guile-elisp bootstrap part (C)
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "category.h"
26 #include "character.h"
27 #include "buffer.h"
28 #include "syntax.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* True means regexp was compiled to do full POSIX backtracking. */
53 bool posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, bool);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is true if we want full backtracking (POSIX style) for this pattern.
116 False means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern,
122 Lisp_Object translate, bool posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* unblock_input (); */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
180 }
181 }
182
183 /* Clear the regexp cache w.r.t. a particular syntax table,
184 because it was changed.
185 There is no danger of memory leak here because re_compile_pattern
186 automagically manages the memory in each re_pattern_buffer struct,
187 based on its `allocated' and `buffer' values. */
188 void
189 clear_regexp_cache (void)
190 {
191 int i;
192
193 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
194 /* It's tempting to compare with the syntax-table we've actually changed,
195 but it's not sufficient because char-table inheritance means that
196 modifying one syntax-table can change others at the same time. */
197 if (!EQ (searchbufs[i].syntax_table, Qt))
198 searchbufs[i].regexp = Qnil;
199 }
200
201 /* Compile a regexp if necessary, but first check to see if there's one in
202 the cache.
203 PATTERN is the pattern to compile.
204 TRANSLATE is a translation table for ignoring case, or nil for none.
205 REGP is the structure that says where to store the "register"
206 values that will result from matching this pattern.
207 If it is 0, we should compile the pattern not to record any
208 subexpression bounds.
209 POSIX is true if we want full backtracking (POSIX style) for this pattern.
210 False means backtrack only enough to get a valid match. */
211
212 struct re_pattern_buffer *
213 compile_pattern (Lisp_Object pattern, struct re_registers *regp,
214 Lisp_Object translate, bool posix, bool multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, bool posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 ptrdiff_t s1, s2;
276 register ptrdiff_t i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
284 BVAR (current_buffer, case_eqv_table));
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (i >= 0 ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 {
332 for (i = 0; i < search_regs.num_regs; i++)
333 if (search_regs.start[i] >= 0)
334 {
335 search_regs.start[i]
336 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
337 search_regs.end[i]
338 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
339 }
340 /* Set last_thing_searched only when match data is changed. */
341 XSETBUFFER (last_thing_searched, current_buffer);
342 }
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
370 bool posix)
371 {
372 ptrdiff_t val;
373 struct re_pattern_buffer *bufp;
374 EMACS_INT pos;
375 ptrdiff_t pos_byte, i;
376
377 if (running_asynch_code)
378 save_search_regs ();
379
380 CHECK_STRING (regexp);
381 CHECK_STRING (string);
382
383 if (NILP (start))
384 pos = 0, pos_byte = 0;
385 else
386 {
387 ptrdiff_t len = SCHARS (string);
388
389 CHECK_NUMBER (start);
390 pos = XINT (start);
391 if (pos < 0 && -pos <= len)
392 pos = len + pos;
393 else if (0 > pos || pos > len)
394 args_out_of_range (string, start);
395 pos_byte = string_char_to_byte (string, pos);
396 }
397
398 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
399 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
400 BVAR (current_buffer, case_eqv_table));
401
402 bufp = compile_pattern (regexp,
403 (NILP (Vinhibit_changing_match_data)
404 ? &search_regs : NULL),
405 (!NILP (BVAR (current_buffer, case_fold_search))
406 ? BVAR (current_buffer, case_canon_table) : Qnil),
407 posix,
408 STRING_MULTIBYTE (string));
409 immediate_quit = 1;
410 re_match_object = string;
411
412 val = re_search (bufp, SSDATA (string),
413 SBYTES (string), pos_byte,
414 SBYTES (string) - pos_byte,
415 (NILP (Vinhibit_changing_match_data)
416 ? &search_regs : NULL));
417 immediate_quit = 0;
418
419 /* Set last_thing_searched only when match data is changed. */
420 if (NILP (Vinhibit_changing_match_data))
421 last_thing_searched = Qt;
422
423 if (val == -2)
424 matcher_overflow ();
425 if (val < 0) return Qnil;
426
427 if (NILP (Vinhibit_changing_match_data))
428 for (i = 0; i < search_regs.num_regs; i++)
429 if (search_regs.start[i] >= 0)
430 {
431 search_regs.start[i]
432 = string_byte_to_char (string, search_regs.start[i]);
433 search_regs.end[i]
434 = string_byte_to_char (string, search_regs.end[i]);
435 }
436
437 return make_number (string_byte_to_char (string, val));
438 }
439
440 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
441 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
442 Matching ignores case if `case-fold-search' is non-nil.
443 If third arg START is non-nil, start search at that index in STRING.
444 For index of first char beyond the match, do (match-end 0).
445 `match-end' and `match-beginning' also give indices of substrings
446 matched by parenthesis constructs in the pattern.
447
448 You can use the function `match-string' to extract the substrings
449 matched by the parenthesis constructions in REGEXP. */)
450 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
451 {
452 return string_match_1 (regexp, string, start, 0);
453 }
454
455 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
456 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
457 Find the longest match, in accord with Posix regular expression rules.
458 Case is ignored if `case-fold-search' is non-nil in the current buffer.
459 If third arg START is non-nil, start search at that index in STRING.
460 For index of first char beyond the match, do (match-end 0).
461 `match-end' and `match-beginning' also give indices of substrings
462 matched by parenthesis constructs in the pattern. */)
463 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
464 {
465 return string_match_1 (regexp, string, start, 1);
466 }
467
468 /* Match REGEXP against STRING, searching all of STRING,
469 and return the index of the match, or negative on failure.
470 This does not clobber the match data. */
471
472 ptrdiff_t
473 fast_string_match (Lisp_Object regexp, Lisp_Object string)
474 {
475 ptrdiff_t val;
476 struct re_pattern_buffer *bufp;
477
478 bufp = compile_pattern (regexp, 0, Qnil,
479 0, STRING_MULTIBYTE (string));
480 immediate_quit = 1;
481 re_match_object = string;
482
483 val = re_search (bufp, SSDATA (string),
484 SBYTES (string), 0,
485 SBYTES (string), 0);
486 immediate_quit = 0;
487 return val;
488 }
489
490 /* Match REGEXP against STRING, searching all of STRING ignoring case,
491 and return the index of the match, or negative on failure.
492 This does not clobber the match data.
493 We assume that STRING contains single-byte characters. */
494
495 ptrdiff_t
496 fast_c_string_match_ignore_case (Lisp_Object regexp,
497 const char *string, ptrdiff_t len)
498 {
499 ptrdiff_t val;
500 struct re_pattern_buffer *bufp;
501
502 regexp = string_make_unibyte (regexp);
503 re_match_object = Qt;
504 bufp = compile_pattern (regexp, 0,
505 Vascii_canon_table, 0,
506 0);
507 immediate_quit = 1;
508 val = re_search (bufp, string, len, 0, len, 0);
509 immediate_quit = 0;
510 return val;
511 }
512
513 /* Like fast_string_match but ignore case. */
514
515 ptrdiff_t
516 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
517 {
518 ptrdiff_t val;
519 struct re_pattern_buffer *bufp;
520
521 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
522 0, STRING_MULTIBYTE (string));
523 immediate_quit = 1;
524 re_match_object = string;
525
526 val = re_search (bufp, SSDATA (string),
527 SBYTES (string), 0,
528 SBYTES (string), 0);
529 immediate_quit = 0;
530 return val;
531 }
532 \f
533 /* Match REGEXP against the characters after POS to LIMIT, and return
534 the number of matched characters. If STRING is non-nil, match
535 against the characters in it. In that case, POS and LIMIT are
536 indices into the string. This function doesn't modify the match
537 data. */
538
539 ptrdiff_t
540 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
541 ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
542 {
543 bool multibyte;
544 struct re_pattern_buffer *buf;
545 unsigned char *p1, *p2;
546 ptrdiff_t s1, s2;
547 ptrdiff_t len;
548
549 if (STRINGP (string))
550 {
551 if (pos_byte < 0)
552 pos_byte = string_char_to_byte (string, pos);
553 if (limit_byte < 0)
554 limit_byte = string_char_to_byte (string, limit);
555 p1 = NULL;
556 s1 = 0;
557 p2 = SDATA (string);
558 s2 = SBYTES (string);
559 re_match_object = string;
560 multibyte = STRING_MULTIBYTE (string);
561 }
562 else
563 {
564 if (pos_byte < 0)
565 pos_byte = CHAR_TO_BYTE (pos);
566 if (limit_byte < 0)
567 limit_byte = CHAR_TO_BYTE (limit);
568 pos_byte -= BEGV_BYTE;
569 limit_byte -= BEGV_BYTE;
570 p1 = BEGV_ADDR;
571 s1 = GPT_BYTE - BEGV_BYTE;
572 p2 = GAP_END_ADDR;
573 s2 = ZV_BYTE - GPT_BYTE;
574 if (s1 < 0)
575 {
576 p2 = p1;
577 s2 = ZV_BYTE - BEGV_BYTE;
578 s1 = 0;
579 }
580 if (s2 < 0)
581 {
582 s1 = ZV_BYTE - BEGV_BYTE;
583 s2 = 0;
584 }
585 re_match_object = Qnil;
586 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
587 }
588
589 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
590 immediate_quit = 1;
591 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
592 pos_byte, NULL, limit_byte);
593 immediate_quit = 0;
594
595 return len;
596 }
597
598 \f
599 /* The newline cache: remembering which sections of text have no newlines. */
600
601 /* If the user has requested the long scans caching, make sure it's on.
602 Otherwise, make sure it's off.
603 This is our cheezy way of associating an action with the change of
604 state of a buffer-local variable. */
605 static struct region_cache *
606 newline_cache_on_off (struct buffer *buf)
607 {
608 struct buffer *base_buf = buf;
609 bool indirect_p = false;
610
611 if (buf->base_buffer)
612 {
613 base_buf = buf->base_buffer;
614 indirect_p = true;
615 }
616
617 /* Don't turn on or off the cache in the base buffer, if the value
618 of cache-long-scans of the base buffer is inconsistent with that.
619 This is because doing so will just make the cache pure overhead,
620 since if we turn it on via indirect buffer, it will be
621 immediately turned off by its base buffer. */
622 if (NILP (BVAR (buf, cache_long_scans)))
623 {
624 if (!indirect_p
625 || NILP (BVAR (base_buf, cache_long_scans)))
626 {
627 /* It should be off. */
628 if (base_buf->newline_cache)
629 {
630 free_region_cache (base_buf->newline_cache);
631 base_buf->newline_cache = 0;
632 }
633 }
634 return NULL;
635 }
636 else
637 {
638 if (!indirect_p
639 || !NILP (BVAR (base_buf, cache_long_scans)))
640 {
641 /* It should be on. */
642 if (base_buf->newline_cache == 0)
643 base_buf->newline_cache = new_region_cache ();
644 }
645 return base_buf->newline_cache;
646 }
647 }
648
649 \f
650 /* Search for COUNT newlines between START/START_BYTE and END/END_BYTE.
651
652 If COUNT is positive, search forwards; END must be >= START.
653 If COUNT is negative, search backwards for the -COUNTth instance;
654 END must be <= START.
655 If COUNT is zero, do anything you please; run rogue, for all I care.
656
657 If END is zero, use BEGV or ZV instead, as appropriate for the
658 direction indicated by COUNT.
659
660 If we find COUNT instances, set *SHORTAGE to zero, and return the
661 position past the COUNTth match. Note that for reverse motion
662 this is not the same as the usual convention for Emacs motion commands.
663
664 If we don't find COUNT instances before reaching END, set *SHORTAGE
665 to the number of newlines left unfound, and return END.
666
667 If BYTEPOS is not NULL, set *BYTEPOS to the byte position corresponding
668 to the returned character position.
669
670 If ALLOW_QUIT, set immediate_quit. That's good to do
671 except when inside redisplay. */
672
673 ptrdiff_t
674 find_newline (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
675 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
676 ptrdiff_t *bytepos, bool allow_quit)
677 {
678 struct region_cache *newline_cache;
679 int direction;
680 struct buffer *cache_buffer;
681
682 if (count > 0)
683 {
684 direction = 1;
685 if (!end)
686 end = ZV, end_byte = ZV_BYTE;
687 }
688 else
689 {
690 direction = -1;
691 if (!end)
692 end = BEGV, end_byte = BEGV_BYTE;
693 }
694 if (end_byte == -1)
695 end_byte = CHAR_TO_BYTE (end);
696
697 newline_cache = newline_cache_on_off (current_buffer);
698 if (current_buffer->base_buffer)
699 cache_buffer = current_buffer->base_buffer;
700 else
701 cache_buffer = current_buffer;
702
703 if (shortage != 0)
704 *shortage = 0;
705
706 immediate_quit = allow_quit;
707
708 if (count > 0)
709 while (start != end)
710 {
711 /* Our innermost scanning loop is very simple; it doesn't know
712 about gaps, buffer ends, or the newline cache. ceiling is
713 the position of the last character before the next such
714 obstacle --- the last character the dumb search loop should
715 examine. */
716 ptrdiff_t tem, ceiling_byte = end_byte - 1;
717
718 /* If we're using the newline cache, consult it to see whether
719 we can avoid some scanning. */
720 if (newline_cache)
721 {
722 ptrdiff_t next_change;
723 int result = 1;
724
725 immediate_quit = 0;
726 while (start < end && result)
727 {
728 ptrdiff_t lim1;
729
730 result = region_cache_forward (cache_buffer, newline_cache,
731 start, &next_change);
732 if (result)
733 {
734 start = next_change;
735 lim1 = next_change = end;
736 }
737 else
738 lim1 = min (next_change, end);
739
740 /* The cache returned zero for this region; see if
741 this is because the region is known and includes
742 only newlines. While at that, count any newlines
743 we bump into, and exit if we found enough off them. */
744 start_byte = CHAR_TO_BYTE (start);
745 while (start < lim1
746 && FETCH_BYTE (start_byte) == '\n')
747 {
748 start_byte++;
749 start++;
750 if (--count == 0)
751 {
752 if (bytepos)
753 *bytepos = start_byte;
754 return start;
755 }
756 }
757 /* If we found a non-newline character before hitting
758 position where the cache will again return non-zero
759 (i.e. no newlines beyond that position), it means
760 this region is not yet known to the cache, and we
761 must resort to the "dumb loop" method. */
762 if (start < next_change && !result)
763 break;
764 result = 1;
765 }
766 if (start >= end)
767 {
768 start = end;
769 start_byte = end_byte;
770 break;
771 }
772 immediate_quit = allow_quit;
773
774 /* START should never be after END. */
775 if (start_byte > ceiling_byte)
776 start_byte = ceiling_byte;
777
778 /* Now the text after start is an unknown region, and
779 next_change is the position of the next known region. */
780 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
781 }
782 else if (start_byte == -1)
783 start_byte = CHAR_TO_BYTE (start);
784
785 /* The dumb loop can only scan text stored in contiguous
786 bytes. BUFFER_CEILING_OF returns the last character
787 position that is contiguous, so the ceiling is the
788 position after that. */
789 tem = BUFFER_CEILING_OF (start_byte);
790 ceiling_byte = min (tem, ceiling_byte);
791
792 {
793 /* The termination address of the dumb loop. */
794 unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
795 ptrdiff_t lim_byte = ceiling_byte + 1;
796
797 /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
798 of the base, the cursor, and the next line. */
799 ptrdiff_t base = start_byte - lim_byte;
800 ptrdiff_t cursor, next;
801
802 for (cursor = base; cursor < 0; cursor = next)
803 {
804 /* The dumb loop. */
805 unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
806 next = nl ? nl - lim_addr : 0;
807
808 /* If we're using the newline cache, cache the fact that
809 the region we just traversed is free of newlines. */
810 if (newline_cache && cursor != next)
811 {
812 know_region_cache (cache_buffer, newline_cache,
813 BYTE_TO_CHAR (lim_byte + cursor),
814 BYTE_TO_CHAR (lim_byte + next));
815 /* know_region_cache can relocate buffer text. */
816 lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
817 }
818
819 if (! nl)
820 break;
821 next++;
822
823 if (--count == 0)
824 {
825 immediate_quit = 0;
826 if (bytepos)
827 *bytepos = lim_byte + next;
828 return BYTE_TO_CHAR (lim_byte + next);
829 }
830 }
831
832 start_byte = lim_byte;
833 start = BYTE_TO_CHAR (start_byte);
834 }
835 }
836 else
837 while (start > end)
838 {
839 /* The last character to check before the next obstacle. */
840 ptrdiff_t tem, ceiling_byte = end_byte;
841
842 /* Consult the newline cache, if appropriate. */
843 if (newline_cache)
844 {
845 ptrdiff_t next_change;
846 int result = 1;
847
848 immediate_quit = 0;
849 while (start > end && result)
850 {
851 ptrdiff_t lim1;
852
853 result = region_cache_backward (cache_buffer, newline_cache,
854 start, &next_change);
855 if (result)
856 {
857 start = next_change;
858 lim1 = next_change = end;
859 }
860 else
861 lim1 = max (next_change, end);
862 start_byte = CHAR_TO_BYTE (start);
863 while (start > lim1
864 && FETCH_BYTE (start_byte - 1) == '\n')
865 {
866 if (++count == 0)
867 {
868 if (bytepos)
869 *bytepos = start_byte;
870 return start;
871 }
872 start_byte--;
873 start--;
874 }
875 if (start > next_change && !result)
876 break;
877 result = 1;
878 }
879 if (start <= end)
880 {
881 start = end;
882 start_byte = end_byte;
883 break;
884 }
885 immediate_quit = allow_quit;
886
887 /* Start should never be at or before end. */
888 if (start_byte <= ceiling_byte)
889 start_byte = ceiling_byte + 1;
890
891 /* Now the text before start is an unknown region, and
892 next_change is the position of the next known region. */
893 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
894 }
895 else if (start_byte == -1)
896 start_byte = CHAR_TO_BYTE (start);
897
898 /* Stop scanning before the gap. */
899 tem = BUFFER_FLOOR_OF (start_byte - 1);
900 ceiling_byte = max (tem, ceiling_byte);
901
902 {
903 /* The termination address of the dumb loop. */
904 unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
905
906 /* Offsets (relative to CEILING_ADDR and CEILING_BYTE) of
907 the base, the cursor, and the previous line. These
908 offsets are at least -1. */
909 ptrdiff_t base = start_byte - ceiling_byte;
910 ptrdiff_t cursor, prev;
911
912 for (cursor = base; 0 < cursor; cursor = prev)
913 {
914 unsigned char *nl = memrchr (ceiling_addr, '\n', cursor);
915 prev = nl ? nl - ceiling_addr : -1;
916
917 /* If we're looking for newlines, cache the fact that
918 this line's region is free of them. */
919 if (newline_cache && cursor != prev + 1)
920 {
921 know_region_cache (cache_buffer, newline_cache,
922 BYTE_TO_CHAR (ceiling_byte + prev + 1),
923 BYTE_TO_CHAR (ceiling_byte + cursor));
924 /* know_region_cache can relocate buffer text. */
925 ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
926 }
927
928 if (! nl)
929 break;
930
931 if (++count >= 0)
932 {
933 immediate_quit = 0;
934 if (bytepos)
935 *bytepos = ceiling_byte + prev + 1;
936 return BYTE_TO_CHAR (ceiling_byte + prev + 1);
937 }
938 }
939
940 start_byte = ceiling_byte;
941 start = BYTE_TO_CHAR (start_byte);
942 }
943 }
944
945 immediate_quit = 0;
946 if (shortage)
947 *shortage = count * direction;
948 if (bytepos)
949 {
950 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
951 eassert (*bytepos == CHAR_TO_BYTE (start));
952 }
953 return start;
954 }
955 \f
956 /* Search for COUNT instances of a line boundary.
957 Start at START. If COUNT is negative, search backwards.
958
959 We report the resulting position by calling TEMP_SET_PT_BOTH.
960
961 If we find COUNT instances. we position after (always after,
962 even if scanning backwards) the COUNTth match, and return 0.
963
964 If we don't find COUNT instances before reaching the end of the
965 buffer (or the beginning, if scanning backwards), we return
966 the number of line boundaries left unfound, and position at
967 the limit we bumped up against.
968
969 If ALLOW_QUIT, set immediate_quit. That's good to do
970 except in special cases. */
971
972 ptrdiff_t
973 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
974 ptrdiff_t limit, ptrdiff_t limit_byte,
975 ptrdiff_t count, bool allow_quit)
976 {
977 ptrdiff_t charpos, bytepos, shortage;
978
979 charpos = find_newline (start, start_byte, limit, limit_byte,
980 count, &shortage, &bytepos, allow_quit);
981 if (shortage)
982 TEMP_SET_PT_BOTH (limit, limit_byte);
983 else
984 TEMP_SET_PT_BOTH (charpos, bytepos);
985 return shortage;
986 }
987
988 /* Like find_newline, but doesn't allow QUITting and doesn't return
989 SHORTAGE. */
990 ptrdiff_t
991 find_newline_no_quit (ptrdiff_t from, ptrdiff_t frombyte,
992 ptrdiff_t cnt, ptrdiff_t *bytepos)
993 {
994 return find_newline (from, frombyte, 0, -1, cnt, NULL, bytepos, 0);
995 }
996
997 /* Like find_newline, but returns position before the newline, not
998 after, and only search up to TO.
999 This isn't just find_newline_no_quit (...)-1, because you might hit TO. */
1000
1001 ptrdiff_t
1002 find_before_next_newline (ptrdiff_t from, ptrdiff_t to,
1003 ptrdiff_t cnt, ptrdiff_t *bytepos)
1004 {
1005 ptrdiff_t shortage;
1006 ptrdiff_t pos = find_newline (from, -1, to, -1, cnt, &shortage, bytepos, 1);
1007
1008 if (shortage == 0)
1009 {
1010 if (bytepos)
1011 DEC_BOTH (pos, *bytepos);
1012 else
1013 pos--;
1014 }
1015 return pos;
1016 }
1017 \f
1018 /* Subroutines of Lisp buffer search functions. */
1019
1020 static Lisp_Object
1021 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
1022 Lisp_Object count, int direction, int RE, bool posix)
1023 {
1024 EMACS_INT np;
1025 EMACS_INT lim;
1026 ptrdiff_t lim_byte;
1027 EMACS_INT n = direction;
1028
1029 if (!NILP (count))
1030 {
1031 CHECK_NUMBER (count);
1032 n *= XINT (count);
1033 }
1034
1035 CHECK_STRING (string);
1036 if (NILP (bound))
1037 {
1038 if (n > 0)
1039 lim = ZV, lim_byte = ZV_BYTE;
1040 else
1041 lim = BEGV, lim_byte = BEGV_BYTE;
1042 }
1043 else
1044 {
1045 CHECK_NUMBER_COERCE_MARKER (bound);
1046 lim = XINT (bound);
1047 if (n > 0 ? lim < PT : lim > PT)
1048 error ("Invalid search bound (wrong side of point)");
1049 if (lim > ZV)
1050 lim = ZV, lim_byte = ZV_BYTE;
1051 else if (lim < BEGV)
1052 lim = BEGV, lim_byte = BEGV_BYTE;
1053 else
1054 lim_byte = CHAR_TO_BYTE (lim);
1055 }
1056
1057 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
1058 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
1059 BVAR (current_buffer, case_eqv_table));
1060
1061 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
1062 (!NILP (BVAR (current_buffer, case_fold_search))
1063 ? BVAR (current_buffer, case_canon_table)
1064 : Qnil),
1065 (!NILP (BVAR (current_buffer, case_fold_search))
1066 ? BVAR (current_buffer, case_eqv_table)
1067 : Qnil),
1068 posix);
1069 if (np <= 0)
1070 {
1071 if (NILP (noerror))
1072 xsignal1 (Qsearch_failed, string);
1073
1074 if (!EQ (noerror, Qt))
1075 {
1076 eassert (BEGV <= lim && lim <= ZV);
1077 SET_PT_BOTH (lim, lim_byte);
1078 return Qnil;
1079 #if 0 /* This would be clean, but maybe programs depend on
1080 a value of nil here. */
1081 np = lim;
1082 #endif
1083 }
1084 else
1085 return Qnil;
1086 }
1087
1088 eassert (BEGV <= np && np <= ZV);
1089 SET_PT (np);
1090
1091 return make_number (np);
1092 }
1093 \f
1094 /* Return true if REGEXP it matches just one constant string. */
1095
1096 static bool
1097 trivial_regexp_p (Lisp_Object regexp)
1098 {
1099 ptrdiff_t len = SBYTES (regexp);
1100 unsigned char *s = SDATA (regexp);
1101 while (--len >= 0)
1102 {
1103 switch (*s++)
1104 {
1105 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1106 return 0;
1107 case '\\':
1108 if (--len < 0)
1109 return 0;
1110 switch (*s++)
1111 {
1112 case '|': case '(': case ')': case '`': case '\'': case 'b':
1113 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1114 case 'S': case '=': case '{': case '}': case '_':
1115 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1116 case '1': case '2': case '3': case '4': case '5':
1117 case '6': case '7': case '8': case '9':
1118 return 0;
1119 }
1120 }
1121 }
1122 return 1;
1123 }
1124
1125 /* Search for the n'th occurrence of STRING in the current buffer,
1126 starting at position POS and stopping at position LIM,
1127 treating STRING as a literal string if RE is false or as
1128 a regular expression if RE is true.
1129
1130 If N is positive, searching is forward and LIM must be greater than POS.
1131 If N is negative, searching is backward and LIM must be less than POS.
1132
1133 Returns -x if x occurrences remain to be found (x > 0),
1134 or else the position at the beginning of the Nth occurrence
1135 (if searching backward) or the end (if searching forward).
1136
1137 POSIX is nonzero if we want full backtracking (POSIX style)
1138 for this pattern. 0 means backtrack only enough to get a valid match. */
1139
1140 #define TRANSLATE(out, trt, d) \
1141 do \
1142 { \
1143 if (! NILP (trt)) \
1144 { \
1145 Lisp_Object temp; \
1146 temp = Faref (trt, make_number (d)); \
1147 if (INTEGERP (temp)) \
1148 out = XINT (temp); \
1149 else \
1150 out = d; \
1151 } \
1152 else \
1153 out = d; \
1154 } \
1155 while (0)
1156
1157 /* Only used in search_buffer, to record the end position of the match
1158 when searching regexps and SEARCH_REGS should not be changed
1159 (i.e. Vinhibit_changing_match_data is non-nil). */
1160 static struct re_registers search_regs_1;
1161
1162 static EMACS_INT
1163 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1164 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1165 int RE, Lisp_Object trt, Lisp_Object inverse_trt, bool posix)
1166 {
1167 ptrdiff_t len = SCHARS (string);
1168 ptrdiff_t len_byte = SBYTES (string);
1169 register ptrdiff_t i;
1170
1171 if (running_asynch_code)
1172 save_search_regs ();
1173
1174 /* Searching 0 times means don't move. */
1175 /* Null string is found at starting position. */
1176 if (len == 0 || n == 0)
1177 {
1178 set_search_regs (pos_byte, 0);
1179 return pos;
1180 }
1181
1182 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1183 {
1184 unsigned char *p1, *p2;
1185 ptrdiff_t s1, s2;
1186 struct re_pattern_buffer *bufp;
1187
1188 bufp = compile_pattern (string,
1189 (NILP (Vinhibit_changing_match_data)
1190 ? &search_regs : &search_regs_1),
1191 trt, posix,
1192 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1193
1194 immediate_quit = 1; /* Quit immediately if user types ^G,
1195 because letting this function finish
1196 can take too long. */
1197 QUIT; /* Do a pending quit right away,
1198 to avoid paradoxical behavior */
1199 /* Get pointers and sizes of the two strings
1200 that make up the visible portion of the buffer. */
1201
1202 p1 = BEGV_ADDR;
1203 s1 = GPT_BYTE - BEGV_BYTE;
1204 p2 = GAP_END_ADDR;
1205 s2 = ZV_BYTE - GPT_BYTE;
1206 if (s1 < 0)
1207 {
1208 p2 = p1;
1209 s2 = ZV_BYTE - BEGV_BYTE;
1210 s1 = 0;
1211 }
1212 if (s2 < 0)
1213 {
1214 s1 = ZV_BYTE - BEGV_BYTE;
1215 s2 = 0;
1216 }
1217 re_match_object = Qnil;
1218
1219 while (n < 0)
1220 {
1221 ptrdiff_t val;
1222
1223 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1224 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1225 (NILP (Vinhibit_changing_match_data)
1226 ? &search_regs : &search_regs_1),
1227 /* Don't allow match past current point */
1228 pos_byte - BEGV_BYTE);
1229 if (val == -2)
1230 {
1231 matcher_overflow ();
1232 }
1233 if (val >= 0)
1234 {
1235 if (NILP (Vinhibit_changing_match_data))
1236 {
1237 pos_byte = search_regs.start[0] + BEGV_BYTE;
1238 for (i = 0; i < search_regs.num_regs; i++)
1239 if (search_regs.start[i] >= 0)
1240 {
1241 search_regs.start[i]
1242 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1243 search_regs.end[i]
1244 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1245 }
1246 XSETBUFFER (last_thing_searched, current_buffer);
1247 /* Set pos to the new position. */
1248 pos = search_regs.start[0];
1249 }
1250 else
1251 {
1252 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1253 /* Set pos to the new position. */
1254 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1255 }
1256 }
1257 else
1258 {
1259 immediate_quit = 0;
1260 return (n);
1261 }
1262 n++;
1263 }
1264 while (n > 0)
1265 {
1266 ptrdiff_t val;
1267
1268 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1269 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1270 (NILP (Vinhibit_changing_match_data)
1271 ? &search_regs : &search_regs_1),
1272 lim_byte - BEGV_BYTE);
1273 if (val == -2)
1274 {
1275 matcher_overflow ();
1276 }
1277 if (val >= 0)
1278 {
1279 if (NILP (Vinhibit_changing_match_data))
1280 {
1281 pos_byte = search_regs.end[0] + BEGV_BYTE;
1282 for (i = 0; i < search_regs.num_regs; i++)
1283 if (search_regs.start[i] >= 0)
1284 {
1285 search_regs.start[i]
1286 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1287 search_regs.end[i]
1288 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1289 }
1290 XSETBUFFER (last_thing_searched, current_buffer);
1291 pos = search_regs.end[0];
1292 }
1293 else
1294 {
1295 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1296 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1297 }
1298 }
1299 else
1300 {
1301 immediate_quit = 0;
1302 return (0 - n);
1303 }
1304 n--;
1305 }
1306 immediate_quit = 0;
1307 return (pos);
1308 }
1309 else /* non-RE case */
1310 {
1311 unsigned char *raw_pattern, *pat;
1312 ptrdiff_t raw_pattern_size;
1313 ptrdiff_t raw_pattern_size_byte;
1314 unsigned char *patbuf;
1315 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1316 unsigned char *base_pat;
1317 /* Set to positive if we find a non-ASCII char that need
1318 translation. Otherwise set to zero later. */
1319 int char_base = -1;
1320 bool boyer_moore_ok = 1;
1321
1322 /* MULTIBYTE says whether the text to be searched is multibyte.
1323 We must convert PATTERN to match that, or we will not really
1324 find things right. */
1325
1326 if (multibyte == STRING_MULTIBYTE (string))
1327 {
1328 raw_pattern = SDATA (string);
1329 raw_pattern_size = SCHARS (string);
1330 raw_pattern_size_byte = SBYTES (string);
1331 }
1332 else if (multibyte)
1333 {
1334 raw_pattern_size = SCHARS (string);
1335 raw_pattern_size_byte
1336 = count_size_as_multibyte (SDATA (string),
1337 raw_pattern_size);
1338 raw_pattern = alloca (raw_pattern_size_byte + 1);
1339 copy_text (SDATA (string), raw_pattern,
1340 SCHARS (string), 0, 1);
1341 }
1342 else
1343 {
1344 /* Converting multibyte to single-byte.
1345
1346 ??? Perhaps this conversion should be done in a special way
1347 by subtracting nonascii-insert-offset from each non-ASCII char,
1348 so that only the multibyte chars which really correspond to
1349 the chosen single-byte character set can possibly match. */
1350 raw_pattern_size = SCHARS (string);
1351 raw_pattern_size_byte = SCHARS (string);
1352 raw_pattern = alloca (raw_pattern_size + 1);
1353 copy_text (SDATA (string), raw_pattern,
1354 SBYTES (string), 1, 0);
1355 }
1356
1357 /* Copy and optionally translate the pattern. */
1358 len = raw_pattern_size;
1359 len_byte = raw_pattern_size_byte;
1360 patbuf = alloca (len * MAX_MULTIBYTE_LENGTH);
1361 pat = patbuf;
1362 base_pat = raw_pattern;
1363 if (multibyte)
1364 {
1365 /* Fill patbuf by translated characters in STRING while
1366 checking if we can use boyer-moore search. If TRT is
1367 non-nil, we can use boyer-moore search only if TRT can be
1368 represented by the byte array of 256 elements. For that,
1369 all non-ASCII case-equivalents of all case-sensitive
1370 characters in STRING must belong to the same character
1371 group (two characters belong to the same group iff their
1372 multibyte forms are the same except for the last byte;
1373 i.e. every 64 characters form a group; U+0000..U+003F,
1374 U+0040..U+007F, U+0080..U+00BF, ...). */
1375
1376 while (--len >= 0)
1377 {
1378 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1379 int c, translated, inverse;
1380 int in_charlen, charlen;
1381
1382 /* If we got here and the RE flag is set, it's because we're
1383 dealing with a regexp known to be trivial, so the backslash
1384 just quotes the next character. */
1385 if (RE && *base_pat == '\\')
1386 {
1387 len--;
1388 raw_pattern_size--;
1389 len_byte--;
1390 base_pat++;
1391 }
1392
1393 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1394
1395 if (NILP (trt))
1396 {
1397 str = base_pat;
1398 charlen = in_charlen;
1399 }
1400 else
1401 {
1402 /* Translate the character. */
1403 TRANSLATE (translated, trt, c);
1404 charlen = CHAR_STRING (translated, str_base);
1405 str = str_base;
1406
1407 /* Check if C has any other case-equivalents. */
1408 TRANSLATE (inverse, inverse_trt, c);
1409 /* If so, check if we can use boyer-moore. */
1410 if (c != inverse && boyer_moore_ok)
1411 {
1412 /* Check if all equivalents belong to the same
1413 group of characters. Note that the check of C
1414 itself is done by the last iteration. */
1415 int this_char_base = -1;
1416
1417 while (boyer_moore_ok)
1418 {
1419 if (ASCII_CHAR_P (inverse))
1420 {
1421 if (this_char_base > 0)
1422 boyer_moore_ok = 0;
1423 else
1424 this_char_base = 0;
1425 }
1426 else if (CHAR_BYTE8_P (inverse))
1427 /* Boyer-moore search can't handle a
1428 translation of an eight-bit
1429 character. */
1430 boyer_moore_ok = 0;
1431 else if (this_char_base < 0)
1432 {
1433 this_char_base = inverse & ~0x3F;
1434 if (char_base < 0)
1435 char_base = this_char_base;
1436 else if (this_char_base != char_base)
1437 boyer_moore_ok = 0;
1438 }
1439 else if ((inverse & ~0x3F) != this_char_base)
1440 boyer_moore_ok = 0;
1441 if (c == inverse)
1442 break;
1443 TRANSLATE (inverse, inverse_trt, inverse);
1444 }
1445 }
1446 }
1447
1448 /* Store this character into the translated pattern. */
1449 memcpy (pat, str, charlen);
1450 pat += charlen;
1451 base_pat += in_charlen;
1452 len_byte -= in_charlen;
1453 }
1454
1455 /* If char_base is still negative we didn't find any translated
1456 non-ASCII characters. */
1457 if (char_base < 0)
1458 char_base = 0;
1459 }
1460 else
1461 {
1462 /* Unibyte buffer. */
1463 char_base = 0;
1464 while (--len >= 0)
1465 {
1466 int c, translated, inverse;
1467
1468 /* If we got here and the RE flag is set, it's because we're
1469 dealing with a regexp known to be trivial, so the backslash
1470 just quotes the next character. */
1471 if (RE && *base_pat == '\\')
1472 {
1473 len--;
1474 raw_pattern_size--;
1475 base_pat++;
1476 }
1477 c = *base_pat++;
1478 TRANSLATE (translated, trt, c);
1479 *pat++ = translated;
1480 /* Check that none of C's equivalents violates the
1481 assumptions of boyer_moore. */
1482 TRANSLATE (inverse, inverse_trt, c);
1483 while (1)
1484 {
1485 if (inverse >= 0200)
1486 {
1487 boyer_moore_ok = 0;
1488 break;
1489 }
1490 if (c == inverse)
1491 break;
1492 TRANSLATE (inverse, inverse_trt, inverse);
1493 }
1494 }
1495 }
1496
1497 len_byte = pat - patbuf;
1498 pat = base_pat = patbuf;
1499
1500 if (boyer_moore_ok)
1501 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1502 pos_byte, lim_byte,
1503 char_base);
1504 else
1505 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1506 pos, pos_byte, lim, lim_byte);
1507 }
1508 }
1509 \f
1510 /* Do a simple string search N times for the string PAT,
1511 whose length is LEN/LEN_BYTE,
1512 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1513 TRT is the translation table.
1514
1515 Return the character position where the match is found.
1516 Otherwise, if M matches remained to be found, return -M.
1517
1518 This kind of search works regardless of what is in PAT and
1519 regardless of what is in TRT. It is used in cases where
1520 boyer_moore cannot work. */
1521
1522 static EMACS_INT
1523 simple_search (EMACS_INT n, unsigned char *pat,
1524 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1525 ptrdiff_t pos, ptrdiff_t pos_byte,
1526 ptrdiff_t lim, ptrdiff_t lim_byte)
1527 {
1528 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1529 bool forward = n > 0;
1530 /* Number of buffer bytes matched. Note that this may be different
1531 from len_byte in a multibyte buffer. */
1532 ptrdiff_t match_byte = PTRDIFF_MIN;
1533
1534 if (lim > pos && multibyte)
1535 while (n > 0)
1536 {
1537 while (1)
1538 {
1539 /* Try matching at position POS. */
1540 ptrdiff_t this_pos = pos;
1541 ptrdiff_t this_pos_byte = pos_byte;
1542 ptrdiff_t this_len = len;
1543 unsigned char *p = pat;
1544 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1545 goto stop;
1546
1547 while (this_len > 0)
1548 {
1549 int charlen, buf_charlen;
1550 int pat_ch, buf_ch;
1551
1552 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1553 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1554 buf_charlen);
1555 TRANSLATE (buf_ch, trt, buf_ch);
1556
1557 if (buf_ch != pat_ch)
1558 break;
1559
1560 this_len--;
1561 p += charlen;
1562
1563 this_pos_byte += buf_charlen;
1564 this_pos++;
1565 }
1566
1567 if (this_len == 0)
1568 {
1569 match_byte = this_pos_byte - pos_byte;
1570 pos += len;
1571 pos_byte += match_byte;
1572 break;
1573 }
1574
1575 INC_BOTH (pos, pos_byte);
1576 }
1577
1578 n--;
1579 }
1580 else if (lim > pos)
1581 while (n > 0)
1582 {
1583 while (1)
1584 {
1585 /* Try matching at position POS. */
1586 ptrdiff_t this_pos = pos;
1587 ptrdiff_t this_len = len;
1588 unsigned char *p = pat;
1589
1590 if (pos + len > lim)
1591 goto stop;
1592
1593 while (this_len > 0)
1594 {
1595 int pat_ch = *p++;
1596 int buf_ch = FETCH_BYTE (this_pos);
1597 TRANSLATE (buf_ch, trt, buf_ch);
1598
1599 if (buf_ch != pat_ch)
1600 break;
1601
1602 this_len--;
1603 this_pos++;
1604 }
1605
1606 if (this_len == 0)
1607 {
1608 match_byte = len;
1609 pos += len;
1610 break;
1611 }
1612
1613 pos++;
1614 }
1615
1616 n--;
1617 }
1618 /* Backwards search. */
1619 else if (lim < pos && multibyte)
1620 while (n < 0)
1621 {
1622 while (1)
1623 {
1624 /* Try matching at position POS. */
1625 ptrdiff_t this_pos = pos;
1626 ptrdiff_t this_pos_byte = pos_byte;
1627 ptrdiff_t this_len = len;
1628 const unsigned char *p = pat + len_byte;
1629
1630 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1631 goto stop;
1632
1633 while (this_len > 0)
1634 {
1635 int pat_ch, buf_ch;
1636
1637 DEC_BOTH (this_pos, this_pos_byte);
1638 PREV_CHAR_BOUNDARY (p, pat);
1639 pat_ch = STRING_CHAR (p);
1640 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1641 TRANSLATE (buf_ch, trt, buf_ch);
1642
1643 if (buf_ch != pat_ch)
1644 break;
1645
1646 this_len--;
1647 }
1648
1649 if (this_len == 0)
1650 {
1651 match_byte = pos_byte - this_pos_byte;
1652 pos = this_pos;
1653 pos_byte = this_pos_byte;
1654 break;
1655 }
1656
1657 DEC_BOTH (pos, pos_byte);
1658 }
1659
1660 n++;
1661 }
1662 else if (lim < pos)
1663 while (n < 0)
1664 {
1665 while (1)
1666 {
1667 /* Try matching at position POS. */
1668 ptrdiff_t this_pos = pos - len;
1669 ptrdiff_t this_len = len;
1670 unsigned char *p = pat;
1671
1672 if (this_pos < lim)
1673 goto stop;
1674
1675 while (this_len > 0)
1676 {
1677 int pat_ch = *p++;
1678 int buf_ch = FETCH_BYTE (this_pos);
1679 TRANSLATE (buf_ch, trt, buf_ch);
1680
1681 if (buf_ch != pat_ch)
1682 break;
1683 this_len--;
1684 this_pos++;
1685 }
1686
1687 if (this_len == 0)
1688 {
1689 match_byte = len;
1690 pos -= len;
1691 break;
1692 }
1693
1694 pos--;
1695 }
1696
1697 n++;
1698 }
1699
1700 stop:
1701 if (n == 0)
1702 {
1703 eassert (match_byte != PTRDIFF_MIN);
1704 if (forward)
1705 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1706 else
1707 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1708
1709 return pos;
1710 }
1711 else if (n > 0)
1712 return -n;
1713 else
1714 return n;
1715 }
1716 \f
1717 /* Do Boyer-Moore search N times for the string BASE_PAT,
1718 whose length is LEN_BYTE,
1719 from buffer position POS_BYTE until LIM_BYTE.
1720 DIRECTION says which direction we search in.
1721 TRT and INVERSE_TRT are translation tables.
1722 Characters in PAT are already translated by TRT.
1723
1724 This kind of search works if all the characters in BASE_PAT that
1725 have nontrivial translation are the same aside from the last byte.
1726 This makes it possible to translate just the last byte of a
1727 character, and do so after just a simple test of the context.
1728 CHAR_BASE is nonzero if there is such a non-ASCII character.
1729
1730 If that criterion is not satisfied, do not call this function. */
1731
1732 static EMACS_INT
1733 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1734 ptrdiff_t len_byte,
1735 Lisp_Object trt, Lisp_Object inverse_trt,
1736 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1737 int char_base)
1738 {
1739 int direction = ((n > 0) ? 1 : -1);
1740 register ptrdiff_t dirlen;
1741 ptrdiff_t limit;
1742 int stride_for_teases = 0;
1743 int BM_tab[0400];
1744 register unsigned char *cursor, *p_limit;
1745 register ptrdiff_t i;
1746 register int j;
1747 unsigned char *pat, *pat_end;
1748 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1749
1750 unsigned char simple_translate[0400];
1751 /* These are set to the preceding bytes of a byte to be translated
1752 if char_base is nonzero. As the maximum byte length of a
1753 multibyte character is 5, we have to check at most four previous
1754 bytes. */
1755 int translate_prev_byte1 = 0;
1756 int translate_prev_byte2 = 0;
1757 int translate_prev_byte3 = 0;
1758
1759 /* The general approach is that we are going to maintain that we know
1760 the first (closest to the present position, in whatever direction
1761 we're searching) character that could possibly be the last
1762 (furthest from present position) character of a valid match. We
1763 advance the state of our knowledge by looking at that character
1764 and seeing whether it indeed matches the last character of the
1765 pattern. If it does, we take a closer look. If it does not, we
1766 move our pointer (to putative last characters) as far as is
1767 logically possible. This amount of movement, which I call a
1768 stride, will be the length of the pattern if the actual character
1769 appears nowhere in the pattern, otherwise it will be the distance
1770 from the last occurrence of that character to the end of the
1771 pattern. If the amount is zero we have a possible match. */
1772
1773 /* Here we make a "mickey mouse" BM table. The stride of the search
1774 is determined only by the last character of the putative match.
1775 If that character does not match, we will stride the proper
1776 distance to propose a match that superimposes it on the last
1777 instance of a character that matches it (per trt), or misses
1778 it entirely if there is none. */
1779
1780 dirlen = len_byte * direction;
1781
1782 /* Record position after the end of the pattern. */
1783 pat_end = base_pat + len_byte;
1784 /* BASE_PAT points to a character that we start scanning from.
1785 It is the first character in a forward search,
1786 the last character in a backward search. */
1787 if (direction < 0)
1788 base_pat = pat_end - 1;
1789
1790 /* A character that does not appear in the pattern induces a
1791 stride equal to the pattern length. */
1792 for (i = 0; i < 0400; i++)
1793 BM_tab[i] = dirlen;
1794
1795 /* We use this for translation, instead of TRT itself.
1796 We fill this in to handle the characters that actually
1797 occur in the pattern. Others don't matter anyway! */
1798 for (i = 0; i < 0400; i++)
1799 simple_translate[i] = i;
1800
1801 if (char_base)
1802 {
1803 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1804 byte following them are the target of translation. */
1805 unsigned char str[MAX_MULTIBYTE_LENGTH];
1806 int cblen = CHAR_STRING (char_base, str);
1807
1808 translate_prev_byte1 = str[cblen - 2];
1809 if (cblen > 2)
1810 {
1811 translate_prev_byte2 = str[cblen - 3];
1812 if (cblen > 3)
1813 translate_prev_byte3 = str[cblen - 4];
1814 }
1815 }
1816
1817 i = 0;
1818 while (i != dirlen)
1819 {
1820 unsigned char *ptr = base_pat + i;
1821 i += direction;
1822 if (! NILP (trt))
1823 {
1824 /* If the byte currently looking at is the last of a
1825 character to check case-equivalents, set CH to that
1826 character. An ASCII character and a non-ASCII character
1827 matching with CHAR_BASE are to be checked. */
1828 int ch = -1;
1829
1830 if (ASCII_CHAR_P (*ptr) || ! multibyte)
1831 ch = *ptr;
1832 else if (char_base
1833 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1834 {
1835 unsigned char *charstart = ptr - 1;
1836
1837 while (! (CHAR_HEAD_P (*charstart)))
1838 charstart--;
1839 ch = STRING_CHAR (charstart);
1840 if (char_base != (ch & ~0x3F))
1841 ch = -1;
1842 }
1843
1844 if (ch >= 0200 && multibyte)
1845 j = (ch & 0x3F) | 0200;
1846 else
1847 j = *ptr;
1848
1849 if (i == dirlen)
1850 stride_for_teases = BM_tab[j];
1851
1852 BM_tab[j] = dirlen - i;
1853 /* A translation table is accompanied by its inverse -- see
1854 comment following downcase_table for details. */
1855 if (ch >= 0)
1856 {
1857 int starting_ch = ch;
1858 int starting_j = j;
1859
1860 while (1)
1861 {
1862 TRANSLATE (ch, inverse_trt, ch);
1863 if (ch >= 0200 && multibyte)
1864 j = (ch & 0x3F) | 0200;
1865 else
1866 j = ch;
1867
1868 /* For all the characters that map into CH,
1869 set up simple_translate to map the last byte
1870 into STARTING_J. */
1871 simple_translate[j] = starting_j;
1872 if (ch == starting_ch)
1873 break;
1874 BM_tab[j] = dirlen - i;
1875 }
1876 }
1877 }
1878 else
1879 {
1880 j = *ptr;
1881
1882 if (i == dirlen)
1883 stride_for_teases = BM_tab[j];
1884 BM_tab[j] = dirlen - i;
1885 }
1886 /* stride_for_teases tells how much to stride if we get a
1887 match on the far character but are subsequently
1888 disappointed, by recording what the stride would have been
1889 for that character if the last character had been
1890 different. */
1891 }
1892 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1893 /* loop invariant - POS_BYTE points at where last char (first
1894 char if reverse) of pattern would align in a possible match. */
1895 while (n != 0)
1896 {
1897 ptrdiff_t tail_end;
1898 unsigned char *tail_end_ptr;
1899
1900 /* It's been reported that some (broken) compiler thinks that
1901 Boolean expressions in an arithmetic context are unsigned.
1902 Using an explicit ?1:0 prevents this. */
1903 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1904 < 0)
1905 return (n * (0 - direction));
1906 /* First we do the part we can by pointers (maybe nothing) */
1907 QUIT;
1908 pat = base_pat;
1909 limit = pos_byte - dirlen + direction;
1910 if (direction > 0)
1911 {
1912 limit = BUFFER_CEILING_OF (limit);
1913 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1914 can take on without hitting edge of buffer or the gap. */
1915 limit = min (limit, pos_byte + 20000);
1916 limit = min (limit, lim_byte - 1);
1917 }
1918 else
1919 {
1920 limit = BUFFER_FLOOR_OF (limit);
1921 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1922 can take on without hitting edge of buffer or the gap. */
1923 limit = max (limit, pos_byte - 20000);
1924 limit = max (limit, lim_byte);
1925 }
1926 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1927 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1928
1929 if ((limit - pos_byte) * direction > 20)
1930 {
1931 unsigned char *p2;
1932
1933 p_limit = BYTE_POS_ADDR (limit);
1934 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1935 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1936 while (1) /* use one cursor setting as long as i can */
1937 {
1938 if (direction > 0) /* worth duplicating */
1939 {
1940 while (cursor <= p_limit)
1941 {
1942 if (BM_tab[*cursor] == 0)
1943 goto hit;
1944 cursor += BM_tab[*cursor];
1945 }
1946 }
1947 else
1948 {
1949 while (cursor >= p_limit)
1950 {
1951 if (BM_tab[*cursor] == 0)
1952 goto hit;
1953 cursor += BM_tab[*cursor];
1954 }
1955 }
1956 /* If you are here, cursor is beyond the end of the
1957 searched region. You fail to match within the
1958 permitted region and would otherwise try a character
1959 beyond that region. */
1960 break;
1961
1962 hit:
1963 i = dirlen - direction;
1964 if (! NILP (trt))
1965 {
1966 while ((i -= direction) + direction != 0)
1967 {
1968 int ch;
1969 cursor -= direction;
1970 /* Translate only the last byte of a character. */
1971 if (! multibyte
1972 || ((cursor == tail_end_ptr
1973 || CHAR_HEAD_P (cursor[1]))
1974 && (CHAR_HEAD_P (cursor[0])
1975 /* Check if this is the last byte of
1976 a translatable character. */
1977 || (translate_prev_byte1 == cursor[-1]
1978 && (CHAR_HEAD_P (translate_prev_byte1)
1979 || (translate_prev_byte2 == cursor[-2]
1980 && (CHAR_HEAD_P (translate_prev_byte2)
1981 || (translate_prev_byte3 == cursor[-3]))))))))
1982 ch = simple_translate[*cursor];
1983 else
1984 ch = *cursor;
1985 if (pat[i] != ch)
1986 break;
1987 }
1988 }
1989 else
1990 {
1991 while ((i -= direction) + direction != 0)
1992 {
1993 cursor -= direction;
1994 if (pat[i] != *cursor)
1995 break;
1996 }
1997 }
1998 cursor += dirlen - i - direction; /* fix cursor */
1999 if (i + direction == 0)
2000 {
2001 ptrdiff_t position, start, end;
2002
2003 cursor -= direction;
2004
2005 position = pos_byte + cursor - p2 + ((direction > 0)
2006 ? 1 - len_byte : 0);
2007 set_search_regs (position, len_byte);
2008
2009 if (NILP (Vinhibit_changing_match_data))
2010 {
2011 start = search_regs.start[0];
2012 end = search_regs.end[0];
2013 }
2014 else
2015 /* If Vinhibit_changing_match_data is non-nil,
2016 search_regs will not be changed. So let's
2017 compute start and end here. */
2018 {
2019 start = BYTE_TO_CHAR (position);
2020 end = BYTE_TO_CHAR (position + len_byte);
2021 }
2022
2023 if ((n -= direction) != 0)
2024 cursor += dirlen; /* to resume search */
2025 else
2026 return direction > 0 ? end : start;
2027 }
2028 else
2029 cursor += stride_for_teases; /* <sigh> we lose - */
2030 }
2031 pos_byte += cursor - p2;
2032 }
2033 else
2034 /* Now we'll pick up a clump that has to be done the hard
2035 way because it covers a discontinuity. */
2036 {
2037 limit = ((direction > 0)
2038 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
2039 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
2040 limit = ((direction > 0)
2041 ? min (limit + len_byte, lim_byte - 1)
2042 : max (limit - len_byte, lim_byte));
2043 /* LIMIT is now the last value POS_BYTE can have
2044 and still be valid for a possible match. */
2045 while (1)
2046 {
2047 /* This loop can be coded for space rather than
2048 speed because it will usually run only once.
2049 (the reach is at most len + 21, and typically
2050 does not exceed len). */
2051 while ((limit - pos_byte) * direction >= 0)
2052 {
2053 int ch = FETCH_BYTE (pos_byte);
2054 if (BM_tab[ch] == 0)
2055 goto hit2;
2056 pos_byte += BM_tab[ch];
2057 }
2058 break; /* ran off the end */
2059
2060 hit2:
2061 /* Found what might be a match. */
2062 i = dirlen - direction;
2063 while ((i -= direction) + direction != 0)
2064 {
2065 int ch;
2066 unsigned char *ptr;
2067 pos_byte -= direction;
2068 ptr = BYTE_POS_ADDR (pos_byte);
2069 /* Translate only the last byte of a character. */
2070 if (! multibyte
2071 || ((ptr == tail_end_ptr
2072 || CHAR_HEAD_P (ptr[1]))
2073 && (CHAR_HEAD_P (ptr[0])
2074 /* Check if this is the last byte of a
2075 translatable character. */
2076 || (translate_prev_byte1 == ptr[-1]
2077 && (CHAR_HEAD_P (translate_prev_byte1)
2078 || (translate_prev_byte2 == ptr[-2]
2079 && (CHAR_HEAD_P (translate_prev_byte2)
2080 || translate_prev_byte3 == ptr[-3])))))))
2081 ch = simple_translate[*ptr];
2082 else
2083 ch = *ptr;
2084 if (pat[i] != ch)
2085 break;
2086 }
2087 /* Above loop has moved POS_BYTE part or all the way
2088 back to the first pos (last pos if reverse).
2089 Set it once again at the last (first if reverse) char. */
2090 pos_byte += dirlen - i - direction;
2091 if (i + direction == 0)
2092 {
2093 ptrdiff_t position, start, end;
2094 pos_byte -= direction;
2095
2096 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2097 set_search_regs (position, len_byte);
2098
2099 if (NILP (Vinhibit_changing_match_data))
2100 {
2101 start = search_regs.start[0];
2102 end = search_regs.end[0];
2103 }
2104 else
2105 /* If Vinhibit_changing_match_data is non-nil,
2106 search_regs will not be changed. So let's
2107 compute start and end here. */
2108 {
2109 start = BYTE_TO_CHAR (position);
2110 end = BYTE_TO_CHAR (position + len_byte);
2111 }
2112
2113 if ((n -= direction) != 0)
2114 pos_byte += dirlen; /* to resume search */
2115 else
2116 return direction > 0 ? end : start;
2117 }
2118 else
2119 pos_byte += stride_for_teases;
2120 }
2121 }
2122 /* We have done one clump. Can we continue? */
2123 if ((lim_byte - pos_byte) * direction < 0)
2124 return ((0 - n) * direction);
2125 }
2126 return BYTE_TO_CHAR (pos_byte);
2127 }
2128
2129 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2130 for the overall match just found in the current buffer.
2131 Also clear out the match data for registers 1 and up. */
2132
2133 static void
2134 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2135 {
2136 ptrdiff_t i;
2137
2138 if (!NILP (Vinhibit_changing_match_data))
2139 return;
2140
2141 /* Make sure we have registers in which to store
2142 the match position. */
2143 if (search_regs.num_regs == 0)
2144 {
2145 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2146 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2147 search_regs.num_regs = 2;
2148 }
2149
2150 /* Clear out the other registers. */
2151 for (i = 1; i < search_regs.num_regs; i++)
2152 {
2153 search_regs.start[i] = -1;
2154 search_regs.end[i] = -1;
2155 }
2156
2157 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2158 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2159 XSETBUFFER (last_thing_searched, current_buffer);
2160 }
2161 \f
2162 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2163 "MSearch backward: ",
2164 doc: /* Search backward from point for STRING.
2165 Set point to the beginning of the occurrence found, and return point.
2166 An optional second argument bounds the search; it is a buffer position.
2167 The match found must not extend before that position.
2168 Optional third argument, if t, means if fail just return nil (no error).
2169 If not nil and not t, position at limit of search and return nil.
2170 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2171 successive occurrences. If COUNT is negative, search forward,
2172 instead of backward, for -COUNT occurrences.
2173
2174 Search case-sensitivity is determined by the value of the variable
2175 `case-fold-search', which see.
2176
2177 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2178 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2179 {
2180 return search_command (string, bound, noerror, count, -1, 0, 0);
2181 }
2182
2183 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2184 doc: /* Search forward from point for STRING.
2185 Set point to the end of the occurrence found, and return point.
2186 An optional second argument bounds the search; it is a buffer position.
2187 The match found must not extend after that position. A value of nil is
2188 equivalent to (point-max).
2189 Optional third argument, if t, means if fail just return nil (no error).
2190 If not nil and not t, move to limit of search and return nil.
2191 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2192 successive occurrences. If COUNT is negative, search backward,
2193 instead of forward, for -COUNT occurrences.
2194
2195 Search case-sensitivity is determined by the value of the variable
2196 `case-fold-search', which see.
2197
2198 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2199 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2200 {
2201 return search_command (string, bound, noerror, count, 1, 0, 0);
2202 }
2203
2204 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2205 "sRE search backward: ",
2206 doc: /* Search backward from point for match for regular expression REGEXP.
2207 Set point to the beginning of the match, and return point.
2208 The match found is the one starting last in the buffer
2209 and yet ending before the origin of the search.
2210 An optional second argument bounds the search; it is a buffer position.
2211 The match found must start at or after that position.
2212 Optional third argument, if t, means if fail just return nil (no error).
2213 If not nil and not t, move to limit of search and return nil.
2214 Optional fourth argument is repeat count--search for successive occurrences.
2215
2216 Search case-sensitivity is determined by the value of the variable
2217 `case-fold-search', which see.
2218
2219 See also the functions `match-beginning', `match-end', `match-string',
2220 and `replace-match'. */)
2221 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2222 {
2223 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2224 }
2225
2226 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2227 "sRE search: ",
2228 doc: /* Search forward from point for regular expression REGEXP.
2229 Set point to the end of the occurrence found, and return point.
2230 An optional second argument bounds the search; it is a buffer position.
2231 The match found must not extend after that position.
2232 Optional third argument, if t, means if fail just return nil (no error).
2233 If not nil and not t, move to limit of search and return nil.
2234 Optional fourth argument is repeat count--search for successive occurrences.
2235
2236 Search case-sensitivity is determined by the value of the variable
2237 `case-fold-search', which see.
2238
2239 See also the functions `match-beginning', `match-end', `match-string',
2240 and `replace-match'. */)
2241 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2242 {
2243 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2244 }
2245
2246 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2247 "sPosix search backward: ",
2248 doc: /* Search backward from point for match for regular expression REGEXP.
2249 Find the longest match in accord with Posix regular expression rules.
2250 Set point to the beginning of the match, and return point.
2251 The match found is the one starting last in the buffer
2252 and yet ending before the origin of the search.
2253 An optional second argument bounds the search; it is a buffer position.
2254 The match found must start at or after that position.
2255 Optional third argument, if t, means if fail just return nil (no error).
2256 If not nil and not t, move to limit of search and return nil.
2257 Optional fourth argument is repeat count--search for successive occurrences.
2258
2259 Search case-sensitivity is determined by the value of the variable
2260 `case-fold-search', which see.
2261
2262 See also the functions `match-beginning', `match-end', `match-string',
2263 and `replace-match'. */)
2264 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2265 {
2266 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2267 }
2268
2269 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2270 "sPosix search: ",
2271 doc: /* Search forward from point for regular expression REGEXP.
2272 Find the longest match in accord with Posix regular expression rules.
2273 Set point to the end of the occurrence found, and return point.
2274 An optional second argument bounds the search; it is a buffer position.
2275 The match found must not extend after that position.
2276 Optional third argument, if t, means if fail just return nil (no error).
2277 If not nil and not t, move to limit of search and return nil.
2278 Optional fourth argument is repeat count--search for successive occurrences.
2279
2280 Search case-sensitivity is determined by the value of the variable
2281 `case-fold-search', which see.
2282
2283 See also the functions `match-beginning', `match-end', `match-string',
2284 and `replace-match'. */)
2285 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2286 {
2287 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2288 }
2289 \f
2290 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2291 doc: /* Replace text matched by last search with NEWTEXT.
2292 Leave point at the end of the replacement text.
2293
2294 If optional second arg FIXEDCASE is non-nil, do not alter the case of
2295 the replacement text. Otherwise, maybe capitalize the whole text, or
2296 maybe just word initials, based on the replaced text. If the replaced
2297 text has only capital letters and has at least one multiletter word,
2298 convert NEWTEXT to all caps. Otherwise if all words are capitalized
2299 in the replaced text, capitalize each word in NEWTEXT.
2300
2301 If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
2302 Otherwise treat `\\' as special:
2303 `\\&' in NEWTEXT means substitute original matched text.
2304 `\\N' means substitute what matched the Nth `\\(...\\)'.
2305 If Nth parens didn't match, substitute nothing.
2306 `\\\\' means insert one `\\'.
2307 `\\?' is treated literally
2308 (for compatibility with `query-replace-regexp').
2309 Any other character following `\\' signals an error.
2310 Case conversion does not apply to these substitutions.
2311
2312 If optional fourth argument STRING is non-nil, it should be a string
2313 to act on; this should be the string on which the previous match was
2314 done via `string-match'. In this case, `replace-match' creates and
2315 returns a new string, made by copying STRING and replacing the part of
2316 STRING that was matched (the original STRING itself is not altered).
2317
2318 The optional fifth argument SUBEXP specifies a subexpression;
2319 it says to replace just that subexpression with NEWTEXT,
2320 rather than replacing the entire matched text.
2321 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2322 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2323 NEWTEXT in place of subexp N.
2324 This is useful only after a regular expression search or match,
2325 since only regular expressions have distinguished subexpressions. */)
2326 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2327 {
2328 enum { nochange, all_caps, cap_initial } case_action;
2329 ptrdiff_t pos, pos_byte;
2330 bool some_multiletter_word;
2331 bool some_lowercase;
2332 bool some_uppercase;
2333 bool some_nonuppercase_initial;
2334 int c, prevc;
2335 ptrdiff_t sub;
2336 ptrdiff_t opoint, newpoint;
2337
2338 CHECK_STRING (newtext);
2339
2340 if (! NILP (string))
2341 CHECK_STRING (string);
2342
2343 case_action = nochange; /* We tried an initialization */
2344 /* but some C compilers blew it */
2345
2346 if (search_regs.num_regs <= 0)
2347 error ("`replace-match' called before any match found");
2348
2349 if (NILP (subexp))
2350 sub = 0;
2351 else
2352 {
2353 CHECK_NUMBER (subexp);
2354 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2355 args_out_of_range (subexp, make_number (search_regs.num_regs));
2356 sub = XINT (subexp);
2357 }
2358
2359 if (NILP (string))
2360 {
2361 if (search_regs.start[sub] < BEGV
2362 || search_regs.start[sub] > search_regs.end[sub]
2363 || search_regs.end[sub] > ZV)
2364 args_out_of_range (make_number (search_regs.start[sub]),
2365 make_number (search_regs.end[sub]));
2366 }
2367 else
2368 {
2369 if (search_regs.start[sub] < 0
2370 || search_regs.start[sub] > search_regs.end[sub]
2371 || search_regs.end[sub] > SCHARS (string))
2372 args_out_of_range (make_number (search_regs.start[sub]),
2373 make_number (search_regs.end[sub]));
2374 }
2375
2376 if (NILP (fixedcase))
2377 {
2378 /* Decide how to casify by examining the matched text. */
2379 ptrdiff_t last;
2380
2381 pos = search_regs.start[sub];
2382 last = search_regs.end[sub];
2383
2384 if (NILP (string))
2385 pos_byte = CHAR_TO_BYTE (pos);
2386 else
2387 pos_byte = string_char_to_byte (string, pos);
2388
2389 prevc = '\n';
2390 case_action = all_caps;
2391
2392 /* some_multiletter_word is set nonzero if any original word
2393 is more than one letter long. */
2394 some_multiletter_word = 0;
2395 some_lowercase = 0;
2396 some_nonuppercase_initial = 0;
2397 some_uppercase = 0;
2398
2399 while (pos < last)
2400 {
2401 if (NILP (string))
2402 {
2403 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2404 INC_BOTH (pos, pos_byte);
2405 }
2406 else
2407 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2408
2409 if (lowercasep (c))
2410 {
2411 /* Cannot be all caps if any original char is lower case */
2412
2413 some_lowercase = 1;
2414 if (SYNTAX (prevc) != Sword)
2415 some_nonuppercase_initial = 1;
2416 else
2417 some_multiletter_word = 1;
2418 }
2419 else if (uppercasep (c))
2420 {
2421 some_uppercase = 1;
2422 if (SYNTAX (prevc) != Sword)
2423 ;
2424 else
2425 some_multiletter_word = 1;
2426 }
2427 else
2428 {
2429 /* If the initial is a caseless word constituent,
2430 treat that like a lowercase initial. */
2431 if (SYNTAX (prevc) != Sword)
2432 some_nonuppercase_initial = 1;
2433 }
2434
2435 prevc = c;
2436 }
2437
2438 /* Convert to all caps if the old text is all caps
2439 and has at least one multiletter word. */
2440 if (! some_lowercase && some_multiletter_word)
2441 case_action = all_caps;
2442 /* Capitalize each word, if the old text has all capitalized words. */
2443 else if (!some_nonuppercase_initial && some_multiletter_word)
2444 case_action = cap_initial;
2445 else if (!some_nonuppercase_initial && some_uppercase)
2446 /* Should x -> yz, operating on X, give Yz or YZ?
2447 We'll assume the latter. */
2448 case_action = all_caps;
2449 else
2450 case_action = nochange;
2451 }
2452
2453 /* Do replacement in a string. */
2454 if (!NILP (string))
2455 {
2456 Lisp_Object before, after;
2457
2458 before = Fsubstring (string, make_number (0),
2459 make_number (search_regs.start[sub]));
2460 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2461
2462 /* Substitute parts of the match into NEWTEXT
2463 if desired. */
2464 if (NILP (literal))
2465 {
2466 ptrdiff_t lastpos = 0;
2467 ptrdiff_t lastpos_byte = 0;
2468 /* We build up the substituted string in ACCUM. */
2469 Lisp_Object accum;
2470 Lisp_Object middle;
2471 ptrdiff_t length = SBYTES (newtext);
2472
2473 accum = Qnil;
2474
2475 for (pos_byte = 0, pos = 0; pos_byte < length;)
2476 {
2477 ptrdiff_t substart = -1;
2478 ptrdiff_t subend = 0;
2479 bool delbackslash = 0;
2480
2481 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2482
2483 if (c == '\\')
2484 {
2485 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2486
2487 if (c == '&')
2488 {
2489 substart = search_regs.start[sub];
2490 subend = search_regs.end[sub];
2491 }
2492 else if (c >= '1' && c <= '9')
2493 {
2494 if (c - '0' < search_regs.num_regs
2495 && search_regs.start[c - '0'] >= 0)
2496 {
2497 substart = search_regs.start[c - '0'];
2498 subend = search_regs.end[c - '0'];
2499 }
2500 else
2501 {
2502 /* If that subexp did not match,
2503 replace \\N with nothing. */
2504 substart = 0;
2505 subend = 0;
2506 }
2507 }
2508 else if (c == '\\')
2509 delbackslash = 1;
2510 else if (c != '?')
2511 error ("Invalid use of `\\' in replacement text");
2512 }
2513 if (substart >= 0)
2514 {
2515 if (pos - 2 != lastpos)
2516 middle = substring_both (newtext, lastpos,
2517 lastpos_byte,
2518 pos - 2, pos_byte - 2);
2519 else
2520 middle = Qnil;
2521 accum = concat3 (accum, middle,
2522 Fsubstring (string,
2523 make_number (substart),
2524 make_number (subend)));
2525 lastpos = pos;
2526 lastpos_byte = pos_byte;
2527 }
2528 else if (delbackslash)
2529 {
2530 middle = substring_both (newtext, lastpos,
2531 lastpos_byte,
2532 pos - 1, pos_byte - 1);
2533
2534 accum = concat2 (accum, middle);
2535 lastpos = pos;
2536 lastpos_byte = pos_byte;
2537 }
2538 }
2539
2540 if (pos != lastpos)
2541 middle = substring_both (newtext, lastpos,
2542 lastpos_byte,
2543 pos, pos_byte);
2544 else
2545 middle = Qnil;
2546
2547 newtext = concat2 (accum, middle);
2548 }
2549
2550 /* Do case substitution in NEWTEXT if desired. */
2551 if (case_action == all_caps)
2552 newtext = Fupcase (newtext);
2553 else if (case_action == cap_initial)
2554 newtext = Fupcase_initials (newtext);
2555
2556 return concat3 (before, newtext, after);
2557 }
2558
2559 /* Record point, then move (quietly) to the start of the match. */
2560 if (PT >= search_regs.end[sub])
2561 opoint = PT - ZV;
2562 else if (PT > search_regs.start[sub])
2563 opoint = search_regs.end[sub] - ZV;
2564 else
2565 opoint = PT;
2566
2567 /* If we want non-literal replacement,
2568 perform substitution on the replacement string. */
2569 if (NILP (literal))
2570 {
2571 ptrdiff_t length = SBYTES (newtext);
2572 unsigned char *substed;
2573 ptrdiff_t substed_alloc_size, substed_len;
2574 bool buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2575 bool str_multibyte = STRING_MULTIBYTE (newtext);
2576 bool really_changed = 0;
2577
2578 substed_alloc_size = (length <= (STRING_BYTES_BOUND - 100) / 2
2579 ? length * 2 + 100
2580 : STRING_BYTES_BOUND);
2581 substed = xmalloc_atomic (substed_alloc_size);
2582 substed_len = 0;
2583
2584 /* Go thru NEWTEXT, producing the actual text to insert in
2585 SUBSTED while adjusting multibyteness to that of the current
2586 buffer. */
2587
2588 for (pos_byte = 0, pos = 0; pos_byte < length;)
2589 {
2590 unsigned char str[MAX_MULTIBYTE_LENGTH];
2591 const unsigned char *add_stuff = NULL;
2592 ptrdiff_t add_len = 0;
2593 ptrdiff_t idx = -1;
2594
2595 if (str_multibyte)
2596 {
2597 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2598 if (!buf_multibyte)
2599 c = CHAR_TO_BYTE8 (c);
2600 }
2601 else
2602 {
2603 /* Note that we don't have to increment POS. */
2604 c = SREF (newtext, pos_byte++);
2605 if (buf_multibyte)
2606 MAKE_CHAR_MULTIBYTE (c);
2607 }
2608
2609 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2610 or set IDX to a match index, which means put that part
2611 of the buffer text into SUBSTED. */
2612
2613 if (c == '\\')
2614 {
2615 really_changed = 1;
2616
2617 if (str_multibyte)
2618 {
2619 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2620 pos, pos_byte);
2621 if (!buf_multibyte && !ASCII_CHAR_P (c))
2622 c = CHAR_TO_BYTE8 (c);
2623 }
2624 else
2625 {
2626 c = SREF (newtext, pos_byte++);
2627 if (buf_multibyte)
2628 MAKE_CHAR_MULTIBYTE (c);
2629 }
2630
2631 if (c == '&')
2632 idx = sub;
2633 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2634 {
2635 if (search_regs.start[c - '0'] >= 1)
2636 idx = c - '0';
2637 }
2638 else if (c == '\\')
2639 add_len = 1, add_stuff = (unsigned char *) "\\";
2640 else
2641 {
2642 xfree (substed);
2643 error ("Invalid use of `\\' in replacement text");
2644 }
2645 }
2646 else
2647 {
2648 add_len = CHAR_STRING (c, str);
2649 add_stuff = str;
2650 }
2651
2652 /* If we want to copy part of a previous match,
2653 set up ADD_STUFF and ADD_LEN to point to it. */
2654 if (idx >= 0)
2655 {
2656 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2657 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2658 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2659 move_gap_both (search_regs.start[idx], begbyte);
2660 add_stuff = BYTE_POS_ADDR (begbyte);
2661 }
2662
2663 /* Now the stuff we want to add to SUBSTED
2664 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2665
2666 /* Make sure SUBSTED is big enough. */
2667 if (substed_alloc_size - substed_len < add_len)
2668 substed =
2669 xpalloc (substed, &substed_alloc_size,
2670 add_len - (substed_alloc_size - substed_len),
2671 STRING_BYTES_BOUND, 1);
2672
2673 /* Now add to the end of SUBSTED. */
2674 if (add_stuff)
2675 {
2676 memcpy (substed + substed_len, add_stuff, add_len);
2677 substed_len += add_len;
2678 }
2679 }
2680
2681 if (really_changed)
2682 newtext = make_specified_string ((const char *) substed, -1,
2683 substed_len, buf_multibyte);
2684 xfree (substed);
2685 }
2686
2687 /* Replace the old text with the new in the cleanest possible way. */
2688 replace_range (search_regs.start[sub], search_regs.end[sub],
2689 newtext, 1, 0, 1);
2690 newpoint = search_regs.start[sub] + SCHARS (newtext);
2691
2692 if (case_action == all_caps)
2693 Fupcase_region (make_number (search_regs.start[sub]),
2694 make_number (newpoint));
2695 else if (case_action == cap_initial)
2696 Fupcase_initials_region (make_number (search_regs.start[sub]),
2697 make_number (newpoint));
2698
2699 /* Adjust search data for this change. */
2700 {
2701 ptrdiff_t oldend = search_regs.end[sub];
2702 ptrdiff_t oldstart = search_regs.start[sub];
2703 ptrdiff_t change = newpoint - search_regs.end[sub];
2704 ptrdiff_t i;
2705
2706 for (i = 0; i < search_regs.num_regs; i++)
2707 {
2708 if (search_regs.start[i] >= oldend)
2709 search_regs.start[i] += change;
2710 else if (search_regs.start[i] > oldstart)
2711 search_regs.start[i] = oldstart;
2712 if (search_regs.end[i] >= oldend)
2713 search_regs.end[i] += change;
2714 else if (search_regs.end[i] > oldstart)
2715 search_regs.end[i] = oldstart;
2716 }
2717 }
2718
2719 /* Put point back where it was in the text. */
2720 if (opoint <= 0)
2721 TEMP_SET_PT (opoint + ZV);
2722 else
2723 TEMP_SET_PT (opoint);
2724
2725 /* Now move point "officially" to the start of the inserted replacement. */
2726 move_if_not_intangible (newpoint);
2727
2728 return Qnil;
2729 }
2730 \f
2731 static Lisp_Object
2732 match_limit (Lisp_Object num, bool beginningp)
2733 {
2734 EMACS_INT n;
2735
2736 CHECK_NUMBER (num);
2737 n = XINT (num);
2738 if (n < 0)
2739 args_out_of_range (num, make_number (0));
2740 if (search_regs.num_regs <= 0)
2741 error ("No match data, because no search succeeded");
2742 if (n >= search_regs.num_regs
2743 || search_regs.start[n] < 0)
2744 return Qnil;
2745 return (make_number ((beginningp) ? search_regs.start[n]
2746 : search_regs.end[n]));
2747 }
2748
2749 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2750 doc: /* Return position of start of text matched by last search.
2751 SUBEXP, a number, specifies which parenthesized expression in the last
2752 regexp.
2753 Value is nil if SUBEXPth pair didn't match, or there were less than
2754 SUBEXP pairs.
2755 Zero means the entire text matched by the whole regexp or whole string. */)
2756 (Lisp_Object subexp)
2757 {
2758 return match_limit (subexp, 1);
2759 }
2760
2761 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2762 doc: /* Return position of end of text matched by last search.
2763 SUBEXP, a number, specifies which parenthesized expression in the last
2764 regexp.
2765 Value is nil if SUBEXPth pair didn't match, or there were less than
2766 SUBEXP pairs.
2767 Zero means the entire text matched by the whole regexp or whole string. */)
2768 (Lisp_Object subexp)
2769 {
2770 return match_limit (subexp, 0);
2771 }
2772
2773 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2774 doc: /* Return a list containing all info on what the last search matched.
2775 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2776 All the elements are markers or nil (nil if the Nth pair didn't match)
2777 if the last match was on a buffer; integers or nil if a string was matched.
2778 Use `set-match-data' to reinstate the data in this list.
2779
2780 If INTEGERS (the optional first argument) is non-nil, always use
2781 integers \(rather than markers) to represent buffer positions. In
2782 this case, and if the last match was in a buffer, the buffer will get
2783 stored as one additional element at the end of the list.
2784
2785 If REUSE is a list, reuse it as part of the value. If REUSE is long
2786 enough to hold all the values, and if INTEGERS is non-nil, no consing
2787 is done.
2788
2789 If optional third arg RESEAT is non-nil, any previous markers on the
2790 REUSE list will be modified to point to nowhere.
2791
2792 Return value is undefined if the last search failed. */)
2793 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2794 {
2795 Lisp_Object tail, prev;
2796 Lisp_Object *data;
2797 ptrdiff_t i, len;
2798
2799 if (!NILP (reseat))
2800 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2801 if (MARKERP (XCAR (tail)))
2802 {
2803 unchain_marker (XMARKER (XCAR (tail)));
2804 XSETCAR (tail, Qnil);
2805 }
2806
2807 if (NILP (last_thing_searched))
2808 return Qnil;
2809
2810 prev = Qnil;
2811
2812 data = alloca ((2 * search_regs.num_regs + 1) * sizeof *data);
2813
2814 len = 0;
2815 for (i = 0; i < search_regs.num_regs; i++)
2816 {
2817 ptrdiff_t start = search_regs.start[i];
2818 if (start >= 0)
2819 {
2820 if (EQ (last_thing_searched, Qt)
2821 || ! NILP (integers))
2822 {
2823 XSETFASTINT (data[2 * i], start);
2824 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2825 }
2826 else if (BUFFERP (last_thing_searched))
2827 {
2828 data[2 * i] = Fmake_marker ();
2829 Fset_marker (data[2 * i],
2830 make_number (start),
2831 last_thing_searched);
2832 data[2 * i + 1] = Fmake_marker ();
2833 Fset_marker (data[2 * i + 1],
2834 make_number (search_regs.end[i]),
2835 last_thing_searched);
2836 }
2837 else
2838 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2839 emacs_abort ();
2840
2841 len = 2 * i + 2;
2842 }
2843 else
2844 data[2 * i] = data[2 * i + 1] = Qnil;
2845 }
2846
2847 if (BUFFERP (last_thing_searched) && !NILP (integers))
2848 {
2849 data[len] = last_thing_searched;
2850 len++;
2851 }
2852
2853 /* If REUSE is not usable, cons up the values and return them. */
2854 if (! CONSP (reuse))
2855 return Flist (len, data);
2856
2857 /* If REUSE is a list, store as many value elements as will fit
2858 into the elements of REUSE. */
2859 for (i = 0, tail = reuse; CONSP (tail);
2860 i++, tail = XCDR (tail))
2861 {
2862 if (i < len)
2863 XSETCAR (tail, data[i]);
2864 else
2865 XSETCAR (tail, Qnil);
2866 prev = tail;
2867 }
2868
2869 /* If we couldn't fit all value elements into REUSE,
2870 cons up the rest of them and add them to the end of REUSE. */
2871 if (i < len)
2872 XSETCDR (prev, Flist (len - i, data + i));
2873
2874 return reuse;
2875 }
2876
2877 /* We used to have an internal use variant of `reseat' described as:
2878
2879 If RESEAT is `evaporate', put the markers back on the free list
2880 immediately. No other references to the markers must exist in this
2881 case, so it is used only internally on the unwind stack and
2882 save-match-data from Lisp.
2883
2884 But it was ill-conceived: those supposedly-internal markers get exposed via
2885 the undo-list, so freeing them here is unsafe. */
2886
2887 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2888 doc: /* Set internal data on last search match from elements of LIST.
2889 LIST should have been created by calling `match-data' previously.
2890
2891 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2892 (register Lisp_Object list, Lisp_Object reseat)
2893 {
2894 ptrdiff_t i;
2895 register Lisp_Object marker;
2896
2897 if (running_asynch_code)
2898 save_search_regs ();
2899
2900 CHECK_LIST (list);
2901
2902 /* Unless we find a marker with a buffer or an explicit buffer
2903 in LIST, assume that this match data came from a string. */
2904 last_thing_searched = Qt;
2905
2906 /* Allocate registers if they don't already exist. */
2907 {
2908 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2909
2910 if (length > search_regs.num_regs)
2911 {
2912 ptrdiff_t num_regs = search_regs.num_regs;
2913 if (PTRDIFF_MAX < length)
2914 memory_full (SIZE_MAX);
2915 search_regs.start =
2916 xpalloc (search_regs.start, &num_regs, length - num_regs,
2917 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2918 search_regs.end =
2919 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2920
2921 for (i = search_regs.num_regs; i < num_regs; i++)
2922 search_regs.start[i] = -1;
2923
2924 search_regs.num_regs = num_regs;
2925 }
2926
2927 for (i = 0; CONSP (list); i++)
2928 {
2929 marker = XCAR (list);
2930 if (BUFFERP (marker))
2931 {
2932 last_thing_searched = marker;
2933 break;
2934 }
2935 if (i >= length)
2936 break;
2937 if (NILP (marker))
2938 {
2939 search_regs.start[i] = -1;
2940 list = XCDR (list);
2941 }
2942 else
2943 {
2944 Lisp_Object from;
2945 Lisp_Object m;
2946
2947 m = marker;
2948 if (MARKERP (marker))
2949 {
2950 if (XMARKER (marker)->buffer == 0)
2951 XSETFASTINT (marker, 0);
2952 else
2953 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2954 }
2955
2956 CHECK_NUMBER_COERCE_MARKER (marker);
2957 from = marker;
2958
2959 if (!NILP (reseat) && MARKERP (m))
2960 {
2961 unchain_marker (XMARKER (m));
2962 XSETCAR (list, Qnil);
2963 }
2964
2965 if ((list = XCDR (list), !CONSP (list)))
2966 break;
2967
2968 m = marker = XCAR (list);
2969
2970 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2971 XSETFASTINT (marker, 0);
2972
2973 CHECK_NUMBER_COERCE_MARKER (marker);
2974 if ((XINT (from) < 0
2975 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2976 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2977 && (XINT (marker) < 0
2978 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2979 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2980 {
2981 search_regs.start[i] = XINT (from);
2982 search_regs.end[i] = XINT (marker);
2983 }
2984 else
2985 {
2986 search_regs.start[i] = -1;
2987 }
2988
2989 if (!NILP (reseat) && MARKERP (m))
2990 {
2991 unchain_marker (XMARKER (m));
2992 XSETCAR (list, Qnil);
2993 }
2994 }
2995 list = XCDR (list);
2996 }
2997
2998 for (; i < search_regs.num_regs; i++)
2999 search_regs.start[i] = -1;
3000 }
3001
3002 return Qnil;
3003 }
3004
3005 /* If true the match data have been saved in saved_search_regs
3006 during the execution of a sentinel or filter. */
3007 static bool search_regs_saved;
3008 static struct re_registers saved_search_regs;
3009 static Lisp_Object saved_last_thing_searched;
3010
3011 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3012 if asynchronous code (filter or sentinel) is running. */
3013 static void
3014 save_search_regs (void)
3015 {
3016 if (!search_regs_saved)
3017 {
3018 saved_search_regs.num_regs = search_regs.num_regs;
3019 saved_search_regs.start = search_regs.start;
3020 saved_search_regs.end = search_regs.end;
3021 saved_last_thing_searched = last_thing_searched;
3022 last_thing_searched = Qnil;
3023 search_regs.num_regs = 0;
3024 search_regs.start = 0;
3025 search_regs.end = 0;
3026
3027 search_regs_saved = 1;
3028 }
3029 }
3030
3031 /* Called upon exit from filters and sentinels. */
3032 void
3033 restore_search_regs (void)
3034 {
3035 if (search_regs_saved)
3036 {
3037 if (search_regs.num_regs > 0)
3038 {
3039 xfree (search_regs.start);
3040 xfree (search_regs.end);
3041 }
3042 search_regs.num_regs = saved_search_regs.num_regs;
3043 search_regs.start = saved_search_regs.start;
3044 search_regs.end = saved_search_regs.end;
3045 last_thing_searched = saved_last_thing_searched;
3046 saved_last_thing_searched = Qnil;
3047 search_regs_saved = 0;
3048 }
3049 }
3050
3051 static void
3052 unwind_set_match_data (Lisp_Object list)
3053 {
3054 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3055 Fset_match_data (list, Qt);
3056 }
3057
3058 /* Called to unwind protect the match data. */
3059 void
3060 record_unwind_save_match_data (void)
3061 {
3062 record_unwind_protect (unwind_set_match_data,
3063 Fmatch_data (Qnil, Qnil, Qnil));
3064 }
3065
3066 /* Quote a string to deactivate reg-expr chars */
3067
3068 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3069 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3070 (Lisp_Object string)
3071 {
3072 char *in, *out, *end;
3073 char *temp;
3074 ptrdiff_t backslashes_added = 0;
3075
3076 CHECK_STRING (string);
3077
3078 temp = alloca (SBYTES (string) * 2);
3079
3080 /* Now copy the data into the new string, inserting escapes. */
3081
3082 in = SSDATA (string);
3083 end = in + SBYTES (string);
3084 out = temp;
3085
3086 for (; in != end; in++)
3087 {
3088 if (*in == '['
3089 || *in == '*' || *in == '.' || *in == '\\'
3090 || *in == '?' || *in == '+'
3091 || *in == '^' || *in == '$')
3092 *out++ = '\\', backslashes_added++;
3093 *out++ = *in;
3094 }
3095
3096 return make_specified_string (temp,
3097 SCHARS (string) + backslashes_added,
3098 out - temp,
3099 STRING_MULTIBYTE (string));
3100 }
3101
3102 /* Like find_newline, but doesn't use the cache, and only searches forward. */
3103 static ptrdiff_t
3104 find_newline1 (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
3105 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
3106 ptrdiff_t *bytepos, bool allow_quit)
3107 {
3108 if (count > 0)
3109 {
3110 if (!end)
3111 end = ZV, end_byte = ZV_BYTE;
3112 }
3113 else
3114 {
3115 if (!end)
3116 end = BEGV, end_byte = BEGV_BYTE;
3117 }
3118 if (end_byte == -1)
3119 end_byte = CHAR_TO_BYTE (end);
3120
3121 if (shortage != 0)
3122 *shortage = 0;
3123
3124 immediate_quit = allow_quit;
3125
3126 if (count > 0)
3127 while (start != end)
3128 {
3129 /* Our innermost scanning loop is very simple; it doesn't know
3130 about gaps, buffer ends, or the newline cache. ceiling is
3131 the position of the last character before the next such
3132 obstacle --- the last character the dumb search loop should
3133 examine. */
3134 ptrdiff_t tem, ceiling_byte = end_byte - 1;
3135
3136 if (start_byte == -1)
3137 start_byte = CHAR_TO_BYTE (start);
3138
3139 /* The dumb loop can only scan text stored in contiguous
3140 bytes. BUFFER_CEILING_OF returns the last character
3141 position that is contiguous, so the ceiling is the
3142 position after that. */
3143 tem = BUFFER_CEILING_OF (start_byte);
3144 ceiling_byte = min (tem, ceiling_byte);
3145
3146 {
3147 /* The termination address of the dumb loop. */
3148 unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
3149 ptrdiff_t lim_byte = ceiling_byte + 1;
3150
3151 /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
3152 of the base, the cursor, and the next line. */
3153 ptrdiff_t base = start_byte - lim_byte;
3154 ptrdiff_t cursor, next;
3155
3156 for (cursor = base; cursor < 0; cursor = next)
3157 {
3158 /* The dumb loop. */
3159 unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
3160 next = nl ? nl - lim_addr : 0;
3161
3162 if (! nl)
3163 break;
3164 next++;
3165
3166 if (--count == 0)
3167 {
3168 immediate_quit = 0;
3169 if (bytepos)
3170 *bytepos = lim_byte + next;
3171 return BYTE_TO_CHAR (lim_byte + next);
3172 }
3173 }
3174
3175 start_byte = lim_byte;
3176 start = BYTE_TO_CHAR (start_byte);
3177 }
3178 }
3179
3180 immediate_quit = 0;
3181 if (shortage)
3182 *shortage = count;
3183 if (bytepos)
3184 {
3185 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
3186 eassert (*bytepos == CHAR_TO_BYTE (start));
3187 }
3188 return start;
3189 }
3190
3191 DEFUN ("newline-cache-check", Fnewline_cache_check, Snewline_cache_check,
3192 0, 1, 0,
3193 doc: /* Check the newline cache of BUFFER against buffer contents.
3194
3195 BUFFER defaults to the current buffer.
3196
3197 Value is an array of 2 sub-arrays of buffer positions for newlines,
3198 the first based on the cache, the second based on actually scanning
3199 the buffer. If the buffer doesn't have a cache, the value is nil. */)
3200 (Lisp_Object buffer)
3201 {
3202 struct buffer *buf, *old = NULL;
3203 ptrdiff_t shortage, nl_count_cache, nl_count_buf;
3204 Lisp_Object cache_newlines, buf_newlines, val;
3205 ptrdiff_t from, found, i;
3206
3207 if (NILP (buffer))
3208 buf = current_buffer;
3209 else
3210 {
3211 CHECK_BUFFER (buffer);
3212 buf = XBUFFER (buffer);
3213 old = current_buffer;
3214 }
3215 if (buf->base_buffer)
3216 buf = buf->base_buffer;
3217
3218 /* If the buffer doesn't have a newline cache, return nil. */
3219 if (NILP (BVAR (buf, cache_long_scans))
3220 || buf->newline_cache == NULL)
3221 return Qnil;
3222
3223 /* find_newline can only work on the current buffer. */
3224 if (old != NULL)
3225 set_buffer_internal_1 (buf);
3226
3227 /* How many newlines are there according to the cache? */
3228 find_newline (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
3229 TYPE_MAXIMUM (ptrdiff_t), &shortage, NULL, true);
3230 nl_count_cache = TYPE_MAXIMUM (ptrdiff_t) - shortage;
3231
3232 /* Create vector and populate it. */
3233 cache_newlines = make_uninit_vector (nl_count_cache);
3234
3235 if (nl_count_cache)
3236 {
3237 for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
3238 {
3239 ptrdiff_t from_byte = CHAR_TO_BYTE (from);
3240
3241 found = find_newline (from, from_byte, 0, -1, 1, &shortage,
3242 NULL, true);
3243 if (shortage != 0 || i >= nl_count_cache)
3244 break;
3245 ASET (cache_newlines, i, make_number (found - 1));
3246 }
3247 /* Fill the rest of slots with an invalid position. */
3248 for ( ; i < nl_count_cache; i++)
3249 ASET (cache_newlines, i, make_number (-1));
3250 }
3251
3252 /* Now do the same, but without using the cache. */
3253 find_newline1 (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
3254 TYPE_MAXIMUM (ptrdiff_t), &shortage, NULL, true);
3255 nl_count_buf = TYPE_MAXIMUM (ptrdiff_t) - shortage;
3256 buf_newlines = make_uninit_vector (nl_count_buf);
3257 if (nl_count_buf)
3258 {
3259 for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
3260 {
3261 ptrdiff_t from_byte = CHAR_TO_BYTE (from);
3262
3263 found = find_newline1 (from, from_byte, 0, -1, 1, &shortage,
3264 NULL, true);
3265 if (shortage != 0 || i >= nl_count_buf)
3266 break;
3267 ASET (buf_newlines, i, make_number (found - 1));
3268 }
3269 for ( ; i < nl_count_buf; i++)
3270 ASET (buf_newlines, i, make_number (-1));
3271 }
3272
3273 /* Construct the value and return it. */
3274 val = make_uninit_vector (2);
3275 ASET (val, 0, cache_newlines);
3276 ASET (val, 1, buf_newlines);
3277
3278 if (old != NULL)
3279 set_buffer_internal_1 (old);
3280 return val;
3281 }
3282 \f
3283 void
3284 syms_of_search (void)
3285 {
3286 #include "search.x"
3287
3288 register int i;
3289
3290 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3291 {
3292 searchbufs[i].buf.allocated = 100;
3293 searchbufs[i].buf.buffer = xmalloc_atomic (100);
3294 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3295 searchbufs[i].regexp = Qnil;
3296 searchbufs[i].whitespace_regexp = Qnil;
3297 searchbufs[i].syntax_table = Qnil;
3298 staticpro (&searchbufs[i].regexp);
3299 staticpro (&searchbufs[i].whitespace_regexp);
3300 staticpro (&searchbufs[i].syntax_table);
3301 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3302 }
3303 searchbuf_head = &searchbufs[0];
3304
3305 DEFSYM (Qsearch_failed, "search-failed");
3306 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3307
3308 Fput (Qsearch_failed, Qerror_conditions,
3309 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3310 Fput (Qsearch_failed, Qerror_message,
3311 build_pure_c_string ("Search failed"));
3312
3313 Fput (Qinvalid_regexp, Qerror_conditions,
3314 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3315 Fput (Qinvalid_regexp, Qerror_message,
3316 build_pure_c_string ("Invalid regexp"));
3317
3318 last_thing_searched = Qnil;
3319 staticpro (&last_thing_searched);
3320
3321 saved_last_thing_searched = Qnil;
3322 staticpro (&saved_last_thing_searched);
3323
3324 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3325 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3326 Some commands use this for user-specified regexps.
3327 Spaces that occur inside character classes or repetition operators
3328 or other such regexp constructs are not replaced with this.
3329 A value of nil (which is the normal value) means treat spaces literally. */);
3330 Vsearch_spaces_regexp = Qnil;
3331
3332 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3333 doc: /* Internal use only.
3334 If non-nil, the primitive searching and matching functions
3335 such as `looking-at', `string-match', `re-search-forward', etc.,
3336 do not set the match data. The proper way to use this variable
3337 is to bind it with `let' around a small expression. */);
3338 Vinhibit_changing_match_data = Qnil;
3339 }