Fixes: debbugs:17865
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206
207 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
208 avoiding any address sanitization. */
209
210 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
211 no_sanitize_memcpy (void *dest, void const *src, size_t size)
212 {
213 if (! ADDRESS_SANITIZER)
214 return memcpy (dest, src, size);
215 else
216 {
217 size_t i;
218 char *d = dest;
219 char const *s = src;
220 for (i = 0; i < size; i++)
221 d[i] = s[i];
222 return dest;
223 }
224 }
225
226 #endif /* MAX_SAVE_STACK > 0 */
227
228 static Lisp_Object Qconses;
229 static Lisp_Object Qsymbols;
230 static Lisp_Object Qmiscs;
231 static Lisp_Object Qstrings;
232 static Lisp_Object Qvectors;
233 static Lisp_Object Qfloats;
234 static Lisp_Object Qintervals;
235 static Lisp_Object Qbuffers;
236 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
237 static Lisp_Object Qgc_cons_threshold;
238 Lisp_Object Qautomatic_gc;
239 Lisp_Object Qchar_table_extra_slots;
240
241 /* Hook run after GC has finished. */
242
243 static Lisp_Object Qpost_gc_hook;
244
245 static void mark_terminals (void);
246 static void gc_sweep (void);
247 static Lisp_Object make_pure_vector (ptrdiff_t);
248 static void mark_buffer (struct buffer *);
249
250 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
251 static void refill_memory_reserve (void);
252 #endif
253 static void compact_small_strings (void);
254 static void free_large_strings (void);
255 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
256
257 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
258 what memory allocated via lisp_malloc and lisp_align_malloc is intended
259 for what purpose. This enumeration specifies the type of memory. */
260
261 enum mem_type
262 {
263 MEM_TYPE_NON_LISP,
264 MEM_TYPE_BUFFER,
265 MEM_TYPE_CONS,
266 MEM_TYPE_STRING,
267 MEM_TYPE_MISC,
268 MEM_TYPE_SYMBOL,
269 MEM_TYPE_FLOAT,
270 /* Since all non-bool pseudovectors are small enough to be
271 allocated from vector blocks, this memory type denotes
272 large regular vectors and large bool pseudovectors. */
273 MEM_TYPE_VECTORLIKE,
274 /* Special type to denote vector blocks. */
275 MEM_TYPE_VECTOR_BLOCK,
276 /* Special type to denote reserved memory. */
277 MEM_TYPE_SPARE
278 };
279
280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
281
282 /* A unique object in pure space used to make some Lisp objects
283 on free lists recognizable in O(1). */
284
285 static Lisp_Object Vdead;
286 #define DEADP(x) EQ (x, Vdead)
287
288 #ifdef GC_MALLOC_CHECK
289
290 enum mem_type allocated_mem_type;
291
292 #endif /* GC_MALLOC_CHECK */
293
294 /* A node in the red-black tree describing allocated memory containing
295 Lisp data. Each such block is recorded with its start and end
296 address when it is allocated, and removed from the tree when it
297 is freed.
298
299 A red-black tree is a balanced binary tree with the following
300 properties:
301
302 1. Every node is either red or black.
303 2. Every leaf is black.
304 3. If a node is red, then both of its children are black.
305 4. Every simple path from a node to a descendant leaf contains
306 the same number of black nodes.
307 5. The root is always black.
308
309 When nodes are inserted into the tree, or deleted from the tree,
310 the tree is "fixed" so that these properties are always true.
311
312 A red-black tree with N internal nodes has height at most 2
313 log(N+1). Searches, insertions and deletions are done in O(log N).
314 Please see a text book about data structures for a detailed
315 description of red-black trees. Any book worth its salt should
316 describe them. */
317
318 struct mem_node
319 {
320 /* Children of this node. These pointers are never NULL. When there
321 is no child, the value is MEM_NIL, which points to a dummy node. */
322 struct mem_node *left, *right;
323
324 /* The parent of this node. In the root node, this is NULL. */
325 struct mem_node *parent;
326
327 /* Start and end of allocated region. */
328 void *start, *end;
329
330 /* Node color. */
331 enum {MEM_BLACK, MEM_RED} color;
332
333 /* Memory type. */
334 enum mem_type type;
335 };
336
337 /* Base address of stack. Set in main. */
338
339 Lisp_Object *stack_base;
340
341 /* Root of the tree describing allocated Lisp memory. */
342
343 static struct mem_node *mem_root;
344
345 /* Lowest and highest known address in the heap. */
346
347 static void *min_heap_address, *max_heap_address;
348
349 /* Sentinel node of the tree. */
350
351 static struct mem_node mem_z;
352 #define MEM_NIL &mem_z
353
354 static struct mem_node *mem_insert (void *, void *, enum mem_type);
355 static void mem_insert_fixup (struct mem_node *);
356 static void mem_rotate_left (struct mem_node *);
357 static void mem_rotate_right (struct mem_node *);
358 static void mem_delete (struct mem_node *);
359 static void mem_delete_fixup (struct mem_node *);
360 static struct mem_node *mem_find (void *);
361
362 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
363
364 #ifndef DEADP
365 # define DEADP(x) 0
366 #endif
367
368 /* Recording what needs to be marked for gc. */
369
370 struct gcpro *gcprolist;
371
372 /* Addresses of staticpro'd variables. Initialize it to a nonzero
373 value; otherwise some compilers put it into BSS. */
374
375 enum { NSTATICS = 2048 };
376 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
377
378 /* Index of next unused slot in staticvec. */
379
380 static int staticidx;
381
382 static void *pure_alloc (size_t, int);
383
384 /* Return X rounded to the next multiple of Y. Arguments should not
385 have side effects, as they are evaluated more than once. Assume X
386 + Y - 1 does not overflow. Tune for Y being a power of 2. */
387
388 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
389 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
390 : ((x) + (y) - 1) & ~ ((y) - 1))
391
392 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
393
394 static void *
395 ALIGN (void *ptr, int alignment)
396 {
397 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
398 }
399
400 static void
401 XFLOAT_INIT (Lisp_Object f, double n)
402 {
403 XFLOAT (f)->u.data = n;
404 }
405
406 \f
407 /************************************************************************
408 Malloc
409 ************************************************************************/
410
411 /* Function malloc calls this if it finds we are near exhausting storage. */
412
413 void
414 malloc_warning (const char *str)
415 {
416 pending_malloc_warning = str;
417 }
418
419
420 /* Display an already-pending malloc warning. */
421
422 void
423 display_malloc_warning (void)
424 {
425 call3 (intern ("display-warning"),
426 intern ("alloc"),
427 build_string (pending_malloc_warning),
428 intern ("emergency"));
429 pending_malloc_warning = 0;
430 }
431 \f
432 /* Called if we can't allocate relocatable space for a buffer. */
433
434 void
435 buffer_memory_full (ptrdiff_t nbytes)
436 {
437 /* If buffers use the relocating allocator, no need to free
438 spare_memory, because we may have plenty of malloc space left
439 that we could get, and if we don't, the malloc that fails will
440 itself cause spare_memory to be freed. If buffers don't use the
441 relocating allocator, treat this like any other failing
442 malloc. */
443
444 #ifndef REL_ALLOC
445 memory_full (nbytes);
446 #else
447 /* This used to call error, but if we've run out of memory, we could
448 get infinite recursion trying to build the string. */
449 xsignal (Qnil, Vmemory_signal_data);
450 #endif
451 }
452
453 /* A common multiple of the positive integers A and B. Ideally this
454 would be the least common multiple, but there's no way to do that
455 as a constant expression in C, so do the best that we can easily do. */
456 #define COMMON_MULTIPLE(a, b) \
457 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
458
459 #ifndef XMALLOC_OVERRUN_CHECK
460 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
461 #else
462
463 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
464 around each block.
465
466 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
467 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
468 block size in little-endian order. The trailer consists of
469 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
470
471 The header is used to detect whether this block has been allocated
472 through these functions, as some low-level libc functions may
473 bypass the malloc hooks. */
474
475 #define XMALLOC_OVERRUN_CHECK_SIZE 16
476 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
477 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
478
479 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
480 hold a size_t value and (2) the header size is a multiple of the
481 alignment that Emacs needs for C types and for USE_LSB_TAG. */
482 #define XMALLOC_BASE_ALIGNMENT \
483 alignof (union { long double d; intmax_t i; void *p; })
484
485 #if USE_LSB_TAG
486 # define XMALLOC_HEADER_ALIGNMENT \
487 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
488 #else
489 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
490 #endif
491 #define XMALLOC_OVERRUN_SIZE_SIZE \
492 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
493 + XMALLOC_HEADER_ALIGNMENT - 1) \
494 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
495 - XMALLOC_OVERRUN_CHECK_SIZE)
496
497 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
498 { '\x9a', '\x9b', '\xae', '\xaf',
499 '\xbf', '\xbe', '\xce', '\xcf',
500 '\xea', '\xeb', '\xec', '\xed',
501 '\xdf', '\xde', '\x9c', '\x9d' };
502
503 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
504 { '\xaa', '\xab', '\xac', '\xad',
505 '\xba', '\xbb', '\xbc', '\xbd',
506 '\xca', '\xcb', '\xcc', '\xcd',
507 '\xda', '\xdb', '\xdc', '\xdd' };
508
509 /* Insert and extract the block size in the header. */
510
511 static void
512 xmalloc_put_size (unsigned char *ptr, size_t size)
513 {
514 int i;
515 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
516 {
517 *--ptr = size & ((1 << CHAR_BIT) - 1);
518 size >>= CHAR_BIT;
519 }
520 }
521
522 static size_t
523 xmalloc_get_size (unsigned char *ptr)
524 {
525 size_t size = 0;
526 int i;
527 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
528 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
529 {
530 size <<= CHAR_BIT;
531 size += *ptr++;
532 }
533 return size;
534 }
535
536
537 /* Like malloc, but wraps allocated block with header and trailer. */
538
539 static void *
540 overrun_check_malloc (size_t size)
541 {
542 register unsigned char *val;
543 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
544 emacs_abort ();
545
546 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
547 if (val)
548 {
549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
551 xmalloc_put_size (val, size);
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
554 }
555 return val;
556 }
557
558
559 /* Like realloc, but checks old block for overrun, and wraps new block
560 with header and trailer. */
561
562 static void *
563 overrun_check_realloc (void *block, size_t size)
564 {
565 register unsigned char *val = (unsigned char *) block;
566 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
567 emacs_abort ();
568
569 if (val
570 && memcmp (xmalloc_overrun_check_header,
571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
573 {
574 size_t osize = xmalloc_get_size (val);
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
577 emacs_abort ();
578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
581 }
582
583 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584
585 if (val)
586 {
587 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
588 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
589 xmalloc_put_size (val, size);
590 memcpy (val + size, xmalloc_overrun_check_trailer,
591 XMALLOC_OVERRUN_CHECK_SIZE);
592 }
593 return val;
594 }
595
596 /* Like free, but checks block for overrun. */
597
598 static void
599 overrun_check_free (void *block)
600 {
601 unsigned char *val = (unsigned char *) block;
602
603 if (val
604 && memcmp (xmalloc_overrun_check_header,
605 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
606 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
607 {
608 size_t osize = xmalloc_get_size (val);
609 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
610 XMALLOC_OVERRUN_CHECK_SIZE))
611 emacs_abort ();
612 #ifdef XMALLOC_CLEAR_FREE_MEMORY
613 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
614 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
615 #else
616 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
617 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
618 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
619 #endif
620 }
621
622 free (val);
623 }
624
625 #undef malloc
626 #undef realloc
627 #undef free
628 #define malloc overrun_check_malloc
629 #define realloc overrun_check_realloc
630 #define free overrun_check_free
631 #endif
632
633 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
634 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
635 If that variable is set, block input while in one of Emacs's memory
636 allocation functions. There should be no need for this debugging
637 option, since signal handlers do not allocate memory, but Emacs
638 formerly allocated memory in signal handlers and this compile-time
639 option remains as a way to help debug the issue should it rear its
640 ugly head again. */
641 #ifdef XMALLOC_BLOCK_INPUT_CHECK
642 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
643 static void
644 malloc_block_input (void)
645 {
646 if (block_input_in_memory_allocators)
647 block_input ();
648 }
649 static void
650 malloc_unblock_input (void)
651 {
652 if (block_input_in_memory_allocators)
653 unblock_input ();
654 }
655 # define MALLOC_BLOCK_INPUT malloc_block_input ()
656 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
657 #else
658 # define MALLOC_BLOCK_INPUT ((void) 0)
659 # define MALLOC_UNBLOCK_INPUT ((void) 0)
660 #endif
661
662 #define MALLOC_PROBE(size) \
663 do { \
664 if (profiler_memory_running) \
665 malloc_probe (size); \
666 } while (0)
667
668
669 /* Like malloc but check for no memory and block interrupt input.. */
670
671 void *
672 xmalloc (size_t size)
673 {
674 void *val;
675
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
679
680 if (!val && size)
681 memory_full (size);
682 MALLOC_PROBE (size);
683 return val;
684 }
685
686 /* Like the above, but zeroes out the memory just allocated. */
687
688 void *
689 xzalloc (size_t size)
690 {
691 void *val;
692
693 MALLOC_BLOCK_INPUT;
694 val = malloc (size);
695 MALLOC_UNBLOCK_INPUT;
696
697 if (!val && size)
698 memory_full (size);
699 memset (val, 0, size);
700 MALLOC_PROBE (size);
701 return val;
702 }
703
704 /* Like realloc but check for no memory and block interrupt input.. */
705
706 void *
707 xrealloc (void *block, size_t size)
708 {
709 void *val;
710
711 MALLOC_BLOCK_INPUT;
712 /* We must call malloc explicitly when BLOCK is 0, since some
713 reallocs don't do this. */
714 if (! block)
715 val = malloc (size);
716 else
717 val = realloc (block, size);
718 MALLOC_UNBLOCK_INPUT;
719
720 if (!val && size)
721 memory_full (size);
722 MALLOC_PROBE (size);
723 return val;
724 }
725
726
727 /* Like free but block interrupt input. */
728
729 void
730 xfree (void *block)
731 {
732 if (!block)
733 return;
734 MALLOC_BLOCK_INPUT;
735 free (block);
736 MALLOC_UNBLOCK_INPUT;
737 /* We don't call refill_memory_reserve here
738 because in practice the call in r_alloc_free seems to suffice. */
739 }
740
741
742 /* Other parts of Emacs pass large int values to allocator functions
743 expecting ptrdiff_t. This is portable in practice, but check it to
744 be safe. */
745 verify (INT_MAX <= PTRDIFF_MAX);
746
747
748 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
749 Signal an error on memory exhaustion, and block interrupt input. */
750
751 void *
752 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
753 {
754 eassert (0 <= nitems && 0 < item_size);
755 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
756 memory_full (SIZE_MAX);
757 return xmalloc (nitems * item_size);
758 }
759
760
761 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
762 Signal an error on memory exhaustion, and block interrupt input. */
763
764 void *
765 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
766 {
767 eassert (0 <= nitems && 0 < item_size);
768 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
769 memory_full (SIZE_MAX);
770 return xrealloc (pa, nitems * item_size);
771 }
772
773
774 /* Grow PA, which points to an array of *NITEMS items, and return the
775 location of the reallocated array, updating *NITEMS to reflect its
776 new size. The new array will contain at least NITEMS_INCR_MIN more
777 items, but will not contain more than NITEMS_MAX items total.
778 ITEM_SIZE is the size of each item, in bytes.
779
780 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
781 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
782 infinity.
783
784 If PA is null, then allocate a new array instead of reallocating
785 the old one.
786
787 Block interrupt input as needed. If memory exhaustion occurs, set
788 *NITEMS to zero if PA is null, and signal an error (i.e., do not
789 return).
790
791 Thus, to grow an array A without saving its old contents, do
792 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
793 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
794 and signals an error, and later this code is reexecuted and
795 attempts to free A. */
796
797 void *
798 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
799 ptrdiff_t nitems_max, ptrdiff_t item_size)
800 {
801 /* The approximate size to use for initial small allocation
802 requests. This is the largest "small" request for the GNU C
803 library malloc. */
804 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
805
806 /* If the array is tiny, grow it to about (but no greater than)
807 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
808 ptrdiff_t n = *nitems;
809 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
810 ptrdiff_t half_again = n >> 1;
811 ptrdiff_t incr_estimate = max (tiny_max, half_again);
812
813 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
814 NITEMS_MAX, and what the C language can represent safely. */
815 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
816 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
817 ? nitems_max : C_language_max);
818 ptrdiff_t nitems_incr_max = n_max - n;
819 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
820
821 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
822 if (! pa)
823 *nitems = 0;
824 if (nitems_incr_max < incr)
825 memory_full (SIZE_MAX);
826 n += incr;
827 pa = xrealloc (pa, n * item_size);
828 *nitems = n;
829 return pa;
830 }
831
832
833 /* Like strdup, but uses xmalloc. */
834
835 char *
836 xstrdup (const char *s)
837 {
838 ptrdiff_t size;
839 eassert (s);
840 size = strlen (s) + 1;
841 return memcpy (xmalloc (size), s, size);
842 }
843
844 /* Like above, but duplicates Lisp string to C string. */
845
846 char *
847 xlispstrdup (Lisp_Object string)
848 {
849 ptrdiff_t size = SBYTES (string) + 1;
850 return memcpy (xmalloc (size), SSDATA (string), size);
851 }
852
853 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
854 pointed to. If STRING is null, assign it without copying anything.
855 Allocate before freeing, to avoid a dangling pointer if allocation
856 fails. */
857
858 void
859 dupstring (char **ptr, char const *string)
860 {
861 char *old = *ptr;
862 *ptr = string ? xstrdup (string) : 0;
863 xfree (old);
864 }
865
866
867 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
868 argument is a const pointer. */
869
870 void
871 xputenv (char const *string)
872 {
873 if (putenv ((char *) string) != 0)
874 memory_full (0);
875 }
876
877 /* Return a newly allocated memory block of SIZE bytes, remembering
878 to free it when unwinding. */
879 void *
880 record_xmalloc (size_t size)
881 {
882 void *p = xmalloc (size);
883 record_unwind_protect_ptr (xfree, p);
884 return p;
885 }
886
887
888 /* Like malloc but used for allocating Lisp data. NBYTES is the
889 number of bytes to allocate, TYPE describes the intended use of the
890 allocated memory block (for strings, for conses, ...). */
891
892 #if ! USE_LSB_TAG
893 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
894 #endif
895
896 static void *
897 lisp_malloc (size_t nbytes, enum mem_type type)
898 {
899 register void *val;
900
901 MALLOC_BLOCK_INPUT;
902
903 #ifdef GC_MALLOC_CHECK
904 allocated_mem_type = type;
905 #endif
906
907 val = malloc (nbytes);
908
909 #if ! USE_LSB_TAG
910 /* If the memory just allocated cannot be addressed thru a Lisp
911 object's pointer, and it needs to be,
912 that's equivalent to running out of memory. */
913 if (val && type != MEM_TYPE_NON_LISP)
914 {
915 Lisp_Object tem;
916 XSETCONS (tem, (char *) val + nbytes - 1);
917 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
918 {
919 lisp_malloc_loser = val;
920 free (val);
921 val = 0;
922 }
923 }
924 #endif
925
926 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
927 if (val && type != MEM_TYPE_NON_LISP)
928 mem_insert (val, (char *) val + nbytes, type);
929 #endif
930
931 MALLOC_UNBLOCK_INPUT;
932 if (!val && nbytes)
933 memory_full (nbytes);
934 MALLOC_PROBE (nbytes);
935 return val;
936 }
937
938 /* Free BLOCK. This must be called to free memory allocated with a
939 call to lisp_malloc. */
940
941 static void
942 lisp_free (void *block)
943 {
944 MALLOC_BLOCK_INPUT;
945 free (block);
946 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
947 mem_delete (mem_find (block));
948 #endif
949 MALLOC_UNBLOCK_INPUT;
950 }
951
952 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
953
954 /* The entry point is lisp_align_malloc which returns blocks of at most
955 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
956
957 /* Use aligned_alloc if it or a simple substitute is available.
958 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
959 clang 3.3 anyway. */
960
961 #if ! ADDRESS_SANITIZER
962 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
963 # define USE_ALIGNED_ALLOC 1
964 /* Defined in gmalloc.c. */
965 void *aligned_alloc (size_t, size_t);
966 # elif defined HAVE_ALIGNED_ALLOC
967 # define USE_ALIGNED_ALLOC 1
968 # elif defined HAVE_POSIX_MEMALIGN
969 # define USE_ALIGNED_ALLOC 1
970 static void *
971 aligned_alloc (size_t alignment, size_t size)
972 {
973 void *p;
974 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
975 }
976 # endif
977 #endif
978
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
981
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 aligned_alloc on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
995
996 /* Internal data structures and constants. */
997
998 #define ABLOCKS_SIZE 16
999
1000 /* An aligned block of memory. */
1001 struct ablock
1002 {
1003 union
1004 {
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1023 };
1024
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1027 {
1028 struct ablock blocks[ABLOCKS_SIZE];
1029 };
1030
1031 /* Size of the block requested from malloc or aligned_alloc. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1033
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1038
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1041
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_ALIGNED_ALLOC
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1048 #endif
1049
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1052
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1058 {
1059 void *base, *val;
1060 struct ablocks *abase;
1061
1062 eassert (nbytes <= BLOCK_BYTES);
1063
1064 MALLOC_BLOCK_INPUT;
1065
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1069
1070 if (!free_ablock)
1071 {
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1074
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1081
1082 #ifdef USE_ALIGNED_ALLOC
1083 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1084 #else
1085 base = malloc (ABLOCKS_BYTES);
1086 abase = ALIGN (base, BLOCK_ALIGN);
1087 #endif
1088
1089 if (base == 0)
1090 {
1091 MALLOC_UNBLOCK_INPUT;
1092 memory_full (ABLOCKS_BYTES);
1093 }
1094
1095 aligned = (base == abase);
1096 if (!aligned)
1097 ((void **) abase)[-1] = base;
1098
1099 #ifdef DOUG_LEA_MALLOC
1100 /* Back to a reasonable maximum of mmap'ed areas. */
1101 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1102 #endif
1103
1104 #if ! USE_LSB_TAG
1105 /* If the memory just allocated cannot be addressed thru a Lisp
1106 object's pointer, and it needs to be, that's equivalent to
1107 running out of memory. */
1108 if (type != MEM_TYPE_NON_LISP)
1109 {
1110 Lisp_Object tem;
1111 char *end = (char *) base + ABLOCKS_BYTES - 1;
1112 XSETCONS (tem, end);
1113 if ((char *) XCONS (tem) != end)
1114 {
1115 lisp_malloc_loser = base;
1116 free (base);
1117 MALLOC_UNBLOCK_INPUT;
1118 memory_full (SIZE_MAX);
1119 }
1120 }
1121 #endif
1122
1123 /* Initialize the blocks and put them on the free list.
1124 If `base' was not properly aligned, we can't use the last block. */
1125 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1126 {
1127 abase->blocks[i].abase = abase;
1128 abase->blocks[i].x.next_free = free_ablock;
1129 free_ablock = &abase->blocks[i];
1130 }
1131 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1132
1133 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1134 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1135 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1136 eassert (ABLOCKS_BASE (abase) == base);
1137 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1138 }
1139
1140 abase = ABLOCK_ABASE (free_ablock);
1141 ABLOCKS_BUSY (abase)
1142 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1143 val = free_ablock;
1144 free_ablock = free_ablock->x.next_free;
1145
1146 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1147 if (type != MEM_TYPE_NON_LISP)
1148 mem_insert (val, (char *) val + nbytes, type);
1149 #endif
1150
1151 MALLOC_UNBLOCK_INPUT;
1152
1153 MALLOC_PROBE (nbytes);
1154
1155 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1156 return val;
1157 }
1158
1159 static void
1160 lisp_align_free (void *block)
1161 {
1162 struct ablock *ablock = block;
1163 struct ablocks *abase = ABLOCK_ABASE (ablock);
1164
1165 MALLOC_BLOCK_INPUT;
1166 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1167 mem_delete (mem_find (block));
1168 #endif
1169 /* Put on free list. */
1170 ablock->x.next_free = free_ablock;
1171 free_ablock = ablock;
1172 /* Update busy count. */
1173 ABLOCKS_BUSY (abase)
1174 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1175
1176 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1177 { /* All the blocks are free. */
1178 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1179 struct ablock **tem = &free_ablock;
1180 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1181
1182 while (*tem)
1183 {
1184 if (*tem >= (struct ablock *) abase && *tem < atop)
1185 {
1186 i++;
1187 *tem = (*tem)->x.next_free;
1188 }
1189 else
1190 tem = &(*tem)->x.next_free;
1191 }
1192 eassert ((aligned & 1) == aligned);
1193 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1194 #ifdef USE_POSIX_MEMALIGN
1195 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1196 #endif
1197 free (ABLOCKS_BASE (abase));
1198 }
1199 MALLOC_UNBLOCK_INPUT;
1200 }
1201
1202 \f
1203 /***********************************************************************
1204 Interval Allocation
1205 ***********************************************************************/
1206
1207 /* Number of intervals allocated in an interval_block structure.
1208 The 1020 is 1024 minus malloc overhead. */
1209
1210 #define INTERVAL_BLOCK_SIZE \
1211 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1212
1213 /* Intervals are allocated in chunks in the form of an interval_block
1214 structure. */
1215
1216 struct interval_block
1217 {
1218 /* Place `intervals' first, to preserve alignment. */
1219 struct interval intervals[INTERVAL_BLOCK_SIZE];
1220 struct interval_block *next;
1221 };
1222
1223 /* Current interval block. Its `next' pointer points to older
1224 blocks. */
1225
1226 static struct interval_block *interval_block;
1227
1228 /* Index in interval_block above of the next unused interval
1229 structure. */
1230
1231 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1232
1233 /* Number of free and live intervals. */
1234
1235 static EMACS_INT total_free_intervals, total_intervals;
1236
1237 /* List of free intervals. */
1238
1239 static INTERVAL interval_free_list;
1240
1241 /* Return a new interval. */
1242
1243 INTERVAL
1244 make_interval (void)
1245 {
1246 INTERVAL val;
1247
1248 MALLOC_BLOCK_INPUT;
1249
1250 if (interval_free_list)
1251 {
1252 val = interval_free_list;
1253 interval_free_list = INTERVAL_PARENT (interval_free_list);
1254 }
1255 else
1256 {
1257 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1258 {
1259 struct interval_block *newi
1260 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1261
1262 newi->next = interval_block;
1263 interval_block = newi;
1264 interval_block_index = 0;
1265 total_free_intervals += INTERVAL_BLOCK_SIZE;
1266 }
1267 val = &interval_block->intervals[interval_block_index++];
1268 }
1269
1270 MALLOC_UNBLOCK_INPUT;
1271
1272 consing_since_gc += sizeof (struct interval);
1273 intervals_consed++;
1274 total_free_intervals--;
1275 RESET_INTERVAL (val);
1276 val->gcmarkbit = 0;
1277 return val;
1278 }
1279
1280
1281 /* Mark Lisp objects in interval I. */
1282
1283 static void
1284 mark_interval (register INTERVAL i, Lisp_Object dummy)
1285 {
1286 /* Intervals should never be shared. So, if extra internal checking is
1287 enabled, GC aborts if it seems to have visited an interval twice. */
1288 eassert (!i->gcmarkbit);
1289 i->gcmarkbit = 1;
1290 mark_object (i->plist);
1291 }
1292
1293 /* Mark the interval tree rooted in I. */
1294
1295 #define MARK_INTERVAL_TREE(i) \
1296 do { \
1297 if (i && !i->gcmarkbit) \
1298 traverse_intervals_noorder (i, mark_interval, Qnil); \
1299 } while (0)
1300
1301 /***********************************************************************
1302 String Allocation
1303 ***********************************************************************/
1304
1305 /* Lisp_Strings are allocated in string_block structures. When a new
1306 string_block is allocated, all the Lisp_Strings it contains are
1307 added to a free-list string_free_list. When a new Lisp_String is
1308 needed, it is taken from that list. During the sweep phase of GC,
1309 string_blocks that are entirely free are freed, except two which
1310 we keep.
1311
1312 String data is allocated from sblock structures. Strings larger
1313 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1314 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1315
1316 Sblocks consist internally of sdata structures, one for each
1317 Lisp_String. The sdata structure points to the Lisp_String it
1318 belongs to. The Lisp_String points back to the `u.data' member of
1319 its sdata structure.
1320
1321 When a Lisp_String is freed during GC, it is put back on
1322 string_free_list, and its `data' member and its sdata's `string'
1323 pointer is set to null. The size of the string is recorded in the
1324 `n.nbytes' member of the sdata. So, sdata structures that are no
1325 longer used, can be easily recognized, and it's easy to compact the
1326 sblocks of small strings which we do in compact_small_strings. */
1327
1328 /* Size in bytes of an sblock structure used for small strings. This
1329 is 8192 minus malloc overhead. */
1330
1331 #define SBLOCK_SIZE 8188
1332
1333 /* Strings larger than this are considered large strings. String data
1334 for large strings is allocated from individual sblocks. */
1335
1336 #define LARGE_STRING_BYTES 1024
1337
1338 /* The SDATA typedef is a struct or union describing string memory
1339 sub-allocated from an sblock. This is where the contents of Lisp
1340 strings are stored. */
1341
1342 struct sdata
1343 {
1344 /* Back-pointer to the string this sdata belongs to. If null, this
1345 structure is free, and NBYTES (in this structure or in the union below)
1346 contains the string's byte size (the same value that STRING_BYTES
1347 would return if STRING were non-null). If non-null, STRING_BYTES
1348 (STRING) is the size of the data, and DATA contains the string's
1349 contents. */
1350 struct Lisp_String *string;
1351
1352 #ifdef GC_CHECK_STRING_BYTES
1353 ptrdiff_t nbytes;
1354 #endif
1355
1356 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1357 };
1358
1359 #ifdef GC_CHECK_STRING_BYTES
1360
1361 typedef struct sdata sdata;
1362 #define SDATA_NBYTES(S) (S)->nbytes
1363 #define SDATA_DATA(S) (S)->data
1364
1365 #else
1366
1367 typedef union
1368 {
1369 struct Lisp_String *string;
1370
1371 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1372 which has a flexible array member. However, if implemented by
1373 giving this union a member of type 'struct sdata', the union
1374 could not be the last (flexible) member of 'struct sblock',
1375 because C99 prohibits a flexible array member from having a type
1376 that is itself a flexible array. So, comment this member out here,
1377 but remember that the option's there when using this union. */
1378 #if 0
1379 struct sdata u;
1380 #endif
1381
1382 /* When STRING is null. */
1383 struct
1384 {
1385 struct Lisp_String *string;
1386 ptrdiff_t nbytes;
1387 } n;
1388 } sdata;
1389
1390 #define SDATA_NBYTES(S) (S)->n.nbytes
1391 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1392
1393 #endif /* not GC_CHECK_STRING_BYTES */
1394
1395 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1396
1397 /* Structure describing a block of memory which is sub-allocated to
1398 obtain string data memory for strings. Blocks for small strings
1399 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1400 as large as needed. */
1401
1402 struct sblock
1403 {
1404 /* Next in list. */
1405 struct sblock *next;
1406
1407 /* Pointer to the next free sdata block. This points past the end
1408 of the sblock if there isn't any space left in this block. */
1409 sdata *next_free;
1410
1411 /* String data. */
1412 sdata data[FLEXIBLE_ARRAY_MEMBER];
1413 };
1414
1415 /* Number of Lisp strings in a string_block structure. The 1020 is
1416 1024 minus malloc overhead. */
1417
1418 #define STRING_BLOCK_SIZE \
1419 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1420
1421 /* Structure describing a block from which Lisp_String structures
1422 are allocated. */
1423
1424 struct string_block
1425 {
1426 /* Place `strings' first, to preserve alignment. */
1427 struct Lisp_String strings[STRING_BLOCK_SIZE];
1428 struct string_block *next;
1429 };
1430
1431 /* Head and tail of the list of sblock structures holding Lisp string
1432 data. We always allocate from current_sblock. The NEXT pointers
1433 in the sblock structures go from oldest_sblock to current_sblock. */
1434
1435 static struct sblock *oldest_sblock, *current_sblock;
1436
1437 /* List of sblocks for large strings. */
1438
1439 static struct sblock *large_sblocks;
1440
1441 /* List of string_block structures. */
1442
1443 static struct string_block *string_blocks;
1444
1445 /* Free-list of Lisp_Strings. */
1446
1447 static struct Lisp_String *string_free_list;
1448
1449 /* Number of live and free Lisp_Strings. */
1450
1451 static EMACS_INT total_strings, total_free_strings;
1452
1453 /* Number of bytes used by live strings. */
1454
1455 static EMACS_INT total_string_bytes;
1456
1457 /* Given a pointer to a Lisp_String S which is on the free-list
1458 string_free_list, return a pointer to its successor in the
1459 free-list. */
1460
1461 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1462
1463 /* Return a pointer to the sdata structure belonging to Lisp string S.
1464 S must be live, i.e. S->data must not be null. S->data is actually
1465 a pointer to the `u.data' member of its sdata structure; the
1466 structure starts at a constant offset in front of that. */
1467
1468 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1469
1470
1471 #ifdef GC_CHECK_STRING_OVERRUN
1472
1473 /* We check for overrun in string data blocks by appending a small
1474 "cookie" after each allocated string data block, and check for the
1475 presence of this cookie during GC. */
1476
1477 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1478 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1479 { '\xde', '\xad', '\xbe', '\xef' };
1480
1481 #else
1482 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1483 #endif
1484
1485 /* Value is the size of an sdata structure large enough to hold NBYTES
1486 bytes of string data. The value returned includes a terminating
1487 NUL byte, the size of the sdata structure, and padding. */
1488
1489 #ifdef GC_CHECK_STRING_BYTES
1490
1491 #define SDATA_SIZE(NBYTES) \
1492 ((SDATA_DATA_OFFSET \
1493 + (NBYTES) + 1 \
1494 + sizeof (ptrdiff_t) - 1) \
1495 & ~(sizeof (ptrdiff_t) - 1))
1496
1497 #else /* not GC_CHECK_STRING_BYTES */
1498
1499 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1500 less than the size of that member. The 'max' is not needed when
1501 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1502 alignment code reserves enough space. */
1503
1504 #define SDATA_SIZE(NBYTES) \
1505 ((SDATA_DATA_OFFSET \
1506 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1507 ? NBYTES \
1508 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1509 + 1 \
1510 + sizeof (ptrdiff_t) - 1) \
1511 & ~(sizeof (ptrdiff_t) - 1))
1512
1513 #endif /* not GC_CHECK_STRING_BYTES */
1514
1515 /* Extra bytes to allocate for each string. */
1516
1517 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1518
1519 /* Exact bound on the number of bytes in a string, not counting the
1520 terminating null. A string cannot contain more bytes than
1521 STRING_BYTES_BOUND, nor can it be so long that the size_t
1522 arithmetic in allocate_string_data would overflow while it is
1523 calculating a value to be passed to malloc. */
1524 static ptrdiff_t const STRING_BYTES_MAX =
1525 min (STRING_BYTES_BOUND,
1526 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1527 - GC_STRING_EXTRA
1528 - offsetof (struct sblock, data)
1529 - SDATA_DATA_OFFSET)
1530 & ~(sizeof (EMACS_INT) - 1)));
1531
1532 /* Initialize string allocation. Called from init_alloc_once. */
1533
1534 static void
1535 init_strings (void)
1536 {
1537 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1538 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1539 }
1540
1541
1542 #ifdef GC_CHECK_STRING_BYTES
1543
1544 static int check_string_bytes_count;
1545
1546 /* Like STRING_BYTES, but with debugging check. Can be
1547 called during GC, so pay attention to the mark bit. */
1548
1549 ptrdiff_t
1550 string_bytes (struct Lisp_String *s)
1551 {
1552 ptrdiff_t nbytes =
1553 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1554
1555 if (!PURE_POINTER_P (s)
1556 && s->data
1557 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1558 emacs_abort ();
1559 return nbytes;
1560 }
1561
1562 /* Check validity of Lisp strings' string_bytes member in B. */
1563
1564 static void
1565 check_sblock (struct sblock *b)
1566 {
1567 sdata *from, *end, *from_end;
1568
1569 end = b->next_free;
1570
1571 for (from = b->data; from < end; from = from_end)
1572 {
1573 /* Compute the next FROM here because copying below may
1574 overwrite data we need to compute it. */
1575 ptrdiff_t nbytes;
1576
1577 /* Check that the string size recorded in the string is the
1578 same as the one recorded in the sdata structure. */
1579 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1580 : SDATA_NBYTES (from));
1581 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1582 }
1583 }
1584
1585
1586 /* Check validity of Lisp strings' string_bytes member. ALL_P
1587 means check all strings, otherwise check only most
1588 recently allocated strings. Used for hunting a bug. */
1589
1590 static void
1591 check_string_bytes (bool all_p)
1592 {
1593 if (all_p)
1594 {
1595 struct sblock *b;
1596
1597 for (b = large_sblocks; b; b = b->next)
1598 {
1599 struct Lisp_String *s = b->data[0].string;
1600 if (s)
1601 string_bytes (s);
1602 }
1603
1604 for (b = oldest_sblock; b; b = b->next)
1605 check_sblock (b);
1606 }
1607 else if (current_sblock)
1608 check_sblock (current_sblock);
1609 }
1610
1611 #else /* not GC_CHECK_STRING_BYTES */
1612
1613 #define check_string_bytes(all) ((void) 0)
1614
1615 #endif /* GC_CHECK_STRING_BYTES */
1616
1617 #ifdef GC_CHECK_STRING_FREE_LIST
1618
1619 /* Walk through the string free list looking for bogus next pointers.
1620 This may catch buffer overrun from a previous string. */
1621
1622 static void
1623 check_string_free_list (void)
1624 {
1625 struct Lisp_String *s;
1626
1627 /* Pop a Lisp_String off the free-list. */
1628 s = string_free_list;
1629 while (s != NULL)
1630 {
1631 if ((uintptr_t) s < 1024)
1632 emacs_abort ();
1633 s = NEXT_FREE_LISP_STRING (s);
1634 }
1635 }
1636 #else
1637 #define check_string_free_list()
1638 #endif
1639
1640 /* Return a new Lisp_String. */
1641
1642 static struct Lisp_String *
1643 allocate_string (void)
1644 {
1645 struct Lisp_String *s;
1646
1647 MALLOC_BLOCK_INPUT;
1648
1649 /* If the free-list is empty, allocate a new string_block, and
1650 add all the Lisp_Strings in it to the free-list. */
1651 if (string_free_list == NULL)
1652 {
1653 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1654 int i;
1655
1656 b->next = string_blocks;
1657 string_blocks = b;
1658
1659 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1660 {
1661 s = b->strings + i;
1662 /* Every string on a free list should have NULL data pointer. */
1663 s->data = NULL;
1664 NEXT_FREE_LISP_STRING (s) = string_free_list;
1665 string_free_list = s;
1666 }
1667
1668 total_free_strings += STRING_BLOCK_SIZE;
1669 }
1670
1671 check_string_free_list ();
1672
1673 /* Pop a Lisp_String off the free-list. */
1674 s = string_free_list;
1675 string_free_list = NEXT_FREE_LISP_STRING (s);
1676
1677 MALLOC_UNBLOCK_INPUT;
1678
1679 --total_free_strings;
1680 ++total_strings;
1681 ++strings_consed;
1682 consing_since_gc += sizeof *s;
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685 if (!noninteractive)
1686 {
1687 if (++check_string_bytes_count == 200)
1688 {
1689 check_string_bytes_count = 0;
1690 check_string_bytes (1);
1691 }
1692 else
1693 check_string_bytes (0);
1694 }
1695 #endif /* GC_CHECK_STRING_BYTES */
1696
1697 return s;
1698 }
1699
1700
1701 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1702 plus a NUL byte at the end. Allocate an sdata structure for S, and
1703 set S->data to its `u.data' member. Store a NUL byte at the end of
1704 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1705 S->data if it was initially non-null. */
1706
1707 void
1708 allocate_string_data (struct Lisp_String *s,
1709 EMACS_INT nchars, EMACS_INT nbytes)
1710 {
1711 sdata *data, *old_data;
1712 struct sblock *b;
1713 ptrdiff_t needed, old_nbytes;
1714
1715 if (STRING_BYTES_MAX < nbytes)
1716 string_overflow ();
1717
1718 /* Determine the number of bytes needed to store NBYTES bytes
1719 of string data. */
1720 needed = SDATA_SIZE (nbytes);
1721 if (s->data)
1722 {
1723 old_data = SDATA_OF_STRING (s);
1724 old_nbytes = STRING_BYTES (s);
1725 }
1726 else
1727 old_data = NULL;
1728
1729 MALLOC_BLOCK_INPUT;
1730
1731 if (nbytes > LARGE_STRING_BYTES)
1732 {
1733 size_t size = offsetof (struct sblock, data) + needed;
1734
1735 #ifdef DOUG_LEA_MALLOC
1736 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1737 because mapped region contents are not preserved in
1738 a dumped Emacs.
1739
1740 In case you think of allowing it in a dumped Emacs at the
1741 cost of not being able to re-dump, there's another reason:
1742 mmap'ed data typically have an address towards the top of the
1743 address space, which won't fit into an EMACS_INT (at least on
1744 32-bit systems with the current tagging scheme). --fx */
1745 mallopt (M_MMAP_MAX, 0);
1746 #endif
1747
1748 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1749
1750 #ifdef DOUG_LEA_MALLOC
1751 /* Back to a reasonable maximum of mmap'ed areas. */
1752 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1753 #endif
1754
1755 b->next_free = b->data;
1756 b->data[0].string = NULL;
1757 b->next = large_sblocks;
1758 large_sblocks = b;
1759 }
1760 else if (current_sblock == NULL
1761 || (((char *) current_sblock + SBLOCK_SIZE
1762 - (char *) current_sblock->next_free)
1763 < (needed + GC_STRING_EXTRA)))
1764 {
1765 /* Not enough room in the current sblock. */
1766 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1767 b->next_free = b->data;
1768 b->data[0].string = NULL;
1769 b->next = NULL;
1770
1771 if (current_sblock)
1772 current_sblock->next = b;
1773 else
1774 oldest_sblock = b;
1775 current_sblock = b;
1776 }
1777 else
1778 b = current_sblock;
1779
1780 data = b->next_free;
1781 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1782
1783 MALLOC_UNBLOCK_INPUT;
1784
1785 data->string = s;
1786 s->data = SDATA_DATA (data);
1787 #ifdef GC_CHECK_STRING_BYTES
1788 SDATA_NBYTES (data) = nbytes;
1789 #endif
1790 s->size = nchars;
1791 s->size_byte = nbytes;
1792 s->data[nbytes] = '\0';
1793 #ifdef GC_CHECK_STRING_OVERRUN
1794 memcpy ((char *) data + needed, string_overrun_cookie,
1795 GC_STRING_OVERRUN_COOKIE_SIZE);
1796 #endif
1797
1798 /* Note that Faset may call to this function when S has already data
1799 assigned. In this case, mark data as free by setting it's string
1800 back-pointer to null, and record the size of the data in it. */
1801 if (old_data)
1802 {
1803 SDATA_NBYTES (old_data) = old_nbytes;
1804 old_data->string = NULL;
1805 }
1806
1807 consing_since_gc += needed;
1808 }
1809
1810
1811 /* Sweep and compact strings. */
1812
1813 static void
1814 sweep_strings (void)
1815 {
1816 struct string_block *b, *next;
1817 struct string_block *live_blocks = NULL;
1818
1819 string_free_list = NULL;
1820 total_strings = total_free_strings = 0;
1821 total_string_bytes = 0;
1822
1823 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1824 for (b = string_blocks; b; b = next)
1825 {
1826 int i, nfree = 0;
1827 struct Lisp_String *free_list_before = string_free_list;
1828
1829 next = b->next;
1830
1831 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1832 {
1833 struct Lisp_String *s = b->strings + i;
1834
1835 if (s->data)
1836 {
1837 /* String was not on free-list before. */
1838 if (STRING_MARKED_P (s))
1839 {
1840 /* String is live; unmark it and its intervals. */
1841 UNMARK_STRING (s);
1842
1843 /* Do not use string_(set|get)_intervals here. */
1844 s->intervals = balance_intervals (s->intervals);
1845
1846 ++total_strings;
1847 total_string_bytes += STRING_BYTES (s);
1848 }
1849 else
1850 {
1851 /* String is dead. Put it on the free-list. */
1852 sdata *data = SDATA_OF_STRING (s);
1853
1854 /* Save the size of S in its sdata so that we know
1855 how large that is. Reset the sdata's string
1856 back-pointer so that we know it's free. */
1857 #ifdef GC_CHECK_STRING_BYTES
1858 if (string_bytes (s) != SDATA_NBYTES (data))
1859 emacs_abort ();
1860 #else
1861 data->n.nbytes = STRING_BYTES (s);
1862 #endif
1863 data->string = NULL;
1864
1865 /* Reset the strings's `data' member so that we
1866 know it's free. */
1867 s->data = NULL;
1868
1869 /* Put the string on the free-list. */
1870 NEXT_FREE_LISP_STRING (s) = string_free_list;
1871 string_free_list = s;
1872 ++nfree;
1873 }
1874 }
1875 else
1876 {
1877 /* S was on the free-list before. Put it there again. */
1878 NEXT_FREE_LISP_STRING (s) = string_free_list;
1879 string_free_list = s;
1880 ++nfree;
1881 }
1882 }
1883
1884 /* Free blocks that contain free Lisp_Strings only, except
1885 the first two of them. */
1886 if (nfree == STRING_BLOCK_SIZE
1887 && total_free_strings > STRING_BLOCK_SIZE)
1888 {
1889 lisp_free (b);
1890 string_free_list = free_list_before;
1891 }
1892 else
1893 {
1894 total_free_strings += nfree;
1895 b->next = live_blocks;
1896 live_blocks = b;
1897 }
1898 }
1899
1900 check_string_free_list ();
1901
1902 string_blocks = live_blocks;
1903 free_large_strings ();
1904 compact_small_strings ();
1905
1906 check_string_free_list ();
1907 }
1908
1909
1910 /* Free dead large strings. */
1911
1912 static void
1913 free_large_strings (void)
1914 {
1915 struct sblock *b, *next;
1916 struct sblock *live_blocks = NULL;
1917
1918 for (b = large_sblocks; b; b = next)
1919 {
1920 next = b->next;
1921
1922 if (b->data[0].string == NULL)
1923 lisp_free (b);
1924 else
1925 {
1926 b->next = live_blocks;
1927 live_blocks = b;
1928 }
1929 }
1930
1931 large_sblocks = live_blocks;
1932 }
1933
1934
1935 /* Compact data of small strings. Free sblocks that don't contain
1936 data of live strings after compaction. */
1937
1938 static void
1939 compact_small_strings (void)
1940 {
1941 struct sblock *b, *tb, *next;
1942 sdata *from, *to, *end, *tb_end;
1943 sdata *to_end, *from_end;
1944
1945 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1946 to, and TB_END is the end of TB. */
1947 tb = oldest_sblock;
1948 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1949 to = tb->data;
1950
1951 /* Step through the blocks from the oldest to the youngest. We
1952 expect that old blocks will stabilize over time, so that less
1953 copying will happen this way. */
1954 for (b = oldest_sblock; b; b = b->next)
1955 {
1956 end = b->next_free;
1957 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1958
1959 for (from = b->data; from < end; from = from_end)
1960 {
1961 /* Compute the next FROM here because copying below may
1962 overwrite data we need to compute it. */
1963 ptrdiff_t nbytes;
1964 struct Lisp_String *s = from->string;
1965
1966 #ifdef GC_CHECK_STRING_BYTES
1967 /* Check that the string size recorded in the string is the
1968 same as the one recorded in the sdata structure. */
1969 if (s && string_bytes (s) != SDATA_NBYTES (from))
1970 emacs_abort ();
1971 #endif /* GC_CHECK_STRING_BYTES */
1972
1973 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1974 eassert (nbytes <= LARGE_STRING_BYTES);
1975
1976 nbytes = SDATA_SIZE (nbytes);
1977 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1978
1979 #ifdef GC_CHECK_STRING_OVERRUN
1980 if (memcmp (string_overrun_cookie,
1981 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1982 GC_STRING_OVERRUN_COOKIE_SIZE))
1983 emacs_abort ();
1984 #endif
1985
1986 /* Non-NULL S means it's alive. Copy its data. */
1987 if (s)
1988 {
1989 /* If TB is full, proceed with the next sblock. */
1990 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1991 if (to_end > tb_end)
1992 {
1993 tb->next_free = to;
1994 tb = tb->next;
1995 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1996 to = tb->data;
1997 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1998 }
1999
2000 /* Copy, and update the string's `data' pointer. */
2001 if (from != to)
2002 {
2003 eassert (tb != b || to < from);
2004 memmove (to, from, nbytes + GC_STRING_EXTRA);
2005 to->string->data = SDATA_DATA (to);
2006 }
2007
2008 /* Advance past the sdata we copied to. */
2009 to = to_end;
2010 }
2011 }
2012 }
2013
2014 /* The rest of the sblocks following TB don't contain live data, so
2015 we can free them. */
2016 for (b = tb->next; b; b = next)
2017 {
2018 next = b->next;
2019 lisp_free (b);
2020 }
2021
2022 tb->next_free = to;
2023 tb->next = NULL;
2024 current_sblock = tb;
2025 }
2026
2027 void
2028 string_overflow (void)
2029 {
2030 error ("Maximum string size exceeded");
2031 }
2032
2033 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2034 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2035 LENGTH must be an integer.
2036 INIT must be an integer that represents a character. */)
2037 (Lisp_Object length, Lisp_Object init)
2038 {
2039 register Lisp_Object val;
2040 int c;
2041 EMACS_INT nbytes;
2042
2043 CHECK_NATNUM (length);
2044 CHECK_CHARACTER (init);
2045
2046 c = XFASTINT (init);
2047 if (ASCII_CHAR_P (c))
2048 {
2049 nbytes = XINT (length);
2050 val = make_uninit_string (nbytes);
2051 memset (SDATA (val), c, nbytes);
2052 SDATA (val)[nbytes] = 0;
2053 }
2054 else
2055 {
2056 unsigned char str[MAX_MULTIBYTE_LENGTH];
2057 ptrdiff_t len = CHAR_STRING (c, str);
2058 EMACS_INT string_len = XINT (length);
2059 unsigned char *p, *beg, *end;
2060
2061 if (string_len > STRING_BYTES_MAX / len)
2062 string_overflow ();
2063 nbytes = len * string_len;
2064 val = make_uninit_multibyte_string (string_len, nbytes);
2065 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2066 {
2067 /* First time we just copy `str' to the data of `val'. */
2068 if (p == beg)
2069 memcpy (p, str, len);
2070 else
2071 {
2072 /* Next time we copy largest possible chunk from
2073 initialized to uninitialized part of `val'. */
2074 len = min (p - beg, end - p);
2075 memcpy (p, beg, len);
2076 }
2077 }
2078 *p = 0;
2079 }
2080
2081 return val;
2082 }
2083
2084 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2085 Return A. */
2086
2087 Lisp_Object
2088 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2089 {
2090 EMACS_INT nbits = bool_vector_size (a);
2091 if (0 < nbits)
2092 {
2093 unsigned char *data = bool_vector_uchar_data (a);
2094 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2095 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2096 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2097 memset (data, pattern, nbytes - 1);
2098 data[nbytes - 1] = pattern & last_mask;
2099 }
2100 return a;
2101 }
2102
2103 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2104
2105 Lisp_Object
2106 make_uninit_bool_vector (EMACS_INT nbits)
2107 {
2108 Lisp_Object val;
2109 EMACS_INT words = bool_vector_words (nbits);
2110 EMACS_INT word_bytes = words * sizeof (bits_word);
2111 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2112 + word_size - 1)
2113 / word_size);
2114 struct Lisp_Bool_Vector *p
2115 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2116 XSETVECTOR (val, p);
2117 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2118 p->size = nbits;
2119
2120 /* Clear padding at the end. */
2121 if (words)
2122 p->data[words - 1] = 0;
2123
2124 return val;
2125 }
2126
2127 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2128 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2129 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2130 (Lisp_Object length, Lisp_Object init)
2131 {
2132 Lisp_Object val;
2133
2134 CHECK_NATNUM (length);
2135 val = make_uninit_bool_vector (XFASTINT (length));
2136 return bool_vector_fill (val, init);
2137 }
2138
2139
2140 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2141 of characters from the contents. This string may be unibyte or
2142 multibyte, depending on the contents. */
2143
2144 Lisp_Object
2145 make_string (const char *contents, ptrdiff_t nbytes)
2146 {
2147 register Lisp_Object val;
2148 ptrdiff_t nchars, multibyte_nbytes;
2149
2150 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2151 &nchars, &multibyte_nbytes);
2152 if (nbytes == nchars || nbytes != multibyte_nbytes)
2153 /* CONTENTS contains no multibyte sequences or contains an invalid
2154 multibyte sequence. We must make unibyte string. */
2155 val = make_unibyte_string (contents, nbytes);
2156 else
2157 val = make_multibyte_string (contents, nchars, nbytes);
2158 return val;
2159 }
2160
2161
2162 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2163
2164 Lisp_Object
2165 make_unibyte_string (const char *contents, ptrdiff_t length)
2166 {
2167 register Lisp_Object val;
2168 val = make_uninit_string (length);
2169 memcpy (SDATA (val), contents, length);
2170 return val;
2171 }
2172
2173
2174 /* Make a multibyte string from NCHARS characters occupying NBYTES
2175 bytes at CONTENTS. */
2176
2177 Lisp_Object
2178 make_multibyte_string (const char *contents,
2179 ptrdiff_t nchars, ptrdiff_t nbytes)
2180 {
2181 register Lisp_Object val;
2182 val = make_uninit_multibyte_string (nchars, nbytes);
2183 memcpy (SDATA (val), contents, nbytes);
2184 return val;
2185 }
2186
2187
2188 /* Make a string from NCHARS characters occupying NBYTES bytes at
2189 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2190
2191 Lisp_Object
2192 make_string_from_bytes (const char *contents,
2193 ptrdiff_t nchars, ptrdiff_t nbytes)
2194 {
2195 register Lisp_Object val;
2196 val = make_uninit_multibyte_string (nchars, nbytes);
2197 memcpy (SDATA (val), contents, nbytes);
2198 if (SBYTES (val) == SCHARS (val))
2199 STRING_SET_UNIBYTE (val);
2200 return val;
2201 }
2202
2203
2204 /* Make a string from NCHARS characters occupying NBYTES bytes at
2205 CONTENTS. The argument MULTIBYTE controls whether to label the
2206 string as multibyte. If NCHARS is negative, it counts the number of
2207 characters by itself. */
2208
2209 Lisp_Object
2210 make_specified_string (const char *contents,
2211 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2212 {
2213 Lisp_Object val;
2214
2215 if (nchars < 0)
2216 {
2217 if (multibyte)
2218 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2219 nbytes);
2220 else
2221 nchars = nbytes;
2222 }
2223 val = make_uninit_multibyte_string (nchars, nbytes);
2224 memcpy (SDATA (val), contents, nbytes);
2225 if (!multibyte)
2226 STRING_SET_UNIBYTE (val);
2227 return val;
2228 }
2229
2230
2231 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2232 occupying LENGTH bytes. */
2233
2234 Lisp_Object
2235 make_uninit_string (EMACS_INT length)
2236 {
2237 Lisp_Object val;
2238
2239 if (!length)
2240 return empty_unibyte_string;
2241 val = make_uninit_multibyte_string (length, length);
2242 STRING_SET_UNIBYTE (val);
2243 return val;
2244 }
2245
2246
2247 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2248 which occupy NBYTES bytes. */
2249
2250 Lisp_Object
2251 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2252 {
2253 Lisp_Object string;
2254 struct Lisp_String *s;
2255
2256 if (nchars < 0)
2257 emacs_abort ();
2258 if (!nbytes)
2259 return empty_multibyte_string;
2260
2261 s = allocate_string ();
2262 s->intervals = NULL;
2263 allocate_string_data (s, nchars, nbytes);
2264 XSETSTRING (string, s);
2265 string_chars_consed += nbytes;
2266 return string;
2267 }
2268
2269 /* Print arguments to BUF according to a FORMAT, then return
2270 a Lisp_String initialized with the data from BUF. */
2271
2272 Lisp_Object
2273 make_formatted_string (char *buf, const char *format, ...)
2274 {
2275 va_list ap;
2276 int length;
2277
2278 va_start (ap, format);
2279 length = vsprintf (buf, format, ap);
2280 va_end (ap);
2281 return make_string (buf, length);
2282 }
2283
2284 \f
2285 /***********************************************************************
2286 Float Allocation
2287 ***********************************************************************/
2288
2289 /* We store float cells inside of float_blocks, allocating a new
2290 float_block with malloc whenever necessary. Float cells reclaimed
2291 by GC are put on a free list to be reallocated before allocating
2292 any new float cells from the latest float_block. */
2293
2294 #define FLOAT_BLOCK_SIZE \
2295 (((BLOCK_BYTES - sizeof (struct float_block *) \
2296 /* The compiler might add padding at the end. */ \
2297 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2298 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2299
2300 #define GETMARKBIT(block,n) \
2301 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2302 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2303 & 1)
2304
2305 #define SETMARKBIT(block,n) \
2306 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2307 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2308
2309 #define UNSETMARKBIT(block,n) \
2310 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2311 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2312
2313 #define FLOAT_BLOCK(fptr) \
2314 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2315
2316 #define FLOAT_INDEX(fptr) \
2317 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2318
2319 struct float_block
2320 {
2321 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2322 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2323 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2324 struct float_block *next;
2325 };
2326
2327 #define FLOAT_MARKED_P(fptr) \
2328 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2329
2330 #define FLOAT_MARK(fptr) \
2331 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2332
2333 #define FLOAT_UNMARK(fptr) \
2334 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2335
2336 /* Current float_block. */
2337
2338 static struct float_block *float_block;
2339
2340 /* Index of first unused Lisp_Float in the current float_block. */
2341
2342 static int float_block_index = FLOAT_BLOCK_SIZE;
2343
2344 /* Free-list of Lisp_Floats. */
2345
2346 static struct Lisp_Float *float_free_list;
2347
2348 /* Return a new float object with value FLOAT_VALUE. */
2349
2350 Lisp_Object
2351 make_float (double float_value)
2352 {
2353 register Lisp_Object val;
2354
2355 MALLOC_BLOCK_INPUT;
2356
2357 if (float_free_list)
2358 {
2359 /* We use the data field for chaining the free list
2360 so that we won't use the same field that has the mark bit. */
2361 XSETFLOAT (val, float_free_list);
2362 float_free_list = float_free_list->u.chain;
2363 }
2364 else
2365 {
2366 if (float_block_index == FLOAT_BLOCK_SIZE)
2367 {
2368 struct float_block *new
2369 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2370 new->next = float_block;
2371 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2372 float_block = new;
2373 float_block_index = 0;
2374 total_free_floats += FLOAT_BLOCK_SIZE;
2375 }
2376 XSETFLOAT (val, &float_block->floats[float_block_index]);
2377 float_block_index++;
2378 }
2379
2380 MALLOC_UNBLOCK_INPUT;
2381
2382 XFLOAT_INIT (val, float_value);
2383 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2384 consing_since_gc += sizeof (struct Lisp_Float);
2385 floats_consed++;
2386 total_free_floats--;
2387 return val;
2388 }
2389
2390
2391 \f
2392 /***********************************************************************
2393 Cons Allocation
2394 ***********************************************************************/
2395
2396 /* We store cons cells inside of cons_blocks, allocating a new
2397 cons_block with malloc whenever necessary. Cons cells reclaimed by
2398 GC are put on a free list to be reallocated before allocating
2399 any new cons cells from the latest cons_block. */
2400
2401 #define CONS_BLOCK_SIZE \
2402 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2403 /* The compiler might add padding at the end. */ \
2404 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2405 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2406
2407 #define CONS_BLOCK(fptr) \
2408 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2409
2410 #define CONS_INDEX(fptr) \
2411 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2412
2413 struct cons_block
2414 {
2415 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2416 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2417 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2418 struct cons_block *next;
2419 };
2420
2421 #define CONS_MARKED_P(fptr) \
2422 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2423
2424 #define CONS_MARK(fptr) \
2425 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2426
2427 #define CONS_UNMARK(fptr) \
2428 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2429
2430 /* Current cons_block. */
2431
2432 static struct cons_block *cons_block;
2433
2434 /* Index of first unused Lisp_Cons in the current block. */
2435
2436 static int cons_block_index = CONS_BLOCK_SIZE;
2437
2438 /* Free-list of Lisp_Cons structures. */
2439
2440 static struct Lisp_Cons *cons_free_list;
2441
2442 /* Explicitly free a cons cell by putting it on the free-list. */
2443
2444 void
2445 free_cons (struct Lisp_Cons *ptr)
2446 {
2447 ptr->u.chain = cons_free_list;
2448 #if GC_MARK_STACK
2449 ptr->car = Vdead;
2450 #endif
2451 cons_free_list = ptr;
2452 consing_since_gc -= sizeof *ptr;
2453 total_free_conses++;
2454 }
2455
2456 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2457 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2458 (Lisp_Object car, Lisp_Object cdr)
2459 {
2460 register Lisp_Object val;
2461
2462 MALLOC_BLOCK_INPUT;
2463
2464 if (cons_free_list)
2465 {
2466 /* We use the cdr for chaining the free list
2467 so that we won't use the same field that has the mark bit. */
2468 XSETCONS (val, cons_free_list);
2469 cons_free_list = cons_free_list->u.chain;
2470 }
2471 else
2472 {
2473 if (cons_block_index == CONS_BLOCK_SIZE)
2474 {
2475 struct cons_block *new
2476 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2477 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2478 new->next = cons_block;
2479 cons_block = new;
2480 cons_block_index = 0;
2481 total_free_conses += CONS_BLOCK_SIZE;
2482 }
2483 XSETCONS (val, &cons_block->conses[cons_block_index]);
2484 cons_block_index++;
2485 }
2486
2487 MALLOC_UNBLOCK_INPUT;
2488
2489 XSETCAR (val, car);
2490 XSETCDR (val, cdr);
2491 eassert (!CONS_MARKED_P (XCONS (val)));
2492 consing_since_gc += sizeof (struct Lisp_Cons);
2493 total_free_conses--;
2494 cons_cells_consed++;
2495 return val;
2496 }
2497
2498 #ifdef GC_CHECK_CONS_LIST
2499 /* Get an error now if there's any junk in the cons free list. */
2500 void
2501 check_cons_list (void)
2502 {
2503 struct Lisp_Cons *tail = cons_free_list;
2504
2505 while (tail)
2506 tail = tail->u.chain;
2507 }
2508 #endif
2509
2510 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2511
2512 Lisp_Object
2513 list1 (Lisp_Object arg1)
2514 {
2515 return Fcons (arg1, Qnil);
2516 }
2517
2518 Lisp_Object
2519 list2 (Lisp_Object arg1, Lisp_Object arg2)
2520 {
2521 return Fcons (arg1, Fcons (arg2, Qnil));
2522 }
2523
2524
2525 Lisp_Object
2526 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2527 {
2528 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2529 }
2530
2531
2532 Lisp_Object
2533 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2534 {
2535 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2536 }
2537
2538
2539 Lisp_Object
2540 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2541 {
2542 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2543 Fcons (arg5, Qnil)))));
2544 }
2545
2546 /* Make a list of COUNT Lisp_Objects, where ARG is the
2547 first one. Allocate conses from pure space if TYPE
2548 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2549
2550 Lisp_Object
2551 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2552 {
2553 va_list ap;
2554 ptrdiff_t i;
2555 Lisp_Object val, *objp;
2556
2557 /* Change to SAFE_ALLOCA if you hit this eassert. */
2558 eassert (count <= MAX_ALLOCA / word_size);
2559
2560 objp = alloca (count * word_size);
2561 objp[0] = arg;
2562 va_start (ap, arg);
2563 for (i = 1; i < count; i++)
2564 objp[i] = va_arg (ap, Lisp_Object);
2565 va_end (ap);
2566
2567 for (val = Qnil, i = count - 1; i >= 0; i--)
2568 {
2569 if (type == CONSTYPE_PURE)
2570 val = pure_cons (objp[i], val);
2571 else if (type == CONSTYPE_HEAP)
2572 val = Fcons (objp[i], val);
2573 else
2574 emacs_abort ();
2575 }
2576 return val;
2577 }
2578
2579 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2580 doc: /* Return a newly created list with specified arguments as elements.
2581 Any number of arguments, even zero arguments, are allowed.
2582 usage: (list &rest OBJECTS) */)
2583 (ptrdiff_t nargs, Lisp_Object *args)
2584 {
2585 register Lisp_Object val;
2586 val = Qnil;
2587
2588 while (nargs > 0)
2589 {
2590 nargs--;
2591 val = Fcons (args[nargs], val);
2592 }
2593 return val;
2594 }
2595
2596
2597 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2598 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2599 (register Lisp_Object length, Lisp_Object init)
2600 {
2601 register Lisp_Object val;
2602 register EMACS_INT size;
2603
2604 CHECK_NATNUM (length);
2605 size = XFASTINT (length);
2606
2607 val = Qnil;
2608 while (size > 0)
2609 {
2610 val = Fcons (init, val);
2611 --size;
2612
2613 if (size > 0)
2614 {
2615 val = Fcons (init, val);
2616 --size;
2617
2618 if (size > 0)
2619 {
2620 val = Fcons (init, val);
2621 --size;
2622
2623 if (size > 0)
2624 {
2625 val = Fcons (init, val);
2626 --size;
2627
2628 if (size > 0)
2629 {
2630 val = Fcons (init, val);
2631 --size;
2632 }
2633 }
2634 }
2635 }
2636
2637 QUIT;
2638 }
2639
2640 return val;
2641 }
2642
2643
2644 \f
2645 /***********************************************************************
2646 Vector Allocation
2647 ***********************************************************************/
2648
2649 /* Sometimes a vector's contents are merely a pointer internally used
2650 in vector allocation code. On the rare platforms where a null
2651 pointer cannot be tagged, represent it with a Lisp 0.
2652 Usually you don't want to touch this. */
2653
2654 enum { TAGGABLE_NULL = (DATA_SEG_BITS & ~VALMASK) == 0 };
2655
2656 static struct Lisp_Vector *
2657 next_vector (struct Lisp_Vector *v)
2658 {
2659 if (! TAGGABLE_NULL && EQ (v->contents[0], make_number (0)))
2660 return 0;
2661 return XUNTAG (v->contents[0], 0);
2662 }
2663
2664 static void
2665 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2666 {
2667 v->contents[0] = TAGGABLE_NULL || p ? make_lisp_ptr (p, 0) : make_number (0);
2668 }
2669
2670 /* This value is balanced well enough to avoid too much internal overhead
2671 for the most common cases; it's not required to be a power of two, but
2672 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2673
2674 #define VECTOR_BLOCK_SIZE 4096
2675
2676 enum
2677 {
2678 /* Alignment of struct Lisp_Vector objects. */
2679 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2680 USE_LSB_TAG ? GCALIGNMENT : 1),
2681
2682 /* Vector size requests are a multiple of this. */
2683 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2684 };
2685
2686 /* Verify assumptions described above. */
2687 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2688 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2689
2690 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2691 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2692 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2693 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2694
2695 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2696
2697 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2698
2699 /* Size of the minimal vector allocated from block. */
2700
2701 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2702
2703 /* Size of the largest vector allocated from block. */
2704
2705 #define VBLOCK_BYTES_MAX \
2706 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2707
2708 /* We maintain one free list for each possible block-allocated
2709 vector size, and this is the number of free lists we have. */
2710
2711 #define VECTOR_MAX_FREE_LIST_INDEX \
2712 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2713
2714 /* Common shortcut to advance vector pointer over a block data. */
2715
2716 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2717
2718 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2719
2720 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2721
2722 /* Common shortcut to setup vector on a free list. */
2723
2724 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2725 do { \
2726 (tmp) = ((nbytes - header_size) / word_size); \
2727 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2728 eassert ((nbytes) % roundup_size == 0); \
2729 (tmp) = VINDEX (nbytes); \
2730 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2731 set_next_vector (v, vector_free_lists[tmp]); \
2732 vector_free_lists[tmp] = (v); \
2733 total_free_vector_slots += (nbytes) / word_size; \
2734 } while (0)
2735
2736 /* This internal type is used to maintain the list of large vectors
2737 which are allocated at their own, e.g. outside of vector blocks.
2738
2739 struct large_vector itself cannot contain a struct Lisp_Vector, as
2740 the latter contains a flexible array member and C99 does not allow
2741 such structs to be nested. Instead, each struct large_vector
2742 object LV is followed by a struct Lisp_Vector, which is at offset
2743 large_vector_offset from LV, and whose address is therefore
2744 large_vector_vec (&LV). */
2745
2746 struct large_vector
2747 {
2748 struct large_vector *next;
2749 };
2750
2751 enum
2752 {
2753 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2754 };
2755
2756 static struct Lisp_Vector *
2757 large_vector_vec (struct large_vector *p)
2758 {
2759 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2760 }
2761
2762 /* This internal type is used to maintain an underlying storage
2763 for small vectors. */
2764
2765 struct vector_block
2766 {
2767 char data[VECTOR_BLOCK_BYTES];
2768 struct vector_block *next;
2769 };
2770
2771 /* Chain of vector blocks. */
2772
2773 static struct vector_block *vector_blocks;
2774
2775 /* Vector free lists, where NTH item points to a chain of free
2776 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2777
2778 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2779
2780 /* Singly-linked list of large vectors. */
2781
2782 static struct large_vector *large_vectors;
2783
2784 /* The only vector with 0 slots, allocated from pure space. */
2785
2786 Lisp_Object zero_vector;
2787
2788 /* Number of live vectors. */
2789
2790 static EMACS_INT total_vectors;
2791
2792 /* Total size of live and free vectors, in Lisp_Object units. */
2793
2794 static EMACS_INT total_vector_slots, total_free_vector_slots;
2795
2796 /* Get a new vector block. */
2797
2798 static struct vector_block *
2799 allocate_vector_block (void)
2800 {
2801 struct vector_block *block = xmalloc (sizeof *block);
2802
2803 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2804 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2805 MEM_TYPE_VECTOR_BLOCK);
2806 #endif
2807
2808 block->next = vector_blocks;
2809 vector_blocks = block;
2810 return block;
2811 }
2812
2813 /* Called once to initialize vector allocation. */
2814
2815 static void
2816 init_vectors (void)
2817 {
2818 zero_vector = make_pure_vector (0);
2819 }
2820
2821 /* Allocate vector from a vector block. */
2822
2823 static struct Lisp_Vector *
2824 allocate_vector_from_block (size_t nbytes)
2825 {
2826 struct Lisp_Vector *vector;
2827 struct vector_block *block;
2828 size_t index, restbytes;
2829
2830 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2831 eassert (nbytes % roundup_size == 0);
2832
2833 /* First, try to allocate from a free list
2834 containing vectors of the requested size. */
2835 index = VINDEX (nbytes);
2836 if (vector_free_lists[index])
2837 {
2838 vector = vector_free_lists[index];
2839 vector_free_lists[index] = next_vector (vector);
2840 total_free_vector_slots -= nbytes / word_size;
2841 return vector;
2842 }
2843
2844 /* Next, check free lists containing larger vectors. Since
2845 we will split the result, we should have remaining space
2846 large enough to use for one-slot vector at least. */
2847 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2848 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2849 if (vector_free_lists[index])
2850 {
2851 /* This vector is larger than requested. */
2852 vector = vector_free_lists[index];
2853 vector_free_lists[index] = next_vector (vector);
2854 total_free_vector_slots -= nbytes / word_size;
2855
2856 /* Excess bytes are used for the smaller vector,
2857 which should be set on an appropriate free list. */
2858 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2859 eassert (restbytes % roundup_size == 0);
2860 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2861 return vector;
2862 }
2863
2864 /* Finally, need a new vector block. */
2865 block = allocate_vector_block ();
2866
2867 /* New vector will be at the beginning of this block. */
2868 vector = (struct Lisp_Vector *) block->data;
2869
2870 /* If the rest of space from this block is large enough
2871 for one-slot vector at least, set up it on a free list. */
2872 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2873 if (restbytes >= VBLOCK_BYTES_MIN)
2874 {
2875 eassert (restbytes % roundup_size == 0);
2876 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2877 }
2878 return vector;
2879 }
2880
2881 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2882
2883 #define VECTOR_IN_BLOCK(vector, block) \
2884 ((char *) (vector) <= (block)->data \
2885 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2886
2887 /* Return the memory footprint of V in bytes. */
2888
2889 static ptrdiff_t
2890 vector_nbytes (struct Lisp_Vector *v)
2891 {
2892 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2893 ptrdiff_t nwords;
2894
2895 if (size & PSEUDOVECTOR_FLAG)
2896 {
2897 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2898 {
2899 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2900 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2901 * sizeof (bits_word));
2902 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2903 verify (header_size <= bool_header_size);
2904 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2905 }
2906 else
2907 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2908 + ((size & PSEUDOVECTOR_REST_MASK)
2909 >> PSEUDOVECTOR_SIZE_BITS));
2910 }
2911 else
2912 nwords = size;
2913 return vroundup (header_size + word_size * nwords);
2914 }
2915
2916 /* Release extra resources still in use by VECTOR, which may be any
2917 vector-like object. For now, this is used just to free data in
2918 font objects. */
2919
2920 static void
2921 cleanup_vector (struct Lisp_Vector *vector)
2922 {
2923 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2924 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2925 == FONT_OBJECT_MAX))
2926 {
2927 struct font_driver *drv = ((struct font *) vector)->driver;
2928
2929 /* The font driver might sometimes be NULL, e.g. if Emacs was
2930 interrupted before it had time to set it up. */
2931 if (drv)
2932 {
2933 /* Attempt to catch subtle bugs like Bug#16140. */
2934 eassert (valid_font_driver (drv));
2935 drv->close ((struct font *) vector);
2936 }
2937 }
2938 }
2939
2940 /* Reclaim space used by unmarked vectors. */
2941
2942 static void
2943 sweep_vectors (void)
2944 {
2945 struct vector_block *block, **bprev = &vector_blocks;
2946 struct large_vector *lv, **lvprev = &large_vectors;
2947 struct Lisp_Vector *vector, *next;
2948
2949 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2950 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2951
2952 /* Looking through vector blocks. */
2953
2954 for (block = vector_blocks; block; block = *bprev)
2955 {
2956 bool free_this_block = 0;
2957 ptrdiff_t nbytes;
2958
2959 for (vector = (struct Lisp_Vector *) block->data;
2960 VECTOR_IN_BLOCK (vector, block); vector = next)
2961 {
2962 if (VECTOR_MARKED_P (vector))
2963 {
2964 VECTOR_UNMARK (vector);
2965 total_vectors++;
2966 nbytes = vector_nbytes (vector);
2967 total_vector_slots += nbytes / word_size;
2968 next = ADVANCE (vector, nbytes);
2969 }
2970 else
2971 {
2972 ptrdiff_t total_bytes;
2973
2974 cleanup_vector (vector);
2975 nbytes = vector_nbytes (vector);
2976 total_bytes = nbytes;
2977 next = ADVANCE (vector, nbytes);
2978
2979 /* While NEXT is not marked, try to coalesce with VECTOR,
2980 thus making VECTOR of the largest possible size. */
2981
2982 while (VECTOR_IN_BLOCK (next, block))
2983 {
2984 if (VECTOR_MARKED_P (next))
2985 break;
2986 cleanup_vector (next);
2987 nbytes = vector_nbytes (next);
2988 total_bytes += nbytes;
2989 next = ADVANCE (next, nbytes);
2990 }
2991
2992 eassert (total_bytes % roundup_size == 0);
2993
2994 if (vector == (struct Lisp_Vector *) block->data
2995 && !VECTOR_IN_BLOCK (next, block))
2996 /* This block should be freed because all of it's
2997 space was coalesced into the only free vector. */
2998 free_this_block = 1;
2999 else
3000 {
3001 size_t tmp;
3002 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3003 }
3004 }
3005 }
3006
3007 if (free_this_block)
3008 {
3009 *bprev = block->next;
3010 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3011 mem_delete (mem_find (block->data));
3012 #endif
3013 xfree (block);
3014 }
3015 else
3016 bprev = &block->next;
3017 }
3018
3019 /* Sweep large vectors. */
3020
3021 for (lv = large_vectors; lv; lv = *lvprev)
3022 {
3023 vector = large_vector_vec (lv);
3024 if (VECTOR_MARKED_P (vector))
3025 {
3026 VECTOR_UNMARK (vector);
3027 total_vectors++;
3028 if (vector->header.size & PSEUDOVECTOR_FLAG)
3029 {
3030 /* All non-bool pseudovectors are small enough to be allocated
3031 from vector blocks. This code should be redesigned if some
3032 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3033 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3034 total_vector_slots += vector_nbytes (vector) / word_size;
3035 }
3036 else
3037 total_vector_slots
3038 += header_size / word_size + vector->header.size;
3039 lvprev = &lv->next;
3040 }
3041 else
3042 {
3043 *lvprev = lv->next;
3044 lisp_free (lv);
3045 }
3046 }
3047 }
3048
3049 /* Value is a pointer to a newly allocated Lisp_Vector structure
3050 with room for LEN Lisp_Objects. */
3051
3052 static struct Lisp_Vector *
3053 allocate_vectorlike (ptrdiff_t len)
3054 {
3055 struct Lisp_Vector *p;
3056
3057 MALLOC_BLOCK_INPUT;
3058
3059 if (len == 0)
3060 p = XVECTOR (zero_vector);
3061 else
3062 {
3063 size_t nbytes = header_size + len * word_size;
3064
3065 #ifdef DOUG_LEA_MALLOC
3066 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3067 because mapped region contents are not preserved in
3068 a dumped Emacs. */
3069 mallopt (M_MMAP_MAX, 0);
3070 #endif
3071
3072 if (nbytes <= VBLOCK_BYTES_MAX)
3073 p = allocate_vector_from_block (vroundup (nbytes));
3074 else
3075 {
3076 struct large_vector *lv
3077 = lisp_malloc ((large_vector_offset + header_size
3078 + len * word_size),
3079 MEM_TYPE_VECTORLIKE);
3080 lv->next = large_vectors;
3081 large_vectors = lv;
3082 p = large_vector_vec (lv);
3083 }
3084
3085 #ifdef DOUG_LEA_MALLOC
3086 /* Back to a reasonable maximum of mmap'ed areas. */
3087 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3088 #endif
3089
3090 consing_since_gc += nbytes;
3091 vector_cells_consed += len;
3092 }
3093
3094 MALLOC_UNBLOCK_INPUT;
3095
3096 return p;
3097 }
3098
3099
3100 /* Allocate a vector with LEN slots. */
3101
3102 struct Lisp_Vector *
3103 allocate_vector (EMACS_INT len)
3104 {
3105 struct Lisp_Vector *v;
3106 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3107
3108 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3109 memory_full (SIZE_MAX);
3110 v = allocate_vectorlike (len);
3111 v->header.size = len;
3112 return v;
3113 }
3114
3115
3116 /* Allocate other vector-like structures. */
3117
3118 struct Lisp_Vector *
3119 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3120 {
3121 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3122 int i;
3123
3124 /* Catch bogus values. */
3125 eassert (tag <= PVEC_FONT);
3126 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3127 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3128
3129 /* Only the first lisplen slots will be traced normally by the GC. */
3130 for (i = 0; i < lisplen; ++i)
3131 v->contents[i] = Qnil;
3132
3133 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3134 return v;
3135 }
3136
3137 struct buffer *
3138 allocate_buffer (void)
3139 {
3140 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3141
3142 BUFFER_PVEC_INIT (b);
3143 /* Put B on the chain of all buffers including killed ones. */
3144 b->next = all_buffers;
3145 all_buffers = b;
3146 /* Note that the rest fields of B are not initialized. */
3147 return b;
3148 }
3149
3150 struct Lisp_Hash_Table *
3151 allocate_hash_table (void)
3152 {
3153 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3154 }
3155
3156 struct window *
3157 allocate_window (void)
3158 {
3159 struct window *w;
3160
3161 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3162 /* Users assumes that non-Lisp data is zeroed. */
3163 memset (&w->current_matrix, 0,
3164 sizeof (*w) - offsetof (struct window, current_matrix));
3165 return w;
3166 }
3167
3168 struct terminal *
3169 allocate_terminal (void)
3170 {
3171 struct terminal *t;
3172
3173 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3174 /* Users assumes that non-Lisp data is zeroed. */
3175 memset (&t->next_terminal, 0,
3176 sizeof (*t) - offsetof (struct terminal, next_terminal));
3177 return t;
3178 }
3179
3180 struct frame *
3181 allocate_frame (void)
3182 {
3183 struct frame *f;
3184
3185 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3186 /* Users assumes that non-Lisp data is zeroed. */
3187 memset (&f->face_cache, 0,
3188 sizeof (*f) - offsetof (struct frame, face_cache));
3189 return f;
3190 }
3191
3192 struct Lisp_Process *
3193 allocate_process (void)
3194 {
3195 struct Lisp_Process *p;
3196
3197 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3198 /* Users assumes that non-Lisp data is zeroed. */
3199 memset (&p->pid, 0,
3200 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3201 return p;
3202 }
3203
3204 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3205 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3206 See also the function `vector'. */)
3207 (register Lisp_Object length, Lisp_Object init)
3208 {
3209 Lisp_Object vector;
3210 register ptrdiff_t sizei;
3211 register ptrdiff_t i;
3212 register struct Lisp_Vector *p;
3213
3214 CHECK_NATNUM (length);
3215
3216 p = allocate_vector (XFASTINT (length));
3217 sizei = XFASTINT (length);
3218 for (i = 0; i < sizei; i++)
3219 p->contents[i] = init;
3220
3221 XSETVECTOR (vector, p);
3222 return vector;
3223 }
3224
3225
3226 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3227 doc: /* Return a newly created vector with specified arguments as elements.
3228 Any number of arguments, even zero arguments, are allowed.
3229 usage: (vector &rest OBJECTS) */)
3230 (ptrdiff_t nargs, Lisp_Object *args)
3231 {
3232 ptrdiff_t i;
3233 register Lisp_Object val = make_uninit_vector (nargs);
3234 register struct Lisp_Vector *p = XVECTOR (val);
3235
3236 for (i = 0; i < nargs; i++)
3237 p->contents[i] = args[i];
3238 return val;
3239 }
3240
3241 void
3242 make_byte_code (struct Lisp_Vector *v)
3243 {
3244 /* Don't allow the global zero_vector to become a byte code object. */
3245 eassert (0 < v->header.size);
3246
3247 if (v->header.size > 1 && STRINGP (v->contents[1])
3248 && STRING_MULTIBYTE (v->contents[1]))
3249 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3250 earlier because they produced a raw 8-bit string for byte-code
3251 and now such a byte-code string is loaded as multibyte while
3252 raw 8-bit characters converted to multibyte form. Thus, now we
3253 must convert them back to the original unibyte form. */
3254 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3255 XSETPVECTYPE (v, PVEC_COMPILED);
3256 }
3257
3258 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3259 doc: /* Create a byte-code object with specified arguments as elements.
3260 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3261 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3262 and (optional) INTERACTIVE-SPEC.
3263 The first four arguments are required; at most six have any
3264 significance.
3265 The ARGLIST can be either like the one of `lambda', in which case the arguments
3266 will be dynamically bound before executing the byte code, or it can be an
3267 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3268 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3269 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3270 argument to catch the left-over arguments. If such an integer is used, the
3271 arguments will not be dynamically bound but will be instead pushed on the
3272 stack before executing the byte-code.
3273 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3274 (ptrdiff_t nargs, Lisp_Object *args)
3275 {
3276 ptrdiff_t i;
3277 register Lisp_Object val = make_uninit_vector (nargs);
3278 register struct Lisp_Vector *p = XVECTOR (val);
3279
3280 /* We used to purecopy everything here, if purify-flag was set. This worked
3281 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3282 dangerous, since make-byte-code is used during execution to build
3283 closures, so any closure built during the preload phase would end up
3284 copied into pure space, including its free variables, which is sometimes
3285 just wasteful and other times plainly wrong (e.g. those free vars may want
3286 to be setcar'd). */
3287
3288 for (i = 0; i < nargs; i++)
3289 p->contents[i] = args[i];
3290 make_byte_code (p);
3291 XSETCOMPILED (val, p);
3292 return val;
3293 }
3294
3295
3296 \f
3297 /***********************************************************************
3298 Symbol Allocation
3299 ***********************************************************************/
3300
3301 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3302 of the required alignment if LSB tags are used. */
3303
3304 union aligned_Lisp_Symbol
3305 {
3306 struct Lisp_Symbol s;
3307 #if USE_LSB_TAG
3308 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3309 & -GCALIGNMENT];
3310 #endif
3311 };
3312
3313 /* Each symbol_block is just under 1020 bytes long, since malloc
3314 really allocates in units of powers of two and uses 4 bytes for its
3315 own overhead. */
3316
3317 #define SYMBOL_BLOCK_SIZE \
3318 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3319
3320 struct symbol_block
3321 {
3322 /* Place `symbols' first, to preserve alignment. */
3323 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3324 struct symbol_block *next;
3325 };
3326
3327 /* Current symbol block and index of first unused Lisp_Symbol
3328 structure in it. */
3329
3330 static struct symbol_block *symbol_block;
3331 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3332 /* Pointer to the first symbol_block that contains pinned symbols.
3333 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3334 10K of which are pinned (and all but 250 of them are interned in obarray),
3335 whereas a "typical session" has in the order of 30K symbols.
3336 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3337 than 30K to find the 10K symbols we need to mark. */
3338 static struct symbol_block *symbol_block_pinned;
3339
3340 /* List of free symbols. */
3341
3342 static struct Lisp_Symbol *symbol_free_list;
3343
3344 static void
3345 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3346 {
3347 XSYMBOL (sym)->name = name;
3348 }
3349
3350 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3351 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3352 Its value is void, and its function definition and property list are nil. */)
3353 (Lisp_Object name)
3354 {
3355 register Lisp_Object val;
3356 register struct Lisp_Symbol *p;
3357
3358 CHECK_STRING (name);
3359
3360 MALLOC_BLOCK_INPUT;
3361
3362 if (symbol_free_list)
3363 {
3364 XSETSYMBOL (val, symbol_free_list);
3365 symbol_free_list = symbol_free_list->next;
3366 }
3367 else
3368 {
3369 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3370 {
3371 struct symbol_block *new
3372 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3373 new->next = symbol_block;
3374 symbol_block = new;
3375 symbol_block_index = 0;
3376 total_free_symbols += SYMBOL_BLOCK_SIZE;
3377 }
3378 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3379 symbol_block_index++;
3380 }
3381
3382 MALLOC_UNBLOCK_INPUT;
3383
3384 p = XSYMBOL (val);
3385 set_symbol_name (val, name);
3386 set_symbol_plist (val, Qnil);
3387 p->redirect = SYMBOL_PLAINVAL;
3388 SET_SYMBOL_VAL (p, Qunbound);
3389 set_symbol_function (val, Qnil);
3390 set_symbol_next (val, NULL);
3391 p->gcmarkbit = false;
3392 p->interned = SYMBOL_UNINTERNED;
3393 p->constant = 0;
3394 p->declared_special = false;
3395 p->pinned = false;
3396 consing_since_gc += sizeof (struct Lisp_Symbol);
3397 symbols_consed++;
3398 total_free_symbols--;
3399 return val;
3400 }
3401
3402
3403 \f
3404 /***********************************************************************
3405 Marker (Misc) Allocation
3406 ***********************************************************************/
3407
3408 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3409 the required alignment when LSB tags are used. */
3410
3411 union aligned_Lisp_Misc
3412 {
3413 union Lisp_Misc m;
3414 #if USE_LSB_TAG
3415 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3416 & -GCALIGNMENT];
3417 #endif
3418 };
3419
3420 /* Allocation of markers and other objects that share that structure.
3421 Works like allocation of conses. */
3422
3423 #define MARKER_BLOCK_SIZE \
3424 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3425
3426 struct marker_block
3427 {
3428 /* Place `markers' first, to preserve alignment. */
3429 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3430 struct marker_block *next;
3431 };
3432
3433 static struct marker_block *marker_block;
3434 static int marker_block_index = MARKER_BLOCK_SIZE;
3435
3436 static union Lisp_Misc *marker_free_list;
3437
3438 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3439
3440 static Lisp_Object
3441 allocate_misc (enum Lisp_Misc_Type type)
3442 {
3443 Lisp_Object val;
3444
3445 MALLOC_BLOCK_INPUT;
3446
3447 if (marker_free_list)
3448 {
3449 XSETMISC (val, marker_free_list);
3450 marker_free_list = marker_free_list->u_free.chain;
3451 }
3452 else
3453 {
3454 if (marker_block_index == MARKER_BLOCK_SIZE)
3455 {
3456 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3457 new->next = marker_block;
3458 marker_block = new;
3459 marker_block_index = 0;
3460 total_free_markers += MARKER_BLOCK_SIZE;
3461 }
3462 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3463 marker_block_index++;
3464 }
3465
3466 MALLOC_UNBLOCK_INPUT;
3467
3468 --total_free_markers;
3469 consing_since_gc += sizeof (union Lisp_Misc);
3470 misc_objects_consed++;
3471 XMISCANY (val)->type = type;
3472 XMISCANY (val)->gcmarkbit = 0;
3473 return val;
3474 }
3475
3476 /* Free a Lisp_Misc object. */
3477
3478 void
3479 free_misc (Lisp_Object misc)
3480 {
3481 XMISCANY (misc)->type = Lisp_Misc_Free;
3482 XMISC (misc)->u_free.chain = marker_free_list;
3483 marker_free_list = XMISC (misc);
3484 consing_since_gc -= sizeof (union Lisp_Misc);
3485 total_free_markers++;
3486 }
3487
3488 /* Verify properties of Lisp_Save_Value's representation
3489 that are assumed here and elsewhere. */
3490
3491 verify (SAVE_UNUSED == 0);
3492 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3493 >> SAVE_SLOT_BITS)
3494 == 0);
3495
3496 /* Return Lisp_Save_Value objects for the various combinations
3497 that callers need. */
3498
3499 Lisp_Object
3500 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3501 {
3502 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3503 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3504 p->save_type = SAVE_TYPE_INT_INT_INT;
3505 p->data[0].integer = a;
3506 p->data[1].integer = b;
3507 p->data[2].integer = c;
3508 return val;
3509 }
3510
3511 Lisp_Object
3512 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3513 Lisp_Object d)
3514 {
3515 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3516 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3517 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3518 p->data[0].object = a;
3519 p->data[1].object = b;
3520 p->data[2].object = c;
3521 p->data[3].object = d;
3522 return val;
3523 }
3524
3525 Lisp_Object
3526 make_save_ptr (void *a)
3527 {
3528 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3529 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3530 p->save_type = SAVE_POINTER;
3531 p->data[0].pointer = a;
3532 return val;
3533 }
3534
3535 Lisp_Object
3536 make_save_ptr_int (void *a, ptrdiff_t b)
3537 {
3538 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3539 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3540 p->save_type = SAVE_TYPE_PTR_INT;
3541 p->data[0].pointer = a;
3542 p->data[1].integer = b;
3543 return val;
3544 }
3545
3546 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3547 Lisp_Object
3548 make_save_ptr_ptr (void *a, void *b)
3549 {
3550 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3551 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3552 p->save_type = SAVE_TYPE_PTR_PTR;
3553 p->data[0].pointer = a;
3554 p->data[1].pointer = b;
3555 return val;
3556 }
3557 #endif
3558
3559 Lisp_Object
3560 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3561 {
3562 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3563 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3564 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3565 p->data[0].funcpointer = a;
3566 p->data[1].pointer = b;
3567 p->data[2].object = c;
3568 return val;
3569 }
3570
3571 /* Return a Lisp_Save_Value object that represents an array A
3572 of N Lisp objects. */
3573
3574 Lisp_Object
3575 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3576 {
3577 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3578 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3579 p->save_type = SAVE_TYPE_MEMORY;
3580 p->data[0].pointer = a;
3581 p->data[1].integer = n;
3582 return val;
3583 }
3584
3585 /* Free a Lisp_Save_Value object. Do not use this function
3586 if SAVE contains pointer other than returned by xmalloc. */
3587
3588 void
3589 free_save_value (Lisp_Object save)
3590 {
3591 xfree (XSAVE_POINTER (save, 0));
3592 free_misc (save);
3593 }
3594
3595 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3596
3597 Lisp_Object
3598 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3599 {
3600 register Lisp_Object overlay;
3601
3602 overlay = allocate_misc (Lisp_Misc_Overlay);
3603 OVERLAY_START (overlay) = start;
3604 OVERLAY_END (overlay) = end;
3605 set_overlay_plist (overlay, plist);
3606 XOVERLAY (overlay)->next = NULL;
3607 return overlay;
3608 }
3609
3610 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3611 doc: /* Return a newly allocated marker which does not point at any place. */)
3612 (void)
3613 {
3614 register Lisp_Object val;
3615 register struct Lisp_Marker *p;
3616
3617 val = allocate_misc (Lisp_Misc_Marker);
3618 p = XMARKER (val);
3619 p->buffer = 0;
3620 p->bytepos = 0;
3621 p->charpos = 0;
3622 p->next = NULL;
3623 p->insertion_type = 0;
3624 p->need_adjustment = 0;
3625 return val;
3626 }
3627
3628 /* Return a newly allocated marker which points into BUF
3629 at character position CHARPOS and byte position BYTEPOS. */
3630
3631 Lisp_Object
3632 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3633 {
3634 Lisp_Object obj;
3635 struct Lisp_Marker *m;
3636
3637 /* No dead buffers here. */
3638 eassert (BUFFER_LIVE_P (buf));
3639
3640 /* Every character is at least one byte. */
3641 eassert (charpos <= bytepos);
3642
3643 obj = allocate_misc (Lisp_Misc_Marker);
3644 m = XMARKER (obj);
3645 m->buffer = buf;
3646 m->charpos = charpos;
3647 m->bytepos = bytepos;
3648 m->insertion_type = 0;
3649 m->need_adjustment = 0;
3650 m->next = BUF_MARKERS (buf);
3651 BUF_MARKERS (buf) = m;
3652 return obj;
3653 }
3654
3655 /* Put MARKER back on the free list after using it temporarily. */
3656
3657 void
3658 free_marker (Lisp_Object marker)
3659 {
3660 unchain_marker (XMARKER (marker));
3661 free_misc (marker);
3662 }
3663
3664 \f
3665 /* Return a newly created vector or string with specified arguments as
3666 elements. If all the arguments are characters that can fit
3667 in a string of events, make a string; otherwise, make a vector.
3668
3669 Any number of arguments, even zero arguments, are allowed. */
3670
3671 Lisp_Object
3672 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3673 {
3674 ptrdiff_t i;
3675
3676 for (i = 0; i < nargs; i++)
3677 /* The things that fit in a string
3678 are characters that are in 0...127,
3679 after discarding the meta bit and all the bits above it. */
3680 if (!INTEGERP (args[i])
3681 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3682 return Fvector (nargs, args);
3683
3684 /* Since the loop exited, we know that all the things in it are
3685 characters, so we can make a string. */
3686 {
3687 Lisp_Object result;
3688
3689 result = Fmake_string (make_number (nargs), make_number (0));
3690 for (i = 0; i < nargs; i++)
3691 {
3692 SSET (result, i, XINT (args[i]));
3693 /* Move the meta bit to the right place for a string char. */
3694 if (XINT (args[i]) & CHAR_META)
3695 SSET (result, i, SREF (result, i) | 0x80);
3696 }
3697
3698 return result;
3699 }
3700 }
3701
3702
3703 \f
3704 /************************************************************************
3705 Memory Full Handling
3706 ************************************************************************/
3707
3708
3709 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3710 there may have been size_t overflow so that malloc was never
3711 called, or perhaps malloc was invoked successfully but the
3712 resulting pointer had problems fitting into a tagged EMACS_INT. In
3713 either case this counts as memory being full even though malloc did
3714 not fail. */
3715
3716 void
3717 memory_full (size_t nbytes)
3718 {
3719 /* Do not go into hysterics merely because a large request failed. */
3720 bool enough_free_memory = 0;
3721 if (SPARE_MEMORY < nbytes)
3722 {
3723 void *p;
3724
3725 MALLOC_BLOCK_INPUT;
3726 p = malloc (SPARE_MEMORY);
3727 if (p)
3728 {
3729 free (p);
3730 enough_free_memory = 1;
3731 }
3732 MALLOC_UNBLOCK_INPUT;
3733 }
3734
3735 if (! enough_free_memory)
3736 {
3737 int i;
3738
3739 Vmemory_full = Qt;
3740
3741 memory_full_cons_threshold = sizeof (struct cons_block);
3742
3743 /* The first time we get here, free the spare memory. */
3744 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3745 if (spare_memory[i])
3746 {
3747 if (i == 0)
3748 free (spare_memory[i]);
3749 else if (i >= 1 && i <= 4)
3750 lisp_align_free (spare_memory[i]);
3751 else
3752 lisp_free (spare_memory[i]);
3753 spare_memory[i] = 0;
3754 }
3755 }
3756
3757 /* This used to call error, but if we've run out of memory, we could
3758 get infinite recursion trying to build the string. */
3759 xsignal (Qnil, Vmemory_signal_data);
3760 }
3761
3762 /* If we released our reserve (due to running out of memory),
3763 and we have a fair amount free once again,
3764 try to set aside another reserve in case we run out once more.
3765
3766 This is called when a relocatable block is freed in ralloc.c,
3767 and also directly from this file, in case we're not using ralloc.c. */
3768
3769 void
3770 refill_memory_reserve (void)
3771 {
3772 #ifndef SYSTEM_MALLOC
3773 if (spare_memory[0] == 0)
3774 spare_memory[0] = malloc (SPARE_MEMORY);
3775 if (spare_memory[1] == 0)
3776 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3777 MEM_TYPE_SPARE);
3778 if (spare_memory[2] == 0)
3779 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3780 MEM_TYPE_SPARE);
3781 if (spare_memory[3] == 0)
3782 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3783 MEM_TYPE_SPARE);
3784 if (spare_memory[4] == 0)
3785 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3786 MEM_TYPE_SPARE);
3787 if (spare_memory[5] == 0)
3788 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3789 MEM_TYPE_SPARE);
3790 if (spare_memory[6] == 0)
3791 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3792 MEM_TYPE_SPARE);
3793 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3794 Vmemory_full = Qnil;
3795 #endif
3796 }
3797 \f
3798 /************************************************************************
3799 C Stack Marking
3800 ************************************************************************/
3801
3802 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3803
3804 /* Conservative C stack marking requires a method to identify possibly
3805 live Lisp objects given a pointer value. We do this by keeping
3806 track of blocks of Lisp data that are allocated in a red-black tree
3807 (see also the comment of mem_node which is the type of nodes in
3808 that tree). Function lisp_malloc adds information for an allocated
3809 block to the red-black tree with calls to mem_insert, and function
3810 lisp_free removes it with mem_delete. Functions live_string_p etc
3811 call mem_find to lookup information about a given pointer in the
3812 tree, and use that to determine if the pointer points to a Lisp
3813 object or not. */
3814
3815 /* Initialize this part of alloc.c. */
3816
3817 static void
3818 mem_init (void)
3819 {
3820 mem_z.left = mem_z.right = MEM_NIL;
3821 mem_z.parent = NULL;
3822 mem_z.color = MEM_BLACK;
3823 mem_z.start = mem_z.end = NULL;
3824 mem_root = MEM_NIL;
3825 }
3826
3827
3828 /* Value is a pointer to the mem_node containing START. Value is
3829 MEM_NIL if there is no node in the tree containing START. */
3830
3831 static struct mem_node *
3832 mem_find (void *start)
3833 {
3834 struct mem_node *p;
3835
3836 if (start < min_heap_address || start > max_heap_address)
3837 return MEM_NIL;
3838
3839 /* Make the search always successful to speed up the loop below. */
3840 mem_z.start = start;
3841 mem_z.end = (char *) start + 1;
3842
3843 p = mem_root;
3844 while (start < p->start || start >= p->end)
3845 p = start < p->start ? p->left : p->right;
3846 return p;
3847 }
3848
3849
3850 /* Insert a new node into the tree for a block of memory with start
3851 address START, end address END, and type TYPE. Value is a
3852 pointer to the node that was inserted. */
3853
3854 static struct mem_node *
3855 mem_insert (void *start, void *end, enum mem_type type)
3856 {
3857 struct mem_node *c, *parent, *x;
3858
3859 if (min_heap_address == NULL || start < min_heap_address)
3860 min_heap_address = start;
3861 if (max_heap_address == NULL || end > max_heap_address)
3862 max_heap_address = end;
3863
3864 /* See where in the tree a node for START belongs. In this
3865 particular application, it shouldn't happen that a node is already
3866 present. For debugging purposes, let's check that. */
3867 c = mem_root;
3868 parent = NULL;
3869
3870 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3871
3872 while (c != MEM_NIL)
3873 {
3874 if (start >= c->start && start < c->end)
3875 emacs_abort ();
3876 parent = c;
3877 c = start < c->start ? c->left : c->right;
3878 }
3879
3880 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3881
3882 while (c != MEM_NIL)
3883 {
3884 parent = c;
3885 c = start < c->start ? c->left : c->right;
3886 }
3887
3888 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3889
3890 /* Create a new node. */
3891 #ifdef GC_MALLOC_CHECK
3892 x = malloc (sizeof *x);
3893 if (x == NULL)
3894 emacs_abort ();
3895 #else
3896 x = xmalloc (sizeof *x);
3897 #endif
3898 x->start = start;
3899 x->end = end;
3900 x->type = type;
3901 x->parent = parent;
3902 x->left = x->right = MEM_NIL;
3903 x->color = MEM_RED;
3904
3905 /* Insert it as child of PARENT or install it as root. */
3906 if (parent)
3907 {
3908 if (start < parent->start)
3909 parent->left = x;
3910 else
3911 parent->right = x;
3912 }
3913 else
3914 mem_root = x;
3915
3916 /* Re-establish red-black tree properties. */
3917 mem_insert_fixup (x);
3918
3919 return x;
3920 }
3921
3922
3923 /* Re-establish the red-black properties of the tree, and thereby
3924 balance the tree, after node X has been inserted; X is always red. */
3925
3926 static void
3927 mem_insert_fixup (struct mem_node *x)
3928 {
3929 while (x != mem_root && x->parent->color == MEM_RED)
3930 {
3931 /* X is red and its parent is red. This is a violation of
3932 red-black tree property #3. */
3933
3934 if (x->parent == x->parent->parent->left)
3935 {
3936 /* We're on the left side of our grandparent, and Y is our
3937 "uncle". */
3938 struct mem_node *y = x->parent->parent->right;
3939
3940 if (y->color == MEM_RED)
3941 {
3942 /* Uncle and parent are red but should be black because
3943 X is red. Change the colors accordingly and proceed
3944 with the grandparent. */
3945 x->parent->color = MEM_BLACK;
3946 y->color = MEM_BLACK;
3947 x->parent->parent->color = MEM_RED;
3948 x = x->parent->parent;
3949 }
3950 else
3951 {
3952 /* Parent and uncle have different colors; parent is
3953 red, uncle is black. */
3954 if (x == x->parent->right)
3955 {
3956 x = x->parent;
3957 mem_rotate_left (x);
3958 }
3959
3960 x->parent->color = MEM_BLACK;
3961 x->parent->parent->color = MEM_RED;
3962 mem_rotate_right (x->parent->parent);
3963 }
3964 }
3965 else
3966 {
3967 /* This is the symmetrical case of above. */
3968 struct mem_node *y = x->parent->parent->left;
3969
3970 if (y->color == MEM_RED)
3971 {
3972 x->parent->color = MEM_BLACK;
3973 y->color = MEM_BLACK;
3974 x->parent->parent->color = MEM_RED;
3975 x = x->parent->parent;
3976 }
3977 else
3978 {
3979 if (x == x->parent->left)
3980 {
3981 x = x->parent;
3982 mem_rotate_right (x);
3983 }
3984
3985 x->parent->color = MEM_BLACK;
3986 x->parent->parent->color = MEM_RED;
3987 mem_rotate_left (x->parent->parent);
3988 }
3989 }
3990 }
3991
3992 /* The root may have been changed to red due to the algorithm. Set
3993 it to black so that property #5 is satisfied. */
3994 mem_root->color = MEM_BLACK;
3995 }
3996
3997
3998 /* (x) (y)
3999 / \ / \
4000 a (y) ===> (x) c
4001 / \ / \
4002 b c a b */
4003
4004 static void
4005 mem_rotate_left (struct mem_node *x)
4006 {
4007 struct mem_node *y;
4008
4009 /* Turn y's left sub-tree into x's right sub-tree. */
4010 y = x->right;
4011 x->right = y->left;
4012 if (y->left != MEM_NIL)
4013 y->left->parent = x;
4014
4015 /* Y's parent was x's parent. */
4016 if (y != MEM_NIL)
4017 y->parent = x->parent;
4018
4019 /* Get the parent to point to y instead of x. */
4020 if (x->parent)
4021 {
4022 if (x == x->parent->left)
4023 x->parent->left = y;
4024 else
4025 x->parent->right = y;
4026 }
4027 else
4028 mem_root = y;
4029
4030 /* Put x on y's left. */
4031 y->left = x;
4032 if (x != MEM_NIL)
4033 x->parent = y;
4034 }
4035
4036
4037 /* (x) (Y)
4038 / \ / \
4039 (y) c ===> a (x)
4040 / \ / \
4041 a b b c */
4042
4043 static void
4044 mem_rotate_right (struct mem_node *x)
4045 {
4046 struct mem_node *y = x->left;
4047
4048 x->left = y->right;
4049 if (y->right != MEM_NIL)
4050 y->right->parent = x;
4051
4052 if (y != MEM_NIL)
4053 y->parent = x->parent;
4054 if (x->parent)
4055 {
4056 if (x == x->parent->right)
4057 x->parent->right = y;
4058 else
4059 x->parent->left = y;
4060 }
4061 else
4062 mem_root = y;
4063
4064 y->right = x;
4065 if (x != MEM_NIL)
4066 x->parent = y;
4067 }
4068
4069
4070 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4071
4072 static void
4073 mem_delete (struct mem_node *z)
4074 {
4075 struct mem_node *x, *y;
4076
4077 if (!z || z == MEM_NIL)
4078 return;
4079
4080 if (z->left == MEM_NIL || z->right == MEM_NIL)
4081 y = z;
4082 else
4083 {
4084 y = z->right;
4085 while (y->left != MEM_NIL)
4086 y = y->left;
4087 }
4088
4089 if (y->left != MEM_NIL)
4090 x = y->left;
4091 else
4092 x = y->right;
4093
4094 x->parent = y->parent;
4095 if (y->parent)
4096 {
4097 if (y == y->parent->left)
4098 y->parent->left = x;
4099 else
4100 y->parent->right = x;
4101 }
4102 else
4103 mem_root = x;
4104
4105 if (y != z)
4106 {
4107 z->start = y->start;
4108 z->end = y->end;
4109 z->type = y->type;
4110 }
4111
4112 if (y->color == MEM_BLACK)
4113 mem_delete_fixup (x);
4114
4115 #ifdef GC_MALLOC_CHECK
4116 free (y);
4117 #else
4118 xfree (y);
4119 #endif
4120 }
4121
4122
4123 /* Re-establish the red-black properties of the tree, after a
4124 deletion. */
4125
4126 static void
4127 mem_delete_fixup (struct mem_node *x)
4128 {
4129 while (x != mem_root && x->color == MEM_BLACK)
4130 {
4131 if (x == x->parent->left)
4132 {
4133 struct mem_node *w = x->parent->right;
4134
4135 if (w->color == MEM_RED)
4136 {
4137 w->color = MEM_BLACK;
4138 x->parent->color = MEM_RED;
4139 mem_rotate_left (x->parent);
4140 w = x->parent->right;
4141 }
4142
4143 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4144 {
4145 w->color = MEM_RED;
4146 x = x->parent;
4147 }
4148 else
4149 {
4150 if (w->right->color == MEM_BLACK)
4151 {
4152 w->left->color = MEM_BLACK;
4153 w->color = MEM_RED;
4154 mem_rotate_right (w);
4155 w = x->parent->right;
4156 }
4157 w->color = x->parent->color;
4158 x->parent->color = MEM_BLACK;
4159 w->right->color = MEM_BLACK;
4160 mem_rotate_left (x->parent);
4161 x = mem_root;
4162 }
4163 }
4164 else
4165 {
4166 struct mem_node *w = x->parent->left;
4167
4168 if (w->color == MEM_RED)
4169 {
4170 w->color = MEM_BLACK;
4171 x->parent->color = MEM_RED;
4172 mem_rotate_right (x->parent);
4173 w = x->parent->left;
4174 }
4175
4176 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4177 {
4178 w->color = MEM_RED;
4179 x = x->parent;
4180 }
4181 else
4182 {
4183 if (w->left->color == MEM_BLACK)
4184 {
4185 w->right->color = MEM_BLACK;
4186 w->color = MEM_RED;
4187 mem_rotate_left (w);
4188 w = x->parent->left;
4189 }
4190
4191 w->color = x->parent->color;
4192 x->parent->color = MEM_BLACK;
4193 w->left->color = MEM_BLACK;
4194 mem_rotate_right (x->parent);
4195 x = mem_root;
4196 }
4197 }
4198 }
4199
4200 x->color = MEM_BLACK;
4201 }
4202
4203
4204 /* Value is non-zero if P is a pointer to a live Lisp string on
4205 the heap. M is a pointer to the mem_block for P. */
4206
4207 static bool
4208 live_string_p (struct mem_node *m, void *p)
4209 {
4210 if (m->type == MEM_TYPE_STRING)
4211 {
4212 struct string_block *b = m->start;
4213 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4214
4215 /* P must point to the start of a Lisp_String structure, and it
4216 must not be on the free-list. */
4217 return (offset >= 0
4218 && offset % sizeof b->strings[0] == 0
4219 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4220 && ((struct Lisp_String *) p)->data != NULL);
4221 }
4222 else
4223 return 0;
4224 }
4225
4226
4227 /* Value is non-zero if P is a pointer to a live Lisp cons on
4228 the heap. M is a pointer to the mem_block for P. */
4229
4230 static bool
4231 live_cons_p (struct mem_node *m, void *p)
4232 {
4233 if (m->type == MEM_TYPE_CONS)
4234 {
4235 struct cons_block *b = m->start;
4236 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4237
4238 /* P must point to the start of a Lisp_Cons, not be
4239 one of the unused cells in the current cons block,
4240 and not be on the free-list. */
4241 return (offset >= 0
4242 && offset % sizeof b->conses[0] == 0
4243 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4244 && (b != cons_block
4245 || offset / sizeof b->conses[0] < cons_block_index)
4246 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4247 }
4248 else
4249 return 0;
4250 }
4251
4252
4253 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4254 the heap. M is a pointer to the mem_block for P. */
4255
4256 static bool
4257 live_symbol_p (struct mem_node *m, void *p)
4258 {
4259 if (m->type == MEM_TYPE_SYMBOL)
4260 {
4261 struct symbol_block *b = m->start;
4262 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4263
4264 /* P must point to the start of a Lisp_Symbol, not be
4265 one of the unused cells in the current symbol block,
4266 and not be on the free-list. */
4267 return (offset >= 0
4268 && offset % sizeof b->symbols[0] == 0
4269 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4270 && (b != symbol_block
4271 || offset / sizeof b->symbols[0] < symbol_block_index)
4272 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4273 }
4274 else
4275 return 0;
4276 }
4277
4278
4279 /* Value is non-zero if P is a pointer to a live Lisp float on
4280 the heap. M is a pointer to the mem_block for P. */
4281
4282 static bool
4283 live_float_p (struct mem_node *m, void *p)
4284 {
4285 if (m->type == MEM_TYPE_FLOAT)
4286 {
4287 struct float_block *b = m->start;
4288 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4289
4290 /* P must point to the start of a Lisp_Float and not be
4291 one of the unused cells in the current float block. */
4292 return (offset >= 0
4293 && offset % sizeof b->floats[0] == 0
4294 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4295 && (b != float_block
4296 || offset / sizeof b->floats[0] < float_block_index));
4297 }
4298 else
4299 return 0;
4300 }
4301
4302
4303 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4304 the heap. M is a pointer to the mem_block for P. */
4305
4306 static bool
4307 live_misc_p (struct mem_node *m, void *p)
4308 {
4309 if (m->type == MEM_TYPE_MISC)
4310 {
4311 struct marker_block *b = m->start;
4312 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4313
4314 /* P must point to the start of a Lisp_Misc, not be
4315 one of the unused cells in the current misc block,
4316 and not be on the free-list. */
4317 return (offset >= 0
4318 && offset % sizeof b->markers[0] == 0
4319 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4320 && (b != marker_block
4321 || offset / sizeof b->markers[0] < marker_block_index)
4322 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4323 }
4324 else
4325 return 0;
4326 }
4327
4328
4329 /* Value is non-zero if P is a pointer to a live vector-like object.
4330 M is a pointer to the mem_block for P. */
4331
4332 static bool
4333 live_vector_p (struct mem_node *m, void *p)
4334 {
4335 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4336 {
4337 /* This memory node corresponds to a vector block. */
4338 struct vector_block *block = m->start;
4339 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4340
4341 /* P is in the block's allocation range. Scan the block
4342 up to P and see whether P points to the start of some
4343 vector which is not on a free list. FIXME: check whether
4344 some allocation patterns (probably a lot of short vectors)
4345 may cause a substantial overhead of this loop. */
4346 while (VECTOR_IN_BLOCK (vector, block)
4347 && vector <= (struct Lisp_Vector *) p)
4348 {
4349 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4350 return 1;
4351 else
4352 vector = ADVANCE (vector, vector_nbytes (vector));
4353 }
4354 }
4355 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4356 /* This memory node corresponds to a large vector. */
4357 return 1;
4358 return 0;
4359 }
4360
4361
4362 /* Value is non-zero if P is a pointer to a live buffer. M is a
4363 pointer to the mem_block for P. */
4364
4365 static bool
4366 live_buffer_p (struct mem_node *m, void *p)
4367 {
4368 /* P must point to the start of the block, and the buffer
4369 must not have been killed. */
4370 return (m->type == MEM_TYPE_BUFFER
4371 && p == m->start
4372 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4373 }
4374
4375 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4376
4377 #if GC_MARK_STACK
4378
4379 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4380
4381 /* Currently not used, but may be called from gdb. */
4382
4383 void dump_zombies (void) EXTERNALLY_VISIBLE;
4384
4385 /* Array of objects that are kept alive because the C stack contains
4386 a pattern that looks like a reference to them. */
4387
4388 #define MAX_ZOMBIES 10
4389 static Lisp_Object zombies[MAX_ZOMBIES];
4390
4391 /* Number of zombie objects. */
4392
4393 static EMACS_INT nzombies;
4394
4395 /* Number of garbage collections. */
4396
4397 static EMACS_INT ngcs;
4398
4399 /* Average percentage of zombies per collection. */
4400
4401 static double avg_zombies;
4402
4403 /* Max. number of live and zombie objects. */
4404
4405 static EMACS_INT max_live, max_zombies;
4406
4407 /* Average number of live objects per GC. */
4408
4409 static double avg_live;
4410
4411 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4412 doc: /* Show information about live and zombie objects. */)
4413 (void)
4414 {
4415 Lisp_Object args[8], zombie_list = Qnil;
4416 EMACS_INT i;
4417 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4418 zombie_list = Fcons (zombies[i], zombie_list);
4419 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4420 args[1] = make_number (ngcs);
4421 args[2] = make_float (avg_live);
4422 args[3] = make_float (avg_zombies);
4423 args[4] = make_float (avg_zombies / avg_live / 100);
4424 args[5] = make_number (max_live);
4425 args[6] = make_number (max_zombies);
4426 args[7] = zombie_list;
4427 return Fmessage (8, args);
4428 }
4429
4430 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4431
4432
4433 /* Mark OBJ if we can prove it's a Lisp_Object. */
4434
4435 static void
4436 mark_maybe_object (Lisp_Object obj)
4437 {
4438 void *po;
4439 struct mem_node *m;
4440
4441 #if USE_VALGRIND
4442 if (valgrind_p)
4443 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4444 #endif
4445
4446 if (INTEGERP (obj))
4447 return;
4448
4449 po = (void *) XPNTR (obj);
4450 m = mem_find (po);
4451
4452 if (m != MEM_NIL)
4453 {
4454 bool mark_p = 0;
4455
4456 switch (XTYPE (obj))
4457 {
4458 case Lisp_String:
4459 mark_p = (live_string_p (m, po)
4460 && !STRING_MARKED_P ((struct Lisp_String *) po));
4461 break;
4462
4463 case Lisp_Cons:
4464 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4465 break;
4466
4467 case Lisp_Symbol:
4468 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4469 break;
4470
4471 case Lisp_Float:
4472 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4473 break;
4474
4475 case Lisp_Vectorlike:
4476 /* Note: can't check BUFFERP before we know it's a
4477 buffer because checking that dereferences the pointer
4478 PO which might point anywhere. */
4479 if (live_vector_p (m, po))
4480 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4481 else if (live_buffer_p (m, po))
4482 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4483 break;
4484
4485 case Lisp_Misc:
4486 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4487 break;
4488
4489 default:
4490 break;
4491 }
4492
4493 if (mark_p)
4494 {
4495 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4496 if (nzombies < MAX_ZOMBIES)
4497 zombies[nzombies] = obj;
4498 ++nzombies;
4499 #endif
4500 mark_object (obj);
4501 }
4502 }
4503 }
4504
4505
4506 /* If P points to Lisp data, mark that as live if it isn't already
4507 marked. */
4508
4509 static void
4510 mark_maybe_pointer (void *p)
4511 {
4512 struct mem_node *m;
4513
4514 #if USE_VALGRIND
4515 if (valgrind_p)
4516 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4517 #endif
4518
4519 /* Quickly rule out some values which can't point to Lisp data.
4520 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4521 Otherwise, assume that Lisp data is aligned on even addresses. */
4522 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4523 return;
4524
4525 m = mem_find (p);
4526 if (m != MEM_NIL)
4527 {
4528 Lisp_Object obj = Qnil;
4529
4530 switch (m->type)
4531 {
4532 case MEM_TYPE_NON_LISP:
4533 case MEM_TYPE_SPARE:
4534 /* Nothing to do; not a pointer to Lisp memory. */
4535 break;
4536
4537 case MEM_TYPE_BUFFER:
4538 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4539 XSETVECTOR (obj, p);
4540 break;
4541
4542 case MEM_TYPE_CONS:
4543 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4544 XSETCONS (obj, p);
4545 break;
4546
4547 case MEM_TYPE_STRING:
4548 if (live_string_p (m, p)
4549 && !STRING_MARKED_P ((struct Lisp_String *) p))
4550 XSETSTRING (obj, p);
4551 break;
4552
4553 case MEM_TYPE_MISC:
4554 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4555 XSETMISC (obj, p);
4556 break;
4557
4558 case MEM_TYPE_SYMBOL:
4559 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4560 XSETSYMBOL (obj, p);
4561 break;
4562
4563 case MEM_TYPE_FLOAT:
4564 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4565 XSETFLOAT (obj, p);
4566 break;
4567
4568 case MEM_TYPE_VECTORLIKE:
4569 case MEM_TYPE_VECTOR_BLOCK:
4570 if (live_vector_p (m, p))
4571 {
4572 Lisp_Object tem;
4573 XSETVECTOR (tem, p);
4574 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4575 obj = tem;
4576 }
4577 break;
4578
4579 default:
4580 emacs_abort ();
4581 }
4582
4583 if (!NILP (obj))
4584 mark_object (obj);
4585 }
4586 }
4587
4588
4589 /* Alignment of pointer values. Use alignof, as it sometimes returns
4590 a smaller alignment than GCC's __alignof__ and mark_memory might
4591 miss objects if __alignof__ were used. */
4592 #define GC_POINTER_ALIGNMENT alignof (void *)
4593
4594 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4595 not suffice, which is the typical case. A host where a Lisp_Object is
4596 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4597 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4598 suffice to widen it to to a Lisp_Object and check it that way. */
4599 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4600 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4601 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4602 nor mark_maybe_object can follow the pointers. This should not occur on
4603 any practical porting target. */
4604 # error "MSB type bits straddle pointer-word boundaries"
4605 # endif
4606 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4607 pointer words that hold pointers ORed with type bits. */
4608 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4609 #else
4610 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4611 words that hold unmodified pointers. */
4612 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4613 #endif
4614
4615 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4616 or END+OFFSET..START. */
4617
4618 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4619 mark_memory (void *start, void *end)
4620 {
4621 void **pp;
4622 int i;
4623
4624 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4625 nzombies = 0;
4626 #endif
4627
4628 /* Make START the pointer to the start of the memory region,
4629 if it isn't already. */
4630 if (end < start)
4631 {
4632 void *tem = start;
4633 start = end;
4634 end = tem;
4635 }
4636
4637 /* Mark Lisp data pointed to. This is necessary because, in some
4638 situations, the C compiler optimizes Lisp objects away, so that
4639 only a pointer to them remains. Example:
4640
4641 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4642 ()
4643 {
4644 Lisp_Object obj = build_string ("test");
4645 struct Lisp_String *s = XSTRING (obj);
4646 Fgarbage_collect ();
4647 fprintf (stderr, "test `%s'\n", s->data);
4648 return Qnil;
4649 }
4650
4651 Here, `obj' isn't really used, and the compiler optimizes it
4652 away. The only reference to the life string is through the
4653 pointer `s'. */
4654
4655 for (pp = start; (void *) pp < end; pp++)
4656 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4657 {
4658 void *p = *(void **) ((char *) pp + i);
4659 mark_maybe_pointer (p);
4660 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4661 mark_maybe_object (XIL ((intptr_t) p));
4662 }
4663 }
4664
4665 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4666
4667 static bool setjmp_tested_p;
4668 static int longjmps_done;
4669
4670 #define SETJMP_WILL_LIKELY_WORK "\
4671 \n\
4672 Emacs garbage collector has been changed to use conservative stack\n\
4673 marking. Emacs has determined that the method it uses to do the\n\
4674 marking will likely work on your system, but this isn't sure.\n\
4675 \n\
4676 If you are a system-programmer, or can get the help of a local wizard\n\
4677 who is, please take a look at the function mark_stack in alloc.c, and\n\
4678 verify that the methods used are appropriate for your system.\n\
4679 \n\
4680 Please mail the result to <emacs-devel@gnu.org>.\n\
4681 "
4682
4683 #define SETJMP_WILL_NOT_WORK "\
4684 \n\
4685 Emacs garbage collector has been changed to use conservative stack\n\
4686 marking. Emacs has determined that the default method it uses to do the\n\
4687 marking will not work on your system. We will need a system-dependent\n\
4688 solution for your system.\n\
4689 \n\
4690 Please take a look at the function mark_stack in alloc.c, and\n\
4691 try to find a way to make it work on your system.\n\
4692 \n\
4693 Note that you may get false negatives, depending on the compiler.\n\
4694 In particular, you need to use -O with GCC for this test.\n\
4695 \n\
4696 Please mail the result to <emacs-devel@gnu.org>.\n\
4697 "
4698
4699
4700 /* Perform a quick check if it looks like setjmp saves registers in a
4701 jmp_buf. Print a message to stderr saying so. When this test
4702 succeeds, this is _not_ a proof that setjmp is sufficient for
4703 conservative stack marking. Only the sources or a disassembly
4704 can prove that. */
4705
4706 static void
4707 test_setjmp (void)
4708 {
4709 char buf[10];
4710 register int x;
4711 sys_jmp_buf jbuf;
4712
4713 /* Arrange for X to be put in a register. */
4714 sprintf (buf, "1");
4715 x = strlen (buf);
4716 x = 2 * x - 1;
4717
4718 sys_setjmp (jbuf);
4719 if (longjmps_done == 1)
4720 {
4721 /* Came here after the longjmp at the end of the function.
4722
4723 If x == 1, the longjmp has restored the register to its
4724 value before the setjmp, and we can hope that setjmp
4725 saves all such registers in the jmp_buf, although that
4726 isn't sure.
4727
4728 For other values of X, either something really strange is
4729 taking place, or the setjmp just didn't save the register. */
4730
4731 if (x == 1)
4732 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4733 else
4734 {
4735 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4736 exit (1);
4737 }
4738 }
4739
4740 ++longjmps_done;
4741 x = 2;
4742 if (longjmps_done == 1)
4743 sys_longjmp (jbuf, 1);
4744 }
4745
4746 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4747
4748
4749 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4750
4751 /* Abort if anything GCPRO'd doesn't survive the GC. */
4752
4753 static void
4754 check_gcpros (void)
4755 {
4756 struct gcpro *p;
4757 ptrdiff_t i;
4758
4759 for (p = gcprolist; p; p = p->next)
4760 for (i = 0; i < p->nvars; ++i)
4761 if (!survives_gc_p (p->var[i]))
4762 /* FIXME: It's not necessarily a bug. It might just be that the
4763 GCPRO is unnecessary or should release the object sooner. */
4764 emacs_abort ();
4765 }
4766
4767 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4768
4769 void
4770 dump_zombies (void)
4771 {
4772 int i;
4773
4774 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4775 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4776 {
4777 fprintf (stderr, " %d = ", i);
4778 debug_print (zombies[i]);
4779 }
4780 }
4781
4782 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4783
4784
4785 /* Mark live Lisp objects on the C stack.
4786
4787 There are several system-dependent problems to consider when
4788 porting this to new architectures:
4789
4790 Processor Registers
4791
4792 We have to mark Lisp objects in CPU registers that can hold local
4793 variables or are used to pass parameters.
4794
4795 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4796 something that either saves relevant registers on the stack, or
4797 calls mark_maybe_object passing it each register's contents.
4798
4799 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4800 implementation assumes that calling setjmp saves registers we need
4801 to see in a jmp_buf which itself lies on the stack. This doesn't
4802 have to be true! It must be verified for each system, possibly
4803 by taking a look at the source code of setjmp.
4804
4805 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4806 can use it as a machine independent method to store all registers
4807 to the stack. In this case the macros described in the previous
4808 two paragraphs are not used.
4809
4810 Stack Layout
4811
4812 Architectures differ in the way their processor stack is organized.
4813 For example, the stack might look like this
4814
4815 +----------------+
4816 | Lisp_Object | size = 4
4817 +----------------+
4818 | something else | size = 2
4819 +----------------+
4820 | Lisp_Object | size = 4
4821 +----------------+
4822 | ... |
4823
4824 In such a case, not every Lisp_Object will be aligned equally. To
4825 find all Lisp_Object on the stack it won't be sufficient to walk
4826 the stack in steps of 4 bytes. Instead, two passes will be
4827 necessary, one starting at the start of the stack, and a second
4828 pass starting at the start of the stack + 2. Likewise, if the
4829 minimal alignment of Lisp_Objects on the stack is 1, four passes
4830 would be necessary, each one starting with one byte more offset
4831 from the stack start. */
4832
4833 static void
4834 mark_stack (void)
4835 {
4836 void *end;
4837
4838 #ifdef HAVE___BUILTIN_UNWIND_INIT
4839 /* Force callee-saved registers and register windows onto the stack.
4840 This is the preferred method if available, obviating the need for
4841 machine dependent methods. */
4842 __builtin_unwind_init ();
4843 end = &end;
4844 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4845 #ifndef GC_SAVE_REGISTERS_ON_STACK
4846 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4847 union aligned_jmpbuf {
4848 Lisp_Object o;
4849 sys_jmp_buf j;
4850 } j;
4851 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4852 #endif
4853 /* This trick flushes the register windows so that all the state of
4854 the process is contained in the stack. */
4855 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4856 needed on ia64 too. See mach_dep.c, where it also says inline
4857 assembler doesn't work with relevant proprietary compilers. */
4858 #ifdef __sparc__
4859 #if defined (__sparc64__) && defined (__FreeBSD__)
4860 /* FreeBSD does not have a ta 3 handler. */
4861 asm ("flushw");
4862 #else
4863 asm ("ta 3");
4864 #endif
4865 #endif
4866
4867 /* Save registers that we need to see on the stack. We need to see
4868 registers used to hold register variables and registers used to
4869 pass parameters. */
4870 #ifdef GC_SAVE_REGISTERS_ON_STACK
4871 GC_SAVE_REGISTERS_ON_STACK (end);
4872 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4873
4874 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4875 setjmp will definitely work, test it
4876 and print a message with the result
4877 of the test. */
4878 if (!setjmp_tested_p)
4879 {
4880 setjmp_tested_p = 1;
4881 test_setjmp ();
4882 }
4883 #endif /* GC_SETJMP_WORKS */
4884
4885 sys_setjmp (j.j);
4886 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4887 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4888 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4889
4890 /* This assumes that the stack is a contiguous region in memory. If
4891 that's not the case, something has to be done here to iterate
4892 over the stack segments. */
4893 mark_memory (stack_base, end);
4894
4895 /* Allow for marking a secondary stack, like the register stack on the
4896 ia64. */
4897 #ifdef GC_MARK_SECONDARY_STACK
4898 GC_MARK_SECONDARY_STACK ();
4899 #endif
4900
4901 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4902 check_gcpros ();
4903 #endif
4904 }
4905
4906 #else /* GC_MARK_STACK == 0 */
4907
4908 #define mark_maybe_object(obj) emacs_abort ()
4909
4910 #endif /* GC_MARK_STACK != 0 */
4911
4912
4913 /* Determine whether it is safe to access memory at address P. */
4914 static int
4915 valid_pointer_p (void *p)
4916 {
4917 #ifdef WINDOWSNT
4918 return w32_valid_pointer_p (p, 16);
4919 #else
4920 int fd[2];
4921
4922 /* Obviously, we cannot just access it (we would SEGV trying), so we
4923 trick the o/s to tell us whether p is a valid pointer.
4924 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4925 not validate p in that case. */
4926
4927 if (emacs_pipe (fd) == 0)
4928 {
4929 bool valid = emacs_write (fd[1], p, 16) == 16;
4930 emacs_close (fd[1]);
4931 emacs_close (fd[0]);
4932 return valid;
4933 }
4934
4935 return -1;
4936 #endif
4937 }
4938
4939 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4940 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4941 cannot validate OBJ. This function can be quite slow, so its primary
4942 use is the manual debugging. The only exception is print_object, where
4943 we use it to check whether the memory referenced by the pointer of
4944 Lisp_Save_Value object contains valid objects. */
4945
4946 int
4947 valid_lisp_object_p (Lisp_Object obj)
4948 {
4949 void *p;
4950 #if GC_MARK_STACK
4951 struct mem_node *m;
4952 #endif
4953
4954 if (INTEGERP (obj))
4955 return 1;
4956
4957 p = (void *) XPNTR (obj);
4958 if (PURE_POINTER_P (p))
4959 return 1;
4960
4961 if (p == &buffer_defaults || p == &buffer_local_symbols)
4962 return 2;
4963
4964 #if !GC_MARK_STACK
4965 return valid_pointer_p (p);
4966 #else
4967
4968 m = mem_find (p);
4969
4970 if (m == MEM_NIL)
4971 {
4972 int valid = valid_pointer_p (p);
4973 if (valid <= 0)
4974 return valid;
4975
4976 if (SUBRP (obj))
4977 return 1;
4978
4979 return 0;
4980 }
4981
4982 switch (m->type)
4983 {
4984 case MEM_TYPE_NON_LISP:
4985 case MEM_TYPE_SPARE:
4986 return 0;
4987
4988 case MEM_TYPE_BUFFER:
4989 return live_buffer_p (m, p) ? 1 : 2;
4990
4991 case MEM_TYPE_CONS:
4992 return live_cons_p (m, p);
4993
4994 case MEM_TYPE_STRING:
4995 return live_string_p (m, p);
4996
4997 case MEM_TYPE_MISC:
4998 return live_misc_p (m, p);
4999
5000 case MEM_TYPE_SYMBOL:
5001 return live_symbol_p (m, p);
5002
5003 case MEM_TYPE_FLOAT:
5004 return live_float_p (m, p);
5005
5006 case MEM_TYPE_VECTORLIKE:
5007 case MEM_TYPE_VECTOR_BLOCK:
5008 return live_vector_p (m, p);
5009
5010 default:
5011 break;
5012 }
5013
5014 return 0;
5015 #endif
5016 }
5017
5018
5019
5020 \f
5021 /***********************************************************************
5022 Pure Storage Management
5023 ***********************************************************************/
5024
5025 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5026 pointer to it. TYPE is the Lisp type for which the memory is
5027 allocated. TYPE < 0 means it's not used for a Lisp object. */
5028
5029 static void *
5030 pure_alloc (size_t size, int type)
5031 {
5032 void *result;
5033 #if USE_LSB_TAG
5034 size_t alignment = GCALIGNMENT;
5035 #else
5036 size_t alignment = alignof (EMACS_INT);
5037
5038 /* Give Lisp_Floats an extra alignment. */
5039 if (type == Lisp_Float)
5040 alignment = alignof (struct Lisp_Float);
5041 #endif
5042
5043 again:
5044 if (type >= 0)
5045 {
5046 /* Allocate space for a Lisp object from the beginning of the free
5047 space with taking account of alignment. */
5048 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5049 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5050 }
5051 else
5052 {
5053 /* Allocate space for a non-Lisp object from the end of the free
5054 space. */
5055 pure_bytes_used_non_lisp += size;
5056 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5057 }
5058 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5059
5060 if (pure_bytes_used <= pure_size)
5061 return result;
5062
5063 /* Don't allocate a large amount here,
5064 because it might get mmap'd and then its address
5065 might not be usable. */
5066 purebeg = xmalloc (10000);
5067 pure_size = 10000;
5068 pure_bytes_used_before_overflow += pure_bytes_used - size;
5069 pure_bytes_used = 0;
5070 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5071 goto again;
5072 }
5073
5074
5075 /* Print a warning if PURESIZE is too small. */
5076
5077 void
5078 check_pure_size (void)
5079 {
5080 if (pure_bytes_used_before_overflow)
5081 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5082 " bytes needed)"),
5083 pure_bytes_used + pure_bytes_used_before_overflow);
5084 }
5085
5086
5087 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5088 the non-Lisp data pool of the pure storage, and return its start
5089 address. Return NULL if not found. */
5090
5091 static char *
5092 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5093 {
5094 int i;
5095 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5096 const unsigned char *p;
5097 char *non_lisp_beg;
5098
5099 if (pure_bytes_used_non_lisp <= nbytes)
5100 return NULL;
5101
5102 /* Set up the Boyer-Moore table. */
5103 skip = nbytes + 1;
5104 for (i = 0; i < 256; i++)
5105 bm_skip[i] = skip;
5106
5107 p = (const unsigned char *) data;
5108 while (--skip > 0)
5109 bm_skip[*p++] = skip;
5110
5111 last_char_skip = bm_skip['\0'];
5112
5113 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5114 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5115
5116 /* See the comments in the function `boyer_moore' (search.c) for the
5117 use of `infinity'. */
5118 infinity = pure_bytes_used_non_lisp + 1;
5119 bm_skip['\0'] = infinity;
5120
5121 p = (const unsigned char *) non_lisp_beg + nbytes;
5122 start = 0;
5123 do
5124 {
5125 /* Check the last character (== '\0'). */
5126 do
5127 {
5128 start += bm_skip[*(p + start)];
5129 }
5130 while (start <= start_max);
5131
5132 if (start < infinity)
5133 /* Couldn't find the last character. */
5134 return NULL;
5135
5136 /* No less than `infinity' means we could find the last
5137 character at `p[start - infinity]'. */
5138 start -= infinity;
5139
5140 /* Check the remaining characters. */
5141 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5142 /* Found. */
5143 return non_lisp_beg + start;
5144
5145 start += last_char_skip;
5146 }
5147 while (start <= start_max);
5148
5149 return NULL;
5150 }
5151
5152
5153 /* Return a string allocated in pure space. DATA is a buffer holding
5154 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5155 means make the result string multibyte.
5156
5157 Must get an error if pure storage is full, since if it cannot hold
5158 a large string it may be able to hold conses that point to that
5159 string; then the string is not protected from gc. */
5160
5161 Lisp_Object
5162 make_pure_string (const char *data,
5163 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5164 {
5165 Lisp_Object string;
5166 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5167 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5168 if (s->data == NULL)
5169 {
5170 s->data = pure_alloc (nbytes + 1, -1);
5171 memcpy (s->data, data, nbytes);
5172 s->data[nbytes] = '\0';
5173 }
5174 s->size = nchars;
5175 s->size_byte = multibyte ? nbytes : -1;
5176 s->intervals = NULL;
5177 XSETSTRING (string, s);
5178 return string;
5179 }
5180
5181 /* Return a string allocated in pure space. Do not
5182 allocate the string data, just point to DATA. */
5183
5184 Lisp_Object
5185 make_pure_c_string (const char *data, ptrdiff_t nchars)
5186 {
5187 Lisp_Object string;
5188 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5189 s->size = nchars;
5190 s->size_byte = -1;
5191 s->data = (unsigned char *) data;
5192 s->intervals = NULL;
5193 XSETSTRING (string, s);
5194 return string;
5195 }
5196
5197 static Lisp_Object purecopy (Lisp_Object obj);
5198
5199 /* Return a cons allocated from pure space. Give it pure copies
5200 of CAR as car and CDR as cdr. */
5201
5202 Lisp_Object
5203 pure_cons (Lisp_Object car, Lisp_Object cdr)
5204 {
5205 Lisp_Object new;
5206 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5207 XSETCONS (new, p);
5208 XSETCAR (new, purecopy (car));
5209 XSETCDR (new, purecopy (cdr));
5210 return new;
5211 }
5212
5213
5214 /* Value is a float object with value NUM allocated from pure space. */
5215
5216 static Lisp_Object
5217 make_pure_float (double num)
5218 {
5219 Lisp_Object new;
5220 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5221 XSETFLOAT (new, p);
5222 XFLOAT_INIT (new, num);
5223 return new;
5224 }
5225
5226
5227 /* Return a vector with room for LEN Lisp_Objects allocated from
5228 pure space. */
5229
5230 static Lisp_Object
5231 make_pure_vector (ptrdiff_t len)
5232 {
5233 Lisp_Object new;
5234 size_t size = header_size + len * word_size;
5235 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5236 XSETVECTOR (new, p);
5237 XVECTOR (new)->header.size = len;
5238 return new;
5239 }
5240
5241
5242 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5243 doc: /* Make a copy of object OBJ in pure storage.
5244 Recursively copies contents of vectors and cons cells.
5245 Does not copy symbols. Copies strings without text properties. */)
5246 (register Lisp_Object obj)
5247 {
5248 if (NILP (Vpurify_flag))
5249 return obj;
5250 else if (MARKERP (obj) || OVERLAYP (obj)
5251 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5252 /* Can't purify those. */
5253 return obj;
5254 else
5255 return purecopy (obj);
5256 }
5257
5258 static Lisp_Object
5259 purecopy (Lisp_Object obj)
5260 {
5261 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5262 return obj; /* Already pure. */
5263
5264 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5265 {
5266 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5267 if (!NILP (tmp))
5268 return tmp;
5269 }
5270
5271 if (CONSP (obj))
5272 obj = pure_cons (XCAR (obj), XCDR (obj));
5273 else if (FLOATP (obj))
5274 obj = make_pure_float (XFLOAT_DATA (obj));
5275 else if (STRINGP (obj))
5276 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5277 SBYTES (obj),
5278 STRING_MULTIBYTE (obj));
5279 else if (COMPILEDP (obj) || VECTORP (obj))
5280 {
5281 register struct Lisp_Vector *vec;
5282 register ptrdiff_t i;
5283 ptrdiff_t size;
5284
5285 size = ASIZE (obj);
5286 if (size & PSEUDOVECTOR_FLAG)
5287 size &= PSEUDOVECTOR_SIZE_MASK;
5288 vec = XVECTOR (make_pure_vector (size));
5289 for (i = 0; i < size; i++)
5290 vec->contents[i] = purecopy (AREF (obj, i));
5291 if (COMPILEDP (obj))
5292 {
5293 XSETPVECTYPE (vec, PVEC_COMPILED);
5294 XSETCOMPILED (obj, vec);
5295 }
5296 else
5297 XSETVECTOR (obj, vec);
5298 }
5299 else if (SYMBOLP (obj))
5300 {
5301 if (!XSYMBOL (obj)->pinned)
5302 { /* We can't purify them, but they appear in many pure objects.
5303 Mark them as `pinned' so we know to mark them at every GC cycle. */
5304 XSYMBOL (obj)->pinned = true;
5305 symbol_block_pinned = symbol_block;
5306 }
5307 return obj;
5308 }
5309 else
5310 {
5311 Lisp_Object args[2];
5312 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5313 args[1] = obj;
5314 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5315 }
5316
5317 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5318 Fputhash (obj, obj, Vpurify_flag);
5319
5320 return obj;
5321 }
5322
5323
5324 \f
5325 /***********************************************************************
5326 Protection from GC
5327 ***********************************************************************/
5328
5329 /* Put an entry in staticvec, pointing at the variable with address
5330 VARADDRESS. */
5331
5332 void
5333 staticpro (Lisp_Object *varaddress)
5334 {
5335 if (staticidx >= NSTATICS)
5336 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5337 staticvec[staticidx++] = varaddress;
5338 }
5339
5340 \f
5341 /***********************************************************************
5342 Protection from GC
5343 ***********************************************************************/
5344
5345 /* Temporarily prevent garbage collection. */
5346
5347 ptrdiff_t
5348 inhibit_garbage_collection (void)
5349 {
5350 ptrdiff_t count = SPECPDL_INDEX ();
5351
5352 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5353 return count;
5354 }
5355
5356 /* Used to avoid possible overflows when
5357 converting from C to Lisp integers. */
5358
5359 static Lisp_Object
5360 bounded_number (EMACS_INT number)
5361 {
5362 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5363 }
5364
5365 /* Calculate total bytes of live objects. */
5366
5367 static size_t
5368 total_bytes_of_live_objects (void)
5369 {
5370 size_t tot = 0;
5371 tot += total_conses * sizeof (struct Lisp_Cons);
5372 tot += total_symbols * sizeof (struct Lisp_Symbol);
5373 tot += total_markers * sizeof (union Lisp_Misc);
5374 tot += total_string_bytes;
5375 tot += total_vector_slots * word_size;
5376 tot += total_floats * sizeof (struct Lisp_Float);
5377 tot += total_intervals * sizeof (struct interval);
5378 tot += total_strings * sizeof (struct Lisp_String);
5379 return tot;
5380 }
5381
5382 #ifdef HAVE_WINDOW_SYSTEM
5383
5384 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5385
5386 #if !defined (HAVE_NTGUI)
5387
5388 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5389 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5390
5391 static Lisp_Object
5392 compact_font_cache_entry (Lisp_Object entry)
5393 {
5394 Lisp_Object tail, *prev = &entry;
5395
5396 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5397 {
5398 bool drop = 0;
5399 Lisp_Object obj = XCAR (tail);
5400
5401 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5402 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5403 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5404 && VECTORP (XCDR (obj)))
5405 {
5406 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5407
5408 /* If font-spec is not marked, most likely all font-entities
5409 are not marked too. But we must be sure that nothing is
5410 marked within OBJ before we really drop it. */
5411 for (i = 0; i < size; i++)
5412 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5413 break;
5414
5415 if (i == size)
5416 drop = 1;
5417 }
5418 if (drop)
5419 *prev = XCDR (tail);
5420 else
5421 prev = xcdr_addr (tail);
5422 }
5423 return entry;
5424 }
5425
5426 #endif /* not HAVE_NTGUI */
5427
5428 /* Compact font caches on all terminals and mark
5429 everything which is still here after compaction. */
5430
5431 static void
5432 compact_font_caches (void)
5433 {
5434 struct terminal *t;
5435
5436 for (t = terminal_list; t; t = t->next_terminal)
5437 {
5438 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5439 #if !defined (HAVE_NTGUI)
5440 if (CONSP (cache))
5441 {
5442 Lisp_Object entry;
5443
5444 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5445 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5446 }
5447 #endif /* not HAVE_NTGUI */
5448 mark_object (cache);
5449 }
5450 }
5451
5452 #else /* not HAVE_WINDOW_SYSTEM */
5453
5454 #define compact_font_caches() (void)(0)
5455
5456 #endif /* HAVE_WINDOW_SYSTEM */
5457
5458 /* Remove (MARKER . DATA) entries with unmarked MARKER
5459 from buffer undo LIST and return changed list. */
5460
5461 static Lisp_Object
5462 compact_undo_list (Lisp_Object list)
5463 {
5464 Lisp_Object tail, *prev = &list;
5465
5466 for (tail = list; CONSP (tail); tail = XCDR (tail))
5467 {
5468 if (CONSP (XCAR (tail))
5469 && MARKERP (XCAR (XCAR (tail)))
5470 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5471 *prev = XCDR (tail);
5472 else
5473 prev = xcdr_addr (tail);
5474 }
5475 return list;
5476 }
5477
5478 static void
5479 mark_pinned_symbols (void)
5480 {
5481 struct symbol_block *sblk;
5482 int lim = (symbol_block_pinned == symbol_block
5483 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5484
5485 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5486 {
5487 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5488 for (; sym < end; ++sym)
5489 if (sym->s.pinned)
5490 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5491
5492 lim = SYMBOL_BLOCK_SIZE;
5493 }
5494 }
5495
5496 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5497 doc: /* Reclaim storage for Lisp objects no longer needed.
5498 Garbage collection happens automatically if you cons more than
5499 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5500 `garbage-collect' normally returns a list with info on amount of space in use,
5501 where each entry has the form (NAME SIZE USED FREE), where:
5502 - NAME is a symbol describing the kind of objects this entry represents,
5503 - SIZE is the number of bytes used by each one,
5504 - USED is the number of those objects that were found live in the heap,
5505 - FREE is the number of those objects that are not live but that Emacs
5506 keeps around for future allocations (maybe because it does not know how
5507 to return them to the OS).
5508 However, if there was overflow in pure space, `garbage-collect'
5509 returns nil, because real GC can't be done.
5510 See Info node `(elisp)Garbage Collection'. */)
5511 (void)
5512 {
5513 struct buffer *nextb;
5514 char stack_top_variable;
5515 ptrdiff_t i;
5516 bool message_p;
5517 ptrdiff_t count = SPECPDL_INDEX ();
5518 struct timespec start;
5519 Lisp_Object retval = Qnil;
5520 size_t tot_before = 0;
5521
5522 if (abort_on_gc)
5523 emacs_abort ();
5524
5525 /* Can't GC if pure storage overflowed because we can't determine
5526 if something is a pure object or not. */
5527 if (pure_bytes_used_before_overflow)
5528 return Qnil;
5529
5530 /* Record this function, so it appears on the profiler's backtraces. */
5531 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5532
5533 check_cons_list ();
5534
5535 /* Don't keep undo information around forever.
5536 Do this early on, so it is no problem if the user quits. */
5537 FOR_EACH_BUFFER (nextb)
5538 compact_buffer (nextb);
5539
5540 if (profiler_memory_running)
5541 tot_before = total_bytes_of_live_objects ();
5542
5543 start = current_timespec ();
5544
5545 /* In case user calls debug_print during GC,
5546 don't let that cause a recursive GC. */
5547 consing_since_gc = 0;
5548
5549 /* Save what's currently displayed in the echo area. */
5550 message_p = push_message ();
5551 record_unwind_protect_void (pop_message_unwind);
5552
5553 /* Save a copy of the contents of the stack, for debugging. */
5554 #if MAX_SAVE_STACK > 0
5555 if (NILP (Vpurify_flag))
5556 {
5557 char *stack;
5558 ptrdiff_t stack_size;
5559 if (&stack_top_variable < stack_bottom)
5560 {
5561 stack = &stack_top_variable;
5562 stack_size = stack_bottom - &stack_top_variable;
5563 }
5564 else
5565 {
5566 stack = stack_bottom;
5567 stack_size = &stack_top_variable - stack_bottom;
5568 }
5569 if (stack_size <= MAX_SAVE_STACK)
5570 {
5571 if (stack_copy_size < stack_size)
5572 {
5573 stack_copy = xrealloc (stack_copy, stack_size);
5574 stack_copy_size = stack_size;
5575 }
5576 no_sanitize_memcpy (stack_copy, stack, stack_size);
5577 }
5578 }
5579 #endif /* MAX_SAVE_STACK > 0 */
5580
5581 if (garbage_collection_messages)
5582 message1_nolog ("Garbage collecting...");
5583
5584 block_input ();
5585
5586 shrink_regexp_cache ();
5587
5588 gc_in_progress = 1;
5589
5590 /* Mark all the special slots that serve as the roots of accessibility. */
5591
5592 mark_buffer (&buffer_defaults);
5593 mark_buffer (&buffer_local_symbols);
5594
5595 for (i = 0; i < staticidx; i++)
5596 mark_object (*staticvec[i]);
5597
5598 mark_pinned_symbols ();
5599 mark_specpdl ();
5600 mark_terminals ();
5601 mark_kboards ();
5602
5603 #ifdef USE_GTK
5604 xg_mark_data ();
5605 #endif
5606
5607 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5608 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5609 mark_stack ();
5610 #else
5611 {
5612 register struct gcpro *tail;
5613 for (tail = gcprolist; tail; tail = tail->next)
5614 for (i = 0; i < tail->nvars; i++)
5615 mark_object (tail->var[i]);
5616 }
5617 mark_byte_stack ();
5618 #endif
5619 {
5620 struct handler *handler;
5621 for (handler = handlerlist; handler; handler = handler->next)
5622 {
5623 mark_object (handler->tag_or_ch);
5624 mark_object (handler->val);
5625 }
5626 }
5627 #ifdef HAVE_WINDOW_SYSTEM
5628 mark_fringe_data ();
5629 #endif
5630
5631 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5632 mark_stack ();
5633 #endif
5634
5635 /* Everything is now marked, except for the data in font caches
5636 and undo lists. They're compacted by removing an items which
5637 aren't reachable otherwise. */
5638
5639 compact_font_caches ();
5640
5641 FOR_EACH_BUFFER (nextb)
5642 {
5643 if (!EQ (BVAR (nextb, undo_list), Qt))
5644 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5645 /* Now that we have stripped the elements that need not be
5646 in the undo_list any more, we can finally mark the list. */
5647 mark_object (BVAR (nextb, undo_list));
5648 }
5649
5650 gc_sweep ();
5651
5652 /* Clear the mark bits that we set in certain root slots. */
5653
5654 unmark_byte_stack ();
5655 VECTOR_UNMARK (&buffer_defaults);
5656 VECTOR_UNMARK (&buffer_local_symbols);
5657
5658 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5659 dump_zombies ();
5660 #endif
5661
5662 check_cons_list ();
5663
5664 gc_in_progress = 0;
5665
5666 unblock_input ();
5667
5668 consing_since_gc = 0;
5669 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5670 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5671
5672 gc_relative_threshold = 0;
5673 if (FLOATP (Vgc_cons_percentage))
5674 { /* Set gc_cons_combined_threshold. */
5675 double tot = total_bytes_of_live_objects ();
5676
5677 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5678 if (0 < tot)
5679 {
5680 if (tot < TYPE_MAXIMUM (EMACS_INT))
5681 gc_relative_threshold = tot;
5682 else
5683 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5684 }
5685 }
5686
5687 if (garbage_collection_messages)
5688 {
5689 if (message_p || minibuf_level > 0)
5690 restore_message ();
5691 else
5692 message1_nolog ("Garbage collecting...done");
5693 }
5694
5695 unbind_to (count, Qnil);
5696 {
5697 Lisp_Object total[11];
5698 int total_size = 10;
5699
5700 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5701 bounded_number (total_conses),
5702 bounded_number (total_free_conses));
5703
5704 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5705 bounded_number (total_symbols),
5706 bounded_number (total_free_symbols));
5707
5708 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5709 bounded_number (total_markers),
5710 bounded_number (total_free_markers));
5711
5712 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5713 bounded_number (total_strings),
5714 bounded_number (total_free_strings));
5715
5716 total[4] = list3 (Qstring_bytes, make_number (1),
5717 bounded_number (total_string_bytes));
5718
5719 total[5] = list3 (Qvectors,
5720 make_number (header_size + sizeof (Lisp_Object)),
5721 bounded_number (total_vectors));
5722
5723 total[6] = list4 (Qvector_slots, make_number (word_size),
5724 bounded_number (total_vector_slots),
5725 bounded_number (total_free_vector_slots));
5726
5727 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5728 bounded_number (total_floats),
5729 bounded_number (total_free_floats));
5730
5731 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5732 bounded_number (total_intervals),
5733 bounded_number (total_free_intervals));
5734
5735 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5736 bounded_number (total_buffers));
5737
5738 #ifdef DOUG_LEA_MALLOC
5739 total_size++;
5740 total[10] = list4 (Qheap, make_number (1024),
5741 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5742 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5743 #endif
5744 retval = Flist (total_size, total);
5745 }
5746
5747 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5748 {
5749 /* Compute average percentage of zombies. */
5750 double nlive
5751 = (total_conses + total_symbols + total_markers + total_strings
5752 + total_vectors + total_floats + total_intervals + total_buffers);
5753
5754 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5755 max_live = max (nlive, max_live);
5756 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5757 max_zombies = max (nzombies, max_zombies);
5758 ++ngcs;
5759 }
5760 #endif
5761
5762 if (!NILP (Vpost_gc_hook))
5763 {
5764 ptrdiff_t gc_count = inhibit_garbage_collection ();
5765 safe_run_hooks (Qpost_gc_hook);
5766 unbind_to (gc_count, Qnil);
5767 }
5768
5769 /* Accumulate statistics. */
5770 if (FLOATP (Vgc_elapsed))
5771 {
5772 struct timespec since_start = timespec_sub (current_timespec (), start);
5773 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5774 + timespectod (since_start));
5775 }
5776
5777 gcs_done++;
5778
5779 /* Collect profiling data. */
5780 if (profiler_memory_running)
5781 {
5782 size_t swept = 0;
5783 size_t tot_after = total_bytes_of_live_objects ();
5784 if (tot_before > tot_after)
5785 swept = tot_before - tot_after;
5786 malloc_probe (swept);
5787 }
5788
5789 return retval;
5790 }
5791
5792
5793 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5794 only interesting objects referenced from glyphs are strings. */
5795
5796 static void
5797 mark_glyph_matrix (struct glyph_matrix *matrix)
5798 {
5799 struct glyph_row *row = matrix->rows;
5800 struct glyph_row *end = row + matrix->nrows;
5801
5802 for (; row < end; ++row)
5803 if (row->enabled_p)
5804 {
5805 int area;
5806 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5807 {
5808 struct glyph *glyph = row->glyphs[area];
5809 struct glyph *end_glyph = glyph + row->used[area];
5810
5811 for (; glyph < end_glyph; ++glyph)
5812 if (STRINGP (glyph->object)
5813 && !STRING_MARKED_P (XSTRING (glyph->object)))
5814 mark_object (glyph->object);
5815 }
5816 }
5817 }
5818
5819 /* Mark reference to a Lisp_Object.
5820 If the object referred to has not been seen yet, recursively mark
5821 all the references contained in it. */
5822
5823 #define LAST_MARKED_SIZE 500
5824 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5825 static int last_marked_index;
5826
5827 /* For debugging--call abort when we cdr down this many
5828 links of a list, in mark_object. In debugging,
5829 the call to abort will hit a breakpoint.
5830 Normally this is zero and the check never goes off. */
5831 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5832
5833 static void
5834 mark_vectorlike (struct Lisp_Vector *ptr)
5835 {
5836 ptrdiff_t size = ptr->header.size;
5837 ptrdiff_t i;
5838
5839 eassert (!VECTOR_MARKED_P (ptr));
5840 VECTOR_MARK (ptr); /* Else mark it. */
5841 if (size & PSEUDOVECTOR_FLAG)
5842 size &= PSEUDOVECTOR_SIZE_MASK;
5843
5844 /* Note that this size is not the memory-footprint size, but only
5845 the number of Lisp_Object fields that we should trace.
5846 The distinction is used e.g. by Lisp_Process which places extra
5847 non-Lisp_Object fields at the end of the structure... */
5848 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5849 mark_object (ptr->contents[i]);
5850 }
5851
5852 /* Like mark_vectorlike but optimized for char-tables (and
5853 sub-char-tables) assuming that the contents are mostly integers or
5854 symbols. */
5855
5856 static void
5857 mark_char_table (struct Lisp_Vector *ptr)
5858 {
5859 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5860 int i;
5861
5862 eassert (!VECTOR_MARKED_P (ptr));
5863 VECTOR_MARK (ptr);
5864 for (i = 0; i < size; i++)
5865 {
5866 Lisp_Object val = ptr->contents[i];
5867
5868 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5869 continue;
5870 if (SUB_CHAR_TABLE_P (val))
5871 {
5872 if (! VECTOR_MARKED_P (XVECTOR (val)))
5873 mark_char_table (XVECTOR (val));
5874 }
5875 else
5876 mark_object (val);
5877 }
5878 }
5879
5880 /* Mark the chain of overlays starting at PTR. */
5881
5882 static void
5883 mark_overlay (struct Lisp_Overlay *ptr)
5884 {
5885 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5886 {
5887 ptr->gcmarkbit = 1;
5888 mark_object (ptr->start);
5889 mark_object (ptr->end);
5890 mark_object (ptr->plist);
5891 }
5892 }
5893
5894 /* Mark Lisp_Objects and special pointers in BUFFER. */
5895
5896 static void
5897 mark_buffer (struct buffer *buffer)
5898 {
5899 /* This is handled much like other pseudovectors... */
5900 mark_vectorlike ((struct Lisp_Vector *) buffer);
5901
5902 /* ...but there are some buffer-specific things. */
5903
5904 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5905
5906 /* For now, we just don't mark the undo_list. It's done later in
5907 a special way just before the sweep phase, and after stripping
5908 some of its elements that are not needed any more. */
5909
5910 mark_overlay (buffer->overlays_before);
5911 mark_overlay (buffer->overlays_after);
5912
5913 /* If this is an indirect buffer, mark its base buffer. */
5914 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5915 mark_buffer (buffer->base_buffer);
5916 }
5917
5918 /* Mark Lisp faces in the face cache C. */
5919
5920 static void
5921 mark_face_cache (struct face_cache *c)
5922 {
5923 if (c)
5924 {
5925 int i, j;
5926 for (i = 0; i < c->used; ++i)
5927 {
5928 struct face *face = FACE_FROM_ID (c->f, i);
5929
5930 if (face)
5931 {
5932 if (face->font && !VECTOR_MARKED_P (face->font))
5933 mark_vectorlike ((struct Lisp_Vector *) face->font);
5934
5935 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5936 mark_object (face->lface[j]);
5937 }
5938 }
5939 }
5940 }
5941
5942 /* Remove killed buffers or items whose car is a killed buffer from
5943 LIST, and mark other items. Return changed LIST, which is marked. */
5944
5945 static Lisp_Object
5946 mark_discard_killed_buffers (Lisp_Object list)
5947 {
5948 Lisp_Object tail, *prev = &list;
5949
5950 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5951 tail = XCDR (tail))
5952 {
5953 Lisp_Object tem = XCAR (tail);
5954 if (CONSP (tem))
5955 tem = XCAR (tem);
5956 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5957 *prev = XCDR (tail);
5958 else
5959 {
5960 CONS_MARK (XCONS (tail));
5961 mark_object (XCAR (tail));
5962 prev = xcdr_addr (tail);
5963 }
5964 }
5965 mark_object (tail);
5966 return list;
5967 }
5968
5969 /* Determine type of generic Lisp_Object and mark it accordingly. */
5970
5971 void
5972 mark_object (Lisp_Object arg)
5973 {
5974 register Lisp_Object obj = arg;
5975 #ifdef GC_CHECK_MARKED_OBJECTS
5976 void *po;
5977 struct mem_node *m;
5978 #endif
5979 ptrdiff_t cdr_count = 0;
5980
5981 loop:
5982
5983 if (PURE_POINTER_P (XPNTR (obj)))
5984 return;
5985
5986 last_marked[last_marked_index++] = obj;
5987 if (last_marked_index == LAST_MARKED_SIZE)
5988 last_marked_index = 0;
5989
5990 /* Perform some sanity checks on the objects marked here. Abort if
5991 we encounter an object we know is bogus. This increases GC time
5992 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5993 #ifdef GC_CHECK_MARKED_OBJECTS
5994
5995 po = (void *) XPNTR (obj);
5996
5997 /* Check that the object pointed to by PO is known to be a Lisp
5998 structure allocated from the heap. */
5999 #define CHECK_ALLOCATED() \
6000 do { \
6001 m = mem_find (po); \
6002 if (m == MEM_NIL) \
6003 emacs_abort (); \
6004 } while (0)
6005
6006 /* Check that the object pointed to by PO is live, using predicate
6007 function LIVEP. */
6008 #define CHECK_LIVE(LIVEP) \
6009 do { \
6010 if (!LIVEP (m, po)) \
6011 emacs_abort (); \
6012 } while (0)
6013
6014 /* Check both of the above conditions. */
6015 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6016 do { \
6017 CHECK_ALLOCATED (); \
6018 CHECK_LIVE (LIVEP); \
6019 } while (0) \
6020
6021 #else /* not GC_CHECK_MARKED_OBJECTS */
6022
6023 #define CHECK_LIVE(LIVEP) (void) 0
6024 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6025
6026 #endif /* not GC_CHECK_MARKED_OBJECTS */
6027
6028 switch (XTYPE (obj))
6029 {
6030 case Lisp_String:
6031 {
6032 register struct Lisp_String *ptr = XSTRING (obj);
6033 if (STRING_MARKED_P (ptr))
6034 break;
6035 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6036 MARK_STRING (ptr);
6037 MARK_INTERVAL_TREE (ptr->intervals);
6038 #ifdef GC_CHECK_STRING_BYTES
6039 /* Check that the string size recorded in the string is the
6040 same as the one recorded in the sdata structure. */
6041 string_bytes (ptr);
6042 #endif /* GC_CHECK_STRING_BYTES */
6043 }
6044 break;
6045
6046 case Lisp_Vectorlike:
6047 {
6048 register struct Lisp_Vector *ptr = XVECTOR (obj);
6049 register ptrdiff_t pvectype;
6050
6051 if (VECTOR_MARKED_P (ptr))
6052 break;
6053
6054 #ifdef GC_CHECK_MARKED_OBJECTS
6055 m = mem_find (po);
6056 if (m == MEM_NIL && !SUBRP (obj))
6057 emacs_abort ();
6058 #endif /* GC_CHECK_MARKED_OBJECTS */
6059
6060 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6061 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6062 >> PSEUDOVECTOR_AREA_BITS);
6063 else
6064 pvectype = PVEC_NORMAL_VECTOR;
6065
6066 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6067 CHECK_LIVE (live_vector_p);
6068
6069 switch (pvectype)
6070 {
6071 case PVEC_BUFFER:
6072 #ifdef GC_CHECK_MARKED_OBJECTS
6073 {
6074 struct buffer *b;
6075 FOR_EACH_BUFFER (b)
6076 if (b == po)
6077 break;
6078 if (b == NULL)
6079 emacs_abort ();
6080 }
6081 #endif /* GC_CHECK_MARKED_OBJECTS */
6082 mark_buffer ((struct buffer *) ptr);
6083 break;
6084
6085 case PVEC_COMPILED:
6086 { /* We could treat this just like a vector, but it is better
6087 to save the COMPILED_CONSTANTS element for last and avoid
6088 recursion there. */
6089 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6090 int i;
6091
6092 VECTOR_MARK (ptr);
6093 for (i = 0; i < size; i++)
6094 if (i != COMPILED_CONSTANTS)
6095 mark_object (ptr->contents[i]);
6096 if (size > COMPILED_CONSTANTS)
6097 {
6098 obj = ptr->contents[COMPILED_CONSTANTS];
6099 goto loop;
6100 }
6101 }
6102 break;
6103
6104 case PVEC_FRAME:
6105 {
6106 struct frame *f = (struct frame *) ptr;
6107
6108 mark_vectorlike (ptr);
6109 mark_face_cache (f->face_cache);
6110 #ifdef HAVE_WINDOW_SYSTEM
6111 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6112 {
6113 struct font *font = FRAME_FONT (f);
6114
6115 if (font && !VECTOR_MARKED_P (font))
6116 mark_vectorlike ((struct Lisp_Vector *) font);
6117 }
6118 #endif
6119 }
6120 break;
6121
6122 case PVEC_WINDOW:
6123 {
6124 struct window *w = (struct window *) ptr;
6125
6126 mark_vectorlike (ptr);
6127
6128 /* Mark glyph matrices, if any. Marking window
6129 matrices is sufficient because frame matrices
6130 use the same glyph memory. */
6131 if (w->current_matrix)
6132 {
6133 mark_glyph_matrix (w->current_matrix);
6134 mark_glyph_matrix (w->desired_matrix);
6135 }
6136
6137 /* Filter out killed buffers from both buffer lists
6138 in attempt to help GC to reclaim killed buffers faster.
6139 We can do it elsewhere for live windows, but this is the
6140 best place to do it for dead windows. */
6141 wset_prev_buffers
6142 (w, mark_discard_killed_buffers (w->prev_buffers));
6143 wset_next_buffers
6144 (w, mark_discard_killed_buffers (w->next_buffers));
6145 }
6146 break;
6147
6148 case PVEC_HASH_TABLE:
6149 {
6150 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6151
6152 mark_vectorlike (ptr);
6153 mark_object (h->test.name);
6154 mark_object (h->test.user_hash_function);
6155 mark_object (h->test.user_cmp_function);
6156 /* If hash table is not weak, mark all keys and values.
6157 For weak tables, mark only the vector. */
6158 if (NILP (h->weak))
6159 mark_object (h->key_and_value);
6160 else
6161 VECTOR_MARK (XVECTOR (h->key_and_value));
6162 }
6163 break;
6164
6165 case PVEC_CHAR_TABLE:
6166 mark_char_table (ptr);
6167 break;
6168
6169 case PVEC_BOOL_VECTOR:
6170 /* No Lisp_Objects to mark in a bool vector. */
6171 VECTOR_MARK (ptr);
6172 break;
6173
6174 case PVEC_SUBR:
6175 break;
6176
6177 case PVEC_FREE:
6178 emacs_abort ();
6179
6180 default:
6181 mark_vectorlike (ptr);
6182 }
6183 }
6184 break;
6185
6186 case Lisp_Symbol:
6187 {
6188 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6189 struct Lisp_Symbol *ptrx;
6190
6191 if (ptr->gcmarkbit)
6192 break;
6193 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6194 ptr->gcmarkbit = 1;
6195 mark_object (ptr->function);
6196 mark_object (ptr->plist);
6197 switch (ptr->redirect)
6198 {
6199 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6200 case SYMBOL_VARALIAS:
6201 {
6202 Lisp_Object tem;
6203 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6204 mark_object (tem);
6205 break;
6206 }
6207 case SYMBOL_LOCALIZED:
6208 {
6209 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6210 Lisp_Object where = blv->where;
6211 /* If the value is set up for a killed buffer or deleted
6212 frame, restore it's global binding. If the value is
6213 forwarded to a C variable, either it's not a Lisp_Object
6214 var, or it's staticpro'd already. */
6215 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6216 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6217 swap_in_global_binding (ptr);
6218 mark_object (blv->where);
6219 mark_object (blv->valcell);
6220 mark_object (blv->defcell);
6221 break;
6222 }
6223 case SYMBOL_FORWARDED:
6224 /* If the value is forwarded to a buffer or keyboard field,
6225 these are marked when we see the corresponding object.
6226 And if it's forwarded to a C variable, either it's not
6227 a Lisp_Object var, or it's staticpro'd already. */
6228 break;
6229 default: emacs_abort ();
6230 }
6231 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6232 MARK_STRING (XSTRING (ptr->name));
6233 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6234
6235 ptr = ptr->next;
6236 if (ptr)
6237 {
6238 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6239 XSETSYMBOL (obj, ptrx);
6240 goto loop;
6241 }
6242 }
6243 break;
6244
6245 case Lisp_Misc:
6246 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6247
6248 if (XMISCANY (obj)->gcmarkbit)
6249 break;
6250
6251 switch (XMISCTYPE (obj))
6252 {
6253 case Lisp_Misc_Marker:
6254 /* DO NOT mark thru the marker's chain.
6255 The buffer's markers chain does not preserve markers from gc;
6256 instead, markers are removed from the chain when freed by gc. */
6257 XMISCANY (obj)->gcmarkbit = 1;
6258 break;
6259
6260 case Lisp_Misc_Save_Value:
6261 XMISCANY (obj)->gcmarkbit = 1;
6262 {
6263 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6264 /* If `save_type' is zero, `data[0].pointer' is the address
6265 of a memory area containing `data[1].integer' potential
6266 Lisp_Objects. */
6267 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6268 {
6269 Lisp_Object *p = ptr->data[0].pointer;
6270 ptrdiff_t nelt;
6271 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6272 mark_maybe_object (*p);
6273 }
6274 else
6275 {
6276 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6277 int i;
6278 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6279 if (save_type (ptr, i) == SAVE_OBJECT)
6280 mark_object (ptr->data[i].object);
6281 }
6282 }
6283 break;
6284
6285 case Lisp_Misc_Overlay:
6286 mark_overlay (XOVERLAY (obj));
6287 break;
6288
6289 default:
6290 emacs_abort ();
6291 }
6292 break;
6293
6294 case Lisp_Cons:
6295 {
6296 register struct Lisp_Cons *ptr = XCONS (obj);
6297 if (CONS_MARKED_P (ptr))
6298 break;
6299 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6300 CONS_MARK (ptr);
6301 /* If the cdr is nil, avoid recursion for the car. */
6302 if (EQ (ptr->u.cdr, Qnil))
6303 {
6304 obj = ptr->car;
6305 cdr_count = 0;
6306 goto loop;
6307 }
6308 mark_object (ptr->car);
6309 obj = ptr->u.cdr;
6310 cdr_count++;
6311 if (cdr_count == mark_object_loop_halt)
6312 emacs_abort ();
6313 goto loop;
6314 }
6315
6316 case Lisp_Float:
6317 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6318 FLOAT_MARK (XFLOAT (obj));
6319 break;
6320
6321 case_Lisp_Int:
6322 break;
6323
6324 default:
6325 emacs_abort ();
6326 }
6327
6328 #undef CHECK_LIVE
6329 #undef CHECK_ALLOCATED
6330 #undef CHECK_ALLOCATED_AND_LIVE
6331 }
6332 /* Mark the Lisp pointers in the terminal objects.
6333 Called by Fgarbage_collect. */
6334
6335 static void
6336 mark_terminals (void)
6337 {
6338 struct terminal *t;
6339 for (t = terminal_list; t; t = t->next_terminal)
6340 {
6341 eassert (t->name != NULL);
6342 #ifdef HAVE_WINDOW_SYSTEM
6343 /* If a terminal object is reachable from a stacpro'ed object,
6344 it might have been marked already. Make sure the image cache
6345 gets marked. */
6346 mark_image_cache (t->image_cache);
6347 #endif /* HAVE_WINDOW_SYSTEM */
6348 if (!VECTOR_MARKED_P (t))
6349 mark_vectorlike ((struct Lisp_Vector *)t);
6350 }
6351 }
6352
6353
6354
6355 /* Value is non-zero if OBJ will survive the current GC because it's
6356 either marked or does not need to be marked to survive. */
6357
6358 bool
6359 survives_gc_p (Lisp_Object obj)
6360 {
6361 bool survives_p;
6362
6363 switch (XTYPE (obj))
6364 {
6365 case_Lisp_Int:
6366 survives_p = 1;
6367 break;
6368
6369 case Lisp_Symbol:
6370 survives_p = XSYMBOL (obj)->gcmarkbit;
6371 break;
6372
6373 case Lisp_Misc:
6374 survives_p = XMISCANY (obj)->gcmarkbit;
6375 break;
6376
6377 case Lisp_String:
6378 survives_p = STRING_MARKED_P (XSTRING (obj));
6379 break;
6380
6381 case Lisp_Vectorlike:
6382 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6383 break;
6384
6385 case Lisp_Cons:
6386 survives_p = CONS_MARKED_P (XCONS (obj));
6387 break;
6388
6389 case Lisp_Float:
6390 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6391 break;
6392
6393 default:
6394 emacs_abort ();
6395 }
6396
6397 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6398 }
6399
6400
6401 \f
6402 /* Sweep: find all structures not marked, and free them. */
6403
6404 static void
6405 gc_sweep (void)
6406 {
6407 /* Remove or mark entries in weak hash tables.
6408 This must be done before any object is unmarked. */
6409 sweep_weak_hash_tables ();
6410
6411 sweep_strings ();
6412 check_string_bytes (!noninteractive);
6413
6414 /* Put all unmarked conses on free list. */
6415 {
6416 register struct cons_block *cblk;
6417 struct cons_block **cprev = &cons_block;
6418 register int lim = cons_block_index;
6419 EMACS_INT num_free = 0, num_used = 0;
6420
6421 cons_free_list = 0;
6422
6423 for (cblk = cons_block; cblk; cblk = *cprev)
6424 {
6425 register int i = 0;
6426 int this_free = 0;
6427 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6428
6429 /* Scan the mark bits an int at a time. */
6430 for (i = 0; i < ilim; i++)
6431 {
6432 if (cblk->gcmarkbits[i] == -1)
6433 {
6434 /* Fast path - all cons cells for this int are marked. */
6435 cblk->gcmarkbits[i] = 0;
6436 num_used += BITS_PER_INT;
6437 }
6438 else
6439 {
6440 /* Some cons cells for this int are not marked.
6441 Find which ones, and free them. */
6442 int start, pos, stop;
6443
6444 start = i * BITS_PER_INT;
6445 stop = lim - start;
6446 if (stop > BITS_PER_INT)
6447 stop = BITS_PER_INT;
6448 stop += start;
6449
6450 for (pos = start; pos < stop; pos++)
6451 {
6452 if (!CONS_MARKED_P (&cblk->conses[pos]))
6453 {
6454 this_free++;
6455 cblk->conses[pos].u.chain = cons_free_list;
6456 cons_free_list = &cblk->conses[pos];
6457 #if GC_MARK_STACK
6458 cons_free_list->car = Vdead;
6459 #endif
6460 }
6461 else
6462 {
6463 num_used++;
6464 CONS_UNMARK (&cblk->conses[pos]);
6465 }
6466 }
6467 }
6468 }
6469
6470 lim = CONS_BLOCK_SIZE;
6471 /* If this block contains only free conses and we have already
6472 seen more than two blocks worth of free conses then deallocate
6473 this block. */
6474 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6475 {
6476 *cprev = cblk->next;
6477 /* Unhook from the free list. */
6478 cons_free_list = cblk->conses[0].u.chain;
6479 lisp_align_free (cblk);
6480 }
6481 else
6482 {
6483 num_free += this_free;
6484 cprev = &cblk->next;
6485 }
6486 }
6487 total_conses = num_used;
6488 total_free_conses = num_free;
6489 }
6490
6491 /* Put all unmarked floats on free list. */
6492 {
6493 register struct float_block *fblk;
6494 struct float_block **fprev = &float_block;
6495 register int lim = float_block_index;
6496 EMACS_INT num_free = 0, num_used = 0;
6497
6498 float_free_list = 0;
6499
6500 for (fblk = float_block; fblk; fblk = *fprev)
6501 {
6502 register int i;
6503 int this_free = 0;
6504 for (i = 0; i < lim; i++)
6505 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6506 {
6507 this_free++;
6508 fblk->floats[i].u.chain = float_free_list;
6509 float_free_list = &fblk->floats[i];
6510 }
6511 else
6512 {
6513 num_used++;
6514 FLOAT_UNMARK (&fblk->floats[i]);
6515 }
6516 lim = FLOAT_BLOCK_SIZE;
6517 /* If this block contains only free floats and we have already
6518 seen more than two blocks worth of free floats then deallocate
6519 this block. */
6520 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6521 {
6522 *fprev = fblk->next;
6523 /* Unhook from the free list. */
6524 float_free_list = fblk->floats[0].u.chain;
6525 lisp_align_free (fblk);
6526 }
6527 else
6528 {
6529 num_free += this_free;
6530 fprev = &fblk->next;
6531 }
6532 }
6533 total_floats = num_used;
6534 total_free_floats = num_free;
6535 }
6536
6537 /* Put all unmarked intervals on free list. */
6538 {
6539 register struct interval_block *iblk;
6540 struct interval_block **iprev = &interval_block;
6541 register int lim = interval_block_index;
6542 EMACS_INT num_free = 0, num_used = 0;
6543
6544 interval_free_list = 0;
6545
6546 for (iblk = interval_block; iblk; iblk = *iprev)
6547 {
6548 register int i;
6549 int this_free = 0;
6550
6551 for (i = 0; i < lim; i++)
6552 {
6553 if (!iblk->intervals[i].gcmarkbit)
6554 {
6555 set_interval_parent (&iblk->intervals[i], interval_free_list);
6556 interval_free_list = &iblk->intervals[i];
6557 this_free++;
6558 }
6559 else
6560 {
6561 num_used++;
6562 iblk->intervals[i].gcmarkbit = 0;
6563 }
6564 }
6565 lim = INTERVAL_BLOCK_SIZE;
6566 /* If this block contains only free intervals and we have already
6567 seen more than two blocks worth of free intervals then
6568 deallocate this block. */
6569 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6570 {
6571 *iprev = iblk->next;
6572 /* Unhook from the free list. */
6573 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6574 lisp_free (iblk);
6575 }
6576 else
6577 {
6578 num_free += this_free;
6579 iprev = &iblk->next;
6580 }
6581 }
6582 total_intervals = num_used;
6583 total_free_intervals = num_free;
6584 }
6585
6586 /* Put all unmarked symbols on free list. */
6587 {
6588 register struct symbol_block *sblk;
6589 struct symbol_block **sprev = &symbol_block;
6590 register int lim = symbol_block_index;
6591 EMACS_INT num_free = 0, num_used = 0;
6592
6593 symbol_free_list = NULL;
6594
6595 for (sblk = symbol_block; sblk; sblk = *sprev)
6596 {
6597 int this_free = 0;
6598 union aligned_Lisp_Symbol *sym = sblk->symbols;
6599 union aligned_Lisp_Symbol *end = sym + lim;
6600
6601 for (; sym < end; ++sym)
6602 {
6603 if (!sym->s.gcmarkbit)
6604 {
6605 if (sym->s.redirect == SYMBOL_LOCALIZED)
6606 xfree (SYMBOL_BLV (&sym->s));
6607 sym->s.next = symbol_free_list;
6608 symbol_free_list = &sym->s;
6609 #if GC_MARK_STACK
6610 symbol_free_list->function = Vdead;
6611 #endif
6612 ++this_free;
6613 }
6614 else
6615 {
6616 ++num_used;
6617 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6618 sym->s.gcmarkbit = 0;
6619 }
6620 }
6621
6622 lim = SYMBOL_BLOCK_SIZE;
6623 /* If this block contains only free symbols and we have already
6624 seen more than two blocks worth of free symbols then deallocate
6625 this block. */
6626 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6627 {
6628 *sprev = sblk->next;
6629 /* Unhook from the free list. */
6630 symbol_free_list = sblk->symbols[0].s.next;
6631 lisp_free (sblk);
6632 }
6633 else
6634 {
6635 num_free += this_free;
6636 sprev = &sblk->next;
6637 }
6638 }
6639 total_symbols = num_used;
6640 total_free_symbols = num_free;
6641 }
6642
6643 /* Put all unmarked misc's on free list.
6644 For a marker, first unchain it from the buffer it points into. */
6645 {
6646 register struct marker_block *mblk;
6647 struct marker_block **mprev = &marker_block;
6648 register int lim = marker_block_index;
6649 EMACS_INT num_free = 0, num_used = 0;
6650
6651 marker_free_list = 0;
6652
6653 for (mblk = marker_block; mblk; mblk = *mprev)
6654 {
6655 register int i;
6656 int this_free = 0;
6657
6658 for (i = 0; i < lim; i++)
6659 {
6660 if (!mblk->markers[i].m.u_any.gcmarkbit)
6661 {
6662 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6663 unchain_marker (&mblk->markers[i].m.u_marker);
6664 /* Set the type of the freed object to Lisp_Misc_Free.
6665 We could leave the type alone, since nobody checks it,
6666 but this might catch bugs faster. */
6667 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6668 mblk->markers[i].m.u_free.chain = marker_free_list;
6669 marker_free_list = &mblk->markers[i].m;
6670 this_free++;
6671 }
6672 else
6673 {
6674 num_used++;
6675 mblk->markers[i].m.u_any.gcmarkbit = 0;
6676 }
6677 }
6678 lim = MARKER_BLOCK_SIZE;
6679 /* If this block contains only free markers and we have already
6680 seen more than two blocks worth of free markers then deallocate
6681 this block. */
6682 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6683 {
6684 *mprev = mblk->next;
6685 /* Unhook from the free list. */
6686 marker_free_list = mblk->markers[0].m.u_free.chain;
6687 lisp_free (mblk);
6688 }
6689 else
6690 {
6691 num_free += this_free;
6692 mprev = &mblk->next;
6693 }
6694 }
6695
6696 total_markers = num_used;
6697 total_free_markers = num_free;
6698 }
6699
6700 /* Free all unmarked buffers */
6701 {
6702 register struct buffer *buffer, **bprev = &all_buffers;
6703
6704 total_buffers = 0;
6705 for (buffer = all_buffers; buffer; buffer = *bprev)
6706 if (!VECTOR_MARKED_P (buffer))
6707 {
6708 *bprev = buffer->next;
6709 lisp_free (buffer);
6710 }
6711 else
6712 {
6713 VECTOR_UNMARK (buffer);
6714 /* Do not use buffer_(set|get)_intervals here. */
6715 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6716 total_buffers++;
6717 bprev = &buffer->next;
6718 }
6719 }
6720
6721 sweep_vectors ();
6722 check_string_bytes (!noninteractive);
6723 }
6724
6725
6726
6727 \f
6728 /* Debugging aids. */
6729
6730 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6731 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6732 This may be helpful in debugging Emacs's memory usage.
6733 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6734 (void)
6735 {
6736 Lisp_Object end;
6737
6738 #ifdef HAVE_NS
6739 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6740 XSETINT (end, 0);
6741 #else
6742 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6743 #endif
6744
6745 return end;
6746 }
6747
6748 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6749 doc: /* Return a list of counters that measure how much consing there has been.
6750 Each of these counters increments for a certain kind of object.
6751 The counters wrap around from the largest positive integer to zero.
6752 Garbage collection does not decrease them.
6753 The elements of the value are as follows:
6754 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6755 All are in units of 1 = one object consed
6756 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6757 objects consed.
6758 MISCS include overlays, markers, and some internal types.
6759 Frames, windows, buffers, and subprocesses count as vectors
6760 (but the contents of a buffer's text do not count here). */)
6761 (void)
6762 {
6763 return listn (CONSTYPE_HEAP, 8,
6764 bounded_number (cons_cells_consed),
6765 bounded_number (floats_consed),
6766 bounded_number (vector_cells_consed),
6767 bounded_number (symbols_consed),
6768 bounded_number (string_chars_consed),
6769 bounded_number (misc_objects_consed),
6770 bounded_number (intervals_consed),
6771 bounded_number (strings_consed));
6772 }
6773
6774 /* Find at most FIND_MAX symbols which have OBJ as their value or
6775 function. This is used in gdbinit's `xwhichsymbols' command. */
6776
6777 Lisp_Object
6778 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6779 {
6780 struct symbol_block *sblk;
6781 ptrdiff_t gc_count = inhibit_garbage_collection ();
6782 Lisp_Object found = Qnil;
6783
6784 if (! DEADP (obj))
6785 {
6786 for (sblk = symbol_block; sblk; sblk = sblk->next)
6787 {
6788 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6789 int bn;
6790
6791 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6792 {
6793 struct Lisp_Symbol *sym = &aligned_sym->s;
6794 Lisp_Object val;
6795 Lisp_Object tem;
6796
6797 if (sblk == symbol_block && bn >= symbol_block_index)
6798 break;
6799
6800 XSETSYMBOL (tem, sym);
6801 val = find_symbol_value (tem);
6802 if (EQ (val, obj)
6803 || EQ (sym->function, obj)
6804 || (!NILP (sym->function)
6805 && COMPILEDP (sym->function)
6806 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6807 || (!NILP (val)
6808 && COMPILEDP (val)
6809 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6810 {
6811 found = Fcons (tem, found);
6812 if (--find_max == 0)
6813 goto out;
6814 }
6815 }
6816 }
6817 }
6818
6819 out:
6820 unbind_to (gc_count, Qnil);
6821 return found;
6822 }
6823
6824 #ifdef ENABLE_CHECKING
6825
6826 bool suppress_checking;
6827
6828 void
6829 die (const char *msg, const char *file, int line)
6830 {
6831 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6832 file, line, msg);
6833 terminate_due_to_signal (SIGABRT, INT_MAX);
6834 }
6835 #endif
6836 \f
6837 /* Initialization. */
6838
6839 void
6840 init_alloc_once (void)
6841 {
6842 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6843 purebeg = PUREBEG;
6844 pure_size = PURESIZE;
6845
6846 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6847 mem_init ();
6848 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6849 #endif
6850
6851 #ifdef DOUG_LEA_MALLOC
6852 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6853 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6854 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6855 #endif
6856 init_strings ();
6857 init_vectors ();
6858
6859 refill_memory_reserve ();
6860 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6861 }
6862
6863 void
6864 init_alloc (void)
6865 {
6866 gcprolist = 0;
6867 byte_stack_list = 0;
6868 #if GC_MARK_STACK
6869 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6870 setjmp_tested_p = longjmps_done = 0;
6871 #endif
6872 #endif
6873 Vgc_elapsed = make_float (0.0);
6874 gcs_done = 0;
6875
6876 #if USE_VALGRIND
6877 valgrind_p = RUNNING_ON_VALGRIND != 0;
6878 #endif
6879 }
6880
6881 void
6882 syms_of_alloc (void)
6883 {
6884 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6885 doc: /* Number of bytes of consing between garbage collections.
6886 Garbage collection can happen automatically once this many bytes have been
6887 allocated since the last garbage collection. All data types count.
6888
6889 Garbage collection happens automatically only when `eval' is called.
6890
6891 By binding this temporarily to a large number, you can effectively
6892 prevent garbage collection during a part of the program.
6893 See also `gc-cons-percentage'. */);
6894
6895 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6896 doc: /* Portion of the heap used for allocation.
6897 Garbage collection can happen automatically once this portion of the heap
6898 has been allocated since the last garbage collection.
6899 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6900 Vgc_cons_percentage = make_float (0.1);
6901
6902 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6903 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6904
6905 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6906 doc: /* Number of cons cells that have been consed so far. */);
6907
6908 DEFVAR_INT ("floats-consed", floats_consed,
6909 doc: /* Number of floats that have been consed so far. */);
6910
6911 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6912 doc: /* Number of vector cells that have been consed so far. */);
6913
6914 DEFVAR_INT ("symbols-consed", symbols_consed,
6915 doc: /* Number of symbols that have been consed so far. */);
6916
6917 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6918 doc: /* Number of string characters that have been consed so far. */);
6919
6920 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6921 doc: /* Number of miscellaneous objects that have been consed so far.
6922 These include markers and overlays, plus certain objects not visible
6923 to users. */);
6924
6925 DEFVAR_INT ("intervals-consed", intervals_consed,
6926 doc: /* Number of intervals that have been consed so far. */);
6927
6928 DEFVAR_INT ("strings-consed", strings_consed,
6929 doc: /* Number of strings that have been consed so far. */);
6930
6931 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6932 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6933 This means that certain objects should be allocated in shared (pure) space.
6934 It can also be set to a hash-table, in which case this table is used to
6935 do hash-consing of the objects allocated to pure space. */);
6936
6937 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6938 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6939 garbage_collection_messages = 0;
6940
6941 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6942 doc: /* Hook run after garbage collection has finished. */);
6943 Vpost_gc_hook = Qnil;
6944 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6945
6946 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6947 doc: /* Precomputed `signal' argument for memory-full error. */);
6948 /* We build this in advance because if we wait until we need it, we might
6949 not be able to allocate the memory to hold it. */
6950 Vmemory_signal_data
6951 = listn (CONSTYPE_PURE, 2, Qerror,
6952 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6953
6954 DEFVAR_LISP ("memory-full", Vmemory_full,
6955 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6956 Vmemory_full = Qnil;
6957
6958 DEFSYM (Qconses, "conses");
6959 DEFSYM (Qsymbols, "symbols");
6960 DEFSYM (Qmiscs, "miscs");
6961 DEFSYM (Qstrings, "strings");
6962 DEFSYM (Qvectors, "vectors");
6963 DEFSYM (Qfloats, "floats");
6964 DEFSYM (Qintervals, "intervals");
6965 DEFSYM (Qbuffers, "buffers");
6966 DEFSYM (Qstring_bytes, "string-bytes");
6967 DEFSYM (Qvector_slots, "vector-slots");
6968 DEFSYM (Qheap, "heap");
6969 DEFSYM (Qautomatic_gc, "Automatic GC");
6970
6971 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6972 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6973
6974 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6975 doc: /* Accumulated time elapsed in garbage collections.
6976 The time is in seconds as a floating point value. */);
6977 DEFVAR_INT ("gcs-done", gcs_done,
6978 doc: /* Accumulated number of garbage collections done. */);
6979
6980 defsubr (&Scons);
6981 defsubr (&Slist);
6982 defsubr (&Svector);
6983 defsubr (&Smake_byte_code);
6984 defsubr (&Smake_list);
6985 defsubr (&Smake_vector);
6986 defsubr (&Smake_string);
6987 defsubr (&Smake_bool_vector);
6988 defsubr (&Smake_symbol);
6989 defsubr (&Smake_marker);
6990 defsubr (&Spurecopy);
6991 defsubr (&Sgarbage_collect);
6992 defsubr (&Smemory_limit);
6993 defsubr (&Smemory_use_counts);
6994
6995 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6996 defsubr (&Sgc_status);
6997 #endif
6998 }
6999
7000 /* When compiled with GCC, GDB might say "No enum type named
7001 pvec_type" if we don't have at least one symbol with that type, and
7002 then xbacktrace could fail. Similarly for the other enums and
7003 their values. Some non-GCC compilers don't like these constructs. */
7004 #ifdef __GNUC__
7005 union
7006 {
7007 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7008 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7009 enum char_bits char_bits;
7010 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7011 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7012 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
7013 enum Lisp_Bits Lisp_Bits;
7014 enum Lisp_Compiled Lisp_Compiled;
7015 enum maxargs maxargs;
7016 enum MAX_ALLOCA MAX_ALLOCA;
7017 enum More_Lisp_Bits More_Lisp_Bits;
7018 enum pvec_type pvec_type;
7019 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7020 #endif /* __GNUC__ */