_active),
826 selected_window))));
827 }
828
829 Lisp_Object
830 save_excursion_restore (Lisp_Object info)
831 {
832 Lisp_Object tem, tem1, omark, nmark;
833 struct gcpro gcpro1, gcpro2, gcpro3;
834 int visible_p;
835
836 tem = Fmarker_buffer (XCAR (info));
837 /* If buffer being returned to is now deleted, avoid error */
838 /* Otherwise could get error here while unwinding to top level
839 and crash */
840 /* In that case, Fmarker_buffer returns nil now. */
841 if (NILP (tem))
842 return Qnil;
843
844 omark = nmark = Qnil;
845 GCPRO3 (info, omark, nmark);
846
847 Fset_buffer (tem);
848
849 /* Point marker. */
850 tem = XCAR (info);
851 Fgoto_char (tem);
852 unchain_marker (XMARKER (tem));
853
854 /* Mark marker. */
855 info = XCDR (info);
856 tem = XCAR (info);
857 omark = Fmarker_position (BVAR (current_buffer, mark));
858 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
859 nmark = Fmarker_position (tem);
860 unchain_marker (XMARKER (tem));
861
862 /* visible */
863 info = XCDR (info);
864 visible_p = !NILP (XCAR (info));
865
866 #if 0 /* We used to make the current buffer visible in the selected window
867 if that was true previously. That avoids some anomalies.
868 But it creates others, and it wasn't documented, and it is simpler
869 and cleaner never to alter the window/buffer connections. */
870 tem1 = Fcar (tem);
871 if (!NILP (tem1)
872 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
873 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
874 #endif /* 0 */
875
876 /* Mark active */
877 info = XCDR (info);
878 tem = XCAR (info);
879 tem1 = BVAR (current_buffer, mark_active);
880 bset_mark_active (current_buffer, tem);
881
882 /* If mark is active now, and either was not active
883 or was at a different place, run the activate hook. */
884 if (! NILP (tem))
885 {
886 if (! EQ (omark, nmark))
887 {
888 tem = intern ("activate-mark-hook");
889 Frun_hooks (1, &tem);
890 }
891 }
892 /* If mark has ceased to be active, run deactivate hook. */
893 else if (! NILP (tem1))
894 {
895 tem = intern ("deactivate-mark-hook");
896 Frun_hooks (1, &tem);
897 }
898
899 /* If buffer was visible in a window, and a different window was
900 selected, and the old selected window is still showing this
901 buffer, restore point in that window. */
902 tem = XCDR (info);
903 if (visible_p
904 && !EQ (tem, selected_window)
905 && (tem1 = XWINDOW (tem)->buffer,
906 (/* Window is live... */
907 BUFFERP (tem1)
908 /* ...and it shows the current buffer. */
909 && XBUFFER (tem1) == current_buffer)))
910 Fset_window_point (tem, make_number (PT));
911
912 UNGCPRO;
913 return Qnil;
914 }
915
916 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
917 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
918 Executes BODY just like `progn'.
919 The values of point, mark and the current buffer are restored
920 even in case of abnormal exit (throw or error).
921 The state of activation of the mark is also restored.
922
923 This construct does not save `deactivate-mark', and therefore
924 functions that change the buffer will still cause deactivation
925 of the mark at the end of the command. To prevent that, bind
926 `deactivate-mark' with `let'.
927
928 If you only want to save the current buffer but not point nor mark,
929 then just use `save-current-buffer', or even `with-current-buffer'.
930
931 usage: (save-excursion &rest BODY) */)
932 (Lisp_Object args)
933 {
934 register Lisp_Object val;
935 ptrdiff_t count = SPECPDL_INDEX ();
936
937 record_unwind_protect (save_excursion_restore, save_excursion_save ());
938
939 val = Fprogn (args);
940 return unbind_to (count, val);
941 }
942
943 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
944 doc: /* Record which buffer is current; execute BODY; make that buffer current.
945 BODY is executed just like `progn'.
946 usage: (save-current-buffer &rest BODY) */)
947 (Lisp_Object args)
948 {
949 Lisp_Object val;
950 ptrdiff_t count = SPECPDL_INDEX ();
951
952 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
953
954 val = Fprogn (args);
955 return unbind_to (count, val);
956 }
957 \f
958 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
959 doc: /* Return the number of characters in the current buffer.
960 If BUFFER, return the number of characters in that buffer instead. */)
961 (Lisp_Object buffer)
962 {
963 if (NILP (buffer))
964 return make_number (Z - BEG);
965 else
966 {
967 CHECK_BUFFER (buffer);
968 return make_number (BUF_Z (XBUFFER (buffer))
969 - BUF_BEG (XBUFFER (buffer)));
970 }
971 }
972
973 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
974 doc: /* Return the minimum permissible value of point in the current buffer.
975 This is 1, unless narrowing (a buffer restriction) is in effect. */)
976 (void)
977 {
978 Lisp_Object temp;
979 XSETFASTINT (temp, BEGV);
980 return temp;
981 }
982
983 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
984 doc: /* Return a marker to the minimum permissible value of point in this buffer.
985 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
986 (void)
987 {
988 return build_marker (current_buffer, BEGV, BEGV_BYTE);
989 }
990
991 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
992 doc: /* Return the maximum permissible value of point in the current buffer.
993 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
994 is in effect, in which case it is less. */)
995 (void)
996 {
997 Lisp_Object temp;
998 XSETFASTINT (temp, ZV);
999 return temp;
1000 }
1001
1002 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1003 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1004 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1005 is in effect, in which case it is less. */)
1006 (void)
1007 {
1008 return build_marker (current_buffer, ZV, ZV_BYTE);
1009 }
1010
1011 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1012 doc: /* Return the position of the gap, in the current buffer.
1013 See also `gap-size'. */)
1014 (void)
1015 {
1016 Lisp_Object temp;
1017 XSETFASTINT (temp, GPT);
1018 return temp;
1019 }
1020
1021 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1022 doc: /* Return the size of the current buffer's gap.
1023 See also `gap-position'. */)
1024 (void)
1025 {
1026 Lisp_Object temp;
1027 XSETFASTINT (temp, GAP_SIZE);
1028 return temp;
1029 }
1030
1031 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1032 doc: /* Return the byte position for character position POSITION.
1033 If POSITION is out of range, the value is nil. */)
1034 (Lisp_Object position)
1035 {
1036 CHECK_NUMBER_COERCE_MARKER (position);
1037 if (XINT (position) < BEG || XINT (position) > Z)
1038 return Qnil;
1039 return make_number (CHAR_TO_BYTE (XINT (position)));
1040 }
1041
1042 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1043 doc: /* Return the character position for byte position BYTEPOS.
1044 If BYTEPOS is out of range, the value is nil. */)
1045 (Lisp_Object bytepos)
1046 {
1047 CHECK_NUMBER (bytepos);
1048 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1049 return Qnil;
1050 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1051 }
1052 \f
1053 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1054 doc: /* Return the character following point, as a number.
1055 At the end of the buffer or accessible region, return 0. */)
1056 (void)
1057 {
1058 Lisp_Object temp;
1059 if (PT >= ZV)
1060 XSETFASTINT (temp, 0);
1061 else
1062 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1063 return temp;
1064 }
1065
1066 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1067 doc: /* Return the character preceding point, as a number.
1068 At the beginning of the buffer or accessible region, return 0. */)
1069 (void)
1070 {
1071 Lisp_Object temp;
1072 if (PT <= BEGV)
1073 XSETFASTINT (temp, 0);
1074 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1075 {
1076 ptrdiff_t pos = PT_BYTE;
1077 DEC_POS (pos);
1078 XSETFASTINT (temp, FETCH_CHAR (pos));
1079 }
1080 else
1081 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1082 return temp;
1083 }
1084
1085 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1086 doc: /* Return t if point is at the beginning of the buffer.
1087 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1088 (void)
1089 {
1090 if (PT == BEGV)
1091 return Qt;
1092 return Qnil;
1093 }
1094
1095 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1096 doc: /* Return t if point is at the end of the buffer.
1097 If the buffer is narrowed, this means the end of the narrowed part. */)
1098 (void)
1099 {
1100 if (PT == ZV)
1101 return Qt;
1102 return Qnil;
1103 }
1104
1105 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1106 doc: /* Return t if point is at the beginning of a line. */)
1107 (void)
1108 {
1109 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1110 return Qt;
1111 return Qnil;
1112 }
1113
1114 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1115 doc: /* Return t if point is at the end of a line.
1116 `End of a line' includes point being at the end of the buffer. */)
1117 (void)
1118 {
1119 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1120 return Qt;
1121 return Qnil;
1122 }
1123
1124 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1125 doc: /* Return character in current buffer at position POS.
1126 POS is an integer or a marker and defaults to point.
1127 If POS is out of range, the value is nil. */)
1128 (Lisp_Object pos)
1129 {
1130 register ptrdiff_t pos_byte;
1131
1132 if (NILP (pos))
1133 {
1134 pos_byte = PT_BYTE;
1135 XSETFASTINT (pos, PT);
1136 }
1137
1138 if (MARKERP (pos))
1139 {
1140 pos_byte = marker_byte_position (pos);
1141 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1142 return Qnil;
1143 }
1144 else
1145 {
1146 CHECK_NUMBER_COERCE_MARKER (pos);
1147 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1148 return Qnil;
1149
1150 pos_byte = CHAR_TO_BYTE (XINT (pos));
1151 }
1152
1153 return make_number (FETCH_CHAR (pos_byte));
1154 }
1155
1156 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1157 doc: /* Return character in current buffer preceding position POS.
1158 POS is an integer or a marker and defaults to point.
1159 If POS is out of range, the value is nil. */)
1160 (Lisp_Object pos)
1161 {
1162 register Lisp_Object val;
1163 register ptrdiff_t pos_byte;
1164
1165 if (NILP (pos))
1166 {
1167 pos_byte = PT_BYTE;
1168 XSETFASTINT (pos, PT);
1169 }
1170
1171 if (MARKERP (pos))
1172 {
1173 pos_byte = marker_byte_position (pos);
1174
1175 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1176 return Qnil;
1177 }
1178 else
1179 {
1180 CHECK_NUMBER_COERCE_MARKER (pos);
1181
1182 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1183 return Qnil;
1184
1185 pos_byte = CHAR_TO_BYTE (XINT (pos));
1186 }
1187
1188 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1189 {
1190 DEC_POS (pos_byte);
1191 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1192 }
1193 else
1194 {
1195 pos_byte--;
1196 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1197 }
1198 return val;
1199 }
1200 \f
1201 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1202 doc: /* Return the name under which the user logged in, as a string.
1203 This is based on the effective uid, not the real uid.
1204 Also, if the environment variables LOGNAME or USER are set,
1205 that determines the value of this function.
1206
1207 If optional argument UID is an integer or a float, return the login name
1208 of the user with that uid, or nil if there is no such user. */)
1209 (Lisp_Object uid)
1210 {
1211 struct passwd *pw;
1212 uid_t id;
1213
1214 /* Set up the user name info if we didn't do it before.
1215 (That can happen if Emacs is dumpable
1216 but you decide to run `temacs -l loadup' and not dump. */
1217 if (INTEGERP (Vuser_login_name))
1218 init_editfns ();
1219
1220 if (NILP (uid))
1221 return Vuser_login_name;
1222
1223 CONS_TO_INTEGER (uid, uid_t, id);
1224 BLOCK_INPUT;
1225 pw = getpwuid (id);
1226 UNBLOCK_INPUT;
1227 return (pw ? build_string (pw->pw_name) : Qnil);
1228 }
1229
1230 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1231 0, 0, 0,
1232 doc: /* Return the name of the user's real uid, as a string.
1233 This ignores the environment variables LOGNAME and USER, so it differs from
1234 `user-login-name' when running under `su'. */)
1235 (void)
1236 {
1237 /* Set up the user name info if we didn't do it before.
1238 (That can happen if Emacs is dumpable
1239 but you decide to run `temacs -l loadup' and not dump. */
1240 if (INTEGERP (Vuser_login_name))
1241 init_editfns ();
1242 return Vuser_real_login_name;
1243 }
1244
1245 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1246 doc: /* Return the effective uid of Emacs.
1247 Value is an integer or a float, depending on the value. */)
1248 (void)
1249 {
1250 uid_t euid = geteuid ();
1251 return make_fixnum_or_float (euid);
1252 }
1253
1254 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1255 doc: /* Return the real uid of Emacs.
1256 Value is an integer or a float, depending on the value. */)
1257 (void)
1258 {
1259 uid_t uid = getuid ();
1260 return make_fixnum_or_float (uid);
1261 }
1262
1263 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1264 doc: /* Return the full name of the user logged in, as a string.
1265 If the full name corresponding to Emacs's userid is not known,
1266 return "unknown".
1267
1268 If optional argument UID is an integer or float, return the full name
1269 of the user with that uid, or nil if there is no such user.
1270 If UID is a string, return the full name of the user with that login
1271 name, or nil if there is no such user. */)
1272 (Lisp_Object uid)
1273 {
1274 struct passwd *pw;
1275 register char *p, *q;
1276 Lisp_Object full;
1277
1278 if (NILP (uid))
1279 return Vuser_full_name;
1280 else if (NUMBERP (uid))
1281 {
1282 uid_t u;
1283 CONS_TO_INTEGER (uid, uid_t, u);
1284 BLOCK_INPUT;
1285 pw = getpwuid (u);
1286 UNBLOCK_INPUT;
1287 }
1288 else if (STRINGP (uid))
1289 {
1290 BLOCK_INPUT;
1291 pw = getpwnam (SSDATA (uid));
1292 UNBLOCK_INPUT;
1293 }
1294 else
1295 error ("Invalid UID specification");
1296
1297 if (!pw)
1298 return Qnil;
1299
1300 p = USER_FULL_NAME;
1301 /* Chop off everything after the first comma. */
1302 q = strchr (p, ',');
1303 full = make_string (p, q ? q - p : strlen (p));
1304
1305 #ifdef AMPERSAND_FULL_NAME
1306 p = SSDATA (full);
1307 q = strchr (p, '&');
1308 /* Substitute the login name for the &, upcasing the first character. */
1309 if (q)
1310 {
1311 register char *r;
1312 Lisp_Object login;
1313
1314 login = Fuser_login_name (make_number (pw->pw_uid));
1315 r = alloca (strlen (p) + SCHARS (login) + 1);
1316 memcpy (r, p, q - p);
1317 r[q - p] = 0;
1318 strcat (r, SSDATA (login));
1319 r[q - p] = upcase ((unsigned char) r[q - p]);
1320 strcat (r, q + 1);
1321 full = build_string (r);
1322 }
1323 #endif /* AMPERSAND_FULL_NAME */
1324
1325 return full;
1326 }
1327
1328 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1329 doc: /* Return the host name of the machine you are running on, as a string. */)
1330 (void)
1331 {
1332 return Vsystem_name;
1333 }
1334
1335 const char *
1336 get_system_name (void)
1337 {
1338 if (STRINGP (Vsystem_name))
1339 return SSDATA (Vsystem_name);
1340 else
1341 return "";
1342 }
1343
1344 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1345 doc: /* Return the process ID of Emacs, as a number. */)
1346 (void)
1347 {
1348 pid_t pid = getpid ();
1349 return make_fixnum_or_float (pid);
1350 }
1351
1352 \f
1353
1354 #ifndef TIME_T_MIN
1355 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1356 #endif
1357 #ifndef TIME_T_MAX
1358 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1359 #endif
1360
1361 /* Report that a time value is out of range for Emacs. */
1362 void
1363 time_overflow (void)
1364 {
1365 error ("Specified time is not representable");
1366 }
1367
1368 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1369 static EMACS_INT
1370 hi_time (time_t t)
1371 {
1372 time_t hi = t >> 16;
1373
1374 /* Check for overflow, helping the compiler for common cases where
1375 no runtime check is needed, and taking care not to convert
1376 negative numbers to unsigned before comparing them. */
1377 if (! ((! TYPE_SIGNED (time_t)
1378 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1379 || MOST_NEGATIVE_FIXNUM <= hi)
1380 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1381 || hi <= MOST_POSITIVE_FIXNUM)))
1382 time_overflow ();
1383
1384 return hi;
1385 }
1386
1387 /* Return the bottom 16 bits of the time T. */
1388 static int
1389 lo_time (time_t t)
1390 {
1391 return t & ((1 << 16) - 1);
1392 }
1393
1394 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1395 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1396 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1397 HIGH has the most significant bits of the seconds, while LOW has the
1398 least significant 16 bits. USEC and PSEC are the microsecond and
1399 picosecond counts. */)
1400 (void)
1401 {
1402 return make_lisp_time (current_emacs_time ());
1403 }
1404
1405 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1406 0, 0, 0,
1407 doc: /* Return the current run time used by Emacs.
1408 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1409 style as (current-time).
1410
1411 On systems that can't determine the run time, `get-internal-run-time'
1412 does the same thing as `current-time'. */)
1413 (void)
1414 {
1415 #ifdef HAVE_GETRUSAGE
1416 struct rusage usage;
1417 time_t secs;
1418 int usecs;
1419
1420 if (getrusage (RUSAGE_SELF, &usage) < 0)
1421 /* This shouldn't happen. What action is appropriate? */
1422 xsignal0 (Qerror);
1423
1424 /* Sum up user time and system time. */
1425 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1426 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1427 if (usecs >= 1000000)
1428 {
1429 usecs -= 1000000;
1430 secs++;
1431 }
1432 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1433 #else /* ! HAVE_GETRUSAGE */
1434 #ifdef WINDOWSNT
1435 return w32_get_internal_run_time ();
1436 #else /* ! WINDOWSNT */
1437 return Fcurrent_time ();
1438 #endif /* WINDOWSNT */
1439 #endif /* HAVE_GETRUSAGE */
1440 }
1441 \f
1442
1443 /* Make a Lisp list that represents the time T with fraction TAIL. */
1444 static Lisp_Object
1445 make_time_tail (time_t t, Lisp_Object tail)
1446 {
1447 return Fcons (make_number (hi_time (t)),
1448 Fcons (make_number (lo_time (t)), tail));
1449 }
1450
1451 /* Make a Lisp list that represents the system time T. */
1452 static Lisp_Object
1453 make_time (time_t t)
1454 {
1455 return make_time_tail (t, Qnil);
1456 }
1457
1458 /* Make a Lisp list that represents the Emacs time T. T may be an
1459 invalid time, with a slightly negative tv_nsec value such as
1460 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1461 correspondingly negative picosecond count. */
1462 Lisp_Object
1463 make_lisp_time (EMACS_TIME t)
1464 {
1465 int ns = EMACS_NSECS (t);
1466 return make_time_tail (EMACS_SECS (t),
1467 list2 (make_number (ns / 1000),
1468 make_number (ns % 1000 * 1000)));
1469 }
1470
1471 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1472 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1473 Return nonzero if successful. */
1474 static int
1475 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1476 Lisp_Object *plow, Lisp_Object *pusec,
1477 Lisp_Object *ppsec)
1478 {
1479 if (CONSP (specified_time))
1480 {
1481 Lisp_Object low = XCDR (specified_time);
1482 Lisp_Object usec = make_number (0);
1483 Lisp_Object psec = make_number (0);
1484 if (CONSP (low))
1485 {
1486 Lisp_Object low_tail = XCDR (low);
1487 low = XCAR (low);
1488 if (CONSP (low_tail))
1489 {
1490 usec = XCAR (low_tail);
1491 low_tail = XCDR (low_tail);
1492 if (CONSP (low_tail))
1493 psec = XCAR (low_tail);
1494 }
1495 else if (!NILP (low_tail))
1496 usec = low_tail;
1497 }
1498
1499 *phigh = XCAR (specified_time);
1500 *plow = low;
1501 *pusec = usec;
1502 *ppsec = psec;
1503 return 1;
1504 }
1505
1506 return 0;
1507 }
1508
1509 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1510 list, generate the corresponding time value.
1511
1512 If RESULT is not null, store into *RESULT the converted time;
1513 this can fail if the converted time does not fit into EMACS_TIME.
1514 If *DRESULT is not null, store into *DRESULT the number of
1515 seconds since the start of the POSIX Epoch.
1516
1517 Return nonzero if successful. */
1518 int
1519 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1520 Lisp_Object psec,
1521 EMACS_TIME *result, double *dresult)
1522 {
1523 EMACS_INT hi, lo, us, ps;
1524 if (! (INTEGERP (high) && INTEGERP (low)
1525 && INTEGERP (usec) && INTEGERP (psec)))
1526 return 0;
1527 hi = XINT (high);
1528 lo = XINT (low);
1529 us = XINT (usec);
1530 ps = XINT (psec);
1531
1532 /* Normalize out-of-range lower-order components by carrying
1533 each overflow into the next higher-order component. */
1534 us += ps / 1000000 - (ps % 1000000 < 0);
1535 lo += us / 1000000 - (us % 1000000 < 0);
1536 hi += lo >> 16;
1537 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1538 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1539 lo &= (1 << 16) - 1;
1540
1541 if (result)
1542 {
1543 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1544 && hi <= TIME_T_MAX >> 16)
1545 {
1546 /* Return the greatest representable time that is not greater
1547 than the requested time. */
1548 time_t sec = hi;
1549 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1550 }
1551 else
1552 {
1553 /* Overflow in the highest-order component. */
1554 return 0;
1555 }
1556 }
1557
1558 if (dresult)
1559 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1560
1561 return 1;
1562 }
1563
1564 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1565 If SPECIFIED_TIME is nil, use the current time.
1566
1567 Round the time down to the nearest EMACS_TIME value.
1568 Return seconds since the Epoch.
1569 Signal an error if unsuccessful. */
1570 EMACS_TIME
1571 lisp_time_argument (Lisp_Object specified_time)
1572 {
1573 EMACS_TIME t;
1574 if (NILP (specified_time))
1575 t = current_emacs_time ();
1576 else
1577 {
1578 Lisp_Object high, low, usec, psec;
1579 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1580 && decode_time_components (high, low, usec, psec, &t, 0)))
1581 error ("Invalid time specification");
1582 }
1583 return t;
1584 }
1585
1586 /* Like lisp_time_argument, except decode only the seconds part,
1587 do not allow out-of-range time stamps, do not check the subseconds part,
1588 and always round down. */
1589 static time_t
1590 lisp_seconds_argument (Lisp_Object specified_time)
1591 {
1592 if (NILP (specified_time))
1593 return time (NULL);
1594 else
1595 {
1596 Lisp_Object high, low, usec, psec;
1597 EMACS_TIME t;
1598 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1599 && decode_time_components (high, low, make_number (0),
1600 make_number (0), &t, 0)))
1601 error ("Invalid time specification");
1602 return EMACS_SECS (t);
1603 }
1604 }
1605
1606 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1607 doc: /* Return the current time, as a float number of seconds since the epoch.
1608 If SPECIFIED-TIME is given, it is the time to convert to float
1609 instead of the current time. The argument should have the form
1610 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1611 you can use times from `current-time' and from `file-attributes'.
1612 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1613 considered obsolete.
1614
1615 WARNING: Since the result is floating point, it may not be exact.
1616 If precise time stamps are required, use either `current-time',
1617 or (if you need time as a string) `format-time-string'. */)
1618 (Lisp_Object specified_time)
1619 {
1620 double t;
1621 if (NILP (specified_time))
1622 {
1623 EMACS_TIME now = current_emacs_time ();
1624 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1625 }
1626 else
1627 {
1628 Lisp_Object high, low, usec, psec;
1629 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1630 && decode_time_components (high, low, usec, psec, 0, &t)))
1631 error ("Invalid time specification");
1632 }
1633 return make_float (t);
1634 }
1635
1636 /* Write information into buffer S of size MAXSIZE, according to the
1637 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1638 Default to Universal Time if UT is nonzero, local time otherwise.
1639 Use NS as the number of nanoseconds in the %N directive.
1640 Return the number of bytes written, not including the terminating
1641 '\0'. If S is NULL, nothing will be written anywhere; so to
1642 determine how many bytes would be written, use NULL for S and
1643 ((size_t) -1) for MAXSIZE.
1644
1645 This function behaves like nstrftime, except it allows null
1646 bytes in FORMAT and it does not support nanoseconds. */
1647 static size_t
1648 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1649 size_t format_len, const struct tm *tp, int ut, int ns)
1650 {
1651 size_t total = 0;
1652
1653 /* Loop through all the null-terminated strings in the format
1654 argument. Normally there's just one null-terminated string, but
1655 there can be arbitrarily many, concatenated together, if the
1656 format contains '\0' bytes. nstrftime stops at the first
1657 '\0' byte so we must invoke it separately for each such string. */
1658 for (;;)
1659 {
1660 size_t len;
1661 size_t result;
1662
1663 if (s)
1664 s[0] = '\1';
1665
1666 result = nstrftime (s, maxsize, format, tp, ut, ns);
1667
1668 if (s)
1669 {
1670 if (result == 0 && s[0] != '\0')
1671 return 0;
1672 s += result + 1;
1673 }
1674
1675 maxsize -= result + 1;
1676 total += result;
1677 len = strlen (format);
1678 if (len == format_len)
1679 return total;
1680 total++;
1681 format += len + 1;
1682 format_len -= len + 1;
1683 }
1684 }
1685
1686 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1687 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1688 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1689 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1690 is also still accepted.
1691 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1692 as Universal Time; nil means describe TIME in the local time zone.
1693 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1694 by text that describes the specified date and time in TIME:
1695
1696 %Y is the year, %y within the century, %C the century.
1697 %G is the year corresponding to the ISO week, %g within the century.
1698 %m is the numeric month.
1699 %b and %h are the locale's abbreviated month name, %B the full name.
1700 %d is the day of the month, zero-padded, %e is blank-padded.
1701 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1702 %a is the locale's abbreviated name of the day of week, %A the full name.
1703 %U is the week number starting on Sunday, %W starting on Monday,
1704 %V according to ISO 8601.
1705 %j is the day of the year.
1706
1707 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1708 only blank-padded, %l is like %I blank-padded.
1709 %p is the locale's equivalent of either AM or PM.
1710 %M is the minute.
1711 %S is the second.
1712 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1713 %Z is the time zone name, %z is the numeric form.
1714 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1715
1716 %c is the locale's date and time format.
1717 %x is the locale's "preferred" date format.
1718 %D is like "%m/%d/%y".
1719
1720 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1721 %X is the locale's "preferred" time format.
1722
1723 Finally, %n is a newline, %t is a tab, %% is a literal %.
1724
1725 Certain flags and modifiers are available with some format controls.
1726 The flags are `_', `-', `^' and `#'. For certain characters X,
1727 %_X is like %X, but padded with blanks; %-X is like %X,
1728 but without padding. %^X is like %X, but with all textual
1729 characters up-cased; %#X is like %X, but with letter-case of
1730 all textual characters reversed.
1731 %NX (where N stands for an integer) is like %X,
1732 but takes up at least N (a number) positions.
1733 The modifiers are `E' and `O'. For certain characters X,
1734 %EX is a locale's alternative version of %X;
1735 %OX is like %X, but uses the locale's number symbols.
1736
1737 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1738
1739 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1740 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1741 {
1742 EMACS_TIME t = lisp_time_argument (timeval);
1743 struct tm tm;
1744
1745 CHECK_STRING (format_string);
1746 format_string = code_convert_string_norecord (format_string,
1747 Vlocale_coding_system, 1);
1748 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1749 t, ! NILP (universal), &tm);
1750 }
1751
1752 static Lisp_Object
1753 format_time_string (char const *format, ptrdiff_t formatlen,
1754 EMACS_TIME t, int ut, struct tm *tmp)
1755 {
1756 char buffer[4000];
1757 char *buf = buffer;
1758 ptrdiff_t size = sizeof buffer;
1759 size_t len;
1760 Lisp_Object bufstring;
1761 int ns = EMACS_NSECS (t);
1762 struct tm *tm;
1763 USE_SAFE_ALLOCA;
1764
1765 while (1)
1766 {
1767 time_t *taddr = emacs_secs_addr (&t);
1768 BLOCK_INPUT;
1769
1770 synchronize_system_time_locale ();
1771
1772 tm = ut ? gmtime (taddr) : localtime (taddr);
1773 if (! tm)
1774 {
1775 UNBLOCK_INPUT;
1776 time_overflow ();
1777 }
1778 *tmp = *tm;
1779
1780 buf[0] = '\1';
1781 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1782 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1783 break;
1784
1785 /* Buffer was too small, so make it bigger and try again. */
1786 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1787 UNBLOCK_INPUT;
1788 if (STRING_BYTES_BOUND <= len)
1789 string_overflow ();
1790 size = len + 1;
1791 buf = SAFE_ALLOCA (size);
1792 }
1793
1794 UNBLOCK_INPUT;
1795 bufstring = make_unibyte_string (buf, len);
1796 SAFE_FREE ();
1797 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1798 }
1799
1800 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1801 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1802 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1803 as from `current-time' and `file-attributes', or nil to use the
1804 current time. The obsolete form (HIGH . LOW) is also still accepted.
1805 The list has the following nine members: SEC is an integer between 0
1806 and 60; SEC is 60 for a leap second, which only some operating systems
1807 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1808 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1809 integer between 1 and 12. YEAR is an integer indicating the
1810 four-digit year. DOW is the day of week, an integer between 0 and 6,
1811 where 0 is Sunday. DST is t if daylight saving time is in effect,
1812 otherwise nil. ZONE is an integer indicating the number of seconds
1813 east of Greenwich. (Note that Common Lisp has different meanings for
1814 DOW and ZONE.) */)
1815 (Lisp_Object specified_time)
1816 {
1817 time_t time_spec = lisp_seconds_argument (specified_time);
1818 struct tm save_tm;
1819 struct tm *decoded_time;
1820 Lisp_Object list_args[9];
1821
1822 BLOCK_INPUT;
1823 decoded_time = localtime (&time_spec);
1824 if (decoded_time)
1825 save_tm = *decoded_time;
1826 UNBLOCK_INPUT;
1827 if (! (decoded_time
1828 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1829 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1830 time_overflow ();
1831 XSETFASTINT (list_args[0], save_tm.tm_sec);
1832 XSETFASTINT (list_args[1], save_tm.tm_min);
1833 XSETFASTINT (list_args[2], save_tm.tm_hour);
1834 XSETFASTINT (list_args[3], save_tm.tm_mday);
1835 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1836 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1837 cast below avoids overflow in int arithmetics. */
1838 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1839 XSETFASTINT (list_args[6], save_tm.tm_wday);
1840 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1841
1842 BLOCK_INPUT;
1843 decoded_time = gmtime (&time_spec);
1844 if (decoded_time == 0)
1845 list_args[8] = Qnil;
1846 else
1847 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1848 UNBLOCK_INPUT;
1849 return Flist (9, list_args);
1850 }
1851
1852 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1853 the result is representable as an int. Assume OFFSET is small and
1854 nonnegative. */
1855 static int
1856 check_tm_member (Lisp_Object obj, int offset)
1857 {
1858 EMACS_INT n;
1859 CHECK_NUMBER (obj);
1860 n = XINT (obj);
1861 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1862 time_overflow ();
1863 return n - offset;
1864 }
1865
1866 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1867 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1868 This is the reverse operation of `decode-time', which see.
1869 ZONE defaults to the current time zone rule. This can
1870 be a string or t (as from `set-time-zone-rule'), or it can be a list
1871 \(as from `current-time-zone') or an integer (as from `decode-time')
1872 applied without consideration for daylight saving time.
1873
1874 You can pass more than 7 arguments; then the first six arguments
1875 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1876 The intervening arguments are ignored.
1877 This feature lets (apply 'encode-time (decode-time ...)) work.
1878
1879 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1880 for example, a DAY of 0 means the day preceding the given month.
1881 Year numbers less than 100 are treated just like other year numbers.
1882 If you want them to stand for years in this century, you must do that yourself.
1883
1884 Years before 1970 are not guaranteed to work. On some systems,
1885 year values as low as 1901 do work.
1886
1887 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1888 (ptrdiff_t nargs, Lisp_Object *args)
1889 {
1890 time_t value;
1891 struct tm tm;
1892 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1893
1894 tm.tm_sec = check_tm_member (args[0], 0);
1895 tm.tm_min = check_tm_member (args[1], 0);
1896 tm.tm_hour = check_tm_member (args[2], 0);
1897 tm.tm_mday = check_tm_member (args[3], 0);
1898 tm.tm_mon = check_tm_member (args[4], 1);
1899 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1900 tm.tm_isdst = -1;
1901
1902 if (CONSP (zone))
1903 zone = XCAR (zone);
1904 if (NILP (zone))
1905 {
1906 BLOCK_INPUT;
1907 value = mktime (&tm);
1908 UNBLOCK_INPUT;
1909 }
1910 else
1911 {
1912 char tzbuf[100];
1913 const char *tzstring;
1914 char **oldenv = environ, **newenv;
1915
1916 if (EQ (zone, Qt))
1917 tzstring = "UTC0";
1918 else if (STRINGP (zone))
1919 tzstring = SSDATA (zone);
1920 else if (INTEGERP (zone))
1921 {
1922 EMACS_INT abszone = eabs (XINT (zone));
1923 EMACS_INT zone_hr = abszone / (60*60);
1924 int zone_min = (abszone/60) % 60;
1925 int zone_sec = abszone % 60;
1926 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1927 zone_hr, zone_min, zone_sec);
1928 tzstring = tzbuf;
1929 }
1930 else
1931 error ("Invalid time zone specification");
1932
1933 BLOCK_INPUT;
1934
1935 /* Set TZ before calling mktime; merely adjusting mktime's returned
1936 value doesn't suffice, since that would mishandle leap seconds. */
1937 set_time_zone_rule (tzstring);
1938
1939 value = mktime (&tm);
1940
1941 /* Restore TZ to previous value. */
1942 newenv = environ;
1943 environ = oldenv;
1944 #ifdef LOCALTIME_CACHE
1945 tzset ();
1946 #endif
1947 UNBLOCK_INPUT;
1948
1949 xfree (newenv);
1950 }
1951
1952 if (value == (time_t) -1)
1953 time_overflow ();
1954
1955 return make_time (value);
1956 }
1957
1958 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1959 doc: /* Return the current local time, as a human-readable string.
1960 Programs can use this function to decode a time,
1961 since the number of columns in each field is fixed
1962 if the year is in the range 1000-9999.
1963 The format is `Sun Sep 16 01:03:52 1973'.
1964 However, see also the functions `decode-time' and `format-time-string'
1965 which provide a much more powerful and general facility.
1966
1967 If SPECIFIED-TIME is given, it is a time to format instead of the
1968 current time. The argument should have the form (HIGH LOW . IGNORED).
1969 Thus, you can use times obtained from `current-time' and from
1970 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1971 but this is considered obsolete. */)
1972 (Lisp_Object specified_time)
1973 {
1974 time_t value = lisp_seconds_argument (specified_time);
1975 struct tm *tm;
1976 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1977 int len IF_LINT (= 0);
1978
1979 /* Convert to a string in ctime format, except without the trailing
1980 newline, and without the 4-digit year limit. Don't use asctime
1981 or ctime, as they might dump core if the year is outside the
1982 range -999 .. 9999. */
1983 BLOCK_INPUT;
1984 tm = localtime (&value);
1985 if (tm)
1986 {
1987 static char const wday_name[][4] =
1988 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1989 static char const mon_name[][4] =
1990 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1991 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1992 printmax_t year_base = TM_YEAR_BASE;
1993
1994 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
1995 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
1996 tm->tm_hour, tm->tm_min, tm->tm_sec,
1997 tm->tm_year + year_base);
1998 }
1999 UNBLOCK_INPUT;
2000 if (! tm)
2001 time_overflow ();
2002
2003 return make_unibyte_string (buf, len);
2004 }
2005
2006 /* Yield A - B, measured in seconds.
2007 This function is copied from the GNU C Library. */
2008 static int
2009 tm_diff (struct tm *a, struct tm *b)
2010 {
2011 /* Compute intervening leap days correctly even if year is negative.
2012 Take care to avoid int overflow in leap day calculations,
2013 but it's OK to assume that A and B are close to each other. */
2014 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2015 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2016 int a100 = a4 / 25 - (a4 % 25 < 0);
2017 int b100 = b4 / 25 - (b4 % 25 < 0);
2018 int a400 = a100 >> 2;
2019 int b400 = b100 >> 2;
2020 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2021 int years = a->tm_year - b->tm_year;
2022 int days = (365 * years + intervening_leap_days
2023 + (a->tm_yday - b->tm_yday));
2024 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2025 + (a->tm_min - b->tm_min))
2026 + (a->tm_sec - b->tm_sec));
2027 }
2028
2029 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2030 doc: /* Return the offset and name for the local time zone.
2031 This returns a list of the form (OFFSET NAME).
2032 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2033 A negative value means west of Greenwich.
2034 NAME is a string giving the name of the time zone.
2035 If SPECIFIED-TIME is given, the time zone offset is determined from it
2036 instead of using the current time. The argument should have the form
2037 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2038 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2039 have the form (HIGH . LOW), but this is considered obsolete.
2040
2041 Some operating systems cannot provide all this information to Emacs;
2042 in this case, `current-time-zone' returns a list containing nil for
2043 the data it can't find. */)
2044 (Lisp_Object specified_time)
2045 {
2046 EMACS_TIME value;
2047 int offset;
2048 struct tm *t;
2049 struct tm localtm;
2050 Lisp_Object zone_offset, zone_name;
2051
2052 zone_offset = Qnil;
2053 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2054 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2055 BLOCK_INPUT;
2056 t = gmtime (emacs_secs_addr (&value));
2057 if (t)
2058 offset = tm_diff (&localtm, t);
2059 UNBLOCK_INPUT;
2060
2061 if (t)
2062 {
2063 zone_offset = make_number (offset);
2064 if (SCHARS (zone_name) == 0)
2065 {
2066 /* No local time zone name is available; use "+-NNNN" instead. */
2067 int m = offset / 60;
2068 int am = offset < 0 ? - m : m;
2069 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2070 zone_name = make_formatted_string (buf, "%c%02d%02d",
2071 (offset < 0 ? '-' : '+'),
2072 am / 60, am % 60);
2073 }
2074 }
2075
2076 return list2 (zone_offset, zone_name);
2077 }
2078
2079 /* This holds the value of `environ' produced by the previous
2080 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2081 has never been called. */
2082 static char **environbuf;
2083
2084 /* This holds the startup value of the TZ environment variable so it
2085 can be restored if the user calls set-time-zone-rule with a nil
2086 argument. */
2087 static char *initial_tz;
2088
2089 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2090 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2091 If TZ is nil, use implementation-defined default time zone information.
2092 If TZ is t, use Universal Time.
2093
2094 Instead of calling this function, you typically want (setenv "TZ" TZ).
2095 That changes both the environment of the Emacs process and the
2096 variable `process-environment', whereas `set-time-zone-rule' affects
2097 only the former. */)
2098 (Lisp_Object tz)
2099 {
2100 const char *tzstring;
2101 char **old_environbuf;
2102
2103 if (! (NILP (tz) || EQ (tz, Qt)))
2104 CHECK_STRING (tz);
2105
2106 BLOCK_INPUT;
2107
2108 /* When called for the first time, save the original TZ. */
2109 old_environbuf = environbuf;
2110 if (!old_environbuf)
2111 initial_tz = (char *) getenv ("TZ");
2112
2113 if (NILP (tz))
2114 tzstring = initial_tz;
2115 else if (EQ (tz, Qt))
2116 tzstring = "UTC0";
2117 else
2118 tzstring = SSDATA (tz);
2119
2120 set_time_zone_rule (tzstring);
2121 environbuf = environ;
2122
2123 UNBLOCK_INPUT;
2124
2125 xfree (old_environbuf);
2126 return Qnil;
2127 }
2128
2129 #ifdef LOCALTIME_CACHE
2130
2131 /* These two values are known to load tz files in buggy implementations,
2132 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2133 Their values shouldn't matter in non-buggy implementations.
2134 We don't use string literals for these strings,
2135 since if a string in the environment is in readonly
2136 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2137 See Sun bugs 1113095 and 1114114, ``Timezone routines
2138 improperly modify environment''. */
2139
2140 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2141 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2142
2143 #endif
2144
2145 /* Set the local time zone rule to TZSTRING.
2146 This allocates memory into `environ', which it is the caller's
2147 responsibility to free. */
2148
2149 void
2150 set_time_zone_rule (const char *tzstring)
2151 {
2152 ptrdiff_t envptrs;
2153 char **from, **to, **newenv;
2154
2155 /* Make the ENVIRON vector longer with room for TZSTRING. */
2156 for (from = environ; *from; from++)
2157 continue;
2158 envptrs = from - environ + 2;
2159 newenv = to = xmalloc (envptrs * sizeof *newenv
2160 + (tzstring ? strlen (tzstring) + 4 : 0));
2161
2162 /* Add TZSTRING to the end of environ, as a value for TZ. */
2163 if (tzstring)
2164 {
2165 char *t = (char *) (to + envptrs);
2166 strcpy (t, "TZ=");
2167 strcat (t, tzstring);
2168 *to++ = t;
2169 }
2170
2171 /* Copy the old environ vector elements into NEWENV,
2172 but don't copy the TZ variable.
2173 So we have only one definition of TZ, which came from TZSTRING. */
2174 for (from = environ; *from; from++)
2175 if (strncmp (*from, "TZ=", 3) != 0)
2176 *to++ = *from;
2177 *to = 0;
2178
2179 environ = newenv;
2180
2181 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2182 the TZ variable is stored. If we do not have a TZSTRING,
2183 TO points to the vector slot which has the terminating null. */
2184
2185 #ifdef LOCALTIME_CACHE
2186 {
2187 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2188 "US/Pacific" that loads a tz file, then changes to a value like
2189 "XXX0" that does not load a tz file, and then changes back to
2190 its original value, the last change is (incorrectly) ignored.
2191 Also, if TZ changes twice in succession to values that do
2192 not load a tz file, tzset can dump core (see Sun bug#1225179).
2193 The following code works around these bugs. */
2194
2195 if (tzstring)
2196 {
2197 /* Temporarily set TZ to a value that loads a tz file
2198 and that differs from tzstring. */
2199 char *tz = *newenv;
2200 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2201 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2202 tzset ();
2203 *newenv = tz;
2204 }
2205 else
2206 {
2207 /* The implied tzstring is unknown, so temporarily set TZ to
2208 two different values that each load a tz file. */
2209 *to = set_time_zone_rule_tz1;
2210 to[1] = 0;
2211 tzset ();
2212 *to = set_time_zone_rule_tz2;
2213 tzset ();
2214 *to = 0;
2215 }
2216
2217 /* Now TZ has the desired value, and tzset can be invoked safely. */
2218 }
2219
2220 tzset ();
2221 #endif
2222 }
2223 \f
2224 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2225 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2226 type of object is Lisp_String). INHERIT is passed to
2227 INSERT_FROM_STRING_FUNC as the last argument. */
2228
2229 static void
2230 general_insert_function (void (*insert_func)
2231 (const char *, ptrdiff_t),
2232 void (*insert_from_string_func)
2233 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2234 ptrdiff_t, ptrdiff_t, int),
2235 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2236 {
2237 ptrdiff_t argnum;
2238 register Lisp_Object val;
2239
2240 for (argnum = 0; argnum < nargs; argnum++)
2241 {
2242 val = args[argnum];
2243 if (CHARACTERP (val))
2244 {
2245 int c = XFASTINT (val);
2246 unsigned char str[MAX_MULTIBYTE_LENGTH];
2247 int len;
2248
2249 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2250 len = CHAR_STRING (c, str);
2251 else
2252 {
2253 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2254 len = 1;
2255 }
2256 (*insert_func) ((char *) str, len);
2257 }
2258 else if (STRINGP (val))
2259 {
2260 (*insert_from_string_func) (val, 0, 0,
2261 SCHARS (val),
2262 SBYTES (val),
2263 inherit);
2264 }
2265 else
2266 wrong_type_argument (Qchar_or_string_p, val);
2267 }
2268 }
2269
2270 void
2271 insert1 (Lisp_Object arg)
2272 {
2273 Finsert (1, &arg);
2274 }
2275
2276
2277 /* Callers passing one argument to Finsert need not gcpro the
2278 argument "array", since the only element of the array will
2279 not be used after calling insert or insert_from_string, so
2280 we don't care if it gets trashed. */
2281
2282 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2283 doc: /* Insert the arguments, either strings or characters, at point.
2284 Point and before-insertion markers move forward to end up
2285 after the inserted text.
2286 Any other markers at the point of insertion remain before the text.
2287
2288 If the current buffer is multibyte, unibyte strings are converted
2289 to multibyte for insertion (see `string-make-multibyte').
2290 If the current buffer is unibyte, multibyte strings are converted
2291 to unibyte for insertion (see `string-make-unibyte').
2292
2293 When operating on binary data, it may be necessary to preserve the
2294 original bytes of a unibyte string when inserting it into a multibyte
2295 buffer; to accomplish this, apply `string-as-multibyte' to the string
2296 and insert the result.
2297
2298 usage: (insert &rest ARGS) */)
2299 (ptrdiff_t nargs, Lisp_Object *args)
2300 {
2301 general_insert_function (insert, insert_from_string, 0, nargs, args);
2302 return Qnil;
2303 }
2304
2305 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2306 0, MANY, 0,
2307 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2308 Point and before-insertion markers move forward to end up
2309 after the inserted text.
2310 Any other markers at the point of insertion remain before the text.
2311
2312 If the current buffer is multibyte, unibyte strings are converted
2313 to multibyte for insertion (see `unibyte-char-to-multibyte').
2314 If the current buffer is unibyte, multibyte strings are converted
2315 to unibyte for insertion.
2316
2317 usage: (insert-and-inherit &rest ARGS) */)
2318 (ptrdiff_t nargs, Lisp_Object *args)
2319 {
2320 general_insert_function (insert_and_inherit, insert_from_string, 1,
2321 nargs, args);
2322 return Qnil;
2323 }
2324
2325 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2326 doc: /* Insert strings or characters at point, relocating markers after the text.
2327 Point and markers move forward to end up after the inserted text.
2328
2329 If the current buffer is multibyte, unibyte strings are converted
2330 to multibyte for insertion (see `unibyte-char-to-multibyte').
2331 If the current buffer is unibyte, multibyte strings are converted
2332 to unibyte for insertion.
2333
2334 usage: (insert-before-markers &rest ARGS) */)
2335 (ptrdiff_t nargs, Lisp_Object *args)
2336 {
2337 general_insert_function (insert_before_markers,
2338 insert_from_string_before_markers, 0,
2339 nargs, args);
2340 return Qnil;
2341 }
2342
2343 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2344 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2345 doc: /* Insert text at point, relocating markers and inheriting properties.
2346 Point and markers move forward to end up after the inserted text.
2347
2348 If the current buffer is multibyte, unibyte strings are converted
2349 to multibyte for insertion (see `unibyte-char-to-multibyte').
2350 If the current buffer is unibyte, multibyte strings are converted
2351 to unibyte for insertion.
2352
2353 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2354 (ptrdiff_t nargs, Lisp_Object *args)
2355 {
2356 general_insert_function (insert_before_markers_and_inherit,
2357 insert_from_string_before_markers, 1,
2358 nargs, args);
2359 return Qnil;
2360 }
2361 \f
2362 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2363 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2364 (prefix-numeric-value current-prefix-arg)\
2365 t))",
2366 doc: /* Insert COUNT copies of CHARACTER.
2367 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2368 of these ways:
2369
2370 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2371 Completion is available; if you type a substring of the name
2372 preceded by an asterisk `*', Emacs shows all names which include
2373 that substring, not necessarily at the beginning of the name.
2374
2375 - As a hexadecimal code point, e.g. 263A. Note that code points in
2376 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2377 the Unicode code space).
2378
2379 - As a code point with a radix specified with #, e.g. #o21430
2380 (octal), #x2318 (hex), or #10r8984 (decimal).
2381
2382 If called interactively, COUNT is given by the prefix argument. If
2383 omitted or nil, it defaults to 1.
2384
2385 Inserting the character(s) relocates point and before-insertion
2386 markers in the same ways as the function `insert'.
2387
2388 The optional third argument INHERIT, if non-nil, says to inherit text
2389 properties from adjoining text, if those properties are sticky. If
2390 called interactively, INHERIT is t. */)
2391 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2392 {
2393 int i, stringlen;
2394 register ptrdiff_t n;
2395 int c, len;
2396 unsigned char str[MAX_MULTIBYTE_LENGTH];
2397 char string[4000];
2398
2399 CHECK_CHARACTER (character);
2400 if (NILP (count))
2401 XSETFASTINT (count, 1);
2402 CHECK_NUMBER (count);
2403 c = XFASTINT (character);
2404
2405 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2406 len = CHAR_STRING (c, str);
2407 else
2408 str[0] = c, len = 1;
2409 if (XINT (count) <= 0)
2410 return Qnil;
2411 if (BUF_BYTES_MAX / len < XINT (count))
2412 buffer_overflow ();
2413 n = XINT (count) * len;
2414 stringlen = min (n, sizeof string - sizeof string % len);
2415 for (i = 0; i < stringlen; i++)
2416 string[i] = str[i % len];
2417 while (n > stringlen)
2418 {
2419 QUIT;
2420 if (!NILP (inherit))
2421 insert_and_inherit (string, stringlen);
2422 else
2423 insert (string, stringlen);
2424 n -= stringlen;
2425 }
2426 if (!NILP (inherit))
2427 insert_and_inherit (string, n);
2428 else
2429 insert (string, n);
2430 return Qnil;
2431 }
2432
2433 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2434 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2435 Both arguments are required.
2436 BYTE is a number of the range 0..255.
2437
2438 If BYTE is 128..255 and the current buffer is multibyte, the
2439 corresponding eight-bit character is inserted.
2440
2441 Point, and before-insertion markers, are relocated as in the function `insert'.
2442 The optional third arg INHERIT, if non-nil, says to inherit text properties
2443 from adjoining text, if those properties are sticky. */)
2444 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2445 {
2446 CHECK_NUMBER (byte);
2447 if (XINT (byte) < 0 || XINT (byte) > 255)
2448 args_out_of_range_3 (byte, make_number (0), make_number (255));
2449 if (XINT (byte) >= 128
2450 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2451 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2452 return Finsert_char (byte, count, inherit);
2453 }
2454
2455 \f
2456 /* Making strings from buffer contents. */
2457
2458 /* Return a Lisp_String containing the text of the current buffer from
2459 START to END. If text properties are in use and the current buffer
2460 has properties in the range specified, the resulting string will also
2461 have them, if PROPS is nonzero.
2462
2463 We don't want to use plain old make_string here, because it calls
2464 make_uninit_string, which can cause the buffer arena to be
2465 compacted. make_string has no way of knowing that the data has
2466 been moved, and thus copies the wrong data into the string. This
2467 doesn't effect most of the other users of make_string, so it should
2468 be left as is. But we should use this function when conjuring
2469 buffer substrings. */
2470
2471 Lisp_Object
2472 make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2473 {
2474 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2475 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2476
2477 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2478 }
2479
2480 /* Return a Lisp_String containing the text of the current buffer from
2481 START / START_BYTE to END / END_BYTE.
2482
2483 If text properties are in use and the current buffer
2484 has properties in the range specified, the resulting string will also
2485 have them, if PROPS is nonzero.
2486
2487 We don't want to use plain old make_string here, because it calls
2488 make_uninit_string, which can cause the buffer arena to be
2489 compacted. make_string has no way of knowing that the data has
2490 been moved, and thus copies the wrong data into the string. This
2491 doesn't effect most of the other users of make_string, so it should
2492 be left as is. But we should use this function when conjuring
2493 buffer substrings. */
2494
2495 Lisp_Object
2496 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2497 ptrdiff_t end, ptrdiff_t end_byte, int props)
2498 {
2499 Lisp_Object result, tem, tem1;
2500
2501 if (start < GPT && GPT < end)
2502 move_gap (start);
2503
2504 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2505 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2506 else
2507 result = make_uninit_string (end - start);
2508 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2509
2510 /* If desired, update and copy the text properties. */
2511 if (props)
2512 {
2513 update_buffer_properties (start, end);
2514
2515 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2516 tem1 = Ftext_properties_at (make_number (start), Qnil);
2517
2518 if (XINT (tem) != end || !NILP (tem1))
2519 copy_intervals_to_string (result, current_buffer, start,
2520 end - start);
2521 }
2522
2523 return result;
2524 }
2525
2526 /* Call Vbuffer_access_fontify_functions for the range START ... END
2527 in the current buffer, if necessary. */
2528
2529 static void
2530 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2531 {
2532 /* If this buffer has some access functions,
2533 call them, specifying the range of the buffer being accessed. */
2534 if (!NILP (Vbuffer_access_fontify_functions))
2535 {
2536 Lisp_Object args[3];
2537 Lisp_Object tem;
2538
2539 args[0] = Qbuffer_access_fontify_functions;
2540 XSETINT (args[1], start);
2541 XSETINT (args[2], end);
2542
2543 /* But don't call them if we can tell that the work
2544 has already been done. */
2545 if (!NILP (Vbuffer_access_fontified_property))
2546 {
2547 tem = Ftext_property_any (args[1], args[2],
2548 Vbuffer_access_fontified_property,
2549 Qnil, Qnil);
2550 if (! NILP (tem))
2551 Frun_hook_with_args (3, args);
2552 }
2553 else
2554 Frun_hook_with_args (3, args);
2555 }
2556 }
2557
2558 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2559 doc: /* Return the contents of part of the current buffer as a string.
2560 The two arguments START and END are character positions;
2561 they can be in either order.
2562 The string returned is multibyte if the buffer is multibyte.
2563
2564 This function copies the text properties of that part of the buffer
2565 into the result string; if you don't want the text properties,
2566 use `buffer-substring-no-properties' instead. */)
2567 (Lisp_Object start, Lisp_Object end)
2568 {
2569 register ptrdiff_t b, e;
2570
2571 validate_region (&start, &end);
2572 b = XINT (start);
2573 e = XINT (end);
2574
2575 return make_buffer_string (b, e, 1);
2576 }
2577
2578 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2579 Sbuffer_substring_no_properties, 2, 2, 0,
2580 doc: /* Return the characters of part of the buffer, without the text properties.
2581 The two arguments START and END are character positions;
2582 they can be in either order. */)
2583 (Lisp_Object start, Lisp_Object end)
2584 {
2585 register ptrdiff_t b, e;
2586
2587 validate_region (&start, &end);
2588 b = XINT (start);
2589 e = XINT (end);
2590
2591 return make_buffer_string (b, e, 0);
2592 }
2593
2594 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2595 doc: /* Return the contents of the current buffer as a string.
2596 If narrowing is in effect, this function returns only the visible part
2597 of the buffer. */)
2598 (void)
2599 {
2600 return make_buffer_string (BEGV, ZV, 1);
2601 }
2602
2603 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2604 1, 3, 0,
2605 doc: /* Insert before point a substring of the contents of BUFFER.
2606 BUFFER may be a buffer or a buffer name.
2607 Arguments START and END are character positions specifying the substring.
2608 They default to the values of (point-min) and (point-max) in BUFFER. */)
2609 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2610 {
2611 register EMACS_INT b, e, temp;
2612 register struct buffer *bp, *obuf;
2613 Lisp_Object buf;
2614
2615 buf = Fget_buffer (buffer);
2616 if (NILP (buf))
2617 nsberror (buffer);
2618 bp = XBUFFER (buf);
2619 if (NILP (BVAR (bp, name)))
2620 error ("Selecting deleted buffer");
2621
2622 if (NILP (start))
2623 b = BUF_BEGV (bp);
2624 else
2625 {
2626 CHECK_NUMBER_COERCE_MARKER (start);
2627 b = XINT (start);
2628 }
2629 if (NILP (end))
2630 e = BUF_ZV (bp);
2631 else
2632 {
2633 CHECK_NUMBER_COERCE_MARKER (end);
2634 e = XINT (end);
2635 }
2636
2637 if (b > e)
2638 temp = b, b = e, e = temp;
2639
2640 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2641 args_out_of_range (start, end);
2642
2643 obuf = current_buffer;
2644 set_buffer_internal_1 (bp);
2645 update_buffer_properties (b, e);
2646 set_buffer_internal_1 (obuf);
2647
2648 insert_from_buffer (bp, b, e - b, 0);
2649 return Qnil;
2650 }
2651
2652 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2653 6, 6, 0,
2654 doc: /* Compare two substrings of two buffers; return result as number.
2655 the value is -N if first string is less after N-1 chars,
2656 +N if first string is greater after N-1 chars, or 0 if strings match.
2657 Each substring is represented as three arguments: BUFFER, START and END.
2658 That makes six args in all, three for each substring.
2659
2660 The value of `case-fold-search' in the current buffer
2661 determines whether case is significant or ignored. */)
2662 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2663 {
2664 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2665 register struct buffer *bp1, *bp2;
2666 register Lisp_Object trt
2667 = (!NILP (BVAR (current_buffer, case_fold_search))
2668 ? BVAR (current_buffer, case_canon_table) : Qnil);
2669 ptrdiff_t chars = 0;
2670 ptrdiff_t i1, i2, i1_byte, i2_byte;
2671
2672 /* Find the first buffer and its substring. */
2673
2674 if (NILP (buffer1))
2675 bp1 = current_buffer;
2676 else
2677 {
2678 Lisp_Object buf1;
2679 buf1 = Fget_buffer (buffer1);
2680 if (NILP (buf1))
2681 nsberror (buffer1);
2682 bp1 = XBUFFER (buf1);
2683 if (NILP (BVAR (bp1, name)))
2684 error ("Selecting deleted buffer");
2685 }
2686
2687 if (NILP (start1))
2688 begp1 = BUF_BEGV (bp1);
2689 else
2690 {
2691 CHECK_NUMBER_COERCE_MARKER (start1);
2692 begp1 = XINT (start1);
2693 }
2694 if (NILP (end1))
2695 endp1 = BUF_ZV (bp1);
2696 else
2697 {
2698 CHECK_NUMBER_COERCE_MARKER (end1);
2699 endp1 = XINT (end1);
2700 }
2701
2702 if (begp1 > endp1)
2703 temp = begp1, begp1 = endp1, endp1 = temp;
2704
2705 if (!(BUF_BEGV (bp1) <= begp1
2706 && begp1 <= endp1
2707 && endp1 <= BUF_ZV (bp1)))
2708 args_out_of_range (start1, end1);
2709
2710 /* Likewise for second substring. */
2711
2712 if (NILP (buffer2))
2713 bp2 = current_buffer;
2714 else
2715 {
2716 Lisp_Object buf2;
2717 buf2 = Fget_buffer (buffer2);
2718 if (NILP (buf2))
2719 nsberror (buffer2);
2720 bp2 = XBUFFER (buf2);
2721 if (NILP (BVAR (bp2, name)))
2722 error ("Selecting deleted buffer");
2723 }
2724
2725 if (NILP (start2))
2726 begp2 = BUF_BEGV (bp2);
2727 else
2728 {
2729 CHECK_NUMBER_COERCE_MARKER (start2);
2730 begp2 = XINT (start2);
2731 }
2732 if (NILP (end2))
2733 endp2 = BUF_ZV (bp2);
2734 else
2735 {
2736 CHECK_NUMBER_COERCE_MARKER (end2);
2737 endp2 = XINT (end2);
2738 }
2739
2740 if (begp2 > endp2)
2741 temp = begp2, begp2 = endp2, endp2 = temp;
2742
2743 if (!(BUF_BEGV (bp2) <= begp2
2744 && begp2 <= endp2
2745 && endp2 <= BUF_ZV (bp2)))
2746 args_out_of_range (start2, end2);
2747
2748 i1 = begp1;
2749 i2 = begp2;
2750 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2751 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2752
2753 while (i1 < endp1 && i2 < endp2)
2754 {
2755 /* When we find a mismatch, we must compare the
2756 characters, not just the bytes. */
2757 int c1, c2;
2758
2759 QUIT;
2760
2761 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2762 {
2763 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2764 BUF_INC_POS (bp1, i1_byte);
2765 i1++;
2766 }
2767 else
2768 {
2769 c1 = BUF_FETCH_BYTE (bp1, i1);
2770 MAKE_CHAR_MULTIBYTE (c1);
2771 i1++;
2772 }
2773
2774 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2775 {
2776 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2777 BUF_INC_POS (bp2, i2_byte);
2778 i2++;
2779 }
2780 else
2781 {
2782 c2 = BUF_FETCH_BYTE (bp2, i2);
2783 MAKE_CHAR_MULTIBYTE (c2);
2784 i2++;
2785 }
2786
2787 if (!NILP (trt))
2788 {
2789 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2790 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2791 }
2792 if (c1 < c2)
2793 return make_number (- 1 - chars);
2794 if (c1 > c2)
2795 return make_number (chars + 1);
2796
2797 chars++;
2798 }
2799
2800 /* The strings match as far as they go.
2801 If one is shorter, that one is less. */
2802 if (chars < endp1 - begp1)
2803 return make_number (chars + 1);
2804 else if (chars < endp2 - begp2)
2805 return make_number (- chars - 1);
2806
2807 /* Same length too => they are equal. */
2808 return make_number (0);
2809 }
2810 \f
2811 static Lisp_Object
2812 subst_char_in_region_unwind (Lisp_Object arg)
2813 {
2814 bset_undo_list (current_buffer, arg);
2815 return arg;
2816 }
2817
2818 static Lisp_Object
2819 subst_char_in_region_unwind_1 (Lisp_Object arg)
2820 {
2821 bset_filename (current_buffer, arg);
2822 return arg;
2823 }
2824
2825 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2826 Ssubst_char_in_region, 4, 5, 0,
2827 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2828 If optional arg NOUNDO is non-nil, don't record this change for undo
2829 and don't mark the buffer as really changed.
2830 Both characters must have the same length of multi-byte form. */)
2831 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2832 {
2833 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2834 /* Keep track of the first change in the buffer:
2835 if 0 we haven't found it yet.
2836 if < 0 we've found it and we've run the before-change-function.
2837 if > 0 we've actually performed it and the value is its position. */
2838 ptrdiff_t changed = 0;
2839 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2840 unsigned char *p;
2841 ptrdiff_t count = SPECPDL_INDEX ();
2842 #define COMBINING_NO 0
2843 #define COMBINING_BEFORE 1
2844 #define COMBINING_AFTER 2
2845 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2846 int maybe_byte_combining = COMBINING_NO;
2847 ptrdiff_t last_changed = 0;
2848 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2849 int fromc, toc;
2850
2851 restart:
2852
2853 validate_region (&start, &end);
2854 CHECK_CHARACTER (fromchar);
2855 CHECK_CHARACTER (tochar);
2856 fromc = XFASTINT (fromchar);
2857 toc = XFASTINT (tochar);
2858
2859 if (multibyte_p)
2860 {
2861 len = CHAR_STRING (fromc, fromstr);
2862 if (CHAR_STRING (toc, tostr) != len)
2863 error ("Characters in `subst-char-in-region' have different byte-lengths");
2864 if (!ASCII_BYTE_P (*tostr))
2865 {
2866 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2867 complete multibyte character, it may be combined with the
2868 after bytes. If it is in the range 0xA0..0xFF, it may be
2869 combined with the before and after bytes. */
2870 if (!CHAR_HEAD_P (*tostr))
2871 maybe_byte_combining = COMBINING_BOTH;
2872 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2873 maybe_byte_combining = COMBINING_AFTER;
2874 }
2875 }
2876 else
2877 {
2878 len = 1;
2879 fromstr[0] = fromc;
2880 tostr[0] = toc;
2881 }
2882
2883 pos = XINT (start);
2884 pos_byte = CHAR_TO_BYTE (pos);
2885 stop = CHAR_TO_BYTE (XINT (end));
2886 end_byte = stop;
2887
2888 /* If we don't want undo, turn off putting stuff on the list.
2889 That's faster than getting rid of things,
2890 and it prevents even the entry for a first change.
2891 Also inhibit locking the file. */
2892 if (!changed && !NILP (noundo))
2893 {
2894 record_unwind_protect (subst_char_in_region_unwind,
2895 BVAR (current_buffer, undo_list));
2896 bset_undo_list (current_buffer, Qt);
2897 /* Don't do file-locking. */
2898 record_unwind_protect (subst_char_in_region_unwind_1,
2899 BVAR (current_buffer, filename));
2900 bset_filename (current_buffer, Qnil);
2901 }
2902
2903 if (pos_byte < GPT_BYTE)
2904 stop = min (stop, GPT_BYTE);
2905 while (1)
2906 {
2907 ptrdiff_t pos_byte_next = pos_byte;
2908
2909 if (pos_byte >= stop)
2910 {
2911 if (pos_byte >= end_byte) break;
2912 stop = end_byte;
2913 }
2914 p = BYTE_POS_ADDR (pos_byte);
2915 if (multibyte_p)
2916 INC_POS (pos_byte_next);
2917 else
2918 ++pos_byte_next;
2919 if (pos_byte_next - pos_byte == len
2920 && p[0] == fromstr[0]
2921 && (len == 1
2922 || (p[1] == fromstr[1]
2923 && (len == 2 || (p[2] == fromstr[2]
2924 && (len == 3 || p[3] == fromstr[3]))))))
2925 {
2926 if (changed < 0)
2927 /* We've already seen this and run the before-change-function;
2928 this time we only need to record the actual position. */
2929 changed = pos;
2930 else if (!changed)
2931 {
2932 changed = -1;
2933 modify_region (current_buffer, pos, XINT (end), 0);
2934
2935 if (! NILP (noundo))
2936 {
2937 if (MODIFF - 1 == SAVE_MODIFF)
2938 SAVE_MODIFF++;
2939 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2940 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2941 }
2942
2943 /* The before-change-function may have moved the gap
2944 or even modified the buffer so we should start over. */
2945 goto restart;
2946 }
2947
2948 /* Take care of the case where the new character
2949 combines with neighboring bytes. */
2950 if (maybe_byte_combining
2951 && (maybe_byte_combining == COMBINING_AFTER
2952 ? (pos_byte_next < Z_BYTE
2953 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2954 : ((pos_byte_next < Z_BYTE
2955 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2956 || (pos_byte > BEG_BYTE
2957 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2958 {
2959 Lisp_Object tem, string;
2960
2961 struct gcpro gcpro1;
2962
2963 tem = BVAR (current_buffer, undo_list);
2964 GCPRO1 (tem);
2965
2966 /* Make a multibyte string containing this single character. */
2967 string = make_multibyte_string ((char *) tostr, 1, len);
2968 /* replace_range is less efficient, because it moves the gap,
2969 but it handles combining correctly. */
2970 replace_range (pos, pos + 1, string,
2971 0, 0, 1);
2972 pos_byte_next = CHAR_TO_BYTE (pos);
2973 if (pos_byte_next > pos_byte)
2974 /* Before combining happened. We should not increment
2975 POS. So, to cancel the later increment of POS,
2976 decrease it now. */
2977 pos--;
2978 else
2979 INC_POS (pos_byte_next);
2980
2981 if (! NILP (noundo))
2982 bset_undo_list (current_buffer, tem);
2983
2984 UNGCPRO;
2985 }
2986 else
2987 {
2988 if (NILP (noundo))
2989 record_change (pos, 1);
2990 for (i = 0; i < len; i++) *p++ = tostr[i];
2991 }
2992 last_changed = pos + 1;
2993 }
2994 pos_byte = pos_byte_next;
2995 pos++;
2996 }
2997
2998 if (changed > 0)
2999 {
3000 signal_after_change (changed,
3001 last_changed - changed, last_changed - changed);
3002 update_compositions (changed, last_changed, CHECK_ALL);
3003 }
3004
3005 unbind_to (count, Qnil);
3006 return Qnil;
3007 }
3008
3009
3010 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3011 Lisp_Object);
3012
3013 /* Helper function for Ftranslate_region_internal.
3014
3015 Check if a character sequence at POS (POS_BYTE) matches an element
3016 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3017 element is found, return it. Otherwise return Qnil. */
3018
3019 static Lisp_Object
3020 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3021 Lisp_Object val)
3022 {
3023 int buf_size = 16, buf_used = 0;
3024 int *buf = alloca (sizeof (int) * buf_size);
3025
3026 for (; CONSP (val); val = XCDR (val))
3027 {
3028 Lisp_Object elt;
3029 ptrdiff_t len, i;
3030
3031 elt = XCAR (val);
3032 if (! CONSP (elt))
3033 continue;
3034 elt = XCAR (elt);
3035 if (! VECTORP (elt))
3036 continue;
3037 len = ASIZE (elt);
3038 if (len <= end - pos)
3039 {
3040 for (i = 0; i < len; i++)
3041 {
3042 if (buf_used <= i)
3043 {
3044 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3045 int len1;
3046
3047 if (buf_used == buf_size)
3048 {
3049 int *newbuf;
3050
3051 buf_size += 16;
3052 newbuf = alloca (sizeof (int) * buf_size);
3053 memcpy (newbuf, buf, sizeof (int) * buf_used);
3054 buf = newbuf;
3055 }
3056 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3057 pos_byte += len1;
3058 }
3059 if (XINT (AREF (elt, i)) != buf[i])
3060 break;
3061 }
3062 if (i == len)
3063 return XCAR (val);
3064 }
3065 }
3066 return Qnil;
3067 }
3068
3069
3070 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3071 Stranslate_region_internal, 3, 3, 0,
3072 doc: /* Internal use only.
3073 From START to END, translate characters according to TABLE.
3074 TABLE is a string or a char-table; the Nth character in it is the
3075 mapping for the character with code N.
3076 It returns the number of characters changed. */)
3077 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3078 {
3079 register unsigned char *tt; /* Trans table. */
3080 register int nc; /* New character. */
3081 int cnt; /* Number of changes made. */
3082 ptrdiff_t size; /* Size of translate table. */
3083 ptrdiff_t pos, pos_byte, end_pos;
3084 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3085 int string_multibyte IF_LINT (= 0);
3086
3087 validate_region (&start, &end);
3088 if (CHAR_TABLE_P (table))
3089 {
3090 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3091 error ("Not a translation table");
3092 size = MAX_CHAR;
3093 tt = NULL;
3094 }
3095 else
3096 {
3097 CHECK_STRING (table);
3098
3099 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3100 table = string_make_unibyte (table);
3101 string_multibyte = SCHARS (table) < SBYTES (table);
3102 size = SBYTES (table);
3103 tt = SDATA (table);
3104 }
3105
3106 pos = XINT (start);
3107 pos_byte = CHAR_TO_BYTE (pos);
3108 end_pos = XINT (end);
3109 modify_region (current_buffer, pos, end_pos, 0);
3110
3111 cnt = 0;
3112 for (; pos < end_pos; )
3113 {
3114 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3115 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3116 int len, str_len;
3117 int oc;
3118 Lisp_Object val;
3119
3120 if (multibyte)
3121 oc = STRING_CHAR_AND_LENGTH (p, len);
3122 else
3123 oc = *p, len = 1;
3124 if (oc < size)
3125 {
3126 if (tt)
3127 {
3128 /* Reload as signal_after_change in last iteration may GC. */
3129 tt = SDATA (table);
3130 if (string_multibyte)
3131 {
3132 str = tt + string_char_to_byte (table, oc);
3133 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3134 }
3135 else
3136 {
3137 nc = tt[oc];
3138 if (! ASCII_BYTE_P (nc) && multibyte)
3139 {
3140 str_len = BYTE8_STRING (nc, buf);
3141 str = buf;
3142 }
3143 else
3144 {
3145 str_len = 1;
3146 str = tt + oc;
3147 }
3148 }
3149 }
3150 else
3151 {
3152 nc = oc;
3153 val = CHAR_TABLE_REF (table, oc);
3154 if (CHARACTERP (val))
3155 {
3156 nc = XFASTINT (val);
3157 str_len = CHAR_STRING (nc, buf);
3158 str = buf;
3159 }
3160 else if (VECTORP (val) || (CONSP (val)))
3161 {
3162 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3163 where TO is TO-CHAR or [TO-CHAR ...]. */
3164 nc = -1;
3165 }
3166 }
3167
3168 if (nc != oc && nc >= 0)
3169 {
3170 /* Simple one char to one char translation. */
3171 if (len != str_len)
3172 {
3173 Lisp_Object string;
3174
3175 /* This is less efficient, because it moves the gap,
3176 but it should handle multibyte characters correctly. */
3177 string = make_multibyte_string ((char *) str, 1, str_len);
3178 replace_range (pos, pos + 1, string, 1, 0, 1);
3179 len = str_len;
3180 }
3181 else
3182 {
3183 record_change (pos, 1);
3184 while (str_len-- > 0)
3185 *p++ = *str++;
3186 signal_after_change (pos, 1, 1);
3187 update_compositions (pos, pos + 1, CHECK_BORDER);
3188 }
3189 ++cnt;
3190 }
3191 else if (nc < 0)
3192 {
3193 Lisp_Object string;
3194
3195 if (CONSP (val))
3196 {
3197 val = check_translation (pos, pos_byte, end_pos, val);
3198 if (NILP (val))
3199 {
3200 pos_byte += len;
3201 pos++;
3202 continue;
3203 }
3204 /* VAL is ([FROM-CHAR ...] . TO). */
3205 len = ASIZE (XCAR (val));
3206 val = XCDR (val);
3207 }
3208 else
3209 len = 1;
3210
3211 if (VECTORP (val))
3212 {
3213 string = Fconcat (1, &val);
3214 }
3215 else
3216 {
3217 string = Fmake_string (make_number (1), val);
3218 }
3219 replace_range (pos, pos + len, string, 1, 0, 1);
3220 pos_byte += SBYTES (string);
3221 pos += SCHARS (string);
3222 cnt += SCHARS (string);
3223 end_pos += SCHARS (string) - len;
3224 continue;
3225 }
3226 }
3227 pos_byte += len;
3228 pos++;
3229 }
3230
3231 return make_number (cnt);
3232 }
3233
3234 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3235 doc: /* Delete the text between START and END.
3236 If called interactively, delete the region between point and mark.
3237 This command deletes buffer text without modifying the kill ring. */)
3238 (Lisp_Object start, Lisp_Object end)
3239 {
3240 validate_region (&start, &end);
3241 del_range (XINT (start), XINT (end));
3242 return Qnil;
3243 }
3244
3245 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3246 Sdelete_and_extract_region, 2, 2, 0,
3247 doc: /* Delete the text between START and END and return it. */)
3248 (Lisp_Object start, Lisp_Object end)
3249 {
3250 validate_region (&start, &end);
3251 if (XINT (start) == XINT (end))
3252 return empty_unibyte_string;
3253 return del_range_1 (XINT (start), XINT (end), 1, 1);
3254 }
3255 \f
3256 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3257 doc: /* Remove restrictions (narrowing) from current buffer.
3258 This allows the buffer's full text to be seen and edited. */)
3259 (void)
3260 {
3261 if (BEG != BEGV || Z != ZV)
3262 current_buffer->clip_changed = 1;
3263 BEGV = BEG;
3264 BEGV_BYTE = BEG_BYTE;
3265 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3266 /* Changing the buffer bounds invalidates any recorded current column. */
3267 invalidate_current_column ();
3268 return Qnil;
3269 }
3270
3271 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3272 doc: /* Restrict editing in this buffer to the current region.
3273 The rest of the text becomes temporarily invisible and untouchable
3274 but is not deleted; if you save the buffer in a file, the invisible
3275 text is included in the file. \\[widen] makes all visible again.
3276 See also `save-restriction'.
3277
3278 When calling from a program, pass two arguments; positions (integers
3279 or markers) bounding the text that should remain visible. */)
3280 (register Lisp_Object start, Lisp_Object end)
3281 {
3282 CHECK_NUMBER_COERCE_MARKER (start);
3283 CHECK_NUMBER_COERCE_MARKER (end);
3284
3285 if (XINT (start) > XINT (end))
3286 {
3287 Lisp_Object tem;
3288 tem = start; start = end; end = tem;
3289 }
3290
3291 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3292 args_out_of_range (start, end);
3293
3294 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3295 current_buffer->clip_changed = 1;
3296
3297 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3298 SET_BUF_ZV (current_buffer, XFASTINT (end));
3299 if (PT < XFASTINT (start))
3300 SET_PT (XFASTINT (start));
3301 if (PT > XFASTINT (end))
3302 SET_PT (XFASTINT (end));
3303 /* Changing the buffer bounds invalidates any recorded current column. */
3304 invalidate_current_column ();
3305 return Qnil;
3306 }
3307
3308 Lisp_Object
3309 save_restriction_save (void)
3310 {
3311 if (BEGV == BEG && ZV == Z)
3312 /* The common case that the buffer isn't narrowed.
3313 We return just the buffer object, which save_restriction_restore
3314 recognizes as meaning `no restriction'. */
3315 return Fcurrent_buffer ();
3316 else
3317 /* We have to save a restriction, so return a pair of markers, one
3318 for the beginning and one for the end. */
3319 {
3320 Lisp_Object beg, end;
3321
3322 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3323 end = build_marker (current_buffer, ZV, ZV_BYTE);
3324
3325 /* END must move forward if text is inserted at its exact location. */
3326 XMARKER (end)->insertion_type = 1;
3327
3328 return Fcons (beg, end);
3329 }
3330 }
3331
3332 Lisp_Object
3333 save_restriction_restore (Lisp_Object data)
3334 {
3335 struct buffer *cur = NULL;
3336 struct buffer *buf = (CONSP (data)
3337 ? XMARKER (XCAR (data))->buffer
3338 : XBUFFER (data));
3339
3340 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3341 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3342 is the case if it is or has an indirect buffer), then make
3343 sure it is current before we update BEGV, so
3344 set_buffer_internal takes care of managing those markers. */
3345 cur = current_buffer;
3346 set_buffer_internal (buf);
3347 }
3348
3349 if (CONSP (data))
3350 /* A pair of marks bounding a saved restriction. */
3351 {
3352 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3353 struct Lisp_Marker *end = XMARKER (XCDR (data));
3354 eassert (buf == end->buffer);
3355
3356 if (buf /* Verify marker still points to a buffer. */
3357 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3358 /* The restriction has changed from the saved one, so restore
3359 the saved restriction. */
3360 {
3361 ptrdiff_t pt = BUF_PT (buf);
3362
3363 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3364 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3365
3366 if (pt < beg->charpos || pt > end->charpos)
3367 /* The point is outside the new visible range, move it inside. */
3368 SET_BUF_PT_BOTH (buf,
3369 clip_to_bounds (beg->charpos, pt, end->charpos),
3370 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3371 end->bytepos));
3372
3373 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3374 }
3375 /* These aren't needed anymore, so don't wait for GC. */
3376 free_marker (XCAR (data));
3377 free_marker (XCDR (data));
3378 free_cons (XCONS (data));
3379 }
3380 else
3381 /* A buffer, which means that there was no old restriction. */
3382 {
3383 if (buf /* Verify marker still points to a buffer. */
3384 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3385 /* The buffer has been narrowed, get rid of the narrowing. */
3386 {
3387 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3388 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3389
3390 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3391 }
3392 }
3393
3394 /* Changing the buffer bounds invalidates any recorded current column. */
3395 invalidate_current_column ();
3396
3397 if (cur)
3398 set_buffer_internal (cur);
3399
3400 return Qnil;
3401 }
3402
3403 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3404 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3405 The buffer's restrictions make parts of the beginning and end invisible.
3406 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3407 This special form, `save-restriction', saves the current buffer's restrictions
3408 when it is entered, and restores them when it is exited.
3409 So any `narrow-to-region' within BODY lasts only until the end of the form.
3410 The old restrictions settings are restored
3411 even in case of abnormal exit (throw or error).
3412
3413 The value returned is the value of the last form in BODY.
3414
3415 Note: if you are using both `save-excursion' and `save-restriction',
3416 use `save-excursion' outermost:
3417 (save-excursion (save-restriction ...))
3418
3419 usage: (save-restriction &rest BODY) */)
3420 (Lisp_Object body)
3421 {
3422 register Lisp_Object val;
3423 ptrdiff_t count = SPECPDL_INDEX ();
3424
3425 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3426 val = Fprogn (body);
3427 return unbind_to (count, val);
3428 }
3429 \f
3430 /* Buffer for the most recent text displayed by Fmessage_box. */
3431 static char *message_text;
3432
3433 /* Allocated length of that buffer. */
3434 static ptrdiff_t message_length;
3435
3436 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3437 doc: /* Display a message at the bottom of the screen.
3438 The message also goes into the `*Messages*' buffer.
3439 \(In keyboard macros, that's all it does.)
3440 Return the message.
3441
3442 The first argument is a format control string, and the rest are data
3443 to be formatted under control of the string. See `format' for details.
3444
3445 Note: Use (message "%s" VALUE) to print the value of expressions and
3446 variables to avoid accidentally interpreting `%' as format specifiers.
3447
3448 If the first argument is nil or the empty string, the function clears
3449 any existing message; this lets the minibuffer contents show. See
3450 also `current-message'.
3451
3452 usage: (message FORMAT-STRING &rest ARGS) */)
3453 (ptrdiff_t nargs, Lisp_Object *args)
3454 {
3455 if (NILP (args[0])
3456 || (STRINGP (args[0])
3457 && SBYTES (args[0]) == 0))
3458 {
3459 message (0);
3460 return args[0];
3461 }
3462 else
3463 {
3464 register Lisp_Object val;
3465 val = Fformat (nargs, args);
3466 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3467 return val;
3468 }
3469 }
3470
3471 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3472 doc: /* Display a message, in a dialog box if possible.
3473 If a dialog box is not available, use the echo area.
3474 The first argument is a format control string, and the rest are data
3475 to be formatted under control of the string. See `format' for details.
3476
3477 If the first argument is nil or the empty string, clear any existing
3478 message; let the minibuffer contents show.
3479
3480 usage: (message-box FORMAT-STRING &rest ARGS) */)
3481 (ptrdiff_t nargs, Lisp_Object *args)
3482 {
3483 if (NILP (args[0]))
3484 {
3485 message (0);
3486 return Qnil;
3487 }
3488 else
3489 {
3490 register Lisp_Object val;
3491 val = Fformat (nargs, args);
3492 #ifdef HAVE_MENUS
3493 /* The MS-DOS frames support popup menus even though they are
3494 not FRAME_WINDOW_P. */
3495 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3496 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3497 {
3498 Lisp_Object pane, menu;
3499 struct gcpro gcpro1;
3500 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3501 GCPRO1 (pane);
3502 menu = Fcons (val, pane);
3503 Fx_popup_dialog (Qt, menu, Qt);
3504 UNGCPRO;
3505 return val;
3506 }
3507 #endif /* HAVE_MENUS */
3508 /* Copy the data so that it won't move when we GC. */
3509 if (SBYTES (val) > message_length)
3510 {
3511 ptrdiff_t new_length = SBYTES (val) + 80;
3512 message_text = xrealloc (message_text, new_length);
3513 message_length = new_length;
3514 }
3515 memcpy (message_text, SDATA (val), SBYTES (val));
3516 message2 (message_text, SBYTES (val),
3517 STRING_MULTIBYTE (val));
3518 return val;
3519 }
3520 }
3521
3522 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3523 doc: /* Display a message in a dialog box or in the echo area.
3524 If this command was invoked with the mouse, use a dialog box if
3525 `use-dialog-box' is non-nil.
3526 Otherwise, use the echo area.
3527 The first argument is a format control string, and the rest are data
3528 to be formatted under control of the string. See `format' for details.
3529
3530 If the first argument is nil or the empty string, clear any existing
3531 message; let the minibuffer contents show.
3532
3533 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3534 (ptrdiff_t nargs, Lisp_Object *args)
3535 {
3536 #ifdef HAVE_MENUS
3537 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3538 && use_dialog_box)
3539 return Fmessage_box (nargs, args);
3540 #endif
3541 return Fmessage (nargs, args);
3542 }
3543
3544 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3545 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3546 (void)
3547 {
3548 return current_message ();
3549 }
3550
3551
3552 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3553 doc: /* Return a copy of STRING with text properties added.
3554 First argument is the string to copy.
3555 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3556 properties to add to the result.
3557 usage: (propertize STRING &rest PROPERTIES) */)
3558 (ptrdiff_t nargs, Lisp_Object *args)
3559 {
3560 Lisp_Object properties, string;
3561 struct gcpro gcpro1, gcpro2;
3562 ptrdiff_t i;
3563
3564 /* Number of args must be odd. */
3565 if ((nargs & 1) == 0)
3566 error ("Wrong number of arguments");
3567
3568 properties = string = Qnil;
3569 GCPRO2 (properties, string);
3570
3571 /* First argument must be a string. */
3572 CHECK_STRING (args[0]);
3573 string = Fcopy_sequence (args[0]);
3574
3575 for (i = 1; i < nargs; i += 2)
3576 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3577
3578 Fadd_text_properties (make_number (0),
3579 make_number (SCHARS (string)),
3580 properties, string);
3581 RETURN_UNGCPRO (string);
3582 }
3583
3584 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3585 doc: /* Format a string out of a format-string and arguments.
3586 The first argument is a format control string.
3587 The other arguments are substituted into it to make the result, a string.
3588
3589 The format control string may contain %-sequences meaning to substitute
3590 the next available argument:
3591
3592 %s means print a string argument. Actually, prints any object, with `princ'.
3593 %d means print as number in decimal (%o octal, %x hex).
3594 %X is like %x, but uses upper case.
3595 %e means print a number in exponential notation.
3596 %f means print a number in decimal-point notation.
3597 %g means print a number in exponential notation
3598 or decimal-point notation, whichever uses fewer characters.
3599 %c means print a number as a single character.
3600 %S means print any object as an s-expression (using `prin1').
3601
3602 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3603 Use %% to put a single % into the output.
3604
3605 A %-sequence may contain optional flag, width, and precision
3606 specifiers, as follows:
3607
3608 %<flags><width><precision>character
3609
3610 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3611
3612 The + flag character inserts a + before any positive number, while a
3613 space inserts a space before any positive number; these flags only
3614 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3615 The - and 0 flags affect the width specifier, as described below.
3616
3617 The # flag means to use an alternate display form for %o, %x, %X, %e,
3618 %f, and %g sequences: for %o, it ensures that the result begins with
3619 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3620 for %e, %f, and %g, it causes a decimal point to be included even if
3621 the precision is zero.
3622
3623 The width specifier supplies a lower limit for the length of the
3624 printed representation. The padding, if any, normally goes on the
3625 left, but it goes on the right if the - flag is present. The padding
3626 character is normally a space, but it is 0 if the 0 flag is present.
3627 The 0 flag is ignored if the - flag is present, or the format sequence
3628 is something other than %d, %e, %f, and %g.
3629
3630 For %e, %f, and %g sequences, the number after the "." in the
3631 precision specifier says how many decimal places to show; if zero, the
3632 decimal point itself is omitted. For %s and %S, the precision
3633 specifier truncates the string to the given width.
3634
3635 usage: (format STRING &rest OBJECTS) */)
3636 (ptrdiff_t nargs, Lisp_Object *args)
3637 {
3638 ptrdiff_t n; /* The number of the next arg to substitute */
3639 char initial_buffer[4000];
3640 char *buf = initial_buffer;
3641 ptrdiff_t bufsize = sizeof initial_buffer;
3642 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3643 char *p;
3644 Lisp_Object buf_save_value IF_LINT (= {0});
3645 register char *format, *end, *format_start;
3646 ptrdiff_t formatlen, nchars;
3647 /* Nonzero if the format is multibyte. */
3648 int multibyte_format = 0;
3649 /* Nonzero if the output should be a multibyte string,
3650 which is true if any of the inputs is one. */
3651 int multibyte = 0;
3652 /* When we make a multibyte string, we must pay attention to the
3653 byte combining problem, i.e., a byte may be combined with a
3654 multibyte character of the previous string. This flag tells if we
3655 must consider such a situation or not. */
3656 int maybe_combine_byte;
3657 Lisp_Object val;
3658 int arg_intervals = 0;
3659 USE_SAFE_ALLOCA;
3660
3661 /* discarded[I] is 1 if byte I of the format
3662 string was not copied into the output.
3663 It is 2 if byte I was not the first byte of its character. */
3664 char *discarded;
3665
3666 /* Each element records, for one argument,
3667 the start and end bytepos in the output string,
3668 whether the argument has been converted to string (e.g., due to "%S"),
3669 and whether the argument is a string with intervals.
3670 info[0] is unused. Unused elements have -1 for start. */
3671 struct info
3672 {
3673 ptrdiff_t start, end;
3674 int converted_to_string;
3675 int intervals;
3676 } *info = 0;
3677
3678 /* It should not be necessary to GCPRO ARGS, because
3679 the caller in the interpreter should take care of that. */
3680
3681 CHECK_STRING (args[0]);
3682 format_start = SSDATA (args[0]);
3683 formatlen = SBYTES (args[0]);
3684
3685 /* Allocate the info and discarded tables. */
3686 {
3687 ptrdiff_t i;
3688 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3689 memory_full (SIZE_MAX);
3690 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3691 discarded = (char *) &info[nargs + 1];
3692 for (i = 0; i < nargs + 1; i++)
3693 {
3694 info[i].start = -1;
3695 info[i].intervals = info[i].converted_to_string = 0;
3696 }
3697 memset (discarded, 0, formatlen);
3698 }
3699
3700 /* Try to determine whether the result should be multibyte.
3701 This is not always right; sometimes the result needs to be multibyte
3702 because of an object that we will pass through prin1,
3703 and in that case, we won't know it here. */
3704 multibyte_format = STRING_MULTIBYTE (args[0]);
3705 multibyte = multibyte_format;
3706 for (n = 1; !multibyte && n < nargs; n++)
3707 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3708 multibyte = 1;
3709
3710 /* If we start out planning a unibyte result,
3711 then discover it has to be multibyte, we jump back to retry. */
3712 retry:
3713
3714 p = buf;
3715 nchars = 0;
3716 n = 0;
3717
3718 /* Scan the format and store result in BUF. */
3719 format = format_start;
3720 end = format + formatlen;
3721 maybe_combine_byte = 0;
3722
3723 while (format != end)
3724 {
3725 /* The values of N and FORMAT when the loop body is entered. */
3726 ptrdiff_t n0 = n;
3727 char *format0 = format;
3728
3729 /* Bytes needed to represent the output of this conversion. */
3730 ptrdiff_t convbytes;
3731
3732 if (*format == '%')
3733 {
3734 /* General format specifications look like
3735
3736 '%' [flags] [field-width] [precision] format
3737
3738 where
3739
3740 flags ::= [-+0# ]+
3741 field-width ::= [0-9]+
3742 precision ::= '.' [0-9]*
3743
3744 If a field-width is specified, it specifies to which width
3745 the output should be padded with blanks, if the output
3746 string is shorter than field-width.
3747
3748 If precision is specified, it specifies the number of
3749 digits to print after the '.' for floats, or the max.
3750 number of chars to print from a string. */
3751
3752 int minus_flag = 0;
3753 int plus_flag = 0;
3754 int space_flag = 0;
3755 int sharp_flag = 0;
3756 int zero_flag = 0;
3757 ptrdiff_t field_width;
3758 int precision_given;
3759 uintmax_t precision = UINTMAX_MAX;
3760 char *num_end;
3761 char conversion;
3762
3763 while (1)
3764 {
3765 switch (*++format)
3766 {
3767 case '-': minus_flag = 1; continue;
3768 case '+': plus_flag = 1; continue;
3769 case ' ': space_flag = 1; continue;
3770 case '#': sharp_flag = 1; continue;
3771 case '0': zero_flag = 1; continue;
3772 }
3773 break;
3774 }
3775
3776 /* Ignore flags when sprintf ignores them. */
3777 space_flag &= ~ plus_flag;
3778 zero_flag &= ~ minus_flag;
3779
3780 {
3781 uintmax_t w = strtoumax (format, &num_end, 10);
3782 if (max_bufsize <= w)
3783 string_overflow ();
3784 field_width = w;
3785 }
3786 precision_given = *num_end == '.';
3787 if (precision_given)
3788 precision = strtoumax (num_end + 1, &num_end, 10);
3789 format = num_end;
3790
3791 if (format == end)
3792 error ("Format string ends in middle of format specifier");
3793
3794 memset (&discarded[format0 - format_start], 1, format - format0);
3795 conversion = *format;
3796 if (conversion == '%')
3797 goto copy_char;
3798 discarded[format - format_start] = 1;
3799 format++;
3800
3801 ++n;
3802 if (! (n < nargs))
3803 error ("Not enough arguments for format string");
3804
3805 /* For 'S', prin1 the argument, and then treat like 's'.
3806 For 's', princ any argument that is not a string or
3807 symbol. But don't do this conversion twice, which might
3808 happen after retrying. */
3809 if ((conversion == 'S'
3810 || (conversion == 's'
3811 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3812 {
3813 if (! info[n].converted_to_string)
3814 {
3815 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3816 args[n] = Fprin1_to_string (args[n], noescape);
3817 info[n].converted_to_string = 1;
3818 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3819 {
3820 multibyte = 1;
3821 goto retry;
3822 }
3823 }
3824 conversion = 's';
3825 }
3826 else if (conversion == 'c')
3827 {
3828 if (FLOATP (args[n]))
3829 {
3830 double d = XFLOAT_DATA (args[n]);
3831 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3832 }
3833
3834 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3835 {
3836 if (!multibyte)
3837 {
3838 multibyte = 1;
3839 goto retry;
3840 }
3841 args[n] = Fchar_to_string (args[n]);
3842 info[n].converted_to_string = 1;
3843 }
3844
3845 if (info[n].converted_to_string)
3846 conversion = 's';
3847 zero_flag = 0;
3848 }
3849
3850 if (SYMBOLP (args[n]))
3851 {
3852 args[n] = SYMBOL_NAME (args[n]);
3853 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3854 {
3855 multibyte = 1;
3856 goto retry;
3857 }
3858 }
3859
3860 if (conversion == 's')
3861 {
3862 /* handle case (precision[n] >= 0) */
3863
3864 ptrdiff_t width, padding, nbytes;
3865 ptrdiff_t nchars_string;
3866
3867 ptrdiff_t prec = -1;
3868 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3869 prec = precision;
3870
3871 /* lisp_string_width ignores a precision of 0, but GNU
3872 libc functions print 0 characters when the precision
3873 is 0. Imitate libc behavior here. Changing
3874 lisp_string_width is the right thing, and will be
3875 done, but meanwhile we work with it. */
3876
3877 if (prec == 0)
3878 width = nchars_string = nbytes = 0;
3879 else
3880 {
3881 ptrdiff_t nch, nby;
3882 width = lisp_string_width (args[n], prec, &nch, &nby);
3883 if (prec < 0)
3884 {
3885 nchars_string = SCHARS (args[n]);
3886 nbytes = SBYTES (args[n]);
3887 }
3888 else
3889 {
3890 nchars_string = nch;
3891 nbytes = nby;
3892 }
3893 }
3894
3895 convbytes = nbytes;
3896 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3897 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3898
3899 padding = width < field_width ? field_width - width : 0;
3900
3901 if (max_bufsize - padding <= convbytes)
3902 string_overflow ();
3903 convbytes += padding;
3904 if (convbytes <= buf + bufsize - p)
3905 {
3906 if (! minus_flag)
3907 {
3908 memset (p, ' ', padding);
3909 p += padding;
3910 nchars += padding;
3911 }
3912
3913 if (p > buf
3914 && multibyte
3915 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3916 && STRING_MULTIBYTE (args[n])
3917 && !CHAR_HEAD_P (SREF (args[n], 0)))
3918 maybe_combine_byte = 1;
3919
3920 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3921 nbytes,
3922 STRING_MULTIBYTE (args[n]), multibyte);
3923
3924 info[n].start = nchars;
3925 nchars += nchars_string;
3926 info[n].end = nchars;
3927
3928 if (minus_flag)
3929 {
3930 memset (p, ' ', padding);
3931 p += padding;
3932 nchars += padding;
3933 }
3934
3935 /* If this argument has text properties, record where
3936 in the result string it appears. */
3937 if (string_intervals (args[n]))
3938 info[n].intervals = arg_intervals = 1;
3939
3940 continue;
3941 }
3942 }
3943 else if (! (conversion == 'c' || conversion == 'd'
3944 || conversion == 'e' || conversion == 'f'
3945 || conversion == 'g' || conversion == 'i'
3946 || conversion == 'o' || conversion == 'x'
3947 || conversion == 'X'))
3948 error ("Invalid format operation %%%c",
3949 STRING_CHAR ((unsigned char *) format - 1));
3950 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3951 error ("Format specifier doesn't match argument type");
3952 else
3953 {
3954 enum
3955 {
3956 /* Maximum precision for a %f conversion such that the
3957 trailing output digit might be nonzero. Any precision
3958 larger than this will not yield useful information. */
3959 USEFUL_PRECISION_MAX =
3960 ((1 - DBL_MIN_EXP)
3961 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3962 : FLT_RADIX == 16 ? 4
3963 : -1)),
3964
3965 /* Maximum number of bytes generated by any format, if
3966 precision is no more than USEFUL_PRECISION_MAX.
3967 On all practical hosts, %f is the worst case. */
3968 SPRINTF_BUFSIZE =
3969 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3970
3971 /* Length of pM (that is, of pMd without the
3972 trailing "d"). */
3973 pMlen = sizeof pMd - 2
3974 };
3975 verify (0 < USEFUL_PRECISION_MAX);
3976
3977 int prec;
3978 ptrdiff_t padding, sprintf_bytes;
3979 uintmax_t excess_precision, numwidth;
3980 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3981
3982 char sprintf_buf[SPRINTF_BUFSIZE];
3983
3984 /* Copy of conversion specification, modified somewhat.
3985 At most three flags F can be specified at once. */
3986 char convspec[sizeof "%FFF.*d" + pMlen];
3987
3988 /* Avoid undefined behavior in underlying sprintf. */
3989 if (conversion == 'd' || conversion == 'i')
3990 sharp_flag = 0;
3991
3992 /* Create the copy of the conversion specification, with
3993 any width and precision removed, with ".*" inserted,
3994 and with pM inserted for integer formats. */
3995 {
3996 char *f = convspec;
3997 *f++ = '%';
3998 *f = '-'; f += minus_flag;
3999 *f = '+'; f += plus_flag;
4000 *f = ' '; f += space_flag;
4001 *f = '#'; f += sharp_flag;
4002 *f = '0'; f += zero_flag;
4003 *f++ = '.';
4004 *f++ = '*';
4005 if (conversion == 'd' || conversion == 'i'
4006 || conversion == 'o' || conversion == 'x'
4007 || conversion == 'X')
4008 {
4009 memcpy (f, pMd, pMlen);
4010 f += pMlen;
4011 zero_flag &= ~ precision_given;
4012 }
4013 *f++ = conversion;
4014 *f = '\0';
4015 }
4016
4017 prec = -1;
4018 if (precision_given)
4019 prec = min (precision, USEFUL_PRECISION_MAX);
4020
4021 /* Use sprintf to format this number into sprintf_buf. Omit
4022 padding and excess precision, though, because sprintf limits
4023 output length to INT_MAX.
4024
4025 There are four types of conversion: double, unsigned
4026 char (passed as int), wide signed int, and wide
4027 unsigned int. Treat them separately because the
4028 sprintf ABI is sensitive to which type is passed. Be
4029 careful about integer overflow, NaNs, infinities, and
4030 conversions; for example, the min and max macros are
4031 not suitable here. */
4032 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4033 {
4034 double x = (INTEGERP (args[n])
4035 ? XINT (args[n])
4036 : XFLOAT_DATA (args[n]));
4037 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4038 }
4039 else if (conversion == 'c')
4040 {
4041 /* Don't use sprintf here, as it might mishandle prec. */
4042 sprintf_buf[0] = XINT (args[n]);
4043 sprintf_bytes = prec != 0;
4044 }
4045 else if (conversion == 'd')
4046 {
4047 /* For float, maybe we should use "%1.0f"
4048 instead so it also works for values outside
4049 the integer range. */
4050 printmax_t x;
4051 if (INTEGERP (args[n]))
4052 x = XINT (args[n]);
4053 else
4054 {
4055 double d = XFLOAT_DATA (args[n]);
4056 if (d < 0)
4057 {
4058 x = TYPE_MINIMUM (printmax_t);
4059 if (x < d)
4060 x = d;
4061 }
4062 else
4063 {
4064 x = TYPE_MAXIMUM (printmax_t);
4065 if (d < x)
4066 x = d;
4067 }
4068 }
4069 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4070 }
4071 else
4072 {
4073 /* Don't sign-extend for octal or hex printing. */
4074 uprintmax_t x;
4075 if (INTEGERP (args[n]))
4076 x = XUINT (args[n]);
4077 else
4078 {
4079 double d = XFLOAT_DATA (args[n]);
4080 if (d < 0)
4081 x = 0;
4082 else
4083 {
4084 x = TYPE_MAXIMUM (uprintmax_t);
4085 if (d < x)
4086 x = d;
4087 }
4088 }
4089 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4090 }
4091
4092 /* Now the length of the formatted item is known, except it omits
4093 padding and excess precision. Deal with excess precision
4094 first. This happens only when the format specifies
4095 ridiculously large precision. */
4096 excess_precision = precision - prec;
4097 if (excess_precision)
4098 {
4099 if (conversion == 'e' || conversion == 'f'
4100 || conversion == 'g')
4101 {
4102 if ((conversion == 'g' && ! sharp_flag)
4103 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4104 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4105 excess_precision = 0;
4106 else
4107 {
4108 if (conversion == 'g')
4109 {
4110 char *dot = strchr (sprintf_buf, '.');
4111 if (!dot)
4112 excess_precision = 0;
4113 }
4114 }
4115 trailing_zeros = excess_precision;
4116 }
4117 else
4118 leading_zeros = excess_precision;
4119 }
4120
4121 /* Compute the total bytes needed for this item, including
4122 excess precision and padding. */
4123 numwidth = sprintf_bytes + excess_precision;
4124 padding = numwidth < field_width ? field_width - numwidth : 0;
4125 if (max_bufsize - sprintf_bytes <= excess_precision
4126 || max_bufsize - padding <= numwidth)
4127 string_overflow ();
4128 convbytes = numwidth + padding;
4129
4130 if (convbytes <= buf + bufsize - p)
4131 {
4132 /* Copy the formatted item from sprintf_buf into buf,
4133 inserting padding and excess-precision zeros. */
4134
4135 char *src = sprintf_buf;
4136 char src0 = src[0];
4137 int exponent_bytes = 0;
4138 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4139 int significand_bytes;
4140 if (zero_flag
4141 && ((src[signedp] >= '0' && src[signedp] <= '9')
4142 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4143 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4144 {
4145 leading_zeros += padding;
4146 padding = 0;
4147 }
4148
4149 if (excess_precision
4150 && (conversion == 'e' || conversion == 'g'))
4151 {
4152 char *e = strchr (src, 'e');
4153 if (e)
4154 exponent_bytes = src + sprintf_bytes - e;
4155 }
4156
4157 if (! minus_flag)
4158 {
4159 memset (p, ' ', padding);
4160 p += padding;
4161 nchars += padding;
4162 }
4163
4164 *p = src0;
4165 src += signedp;
4166 p += signedp;
4167 memset (p, '0', leading_zeros);
4168 p += leading_zeros;
4169 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4170 memcpy (p, src, significand_bytes);
4171 p += significand_bytes;
4172 src += significand_bytes;
4173 memset (p, '0', trailing_zeros);
4174 p += trailing_zeros;
4175 memcpy (p, src, exponent_bytes);
4176 p += exponent_bytes;
4177
4178 info[n].start = nchars;
4179 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4180 info[n].end = nchars;
4181
4182 if (minus_flag)
4183 {
4184 memset (p, ' ', padding);
4185 p += padding;
4186 nchars += padding;
4187 }
4188
4189 continue;
4190 }
4191 }
4192 }
4193 else
4194 copy_char:
4195 {
4196 /* Copy a single character from format to buf. */
4197
4198 char *src = format;
4199 unsigned char str[MAX_MULTIBYTE_LENGTH];
4200
4201 if (multibyte_format)
4202 {
4203 /* Copy a whole multibyte character. */
4204 if (p > buf
4205 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4206 && !CHAR_HEAD_P (*format))
4207 maybe_combine_byte = 1;
4208
4209 do
4210 format++;
4211 while (! CHAR_HEAD_P (*format));
4212
4213 convbytes = format - src;
4214 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4215 }
4216 else
4217 {
4218 unsigned char uc = *format++;
4219 if (! multibyte || ASCII_BYTE_P (uc))
4220 convbytes = 1;
4221 else
4222 {
4223 int c = BYTE8_TO_CHAR (uc);
4224 convbytes = CHAR_STRING (c, str);
4225 src = (char *) str;
4226 }
4227 }
4228
4229 if (convbytes <= buf + bufsize - p)
4230 {
4231 memcpy (p, src, convbytes);
4232 p += convbytes;
4233 nchars++;
4234 continue;
4235 }
4236 }
4237
4238 /* There wasn't enough room to store this conversion or single
4239 character. CONVBYTES says how much room is needed. Allocate
4240 enough room (and then some) and do it again. */
4241 {
4242 ptrdiff_t used = p - buf;
4243
4244 if (max_bufsize - used < convbytes)
4245 string_overflow ();
4246 bufsize = used + convbytes;
4247 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4248
4249 if (buf == initial_buffer)
4250 {
4251 buf = xmalloc (bufsize);
4252 sa_must_free = 1;
4253 buf_save_value = make_save_value (buf, 0);
4254 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4255 memcpy (buf, initial_buffer, used);
4256 }
4257 else
4258 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4259
4260 p = buf + used;
4261 }
4262
4263 format = format0;
4264 n = n0;
4265 }
4266
4267 if (bufsize < p - buf)
4268 abort ();
4269
4270 if (maybe_combine_byte)
4271 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4272 val = make_specified_string (buf, nchars, p - buf, multibyte);
4273
4274 /* If we allocated BUF with malloc, free it too. */
4275 SAFE_FREE ();
4276
4277 /* If the format string has text properties, or any of the string
4278 arguments has text properties, set up text properties of the
4279 result string. */
4280
4281 if (string_intervals (args[0]) || arg_intervals)
4282 {
4283 Lisp_Object len, new_len, props;
4284 struct gcpro gcpro1;
4285
4286 /* Add text properties from the format string. */
4287 len = make_number (SCHARS (args[0]));
4288 props = text_property_list (args[0], make_number (0), len, Qnil);
4289 GCPRO1 (props);
4290
4291 if (CONSP (props))
4292 {
4293 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4294 ptrdiff_t argn = 1;
4295 Lisp_Object list;
4296
4297 /* Adjust the bounds of each text property
4298 to the proper start and end in the output string. */
4299
4300 /* Put the positions in PROPS in increasing order, so that
4301 we can do (effectively) one scan through the position
4302 space of the format string. */
4303 props = Fnreverse (props);
4304
4305 /* BYTEPOS is the byte position in the format string,
4306 POSITION is the untranslated char position in it,
4307 TRANSLATED is the translated char position in BUF,
4308 and ARGN is the number of the next arg we will come to. */
4309 for (list = props; CONSP (list); list = XCDR (list))
4310 {
4311 Lisp_Object item;
4312 ptrdiff_t pos;
4313
4314 item = XCAR (list);
4315
4316 /* First adjust the property start position. */
4317 pos = XINT (XCAR (item));
4318
4319 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4320 up to this position. */
4321 for (; position < pos; bytepos++)
4322 {
4323 if (! discarded[bytepos])
4324 position++, translated++;
4325 else if (discarded[bytepos] == 1)
4326 {
4327 position++;
4328 if (translated == info[argn].start)
4329 {
4330 translated += info[argn].end - info[argn].start;
4331 argn++;
4332 }
4333 }
4334 }
4335
4336 XSETCAR (item, make_number (translated));
4337
4338 /* Likewise adjust the property end position. */
4339 pos = XINT (XCAR (XCDR (item)));
4340
4341 for (; position < pos; bytepos++)
4342 {
4343 if (! discarded[bytepos])
4344 position++, translated++;
4345 else if (discarded[bytepos] == 1)
4346 {
4347 position++;
4348 if (translated == info[argn].start)
4349 {
4350 translated += info[argn].end - info[argn].start;
4351 argn++;
4352 }
4353 }
4354 }
4355
4356 XSETCAR (XCDR (item), make_number (translated));
4357 }
4358
4359 add_text_properties_from_list (val, props, make_number (0));
4360 }
4361
4362 /* Add text properties from arguments. */
4363 if (arg_intervals)
4364 for (n = 1; n < nargs; ++n)
4365 if (info[n].intervals)
4366 {
4367 len = make_number (SCHARS (args[n]));
4368 new_len = make_number (info[n].end - info[n].start);
4369 props = text_property_list (args[n], make_number (0), len, Qnil);
4370 props = extend_property_ranges (props, new_len);
4371 /* If successive arguments have properties, be sure that
4372 the value of `composition' property be the copy. */
4373 if (n > 1 && info[n - 1].end)
4374 make_composition_value_copy (props);
4375 add_text_properties_from_list (val, props,
4376 make_number (info[n].start));
4377 }
4378
4379 UNGCPRO;
4380 }
4381
4382 return val;
4383 }
4384
4385 Lisp_Object
4386 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4387 {
4388 Lisp_Object args[3];
4389 args[0] = build_string (string1);
4390 args[1] = arg0;
4391 args[2] = arg1;
4392 return Fformat (3, args);
4393 }
4394 \f
4395 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4396 doc: /* Return t if two characters match, optionally ignoring case.
4397 Both arguments must be characters (i.e. integers).
4398 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4399 (register Lisp_Object c1, Lisp_Object c2)
4400 {
4401 int i1, i2;
4402 /* Check they're chars, not just integers, otherwise we could get array
4403 bounds violations in downcase. */
4404 CHECK_CHARACTER (c1);
4405 CHECK_CHARACTER (c2);
4406
4407 if (XINT (c1) == XINT (c2))
4408 return Qt;
4409 if (NILP (BVAR (current_buffer, case_fold_search)))
4410 return Qnil;
4411
4412 i1 = XFASTINT (c1);
4413 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4414 && ! ASCII_CHAR_P (i1))
4415 {
4416 MAKE_CHAR_MULTIBYTE (i1);
4417 }
4418 i2 = XFASTINT (c2);
4419 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4420 && ! ASCII_CHAR_P (i2))
4421 {
4422 MAKE_CHAR_MULTIBYTE (i2);
4423 }
4424 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4425 }
4426 \f
4427 /* Transpose the markers in two regions of the current buffer, and
4428 adjust the ones between them if necessary (i.e.: if the regions
4429 differ in size).
4430
4431 START1, END1 are the character positions of the first region.
4432 START1_BYTE, END1_BYTE are the byte positions.
4433 START2, END2 are the character positions of the second region.
4434 START2_BYTE, END2_BYTE are the byte positions.
4435
4436 Traverses the entire marker list of the buffer to do so, adding an
4437 appropriate amount to some, subtracting from some, and leaving the
4438 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4439
4440 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4441
4442 static void
4443 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4444 ptrdiff_t start2, ptrdiff_t end2,
4445 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4446 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4447 {
4448 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4449 register struct Lisp_Marker *marker;
4450
4451 /* Update point as if it were a marker. */
4452 if (PT < start1)
4453 ;
4454 else if (PT < end1)
4455 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4456 PT_BYTE + (end2_byte - end1_byte));
4457 else if (PT < start2)
4458 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4459 (PT_BYTE + (end2_byte - start2_byte)
4460 - (end1_byte - start1_byte)));
4461 else if (PT < end2)
4462 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4463 PT_BYTE - (start2_byte - start1_byte));
4464
4465 /* We used to adjust the endpoints here to account for the gap, but that
4466 isn't good enough. Even if we assume the caller has tried to move the
4467 gap out of our way, it might still be at start1 exactly, for example;
4468 and that places it `inside' the interval, for our purposes. The amount
4469 of adjustment is nontrivial if there's a `denormalized' marker whose
4470 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4471 the dirty work to Fmarker_position, below. */
4472
4473 /* The difference between the region's lengths */
4474 diff = (end2 - start2) - (end1 - start1);
4475 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4476
4477 /* For shifting each marker in a region by the length of the other
4478 region plus the distance between the regions. */
4479 amt1 = (end2 - start2) + (start2 - end1);
4480 amt2 = (end1 - start1) + (start2 - end1);
4481 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4482 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4483
4484 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4485 {
4486 mpos = marker->bytepos;
4487 if (mpos >= start1_byte && mpos < end2_byte)
4488 {
4489 if (mpos < end1_byte)
4490 mpos += amt1_byte;
4491 else if (mpos < start2_byte)
4492 mpos += diff_byte;
4493 else
4494 mpos -= amt2_byte;
4495 marker->bytepos = mpos;
4496 }
4497 mpos = marker->charpos;
4498 if (mpos >= start1 && mpos < end2)
4499 {
4500 if (mpos < end1)
4501 mpos += amt1;
4502 else if (mpos < start2)
4503 mpos += diff;
4504 else
4505 mpos -= amt2;
4506 }
4507 marker->charpos = mpos;
4508 }
4509 }
4510
4511 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4512 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4513 The regions should not be overlapping, because the size of the buffer is
4514 never changed in a transposition.
4515
4516 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4517 any markers that happen to be located in the regions.
4518
4519 Transposing beyond buffer boundaries is an error. */)
4520 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4521 {
4522 register ptrdiff_t start1, end1, start2, end2;
4523 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4524 ptrdiff_t gap, len1, len_mid, len2;
4525 unsigned char *start1_addr, *start2_addr, *temp;
4526
4527 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4528 Lisp_Object buf;
4529
4530 XSETBUFFER (buf, current_buffer);
4531 cur_intv = buffer_intervals (current_buffer);
4532
4533 validate_region (&startr1, &endr1);
4534 validate_region (&startr2, &endr2);
4535
4536 start1 = XFASTINT (startr1);
4537 end1 = XFASTINT (endr1);
4538 start2 = XFASTINT (startr2);
4539 end2 = XFASTINT (endr2);
4540 gap = GPT;
4541
4542 /* Swap the regions if they're reversed. */
4543 if (start2 < end1)
4544 {
4545 register ptrdiff_t glumph = start1;
4546 start1 = start2;
4547 start2 = glumph;
4548 glumph = end1;
4549 end1 = end2;
4550 end2 = glumph;
4551 }
4552
4553 len1 = end1 - start1;
4554 len2 = end2 - start2;
4555
4556 if (start2 < end1)
4557 error ("Transposed regions overlap");
4558 /* Nothing to change for adjacent regions with one being empty */
4559 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4560 return Qnil;
4561
4562 /* The possibilities are:
4563 1. Adjacent (contiguous) regions, or separate but equal regions
4564 (no, really equal, in this case!), or
4565 2. Separate regions of unequal size.
4566
4567 The worst case is usually No. 2. It means that (aside from
4568 potential need for getting the gap out of the way), there also
4569 needs to be a shifting of the text between the two regions. So
4570 if they are spread far apart, we are that much slower... sigh. */
4571
4572 /* It must be pointed out that the really studly thing to do would
4573 be not to move the gap at all, but to leave it in place and work
4574 around it if necessary. This would be extremely efficient,
4575 especially considering that people are likely to do
4576 transpositions near where they are working interactively, which
4577 is exactly where the gap would be found. However, such code
4578 would be much harder to write and to read. So, if you are
4579 reading this comment and are feeling squirrely, by all means have
4580 a go! I just didn't feel like doing it, so I will simply move
4581 the gap the minimum distance to get it out of the way, and then
4582 deal with an unbroken array. */
4583
4584 /* Make sure the gap won't interfere, by moving it out of the text
4585 we will operate on. */
4586 if (start1 < gap && gap < end2)
4587 {
4588 if (gap - start1 < end2 - gap)
4589 move_gap (start1);
4590 else
4591 move_gap (end2);
4592 }
4593
4594 start1_byte = CHAR_TO_BYTE (start1);
4595 start2_byte = CHAR_TO_BYTE (start2);
4596 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4597 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4598
4599 #ifdef BYTE_COMBINING_DEBUG
4600 if (end1 == start2)
4601 {
4602 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4603 len2_byte, start1, start1_byte)
4604 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4605 len1_byte, end2, start2_byte + len2_byte)
4606 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4607 len1_byte, end2, start2_byte + len2_byte))
4608 abort ();
4609 }
4610 else
4611 {
4612 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4613 len2_byte, start1, start1_byte)
4614 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4615 len1_byte, start2, start2_byte)
4616 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4617 len2_byte, end1, start1_byte + len1_byte)
4618 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4619 len1_byte, end2, start2_byte + len2_byte))
4620 abort ();
4621 }
4622 #endif
4623
4624 /* Hmmm... how about checking to see if the gap is large
4625 enough to use as the temporary storage? That would avoid an
4626 allocation... interesting. Later, don't fool with it now. */
4627
4628 /* Working without memmove, for portability (sigh), so must be
4629 careful of overlapping subsections of the array... */
4630
4631 if (end1 == start2) /* adjacent regions */
4632 {
4633 modify_region (current_buffer, start1, end2, 0);
4634 record_change (start1, len1 + len2);
4635
4636 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4637 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4638 /* Don't use Fset_text_properties: that can cause GC, which can
4639 clobber objects stored in the tmp_intervals. */
4640 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4641 if (tmp_interval3)
4642 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4643
4644 /* First region smaller than second. */
4645 if (len1_byte < len2_byte)
4646 {
4647 USE_SAFE_ALLOCA;
4648
4649 temp = SAFE_ALLOCA (len2_byte);
4650
4651 /* Don't precompute these addresses. We have to compute them
4652 at the last minute, because the relocating allocator might
4653 have moved the buffer around during the xmalloc. */
4654 start1_addr = BYTE_POS_ADDR (start1_byte);
4655 start2_addr = BYTE_POS_ADDR (start2_byte);
4656
4657 memcpy (temp, start2_addr, len2_byte);
4658 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4659 memcpy (start1_addr, temp, len2_byte);
4660 SAFE_FREE ();
4661 }
4662 else
4663 /* First region not smaller than second. */
4664 {
4665 USE_SAFE_ALLOCA;
4666
4667 temp = SAFE_ALLOCA (len1_byte);
4668 start1_addr = BYTE_POS_ADDR (start1_byte);
4669 start2_addr = BYTE_POS_ADDR (start2_byte);
4670 memcpy (temp, start1_addr, len1_byte);
4671 memcpy (start1_addr, start2_addr, len2_byte);
4672 memcpy (start1_addr + len2_byte, temp, len1_byte);
4673 SAFE_FREE ();
4674 }
4675 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4676 len1, current_buffer, 0);
4677 graft_intervals_into_buffer (tmp_interval2, start1,
4678 len2, current_buffer, 0);
4679 update_compositions (start1, start1 + len2, CHECK_BORDER);
4680 update_compositions (start1 + len2, end2, CHECK_TAIL);
4681 }
4682 /* Non-adjacent regions, because end1 != start2, bleagh... */
4683 else
4684 {
4685 len_mid = start2_byte - (start1_byte + len1_byte);
4686
4687 if (len1_byte == len2_byte)
4688 /* Regions are same size, though, how nice. */
4689 {
4690 USE_SAFE_ALLOCA;
4691
4692 modify_region (current_buffer, start1, end1, 0);
4693 modify_region (current_buffer, start2, end2, 0);
4694 record_change (start1, len1);
4695 record_change (start2, len2);
4696 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4697 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4698
4699 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4700 if (tmp_interval3)
4701 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4702
4703 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4704 if (tmp_interval3)
4705 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4706
4707 temp = SAFE_ALLOCA (len1_byte);
4708 start1_addr = BYTE_POS_ADDR (start1_byte);
4709 start2_addr = BYTE_POS_ADDR (start2_byte);
4710 memcpy (temp, start1_addr, len1_byte);
4711 memcpy (start1_addr, start2_addr, len2_byte);
4712 memcpy (start2_addr, temp, len1_byte);
4713 SAFE_FREE ();
4714
4715 graft_intervals_into_buffer (tmp_interval1, start2,
4716 len1, current_buffer, 0);
4717 graft_intervals_into_buffer (tmp_interval2, start1,
4718 len2, current_buffer, 0);
4719 }
4720
4721 else if (len1_byte < len2_byte) /* Second region larger than first */
4722 /* Non-adjacent & unequal size, area between must also be shifted. */
4723 {
4724 USE_SAFE_ALLOCA;
4725
4726 modify_region (current_buffer, start1, end2, 0);
4727 record_change (start1, (end2 - start1));
4728 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4729 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4730 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4731
4732 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4733 if (tmp_interval3)
4734 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4735
4736 /* holds region 2 */
4737 temp = SAFE_ALLOCA (len2_byte);
4738 start1_addr = BYTE_POS_ADDR (start1_byte);
4739 start2_addr = BYTE_POS_ADDR (start2_byte);
4740 memcpy (temp, start2_addr, len2_byte);
4741 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4742 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4743 memcpy (start1_addr, temp, len2_byte);
4744 SAFE_FREE ();
4745
4746 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4747 len1, current_buffer, 0);
4748 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4749 len_mid, current_buffer, 0);
4750 graft_intervals_into_buffer (tmp_interval2, start1,
4751 len2, current_buffer, 0);
4752 }
4753 else
4754 /* Second region smaller than first. */
4755 {
4756 USE_SAFE_ALLOCA;
4757
4758 record_change (start1, (end2 - start1));
4759 modify_region (current_buffer, start1, end2, 0);
4760
4761 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4762 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4763 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4764
4765 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4766 if (tmp_interval3)
4767 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4768
4769 /* holds region 1 */
4770 temp = SAFE_ALLOCA (len1_byte);
4771 start1_addr = BYTE_POS_ADDR (start1_byte);
4772 start2_addr = BYTE_POS_ADDR (start2_byte);
4773 memcpy (temp, start1_addr, len1_byte);
4774 memcpy (start1_addr, start2_addr, len2_byte);
4775 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4776 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4777 SAFE_FREE ();
4778
4779 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4780 len1, current_buffer, 0);
4781 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4782 len_mid, current_buffer, 0);
4783 graft_intervals_into_buffer (tmp_interval2, start1,
4784 len2, current_buffer, 0);
4785 }
4786
4787 update_compositions (start1, start1 + len2, CHECK_BORDER);
4788 update_compositions (end2 - len1, end2, CHECK_BORDER);
4789 }
4790
4791 /* When doing multiple transpositions, it might be nice
4792 to optimize this. Perhaps the markers in any one buffer
4793 should be organized in some sorted data tree. */
4794 if (NILP (leave_markers))
4795 {
4796 transpose_markers (start1, end1, start2, end2,
4797 start1_byte, start1_byte + len1_byte,
4798 start2_byte, start2_byte + len2_byte);
4799 fix_start_end_in_overlays (start1, end2);
4800 }
4801
4802 signal_after_change (start1, end2 - start1, end2 - start1);
4803 return Qnil;
4804 }
4805
4806 \f
4807 void
4808 syms_of_editfns (void)
4809 {
4810 environbuf = 0;
4811 initial_tz = 0;
4812
4813 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4814
4815 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4816 doc: /* Non-nil means text motion commands don't notice fields. */);
4817 Vinhibit_field_text_motion = Qnil;
4818
4819 DEFVAR_LISP ("buffer-access-fontify-functions",
4820 Vbuffer_access_fontify_functions,
4821 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4822 Each function is called with two arguments which specify the range
4823 of the buffer being accessed. */);
4824 Vbuffer_access_fontify_functions = Qnil;
4825
4826 {
4827 Lisp_Object obuf;
4828 obuf = Fcurrent_buffer ();
4829 /* Do this here, because init_buffer_once is too early--it won't work. */
4830 Fset_buffer (Vprin1_to_string_buffer);
4831 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4832 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4833 Qnil);
4834 Fset_buffer (obuf);
4835 }
4836
4837 DEFVAR_LISP ("buffer-access-fontified-property",
4838 Vbuffer_access_fontified_property,
4839 doc: /* Property which (if non-nil) indicates text has been fontified.
4840 `buffer-substring' need not call the `buffer-access-fontify-functions'
4841 functions if all the text being accessed has this property. */);
4842 Vbuffer_access_fontified_property = Qnil;
4843
4844 DEFVAR_LISP ("system-name", Vsystem_name,
4845 doc: /* The host name of the machine Emacs is running on. */);
4846
4847 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4848 doc: /* The full name of the user logged in. */);
4849
4850 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4851 doc: /* The user's name, taken from environment variables if possible. */);
4852
4853 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4854 doc: /* The user's name, based upon the real uid only. */);
4855
4856 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4857 doc: /* The release of the operating system Emacs is running on. */);
4858
4859 defsubr (&Spropertize);
4860 defsubr (&Schar_equal);
4861 defsubr (&Sgoto_char);
4862 defsubr (&Sstring_to_char);
4863 defsubr (&Schar_to_string);
4864 defsubr (&Sbyte_to_string);
4865 defsubr (&Sbuffer_substring);
4866 defsubr (&Sbuffer_substring_no_properties);
4867 defsubr (&Sbuffer_string);
4868
4869 defsubr (&Spoint_marker);
4870 defsubr (&Smark_marker);
4871 defsubr (&Spoint);
4872 defsubr (&Sregion_beginning);
4873 defsubr (&Sregion_end);
4874
4875 DEFSYM (Qfield, "field");
4876 DEFSYM (Qboundary, "boundary");
4877 defsubr (&Sfield_beginning);
4878 defsubr (&Sfield_end);
4879 defsubr (&Sfield_string);
4880 defsubr (&Sfield_string_no_properties);
4881 defsubr (&Sdelete_field);
4882 defsubr (&Sconstrain_to_field);
4883
4884 defsubr (&Sline_beginning_position);
4885 defsubr (&Sline_end_position);
4886
4887 /* defsubr (&Smark); */
4888 /* defsubr (&Sset_mark); */
4889 defsubr (&Ssave_excursion);
4890 defsubr (&Ssave_current_buffer);
4891
4892 defsubr (&Sbufsize);
4893 defsubr (&Spoint_max);
4894 defsubr (&Spoint_min);
4895 defsubr (&Spoint_min_marker);
4896 defsubr (&Spoint_max_marker);
4897 defsubr (&Sgap_position);
4898 defsubr (&Sgap_size);
4899 defsubr (&Sposition_bytes);
4900 defsubr (&Sbyte_to_position);
4901
4902 defsubr (&Sbobp);
4903 defsubr (&Seobp);
4904 defsubr (&Sbolp);
4905 defsubr (&Seolp);
4906 defsubr (&Sfollowing_char);
4907 defsubr (&Sprevious_char);
4908 defsubr (&Schar_after);
4909 defsubr (&Schar_before);
4910 defsubr (&Sinsert);
4911 defsubr (&Sinsert_before_markers);
4912 defsubr (&Sinsert_and_inherit);
4913 defsubr (&Sinsert_and_inherit_before_markers);
4914 defsubr (&Sinsert_char);
4915 defsubr (&Sinsert_byte);
4916
4917 defsubr (&Suser_login_name);
4918 defsubr (&Suser_real_login_name);
4919 defsubr (&Suser_uid);
4920 defsubr (&Suser_real_uid);
4921 defsubr (&Suser_full_name);
4922 defsubr (&Semacs_pid);
4923 defsubr (&Scurrent_time);
4924 defsubr (&Sget_internal_run_time);
4925 defsubr (&Sformat_time_string);
4926 defsubr (&Sfloat_time);
4927 defsubr (&Sdecode_time);
4928 defsubr (&Sencode_time);
4929 defsubr (&Scurrent_time_string);
4930 defsubr (&Scurrent_time_zone);
4931 defsubr (&Sset_time_zone_rule);
4932 defsubr (&Ssystem_name);
4933 defsubr (&Smessage);
4934 defsubr (&Smessage_box);
4935 defsubr (&Smessage_or_box);
4936 defsubr (&Scurrent_message);
4937 defsubr (&Sformat);
4938
4939 defsubr (&Sinsert_buffer_substring);
4940 defsubr (&Scompare_buffer_substrings);
4941 defsubr (&Ssubst_char_in_region);
4942 defsubr (&Stranslate_region_internal);
4943 defsubr (&Sdelete_region);
4944 defsubr (&Sdelete_and_extract_region);
4945 defsubr (&Swiden);
4946 defsubr (&Snarrow_to_region);
4947 defsubr (&Ssave_restriction);
4948 defsubr (&Stranspose_regions);
4949 }