* fns.c (Ffillarray): Don't assume bool vector size fits in 'int'.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78 EMACS_UINT denominator;
79
80 if (EQ (limit, Qt))
81 seed_random (getpid () + time (NULL));
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 {
84 /* Try to take our random number from the higher bits of VAL,
85 not the lower, since (says Gentzel) the low bits of `random'
86 are less random than the higher ones. We do this by using the
87 quotient rather than the remainder. At the high end of the RNG
88 it's possible to get a quotient larger than n; discarding
89 these values eliminates the bias that would otherwise appear
90 when using a large n. */
91 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
92 do
93 val = get_random () / denominator;
94 while (val >= XFASTINT (limit));
95 }
96 else
97 val = get_random ();
98 XSETINT (lispy_val, val);
99 return lispy_val;
100 }
101 \f
102 /* Heuristic on how many iterations of a tight loop can be safely done
103 before it's time to do a QUIT. This must be a power of 2. */
104 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
105
106 /* Random data-structure functions */
107
108 DEFUN ("length", Flength, Slength, 1, 1, 0,
109 doc: /* Return the length of vector, list or string SEQUENCE.
110 A byte-code function object is also allowed.
111 If the string contains multibyte characters, this is not necessarily
112 the number of bytes in the string; it is the number of characters.
113 To get the number of bytes, use `string-bytes'. */)
114 (register Lisp_Object sequence)
115 {
116 register Lisp_Object val;
117
118 if (STRINGP (sequence))
119 XSETFASTINT (val, SCHARS (sequence));
120 else if (VECTORP (sequence))
121 XSETFASTINT (val, ASIZE (sequence));
122 else if (CHAR_TABLE_P (sequence))
123 XSETFASTINT (val, MAX_CHAR);
124 else if (BOOL_VECTOR_P (sequence))
125 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
126 else if (COMPILEDP (sequence))
127 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
128 else if (CONSP (sequence))
129 {
130 EMACS_INT i = 0;
131
132 do
133 {
134 ++i;
135 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
136 {
137 if (MOST_POSITIVE_FIXNUM < i)
138 error ("List too long");
139 QUIT;
140 }
141 sequence = XCDR (sequence);
142 }
143 while (CONSP (sequence));
144
145 CHECK_LIST_END (sequence, sequence);
146
147 val = make_number (i);
148 }
149 else if (NILP (sequence))
150 XSETFASTINT (val, 0);
151 else
152 wrong_type_argument (Qsequencep, sequence);
153
154 return val;
155 }
156
157 /* This does not check for quits. That is safe since it must terminate. */
158
159 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
160 doc: /* Return the length of a list, but avoid error or infinite loop.
161 This function never gets an error. If LIST is not really a list,
162 it returns 0. If LIST is circular, it returns a finite value
163 which is at least the number of distinct elements. */)
164 (Lisp_Object list)
165 {
166 Lisp_Object tail, halftail;
167 double hilen = 0;
168 uintmax_t lolen = 1;
169
170 if (! CONSP (list))
171 return 0;
172
173 /* halftail is used to detect circular lists. */
174 for (tail = halftail = list; ; )
175 {
176 tail = XCDR (tail);
177 if (! CONSP (tail))
178 break;
179 if (EQ (tail, halftail))
180 break;
181 lolen++;
182 if ((lolen & 1) == 0)
183 {
184 halftail = XCDR (halftail);
185 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
186 {
187 QUIT;
188 if (lolen == 0)
189 hilen += UINTMAX_MAX + 1.0;
190 }
191 }
192 }
193
194 /* If the length does not fit into a fixnum, return a float.
195 On all known practical machines this returns an upper bound on
196 the true length. */
197 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
198 }
199
200 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
201 doc: /* Return the number of bytes in STRING.
202 If STRING is multibyte, this may be greater than the length of STRING. */)
203 (Lisp_Object string)
204 {
205 CHECK_STRING (string);
206 return make_number (SBYTES (string));
207 }
208
209 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
210 doc: /* Return t if two strings have identical contents.
211 Case is significant, but text properties are ignored.
212 Symbols are also allowed; their print names are used instead. */)
213 (register Lisp_Object s1, Lisp_Object s2)
214 {
215 if (SYMBOLP (s1))
216 s1 = SYMBOL_NAME (s1);
217 if (SYMBOLP (s2))
218 s2 = SYMBOL_NAME (s2);
219 CHECK_STRING (s1);
220 CHECK_STRING (s2);
221
222 if (SCHARS (s1) != SCHARS (s2)
223 || SBYTES (s1) != SBYTES (s2)
224 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
225 return Qnil;
226 return Qt;
227 }
228
229 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
230 doc: /* Compare the contents of two strings, converting to multibyte if needed.
231 In string STR1, skip the first START1 characters and stop at END1.
232 In string STR2, skip the first START2 characters and stop at END2.
233 END1 and END2 default to the full lengths of the respective strings.
234
235 Case is significant in this comparison if IGNORE-CASE is nil.
236 Unibyte strings are converted to multibyte for comparison.
237
238 The value is t if the strings (or specified portions) match.
239 If string STR1 is less, the value is a negative number N;
240 - 1 - N is the number of characters that match at the beginning.
241 If string STR1 is greater, the value is a positive number N;
242 N - 1 is the number of characters that match at the beginning. */)
243 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
244 {
245 register EMACS_INT end1_char, end2_char;
246 register EMACS_INT i1, i1_byte, i2, i2_byte;
247
248 CHECK_STRING (str1);
249 CHECK_STRING (str2);
250 if (NILP (start1))
251 start1 = make_number (0);
252 if (NILP (start2))
253 start2 = make_number (0);
254 CHECK_NATNUM (start1);
255 CHECK_NATNUM (start2);
256 if (! NILP (end1))
257 CHECK_NATNUM (end1);
258 if (! NILP (end2))
259 CHECK_NATNUM (end2);
260
261 i1 = XINT (start1);
262 i2 = XINT (start2);
263
264 i1_byte = string_char_to_byte (str1, i1);
265 i2_byte = string_char_to_byte (str2, i2);
266
267 end1_char = SCHARS (str1);
268 if (! NILP (end1) && end1_char > XINT (end1))
269 end1_char = XINT (end1);
270
271 end2_char = SCHARS (str2);
272 if (! NILP (end2) && end2_char > XINT (end2))
273 end2_char = XINT (end2);
274
275 while (i1 < end1_char && i2 < end2_char)
276 {
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
279 int c1, c2;
280
281 if (STRING_MULTIBYTE (str1))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
283 else
284 {
285 c1 = SREF (str1, i1++);
286 MAKE_CHAR_MULTIBYTE (c1);
287 }
288
289 if (STRING_MULTIBYTE (str2))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
291 else
292 {
293 c2 = SREF (str2, i2++);
294 MAKE_CHAR_MULTIBYTE (c2);
295 }
296
297 if (c1 == c2)
298 continue;
299
300 if (! NILP (ignore_case))
301 {
302 Lisp_Object tem;
303
304 tem = Fupcase (make_number (c1));
305 c1 = XINT (tem);
306 tem = Fupcase (make_number (c2));
307 c2 = XINT (tem);
308 }
309
310 if (c1 == c2)
311 continue;
312
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
316 if (c1 < c2)
317 return make_number (- i1 + XINT (start1));
318 else
319 return make_number (i1 - XINT (start1));
320 }
321
322 if (i1 < end1_char)
323 return make_number (i1 - XINT (start1) + 1);
324 if (i2 < end2_char)
325 return make_number (- i1 + XINT (start1) - 1);
326
327 return Qt;
328 }
329
330 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
331 doc: /* Return t if first arg string is less than second in lexicographic order.
332 Case is significant.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1, Lisp_Object s2)
335 {
336 register EMACS_INT end;
337 register EMACS_INT i1, i1_byte, i2, i2_byte;
338
339 if (SYMBOLP (s1))
340 s1 = SYMBOL_NAME (s1);
341 if (SYMBOLP (s2))
342 s2 = SYMBOL_NAME (s2);
343 CHECK_STRING (s1);
344 CHECK_STRING (s2);
345
346 i1 = i1_byte = i2 = i2_byte = 0;
347
348 end = SCHARS (s1);
349 if (end > SCHARS (s2))
350 end = SCHARS (s2);
351
352 while (i1 < end)
353 {
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
356 int c1, c2;
357
358 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
359 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
360
361 if (c1 != c2)
362 return c1 < c2 ? Qt : Qnil;
363 }
364 return i1 < SCHARS (s2) ? Qt : Qnil;
365 }
366 \f
367 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
368 enum Lisp_Type target_type, int last_special);
369
370 /* ARGSUSED */
371 Lisp_Object
372 concat2 (Lisp_Object s1, Lisp_Object s2)
373 {
374 Lisp_Object args[2];
375 args[0] = s1;
376 args[1] = s2;
377 return concat (2, args, Lisp_String, 0);
378 }
379
380 /* ARGSUSED */
381 Lisp_Object
382 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
383 {
384 Lisp_Object args[3];
385 args[0] = s1;
386 args[1] = s2;
387 args[2] = s3;
388 return concat (3, args, Lisp_String, 0);
389 }
390
391 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
392 doc: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs, Lisp_Object *args)
398 {
399 return concat (nargs, args, Lisp_Cons, 1);
400 }
401
402 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
403 doc: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs, Lisp_Object *args)
408 {
409 return concat (nargs, args, Lisp_String, 0);
410 }
411
412 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
413 doc: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs, Lisp_Object *args)
418 {
419 return concat (nargs, args, Lisp_Vectorlike, 0);
420 }
421
422
423 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
424 doc: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
427 (Lisp_Object arg)
428 {
429 if (NILP (arg)) return arg;
430
431 if (CHAR_TABLE_P (arg))
432 {
433 return copy_char_table (arg);
434 }
435
436 if (BOOL_VECTOR_P (arg))
437 {
438 Lisp_Object val;
439 ptrdiff_t size_in_chars
440 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
441 / BOOL_VECTOR_BITS_PER_CHAR);
442
443 val = Fmake_bool_vector (Flength (arg), Qnil);
444 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
445 size_in_chars);
446 return val;
447 }
448
449 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
450 wrong_type_argument (Qsequencep, arg);
451
452 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
453 }
454
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
457 struct textprop_rec
458 {
459 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
460 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
461 EMACS_INT to; /* refer to VAL (the target string) */
462 };
463
464 static Lisp_Object
465 concat (ptrdiff_t nargs, Lisp_Object *args,
466 enum Lisp_Type target_type, int last_special)
467 {
468 Lisp_Object val;
469 register Lisp_Object tail;
470 register Lisp_Object this;
471 EMACS_INT toindex;
472 EMACS_INT toindex_byte = 0;
473 register EMACS_INT result_len;
474 register EMACS_INT result_len_byte;
475 ptrdiff_t argnum;
476 Lisp_Object last_tail;
477 Lisp_Object prev;
478 int some_multibyte;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec *textprops = NULL;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops = 0;
487 USE_SAFE_ALLOCA;
488
489 tail = Qnil;
490
491 /* In append, the last arg isn't treated like the others */
492 if (last_special && nargs > 0)
493 {
494 nargs--;
495 last_tail = args[nargs];
496 }
497 else
498 last_tail = Qnil;
499
500 /* Check each argument. */
501 for (argnum = 0; argnum < nargs; argnum++)
502 {
503 this = args[argnum];
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep, this);
507 }
508
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
513 result_len_byte = 0;
514 result_len = 0;
515 some_multibyte = 0;
516 for (argnum = 0; argnum < nargs; argnum++)
517 {
518 EMACS_INT len;
519 this = args[argnum];
520 len = XFASTINT (Flength (this));
521 if (target_type == Lisp_String)
522 {
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
525 EMACS_INT i;
526 Lisp_Object ch;
527 int c;
528 EMACS_INT this_len_byte;
529
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i = 0; i < len; i++)
532 {
533 ch = AREF (this, i);
534 CHECK_CHARACTER (ch);
535 c = XFASTINT (ch);
536 this_len_byte = CHAR_BYTES (c);
537 result_len_byte += this_len_byte;
538 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
539 some_multibyte = 1;
540 }
541 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
542 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
543 else if (CONSP (this))
544 for (; CONSP (this); this = XCDR (this))
545 {
546 ch = XCAR (this);
547 CHECK_CHARACTER (ch);
548 c = XFASTINT (ch);
549 this_len_byte = CHAR_BYTES (c);
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 result_len_byte += SBYTES (this);
560 }
561 else
562 result_len_byte += count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 }
565 }
566
567 result_len += len;
568 if (STRING_BYTES_BOUND < result_len)
569 string_overflow ();
570 }
571
572 if (! some_multibyte)
573 result_len_byte = result_len;
574
575 /* Create the output object. */
576 if (target_type == Lisp_Cons)
577 val = Fmake_list (make_number (result_len), Qnil);
578 else if (target_type == Lisp_Vectorlike)
579 val = Fmake_vector (make_number (result_len), Qnil);
580 else if (some_multibyte)
581 val = make_uninit_multibyte_string (result_len, result_len_byte);
582 else
583 val = make_uninit_string (result_len);
584
585 /* In `append', if all but last arg are nil, return last arg. */
586 if (target_type == Lisp_Cons && EQ (val, Qnil))
587 return last_tail;
588
589 /* Copy the contents of the args into the result. */
590 if (CONSP (val))
591 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
592 else
593 toindex = 0, toindex_byte = 0;
594
595 prev = Qnil;
596 if (STRINGP (val))
597 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
598
599 for (argnum = 0; argnum < nargs; argnum++)
600 {
601 Lisp_Object thislen;
602 EMACS_INT thisleni = 0;
603 register EMACS_INT thisindex = 0;
604 register EMACS_INT thisindex_byte = 0;
605
606 this = args[argnum];
607 if (!CONSP (this))
608 thislen = Flength (this), thisleni = XINT (thislen);
609
610 /* Between strings of the same kind, copy fast. */
611 if (STRINGP (this) && STRINGP (val)
612 && STRING_MULTIBYTE (this) == some_multibyte)
613 {
614 EMACS_INT thislen_byte = SBYTES (this);
615
616 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
617 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
618 {
619 textprops[num_textprops].argnum = argnum;
620 textprops[num_textprops].from = 0;
621 textprops[num_textprops++].to = toindex;
622 }
623 toindex_byte += thislen_byte;
624 toindex += thisleni;
625 }
626 /* Copy a single-byte string to a multibyte string. */
627 else if (STRINGP (this) && STRINGP (val))
628 {
629 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
630 {
631 textprops[num_textprops].argnum = argnum;
632 textprops[num_textprops].from = 0;
633 textprops[num_textprops++].to = toindex;
634 }
635 toindex_byte += copy_text (SDATA (this),
636 SDATA (val) + toindex_byte,
637 SCHARS (this), 0, 1);
638 toindex += thisleni;
639 }
640 else
641 /* Copy element by element. */
642 while (1)
643 {
644 register Lisp_Object elt;
645
646 /* Fetch next element of `this' arg into `elt', or break if
647 `this' is exhausted. */
648 if (NILP (this)) break;
649 if (CONSP (this))
650 elt = XCAR (this), this = XCDR (this);
651 else if (thisindex >= thisleni)
652 break;
653 else if (STRINGP (this))
654 {
655 int c;
656 if (STRING_MULTIBYTE (this))
657 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
658 thisindex,
659 thisindex_byte);
660 else
661 {
662 c = SREF (this, thisindex); thisindex++;
663 if (some_multibyte && !ASCII_CHAR_P (c))
664 c = BYTE8_TO_CHAR (c);
665 }
666 XSETFASTINT (elt, c);
667 }
668 else if (BOOL_VECTOR_P (this))
669 {
670 int byte;
671 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
672 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
673 elt = Qt;
674 else
675 elt = Qnil;
676 thisindex++;
677 }
678 else
679 {
680 elt = AREF (this, thisindex);
681 thisindex++;
682 }
683
684 /* Store this element into the result. */
685 if (toindex < 0)
686 {
687 XSETCAR (tail, elt);
688 prev = tail;
689 tail = XCDR (tail);
690 }
691 else if (VECTORP (val))
692 {
693 ASET (val, toindex, elt);
694 toindex++;
695 }
696 else
697 {
698 int c;
699 CHECK_CHARACTER (elt);
700 c = XFASTINT (elt);
701 if (some_multibyte)
702 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
703 else
704 SSET (val, toindex_byte++, c);
705 toindex++;
706 }
707 }
708 }
709 if (!NILP (prev))
710 XSETCDR (prev, last_tail);
711
712 if (num_textprops > 0)
713 {
714 Lisp_Object props;
715 EMACS_INT last_to_end = -1;
716
717 for (argnum = 0; argnum < num_textprops; argnum++)
718 {
719 this = args[textprops[argnum].argnum];
720 props = text_property_list (this,
721 make_number (0),
722 make_number (SCHARS (this)),
723 Qnil);
724 /* If successive arguments have properties, be sure that the
725 value of `composition' property be the copy. */
726 if (last_to_end == textprops[argnum].to)
727 make_composition_value_copy (props);
728 add_text_properties_from_list (val, props,
729 make_number (textprops[argnum].to));
730 last_to_end = textprops[argnum].to + SCHARS (this);
731 }
732 }
733
734 SAFE_FREE ();
735 return val;
736 }
737 \f
738 static Lisp_Object string_char_byte_cache_string;
739 static EMACS_INT string_char_byte_cache_charpos;
740 static EMACS_INT string_char_byte_cache_bytepos;
741
742 void
743 clear_string_char_byte_cache (void)
744 {
745 string_char_byte_cache_string = Qnil;
746 }
747
748 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
749
750 EMACS_INT
751 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
752 {
753 EMACS_INT i_byte;
754 EMACS_INT best_below, best_below_byte;
755 EMACS_INT best_above, best_above_byte;
756
757 best_below = best_below_byte = 0;
758 best_above = SCHARS (string);
759 best_above_byte = SBYTES (string);
760 if (best_above == best_above_byte)
761 return char_index;
762
763 if (EQ (string, string_char_byte_cache_string))
764 {
765 if (string_char_byte_cache_charpos < char_index)
766 {
767 best_below = string_char_byte_cache_charpos;
768 best_below_byte = string_char_byte_cache_bytepos;
769 }
770 else
771 {
772 best_above = string_char_byte_cache_charpos;
773 best_above_byte = string_char_byte_cache_bytepos;
774 }
775 }
776
777 if (char_index - best_below < best_above - char_index)
778 {
779 unsigned char *p = SDATA (string) + best_below_byte;
780
781 while (best_below < char_index)
782 {
783 p += BYTES_BY_CHAR_HEAD (*p);
784 best_below++;
785 }
786 i_byte = p - SDATA (string);
787 }
788 else
789 {
790 unsigned char *p = SDATA (string) + best_above_byte;
791
792 while (best_above > char_index)
793 {
794 p--;
795 while (!CHAR_HEAD_P (*p)) p--;
796 best_above--;
797 }
798 i_byte = p - SDATA (string);
799 }
800
801 string_char_byte_cache_bytepos = i_byte;
802 string_char_byte_cache_charpos = char_index;
803 string_char_byte_cache_string = string;
804
805 return i_byte;
806 }
807 \f
808 /* Return the character index corresponding to BYTE_INDEX in STRING. */
809
810 EMACS_INT
811 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
812 {
813 EMACS_INT i, i_byte;
814 EMACS_INT best_below, best_below_byte;
815 EMACS_INT best_above, best_above_byte;
816
817 best_below = best_below_byte = 0;
818 best_above = SCHARS (string);
819 best_above_byte = SBYTES (string);
820 if (best_above == best_above_byte)
821 return byte_index;
822
823 if (EQ (string, string_char_byte_cache_string))
824 {
825 if (string_char_byte_cache_bytepos < byte_index)
826 {
827 best_below = string_char_byte_cache_charpos;
828 best_below_byte = string_char_byte_cache_bytepos;
829 }
830 else
831 {
832 best_above = string_char_byte_cache_charpos;
833 best_above_byte = string_char_byte_cache_bytepos;
834 }
835 }
836
837 if (byte_index - best_below_byte < best_above_byte - byte_index)
838 {
839 unsigned char *p = SDATA (string) + best_below_byte;
840 unsigned char *pend = SDATA (string) + byte_index;
841
842 while (p < pend)
843 {
844 p += BYTES_BY_CHAR_HEAD (*p);
845 best_below++;
846 }
847 i = best_below;
848 i_byte = p - SDATA (string);
849 }
850 else
851 {
852 unsigned char *p = SDATA (string) + best_above_byte;
853 unsigned char *pbeg = SDATA (string) + byte_index;
854
855 while (p > pbeg)
856 {
857 p--;
858 while (!CHAR_HEAD_P (*p)) p--;
859 best_above--;
860 }
861 i = best_above;
862 i_byte = p - SDATA (string);
863 }
864
865 string_char_byte_cache_bytepos = i_byte;
866 string_char_byte_cache_charpos = i;
867 string_char_byte_cache_string = string;
868
869 return i;
870 }
871 \f
872 /* Convert STRING to a multibyte string. */
873
874 static Lisp_Object
875 string_make_multibyte (Lisp_Object string)
876 {
877 unsigned char *buf;
878 EMACS_INT nbytes;
879 Lisp_Object ret;
880 USE_SAFE_ALLOCA;
881
882 if (STRING_MULTIBYTE (string))
883 return string;
884
885 nbytes = count_size_as_multibyte (SDATA (string),
886 SCHARS (string));
887 /* If all the chars are ASCII, they won't need any more bytes
888 once converted. In that case, we can return STRING itself. */
889 if (nbytes == SBYTES (string))
890 return string;
891
892 SAFE_ALLOCA (buf, unsigned char *, nbytes);
893 copy_text (SDATA (string), buf, SBYTES (string),
894 0, 1);
895
896 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
897 SAFE_FREE ();
898
899 return ret;
900 }
901
902
903 /* Convert STRING (if unibyte) to a multibyte string without changing
904 the number of characters. Characters 0200 trough 0237 are
905 converted to eight-bit characters. */
906
907 Lisp_Object
908 string_to_multibyte (Lisp_Object string)
909 {
910 unsigned char *buf;
911 EMACS_INT nbytes;
912 Lisp_Object ret;
913 USE_SAFE_ALLOCA;
914
915 if (STRING_MULTIBYTE (string))
916 return string;
917
918 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
919 /* If all the chars are ASCII, they won't need any more bytes once
920 converted. */
921 if (nbytes == SBYTES (string))
922 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
923
924 SAFE_ALLOCA (buf, unsigned char *, nbytes);
925 memcpy (buf, SDATA (string), SBYTES (string));
926 str_to_multibyte (buf, nbytes, SBYTES (string));
927
928 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
929 SAFE_FREE ();
930
931 return ret;
932 }
933
934
935 /* Convert STRING to a single-byte string. */
936
937 Lisp_Object
938 string_make_unibyte (Lisp_Object string)
939 {
940 EMACS_INT nchars;
941 unsigned char *buf;
942 Lisp_Object ret;
943 USE_SAFE_ALLOCA;
944
945 if (! STRING_MULTIBYTE (string))
946 return string;
947
948 nchars = SCHARS (string);
949
950 SAFE_ALLOCA (buf, unsigned char *, nchars);
951 copy_text (SDATA (string), buf, SBYTES (string),
952 1, 0);
953
954 ret = make_unibyte_string ((char *) buf, nchars);
955 SAFE_FREE ();
956
957 return ret;
958 }
959
960 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
961 1, 1, 0,
962 doc: /* Return the multibyte equivalent of STRING.
963 If STRING is unibyte and contains non-ASCII characters, the function
964 `unibyte-char-to-multibyte' is used to convert each unibyte character
965 to a multibyte character. In this case, the returned string is a
966 newly created string with no text properties. If STRING is multibyte
967 or entirely ASCII, it is returned unchanged. In particular, when
968 STRING is unibyte and entirely ASCII, the returned string is unibyte.
969 \(When the characters are all ASCII, Emacs primitives will treat the
970 string the same way whether it is unibyte or multibyte.) */)
971 (Lisp_Object string)
972 {
973 CHECK_STRING (string);
974
975 return string_make_multibyte (string);
976 }
977
978 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
979 1, 1, 0,
980 doc: /* Return the unibyte equivalent of STRING.
981 Multibyte character codes are converted to unibyte according to
982 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
983 If the lookup in the translation table fails, this function takes just
984 the low 8 bits of each character. */)
985 (Lisp_Object string)
986 {
987 CHECK_STRING (string);
988
989 return string_make_unibyte (string);
990 }
991
992 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
993 1, 1, 0,
994 doc: /* Return a unibyte string with the same individual bytes as STRING.
995 If STRING is unibyte, the result is STRING itself.
996 Otherwise it is a newly created string, with no text properties.
997 If STRING is multibyte and contains a character of charset
998 `eight-bit', it is converted to the corresponding single byte. */)
999 (Lisp_Object string)
1000 {
1001 CHECK_STRING (string);
1002
1003 if (STRING_MULTIBYTE (string))
1004 {
1005 EMACS_INT bytes = SBYTES (string);
1006 unsigned char *str = (unsigned char *) xmalloc (bytes);
1007
1008 memcpy (str, SDATA (string), bytes);
1009 bytes = str_as_unibyte (str, bytes);
1010 string = make_unibyte_string ((char *) str, bytes);
1011 xfree (str);
1012 }
1013 return string;
1014 }
1015
1016 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1017 1, 1, 0,
1018 doc: /* Return a multibyte string with the same individual bytes as STRING.
1019 If STRING is multibyte, the result is STRING itself.
1020 Otherwise it is a newly created string, with no text properties.
1021
1022 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1023 part of a correct utf-8 sequence), it is converted to the corresponding
1024 multibyte character of charset `eight-bit'.
1025 See also `string-to-multibyte'.
1026
1027 Beware, this often doesn't really do what you think it does.
1028 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1029 If you're not sure, whether to use `string-as-multibyte' or
1030 `string-to-multibyte', use `string-to-multibyte'. */)
1031 (Lisp_Object string)
1032 {
1033 CHECK_STRING (string);
1034
1035 if (! STRING_MULTIBYTE (string))
1036 {
1037 Lisp_Object new_string;
1038 EMACS_INT nchars, nbytes;
1039
1040 parse_str_as_multibyte (SDATA (string),
1041 SBYTES (string),
1042 &nchars, &nbytes);
1043 new_string = make_uninit_multibyte_string (nchars, nbytes);
1044 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1045 if (nbytes != SBYTES (string))
1046 str_as_multibyte (SDATA (new_string), nbytes,
1047 SBYTES (string), NULL);
1048 string = new_string;
1049 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1050 }
1051 return string;
1052 }
1053
1054 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1055 1, 1, 0,
1056 doc: /* Return a multibyte string with the same individual chars as STRING.
1057 If STRING is multibyte, the result is STRING itself.
1058 Otherwise it is a newly created string, with no text properties.
1059
1060 If STRING is unibyte and contains an 8-bit byte, it is converted to
1061 the corresponding multibyte character of charset `eight-bit'.
1062
1063 This differs from `string-as-multibyte' by converting each byte of a correct
1064 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1065 correct sequence. */)
1066 (Lisp_Object string)
1067 {
1068 CHECK_STRING (string);
1069
1070 return string_to_multibyte (string);
1071 }
1072
1073 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1074 1, 1, 0,
1075 doc: /* Return a unibyte string with the same individual chars as STRING.
1076 If STRING is unibyte, the result is STRING itself.
1077 Otherwise it is a newly created string, with no text properties,
1078 where each `eight-bit' character is converted to the corresponding byte.
1079 If STRING contains a non-ASCII, non-`eight-bit' character,
1080 an error is signaled. */)
1081 (Lisp_Object string)
1082 {
1083 CHECK_STRING (string);
1084
1085 if (STRING_MULTIBYTE (string))
1086 {
1087 EMACS_INT chars = SCHARS (string);
1088 unsigned char *str = (unsigned char *) xmalloc (chars);
1089 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1090
1091 if (converted < chars)
1092 error ("Can't convert the %"pI"dth character to unibyte", converted);
1093 string = make_unibyte_string ((char *) str, chars);
1094 xfree (str);
1095 }
1096 return string;
1097 }
1098
1099 \f
1100 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1101 doc: /* Return a copy of ALIST.
1102 This is an alist which represents the same mapping from objects to objects,
1103 but does not share the alist structure with ALIST.
1104 The objects mapped (cars and cdrs of elements of the alist)
1105 are shared, however.
1106 Elements of ALIST that are not conses are also shared. */)
1107 (Lisp_Object alist)
1108 {
1109 register Lisp_Object tem;
1110
1111 CHECK_LIST (alist);
1112 if (NILP (alist))
1113 return alist;
1114 alist = concat (1, &alist, Lisp_Cons, 0);
1115 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1116 {
1117 register Lisp_Object car;
1118 car = XCAR (tem);
1119
1120 if (CONSP (car))
1121 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1122 }
1123 return alist;
1124 }
1125
1126 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1127 doc: /* Return a new string whose contents are a substring of STRING.
1128 The returned string consists of the characters between index FROM
1129 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1130 zero-indexed: 0 means the first character of STRING. Negative values
1131 are counted from the end of STRING. If TO is nil, the substring runs
1132 to the end of STRING.
1133
1134 The STRING argument may also be a vector. In that case, the return
1135 value is a new vector that contains the elements between index FROM
1136 \(inclusive) and index TO (exclusive) of that vector argument. */)
1137 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1138 {
1139 Lisp_Object res;
1140 EMACS_INT size;
1141 EMACS_INT size_byte = 0;
1142 EMACS_INT from_char, to_char;
1143 EMACS_INT from_byte = 0, to_byte = 0;
1144
1145 CHECK_VECTOR_OR_STRING (string);
1146 CHECK_NUMBER (from);
1147
1148 if (STRINGP (string))
1149 {
1150 size = SCHARS (string);
1151 size_byte = SBYTES (string);
1152 }
1153 else
1154 size = ASIZE (string);
1155
1156 if (NILP (to))
1157 {
1158 to_char = size;
1159 to_byte = size_byte;
1160 }
1161 else
1162 {
1163 CHECK_NUMBER (to);
1164
1165 to_char = XINT (to);
1166 if (to_char < 0)
1167 to_char += size;
1168
1169 if (STRINGP (string))
1170 to_byte = string_char_to_byte (string, to_char);
1171 }
1172
1173 from_char = XINT (from);
1174 if (from_char < 0)
1175 from_char += size;
1176 if (STRINGP (string))
1177 from_byte = string_char_to_byte (string, from_char);
1178
1179 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1180 args_out_of_range_3 (string, make_number (from_char),
1181 make_number (to_char));
1182
1183 if (STRINGP (string))
1184 {
1185 res = make_specified_string (SSDATA (string) + from_byte,
1186 to_char - from_char, to_byte - from_byte,
1187 STRING_MULTIBYTE (string));
1188 copy_text_properties (make_number (from_char), make_number (to_char),
1189 string, make_number (0), res, Qnil);
1190 }
1191 else
1192 res = Fvector (to_char - from_char, &AREF (string, from_char));
1193
1194 return res;
1195 }
1196
1197
1198 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1199 doc: /* Return a substring of STRING, without text properties.
1200 It starts at index FROM and ends before TO.
1201 TO may be nil or omitted; then the substring runs to the end of STRING.
1202 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1203 If FROM or TO is negative, it counts from the end.
1204
1205 With one argument, just copy STRING without its properties. */)
1206 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1207 {
1208 EMACS_INT size, size_byte;
1209 EMACS_INT from_char, to_char;
1210 EMACS_INT from_byte, to_byte;
1211
1212 CHECK_STRING (string);
1213
1214 size = SCHARS (string);
1215 size_byte = SBYTES (string);
1216
1217 if (NILP (from))
1218 from_char = from_byte = 0;
1219 else
1220 {
1221 CHECK_NUMBER (from);
1222 from_char = XINT (from);
1223 if (from_char < 0)
1224 from_char += size;
1225
1226 from_byte = string_char_to_byte (string, from_char);
1227 }
1228
1229 if (NILP (to))
1230 {
1231 to_char = size;
1232 to_byte = size_byte;
1233 }
1234 else
1235 {
1236 CHECK_NUMBER (to);
1237
1238 to_char = XINT (to);
1239 if (to_char < 0)
1240 to_char += size;
1241
1242 to_byte = string_char_to_byte (string, to_char);
1243 }
1244
1245 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1246 args_out_of_range_3 (string, make_number (from_char),
1247 make_number (to_char));
1248
1249 return make_specified_string (SSDATA (string) + from_byte,
1250 to_char - from_char, to_byte - from_byte,
1251 STRING_MULTIBYTE (string));
1252 }
1253
1254 /* Extract a substring of STRING, giving start and end positions
1255 both in characters and in bytes. */
1256
1257 Lisp_Object
1258 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1259 EMACS_INT to, EMACS_INT to_byte)
1260 {
1261 Lisp_Object res;
1262 EMACS_INT size;
1263
1264 CHECK_VECTOR_OR_STRING (string);
1265
1266 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1267
1268 if (!(0 <= from && from <= to && to <= size))
1269 args_out_of_range_3 (string, make_number (from), make_number (to));
1270
1271 if (STRINGP (string))
1272 {
1273 res = make_specified_string (SSDATA (string) + from_byte,
1274 to - from, to_byte - from_byte,
1275 STRING_MULTIBYTE (string));
1276 copy_text_properties (make_number (from), make_number (to),
1277 string, make_number (0), res, Qnil);
1278 }
1279 else
1280 res = Fvector (to - from, &AREF (string, from));
1281
1282 return res;
1283 }
1284 \f
1285 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1286 doc: /* Take cdr N times on LIST, return the result. */)
1287 (Lisp_Object n, Lisp_Object list)
1288 {
1289 EMACS_INT i, num;
1290 CHECK_NUMBER (n);
1291 num = XINT (n);
1292 for (i = 0; i < num && !NILP (list); i++)
1293 {
1294 QUIT;
1295 CHECK_LIST_CONS (list, list);
1296 list = XCDR (list);
1297 }
1298 return list;
1299 }
1300
1301 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1302 doc: /* Return the Nth element of LIST.
1303 N counts from zero. If LIST is not that long, nil is returned. */)
1304 (Lisp_Object n, Lisp_Object list)
1305 {
1306 return Fcar (Fnthcdr (n, list));
1307 }
1308
1309 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1310 doc: /* Return element of SEQUENCE at index N. */)
1311 (register Lisp_Object sequence, Lisp_Object n)
1312 {
1313 CHECK_NUMBER (n);
1314 if (CONSP (sequence) || NILP (sequence))
1315 return Fcar (Fnthcdr (n, sequence));
1316
1317 /* Faref signals a "not array" error, so check here. */
1318 CHECK_ARRAY (sequence, Qsequencep);
1319 return Faref (sequence, n);
1320 }
1321
1322 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1323 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1324 The value is actually the tail of LIST whose car is ELT. */)
1325 (register Lisp_Object elt, Lisp_Object list)
1326 {
1327 register Lisp_Object tail;
1328 for (tail = list; CONSP (tail); tail = XCDR (tail))
1329 {
1330 register Lisp_Object tem;
1331 CHECK_LIST_CONS (tail, list);
1332 tem = XCAR (tail);
1333 if (! NILP (Fequal (elt, tem)))
1334 return tail;
1335 QUIT;
1336 }
1337 return Qnil;
1338 }
1339
1340 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1341 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1342 The value is actually the tail of LIST whose car is ELT. */)
1343 (register Lisp_Object elt, Lisp_Object list)
1344 {
1345 while (1)
1346 {
1347 if (!CONSP (list) || EQ (XCAR (list), elt))
1348 break;
1349
1350 list = XCDR (list);
1351 if (!CONSP (list) || EQ (XCAR (list), elt))
1352 break;
1353
1354 list = XCDR (list);
1355 if (!CONSP (list) || EQ (XCAR (list), elt))
1356 break;
1357
1358 list = XCDR (list);
1359 QUIT;
1360 }
1361
1362 CHECK_LIST (list);
1363 return list;
1364 }
1365
1366 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1367 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1368 The value is actually the tail of LIST whose car is ELT. */)
1369 (register Lisp_Object elt, Lisp_Object list)
1370 {
1371 register Lisp_Object tail;
1372
1373 if (!FLOATP (elt))
1374 return Fmemq (elt, list);
1375
1376 for (tail = list; CONSP (tail); tail = XCDR (tail))
1377 {
1378 register Lisp_Object tem;
1379 CHECK_LIST_CONS (tail, list);
1380 tem = XCAR (tail);
1381 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1382 return tail;
1383 QUIT;
1384 }
1385 return Qnil;
1386 }
1387
1388 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1389 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1390 The value is actually the first element of LIST whose car is KEY.
1391 Elements of LIST that are not conses are ignored. */)
1392 (Lisp_Object key, Lisp_Object list)
1393 {
1394 while (1)
1395 {
1396 if (!CONSP (list)
1397 || (CONSP (XCAR (list))
1398 && EQ (XCAR (XCAR (list)), key)))
1399 break;
1400
1401 list = XCDR (list);
1402 if (!CONSP (list)
1403 || (CONSP (XCAR (list))
1404 && EQ (XCAR (XCAR (list)), key)))
1405 break;
1406
1407 list = XCDR (list);
1408 if (!CONSP (list)
1409 || (CONSP (XCAR (list))
1410 && EQ (XCAR (XCAR (list)), key)))
1411 break;
1412
1413 list = XCDR (list);
1414 QUIT;
1415 }
1416
1417 return CAR (list);
1418 }
1419
1420 /* Like Fassq but never report an error and do not allow quits.
1421 Use only on lists known never to be circular. */
1422
1423 Lisp_Object
1424 assq_no_quit (Lisp_Object key, Lisp_Object list)
1425 {
1426 while (CONSP (list)
1427 && (!CONSP (XCAR (list))
1428 || !EQ (XCAR (XCAR (list)), key)))
1429 list = XCDR (list);
1430
1431 return CAR_SAFE (list);
1432 }
1433
1434 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1435 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1436 The value is actually the first element of LIST whose car equals KEY. */)
1437 (Lisp_Object key, Lisp_Object list)
1438 {
1439 Lisp_Object car;
1440
1441 while (1)
1442 {
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 if (!CONSP (list)
1451 || (CONSP (XCAR (list))
1452 && (car = XCAR (XCAR (list)),
1453 EQ (car, key) || !NILP (Fequal (car, key)))))
1454 break;
1455
1456 list = XCDR (list);
1457 if (!CONSP (list)
1458 || (CONSP (XCAR (list))
1459 && (car = XCAR (XCAR (list)),
1460 EQ (car, key) || !NILP (Fequal (car, key)))))
1461 break;
1462
1463 list = XCDR (list);
1464 QUIT;
1465 }
1466
1467 return CAR (list);
1468 }
1469
1470 /* Like Fassoc but never report an error and do not allow quits.
1471 Use only on lists known never to be circular. */
1472
1473 Lisp_Object
1474 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1475 {
1476 while (CONSP (list)
1477 && (!CONSP (XCAR (list))
1478 || (!EQ (XCAR (XCAR (list)), key)
1479 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1480 list = XCDR (list);
1481
1482 return CONSP (list) ? XCAR (list) : Qnil;
1483 }
1484
1485 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1486 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1487 The value is actually the first element of LIST whose cdr is KEY. */)
1488 (register Lisp_Object key, Lisp_Object list)
1489 {
1490 while (1)
1491 {
1492 if (!CONSP (list)
1493 || (CONSP (XCAR (list))
1494 && EQ (XCDR (XCAR (list)), key)))
1495 break;
1496
1497 list = XCDR (list);
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && EQ (XCDR (XCAR (list)), key)))
1501 break;
1502
1503 list = XCDR (list);
1504 if (!CONSP (list)
1505 || (CONSP (XCAR (list))
1506 && EQ (XCDR (XCAR (list)), key)))
1507 break;
1508
1509 list = XCDR (list);
1510 QUIT;
1511 }
1512
1513 return CAR (list);
1514 }
1515
1516 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1517 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1518 The value is actually the first element of LIST whose cdr equals KEY. */)
1519 (Lisp_Object key, Lisp_Object list)
1520 {
1521 Lisp_Object cdr;
1522
1523 while (1)
1524 {
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 if (!CONSP (list)
1533 || (CONSP (XCAR (list))
1534 && (cdr = XCDR (XCAR (list)),
1535 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1536 break;
1537
1538 list = XCDR (list);
1539 if (!CONSP (list)
1540 || (CONSP (XCAR (list))
1541 && (cdr = XCDR (XCAR (list)),
1542 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1543 break;
1544
1545 list = XCDR (list);
1546 QUIT;
1547 }
1548
1549 return CAR (list);
1550 }
1551 \f
1552 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1553 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1554 The modified LIST is returned. Comparison is done with `eq'.
1555 If the first member of LIST is ELT, there is no way to remove it by side effect;
1556 therefore, write `(setq foo (delq element foo))'
1557 to be sure of changing the value of `foo'. */)
1558 (register Lisp_Object elt, Lisp_Object list)
1559 {
1560 register Lisp_Object tail, prev;
1561 register Lisp_Object tem;
1562
1563 tail = list;
1564 prev = Qnil;
1565 while (!NILP (tail))
1566 {
1567 CHECK_LIST_CONS (tail, list);
1568 tem = XCAR (tail);
1569 if (EQ (elt, tem))
1570 {
1571 if (NILP (prev))
1572 list = XCDR (tail);
1573 else
1574 Fsetcdr (prev, XCDR (tail));
1575 }
1576 else
1577 prev = tail;
1578 tail = XCDR (tail);
1579 QUIT;
1580 }
1581 return list;
1582 }
1583
1584 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1585 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1586 SEQ must be a list, a vector, or a string.
1587 The modified SEQ is returned. Comparison is done with `equal'.
1588 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1589 is not a side effect; it is simply using a different sequence.
1590 Therefore, write `(setq foo (delete element foo))'
1591 to be sure of changing the value of `foo'. */)
1592 (Lisp_Object elt, Lisp_Object seq)
1593 {
1594 if (VECTORP (seq))
1595 {
1596 EMACS_INT i, n;
1597
1598 for (i = n = 0; i < ASIZE (seq); ++i)
1599 if (NILP (Fequal (AREF (seq, i), elt)))
1600 ++n;
1601
1602 if (n != ASIZE (seq))
1603 {
1604 struct Lisp_Vector *p = allocate_vector (n);
1605
1606 for (i = n = 0; i < ASIZE (seq); ++i)
1607 if (NILP (Fequal (AREF (seq, i), elt)))
1608 p->contents[n++] = AREF (seq, i);
1609
1610 XSETVECTOR (seq, p);
1611 }
1612 }
1613 else if (STRINGP (seq))
1614 {
1615 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1616 int c;
1617
1618 for (i = nchars = nbytes = ibyte = 0;
1619 i < SCHARS (seq);
1620 ++i, ibyte += cbytes)
1621 {
1622 if (STRING_MULTIBYTE (seq))
1623 {
1624 c = STRING_CHAR (SDATA (seq) + ibyte);
1625 cbytes = CHAR_BYTES (c);
1626 }
1627 else
1628 {
1629 c = SREF (seq, i);
1630 cbytes = 1;
1631 }
1632
1633 if (!INTEGERP (elt) || c != XINT (elt))
1634 {
1635 ++nchars;
1636 nbytes += cbytes;
1637 }
1638 }
1639
1640 if (nchars != SCHARS (seq))
1641 {
1642 Lisp_Object tem;
1643
1644 tem = make_uninit_multibyte_string (nchars, nbytes);
1645 if (!STRING_MULTIBYTE (seq))
1646 STRING_SET_UNIBYTE (tem);
1647
1648 for (i = nchars = nbytes = ibyte = 0;
1649 i < SCHARS (seq);
1650 ++i, ibyte += cbytes)
1651 {
1652 if (STRING_MULTIBYTE (seq))
1653 {
1654 c = STRING_CHAR (SDATA (seq) + ibyte);
1655 cbytes = CHAR_BYTES (c);
1656 }
1657 else
1658 {
1659 c = SREF (seq, i);
1660 cbytes = 1;
1661 }
1662
1663 if (!INTEGERP (elt) || c != XINT (elt))
1664 {
1665 unsigned char *from = SDATA (seq) + ibyte;
1666 unsigned char *to = SDATA (tem) + nbytes;
1667 EMACS_INT n;
1668
1669 ++nchars;
1670 nbytes += cbytes;
1671
1672 for (n = cbytes; n--; )
1673 *to++ = *from++;
1674 }
1675 }
1676
1677 seq = tem;
1678 }
1679 }
1680 else
1681 {
1682 Lisp_Object tail, prev;
1683
1684 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1685 {
1686 CHECK_LIST_CONS (tail, seq);
1687
1688 if (!NILP (Fequal (elt, XCAR (tail))))
1689 {
1690 if (NILP (prev))
1691 seq = XCDR (tail);
1692 else
1693 Fsetcdr (prev, XCDR (tail));
1694 }
1695 else
1696 prev = tail;
1697 QUIT;
1698 }
1699 }
1700
1701 return seq;
1702 }
1703
1704 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1705 doc: /* Reverse LIST by modifying cdr pointers.
1706 Return the reversed list. */)
1707 (Lisp_Object list)
1708 {
1709 register Lisp_Object prev, tail, next;
1710
1711 if (NILP (list)) return list;
1712 prev = Qnil;
1713 tail = list;
1714 while (!NILP (tail))
1715 {
1716 QUIT;
1717 CHECK_LIST_CONS (tail, list);
1718 next = XCDR (tail);
1719 Fsetcdr (tail, prev);
1720 prev = tail;
1721 tail = next;
1722 }
1723 return prev;
1724 }
1725
1726 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1727 doc: /* Reverse LIST, copying. Return the reversed list.
1728 See also the function `nreverse', which is used more often. */)
1729 (Lisp_Object list)
1730 {
1731 Lisp_Object new;
1732
1733 for (new = Qnil; CONSP (list); list = XCDR (list))
1734 {
1735 QUIT;
1736 new = Fcons (XCAR (list), new);
1737 }
1738 CHECK_LIST_END (list, list);
1739 return new;
1740 }
1741 \f
1742 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1743
1744 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1745 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1746 Returns the sorted list. LIST is modified by side effects.
1747 PREDICATE is called with two elements of LIST, and should return non-nil
1748 if the first element should sort before the second. */)
1749 (Lisp_Object list, Lisp_Object predicate)
1750 {
1751 Lisp_Object front, back;
1752 register Lisp_Object len, tem;
1753 struct gcpro gcpro1, gcpro2;
1754 EMACS_INT length;
1755
1756 front = list;
1757 len = Flength (list);
1758 length = XINT (len);
1759 if (length < 2)
1760 return list;
1761
1762 XSETINT (len, (length / 2) - 1);
1763 tem = Fnthcdr (len, list);
1764 back = Fcdr (tem);
1765 Fsetcdr (tem, Qnil);
1766
1767 GCPRO2 (front, back);
1768 front = Fsort (front, predicate);
1769 back = Fsort (back, predicate);
1770 UNGCPRO;
1771 return merge (front, back, predicate);
1772 }
1773
1774 Lisp_Object
1775 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1776 {
1777 Lisp_Object value;
1778 register Lisp_Object tail;
1779 Lisp_Object tem;
1780 register Lisp_Object l1, l2;
1781 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1782
1783 l1 = org_l1;
1784 l2 = org_l2;
1785 tail = Qnil;
1786 value = Qnil;
1787
1788 /* It is sufficient to protect org_l1 and org_l2.
1789 When l1 and l2 are updated, we copy the new values
1790 back into the org_ vars. */
1791 GCPRO4 (org_l1, org_l2, pred, value);
1792
1793 while (1)
1794 {
1795 if (NILP (l1))
1796 {
1797 UNGCPRO;
1798 if (NILP (tail))
1799 return l2;
1800 Fsetcdr (tail, l2);
1801 return value;
1802 }
1803 if (NILP (l2))
1804 {
1805 UNGCPRO;
1806 if (NILP (tail))
1807 return l1;
1808 Fsetcdr (tail, l1);
1809 return value;
1810 }
1811 tem = call2 (pred, Fcar (l2), Fcar (l1));
1812 if (NILP (tem))
1813 {
1814 tem = l1;
1815 l1 = Fcdr (l1);
1816 org_l1 = l1;
1817 }
1818 else
1819 {
1820 tem = l2;
1821 l2 = Fcdr (l2);
1822 org_l2 = l2;
1823 }
1824 if (NILP (tail))
1825 value = tem;
1826 else
1827 Fsetcdr (tail, tem);
1828 tail = tem;
1829 }
1830 }
1831
1832 \f
1833 /* This does not check for quits. That is safe since it must terminate. */
1834
1835 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1836 doc: /* Extract a value from a property list.
1837 PLIST is a property list, which is a list of the form
1838 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1839 corresponding to the given PROP, or nil if PROP is not one of the
1840 properties on the list. This function never signals an error. */)
1841 (Lisp_Object plist, Lisp_Object prop)
1842 {
1843 Lisp_Object tail, halftail;
1844
1845 /* halftail is used to detect circular lists. */
1846 tail = halftail = plist;
1847 while (CONSP (tail) && CONSP (XCDR (tail)))
1848 {
1849 if (EQ (prop, XCAR (tail)))
1850 return XCAR (XCDR (tail));
1851
1852 tail = XCDR (XCDR (tail));
1853 halftail = XCDR (halftail);
1854 if (EQ (tail, halftail))
1855 break;
1856
1857 #if 0 /* Unsafe version. */
1858 /* This function can be called asynchronously
1859 (setup_coding_system). Don't QUIT in that case. */
1860 if (!interrupt_input_blocked)
1861 QUIT;
1862 #endif
1863 }
1864
1865 return Qnil;
1866 }
1867
1868 DEFUN ("get", Fget, Sget, 2, 2, 0,
1869 doc: /* Return the value of SYMBOL's PROPNAME property.
1870 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1871 (Lisp_Object symbol, Lisp_Object propname)
1872 {
1873 CHECK_SYMBOL (symbol);
1874 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1875 }
1876
1877 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1878 doc: /* Change value in PLIST of PROP to VAL.
1879 PLIST is a property list, which is a list of the form
1880 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1881 If PROP is already a property on the list, its value is set to VAL,
1882 otherwise the new PROP VAL pair is added. The new plist is returned;
1883 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1884 The PLIST is modified by side effects. */)
1885 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1886 {
1887 register Lisp_Object tail, prev;
1888 Lisp_Object newcell;
1889 prev = Qnil;
1890 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1891 tail = XCDR (XCDR (tail)))
1892 {
1893 if (EQ (prop, XCAR (tail)))
1894 {
1895 Fsetcar (XCDR (tail), val);
1896 return plist;
1897 }
1898
1899 prev = tail;
1900 QUIT;
1901 }
1902 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1903 if (NILP (prev))
1904 return newcell;
1905 else
1906 Fsetcdr (XCDR (prev), newcell);
1907 return plist;
1908 }
1909
1910 DEFUN ("put", Fput, Sput, 3, 3, 0,
1911 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1912 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1913 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1914 {
1915 CHECK_SYMBOL (symbol);
1916 XSYMBOL (symbol)->plist
1917 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1918 return value;
1919 }
1920 \f
1921 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1922 doc: /* Extract a value from a property list, comparing with `equal'.
1923 PLIST is a property list, which is a list of the form
1924 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1925 corresponding to the given PROP, or nil if PROP is not
1926 one of the properties on the list. */)
1927 (Lisp_Object plist, Lisp_Object prop)
1928 {
1929 Lisp_Object tail;
1930
1931 for (tail = plist;
1932 CONSP (tail) && CONSP (XCDR (tail));
1933 tail = XCDR (XCDR (tail)))
1934 {
1935 if (! NILP (Fequal (prop, XCAR (tail))))
1936 return XCAR (XCDR (tail));
1937
1938 QUIT;
1939 }
1940
1941 CHECK_LIST_END (tail, prop);
1942
1943 return Qnil;
1944 }
1945
1946 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1947 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1948 PLIST is a property list, which is a list of the form
1949 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1950 If PROP is already a property on the list, its value is set to VAL,
1951 otherwise the new PROP VAL pair is added. The new plist is returned;
1952 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1953 The PLIST is modified by side effects. */)
1954 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1955 {
1956 register Lisp_Object tail, prev;
1957 Lisp_Object newcell;
1958 prev = Qnil;
1959 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1960 tail = XCDR (XCDR (tail)))
1961 {
1962 if (! NILP (Fequal (prop, XCAR (tail))))
1963 {
1964 Fsetcar (XCDR (tail), val);
1965 return plist;
1966 }
1967
1968 prev = tail;
1969 QUIT;
1970 }
1971 newcell = Fcons (prop, Fcons (val, Qnil));
1972 if (NILP (prev))
1973 return newcell;
1974 else
1975 Fsetcdr (XCDR (prev), newcell);
1976 return plist;
1977 }
1978 \f
1979 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1980 doc: /* Return t if the two args are the same Lisp object.
1981 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1982 (Lisp_Object obj1, Lisp_Object obj2)
1983 {
1984 if (FLOATP (obj1))
1985 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1986 else
1987 return EQ (obj1, obj2) ? Qt : Qnil;
1988 }
1989
1990 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1991 doc: /* Return t if two Lisp objects have similar structure and contents.
1992 They must have the same data type.
1993 Conses are compared by comparing the cars and the cdrs.
1994 Vectors and strings are compared element by element.
1995 Numbers are compared by value, but integers cannot equal floats.
1996 (Use `=' if you want integers and floats to be able to be equal.)
1997 Symbols must match exactly. */)
1998 (register Lisp_Object o1, Lisp_Object o2)
1999 {
2000 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2001 }
2002
2003 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2004 doc: /* Return t if two Lisp objects have similar structure and contents.
2005 This is like `equal' except that it compares the text properties
2006 of strings. (`equal' ignores text properties.) */)
2007 (register Lisp_Object o1, Lisp_Object o2)
2008 {
2009 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2010 }
2011
2012 /* DEPTH is current depth of recursion. Signal an error if it
2013 gets too deep.
2014 PROPS, if non-nil, means compare string text properties too. */
2015
2016 static int
2017 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2018 {
2019 if (depth > 200)
2020 error ("Stack overflow in equal");
2021
2022 tail_recurse:
2023 QUIT;
2024 if (EQ (o1, o2))
2025 return 1;
2026 if (XTYPE (o1) != XTYPE (o2))
2027 return 0;
2028
2029 switch (XTYPE (o1))
2030 {
2031 case Lisp_Float:
2032 {
2033 double d1, d2;
2034
2035 d1 = extract_float (o1);
2036 d2 = extract_float (o2);
2037 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2038 though they are not =. */
2039 return d1 == d2 || (d1 != d1 && d2 != d2);
2040 }
2041
2042 case Lisp_Cons:
2043 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2044 return 0;
2045 o1 = XCDR (o1);
2046 o2 = XCDR (o2);
2047 goto tail_recurse;
2048
2049 case Lisp_Misc:
2050 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2051 return 0;
2052 if (OVERLAYP (o1))
2053 {
2054 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2055 depth + 1, props)
2056 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2057 depth + 1, props))
2058 return 0;
2059 o1 = XOVERLAY (o1)->plist;
2060 o2 = XOVERLAY (o2)->plist;
2061 goto tail_recurse;
2062 }
2063 if (MARKERP (o1))
2064 {
2065 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2066 && (XMARKER (o1)->buffer == 0
2067 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2068 }
2069 break;
2070
2071 case Lisp_Vectorlike:
2072 {
2073 register int i;
2074 EMACS_INT size = ASIZE (o1);
2075 /* Pseudovectors have the type encoded in the size field, so this test
2076 actually checks that the objects have the same type as well as the
2077 same size. */
2078 if (ASIZE (o2) != size)
2079 return 0;
2080 /* Boolvectors are compared much like strings. */
2081 if (BOOL_VECTOR_P (o1))
2082 {
2083 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2084 return 0;
2085 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2086 ((XBOOL_VECTOR (o1)->size
2087 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2088 / BOOL_VECTOR_BITS_PER_CHAR)))
2089 return 0;
2090 return 1;
2091 }
2092 if (WINDOW_CONFIGURATIONP (o1))
2093 return compare_window_configurations (o1, o2, 0);
2094
2095 /* Aside from them, only true vectors, char-tables, compiled
2096 functions, and fonts (font-spec, font-entity, font-object)
2097 are sensible to compare, so eliminate the others now. */
2098 if (size & PSEUDOVECTOR_FLAG)
2099 {
2100 if (!(size & (PVEC_COMPILED
2101 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2102 return 0;
2103 size &= PSEUDOVECTOR_SIZE_MASK;
2104 }
2105 for (i = 0; i < size; i++)
2106 {
2107 Lisp_Object v1, v2;
2108 v1 = AREF (o1, i);
2109 v2 = AREF (o2, i);
2110 if (!internal_equal (v1, v2, depth + 1, props))
2111 return 0;
2112 }
2113 return 1;
2114 }
2115 break;
2116
2117 case Lisp_String:
2118 if (SCHARS (o1) != SCHARS (o2))
2119 return 0;
2120 if (SBYTES (o1) != SBYTES (o2))
2121 return 0;
2122 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2123 return 0;
2124 if (props && !compare_string_intervals (o1, o2))
2125 return 0;
2126 return 1;
2127
2128 default:
2129 break;
2130 }
2131
2132 return 0;
2133 }
2134 \f
2135
2136 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2137 doc: /* Store each element of ARRAY with ITEM.
2138 ARRAY is a vector, string, char-table, or bool-vector. */)
2139 (Lisp_Object array, Lisp_Object item)
2140 {
2141 register EMACS_INT size, idx;
2142 int charval;
2143
2144 if (VECTORP (array))
2145 {
2146 register Lisp_Object *p = XVECTOR (array)->contents;
2147 size = ASIZE (array);
2148 for (idx = 0; idx < size; idx++)
2149 p[idx] = item;
2150 }
2151 else if (CHAR_TABLE_P (array))
2152 {
2153 int i;
2154
2155 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2156 XCHAR_TABLE (array)->contents[i] = item;
2157 XCHAR_TABLE (array)->defalt = item;
2158 }
2159 else if (STRINGP (array))
2160 {
2161 register unsigned char *p = SDATA (array);
2162 CHECK_NUMBER (item);
2163 charval = XINT (item);
2164 size = SCHARS (array);
2165 if (STRING_MULTIBYTE (array))
2166 {
2167 unsigned char str[MAX_MULTIBYTE_LENGTH];
2168 int len = CHAR_STRING (charval, str);
2169 EMACS_INT size_byte = SBYTES (array);
2170 unsigned char *p1 = p, *endp = p + size_byte;
2171 int i;
2172
2173 if (size != size_byte)
2174 while (p1 < endp)
2175 {
2176 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2177 if (len != this_len)
2178 error ("Attempt to change byte length of a string");
2179 p1 += this_len;
2180 }
2181 for (i = 0; i < size_byte; i++)
2182 *p++ = str[i % len];
2183 }
2184 else
2185 for (idx = 0; idx < size; idx++)
2186 p[idx] = charval;
2187 }
2188 else if (BOOL_VECTOR_P (array))
2189 {
2190 register unsigned char *p = XBOOL_VECTOR (array)->data;
2191 EMACS_INT size = XBOOL_VECTOR (array)->size;
2192 EMACS_INT size_in_chars
2193 = ((size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2194 / BOOL_VECTOR_BITS_PER_CHAR);
2195
2196 if (size_in_chars)
2197 {
2198 memset (p, ! NILP (item) ? -1 : 0, size_in_chars);
2199
2200 /* Clear any extraneous bits in the last byte. */
2201 p[size_in_chars - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2202 }
2203 }
2204 else
2205 wrong_type_argument (Qarrayp, array);
2206 return array;
2207 }
2208
2209 DEFUN ("clear-string", Fclear_string, Sclear_string,
2210 1, 1, 0,
2211 doc: /* Clear the contents of STRING.
2212 This makes STRING unibyte and may change its length. */)
2213 (Lisp_Object string)
2214 {
2215 EMACS_INT len;
2216 CHECK_STRING (string);
2217 len = SBYTES (string);
2218 memset (SDATA (string), 0, len);
2219 STRING_SET_CHARS (string, len);
2220 STRING_SET_UNIBYTE (string);
2221 return Qnil;
2222 }
2223 \f
2224 /* ARGSUSED */
2225 Lisp_Object
2226 nconc2 (Lisp_Object s1, Lisp_Object s2)
2227 {
2228 Lisp_Object args[2];
2229 args[0] = s1;
2230 args[1] = s2;
2231 return Fnconc (2, args);
2232 }
2233
2234 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2235 doc: /* Concatenate any number of lists by altering them.
2236 Only the last argument is not altered, and need not be a list.
2237 usage: (nconc &rest LISTS) */)
2238 (ptrdiff_t nargs, Lisp_Object *args)
2239 {
2240 ptrdiff_t argnum;
2241 register Lisp_Object tail, tem, val;
2242
2243 val = tail = Qnil;
2244
2245 for (argnum = 0; argnum < nargs; argnum++)
2246 {
2247 tem = args[argnum];
2248 if (NILP (tem)) continue;
2249
2250 if (NILP (val))
2251 val = tem;
2252
2253 if (argnum + 1 == nargs) break;
2254
2255 CHECK_LIST_CONS (tem, tem);
2256
2257 while (CONSP (tem))
2258 {
2259 tail = tem;
2260 tem = XCDR (tail);
2261 QUIT;
2262 }
2263
2264 tem = args[argnum + 1];
2265 Fsetcdr (tail, tem);
2266 if (NILP (tem))
2267 args[argnum + 1] = tail;
2268 }
2269
2270 return val;
2271 }
2272 \f
2273 /* This is the guts of all mapping functions.
2274 Apply FN to each element of SEQ, one by one,
2275 storing the results into elements of VALS, a C vector of Lisp_Objects.
2276 LENI is the length of VALS, which should also be the length of SEQ. */
2277
2278 static void
2279 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2280 {
2281 register Lisp_Object tail;
2282 Lisp_Object dummy;
2283 register EMACS_INT i;
2284 struct gcpro gcpro1, gcpro2, gcpro3;
2285
2286 if (vals)
2287 {
2288 /* Don't let vals contain any garbage when GC happens. */
2289 for (i = 0; i < leni; i++)
2290 vals[i] = Qnil;
2291
2292 GCPRO3 (dummy, fn, seq);
2293 gcpro1.var = vals;
2294 gcpro1.nvars = leni;
2295 }
2296 else
2297 GCPRO2 (fn, seq);
2298 /* We need not explicitly protect `tail' because it is used only on lists, and
2299 1) lists are not relocated and 2) the list is marked via `seq' so will not
2300 be freed */
2301
2302 if (VECTORP (seq) || COMPILEDP (seq))
2303 {
2304 for (i = 0; i < leni; i++)
2305 {
2306 dummy = call1 (fn, AREF (seq, i));
2307 if (vals)
2308 vals[i] = dummy;
2309 }
2310 }
2311 else if (BOOL_VECTOR_P (seq))
2312 {
2313 for (i = 0; i < leni; i++)
2314 {
2315 int byte;
2316 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2317 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2318 dummy = call1 (fn, dummy);
2319 if (vals)
2320 vals[i] = dummy;
2321 }
2322 }
2323 else if (STRINGP (seq))
2324 {
2325 EMACS_INT i_byte;
2326
2327 for (i = 0, i_byte = 0; i < leni;)
2328 {
2329 int c;
2330 EMACS_INT i_before = i;
2331
2332 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2333 XSETFASTINT (dummy, c);
2334 dummy = call1 (fn, dummy);
2335 if (vals)
2336 vals[i_before] = dummy;
2337 }
2338 }
2339 else /* Must be a list, since Flength did not get an error */
2340 {
2341 tail = seq;
2342 for (i = 0; i < leni && CONSP (tail); i++)
2343 {
2344 dummy = call1 (fn, XCAR (tail));
2345 if (vals)
2346 vals[i] = dummy;
2347 tail = XCDR (tail);
2348 }
2349 }
2350
2351 UNGCPRO;
2352 }
2353
2354 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2355 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2356 In between each pair of results, stick in SEPARATOR. Thus, " " as
2357 SEPARATOR results in spaces between the values returned by FUNCTION.
2358 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2359 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2360 {
2361 Lisp_Object len;
2362 register EMACS_INT leni;
2363 ptrdiff_t i, nargs;
2364 register Lisp_Object *args;
2365 struct gcpro gcpro1;
2366 Lisp_Object ret;
2367 USE_SAFE_ALLOCA;
2368
2369 len = Flength (sequence);
2370 if (CHAR_TABLE_P (sequence))
2371 wrong_type_argument (Qlistp, sequence);
2372 leni = XINT (len);
2373 nargs = leni + leni - 1;
2374 if (nargs < 0) return empty_unibyte_string;
2375
2376 SAFE_ALLOCA_LISP (args, nargs);
2377
2378 GCPRO1 (separator);
2379 mapcar1 (leni, args, function, sequence);
2380 UNGCPRO;
2381
2382 for (i = leni - 1; i > 0; i--)
2383 args[i + i] = args[i];
2384
2385 for (i = 1; i < nargs; i += 2)
2386 args[i] = separator;
2387
2388 ret = Fconcat (nargs, args);
2389 SAFE_FREE ();
2390
2391 return ret;
2392 }
2393
2394 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2395 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2396 The result is a list just as long as SEQUENCE.
2397 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2398 (Lisp_Object function, Lisp_Object sequence)
2399 {
2400 register Lisp_Object len;
2401 register EMACS_INT leni;
2402 register Lisp_Object *args;
2403 Lisp_Object ret;
2404 USE_SAFE_ALLOCA;
2405
2406 len = Flength (sequence);
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 leni = XFASTINT (len);
2410
2411 SAFE_ALLOCA_LISP (args, leni);
2412
2413 mapcar1 (leni, args, function, sequence);
2414
2415 ret = Flist (leni, args);
2416 SAFE_FREE ();
2417
2418 return ret;
2419 }
2420
2421 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2422 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2423 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2424 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2425 (Lisp_Object function, Lisp_Object sequence)
2426 {
2427 register EMACS_INT leni;
2428
2429 leni = XFASTINT (Flength (sequence));
2430 if (CHAR_TABLE_P (sequence))
2431 wrong_type_argument (Qlistp, sequence);
2432 mapcar1 (leni, 0, function, sequence);
2433
2434 return sequence;
2435 }
2436 \f
2437 /* This is how C code calls `yes-or-no-p' and allows the user
2438 to redefined it.
2439
2440 Anything that calls this function must protect from GC! */
2441
2442 Lisp_Object
2443 do_yes_or_no_p (Lisp_Object prompt)
2444 {
2445 return call1 (intern ("yes-or-no-p"), prompt);
2446 }
2447
2448 /* Anything that calls this function must protect from GC! */
2449
2450 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2451 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2452 PROMPT is the string to display to ask the question. It should end in
2453 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2454
2455 The user must confirm the answer with RET, and can edit it until it
2456 has been confirmed.
2457
2458 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2459 is nil, and `use-dialog-box' is non-nil. */)
2460 (Lisp_Object prompt)
2461 {
2462 register Lisp_Object ans;
2463 Lisp_Object args[2];
2464 struct gcpro gcpro1;
2465
2466 CHECK_STRING (prompt);
2467
2468 #ifdef HAVE_MENUS
2469 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2470 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2471 && use_dialog_box
2472 && have_menus_p ())
2473 {
2474 Lisp_Object pane, menu, obj;
2475 redisplay_preserve_echo_area (4);
2476 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2477 Fcons (Fcons (build_string ("No"), Qnil),
2478 Qnil));
2479 GCPRO1 (pane);
2480 menu = Fcons (prompt, pane);
2481 obj = Fx_popup_dialog (Qt, menu, Qnil);
2482 UNGCPRO;
2483 return obj;
2484 }
2485 #endif /* HAVE_MENUS */
2486
2487 args[0] = prompt;
2488 args[1] = build_string ("(yes or no) ");
2489 prompt = Fconcat (2, args);
2490
2491 GCPRO1 (prompt);
2492
2493 while (1)
2494 {
2495 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2496 Qyes_or_no_p_history, Qnil,
2497 Qnil));
2498 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2499 {
2500 UNGCPRO;
2501 return Qt;
2502 }
2503 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2504 {
2505 UNGCPRO;
2506 return Qnil;
2507 }
2508
2509 Fding (Qnil);
2510 Fdiscard_input ();
2511 message ("Please answer yes or no.");
2512 Fsleep_for (make_number (2), Qnil);
2513 }
2514 }
2515 \f
2516 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2517 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2518
2519 Each of the three load averages is multiplied by 100, then converted
2520 to integer.
2521
2522 When USE-FLOATS is non-nil, floats will be used instead of integers.
2523 These floats are not multiplied by 100.
2524
2525 If the 5-minute or 15-minute load averages are not available, return a
2526 shortened list, containing only those averages which are available.
2527
2528 An error is thrown if the load average can't be obtained. In some
2529 cases making it work would require Emacs being installed setuid or
2530 setgid so that it can read kernel information, and that usually isn't
2531 advisable. */)
2532 (Lisp_Object use_floats)
2533 {
2534 double load_ave[3];
2535 int loads = getloadavg (load_ave, 3);
2536 Lisp_Object ret = Qnil;
2537
2538 if (loads < 0)
2539 error ("load-average not implemented for this operating system");
2540
2541 while (loads-- > 0)
2542 {
2543 Lisp_Object load = (NILP (use_floats)
2544 ? make_number (100.0 * load_ave[loads])
2545 : make_float (load_ave[loads]));
2546 ret = Fcons (load, ret);
2547 }
2548
2549 return ret;
2550 }
2551 \f
2552 static Lisp_Object Qsubfeatures;
2553
2554 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2555 doc: /* Return t if FEATURE is present in this Emacs.
2556
2557 Use this to conditionalize execution of lisp code based on the
2558 presence or absence of Emacs or environment extensions.
2559 Use `provide' to declare that a feature is available. This function
2560 looks at the value of the variable `features'. The optional argument
2561 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2562 (Lisp_Object feature, Lisp_Object subfeature)
2563 {
2564 register Lisp_Object tem;
2565 CHECK_SYMBOL (feature);
2566 tem = Fmemq (feature, Vfeatures);
2567 if (!NILP (tem) && !NILP (subfeature))
2568 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2569 return (NILP (tem)) ? Qnil : Qt;
2570 }
2571
2572 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2573 doc: /* Announce that FEATURE is a feature of the current Emacs.
2574 The optional argument SUBFEATURES should be a list of symbols listing
2575 particular subfeatures supported in this version of FEATURE. */)
2576 (Lisp_Object feature, Lisp_Object subfeatures)
2577 {
2578 register Lisp_Object tem;
2579 CHECK_SYMBOL (feature);
2580 CHECK_LIST (subfeatures);
2581 if (!NILP (Vautoload_queue))
2582 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2583 Vautoload_queue);
2584 tem = Fmemq (feature, Vfeatures);
2585 if (NILP (tem))
2586 Vfeatures = Fcons (feature, Vfeatures);
2587 if (!NILP (subfeatures))
2588 Fput (feature, Qsubfeatures, subfeatures);
2589 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2590
2591 /* Run any load-hooks for this file. */
2592 tem = Fassq (feature, Vafter_load_alist);
2593 if (CONSP (tem))
2594 Fprogn (XCDR (tem));
2595
2596 return feature;
2597 }
2598 \f
2599 /* `require' and its subroutines. */
2600
2601 /* List of features currently being require'd, innermost first. */
2602
2603 static Lisp_Object require_nesting_list;
2604
2605 static Lisp_Object
2606 require_unwind (Lisp_Object old_value)
2607 {
2608 return require_nesting_list = old_value;
2609 }
2610
2611 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2612 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2613 If FEATURE is not a member of the list `features', then the feature
2614 is not loaded; so load the file FILENAME.
2615 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2616 and `load' will try to load this name appended with the suffix `.elc' or
2617 `.el', in that order. The name without appended suffix will not be used.
2618 If the optional third argument NOERROR is non-nil,
2619 then return nil if the file is not found instead of signaling an error.
2620 Normally the return value is FEATURE.
2621 The normal messages at start and end of loading FILENAME are suppressed. */)
2622 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2623 {
2624 register Lisp_Object tem;
2625 struct gcpro gcpro1, gcpro2;
2626 int from_file = load_in_progress;
2627
2628 CHECK_SYMBOL (feature);
2629
2630 /* Record the presence of `require' in this file
2631 even if the feature specified is already loaded.
2632 But not more than once in any file,
2633 and not when we aren't loading or reading from a file. */
2634 if (!from_file)
2635 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2636 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2637 from_file = 1;
2638
2639 if (from_file)
2640 {
2641 tem = Fcons (Qrequire, feature);
2642 if (NILP (Fmember (tem, Vcurrent_load_list)))
2643 LOADHIST_ATTACH (tem);
2644 }
2645 tem = Fmemq (feature, Vfeatures);
2646
2647 if (NILP (tem))
2648 {
2649 int count = SPECPDL_INDEX ();
2650 int nesting = 0;
2651
2652 /* This is to make sure that loadup.el gives a clear picture
2653 of what files are preloaded and when. */
2654 if (! NILP (Vpurify_flag))
2655 error ("(require %s) while preparing to dump",
2656 SDATA (SYMBOL_NAME (feature)));
2657
2658 /* A certain amount of recursive `require' is legitimate,
2659 but if we require the same feature recursively 3 times,
2660 signal an error. */
2661 tem = require_nesting_list;
2662 while (! NILP (tem))
2663 {
2664 if (! NILP (Fequal (feature, XCAR (tem))))
2665 nesting++;
2666 tem = XCDR (tem);
2667 }
2668 if (nesting > 3)
2669 error ("Recursive `require' for feature `%s'",
2670 SDATA (SYMBOL_NAME (feature)));
2671
2672 /* Update the list for any nested `require's that occur. */
2673 record_unwind_protect (require_unwind, require_nesting_list);
2674 require_nesting_list = Fcons (feature, require_nesting_list);
2675
2676 /* Value saved here is to be restored into Vautoload_queue */
2677 record_unwind_protect (un_autoload, Vautoload_queue);
2678 Vautoload_queue = Qt;
2679
2680 /* Load the file. */
2681 GCPRO2 (feature, filename);
2682 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2683 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2684 UNGCPRO;
2685
2686 /* If load failed entirely, return nil. */
2687 if (NILP (tem))
2688 return unbind_to (count, Qnil);
2689
2690 tem = Fmemq (feature, Vfeatures);
2691 if (NILP (tem))
2692 error ("Required feature `%s' was not provided",
2693 SDATA (SYMBOL_NAME (feature)));
2694
2695 /* Once loading finishes, don't undo it. */
2696 Vautoload_queue = Qt;
2697 feature = unbind_to (count, feature);
2698 }
2699
2700 return feature;
2701 }
2702 \f
2703 /* Primitives for work of the "widget" library.
2704 In an ideal world, this section would not have been necessary.
2705 However, lisp function calls being as slow as they are, it turns
2706 out that some functions in the widget library (wid-edit.el) are the
2707 bottleneck of Widget operation. Here is their translation to C,
2708 for the sole reason of efficiency. */
2709
2710 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2711 doc: /* Return non-nil if PLIST has the property PROP.
2712 PLIST is a property list, which is a list of the form
2713 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2714 Unlike `plist-get', this allows you to distinguish between a missing
2715 property and a property with the value nil.
2716 The value is actually the tail of PLIST whose car is PROP. */)
2717 (Lisp_Object plist, Lisp_Object prop)
2718 {
2719 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2720 {
2721 QUIT;
2722 plist = XCDR (plist);
2723 plist = CDR (plist);
2724 }
2725 return plist;
2726 }
2727
2728 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2729 doc: /* In WIDGET, set PROPERTY to VALUE.
2730 The value can later be retrieved with `widget-get'. */)
2731 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2732 {
2733 CHECK_CONS (widget);
2734 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2735 return value;
2736 }
2737
2738 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2739 doc: /* In WIDGET, get the value of PROPERTY.
2740 The value could either be specified when the widget was created, or
2741 later with `widget-put'. */)
2742 (Lisp_Object widget, Lisp_Object property)
2743 {
2744 Lisp_Object tmp;
2745
2746 while (1)
2747 {
2748 if (NILP (widget))
2749 return Qnil;
2750 CHECK_CONS (widget);
2751 tmp = Fplist_member (XCDR (widget), property);
2752 if (CONSP (tmp))
2753 {
2754 tmp = XCDR (tmp);
2755 return CAR (tmp);
2756 }
2757 tmp = XCAR (widget);
2758 if (NILP (tmp))
2759 return Qnil;
2760 widget = Fget (tmp, Qwidget_type);
2761 }
2762 }
2763
2764 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2765 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2766 ARGS are passed as extra arguments to the function.
2767 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2768 (ptrdiff_t nargs, Lisp_Object *args)
2769 {
2770 /* This function can GC. */
2771 Lisp_Object newargs[3];
2772 struct gcpro gcpro1, gcpro2;
2773 Lisp_Object result;
2774
2775 newargs[0] = Fwidget_get (args[0], args[1]);
2776 newargs[1] = args[0];
2777 newargs[2] = Flist (nargs - 2, args + 2);
2778 GCPRO2 (newargs[0], newargs[2]);
2779 result = Fapply (3, newargs);
2780 UNGCPRO;
2781 return result;
2782 }
2783
2784 #ifdef HAVE_LANGINFO_CODESET
2785 #include <langinfo.h>
2786 #endif
2787
2788 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2789 doc: /* Access locale data ITEM for the current C locale, if available.
2790 ITEM should be one of the following:
2791
2792 `codeset', returning the character set as a string (locale item CODESET);
2793
2794 `days', returning a 7-element vector of day names (locale items DAY_n);
2795
2796 `months', returning a 12-element vector of month names (locale items MON_n);
2797
2798 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2799 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2800
2801 If the system can't provide such information through a call to
2802 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2803
2804 See also Info node `(libc)Locales'.
2805
2806 The data read from the system are decoded using `locale-coding-system'. */)
2807 (Lisp_Object item)
2808 {
2809 char *str = NULL;
2810 #ifdef HAVE_LANGINFO_CODESET
2811 Lisp_Object val;
2812 if (EQ (item, Qcodeset))
2813 {
2814 str = nl_langinfo (CODESET);
2815 return build_string (str);
2816 }
2817 #ifdef DAY_1
2818 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2819 {
2820 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2821 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2822 int i;
2823 struct gcpro gcpro1;
2824 GCPRO1 (v);
2825 synchronize_system_time_locale ();
2826 for (i = 0; i < 7; i++)
2827 {
2828 str = nl_langinfo (days[i]);
2829 val = make_unibyte_string (str, strlen (str));
2830 /* Fixme: Is this coding system necessarily right, even if
2831 it is consistent with CODESET? If not, what to do? */
2832 Faset (v, make_number (i),
2833 code_convert_string_norecord (val, Vlocale_coding_system,
2834 0));
2835 }
2836 UNGCPRO;
2837 return v;
2838 }
2839 #endif /* DAY_1 */
2840 #ifdef MON_1
2841 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2842 {
2843 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2844 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2845 MON_8, MON_9, MON_10, MON_11, MON_12};
2846 int i;
2847 struct gcpro gcpro1;
2848 GCPRO1 (v);
2849 synchronize_system_time_locale ();
2850 for (i = 0; i < 12; i++)
2851 {
2852 str = nl_langinfo (months[i]);
2853 val = make_unibyte_string (str, strlen (str));
2854 Faset (v, make_number (i),
2855 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2856 }
2857 UNGCPRO;
2858 return v;
2859 }
2860 #endif /* MON_1 */
2861 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2862 but is in the locale files. This could be used by ps-print. */
2863 #ifdef PAPER_WIDTH
2864 else if (EQ (item, Qpaper))
2865 {
2866 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2867 make_number (nl_langinfo (PAPER_HEIGHT)));
2868 }
2869 #endif /* PAPER_WIDTH */
2870 #endif /* HAVE_LANGINFO_CODESET*/
2871 return Qnil;
2872 }
2873 \f
2874 /* base64 encode/decode functions (RFC 2045).
2875 Based on code from GNU recode. */
2876
2877 #define MIME_LINE_LENGTH 76
2878
2879 #define IS_ASCII(Character) \
2880 ((Character) < 128)
2881 #define IS_BASE64(Character) \
2882 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2883 #define IS_BASE64_IGNORABLE(Character) \
2884 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2885 || (Character) == '\f' || (Character) == '\r')
2886
2887 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2888 character or return retval if there are no characters left to
2889 process. */
2890 #define READ_QUADRUPLET_BYTE(retval) \
2891 do \
2892 { \
2893 if (i == length) \
2894 { \
2895 if (nchars_return) \
2896 *nchars_return = nchars; \
2897 return (retval); \
2898 } \
2899 c = from[i++]; \
2900 } \
2901 while (IS_BASE64_IGNORABLE (c))
2902
2903 /* Table of characters coding the 64 values. */
2904 static const char base64_value_to_char[64] =
2905 {
2906 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2907 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2908 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2909 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2910 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2911 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2912 '8', '9', '+', '/' /* 60-63 */
2913 };
2914
2915 /* Table of base64 values for first 128 characters. */
2916 static const short base64_char_to_value[128] =
2917 {
2918 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2919 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2920 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2921 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2922 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2923 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2924 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2925 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2926 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2927 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2928 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2929 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2930 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2931 };
2932
2933 /* The following diagram shows the logical steps by which three octets
2934 get transformed into four base64 characters.
2935
2936 .--------. .--------. .--------.
2937 |aaaaaabb| |bbbbcccc| |ccdddddd|
2938 `--------' `--------' `--------'
2939 6 2 4 4 2 6
2940 .--------+--------+--------+--------.
2941 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2942 `--------+--------+--------+--------'
2943
2944 .--------+--------+--------+--------.
2945 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2946 `--------+--------+--------+--------'
2947
2948 The octets are divided into 6 bit chunks, which are then encoded into
2949 base64 characters. */
2950
2951
2952 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2953 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2954 EMACS_INT *);
2955
2956 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2957 2, 3, "r",
2958 doc: /* Base64-encode the region between BEG and END.
2959 Return the length of the encoded text.
2960 Optional third argument NO-LINE-BREAK means do not break long lines
2961 into shorter lines. */)
2962 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2963 {
2964 char *encoded;
2965 EMACS_INT allength, length;
2966 EMACS_INT ibeg, iend, encoded_length;
2967 EMACS_INT old_pos = PT;
2968 USE_SAFE_ALLOCA;
2969
2970 validate_region (&beg, &end);
2971
2972 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2973 iend = CHAR_TO_BYTE (XFASTINT (end));
2974 move_gap_both (XFASTINT (beg), ibeg);
2975
2976 /* We need to allocate enough room for encoding the text.
2977 We need 33 1/3% more space, plus a newline every 76
2978 characters, and then we round up. */
2979 length = iend - ibeg;
2980 allength = length + length/3 + 1;
2981 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2982
2983 SAFE_ALLOCA (encoded, char *, allength);
2984 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2985 encoded, length, NILP (no_line_break),
2986 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2987 if (encoded_length > allength)
2988 abort ();
2989
2990 if (encoded_length < 0)
2991 {
2992 /* The encoding wasn't possible. */
2993 SAFE_FREE ();
2994 error ("Multibyte character in data for base64 encoding");
2995 }
2996
2997 /* Now we have encoded the region, so we insert the new contents
2998 and delete the old. (Insert first in order to preserve markers.) */
2999 SET_PT_BOTH (XFASTINT (beg), ibeg);
3000 insert (encoded, encoded_length);
3001 SAFE_FREE ();
3002 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3003
3004 /* If point was outside of the region, restore it exactly; else just
3005 move to the beginning of the region. */
3006 if (old_pos >= XFASTINT (end))
3007 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3008 else if (old_pos > XFASTINT (beg))
3009 old_pos = XFASTINT (beg);
3010 SET_PT (old_pos);
3011
3012 /* We return the length of the encoded text. */
3013 return make_number (encoded_length);
3014 }
3015
3016 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3017 1, 2, 0,
3018 doc: /* Base64-encode STRING and return the result.
3019 Optional second argument NO-LINE-BREAK means do not break long lines
3020 into shorter lines. */)
3021 (Lisp_Object string, Lisp_Object no_line_break)
3022 {
3023 EMACS_INT allength, length, encoded_length;
3024 char *encoded;
3025 Lisp_Object encoded_string;
3026 USE_SAFE_ALLOCA;
3027
3028 CHECK_STRING (string);
3029
3030 /* We need to allocate enough room for encoding the text.
3031 We need 33 1/3% more space, plus a newline every 76
3032 characters, and then we round up. */
3033 length = SBYTES (string);
3034 allength = length + length/3 + 1;
3035 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3036
3037 /* We need to allocate enough room for decoding the text. */
3038 SAFE_ALLOCA (encoded, char *, allength);
3039
3040 encoded_length = base64_encode_1 (SSDATA (string),
3041 encoded, length, NILP (no_line_break),
3042 STRING_MULTIBYTE (string));
3043 if (encoded_length > allength)
3044 abort ();
3045
3046 if (encoded_length < 0)
3047 {
3048 /* The encoding wasn't possible. */
3049 SAFE_FREE ();
3050 error ("Multibyte character in data for base64 encoding");
3051 }
3052
3053 encoded_string = make_unibyte_string (encoded, encoded_length);
3054 SAFE_FREE ();
3055
3056 return encoded_string;
3057 }
3058
3059 static EMACS_INT
3060 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3061 int line_break, int multibyte)
3062 {
3063 int counter = 0;
3064 EMACS_INT i = 0;
3065 char *e = to;
3066 int c;
3067 unsigned int value;
3068 int bytes;
3069
3070 while (i < length)
3071 {
3072 if (multibyte)
3073 {
3074 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3075 if (CHAR_BYTE8_P (c))
3076 c = CHAR_TO_BYTE8 (c);
3077 else if (c >= 256)
3078 return -1;
3079 i += bytes;
3080 }
3081 else
3082 c = from[i++];
3083
3084 /* Wrap line every 76 characters. */
3085
3086 if (line_break)
3087 {
3088 if (counter < MIME_LINE_LENGTH / 4)
3089 counter++;
3090 else
3091 {
3092 *e++ = '\n';
3093 counter = 1;
3094 }
3095 }
3096
3097 /* Process first byte of a triplet. */
3098
3099 *e++ = base64_value_to_char[0x3f & c >> 2];
3100 value = (0x03 & c) << 4;
3101
3102 /* Process second byte of a triplet. */
3103
3104 if (i == length)
3105 {
3106 *e++ = base64_value_to_char[value];
3107 *e++ = '=';
3108 *e++ = '=';
3109 break;
3110 }
3111
3112 if (multibyte)
3113 {
3114 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3115 if (CHAR_BYTE8_P (c))
3116 c = CHAR_TO_BYTE8 (c);
3117 else if (c >= 256)
3118 return -1;
3119 i += bytes;
3120 }
3121 else
3122 c = from[i++];
3123
3124 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3125 value = (0x0f & c) << 2;
3126
3127 /* Process third byte of a triplet. */
3128
3129 if (i == length)
3130 {
3131 *e++ = base64_value_to_char[value];
3132 *e++ = '=';
3133 break;
3134 }
3135
3136 if (multibyte)
3137 {
3138 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3139 if (CHAR_BYTE8_P (c))
3140 c = CHAR_TO_BYTE8 (c);
3141 else if (c >= 256)
3142 return -1;
3143 i += bytes;
3144 }
3145 else
3146 c = from[i++];
3147
3148 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3149 *e++ = base64_value_to_char[0x3f & c];
3150 }
3151
3152 return e - to;
3153 }
3154
3155
3156 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3157 2, 2, "r",
3158 doc: /* Base64-decode the region between BEG and END.
3159 Return the length of the decoded text.
3160 If the region can't be decoded, signal an error and don't modify the buffer. */)
3161 (Lisp_Object beg, Lisp_Object end)
3162 {
3163 EMACS_INT ibeg, iend, length, allength;
3164 char *decoded;
3165 EMACS_INT old_pos = PT;
3166 EMACS_INT decoded_length;
3167 EMACS_INT inserted_chars;
3168 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3169 USE_SAFE_ALLOCA;
3170
3171 validate_region (&beg, &end);
3172
3173 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3174 iend = CHAR_TO_BYTE (XFASTINT (end));
3175
3176 length = iend - ibeg;
3177
3178 /* We need to allocate enough room for decoding the text. If we are
3179 working on a multibyte buffer, each decoded code may occupy at
3180 most two bytes. */
3181 allength = multibyte ? length * 2 : length;
3182 SAFE_ALLOCA (decoded, char *, allength);
3183
3184 move_gap_both (XFASTINT (beg), ibeg);
3185 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3186 decoded, length,
3187 multibyte, &inserted_chars);
3188 if (decoded_length > allength)
3189 abort ();
3190
3191 if (decoded_length < 0)
3192 {
3193 /* The decoding wasn't possible. */
3194 SAFE_FREE ();
3195 error ("Invalid base64 data");
3196 }
3197
3198 /* Now we have decoded the region, so we insert the new contents
3199 and delete the old. (Insert first in order to preserve markers.) */
3200 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3201 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3202 SAFE_FREE ();
3203
3204 /* Delete the original text. */
3205 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3206 iend + decoded_length, 1);
3207
3208 /* If point was outside of the region, restore it exactly; else just
3209 move to the beginning of the region. */
3210 if (old_pos >= XFASTINT (end))
3211 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3212 else if (old_pos > XFASTINT (beg))
3213 old_pos = XFASTINT (beg);
3214 SET_PT (old_pos > ZV ? ZV : old_pos);
3215
3216 return make_number (inserted_chars);
3217 }
3218
3219 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3220 1, 1, 0,
3221 doc: /* Base64-decode STRING and return the result. */)
3222 (Lisp_Object string)
3223 {
3224 char *decoded;
3225 EMACS_INT length, decoded_length;
3226 Lisp_Object decoded_string;
3227 USE_SAFE_ALLOCA;
3228
3229 CHECK_STRING (string);
3230
3231 length = SBYTES (string);
3232 /* We need to allocate enough room for decoding the text. */
3233 SAFE_ALLOCA (decoded, char *, length);
3234
3235 /* The decoded result should be unibyte. */
3236 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3237 0, NULL);
3238 if (decoded_length > length)
3239 abort ();
3240 else if (decoded_length >= 0)
3241 decoded_string = make_unibyte_string (decoded, decoded_length);
3242 else
3243 decoded_string = Qnil;
3244
3245 SAFE_FREE ();
3246 if (!STRINGP (decoded_string))
3247 error ("Invalid base64 data");
3248
3249 return decoded_string;
3250 }
3251
3252 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3253 MULTIBYTE is nonzero, the decoded result should be in multibyte
3254 form. If NCHARS_RETRUN is not NULL, store the number of produced
3255 characters in *NCHARS_RETURN. */
3256
3257 static EMACS_INT
3258 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3259 int multibyte, EMACS_INT *nchars_return)
3260 {
3261 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3262 char *e = to;
3263 unsigned char c;
3264 unsigned long value;
3265 EMACS_INT nchars = 0;
3266
3267 while (1)
3268 {
3269 /* Process first byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (e-to);
3272
3273 if (!IS_BASE64 (c))
3274 return -1;
3275 value = base64_char_to_value[c] << 18;
3276
3277 /* Process second byte of a quadruplet. */
3278
3279 READ_QUADRUPLET_BYTE (-1);
3280
3281 if (!IS_BASE64 (c))
3282 return -1;
3283 value |= base64_char_to_value[c] << 12;
3284
3285 c = (unsigned char) (value >> 16);
3286 if (multibyte && c >= 128)
3287 e += BYTE8_STRING (c, e);
3288 else
3289 *e++ = c;
3290 nchars++;
3291
3292 /* Process third byte of a quadruplet. */
3293
3294 READ_QUADRUPLET_BYTE (-1);
3295
3296 if (c == '=')
3297 {
3298 READ_QUADRUPLET_BYTE (-1);
3299
3300 if (c != '=')
3301 return -1;
3302 continue;
3303 }
3304
3305 if (!IS_BASE64 (c))
3306 return -1;
3307 value |= base64_char_to_value[c] << 6;
3308
3309 c = (unsigned char) (0xff & value >> 8);
3310 if (multibyte && c >= 128)
3311 e += BYTE8_STRING (c, e);
3312 else
3313 *e++ = c;
3314 nchars++;
3315
3316 /* Process fourth byte of a quadruplet. */
3317
3318 READ_QUADRUPLET_BYTE (-1);
3319
3320 if (c == '=')
3321 continue;
3322
3323 if (!IS_BASE64 (c))
3324 return -1;
3325 value |= base64_char_to_value[c];
3326
3327 c = (unsigned char) (0xff & value);
3328 if (multibyte && c >= 128)
3329 e += BYTE8_STRING (c, e);
3330 else
3331 *e++ = c;
3332 nchars++;
3333 }
3334 }
3335
3336
3337 \f
3338 /***********************************************************************
3339 ***** *****
3340 ***** Hash Tables *****
3341 ***** *****
3342 ***********************************************************************/
3343
3344 /* Implemented by gerd@gnu.org. This hash table implementation was
3345 inspired by CMUCL hash tables. */
3346
3347 /* Ideas:
3348
3349 1. For small tables, association lists are probably faster than
3350 hash tables because they have lower overhead.
3351
3352 For uses of hash tables where the O(1) behavior of table
3353 operations is not a requirement, it might therefore be a good idea
3354 not to hash. Instead, we could just do a linear search in the
3355 key_and_value vector of the hash table. This could be done
3356 if a `:linear-search t' argument is given to make-hash-table. */
3357
3358
3359 /* The list of all weak hash tables. Don't staticpro this one. */
3360
3361 static struct Lisp_Hash_Table *weak_hash_tables;
3362
3363 /* Various symbols. */
3364
3365 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3366 Lisp_Object Qeq, Qeql, Qequal;
3367 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3368 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3369
3370 /* Function prototypes. */
3371
3372 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3373 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3374 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3375 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3376
3377
3378 \f
3379 /***********************************************************************
3380 Utilities
3381 ***********************************************************************/
3382
3383 /* If OBJ is a Lisp hash table, return a pointer to its struct
3384 Lisp_Hash_Table. Otherwise, signal an error. */
3385
3386 static struct Lisp_Hash_Table *
3387 check_hash_table (Lisp_Object obj)
3388 {
3389 CHECK_HASH_TABLE (obj);
3390 return XHASH_TABLE (obj);
3391 }
3392
3393
3394 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3395 number. */
3396
3397 EMACS_INT
3398 next_almost_prime (EMACS_INT n)
3399 {
3400 for (n |= 1; ; n += 2)
3401 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3402 return n;
3403 }
3404
3405
3406 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3407 which USED[I] is non-zero. If found at index I in ARGS, set
3408 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3409 0. This function is used to extract a keyword/argument pair from
3410 a DEFUN parameter list. */
3411
3412 static ptrdiff_t
3413 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3414 {
3415 ptrdiff_t i;
3416
3417 for (i = 1; i < nargs; i++)
3418 if (!used[i - 1] && EQ (args[i - 1], key))
3419 {
3420 used[i - 1] = 1;
3421 used[i] = 1;
3422 return i;
3423 }
3424
3425 return 0;
3426 }
3427
3428
3429 /* Return a Lisp vector which has the same contents as VEC but has
3430 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3431 vector that are not copied from VEC are set to INIT. */
3432
3433 Lisp_Object
3434 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3435 {
3436 struct Lisp_Vector *v;
3437 EMACS_INT i, old_size;
3438
3439 xassert (VECTORP (vec));
3440 old_size = ASIZE (vec);
3441 xassert (new_size >= old_size);
3442
3443 v = allocate_vector (new_size);
3444 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3445 for (i = old_size; i < new_size; ++i)
3446 v->contents[i] = init;
3447 XSETVECTOR (vec, v);
3448 return vec;
3449 }
3450
3451
3452 /***********************************************************************
3453 Low-level Functions
3454 ***********************************************************************/
3455
3456 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3457 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3458 KEY2 are the same. */
3459
3460 static int
3461 cmpfn_eql (struct Lisp_Hash_Table *h,
3462 Lisp_Object key1, EMACS_UINT hash1,
3463 Lisp_Object key2, EMACS_UINT hash2)
3464 {
3465 return (FLOATP (key1)
3466 && FLOATP (key2)
3467 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3468 }
3469
3470
3471 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3472 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3473 KEY2 are the same. */
3474
3475 static int
3476 cmpfn_equal (struct Lisp_Hash_Table *h,
3477 Lisp_Object key1, EMACS_UINT hash1,
3478 Lisp_Object key2, EMACS_UINT hash2)
3479 {
3480 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3481 }
3482
3483
3484 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3485 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3486 if KEY1 and KEY2 are the same. */
3487
3488 static int
3489 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3490 Lisp_Object key1, EMACS_UINT hash1,
3491 Lisp_Object key2, EMACS_UINT hash2)
3492 {
3493 if (hash1 == hash2)
3494 {
3495 Lisp_Object args[3];
3496
3497 args[0] = h->user_cmp_function;
3498 args[1] = key1;
3499 args[2] = key2;
3500 return !NILP (Ffuncall (3, args));
3501 }
3502 else
3503 return 0;
3504 }
3505
3506
3507 /* Value is a hash code for KEY for use in hash table H which uses
3508 `eq' to compare keys. The hash code returned is guaranteed to fit
3509 in a Lisp integer. */
3510
3511 static EMACS_UINT
3512 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3513 {
3514 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3515 xassert ((hash & ~INTMASK) == 0);
3516 return hash;
3517 }
3518
3519
3520 /* Value is a hash code for KEY for use in hash table H which uses
3521 `eql' to compare keys. The hash code returned is guaranteed to fit
3522 in a Lisp integer. */
3523
3524 static EMACS_UINT
3525 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3526 {
3527 EMACS_UINT hash;
3528 if (FLOATP (key))
3529 hash = sxhash (key, 0);
3530 else
3531 hash = XUINT (key) ^ XTYPE (key);
3532 xassert ((hash & ~INTMASK) == 0);
3533 return hash;
3534 }
3535
3536
3537 /* Value is a hash code for KEY for use in hash table H which uses
3538 `equal' to compare keys. The hash code returned is guaranteed to fit
3539 in a Lisp integer. */
3540
3541 static EMACS_UINT
3542 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3543 {
3544 EMACS_UINT hash = sxhash (key, 0);
3545 xassert ((hash & ~INTMASK) == 0);
3546 return hash;
3547 }
3548
3549
3550 /* Value is a hash code for KEY for use in hash table H which uses as
3551 user-defined function to compare keys. The hash code returned is
3552 guaranteed to fit in a Lisp integer. */
3553
3554 static EMACS_UINT
3555 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3556 {
3557 Lisp_Object args[2], hash;
3558
3559 args[0] = h->user_hash_function;
3560 args[1] = key;
3561 hash = Ffuncall (2, args);
3562 if (!INTEGERP (hash))
3563 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3564 return XUINT (hash);
3565 }
3566
3567
3568 /* Create and initialize a new hash table.
3569
3570 TEST specifies the test the hash table will use to compare keys.
3571 It must be either one of the predefined tests `eq', `eql' or
3572 `equal' or a symbol denoting a user-defined test named TEST with
3573 test and hash functions USER_TEST and USER_HASH.
3574
3575 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3576
3577 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3578 new size when it becomes full is computed by adding REHASH_SIZE to
3579 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3580 table's new size is computed by multiplying its old size with
3581 REHASH_SIZE.
3582
3583 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3584 be resized when the ratio of (number of entries in the table) /
3585 (table size) is >= REHASH_THRESHOLD.
3586
3587 WEAK specifies the weakness of the table. If non-nil, it must be
3588 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3589
3590 Lisp_Object
3591 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3592 Lisp_Object rehash_threshold, Lisp_Object weak,
3593 Lisp_Object user_test, Lisp_Object user_hash)
3594 {
3595 struct Lisp_Hash_Table *h;
3596 Lisp_Object table;
3597 EMACS_INT index_size, i, sz;
3598 double index_float;
3599
3600 /* Preconditions. */
3601 xassert (SYMBOLP (test));
3602 xassert (INTEGERP (size) && XINT (size) >= 0);
3603 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3604 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3605 xassert (FLOATP (rehash_threshold)
3606 && 0 < XFLOAT_DATA (rehash_threshold)
3607 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3608
3609 if (XFASTINT (size) == 0)
3610 size = make_number (1);
3611
3612 sz = XFASTINT (size);
3613 index_float = sz / XFLOAT_DATA (rehash_threshold);
3614 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3615 ? next_almost_prime (index_float)
3616 : MOST_POSITIVE_FIXNUM + 1);
3617 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3618 error ("Hash table too large");
3619
3620 /* Allocate a table and initialize it. */
3621 h = allocate_hash_table ();
3622
3623 /* Initialize hash table slots. */
3624 h->test = test;
3625 if (EQ (test, Qeql))
3626 {
3627 h->cmpfn = cmpfn_eql;
3628 h->hashfn = hashfn_eql;
3629 }
3630 else if (EQ (test, Qeq))
3631 {
3632 h->cmpfn = NULL;
3633 h->hashfn = hashfn_eq;
3634 }
3635 else if (EQ (test, Qequal))
3636 {
3637 h->cmpfn = cmpfn_equal;
3638 h->hashfn = hashfn_equal;
3639 }
3640 else
3641 {
3642 h->user_cmp_function = user_test;
3643 h->user_hash_function = user_hash;
3644 h->cmpfn = cmpfn_user_defined;
3645 h->hashfn = hashfn_user_defined;
3646 }
3647
3648 h->weak = weak;
3649 h->rehash_threshold = rehash_threshold;
3650 h->rehash_size = rehash_size;
3651 h->count = 0;
3652 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3653 h->hash = Fmake_vector (size, Qnil);
3654 h->next = Fmake_vector (size, Qnil);
3655 h->index = Fmake_vector (make_number (index_size), Qnil);
3656
3657 /* Set up the free list. */
3658 for (i = 0; i < sz - 1; ++i)
3659 HASH_NEXT (h, i) = make_number (i + 1);
3660 h->next_free = make_number (0);
3661
3662 XSET_HASH_TABLE (table, h);
3663 xassert (HASH_TABLE_P (table));
3664 xassert (XHASH_TABLE (table) == h);
3665
3666 /* Maybe add this hash table to the list of all weak hash tables. */
3667 if (NILP (h->weak))
3668 h->next_weak = NULL;
3669 else
3670 {
3671 h->next_weak = weak_hash_tables;
3672 weak_hash_tables = h;
3673 }
3674
3675 return table;
3676 }
3677
3678
3679 /* Return a copy of hash table H1. Keys and values are not copied,
3680 only the table itself is. */
3681
3682 static Lisp_Object
3683 copy_hash_table (struct Lisp_Hash_Table *h1)
3684 {
3685 Lisp_Object table;
3686 struct Lisp_Hash_Table *h2;
3687 struct Lisp_Vector *next;
3688
3689 h2 = allocate_hash_table ();
3690 next = h2->header.next.vector;
3691 memcpy (h2, h1, sizeof *h2);
3692 h2->header.next.vector = next;
3693 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3694 h2->hash = Fcopy_sequence (h1->hash);
3695 h2->next = Fcopy_sequence (h1->next);
3696 h2->index = Fcopy_sequence (h1->index);
3697 XSET_HASH_TABLE (table, h2);
3698
3699 /* Maybe add this hash table to the list of all weak hash tables. */
3700 if (!NILP (h2->weak))
3701 {
3702 h2->next_weak = weak_hash_tables;
3703 weak_hash_tables = h2;
3704 }
3705
3706 return table;
3707 }
3708
3709
3710 /* Resize hash table H if it's too full. If H cannot be resized
3711 because it's already too large, throw an error. */
3712
3713 static inline void
3714 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3715 {
3716 if (NILP (h->next_free))
3717 {
3718 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3719 EMACS_INT i, new_size, index_size;
3720 EMACS_INT nsize;
3721 double index_float;
3722
3723 if (INTEGERP (h->rehash_size))
3724 new_size = old_size + XFASTINT (h->rehash_size);
3725 else
3726 {
3727 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3728 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3729 {
3730 new_size = float_new_size;
3731 if (new_size <= old_size)
3732 new_size = old_size + 1;
3733 }
3734 else
3735 new_size = MOST_POSITIVE_FIXNUM + 1;
3736 }
3737 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3738 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3739 ? next_almost_prime (index_float)
3740 : MOST_POSITIVE_FIXNUM + 1);
3741 nsize = max (index_size, 2 * new_size);
3742 if (nsize > MOST_POSITIVE_FIXNUM)
3743 error ("Hash table too large to resize");
3744
3745 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3746 h->next = larger_vector (h->next, new_size, Qnil);
3747 h->hash = larger_vector (h->hash, new_size, Qnil);
3748 h->index = Fmake_vector (make_number (index_size), Qnil);
3749
3750 /* Update the free list. Do it so that new entries are added at
3751 the end of the free list. This makes some operations like
3752 maphash faster. */
3753 for (i = old_size; i < new_size - 1; ++i)
3754 HASH_NEXT (h, i) = make_number (i + 1);
3755
3756 if (!NILP (h->next_free))
3757 {
3758 Lisp_Object last, next;
3759
3760 last = h->next_free;
3761 while (next = HASH_NEXT (h, XFASTINT (last)),
3762 !NILP (next))
3763 last = next;
3764
3765 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3766 }
3767 else
3768 XSETFASTINT (h->next_free, old_size);
3769
3770 /* Rehash. */
3771 for (i = 0; i < old_size; ++i)
3772 if (!NILP (HASH_HASH (h, i)))
3773 {
3774 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3775 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3776 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3777 HASH_INDEX (h, start_of_bucket) = make_number (i);
3778 }
3779 }
3780 }
3781
3782
3783 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3784 the hash code of KEY. Value is the index of the entry in H
3785 matching KEY, or -1 if not found. */
3786
3787 EMACS_INT
3788 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3789 {
3790 EMACS_UINT hash_code;
3791 EMACS_INT start_of_bucket;
3792 Lisp_Object idx;
3793
3794 hash_code = h->hashfn (h, key);
3795 if (hash)
3796 *hash = hash_code;
3797
3798 start_of_bucket = hash_code % ASIZE (h->index);
3799 idx = HASH_INDEX (h, start_of_bucket);
3800
3801 /* We need not gcpro idx since it's either an integer or nil. */
3802 while (!NILP (idx))
3803 {
3804 EMACS_INT i = XFASTINT (idx);
3805 if (EQ (key, HASH_KEY (h, i))
3806 || (h->cmpfn
3807 && h->cmpfn (h, key, hash_code,
3808 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3809 break;
3810 idx = HASH_NEXT (h, i);
3811 }
3812
3813 return NILP (idx) ? -1 : XFASTINT (idx);
3814 }
3815
3816
3817 /* Put an entry into hash table H that associates KEY with VALUE.
3818 HASH is a previously computed hash code of KEY.
3819 Value is the index of the entry in H matching KEY. */
3820
3821 EMACS_INT
3822 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3823 EMACS_UINT hash)
3824 {
3825 EMACS_INT start_of_bucket, i;
3826
3827 xassert ((hash & ~INTMASK) == 0);
3828
3829 /* Increment count after resizing because resizing may fail. */
3830 maybe_resize_hash_table (h);
3831 h->count++;
3832
3833 /* Store key/value in the key_and_value vector. */
3834 i = XFASTINT (h->next_free);
3835 h->next_free = HASH_NEXT (h, i);
3836 HASH_KEY (h, i) = key;
3837 HASH_VALUE (h, i) = value;
3838
3839 /* Remember its hash code. */
3840 HASH_HASH (h, i) = make_number (hash);
3841
3842 /* Add new entry to its collision chain. */
3843 start_of_bucket = hash % ASIZE (h->index);
3844 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3845 HASH_INDEX (h, start_of_bucket) = make_number (i);
3846 return i;
3847 }
3848
3849
3850 /* Remove the entry matching KEY from hash table H, if there is one. */
3851
3852 static void
3853 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3854 {
3855 EMACS_UINT hash_code;
3856 EMACS_INT start_of_bucket;
3857 Lisp_Object idx, prev;
3858
3859 hash_code = h->hashfn (h, key);
3860 start_of_bucket = hash_code % ASIZE (h->index);
3861 idx = HASH_INDEX (h, start_of_bucket);
3862 prev = Qnil;
3863
3864 /* We need not gcpro idx, prev since they're either integers or nil. */
3865 while (!NILP (idx))
3866 {
3867 EMACS_INT i = XFASTINT (idx);
3868
3869 if (EQ (key, HASH_KEY (h, i))
3870 || (h->cmpfn
3871 && h->cmpfn (h, key, hash_code,
3872 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3873 {
3874 /* Take entry out of collision chain. */
3875 if (NILP (prev))
3876 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3877 else
3878 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3879
3880 /* Clear slots in key_and_value and add the slots to
3881 the free list. */
3882 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3883 HASH_NEXT (h, i) = h->next_free;
3884 h->next_free = make_number (i);
3885 h->count--;
3886 xassert (h->count >= 0);
3887 break;
3888 }
3889 else
3890 {
3891 prev = idx;
3892 idx = HASH_NEXT (h, i);
3893 }
3894 }
3895 }
3896
3897
3898 /* Clear hash table H. */
3899
3900 static void
3901 hash_clear (struct Lisp_Hash_Table *h)
3902 {
3903 if (h->count > 0)
3904 {
3905 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3906
3907 for (i = 0; i < size; ++i)
3908 {
3909 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3910 HASH_KEY (h, i) = Qnil;
3911 HASH_VALUE (h, i) = Qnil;
3912 HASH_HASH (h, i) = Qnil;
3913 }
3914
3915 for (i = 0; i < ASIZE (h->index); ++i)
3916 ASET (h->index, i, Qnil);
3917
3918 h->next_free = make_number (0);
3919 h->count = 0;
3920 }
3921 }
3922
3923
3924 \f
3925 /************************************************************************
3926 Weak Hash Tables
3927 ************************************************************************/
3928
3929 void
3930 init_weak_hash_tables (void)
3931 {
3932 weak_hash_tables = NULL;
3933 }
3934
3935 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3936 entries from the table that don't survive the current GC.
3937 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3938 non-zero if anything was marked. */
3939
3940 static int
3941 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3942 {
3943 EMACS_INT bucket, n;
3944 int marked;
3945
3946 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3947 marked = 0;
3948
3949 for (bucket = 0; bucket < n; ++bucket)
3950 {
3951 Lisp_Object idx, next, prev;
3952
3953 /* Follow collision chain, removing entries that
3954 don't survive this garbage collection. */
3955 prev = Qnil;
3956 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3957 {
3958 EMACS_INT i = XFASTINT (idx);
3959 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3960 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3961 int remove_p;
3962
3963 if (EQ (h->weak, Qkey))
3964 remove_p = !key_known_to_survive_p;
3965 else if (EQ (h->weak, Qvalue))
3966 remove_p = !value_known_to_survive_p;
3967 else if (EQ (h->weak, Qkey_or_value))
3968 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3969 else if (EQ (h->weak, Qkey_and_value))
3970 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3971 else
3972 abort ();
3973
3974 next = HASH_NEXT (h, i);
3975
3976 if (remove_entries_p)
3977 {
3978 if (remove_p)
3979 {
3980 /* Take out of collision chain. */
3981 if (NILP (prev))
3982 HASH_INDEX (h, bucket) = next;
3983 else
3984 HASH_NEXT (h, XFASTINT (prev)) = next;
3985
3986 /* Add to free list. */
3987 HASH_NEXT (h, i) = h->next_free;
3988 h->next_free = idx;
3989
3990 /* Clear key, value, and hash. */
3991 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3992 HASH_HASH (h, i) = Qnil;
3993
3994 h->count--;
3995 }
3996 else
3997 {
3998 prev = idx;
3999 }
4000 }
4001 else
4002 {
4003 if (!remove_p)
4004 {
4005 /* Make sure key and value survive. */
4006 if (!key_known_to_survive_p)
4007 {
4008 mark_object (HASH_KEY (h, i));
4009 marked = 1;
4010 }
4011
4012 if (!value_known_to_survive_p)
4013 {
4014 mark_object (HASH_VALUE (h, i));
4015 marked = 1;
4016 }
4017 }
4018 }
4019 }
4020 }
4021
4022 return marked;
4023 }
4024
4025 /* Remove elements from weak hash tables that don't survive the
4026 current garbage collection. Remove weak tables that don't survive
4027 from Vweak_hash_tables. Called from gc_sweep. */
4028
4029 void
4030 sweep_weak_hash_tables (void)
4031 {
4032 struct Lisp_Hash_Table *h, *used, *next;
4033 int marked;
4034
4035 /* Mark all keys and values that are in use. Keep on marking until
4036 there is no more change. This is necessary for cases like
4037 value-weak table A containing an entry X -> Y, where Y is used in a
4038 key-weak table B, Z -> Y. If B comes after A in the list of weak
4039 tables, X -> Y might be removed from A, although when looking at B
4040 one finds that it shouldn't. */
4041 do
4042 {
4043 marked = 0;
4044 for (h = weak_hash_tables; h; h = h->next_weak)
4045 {
4046 if (h->header.size & ARRAY_MARK_FLAG)
4047 marked |= sweep_weak_table (h, 0);
4048 }
4049 }
4050 while (marked);
4051
4052 /* Remove tables and entries that aren't used. */
4053 for (h = weak_hash_tables, used = NULL; h; h = next)
4054 {
4055 next = h->next_weak;
4056
4057 if (h->header.size & ARRAY_MARK_FLAG)
4058 {
4059 /* TABLE is marked as used. Sweep its contents. */
4060 if (h->count > 0)
4061 sweep_weak_table (h, 1);
4062
4063 /* Add table to the list of used weak hash tables. */
4064 h->next_weak = used;
4065 used = h;
4066 }
4067 }
4068
4069 weak_hash_tables = used;
4070 }
4071
4072
4073 \f
4074 /***********************************************************************
4075 Hash Code Computation
4076 ***********************************************************************/
4077
4078 /* Maximum depth up to which to dive into Lisp structures. */
4079
4080 #define SXHASH_MAX_DEPTH 3
4081
4082 /* Maximum length up to which to take list and vector elements into
4083 account. */
4084
4085 #define SXHASH_MAX_LEN 7
4086
4087 /* Combine two integers X and Y for hashing. The result might not fit
4088 into a Lisp integer. */
4089
4090 #define SXHASH_COMBINE(X, Y) \
4091 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4092 + (EMACS_UINT) (Y))
4093
4094 /* Hash X, returning a value that fits into a Lisp integer. */
4095 #define SXHASH_REDUCE(X) \
4096 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4097
4098 /* Return a hash for string PTR which has length LEN. The hash
4099 code returned is guaranteed to fit in a Lisp integer. */
4100
4101 static EMACS_UINT
4102 sxhash_string (unsigned char *ptr, EMACS_INT len)
4103 {
4104 unsigned char *p = ptr;
4105 unsigned char *end = p + len;
4106 unsigned char c;
4107 EMACS_UINT hash = 0;
4108
4109 while (p != end)
4110 {
4111 c = *p++;
4112 if (c >= 0140)
4113 c -= 40;
4114 hash = SXHASH_COMBINE (hash, c);
4115 }
4116
4117 return SXHASH_REDUCE (hash);
4118 }
4119
4120 /* Return a hash for the floating point value VAL. */
4121
4122 static EMACS_INT
4123 sxhash_float (double val)
4124 {
4125 EMACS_UINT hash = 0;
4126 enum {
4127 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4128 + (sizeof val % sizeof hash != 0))
4129 };
4130 union {
4131 double val;
4132 EMACS_UINT word[WORDS_PER_DOUBLE];
4133 } u;
4134 int i;
4135 u.val = val;
4136 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4137 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4138 hash = SXHASH_COMBINE (hash, u.word[i]);
4139 return SXHASH_REDUCE (hash);
4140 }
4141
4142 /* Return a hash for list LIST. DEPTH is the current depth in the
4143 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4144
4145 static EMACS_UINT
4146 sxhash_list (Lisp_Object list, int depth)
4147 {
4148 EMACS_UINT hash = 0;
4149 int i;
4150
4151 if (depth < SXHASH_MAX_DEPTH)
4152 for (i = 0;
4153 CONSP (list) && i < SXHASH_MAX_LEN;
4154 list = XCDR (list), ++i)
4155 {
4156 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4157 hash = SXHASH_COMBINE (hash, hash2);
4158 }
4159
4160 if (!NILP (list))
4161 {
4162 EMACS_UINT hash2 = sxhash (list, depth + 1);
4163 hash = SXHASH_COMBINE (hash, hash2);
4164 }
4165
4166 return SXHASH_REDUCE (hash);
4167 }
4168
4169
4170 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4171 the Lisp structure. */
4172
4173 static EMACS_UINT
4174 sxhash_vector (Lisp_Object vec, int depth)
4175 {
4176 EMACS_UINT hash = ASIZE (vec);
4177 int i, n;
4178
4179 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4180 for (i = 0; i < n; ++i)
4181 {
4182 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4183 hash = SXHASH_COMBINE (hash, hash2);
4184 }
4185
4186 return SXHASH_REDUCE (hash);
4187 }
4188
4189 /* Return a hash for bool-vector VECTOR. */
4190
4191 static EMACS_UINT
4192 sxhash_bool_vector (Lisp_Object vec)
4193 {
4194 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4195 int i, n;
4196
4197 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4198 for (i = 0; i < n; ++i)
4199 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4200
4201 return SXHASH_REDUCE (hash);
4202 }
4203
4204
4205 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4206 structure. Value is an unsigned integer clipped to INTMASK. */
4207
4208 EMACS_UINT
4209 sxhash (Lisp_Object obj, int depth)
4210 {
4211 EMACS_UINT hash;
4212
4213 if (depth > SXHASH_MAX_DEPTH)
4214 return 0;
4215
4216 switch (XTYPE (obj))
4217 {
4218 case_Lisp_Int:
4219 hash = XUINT (obj);
4220 break;
4221
4222 case Lisp_Misc:
4223 hash = XUINT (obj);
4224 break;
4225
4226 case Lisp_Symbol:
4227 obj = SYMBOL_NAME (obj);
4228 /* Fall through. */
4229
4230 case Lisp_String:
4231 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4232 break;
4233
4234 /* This can be everything from a vector to an overlay. */
4235 case Lisp_Vectorlike:
4236 if (VECTORP (obj))
4237 /* According to the CL HyperSpec, two arrays are equal only if
4238 they are `eq', except for strings and bit-vectors. In
4239 Emacs, this works differently. We have to compare element
4240 by element. */
4241 hash = sxhash_vector (obj, depth);
4242 else if (BOOL_VECTOR_P (obj))
4243 hash = sxhash_bool_vector (obj);
4244 else
4245 /* Others are `equal' if they are `eq', so let's take their
4246 address as hash. */
4247 hash = XUINT (obj);
4248 break;
4249
4250 case Lisp_Cons:
4251 hash = sxhash_list (obj, depth);
4252 break;
4253
4254 case Lisp_Float:
4255 hash = sxhash_float (XFLOAT_DATA (obj));
4256 break;
4257
4258 default:
4259 abort ();
4260 }
4261
4262 return hash;
4263 }
4264
4265
4266 \f
4267 /***********************************************************************
4268 Lisp Interface
4269 ***********************************************************************/
4270
4271
4272 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4273 doc: /* Compute a hash code for OBJ and return it as integer. */)
4274 (Lisp_Object obj)
4275 {
4276 EMACS_UINT hash = sxhash (obj, 0);
4277 return make_number (hash);
4278 }
4279
4280
4281 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4282 doc: /* Create and return a new hash table.
4283
4284 Arguments are specified as keyword/argument pairs. The following
4285 arguments are defined:
4286
4287 :test TEST -- TEST must be a symbol that specifies how to compare
4288 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4289 `equal'. User-supplied test and hash functions can be specified via
4290 `define-hash-table-test'.
4291
4292 :size SIZE -- A hint as to how many elements will be put in the table.
4293 Default is 65.
4294
4295 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4296 fills up. If REHASH-SIZE is an integer, increase the size by that
4297 amount. If it is a float, it must be > 1.0, and the new size is the
4298 old size multiplied by that factor. Default is 1.5.
4299
4300 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4301 Resize the hash table when the ratio (number of entries / table size)
4302 is greater than or equal to THRESHOLD. Default is 0.8.
4303
4304 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4305 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4306 returned is a weak table. Key/value pairs are removed from a weak
4307 hash table when there are no non-weak references pointing to their
4308 key, value, one of key or value, or both key and value, depending on
4309 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4310 is nil.
4311
4312 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4313 (ptrdiff_t nargs, Lisp_Object *args)
4314 {
4315 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4316 Lisp_Object user_test, user_hash;
4317 char *used;
4318 ptrdiff_t i;
4319
4320 /* The vector `used' is used to keep track of arguments that
4321 have been consumed. */
4322 used = (char *) alloca (nargs * sizeof *used);
4323 memset (used, 0, nargs * sizeof *used);
4324
4325 /* See if there's a `:test TEST' among the arguments. */
4326 i = get_key_arg (QCtest, nargs, args, used);
4327 test = i ? args[i] : Qeql;
4328 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4329 {
4330 /* See if it is a user-defined test. */
4331 Lisp_Object prop;
4332
4333 prop = Fget (test, Qhash_table_test);
4334 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4335 signal_error ("Invalid hash table test", test);
4336 user_test = XCAR (prop);
4337 user_hash = XCAR (XCDR (prop));
4338 }
4339 else
4340 user_test = user_hash = Qnil;
4341
4342 /* See if there's a `:size SIZE' argument. */
4343 i = get_key_arg (QCsize, nargs, args, used);
4344 size = i ? args[i] : Qnil;
4345 if (NILP (size))
4346 size = make_number (DEFAULT_HASH_SIZE);
4347 else if (!INTEGERP (size) || XINT (size) < 0)
4348 signal_error ("Invalid hash table size", size);
4349
4350 /* Look for `:rehash-size SIZE'. */
4351 i = get_key_arg (QCrehash_size, nargs, args, used);
4352 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4353 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4354 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4355 signal_error ("Invalid hash table rehash size", rehash_size);
4356
4357 /* Look for `:rehash-threshold THRESHOLD'. */
4358 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4359 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4360 if (! (FLOATP (rehash_threshold)
4361 && 0 < XFLOAT_DATA (rehash_threshold)
4362 && XFLOAT_DATA (rehash_threshold) <= 1))
4363 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4364
4365 /* Look for `:weakness WEAK'. */
4366 i = get_key_arg (QCweakness, nargs, args, used);
4367 weak = i ? args[i] : Qnil;
4368 if (EQ (weak, Qt))
4369 weak = Qkey_and_value;
4370 if (!NILP (weak)
4371 && !EQ (weak, Qkey)
4372 && !EQ (weak, Qvalue)
4373 && !EQ (weak, Qkey_or_value)
4374 && !EQ (weak, Qkey_and_value))
4375 signal_error ("Invalid hash table weakness", weak);
4376
4377 /* Now, all args should have been used up, or there's a problem. */
4378 for (i = 0; i < nargs; ++i)
4379 if (!used[i])
4380 signal_error ("Invalid argument list", args[i]);
4381
4382 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4383 user_test, user_hash);
4384 }
4385
4386
4387 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4388 doc: /* Return a copy of hash table TABLE. */)
4389 (Lisp_Object table)
4390 {
4391 return copy_hash_table (check_hash_table (table));
4392 }
4393
4394
4395 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4396 doc: /* Return the number of elements in TABLE. */)
4397 (Lisp_Object table)
4398 {
4399 return make_number (check_hash_table (table)->count);
4400 }
4401
4402
4403 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4404 Shash_table_rehash_size, 1, 1, 0,
4405 doc: /* Return the current rehash size of TABLE. */)
4406 (Lisp_Object table)
4407 {
4408 return check_hash_table (table)->rehash_size;
4409 }
4410
4411
4412 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4413 Shash_table_rehash_threshold, 1, 1, 0,
4414 doc: /* Return the current rehash threshold of TABLE. */)
4415 (Lisp_Object table)
4416 {
4417 return check_hash_table (table)->rehash_threshold;
4418 }
4419
4420
4421 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4422 doc: /* Return the size of TABLE.
4423 The size can be used as an argument to `make-hash-table' to create
4424 a hash table than can hold as many elements as TABLE holds
4425 without need for resizing. */)
4426 (Lisp_Object table)
4427 {
4428 struct Lisp_Hash_Table *h = check_hash_table (table);
4429 return make_number (HASH_TABLE_SIZE (h));
4430 }
4431
4432
4433 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4434 doc: /* Return the test TABLE uses. */)
4435 (Lisp_Object table)
4436 {
4437 return check_hash_table (table)->test;
4438 }
4439
4440
4441 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4442 1, 1, 0,
4443 doc: /* Return the weakness of TABLE. */)
4444 (Lisp_Object table)
4445 {
4446 return check_hash_table (table)->weak;
4447 }
4448
4449
4450 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4451 doc: /* Return t if OBJ is a Lisp hash table object. */)
4452 (Lisp_Object obj)
4453 {
4454 return HASH_TABLE_P (obj) ? Qt : Qnil;
4455 }
4456
4457
4458 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4459 doc: /* Clear hash table TABLE and return it. */)
4460 (Lisp_Object table)
4461 {
4462 hash_clear (check_hash_table (table));
4463 /* Be compatible with XEmacs. */
4464 return table;
4465 }
4466
4467
4468 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4469 doc: /* Look up KEY in TABLE and return its associated value.
4470 If KEY is not found, return DFLT which defaults to nil. */)
4471 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4472 {
4473 struct Lisp_Hash_Table *h = check_hash_table (table);
4474 EMACS_INT i = hash_lookup (h, key, NULL);
4475 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4476 }
4477
4478
4479 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4480 doc: /* Associate KEY with VALUE in hash table TABLE.
4481 If KEY is already present in table, replace its current value with
4482 VALUE. In any case, return VALUE. */)
4483 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4484 {
4485 struct Lisp_Hash_Table *h = check_hash_table (table);
4486 EMACS_INT i;
4487 EMACS_UINT hash;
4488
4489 i = hash_lookup (h, key, &hash);
4490 if (i >= 0)
4491 HASH_VALUE (h, i) = value;
4492 else
4493 hash_put (h, key, value, hash);
4494
4495 return value;
4496 }
4497
4498
4499 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4500 doc: /* Remove KEY from TABLE. */)
4501 (Lisp_Object key, Lisp_Object table)
4502 {
4503 struct Lisp_Hash_Table *h = check_hash_table (table);
4504 hash_remove_from_table (h, key);
4505 return Qnil;
4506 }
4507
4508
4509 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4510 doc: /* Call FUNCTION for all entries in hash table TABLE.
4511 FUNCTION is called with two arguments, KEY and VALUE. */)
4512 (Lisp_Object function, Lisp_Object table)
4513 {
4514 struct Lisp_Hash_Table *h = check_hash_table (table);
4515 Lisp_Object args[3];
4516 EMACS_INT i;
4517
4518 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4519 if (!NILP (HASH_HASH (h, i)))
4520 {
4521 args[0] = function;
4522 args[1] = HASH_KEY (h, i);
4523 args[2] = HASH_VALUE (h, i);
4524 Ffuncall (3, args);
4525 }
4526
4527 return Qnil;
4528 }
4529
4530
4531 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4532 Sdefine_hash_table_test, 3, 3, 0,
4533 doc: /* Define a new hash table test with name NAME, a symbol.
4534
4535 In hash tables created with NAME specified as test, use TEST to
4536 compare keys, and HASH for computing hash codes of keys.
4537
4538 TEST must be a function taking two arguments and returning non-nil if
4539 both arguments are the same. HASH must be a function taking one
4540 argument and return an integer that is the hash code of the argument.
4541 Hash code computation should use the whole value range of integers,
4542 including negative integers. */)
4543 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4544 {
4545 return Fput (name, Qhash_table_test, list2 (test, hash));
4546 }
4547
4548
4549 \f
4550 /************************************************************************
4551 MD5 and SHA1
4552 ************************************************************************/
4553
4554 #include "md5.h"
4555 #include "sha1.h"
4556
4557 /* Convert a possibly-signed character to an unsigned character. This is
4558 a bit safer than casting to unsigned char, since it catches some type
4559 errors that the cast doesn't. */
4560 static inline unsigned char to_uchar (char ch) { return ch; }
4561
4562 /* TYPE: 0 for md5, 1 for sha1. */
4563
4564 static Lisp_Object
4565 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4566 {
4567 int i;
4568 EMACS_INT size;
4569 EMACS_INT size_byte = 0;
4570 EMACS_INT start_char = 0, end_char = 0;
4571 EMACS_INT start_byte = 0, end_byte = 0;
4572 register EMACS_INT b, e;
4573 register struct buffer *bp;
4574 EMACS_INT temp;
4575 Lisp_Object res=Qnil;
4576
4577 if (STRINGP (object))
4578 {
4579 if (NILP (coding_system))
4580 {
4581 /* Decide the coding-system to encode the data with. */
4582
4583 if (STRING_MULTIBYTE (object))
4584 /* use default, we can't guess correct value */
4585 coding_system = preferred_coding_system ();
4586 else
4587 coding_system = Qraw_text;
4588 }
4589
4590 if (NILP (Fcoding_system_p (coding_system)))
4591 {
4592 /* Invalid coding system. */
4593
4594 if (!NILP (noerror))
4595 coding_system = Qraw_text;
4596 else
4597 xsignal1 (Qcoding_system_error, coding_system);
4598 }
4599
4600 if (STRING_MULTIBYTE (object))
4601 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4602
4603 size = SCHARS (object);
4604 size_byte = SBYTES (object);
4605
4606 if (!NILP (start))
4607 {
4608 CHECK_NUMBER (start);
4609
4610 start_char = XINT (start);
4611
4612 if (start_char < 0)
4613 start_char += size;
4614
4615 start_byte = string_char_to_byte (object, start_char);
4616 }
4617
4618 if (NILP (end))
4619 {
4620 end_char = size;
4621 end_byte = size_byte;
4622 }
4623 else
4624 {
4625 CHECK_NUMBER (end);
4626
4627 end_char = XINT (end);
4628
4629 if (end_char < 0)
4630 end_char += size;
4631
4632 end_byte = string_char_to_byte (object, end_char);
4633 }
4634
4635 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4636 args_out_of_range_3 (object, make_number (start_char),
4637 make_number (end_char));
4638 }
4639 else
4640 {
4641 struct buffer *prev = current_buffer;
4642
4643 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4644
4645 CHECK_BUFFER (object);
4646
4647 bp = XBUFFER (object);
4648 if (bp != current_buffer)
4649 set_buffer_internal (bp);
4650
4651 if (NILP (start))
4652 b = BEGV;
4653 else
4654 {
4655 CHECK_NUMBER_COERCE_MARKER (start);
4656 b = XINT (start);
4657 }
4658
4659 if (NILP (end))
4660 e = ZV;
4661 else
4662 {
4663 CHECK_NUMBER_COERCE_MARKER (end);
4664 e = XINT (end);
4665 }
4666
4667 if (b > e)
4668 temp = b, b = e, e = temp;
4669
4670 if (!(BEGV <= b && e <= ZV))
4671 args_out_of_range (start, end);
4672
4673 if (NILP (coding_system))
4674 {
4675 /* Decide the coding-system to encode the data with.
4676 See fileio.c:Fwrite-region */
4677
4678 if (!NILP (Vcoding_system_for_write))
4679 coding_system = Vcoding_system_for_write;
4680 else
4681 {
4682 int force_raw_text = 0;
4683
4684 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4685 if (NILP (coding_system)
4686 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4687 {
4688 coding_system = Qnil;
4689 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4690 force_raw_text = 1;
4691 }
4692
4693 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4694 {
4695 /* Check file-coding-system-alist. */
4696 Lisp_Object args[4], val;
4697
4698 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4699 args[3] = Fbuffer_file_name(object);
4700 val = Ffind_operation_coding_system (4, args);
4701 if (CONSP (val) && !NILP (XCDR (val)))
4702 coding_system = XCDR (val);
4703 }
4704
4705 if (NILP (coding_system)
4706 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4707 {
4708 /* If we still have not decided a coding system, use the
4709 default value of buffer-file-coding-system. */
4710 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4711 }
4712
4713 if (!force_raw_text
4714 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4715 /* Confirm that VAL can surely encode the current region. */
4716 coding_system = call4 (Vselect_safe_coding_system_function,
4717 make_number (b), make_number (e),
4718 coding_system, Qnil);
4719
4720 if (force_raw_text)
4721 coding_system = Qraw_text;
4722 }
4723
4724 if (NILP (Fcoding_system_p (coding_system)))
4725 {
4726 /* Invalid coding system. */
4727
4728 if (!NILP (noerror))
4729 coding_system = Qraw_text;
4730 else
4731 xsignal1 (Qcoding_system_error, coding_system);
4732 }
4733 }
4734
4735 object = make_buffer_string (b, e, 0);
4736 if (prev != current_buffer)
4737 set_buffer_internal (prev);
4738 /* Discard the unwind protect for recovering the current
4739 buffer. */
4740 specpdl_ptr--;
4741
4742 if (STRING_MULTIBYTE (object))
4743 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4744 }
4745
4746 switch (type)
4747 {
4748 case 0: /* MD5 */
4749 {
4750 char digest[16];
4751 md5_buffer (SSDATA (object) + start_byte,
4752 SBYTES (object) - (size_byte - end_byte),
4753 digest);
4754
4755 if (NILP (binary))
4756 {
4757 char value[33];
4758 for (i = 0; i < 16; i++)
4759 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4760 res = make_string (value, 32);
4761 }
4762 else
4763 res = make_string (digest, 16);
4764 break;
4765 }
4766
4767 case 1: /* SHA1 */
4768 {
4769 char digest[20];
4770 sha1_buffer (SSDATA (object) + start_byte,
4771 SBYTES (object) - (size_byte - end_byte),
4772 digest);
4773 if (NILP (binary))
4774 {
4775 char value[41];
4776 for (i = 0; i < 20; i++)
4777 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4778 res = make_string (value, 40);
4779 }
4780 else
4781 res = make_string (digest, 20);
4782 break;
4783 }
4784 }
4785
4786 return res;
4787 }
4788
4789 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4790 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4791
4792 A message digest is a cryptographic checksum of a document, and the
4793 algorithm to calculate it is defined in RFC 1321.
4794
4795 The two optional arguments START and END are character positions
4796 specifying for which part of OBJECT the message digest should be
4797 computed. If nil or omitted, the digest is computed for the whole
4798 OBJECT.
4799
4800 The MD5 message digest is computed from the result of encoding the
4801 text in a coding system, not directly from the internal Emacs form of
4802 the text. The optional fourth argument CODING-SYSTEM specifies which
4803 coding system to encode the text with. It should be the same coding
4804 system that you used or will use when actually writing the text into a
4805 file.
4806
4807 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4808 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4809 system would be chosen by default for writing this text into a file.
4810
4811 If OBJECT is a string, the most preferred coding system (see the
4812 command `prefer-coding-system') is used.
4813
4814 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4815 guesswork fails. Normally, an error is signaled in such case. */)
4816 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4817 {
4818 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4819 }
4820
4821 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4822 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4823
4824 OBJECT is either a string or a buffer. Optional arguments START and
4825 END are character positions specifying which portion of OBJECT for
4826 computing the hash. If BINARY is non-nil, return a string in binary
4827 form. */)
4828 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4829 {
4830 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4831 }
4832
4833 \f
4834 void
4835 syms_of_fns (void)
4836 {
4837 /* Hash table stuff. */
4838 Qhash_table_p = intern_c_string ("hash-table-p");
4839 staticpro (&Qhash_table_p);
4840 Qeq = intern_c_string ("eq");
4841 staticpro (&Qeq);
4842 Qeql = intern_c_string ("eql");
4843 staticpro (&Qeql);
4844 Qequal = intern_c_string ("equal");
4845 staticpro (&Qequal);
4846 QCtest = intern_c_string (":test");
4847 staticpro (&QCtest);
4848 QCsize = intern_c_string (":size");
4849 staticpro (&QCsize);
4850 QCrehash_size = intern_c_string (":rehash-size");
4851 staticpro (&QCrehash_size);
4852 QCrehash_threshold = intern_c_string (":rehash-threshold");
4853 staticpro (&QCrehash_threshold);
4854 QCweakness = intern_c_string (":weakness");
4855 staticpro (&QCweakness);
4856 Qkey = intern_c_string ("key");
4857 staticpro (&Qkey);
4858 Qvalue = intern_c_string ("value");
4859 staticpro (&Qvalue);
4860 Qhash_table_test = intern_c_string ("hash-table-test");
4861 staticpro (&Qhash_table_test);
4862 Qkey_or_value = intern_c_string ("key-or-value");
4863 staticpro (&Qkey_or_value);
4864 Qkey_and_value = intern_c_string ("key-and-value");
4865 staticpro (&Qkey_and_value);
4866
4867 defsubr (&Ssxhash);
4868 defsubr (&Smake_hash_table);
4869 defsubr (&Scopy_hash_table);
4870 defsubr (&Shash_table_count);
4871 defsubr (&Shash_table_rehash_size);
4872 defsubr (&Shash_table_rehash_threshold);
4873 defsubr (&Shash_table_size);
4874 defsubr (&Shash_table_test);
4875 defsubr (&Shash_table_weakness);
4876 defsubr (&Shash_table_p);
4877 defsubr (&Sclrhash);
4878 defsubr (&Sgethash);
4879 defsubr (&Sputhash);
4880 defsubr (&Sremhash);
4881 defsubr (&Smaphash);
4882 defsubr (&Sdefine_hash_table_test);
4883
4884 Qstring_lessp = intern_c_string ("string-lessp");
4885 staticpro (&Qstring_lessp);
4886 Qprovide = intern_c_string ("provide");
4887 staticpro (&Qprovide);
4888 Qrequire = intern_c_string ("require");
4889 staticpro (&Qrequire);
4890 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4891 staticpro (&Qyes_or_no_p_history);
4892 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4893 staticpro (&Qcursor_in_echo_area);
4894 Qwidget_type = intern_c_string ("widget-type");
4895 staticpro (&Qwidget_type);
4896
4897 staticpro (&string_char_byte_cache_string);
4898 string_char_byte_cache_string = Qnil;
4899
4900 require_nesting_list = Qnil;
4901 staticpro (&require_nesting_list);
4902
4903 Fset (Qyes_or_no_p_history, Qnil);
4904
4905 DEFVAR_LISP ("features", Vfeatures,
4906 doc: /* A list of symbols which are the features of the executing Emacs.
4907 Used by `featurep' and `require', and altered by `provide'. */);
4908 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4909 Qsubfeatures = intern_c_string ("subfeatures");
4910 staticpro (&Qsubfeatures);
4911
4912 #ifdef HAVE_LANGINFO_CODESET
4913 Qcodeset = intern_c_string ("codeset");
4914 staticpro (&Qcodeset);
4915 Qdays = intern_c_string ("days");
4916 staticpro (&Qdays);
4917 Qmonths = intern_c_string ("months");
4918 staticpro (&Qmonths);
4919 Qpaper = intern_c_string ("paper");
4920 staticpro (&Qpaper);
4921 #endif /* HAVE_LANGINFO_CODESET */
4922
4923 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4924 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4925 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4926 invoked by mouse clicks and mouse menu items.
4927
4928 On some platforms, file selection dialogs are also enabled if this is
4929 non-nil. */);
4930 use_dialog_box = 1;
4931
4932 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4933 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4934 This applies to commands from menus and tool bar buttons even when
4935 they are initiated from the keyboard. If `use-dialog-box' is nil,
4936 that disables the use of a file dialog, regardless of the value of
4937 this variable. */);
4938 use_file_dialog = 1;
4939
4940 defsubr (&Sidentity);
4941 defsubr (&Srandom);
4942 defsubr (&Slength);
4943 defsubr (&Ssafe_length);
4944 defsubr (&Sstring_bytes);
4945 defsubr (&Sstring_equal);
4946 defsubr (&Scompare_strings);
4947 defsubr (&Sstring_lessp);
4948 defsubr (&Sappend);
4949 defsubr (&Sconcat);
4950 defsubr (&Svconcat);
4951 defsubr (&Scopy_sequence);
4952 defsubr (&Sstring_make_multibyte);
4953 defsubr (&Sstring_make_unibyte);
4954 defsubr (&Sstring_as_multibyte);
4955 defsubr (&Sstring_as_unibyte);
4956 defsubr (&Sstring_to_multibyte);
4957 defsubr (&Sstring_to_unibyte);
4958 defsubr (&Scopy_alist);
4959 defsubr (&Ssubstring);
4960 defsubr (&Ssubstring_no_properties);
4961 defsubr (&Snthcdr);
4962 defsubr (&Snth);
4963 defsubr (&Selt);
4964 defsubr (&Smember);
4965 defsubr (&Smemq);
4966 defsubr (&Smemql);
4967 defsubr (&Sassq);
4968 defsubr (&Sassoc);
4969 defsubr (&Srassq);
4970 defsubr (&Srassoc);
4971 defsubr (&Sdelq);
4972 defsubr (&Sdelete);
4973 defsubr (&Snreverse);
4974 defsubr (&Sreverse);
4975 defsubr (&Ssort);
4976 defsubr (&Splist_get);
4977 defsubr (&Sget);
4978 defsubr (&Splist_put);
4979 defsubr (&Sput);
4980 defsubr (&Slax_plist_get);
4981 defsubr (&Slax_plist_put);
4982 defsubr (&Seql);
4983 defsubr (&Sequal);
4984 defsubr (&Sequal_including_properties);
4985 defsubr (&Sfillarray);
4986 defsubr (&Sclear_string);
4987 defsubr (&Snconc);
4988 defsubr (&Smapcar);
4989 defsubr (&Smapc);
4990 defsubr (&Smapconcat);
4991 defsubr (&Syes_or_no_p);
4992 defsubr (&Sload_average);
4993 defsubr (&Sfeaturep);
4994 defsubr (&Srequire);
4995 defsubr (&Sprovide);
4996 defsubr (&Splist_member);
4997 defsubr (&Swidget_put);
4998 defsubr (&Swidget_get);
4999 defsubr (&Swidget_apply);
5000 defsubr (&Sbase64_encode_region);
5001 defsubr (&Sbase64_decode_region);
5002 defsubr (&Sbase64_encode_string);
5003 defsubr (&Sbase64_decode_string);
5004 defsubr (&Smd5);
5005 defsubr (&Ssha1);
5006 defsubr (&Slocale_info);
5007 }
5008
5009
5010 void
5011 init_fns (void)
5012 {
5013 }