* xmenu.c (mouse_position_for_popup):
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #if (defined ENABLE_CHECKING \
53 && defined HAVE_VALGRIND_VALGRIND_H \
54 && !defined USE_VALGRIND)
55 # define USE_VALGRIND 1
56 #endif
57
58 #if USE_VALGRIND
59 #include <valgrind/valgrind.h>
60 #include <valgrind/memcheck.h>
61 static bool valgrind_p;
62 #endif
63
64 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
65 Doable only if GC_MARK_STACK. */
66 #if ! GC_MARK_STACK
67 # undef GC_CHECK_MARKED_OBJECTS
68 #endif
69
70 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
71 memory. Can do this only if using gmalloc.c and if not checking
72 marked objects. */
73
74 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
75 || defined GC_CHECK_MARKED_OBJECTS)
76 #undef GC_MALLOC_CHECK
77 #endif
78
79 #include <unistd.h>
80 #include <fcntl.h>
81
82 #ifdef USE_GTK
83 # include "gtkutil.h"
84 #endif
85 #ifdef WINDOWSNT
86 #include "w32.h"
87 #include "w32heap.h" /* for sbrk */
88 #endif
89
90 #ifdef DOUG_LEA_MALLOC
91
92 #include <malloc.h>
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #endif /* not DOUG_LEA_MALLOC */
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
105 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
106 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107
108 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
109 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
110 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111
112 /* Default value of gc_cons_threshold (see below). */
113
114 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115
116 /* Global variables. */
117 struct emacs_globals globals;
118
119 /* Number of bytes of consing done since the last gc. */
120
121 EMACS_INT consing_since_gc;
122
123 /* Similar minimum, computed from Vgc_cons_percentage. */
124
125 EMACS_INT gc_relative_threshold;
126
127 /* Minimum number of bytes of consing since GC before next GC,
128 when memory is full. */
129
130 EMACS_INT memory_full_cons_threshold;
131
132 /* True during GC. */
133
134 bool gc_in_progress;
135
136 /* True means abort if try to GC.
137 This is for code which is written on the assumption that
138 no GC will happen, so as to verify that assumption. */
139
140 bool abort_on_gc;
141
142 /* Number of live and free conses etc. */
143
144 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
145 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
146 static EMACS_INT total_free_floats, total_floats;
147
148 /* Points to memory space allocated as "spare", to be freed if we run
149 out of memory. We keep one large block, four cons-blocks, and
150 two string blocks. */
151
152 static char *spare_memory[7];
153
154 /* Amount of spare memory to keep in large reserve block, or to see
155 whether this much is available when malloc fails on a larger request. */
156
157 #define SPARE_MEMORY (1 << 14)
158
159 /* Initialize it to a nonzero value to force it into data space
160 (rather than bss space). That way unexec will remap it into text
161 space (pure), on some systems. We have not implemented the
162 remapping on more recent systems because this is less important
163 nowadays than in the days of small memories and timesharing. */
164
165 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
166 #define PUREBEG (char *) pure
167
168 /* Pointer to the pure area, and its size. */
169
170 static char *purebeg;
171 static ptrdiff_t pure_size;
172
173 /* Number of bytes of pure storage used before pure storage overflowed.
174 If this is non-zero, this implies that an overflow occurred. */
175
176 static ptrdiff_t pure_bytes_used_before_overflow;
177
178 /* True if P points into pure space. */
179
180 #define PURE_POINTER_P(P) \
181 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static Lisp_Object Qconses;
259 static Lisp_Object Qsymbols;
260 static Lisp_Object Qmiscs;
261 static Lisp_Object Qstrings;
262 static Lisp_Object Qvectors;
263 static Lisp_Object Qfloats;
264 static Lisp_Object Qintervals;
265 static Lisp_Object Qbuffers;
266 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
267 static Lisp_Object Qgc_cons_threshold;
268 Lisp_Object Qautomatic_gc;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_terminals (void);
276 static void gc_sweep (void);
277 static Lisp_Object make_pure_vector (ptrdiff_t);
278 static void mark_buffer (struct buffer *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
286
287 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
288 what memory allocated via lisp_malloc and lisp_align_malloc is intended
289 for what purpose. This enumeration specifies the type of memory. */
290
291 enum mem_type
292 {
293 MEM_TYPE_NON_LISP,
294 MEM_TYPE_BUFFER,
295 MEM_TYPE_CONS,
296 MEM_TYPE_STRING,
297 MEM_TYPE_MISC,
298 MEM_TYPE_SYMBOL,
299 MEM_TYPE_FLOAT,
300 /* Since all non-bool pseudovectors are small enough to be
301 allocated from vector blocks, this memory type denotes
302 large regular vectors and large bool pseudovectors. */
303 MEM_TYPE_VECTORLIKE,
304 /* Special type to denote vector blocks. */
305 MEM_TYPE_VECTOR_BLOCK,
306 /* Special type to denote reserved memory. */
307 MEM_TYPE_SPARE
308 };
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct mem_node *mem_insert (void *, void *, enum mem_type);
385 static void mem_insert_fixup (struct mem_node *);
386 static void mem_rotate_left (struct mem_node *);
387 static void mem_rotate_right (struct mem_node *);
388 static void mem_delete (struct mem_node *);
389 static void mem_delete_fixup (struct mem_node *);
390 static struct mem_node *mem_find (void *);
391
392 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393
394 #ifndef DEADP
395 # define DEADP(x) 0
396 #endif
397
398 /* Recording what needs to be marked for gc. */
399
400 struct gcpro *gcprolist;
401
402 /* Addresses of staticpro'd variables. Initialize it to a nonzero
403 value; otherwise some compilers put it into BSS. */
404
405 enum { NSTATICS = 2048 };
406 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
407
408 /* Index of next unused slot in staticvec. */
409
410 static int staticidx;
411
412 static void *pure_alloc (size_t, int);
413
414 /* Return X rounded to the next multiple of Y. Arguments should not
415 have side effects, as they are evaluated more than once. Assume X
416 + Y - 1 does not overflow. Tune for Y being a power of 2. */
417
418 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
419 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
420 : ((x) + (y) - 1) & ~ ((y) - 1))
421
422 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
423
424 static void *
425 ALIGN (void *ptr, int alignment)
426 {
427 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
428 }
429
430 static void
431 XFLOAT_INIT (Lisp_Object f, double n)
432 {
433 XFLOAT (f)->u.data = n;
434 }
435
436 static bool
437 pointers_fit_in_lispobj_p (void)
438 {
439 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
440 }
441
442 static bool
443 mmap_lisp_allowed_p (void)
444 {
445 /* If we can't store all memory addresses in our lisp objects, it's
446 risky to let the heap use mmap and give us addresses from all
447 over our address space. We also can't use mmap for lisp objects
448 if we might dump: unexec doesn't preserve the contents of mmaped
449 regions. */
450 return pointers_fit_in_lispobj_p () && !might_dump;
451 }
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT \
530 alignof (union { long double d; intmax_t i; void *p; })
531
532 #if USE_LSB_TAG
533 # define XMALLOC_HEADER_ALIGNMENT \
534 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
535 #else
536 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
537 #endif
538 #define XMALLOC_OVERRUN_SIZE_SIZE \
539 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
540 + XMALLOC_HEADER_ALIGNMENT - 1) \
541 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
542 - XMALLOC_OVERRUN_CHECK_SIZE)
543
544 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
545 { '\x9a', '\x9b', '\xae', '\xaf',
546 '\xbf', '\xbe', '\xce', '\xcf',
547 '\xea', '\xeb', '\xec', '\xed',
548 '\xdf', '\xde', '\x9c', '\x9d' };
549
550 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\xaa', '\xab', '\xac', '\xad',
552 '\xba', '\xbb', '\xbc', '\xbd',
553 '\xca', '\xcb', '\xcc', '\xcd',
554 '\xda', '\xdb', '\xdc', '\xdd' };
555
556 /* Insert and extract the block size in the header. */
557
558 static void
559 xmalloc_put_size (unsigned char *ptr, size_t size)
560 {
561 int i;
562 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 {
564 *--ptr = size & ((1 << CHAR_BIT) - 1);
565 size >>= CHAR_BIT;
566 }
567 }
568
569 static size_t
570 xmalloc_get_size (unsigned char *ptr)
571 {
572 size_t size = 0;
573 int i;
574 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
575 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 {
577 size <<= CHAR_BIT;
578 size += *ptr++;
579 }
580 return size;
581 }
582
583
584 /* Like malloc, but wraps allocated block with header and trailer. */
585
586 static void *
587 overrun_check_malloc (size_t size)
588 {
589 register unsigned char *val;
590 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
591 emacs_abort ();
592
593 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 if (val)
595 {
596 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
597 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 xmalloc_put_size (val, size);
599 memcpy (val + size, xmalloc_overrun_check_trailer,
600 XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602 return val;
603 }
604
605
606 /* Like realloc, but checks old block for overrun, and wraps new block
607 with header and trailer. */
608
609 static void *
610 overrun_check_realloc (void *block, size_t size)
611 {
612 register unsigned char *val = (unsigned char *) block;
613 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
614 emacs_abort ();
615
616 if (val
617 && memcmp (xmalloc_overrun_check_header,
618 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
619 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 {
621 size_t osize = xmalloc_get_size (val);
622 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
623 XMALLOC_OVERRUN_CHECK_SIZE))
624 emacs_abort ();
625 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
626 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
627 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
628 }
629
630 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631
632 if (val)
633 {
634 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
635 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
636 xmalloc_put_size (val, size);
637 memcpy (val + size, xmalloc_overrun_check_trailer,
638 XMALLOC_OVERRUN_CHECK_SIZE);
639 }
640 return val;
641 }
642
643 /* Like free, but checks block for overrun. */
644
645 static void
646 overrun_check_free (void *block)
647 {
648 unsigned char *val = (unsigned char *) block;
649
650 if (val
651 && memcmp (xmalloc_overrun_check_header,
652 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
653 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 {
655 size_t osize = xmalloc_get_size (val);
656 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
657 XMALLOC_OVERRUN_CHECK_SIZE))
658 emacs_abort ();
659 #ifdef XMALLOC_CLEAR_FREE_MEMORY
660 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
661 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
662 #else
663 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
664 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 #endif
667 }
668
669 free (val);
670 }
671
672 #undef malloc
673 #undef realloc
674 #undef free
675 #define malloc overrun_check_malloc
676 #define realloc overrun_check_realloc
677 #define free overrun_check_free
678 #endif
679
680 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
681 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
682 If that variable is set, block input while in one of Emacs's memory
683 allocation functions. There should be no need for this debugging
684 option, since signal handlers do not allocate memory, but Emacs
685 formerly allocated memory in signal handlers and this compile-time
686 option remains as a way to help debug the issue should it rear its
687 ugly head again. */
688 #ifdef XMALLOC_BLOCK_INPUT_CHECK
689 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
690 static void
691 malloc_block_input (void)
692 {
693 if (block_input_in_memory_allocators)
694 block_input ();
695 }
696 static void
697 malloc_unblock_input (void)
698 {
699 if (block_input_in_memory_allocators)
700 unblock_input ();
701 }
702 # define MALLOC_BLOCK_INPUT malloc_block_input ()
703 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
704 #else
705 # define MALLOC_BLOCK_INPUT ((void) 0)
706 # define MALLOC_UNBLOCK_INPUT ((void) 0)
707 #endif
708
709 #define MALLOC_PROBE(size) \
710 do { \
711 if (profiler_memory_running) \
712 malloc_probe (size); \
713 } while (0)
714
715
716 /* Like malloc but check for no memory and block interrupt input.. */
717
718 void *
719 xmalloc (size_t size)
720 {
721 void *val;
722
723 MALLOC_BLOCK_INPUT;
724 val = malloc (size);
725 MALLOC_UNBLOCK_INPUT;
726
727 if (!val && size)
728 memory_full (size);
729 MALLOC_PROBE (size);
730 return val;
731 }
732
733 /* Like the above, but zeroes out the memory just allocated. */
734
735 void *
736 xzalloc (size_t size)
737 {
738 void *val;
739
740 MALLOC_BLOCK_INPUT;
741 val = malloc (size);
742 MALLOC_UNBLOCK_INPUT;
743
744 if (!val && size)
745 memory_full (size);
746 memset (val, 0, size);
747 MALLOC_PROBE (size);
748 return val;
749 }
750
751 /* Like realloc but check for no memory and block interrupt input.. */
752
753 void *
754 xrealloc (void *block, size_t size)
755 {
756 void *val;
757
758 MALLOC_BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = malloc (size);
763 else
764 val = realloc (block, size);
765 MALLOC_UNBLOCK_INPUT;
766
767 if (!val && size)
768 memory_full (size);
769 MALLOC_PROBE (size);
770 return val;
771 }
772
773
774 /* Like free but block interrupt input. */
775
776 void
777 xfree (void *block)
778 {
779 if (!block)
780 return;
781 MALLOC_BLOCK_INPUT;
782 free (block);
783 MALLOC_UNBLOCK_INPUT;
784 /* We don't call refill_memory_reserve here
785 because in practice the call in r_alloc_free seems to suffice. */
786 }
787
788
789 /* Other parts of Emacs pass large int values to allocator functions
790 expecting ptrdiff_t. This is portable in practice, but check it to
791 be safe. */
792 verify (INT_MAX <= PTRDIFF_MAX);
793
794
795 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
796 Signal an error on memory exhaustion, and block interrupt input. */
797
798 void *
799 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
800 {
801 eassert (0 <= nitems && 0 < item_size);
802 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
803 memory_full (SIZE_MAX);
804 return xmalloc (nitems * item_size);
805 }
806
807
808 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
809 Signal an error on memory exhaustion, and block interrupt input. */
810
811 void *
812 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
813 {
814 eassert (0 <= nitems && 0 < item_size);
815 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
816 memory_full (SIZE_MAX);
817 return xrealloc (pa, nitems * item_size);
818 }
819
820
821 /* Grow PA, which points to an array of *NITEMS items, and return the
822 location of the reallocated array, updating *NITEMS to reflect its
823 new size. The new array will contain at least NITEMS_INCR_MIN more
824 items, but will not contain more than NITEMS_MAX items total.
825 ITEM_SIZE is the size of each item, in bytes.
826
827 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
828 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
829 infinity.
830
831 If PA is null, then allocate a new array instead of reallocating
832 the old one.
833
834 Block interrupt input as needed. If memory exhaustion occurs, set
835 *NITEMS to zero if PA is null, and signal an error (i.e., do not
836 return).
837
838 Thus, to grow an array A without saving its old contents, do
839 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
840 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
841 and signals an error, and later this code is reexecuted and
842 attempts to free A. */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 ptrdiff_t size;
886 eassert (s);
887 size = strlen (s) + 1;
888 return memcpy (xmalloc (size), s, size);
889 }
890
891 /* Like above, but duplicates Lisp string to C string. */
892
893 char *
894 xlispstrdup (Lisp_Object string)
895 {
896 ptrdiff_t size = SBYTES (string) + 1;
897 return memcpy (xmalloc (size), SSDATA (string), size);
898 }
899
900 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
901 pointed to. If STRING is null, assign it without copying anything.
902 Allocate before freeing, to avoid a dangling pointer if allocation
903 fails. */
904
905 void
906 dupstring (char **ptr, char const *string)
907 {
908 char *old = *ptr;
909 *ptr = string ? xstrdup (string) : 0;
910 xfree (old);
911 }
912
913
914 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
915 argument is a const pointer. */
916
917 void
918 xputenv (char const *string)
919 {
920 if (putenv ((char *) string) != 0)
921 memory_full (0);
922 }
923
924 /* Return a newly allocated memory block of SIZE bytes, remembering
925 to free it when unwinding. */
926 void *
927 record_xmalloc (size_t size)
928 {
929 void *p = xmalloc (size);
930 record_unwind_protect_ptr (xfree, p);
931 return p;
932 }
933
934
935 /* Like malloc but used for allocating Lisp data. NBYTES is the
936 number of bytes to allocate, TYPE describes the intended use of the
937 allocated memory block (for strings, for conses, ...). */
938
939 #if ! USE_LSB_TAG
940 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
941 #endif
942
943 static void *
944 lisp_malloc (size_t nbytes, enum mem_type type)
945 {
946 register void *val;
947
948 MALLOC_BLOCK_INPUT;
949
950 #ifdef GC_MALLOC_CHECK
951 allocated_mem_type = type;
952 #endif
953
954 val = malloc (nbytes);
955
956 #if ! USE_LSB_TAG
957 /* If the memory just allocated cannot be addressed thru a Lisp
958 object's pointer, and it needs to be,
959 that's equivalent to running out of memory. */
960 if (val && type != MEM_TYPE_NON_LISP)
961 {
962 Lisp_Object tem;
963 XSETCONS (tem, (char *) val + nbytes - 1);
964 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
965 {
966 lisp_malloc_loser = val;
967 free (val);
968 val = 0;
969 }
970 }
971 #endif
972
973 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
974 if (val && type != MEM_TYPE_NON_LISP)
975 mem_insert (val, (char *) val + nbytes, type);
976 #endif
977
978 MALLOC_UNBLOCK_INPUT;
979 if (!val && nbytes)
980 memory_full (nbytes);
981 MALLOC_PROBE (nbytes);
982 return val;
983 }
984
985 /* Free BLOCK. This must be called to free memory allocated with a
986 call to lisp_malloc. */
987
988 static void
989 lisp_free (void *block)
990 {
991 MALLOC_BLOCK_INPUT;
992 free (block);
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 mem_delete (mem_find (block));
995 #endif
996 MALLOC_UNBLOCK_INPUT;
997 }
998
999 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1000
1001 /* The entry point is lisp_align_malloc which returns blocks of at most
1002 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1003
1004 /* Use aligned_alloc if it or a simple substitute is available.
1005 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1006 clang 3.3 anyway. */
1007
1008 #if ! ADDRESS_SANITIZER
1009 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
1010 # define USE_ALIGNED_ALLOC 1
1011 /* Defined in gmalloc.c. */
1012 void *aligned_alloc (size_t, size_t);
1013 # elif defined HAVE_ALIGNED_ALLOC
1014 # define USE_ALIGNED_ALLOC 1
1015 # elif defined HAVE_POSIX_MEMALIGN
1016 # define USE_ALIGNED_ALLOC 1
1017 static void *
1018 aligned_alloc (size_t alignment, size_t size)
1019 {
1020 void *p;
1021 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1022 }
1023 # endif
1024 #endif
1025
1026 /* BLOCK_ALIGN has to be a power of 2. */
1027 #define BLOCK_ALIGN (1 << 10)
1028
1029 /* Padding to leave at the end of a malloc'd block. This is to give
1030 malloc a chance to minimize the amount of memory wasted to alignment.
1031 It should be tuned to the particular malloc library used.
1032 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1033 aligned_alloc on the other hand would ideally prefer a value of 4
1034 because otherwise, there's 1020 bytes wasted between each ablocks.
1035 In Emacs, testing shows that those 1020 can most of the time be
1036 efficiently used by malloc to place other objects, so a value of 0 can
1037 still preferable unless you have a lot of aligned blocks and virtually
1038 nothing else. */
1039 #define BLOCK_PADDING 0
1040 #define BLOCK_BYTES \
1041 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1042
1043 /* Internal data structures and constants. */
1044
1045 #define ABLOCKS_SIZE 16
1046
1047 /* An aligned block of memory. */
1048 struct ablock
1049 {
1050 union
1051 {
1052 char payload[BLOCK_BYTES];
1053 struct ablock *next_free;
1054 } x;
1055 /* `abase' is the aligned base of the ablocks. */
1056 /* It is overloaded to hold the virtual `busy' field that counts
1057 the number of used ablock in the parent ablocks.
1058 The first ablock has the `busy' field, the others have the `abase'
1059 field. To tell the difference, we assume that pointers will have
1060 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1061 is used to tell whether the real base of the parent ablocks is `abase'
1062 (if not, the word before the first ablock holds a pointer to the
1063 real base). */
1064 struct ablocks *abase;
1065 /* The padding of all but the last ablock is unused. The padding of
1066 the last ablock in an ablocks is not allocated. */
1067 #if BLOCK_PADDING
1068 char padding[BLOCK_PADDING];
1069 #endif
1070 };
1071
1072 /* A bunch of consecutive aligned blocks. */
1073 struct ablocks
1074 {
1075 struct ablock blocks[ABLOCKS_SIZE];
1076 };
1077
1078 /* Size of the block requested from malloc or aligned_alloc. */
1079 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1080
1081 #define ABLOCK_ABASE(block) \
1082 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1083 ? (struct ablocks *)(block) \
1084 : (block)->abase)
1085
1086 /* Virtual `busy' field. */
1087 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1088
1089 /* Pointer to the (not necessarily aligned) malloc block. */
1090 #ifdef USE_ALIGNED_ALLOC
1091 #define ABLOCKS_BASE(abase) (abase)
1092 #else
1093 #define ABLOCKS_BASE(abase) \
1094 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1095 #endif
1096
1097 /* The list of free ablock. */
1098 static struct ablock *free_ablock;
1099
1100 /* Allocate an aligned block of nbytes.
1101 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1102 smaller or equal to BLOCK_BYTES. */
1103 static void *
1104 lisp_align_malloc (size_t nbytes, enum mem_type type)
1105 {
1106 void *base, *val;
1107 struct ablocks *abase;
1108
1109 eassert (nbytes <= BLOCK_BYTES);
1110
1111 MALLOC_BLOCK_INPUT;
1112
1113 #ifdef GC_MALLOC_CHECK
1114 allocated_mem_type = type;
1115 #endif
1116
1117 if (!free_ablock)
1118 {
1119 int i;
1120 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1121
1122 #ifdef DOUG_LEA_MALLOC
1123 if (!mmap_lisp_allowed_p ())
1124 mallopt (M_MMAP_MAX, 0);
1125 #endif
1126
1127 #ifdef USE_ALIGNED_ALLOC
1128 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1129 #else
1130 base = malloc (ABLOCKS_BYTES);
1131 abase = ALIGN (base, BLOCK_ALIGN);
1132 #endif
1133
1134 if (base == 0)
1135 {
1136 MALLOC_UNBLOCK_INPUT;
1137 memory_full (ABLOCKS_BYTES);
1138 }
1139
1140 aligned = (base == abase);
1141 if (!aligned)
1142 ((void **) abase)[-1] = base;
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1147 #endif
1148
1149 #if ! USE_LSB_TAG
1150 /* If the memory just allocated cannot be addressed thru a Lisp
1151 object's pointer, and it needs to be, that's equivalent to
1152 running out of memory. */
1153 if (type != MEM_TYPE_NON_LISP)
1154 {
1155 Lisp_Object tem;
1156 char *end = (char *) base + ABLOCKS_BYTES - 1;
1157 XSETCONS (tem, end);
1158 if ((char *) XCONS (tem) != end)
1159 {
1160 lisp_malloc_loser = base;
1161 free (base);
1162 MALLOC_UNBLOCK_INPUT;
1163 memory_full (SIZE_MAX);
1164 }
1165 }
1166 #endif
1167
1168 /* Initialize the blocks and put them on the free list.
1169 If `base' was not properly aligned, we can't use the last block. */
1170 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1171 {
1172 abase->blocks[i].abase = abase;
1173 abase->blocks[i].x.next_free = free_ablock;
1174 free_ablock = &abase->blocks[i];
1175 }
1176 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1177
1178 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1179 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1180 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1181 eassert (ABLOCKS_BASE (abase) == base);
1182 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1183 }
1184
1185 abase = ABLOCK_ABASE (free_ablock);
1186 ABLOCKS_BUSY (abase)
1187 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1188 val = free_ablock;
1189 free_ablock = free_ablock->x.next_free;
1190
1191 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1192 if (type != MEM_TYPE_NON_LISP)
1193 mem_insert (val, (char *) val + nbytes, type);
1194 #endif
1195
1196 MALLOC_UNBLOCK_INPUT;
1197
1198 MALLOC_PROBE (nbytes);
1199
1200 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1201 return val;
1202 }
1203
1204 static void
1205 lisp_align_free (void *block)
1206 {
1207 struct ablock *ablock = block;
1208 struct ablocks *abase = ABLOCK_ABASE (ablock);
1209
1210 MALLOC_BLOCK_INPUT;
1211 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1212 mem_delete (mem_find (block));
1213 #endif
1214 /* Put on free list. */
1215 ablock->x.next_free = free_ablock;
1216 free_ablock = ablock;
1217 /* Update busy count. */
1218 ABLOCKS_BUSY (abase)
1219 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1220
1221 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1222 { /* All the blocks are free. */
1223 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1224 struct ablock **tem = &free_ablock;
1225 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1226
1227 while (*tem)
1228 {
1229 if (*tem >= (struct ablock *) abase && *tem < atop)
1230 {
1231 i++;
1232 *tem = (*tem)->x.next_free;
1233 }
1234 else
1235 tem = &(*tem)->x.next_free;
1236 }
1237 eassert ((aligned & 1) == aligned);
1238 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1239 #ifdef USE_POSIX_MEMALIGN
1240 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1241 #endif
1242 free (ABLOCKS_BASE (abase));
1243 }
1244 MALLOC_UNBLOCK_INPUT;
1245 }
1246
1247 \f
1248 /***********************************************************************
1249 Interval Allocation
1250 ***********************************************************************/
1251
1252 /* Number of intervals allocated in an interval_block structure.
1253 The 1020 is 1024 minus malloc overhead. */
1254
1255 #define INTERVAL_BLOCK_SIZE \
1256 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1257
1258 /* Intervals are allocated in chunks in the form of an interval_block
1259 structure. */
1260
1261 struct interval_block
1262 {
1263 /* Place `intervals' first, to preserve alignment. */
1264 struct interval intervals[INTERVAL_BLOCK_SIZE];
1265 struct interval_block *next;
1266 };
1267
1268 /* Current interval block. Its `next' pointer points to older
1269 blocks. */
1270
1271 static struct interval_block *interval_block;
1272
1273 /* Index in interval_block above of the next unused interval
1274 structure. */
1275
1276 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1277
1278 /* Number of free and live intervals. */
1279
1280 static EMACS_INT total_free_intervals, total_intervals;
1281
1282 /* List of free intervals. */
1283
1284 static INTERVAL interval_free_list;
1285
1286 /* Return a new interval. */
1287
1288 INTERVAL
1289 make_interval (void)
1290 {
1291 INTERVAL val;
1292
1293 MALLOC_BLOCK_INPUT;
1294
1295 if (interval_free_list)
1296 {
1297 val = interval_free_list;
1298 interval_free_list = INTERVAL_PARENT (interval_free_list);
1299 }
1300 else
1301 {
1302 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1303 {
1304 struct interval_block *newi
1305 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1306
1307 newi->next = interval_block;
1308 interval_block = newi;
1309 interval_block_index = 0;
1310 total_free_intervals += INTERVAL_BLOCK_SIZE;
1311 }
1312 val = &interval_block->intervals[interval_block_index++];
1313 }
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 consing_since_gc += sizeof (struct interval);
1318 intervals_consed++;
1319 total_free_intervals--;
1320 RESET_INTERVAL (val);
1321 val->gcmarkbit = 0;
1322 return val;
1323 }
1324
1325
1326 /* Mark Lisp objects in interval I. */
1327
1328 static void
1329 mark_interval (register INTERVAL i, Lisp_Object dummy)
1330 {
1331 /* Intervals should never be shared. So, if extra internal checking is
1332 enabled, GC aborts if it seems to have visited an interval twice. */
1333 eassert (!i->gcmarkbit);
1334 i->gcmarkbit = 1;
1335 mark_object (i->plist);
1336 }
1337
1338 /* Mark the interval tree rooted in I. */
1339
1340 #define MARK_INTERVAL_TREE(i) \
1341 do { \
1342 if (i && !i->gcmarkbit) \
1343 traverse_intervals_noorder (i, mark_interval, Qnil); \
1344 } while (0)
1345
1346 /***********************************************************************
1347 String Allocation
1348 ***********************************************************************/
1349
1350 /* Lisp_Strings are allocated in string_block structures. When a new
1351 string_block is allocated, all the Lisp_Strings it contains are
1352 added to a free-list string_free_list. When a new Lisp_String is
1353 needed, it is taken from that list. During the sweep phase of GC,
1354 string_blocks that are entirely free are freed, except two which
1355 we keep.
1356
1357 String data is allocated from sblock structures. Strings larger
1358 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1359 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1360
1361 Sblocks consist internally of sdata structures, one for each
1362 Lisp_String. The sdata structure points to the Lisp_String it
1363 belongs to. The Lisp_String points back to the `u.data' member of
1364 its sdata structure.
1365
1366 When a Lisp_String is freed during GC, it is put back on
1367 string_free_list, and its `data' member and its sdata's `string'
1368 pointer is set to null. The size of the string is recorded in the
1369 `n.nbytes' member of the sdata. So, sdata structures that are no
1370 longer used, can be easily recognized, and it's easy to compact the
1371 sblocks of small strings which we do in compact_small_strings. */
1372
1373 /* Size in bytes of an sblock structure used for small strings. This
1374 is 8192 minus malloc overhead. */
1375
1376 #define SBLOCK_SIZE 8188
1377
1378 /* Strings larger than this are considered large strings. String data
1379 for large strings is allocated from individual sblocks. */
1380
1381 #define LARGE_STRING_BYTES 1024
1382
1383 /* The SDATA typedef is a struct or union describing string memory
1384 sub-allocated from an sblock. This is where the contents of Lisp
1385 strings are stored. */
1386
1387 struct sdata
1388 {
1389 /* Back-pointer to the string this sdata belongs to. If null, this
1390 structure is free, and NBYTES (in this structure or in the union below)
1391 contains the string's byte size (the same value that STRING_BYTES
1392 would return if STRING were non-null). If non-null, STRING_BYTES
1393 (STRING) is the size of the data, and DATA contains the string's
1394 contents. */
1395 struct Lisp_String *string;
1396
1397 #ifdef GC_CHECK_STRING_BYTES
1398 ptrdiff_t nbytes;
1399 #endif
1400
1401 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1402 };
1403
1404 #ifdef GC_CHECK_STRING_BYTES
1405
1406 typedef struct sdata sdata;
1407 #define SDATA_NBYTES(S) (S)->nbytes
1408 #define SDATA_DATA(S) (S)->data
1409
1410 #else
1411
1412 typedef union
1413 {
1414 struct Lisp_String *string;
1415
1416 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1417 which has a flexible array member. However, if implemented by
1418 giving this union a member of type 'struct sdata', the union
1419 could not be the last (flexible) member of 'struct sblock',
1420 because C99 prohibits a flexible array member from having a type
1421 that is itself a flexible array. So, comment this member out here,
1422 but remember that the option's there when using this union. */
1423 #if 0
1424 struct sdata u;
1425 #endif
1426
1427 /* When STRING is null. */
1428 struct
1429 {
1430 struct Lisp_String *string;
1431 ptrdiff_t nbytes;
1432 } n;
1433 } sdata;
1434
1435 #define SDATA_NBYTES(S) (S)->n.nbytes
1436 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1437
1438 #endif /* not GC_CHECK_STRING_BYTES */
1439
1440 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1441
1442 /* Structure describing a block of memory which is sub-allocated to
1443 obtain string data memory for strings. Blocks for small strings
1444 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1445 as large as needed. */
1446
1447 struct sblock
1448 {
1449 /* Next in list. */
1450 struct sblock *next;
1451
1452 /* Pointer to the next free sdata block. This points past the end
1453 of the sblock if there isn't any space left in this block. */
1454 sdata *next_free;
1455
1456 /* String data. */
1457 sdata data[FLEXIBLE_ARRAY_MEMBER];
1458 };
1459
1460 /* Number of Lisp strings in a string_block structure. The 1020 is
1461 1024 minus malloc overhead. */
1462
1463 #define STRING_BLOCK_SIZE \
1464 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1465
1466 /* Structure describing a block from which Lisp_String structures
1467 are allocated. */
1468
1469 struct string_block
1470 {
1471 /* Place `strings' first, to preserve alignment. */
1472 struct Lisp_String strings[STRING_BLOCK_SIZE];
1473 struct string_block *next;
1474 };
1475
1476 /* Head and tail of the list of sblock structures holding Lisp string
1477 data. We always allocate from current_sblock. The NEXT pointers
1478 in the sblock structures go from oldest_sblock to current_sblock. */
1479
1480 static struct sblock *oldest_sblock, *current_sblock;
1481
1482 /* List of sblocks for large strings. */
1483
1484 static struct sblock *large_sblocks;
1485
1486 /* List of string_block structures. */
1487
1488 static struct string_block *string_blocks;
1489
1490 /* Free-list of Lisp_Strings. */
1491
1492 static struct Lisp_String *string_free_list;
1493
1494 /* Number of live and free Lisp_Strings. */
1495
1496 static EMACS_INT total_strings, total_free_strings;
1497
1498 /* Number of bytes used by live strings. */
1499
1500 static EMACS_INT total_string_bytes;
1501
1502 /* Given a pointer to a Lisp_String S which is on the free-list
1503 string_free_list, return a pointer to its successor in the
1504 free-list. */
1505
1506 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1507
1508 /* Return a pointer to the sdata structure belonging to Lisp string S.
1509 S must be live, i.e. S->data must not be null. S->data is actually
1510 a pointer to the `u.data' member of its sdata structure; the
1511 structure starts at a constant offset in front of that. */
1512
1513 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1514
1515
1516 #ifdef GC_CHECK_STRING_OVERRUN
1517
1518 /* We check for overrun in string data blocks by appending a small
1519 "cookie" after each allocated string data block, and check for the
1520 presence of this cookie during GC. */
1521
1522 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1523 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1524 { '\xde', '\xad', '\xbe', '\xef' };
1525
1526 #else
1527 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1528 #endif
1529
1530 /* Value is the size of an sdata structure large enough to hold NBYTES
1531 bytes of string data. The value returned includes a terminating
1532 NUL byte, the size of the sdata structure, and padding. */
1533
1534 #ifdef GC_CHECK_STRING_BYTES
1535
1536 #define SDATA_SIZE(NBYTES) \
1537 ((SDATA_DATA_OFFSET \
1538 + (NBYTES) + 1 \
1539 + sizeof (ptrdiff_t) - 1) \
1540 & ~(sizeof (ptrdiff_t) - 1))
1541
1542 #else /* not GC_CHECK_STRING_BYTES */
1543
1544 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1545 less than the size of that member. The 'max' is not needed when
1546 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1547 alignment code reserves enough space. */
1548
1549 #define SDATA_SIZE(NBYTES) \
1550 ((SDATA_DATA_OFFSET \
1551 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1552 ? NBYTES \
1553 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1554 + 1 \
1555 + sizeof (ptrdiff_t) - 1) \
1556 & ~(sizeof (ptrdiff_t) - 1))
1557
1558 #endif /* not GC_CHECK_STRING_BYTES */
1559
1560 /* Extra bytes to allocate for each string. */
1561
1562 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1563
1564 /* Exact bound on the number of bytes in a string, not counting the
1565 terminating null. A string cannot contain more bytes than
1566 STRING_BYTES_BOUND, nor can it be so long that the size_t
1567 arithmetic in allocate_string_data would overflow while it is
1568 calculating a value to be passed to malloc. */
1569 static ptrdiff_t const STRING_BYTES_MAX =
1570 min (STRING_BYTES_BOUND,
1571 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1572 - GC_STRING_EXTRA
1573 - offsetof (struct sblock, data)
1574 - SDATA_DATA_OFFSET)
1575 & ~(sizeof (EMACS_INT) - 1)));
1576
1577 /* Initialize string allocation. Called from init_alloc_once. */
1578
1579 static void
1580 init_strings (void)
1581 {
1582 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1583 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 }
1585
1586
1587 #ifdef GC_CHECK_STRING_BYTES
1588
1589 static int check_string_bytes_count;
1590
1591 /* Like STRING_BYTES, but with debugging check. Can be
1592 called during GC, so pay attention to the mark bit. */
1593
1594 ptrdiff_t
1595 string_bytes (struct Lisp_String *s)
1596 {
1597 ptrdiff_t nbytes =
1598 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1599
1600 if (!PURE_POINTER_P (s)
1601 && s->data
1602 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1603 emacs_abort ();
1604 return nbytes;
1605 }
1606
1607 /* Check validity of Lisp strings' string_bytes member in B. */
1608
1609 static void
1610 check_sblock (struct sblock *b)
1611 {
1612 sdata *from, *end, *from_end;
1613
1614 end = b->next_free;
1615
1616 for (from = b->data; from < end; from = from_end)
1617 {
1618 /* Compute the next FROM here because copying below may
1619 overwrite data we need to compute it. */
1620 ptrdiff_t nbytes;
1621
1622 /* Check that the string size recorded in the string is the
1623 same as the one recorded in the sdata structure. */
1624 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1625 : SDATA_NBYTES (from));
1626 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1627 }
1628 }
1629
1630
1631 /* Check validity of Lisp strings' string_bytes member. ALL_P
1632 means check all strings, otherwise check only most
1633 recently allocated strings. Used for hunting a bug. */
1634
1635 static void
1636 check_string_bytes (bool all_p)
1637 {
1638 if (all_p)
1639 {
1640 struct sblock *b;
1641
1642 for (b = large_sblocks; b; b = b->next)
1643 {
1644 struct Lisp_String *s = b->data[0].string;
1645 if (s)
1646 string_bytes (s);
1647 }
1648
1649 for (b = oldest_sblock; b; b = b->next)
1650 check_sblock (b);
1651 }
1652 else if (current_sblock)
1653 check_sblock (current_sblock);
1654 }
1655
1656 #else /* not GC_CHECK_STRING_BYTES */
1657
1658 #define check_string_bytes(all) ((void) 0)
1659
1660 #endif /* GC_CHECK_STRING_BYTES */
1661
1662 #ifdef GC_CHECK_STRING_FREE_LIST
1663
1664 /* Walk through the string free list looking for bogus next pointers.
1665 This may catch buffer overrun from a previous string. */
1666
1667 static void
1668 check_string_free_list (void)
1669 {
1670 struct Lisp_String *s;
1671
1672 /* Pop a Lisp_String off the free-list. */
1673 s = string_free_list;
1674 while (s != NULL)
1675 {
1676 if ((uintptr_t) s < 1024)
1677 emacs_abort ();
1678 s = NEXT_FREE_LISP_STRING (s);
1679 }
1680 }
1681 #else
1682 #define check_string_free_list()
1683 #endif
1684
1685 /* Return a new Lisp_String. */
1686
1687 static struct Lisp_String *
1688 allocate_string (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 MALLOC_BLOCK_INPUT;
1693
1694 /* If the free-list is empty, allocate a new string_block, and
1695 add all the Lisp_Strings in it to the free-list. */
1696 if (string_free_list == NULL)
1697 {
1698 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1699 int i;
1700
1701 b->next = string_blocks;
1702 string_blocks = b;
1703
1704 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1705 {
1706 s = b->strings + i;
1707 /* Every string on a free list should have NULL data pointer. */
1708 s->data = NULL;
1709 NEXT_FREE_LISP_STRING (s) = string_free_list;
1710 string_free_list = s;
1711 }
1712
1713 total_free_strings += STRING_BLOCK_SIZE;
1714 }
1715
1716 check_string_free_list ();
1717
1718 /* Pop a Lisp_String off the free-list. */
1719 s = string_free_list;
1720 string_free_list = NEXT_FREE_LISP_STRING (s);
1721
1722 MALLOC_UNBLOCK_INPUT;
1723
1724 --total_free_strings;
1725 ++total_strings;
1726 ++strings_consed;
1727 consing_since_gc += sizeof *s;
1728
1729 #ifdef GC_CHECK_STRING_BYTES
1730 if (!noninteractive)
1731 {
1732 if (++check_string_bytes_count == 200)
1733 {
1734 check_string_bytes_count = 0;
1735 check_string_bytes (1);
1736 }
1737 else
1738 check_string_bytes (0);
1739 }
1740 #endif /* GC_CHECK_STRING_BYTES */
1741
1742 return s;
1743 }
1744
1745
1746 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1747 plus a NUL byte at the end. Allocate an sdata structure for S, and
1748 set S->data to its `u.data' member. Store a NUL byte at the end of
1749 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1750 S->data if it was initially non-null. */
1751
1752 void
1753 allocate_string_data (struct Lisp_String *s,
1754 EMACS_INT nchars, EMACS_INT nbytes)
1755 {
1756 sdata *data, *old_data;
1757 struct sblock *b;
1758 ptrdiff_t needed, old_nbytes;
1759
1760 if (STRING_BYTES_MAX < nbytes)
1761 string_overflow ();
1762
1763 /* Determine the number of bytes needed to store NBYTES bytes
1764 of string data. */
1765 needed = SDATA_SIZE (nbytes);
1766 if (s->data)
1767 {
1768 old_data = SDATA_OF_STRING (s);
1769 old_nbytes = STRING_BYTES (s);
1770 }
1771 else
1772 old_data = NULL;
1773
1774 MALLOC_BLOCK_INPUT;
1775
1776 if (nbytes > LARGE_STRING_BYTES)
1777 {
1778 size_t size = offsetof (struct sblock, data) + needed;
1779
1780 #ifdef DOUG_LEA_MALLOC
1781 if (!mmap_lisp_allowed_p ())
1782 mallopt (M_MMAP_MAX, 0);
1783 #endif
1784
1785 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1786
1787 #ifdef DOUG_LEA_MALLOC
1788 if (!mmap_lisp_allowed_p ())
1789 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1790 #endif
1791
1792 b->next_free = b->data;
1793 b->data[0].string = NULL;
1794 b->next = large_sblocks;
1795 large_sblocks = b;
1796 }
1797 else if (current_sblock == NULL
1798 || (((char *) current_sblock + SBLOCK_SIZE
1799 - (char *) current_sblock->next_free)
1800 < (needed + GC_STRING_EXTRA)))
1801 {
1802 /* Not enough room in the current sblock. */
1803 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1804 b->next_free = b->data;
1805 b->data[0].string = NULL;
1806 b->next = NULL;
1807
1808 if (current_sblock)
1809 current_sblock->next = b;
1810 else
1811 oldest_sblock = b;
1812 current_sblock = b;
1813 }
1814 else
1815 b = current_sblock;
1816
1817 data = b->next_free;
1818 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1819
1820 MALLOC_UNBLOCK_INPUT;
1821
1822 data->string = s;
1823 s->data = SDATA_DATA (data);
1824 #ifdef GC_CHECK_STRING_BYTES
1825 SDATA_NBYTES (data) = nbytes;
1826 #endif
1827 s->size = nchars;
1828 s->size_byte = nbytes;
1829 s->data[nbytes] = '\0';
1830 #ifdef GC_CHECK_STRING_OVERRUN
1831 memcpy ((char *) data + needed, string_overrun_cookie,
1832 GC_STRING_OVERRUN_COOKIE_SIZE);
1833 #endif
1834
1835 /* Note that Faset may call to this function when S has already data
1836 assigned. In this case, mark data as free by setting it's string
1837 back-pointer to null, and record the size of the data in it. */
1838 if (old_data)
1839 {
1840 SDATA_NBYTES (old_data) = old_nbytes;
1841 old_data->string = NULL;
1842 }
1843
1844 consing_since_gc += needed;
1845 }
1846
1847
1848 /* Sweep and compact strings. */
1849
1850 NO_INLINE /* For better stack traces */
1851 static void
1852 sweep_strings (void)
1853 {
1854 struct string_block *b, *next;
1855 struct string_block *live_blocks = NULL;
1856
1857 string_free_list = NULL;
1858 total_strings = total_free_strings = 0;
1859 total_string_bytes = 0;
1860
1861 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1862 for (b = string_blocks; b; b = next)
1863 {
1864 int i, nfree = 0;
1865 struct Lisp_String *free_list_before = string_free_list;
1866
1867 next = b->next;
1868
1869 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1870 {
1871 struct Lisp_String *s = b->strings + i;
1872
1873 if (s->data)
1874 {
1875 /* String was not on free-list before. */
1876 if (STRING_MARKED_P (s))
1877 {
1878 /* String is live; unmark it and its intervals. */
1879 UNMARK_STRING (s);
1880
1881 /* Do not use string_(set|get)_intervals here. */
1882 s->intervals = balance_intervals (s->intervals);
1883
1884 ++total_strings;
1885 total_string_bytes += STRING_BYTES (s);
1886 }
1887 else
1888 {
1889 /* String is dead. Put it on the free-list. */
1890 sdata *data = SDATA_OF_STRING (s);
1891
1892 /* Save the size of S in its sdata so that we know
1893 how large that is. Reset the sdata's string
1894 back-pointer so that we know it's free. */
1895 #ifdef GC_CHECK_STRING_BYTES
1896 if (string_bytes (s) != SDATA_NBYTES (data))
1897 emacs_abort ();
1898 #else
1899 data->n.nbytes = STRING_BYTES (s);
1900 #endif
1901 data->string = NULL;
1902
1903 /* Reset the strings's `data' member so that we
1904 know it's free. */
1905 s->data = NULL;
1906
1907 /* Put the string on the free-list. */
1908 NEXT_FREE_LISP_STRING (s) = string_free_list;
1909 string_free_list = s;
1910 ++nfree;
1911 }
1912 }
1913 else
1914 {
1915 /* S was on the free-list before. Put it there again. */
1916 NEXT_FREE_LISP_STRING (s) = string_free_list;
1917 string_free_list = s;
1918 ++nfree;
1919 }
1920 }
1921
1922 /* Free blocks that contain free Lisp_Strings only, except
1923 the first two of them. */
1924 if (nfree == STRING_BLOCK_SIZE
1925 && total_free_strings > STRING_BLOCK_SIZE)
1926 {
1927 lisp_free (b);
1928 string_free_list = free_list_before;
1929 }
1930 else
1931 {
1932 total_free_strings += nfree;
1933 b->next = live_blocks;
1934 live_blocks = b;
1935 }
1936 }
1937
1938 check_string_free_list ();
1939
1940 string_blocks = live_blocks;
1941 free_large_strings ();
1942 compact_small_strings ();
1943
1944 check_string_free_list ();
1945 }
1946
1947
1948 /* Free dead large strings. */
1949
1950 static void
1951 free_large_strings (void)
1952 {
1953 struct sblock *b, *next;
1954 struct sblock *live_blocks = NULL;
1955
1956 for (b = large_sblocks; b; b = next)
1957 {
1958 next = b->next;
1959
1960 if (b->data[0].string == NULL)
1961 lisp_free (b);
1962 else
1963 {
1964 b->next = live_blocks;
1965 live_blocks = b;
1966 }
1967 }
1968
1969 large_sblocks = live_blocks;
1970 }
1971
1972
1973 /* Compact data of small strings. Free sblocks that don't contain
1974 data of live strings after compaction. */
1975
1976 static void
1977 compact_small_strings (void)
1978 {
1979 struct sblock *b, *tb, *next;
1980 sdata *from, *to, *end, *tb_end;
1981 sdata *to_end, *from_end;
1982
1983 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1984 to, and TB_END is the end of TB. */
1985 tb = oldest_sblock;
1986 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1987 to = tb->data;
1988
1989 /* Step through the blocks from the oldest to the youngest. We
1990 expect that old blocks will stabilize over time, so that less
1991 copying will happen this way. */
1992 for (b = oldest_sblock; b; b = b->next)
1993 {
1994 end = b->next_free;
1995 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1996
1997 for (from = b->data; from < end; from = from_end)
1998 {
1999 /* Compute the next FROM here because copying below may
2000 overwrite data we need to compute it. */
2001 ptrdiff_t nbytes;
2002 struct Lisp_String *s = from->string;
2003
2004 #ifdef GC_CHECK_STRING_BYTES
2005 /* Check that the string size recorded in the string is the
2006 same as the one recorded in the sdata structure. */
2007 if (s && string_bytes (s) != SDATA_NBYTES (from))
2008 emacs_abort ();
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2012 eassert (nbytes <= LARGE_STRING_BYTES);
2013
2014 nbytes = SDATA_SIZE (nbytes);
2015 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2016
2017 #ifdef GC_CHECK_STRING_OVERRUN
2018 if (memcmp (string_overrun_cookie,
2019 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2020 GC_STRING_OVERRUN_COOKIE_SIZE))
2021 emacs_abort ();
2022 #endif
2023
2024 /* Non-NULL S means it's alive. Copy its data. */
2025 if (s)
2026 {
2027 /* If TB is full, proceed with the next sblock. */
2028 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2029 if (to_end > tb_end)
2030 {
2031 tb->next_free = to;
2032 tb = tb->next;
2033 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2034 to = tb->data;
2035 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2036 }
2037
2038 /* Copy, and update the string's `data' pointer. */
2039 if (from != to)
2040 {
2041 eassert (tb != b || to < from);
2042 memmove (to, from, nbytes + GC_STRING_EXTRA);
2043 to->string->data = SDATA_DATA (to);
2044 }
2045
2046 /* Advance past the sdata we copied to. */
2047 to = to_end;
2048 }
2049 }
2050 }
2051
2052 /* The rest of the sblocks following TB don't contain live data, so
2053 we can free them. */
2054 for (b = tb->next; b; b = next)
2055 {
2056 next = b->next;
2057 lisp_free (b);
2058 }
2059
2060 tb->next_free = to;
2061 tb->next = NULL;
2062 current_sblock = tb;
2063 }
2064
2065 void
2066 string_overflow (void)
2067 {
2068 error ("Maximum string size exceeded");
2069 }
2070
2071 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2072 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2073 LENGTH must be an integer.
2074 INIT must be an integer that represents a character. */)
2075 (Lisp_Object length, Lisp_Object init)
2076 {
2077 register Lisp_Object val;
2078 int c;
2079 EMACS_INT nbytes;
2080
2081 CHECK_NATNUM (length);
2082 CHECK_CHARACTER (init);
2083
2084 c = XFASTINT (init);
2085 if (ASCII_CHAR_P (c))
2086 {
2087 nbytes = XINT (length);
2088 val = make_uninit_string (nbytes);
2089 memset (SDATA (val), c, nbytes);
2090 SDATA (val)[nbytes] = 0;
2091 }
2092 else
2093 {
2094 unsigned char str[MAX_MULTIBYTE_LENGTH];
2095 ptrdiff_t len = CHAR_STRING (c, str);
2096 EMACS_INT string_len = XINT (length);
2097 unsigned char *p, *beg, *end;
2098
2099 if (string_len > STRING_BYTES_MAX / len)
2100 string_overflow ();
2101 nbytes = len * string_len;
2102 val = make_uninit_multibyte_string (string_len, nbytes);
2103 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2104 {
2105 /* First time we just copy `str' to the data of `val'. */
2106 if (p == beg)
2107 memcpy (p, str, len);
2108 else
2109 {
2110 /* Next time we copy largest possible chunk from
2111 initialized to uninitialized part of `val'. */
2112 len = min (p - beg, end - p);
2113 memcpy (p, beg, len);
2114 }
2115 }
2116 *p = 0;
2117 }
2118
2119 return val;
2120 }
2121
2122 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2123 Return A. */
2124
2125 Lisp_Object
2126 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2127 {
2128 EMACS_INT nbits = bool_vector_size (a);
2129 if (0 < nbits)
2130 {
2131 unsigned char *data = bool_vector_uchar_data (a);
2132 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2133 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2134 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2135 memset (data, pattern, nbytes - 1);
2136 data[nbytes - 1] = pattern & last_mask;
2137 }
2138 return a;
2139 }
2140
2141 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2142
2143 Lisp_Object
2144 make_uninit_bool_vector (EMACS_INT nbits)
2145 {
2146 Lisp_Object val;
2147 EMACS_INT words = bool_vector_words (nbits);
2148 EMACS_INT word_bytes = words * sizeof (bits_word);
2149 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2150 + word_size - 1)
2151 / word_size);
2152 struct Lisp_Bool_Vector *p
2153 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2154 XSETVECTOR (val, p);
2155 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2156 p->size = nbits;
2157
2158 /* Clear padding at the end. */
2159 if (words)
2160 p->data[words - 1] = 0;
2161
2162 return val;
2163 }
2164
2165 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2166 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2167 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2168 (Lisp_Object length, Lisp_Object init)
2169 {
2170 Lisp_Object val;
2171
2172 CHECK_NATNUM (length);
2173 val = make_uninit_bool_vector (XFASTINT (length));
2174 return bool_vector_fill (val, init);
2175 }
2176
2177 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2178 doc: /* Return a new bool-vector with specified arguments as elements.
2179 Any number of arguments, even zero arguments, are allowed.
2180 usage: (bool-vector &rest OBJECTS) */)
2181 (ptrdiff_t nargs, Lisp_Object *args)
2182 {
2183 ptrdiff_t i;
2184 Lisp_Object vector;
2185
2186 vector = make_uninit_bool_vector (nargs);
2187 for (i = 0; i < nargs; i++)
2188 bool_vector_set (vector, i, !NILP (args[i]));
2189
2190 return vector;
2191 }
2192
2193 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2194 of characters from the contents. This string may be unibyte or
2195 multibyte, depending on the contents. */
2196
2197 Lisp_Object
2198 make_string (const char *contents, ptrdiff_t nbytes)
2199 {
2200 register Lisp_Object val;
2201 ptrdiff_t nchars, multibyte_nbytes;
2202
2203 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2204 &nchars, &multibyte_nbytes);
2205 if (nbytes == nchars || nbytes != multibyte_nbytes)
2206 /* CONTENTS contains no multibyte sequences or contains an invalid
2207 multibyte sequence. We must make unibyte string. */
2208 val = make_unibyte_string (contents, nbytes);
2209 else
2210 val = make_multibyte_string (contents, nchars, nbytes);
2211 return val;
2212 }
2213
2214
2215 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2216
2217 Lisp_Object
2218 make_unibyte_string (const char *contents, ptrdiff_t length)
2219 {
2220 register Lisp_Object val;
2221 val = make_uninit_string (length);
2222 memcpy (SDATA (val), contents, length);
2223 return val;
2224 }
2225
2226
2227 /* Make a multibyte string from NCHARS characters occupying NBYTES
2228 bytes at CONTENTS. */
2229
2230 Lisp_Object
2231 make_multibyte_string (const char *contents,
2232 ptrdiff_t nchars, ptrdiff_t nbytes)
2233 {
2234 register Lisp_Object val;
2235 val = make_uninit_multibyte_string (nchars, nbytes);
2236 memcpy (SDATA (val), contents, nbytes);
2237 return val;
2238 }
2239
2240
2241 /* Make a string from NCHARS characters occupying NBYTES bytes at
2242 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2243
2244 Lisp_Object
2245 make_string_from_bytes (const char *contents,
2246 ptrdiff_t nchars, ptrdiff_t nbytes)
2247 {
2248 register Lisp_Object val;
2249 val = make_uninit_multibyte_string (nchars, nbytes);
2250 memcpy (SDATA (val), contents, nbytes);
2251 if (SBYTES (val) == SCHARS (val))
2252 STRING_SET_UNIBYTE (val);
2253 return val;
2254 }
2255
2256
2257 /* Make a string from NCHARS characters occupying NBYTES bytes at
2258 CONTENTS. The argument MULTIBYTE controls whether to label the
2259 string as multibyte. If NCHARS is negative, it counts the number of
2260 characters by itself. */
2261
2262 Lisp_Object
2263 make_specified_string (const char *contents,
2264 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2265 {
2266 Lisp_Object val;
2267
2268 if (nchars < 0)
2269 {
2270 if (multibyte)
2271 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2272 nbytes);
2273 else
2274 nchars = nbytes;
2275 }
2276 val = make_uninit_multibyte_string (nchars, nbytes);
2277 memcpy (SDATA (val), contents, nbytes);
2278 if (!multibyte)
2279 STRING_SET_UNIBYTE (val);
2280 return val;
2281 }
2282
2283
2284 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2285 occupying LENGTH bytes. */
2286
2287 Lisp_Object
2288 make_uninit_string (EMACS_INT length)
2289 {
2290 Lisp_Object val;
2291
2292 if (!length)
2293 return empty_unibyte_string;
2294 val = make_uninit_multibyte_string (length, length);
2295 STRING_SET_UNIBYTE (val);
2296 return val;
2297 }
2298
2299
2300 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2301 which occupy NBYTES bytes. */
2302
2303 Lisp_Object
2304 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2305 {
2306 Lisp_Object string;
2307 struct Lisp_String *s;
2308
2309 if (nchars < 0)
2310 emacs_abort ();
2311 if (!nbytes)
2312 return empty_multibyte_string;
2313
2314 s = allocate_string ();
2315 s->intervals = NULL;
2316 allocate_string_data (s, nchars, nbytes);
2317 XSETSTRING (string, s);
2318 string_chars_consed += nbytes;
2319 return string;
2320 }
2321
2322 /* Print arguments to BUF according to a FORMAT, then return
2323 a Lisp_String initialized with the data from BUF. */
2324
2325 Lisp_Object
2326 make_formatted_string (char *buf, const char *format, ...)
2327 {
2328 va_list ap;
2329 int length;
2330
2331 va_start (ap, format);
2332 length = vsprintf (buf, format, ap);
2333 va_end (ap);
2334 return make_string (buf, length);
2335 }
2336
2337 \f
2338 /***********************************************************************
2339 Float Allocation
2340 ***********************************************************************/
2341
2342 /* We store float cells inside of float_blocks, allocating a new
2343 float_block with malloc whenever necessary. Float cells reclaimed
2344 by GC are put on a free list to be reallocated before allocating
2345 any new float cells from the latest float_block. */
2346
2347 #define FLOAT_BLOCK_SIZE \
2348 (((BLOCK_BYTES - sizeof (struct float_block *) \
2349 /* The compiler might add padding at the end. */ \
2350 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2351 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2352
2353 #define GETMARKBIT(block,n) \
2354 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2355 >> ((n) % BITS_PER_BITS_WORD)) \
2356 & 1)
2357
2358 #define SETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2361
2362 #define UNSETMARKBIT(block,n) \
2363 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2364 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2365
2366 #define FLOAT_BLOCK(fptr) \
2367 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2368
2369 #define FLOAT_INDEX(fptr) \
2370 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2371
2372 struct float_block
2373 {
2374 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2375 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2376 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2377 struct float_block *next;
2378 };
2379
2380 #define FLOAT_MARKED_P(fptr) \
2381 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2382
2383 #define FLOAT_MARK(fptr) \
2384 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2385
2386 #define FLOAT_UNMARK(fptr) \
2387 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2388
2389 /* Current float_block. */
2390
2391 static struct float_block *float_block;
2392
2393 /* Index of first unused Lisp_Float in the current float_block. */
2394
2395 static int float_block_index = FLOAT_BLOCK_SIZE;
2396
2397 /* Free-list of Lisp_Floats. */
2398
2399 static struct Lisp_Float *float_free_list;
2400
2401 /* Return a new float object with value FLOAT_VALUE. */
2402
2403 Lisp_Object
2404 make_float (double float_value)
2405 {
2406 register Lisp_Object val;
2407
2408 MALLOC_BLOCK_INPUT;
2409
2410 if (float_free_list)
2411 {
2412 /* We use the data field for chaining the free list
2413 so that we won't use the same field that has the mark bit. */
2414 XSETFLOAT (val, float_free_list);
2415 float_free_list = float_free_list->u.chain;
2416 }
2417 else
2418 {
2419 if (float_block_index == FLOAT_BLOCK_SIZE)
2420 {
2421 struct float_block *new
2422 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2423 new->next = float_block;
2424 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2425 float_block = new;
2426 float_block_index = 0;
2427 total_free_floats += FLOAT_BLOCK_SIZE;
2428 }
2429 XSETFLOAT (val, &float_block->floats[float_block_index]);
2430 float_block_index++;
2431 }
2432
2433 MALLOC_UNBLOCK_INPUT;
2434
2435 XFLOAT_INIT (val, float_value);
2436 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2437 consing_since_gc += sizeof (struct Lisp_Float);
2438 floats_consed++;
2439 total_free_floats--;
2440 return val;
2441 }
2442
2443
2444 \f
2445 /***********************************************************************
2446 Cons Allocation
2447 ***********************************************************************/
2448
2449 /* We store cons cells inside of cons_blocks, allocating a new
2450 cons_block with malloc whenever necessary. Cons cells reclaimed by
2451 GC are put on a free list to be reallocated before allocating
2452 any new cons cells from the latest cons_block. */
2453
2454 #define CONS_BLOCK_SIZE \
2455 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2456 /* The compiler might add padding at the end. */ \
2457 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2458 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2459
2460 #define CONS_BLOCK(fptr) \
2461 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2462
2463 #define CONS_INDEX(fptr) \
2464 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2465
2466 struct cons_block
2467 {
2468 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2469 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2470 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2471 struct cons_block *next;
2472 };
2473
2474 #define CONS_MARKED_P(fptr) \
2475 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2476
2477 #define CONS_MARK(fptr) \
2478 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2479
2480 #define CONS_UNMARK(fptr) \
2481 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2482
2483 /* Current cons_block. */
2484
2485 static struct cons_block *cons_block;
2486
2487 /* Index of first unused Lisp_Cons in the current block. */
2488
2489 static int cons_block_index = CONS_BLOCK_SIZE;
2490
2491 /* Free-list of Lisp_Cons structures. */
2492
2493 static struct Lisp_Cons *cons_free_list;
2494
2495 /* Explicitly free a cons cell by putting it on the free-list. */
2496
2497 void
2498 free_cons (struct Lisp_Cons *ptr)
2499 {
2500 ptr->u.chain = cons_free_list;
2501 #if GC_MARK_STACK
2502 ptr->car = Vdead;
2503 #endif
2504 cons_free_list = ptr;
2505 consing_since_gc -= sizeof *ptr;
2506 total_free_conses++;
2507 }
2508
2509 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2510 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2511 (Lisp_Object car, Lisp_Object cdr)
2512 {
2513 register Lisp_Object val;
2514
2515 MALLOC_BLOCK_INPUT;
2516
2517 if (cons_free_list)
2518 {
2519 /* We use the cdr for chaining the free list
2520 so that we won't use the same field that has the mark bit. */
2521 XSETCONS (val, cons_free_list);
2522 cons_free_list = cons_free_list->u.chain;
2523 }
2524 else
2525 {
2526 if (cons_block_index == CONS_BLOCK_SIZE)
2527 {
2528 struct cons_block *new
2529 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2530 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2531 new->next = cons_block;
2532 cons_block = new;
2533 cons_block_index = 0;
2534 total_free_conses += CONS_BLOCK_SIZE;
2535 }
2536 XSETCONS (val, &cons_block->conses[cons_block_index]);
2537 cons_block_index++;
2538 }
2539
2540 MALLOC_UNBLOCK_INPUT;
2541
2542 XSETCAR (val, car);
2543 XSETCDR (val, cdr);
2544 eassert (!CONS_MARKED_P (XCONS (val)));
2545 consing_since_gc += sizeof (struct Lisp_Cons);
2546 total_free_conses--;
2547 cons_cells_consed++;
2548 return val;
2549 }
2550
2551 #ifdef GC_CHECK_CONS_LIST
2552 /* Get an error now if there's any junk in the cons free list. */
2553 void
2554 check_cons_list (void)
2555 {
2556 struct Lisp_Cons *tail = cons_free_list;
2557
2558 while (tail)
2559 tail = tail->u.chain;
2560 }
2561 #endif
2562
2563 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2564
2565 Lisp_Object
2566 list1 (Lisp_Object arg1)
2567 {
2568 return Fcons (arg1, Qnil);
2569 }
2570
2571 Lisp_Object
2572 list2 (Lisp_Object arg1, Lisp_Object arg2)
2573 {
2574 return Fcons (arg1, Fcons (arg2, Qnil));
2575 }
2576
2577
2578 Lisp_Object
2579 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2580 {
2581 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2582 }
2583
2584
2585 Lisp_Object
2586 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2587 {
2588 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2589 }
2590
2591
2592 Lisp_Object
2593 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2594 {
2595 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2596 Fcons (arg5, Qnil)))));
2597 }
2598
2599 /* Make a list of COUNT Lisp_Objects, where ARG is the
2600 first one. Allocate conses from pure space if TYPE
2601 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2602
2603 Lisp_Object
2604 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2605 {
2606 va_list ap;
2607 ptrdiff_t i;
2608 Lisp_Object val, *objp;
2609
2610 /* Change to SAFE_ALLOCA if you hit this eassert. */
2611 eassert (count <= MAX_ALLOCA / word_size);
2612
2613 objp = alloca (count * word_size);
2614 objp[0] = arg;
2615 va_start (ap, arg);
2616 for (i = 1; i < count; i++)
2617 objp[i] = va_arg (ap, Lisp_Object);
2618 va_end (ap);
2619
2620 for (val = Qnil, i = count - 1; i >= 0; i--)
2621 {
2622 if (type == CONSTYPE_PURE)
2623 val = pure_cons (objp[i], val);
2624 else if (type == CONSTYPE_HEAP)
2625 val = Fcons (objp[i], val);
2626 else
2627 emacs_abort ();
2628 }
2629 return val;
2630 }
2631
2632 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2633 doc: /* Return a newly created list with specified arguments as elements.
2634 Any number of arguments, even zero arguments, are allowed.
2635 usage: (list &rest OBJECTS) */)
2636 (ptrdiff_t nargs, Lisp_Object *args)
2637 {
2638 register Lisp_Object val;
2639 val = Qnil;
2640
2641 while (nargs > 0)
2642 {
2643 nargs--;
2644 val = Fcons (args[nargs], val);
2645 }
2646 return val;
2647 }
2648
2649
2650 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2651 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2652 (register Lisp_Object length, Lisp_Object init)
2653 {
2654 register Lisp_Object val;
2655 register EMACS_INT size;
2656
2657 CHECK_NATNUM (length);
2658 size = XFASTINT (length);
2659
2660 val = Qnil;
2661 while (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670
2671 if (size > 0)
2672 {
2673 val = Fcons (init, val);
2674 --size;
2675
2676 if (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680
2681 if (size > 0)
2682 {
2683 val = Fcons (init, val);
2684 --size;
2685 }
2686 }
2687 }
2688 }
2689
2690 QUIT;
2691 }
2692
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Vector Allocation
2700 ***********************************************************************/
2701
2702 /* Sometimes a vector's contents are merely a pointer internally used
2703 in vector allocation code. On the rare platforms where a null
2704 pointer cannot be tagged, represent it with a Lisp 0.
2705 Usually you don't want to touch this. */
2706
2707 static struct Lisp_Vector *
2708 next_vector (struct Lisp_Vector *v)
2709 {
2710 return XUNTAG (v->contents[0], 0);
2711 }
2712
2713 static void
2714 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2715 {
2716 v->contents[0] = make_lisp_ptr (p, 0);
2717 }
2718
2719 /* This value is balanced well enough to avoid too much internal overhead
2720 for the most common cases; it's not required to be a power of two, but
2721 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2722
2723 #define VECTOR_BLOCK_SIZE 4096
2724
2725 enum
2726 {
2727 /* Alignment of struct Lisp_Vector objects. */
2728 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2729 USE_LSB_TAG ? GCALIGNMENT : 1),
2730
2731 /* Vector size requests are a multiple of this. */
2732 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2733 };
2734
2735 /* Verify assumptions described above. */
2736 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2737 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2738
2739 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2740 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2741 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2742 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2743
2744 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2745
2746 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2747
2748 /* Size of the minimal vector allocated from block. */
2749
2750 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2751
2752 /* Size of the largest vector allocated from block. */
2753
2754 #define VBLOCK_BYTES_MAX \
2755 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2756
2757 /* We maintain one free list for each possible block-allocated
2758 vector size, and this is the number of free lists we have. */
2759
2760 #define VECTOR_MAX_FREE_LIST_INDEX \
2761 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2762
2763 /* Common shortcut to advance vector pointer over a block data. */
2764
2765 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2766
2767 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2768
2769 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2770
2771 /* Common shortcut to setup vector on a free list. */
2772
2773 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2774 do { \
2775 (tmp) = ((nbytes - header_size) / word_size); \
2776 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2777 eassert ((nbytes) % roundup_size == 0); \
2778 (tmp) = VINDEX (nbytes); \
2779 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2780 set_next_vector (v, vector_free_lists[tmp]); \
2781 vector_free_lists[tmp] = (v); \
2782 total_free_vector_slots += (nbytes) / word_size; \
2783 } while (0)
2784
2785 /* This internal type is used to maintain the list of large vectors
2786 which are allocated at their own, e.g. outside of vector blocks.
2787
2788 struct large_vector itself cannot contain a struct Lisp_Vector, as
2789 the latter contains a flexible array member and C99 does not allow
2790 such structs to be nested. Instead, each struct large_vector
2791 object LV is followed by a struct Lisp_Vector, which is at offset
2792 large_vector_offset from LV, and whose address is therefore
2793 large_vector_vec (&LV). */
2794
2795 struct large_vector
2796 {
2797 struct large_vector *next;
2798 };
2799
2800 enum
2801 {
2802 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2803 };
2804
2805 static struct Lisp_Vector *
2806 large_vector_vec (struct large_vector *p)
2807 {
2808 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2809 }
2810
2811 /* This internal type is used to maintain an underlying storage
2812 for small vectors. */
2813
2814 struct vector_block
2815 {
2816 char data[VECTOR_BLOCK_BYTES];
2817 struct vector_block *next;
2818 };
2819
2820 /* Chain of vector blocks. */
2821
2822 static struct vector_block *vector_blocks;
2823
2824 /* Vector free lists, where NTH item points to a chain of free
2825 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2826
2827 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2828
2829 /* Singly-linked list of large vectors. */
2830
2831 static struct large_vector *large_vectors;
2832
2833 /* The only vector with 0 slots, allocated from pure space. */
2834
2835 Lisp_Object zero_vector;
2836
2837 /* Number of live vectors. */
2838
2839 static EMACS_INT total_vectors;
2840
2841 /* Total size of live and free vectors, in Lisp_Object units. */
2842
2843 static EMACS_INT total_vector_slots, total_free_vector_slots;
2844
2845 /* Get a new vector block. */
2846
2847 static struct vector_block *
2848 allocate_vector_block (void)
2849 {
2850 struct vector_block *block = xmalloc (sizeof *block);
2851
2852 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2853 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2854 MEM_TYPE_VECTOR_BLOCK);
2855 #endif
2856
2857 block->next = vector_blocks;
2858 vector_blocks = block;
2859 return block;
2860 }
2861
2862 /* Called once to initialize vector allocation. */
2863
2864 static void
2865 init_vectors (void)
2866 {
2867 zero_vector = make_pure_vector (0);
2868 }
2869
2870 /* Allocate vector from a vector block. */
2871
2872 static struct Lisp_Vector *
2873 allocate_vector_from_block (size_t nbytes)
2874 {
2875 struct Lisp_Vector *vector;
2876 struct vector_block *block;
2877 size_t index, restbytes;
2878
2879 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2880 eassert (nbytes % roundup_size == 0);
2881
2882 /* First, try to allocate from a free list
2883 containing vectors of the requested size. */
2884 index = VINDEX (nbytes);
2885 if (vector_free_lists[index])
2886 {
2887 vector = vector_free_lists[index];
2888 vector_free_lists[index] = next_vector (vector);
2889 total_free_vector_slots -= nbytes / word_size;
2890 return vector;
2891 }
2892
2893 /* Next, check free lists containing larger vectors. Since
2894 we will split the result, we should have remaining space
2895 large enough to use for one-slot vector at least. */
2896 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2897 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2898 if (vector_free_lists[index])
2899 {
2900 /* This vector is larger than requested. */
2901 vector = vector_free_lists[index];
2902 vector_free_lists[index] = next_vector (vector);
2903 total_free_vector_slots -= nbytes / word_size;
2904
2905 /* Excess bytes are used for the smaller vector,
2906 which should be set on an appropriate free list. */
2907 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2908 eassert (restbytes % roundup_size == 0);
2909 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2910 return vector;
2911 }
2912
2913 /* Finally, need a new vector block. */
2914 block = allocate_vector_block ();
2915
2916 /* New vector will be at the beginning of this block. */
2917 vector = (struct Lisp_Vector *) block->data;
2918
2919 /* If the rest of space from this block is large enough
2920 for one-slot vector at least, set up it on a free list. */
2921 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2922 if (restbytes >= VBLOCK_BYTES_MIN)
2923 {
2924 eassert (restbytes % roundup_size == 0);
2925 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2926 }
2927 return vector;
2928 }
2929
2930 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2931
2932 #define VECTOR_IN_BLOCK(vector, block) \
2933 ((char *) (vector) <= (block)->data \
2934 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2935
2936 /* Return the memory footprint of V in bytes. */
2937
2938 static ptrdiff_t
2939 vector_nbytes (struct Lisp_Vector *v)
2940 {
2941 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2942 ptrdiff_t nwords;
2943
2944 if (size & PSEUDOVECTOR_FLAG)
2945 {
2946 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2947 {
2948 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2949 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2950 * sizeof (bits_word));
2951 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2952 verify (header_size <= bool_header_size);
2953 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2954 }
2955 else
2956 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2957 + ((size & PSEUDOVECTOR_REST_MASK)
2958 >> PSEUDOVECTOR_SIZE_BITS));
2959 }
2960 else
2961 nwords = size;
2962 return vroundup (header_size + word_size * nwords);
2963 }
2964
2965 /* Release extra resources still in use by VECTOR, which may be any
2966 vector-like object. For now, this is used just to free data in
2967 font objects. */
2968
2969 static void
2970 cleanup_vector (struct Lisp_Vector *vector)
2971 {
2972 detect_suspicious_free (vector);
2973 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2974 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2975 == FONT_OBJECT_MAX))
2976 {
2977 struct font_driver *drv = ((struct font *) vector)->driver;
2978
2979 /* The font driver might sometimes be NULL, e.g. if Emacs was
2980 interrupted before it had time to set it up. */
2981 if (drv)
2982 {
2983 /* Attempt to catch subtle bugs like Bug#16140. */
2984 eassert (valid_font_driver (drv));
2985 drv->close ((struct font *) vector);
2986 }
2987 }
2988 }
2989
2990 /* Reclaim space used by unmarked vectors. */
2991
2992 NO_INLINE /* For better stack traces */
2993 static void
2994 sweep_vectors (void)
2995 {
2996 struct vector_block *block, **bprev = &vector_blocks;
2997 struct large_vector *lv, **lvprev = &large_vectors;
2998 struct Lisp_Vector *vector, *next;
2999
3000 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3001 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3002
3003 /* Looking through vector blocks. */
3004
3005 for (block = vector_blocks; block; block = *bprev)
3006 {
3007 bool free_this_block = 0;
3008 ptrdiff_t nbytes;
3009
3010 for (vector = (struct Lisp_Vector *) block->data;
3011 VECTOR_IN_BLOCK (vector, block); vector = next)
3012 {
3013 if (VECTOR_MARKED_P (vector))
3014 {
3015 VECTOR_UNMARK (vector);
3016 total_vectors++;
3017 nbytes = vector_nbytes (vector);
3018 total_vector_slots += nbytes / word_size;
3019 next = ADVANCE (vector, nbytes);
3020 }
3021 else
3022 {
3023 ptrdiff_t total_bytes;
3024
3025 cleanup_vector (vector);
3026 nbytes = vector_nbytes (vector);
3027 total_bytes = nbytes;
3028 next = ADVANCE (vector, nbytes);
3029
3030 /* While NEXT is not marked, try to coalesce with VECTOR,
3031 thus making VECTOR of the largest possible size. */
3032
3033 while (VECTOR_IN_BLOCK (next, block))
3034 {
3035 if (VECTOR_MARKED_P (next))
3036 break;
3037 cleanup_vector (next);
3038 nbytes = vector_nbytes (next);
3039 total_bytes += nbytes;
3040 next = ADVANCE (next, nbytes);
3041 }
3042
3043 eassert (total_bytes % roundup_size == 0);
3044
3045 if (vector == (struct Lisp_Vector *) block->data
3046 && !VECTOR_IN_BLOCK (next, block))
3047 /* This block should be freed because all of its
3048 space was coalesced into the only free vector. */
3049 free_this_block = 1;
3050 else
3051 {
3052 size_t tmp;
3053 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3054 }
3055 }
3056 }
3057
3058 if (free_this_block)
3059 {
3060 *bprev = block->next;
3061 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3062 mem_delete (mem_find (block->data));
3063 #endif
3064 xfree (block);
3065 }
3066 else
3067 bprev = &block->next;
3068 }
3069
3070 /* Sweep large vectors. */
3071
3072 for (lv = large_vectors; lv; lv = *lvprev)
3073 {
3074 vector = large_vector_vec (lv);
3075 if (VECTOR_MARKED_P (vector))
3076 {
3077 VECTOR_UNMARK (vector);
3078 total_vectors++;
3079 if (vector->header.size & PSEUDOVECTOR_FLAG)
3080 {
3081 /* All non-bool pseudovectors are small enough to be allocated
3082 from vector blocks. This code should be redesigned if some
3083 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3084 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3085 total_vector_slots += vector_nbytes (vector) / word_size;
3086 }
3087 else
3088 total_vector_slots
3089 += header_size / word_size + vector->header.size;
3090 lvprev = &lv->next;
3091 }
3092 else
3093 {
3094 *lvprev = lv->next;
3095 lisp_free (lv);
3096 }
3097 }
3098 }
3099
3100 /* Value is a pointer to a newly allocated Lisp_Vector structure
3101 with room for LEN Lisp_Objects. */
3102
3103 static struct Lisp_Vector *
3104 allocate_vectorlike (ptrdiff_t len)
3105 {
3106 struct Lisp_Vector *p;
3107
3108 MALLOC_BLOCK_INPUT;
3109
3110 if (len == 0)
3111 p = XVECTOR (zero_vector);
3112 else
3113 {
3114 size_t nbytes = header_size + len * word_size;
3115
3116 #ifdef DOUG_LEA_MALLOC
3117 if (!mmap_lisp_allowed_p ())
3118 mallopt (M_MMAP_MAX, 0);
3119 #endif
3120
3121 if (nbytes <= VBLOCK_BYTES_MAX)
3122 p = allocate_vector_from_block (vroundup (nbytes));
3123 else
3124 {
3125 struct large_vector *lv
3126 = lisp_malloc ((large_vector_offset + header_size
3127 + len * word_size),
3128 MEM_TYPE_VECTORLIKE);
3129 lv->next = large_vectors;
3130 large_vectors = lv;
3131 p = large_vector_vec (lv);
3132 }
3133
3134 #ifdef DOUG_LEA_MALLOC
3135 if (!mmap_lisp_allowed_p ())
3136 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3137 #endif
3138
3139 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3140 emacs_abort ();
3141
3142 consing_since_gc += nbytes;
3143 vector_cells_consed += len;
3144 }
3145
3146 MALLOC_UNBLOCK_INPUT;
3147
3148 return p;
3149 }
3150
3151
3152 /* Allocate a vector with LEN slots. */
3153
3154 struct Lisp_Vector *
3155 allocate_vector (EMACS_INT len)
3156 {
3157 struct Lisp_Vector *v;
3158 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3159
3160 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3161 memory_full (SIZE_MAX);
3162 v = allocate_vectorlike (len);
3163 v->header.size = len;
3164 return v;
3165 }
3166
3167
3168 /* Allocate other vector-like structures. */
3169
3170 struct Lisp_Vector *
3171 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3172 {
3173 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3174 int i;
3175
3176 /* Catch bogus values. */
3177 eassert (tag <= PVEC_FONT);
3178 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3179 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3180
3181 /* Only the first lisplen slots will be traced normally by the GC. */
3182 for (i = 0; i < lisplen; ++i)
3183 v->contents[i] = Qnil;
3184
3185 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3186 return v;
3187 }
3188
3189 struct buffer *
3190 allocate_buffer (void)
3191 {
3192 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3193
3194 BUFFER_PVEC_INIT (b);
3195 /* Put B on the chain of all buffers including killed ones. */
3196 b->next = all_buffers;
3197 all_buffers = b;
3198 /* Note that the rest fields of B are not initialized. */
3199 return b;
3200 }
3201
3202 struct Lisp_Hash_Table *
3203 allocate_hash_table (void)
3204 {
3205 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3206 }
3207
3208 struct window *
3209 allocate_window (void)
3210 {
3211 struct window *w;
3212
3213 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3214 /* Users assumes that non-Lisp data is zeroed. */
3215 memset (&w->current_matrix, 0,
3216 sizeof (*w) - offsetof (struct window, current_matrix));
3217 return w;
3218 }
3219
3220 struct terminal *
3221 allocate_terminal (void)
3222 {
3223 struct terminal *t;
3224
3225 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3226 /* Users assumes that non-Lisp data is zeroed. */
3227 memset (&t->next_terminal, 0,
3228 sizeof (*t) - offsetof (struct terminal, next_terminal));
3229 return t;
3230 }
3231
3232 struct frame *
3233 allocate_frame (void)
3234 {
3235 struct frame *f;
3236
3237 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3238 /* Users assumes that non-Lisp data is zeroed. */
3239 memset (&f->face_cache, 0,
3240 sizeof (*f) - offsetof (struct frame, face_cache));
3241 return f;
3242 }
3243
3244 struct Lisp_Process *
3245 allocate_process (void)
3246 {
3247 struct Lisp_Process *p;
3248
3249 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3250 /* Users assumes that non-Lisp data is zeroed. */
3251 memset (&p->pid, 0,
3252 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3253 return p;
3254 }
3255
3256 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3257 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3258 See also the function `vector'. */)
3259 (register Lisp_Object length, Lisp_Object init)
3260 {
3261 Lisp_Object vector;
3262 register ptrdiff_t sizei;
3263 register ptrdiff_t i;
3264 register struct Lisp_Vector *p;
3265
3266 CHECK_NATNUM (length);
3267
3268 p = allocate_vector (XFASTINT (length));
3269 sizei = XFASTINT (length);
3270 for (i = 0; i < sizei; i++)
3271 p->contents[i] = init;
3272
3273 XSETVECTOR (vector, p);
3274 return vector;
3275 }
3276
3277
3278 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3279 doc: /* Return a newly created vector with specified arguments as elements.
3280 Any number of arguments, even zero arguments, are allowed.
3281 usage: (vector &rest OBJECTS) */)
3282 (ptrdiff_t nargs, Lisp_Object *args)
3283 {
3284 ptrdiff_t i;
3285 register Lisp_Object val = make_uninit_vector (nargs);
3286 register struct Lisp_Vector *p = XVECTOR (val);
3287
3288 for (i = 0; i < nargs; i++)
3289 p->contents[i] = args[i];
3290 return val;
3291 }
3292
3293 void
3294 make_byte_code (struct Lisp_Vector *v)
3295 {
3296 /* Don't allow the global zero_vector to become a byte code object. */
3297 eassert (0 < v->header.size);
3298
3299 if (v->header.size > 1 && STRINGP (v->contents[1])
3300 && STRING_MULTIBYTE (v->contents[1]))
3301 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3302 earlier because they produced a raw 8-bit string for byte-code
3303 and now such a byte-code string is loaded as multibyte while
3304 raw 8-bit characters converted to multibyte form. Thus, now we
3305 must convert them back to the original unibyte form. */
3306 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3307 XSETPVECTYPE (v, PVEC_COMPILED);
3308 }
3309
3310 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3311 doc: /* Create a byte-code object with specified arguments as elements.
3312 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3313 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3314 and (optional) INTERACTIVE-SPEC.
3315 The first four arguments are required; at most six have any
3316 significance.
3317 The ARGLIST can be either like the one of `lambda', in which case the arguments
3318 will be dynamically bound before executing the byte code, or it can be an
3319 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3320 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3321 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3322 argument to catch the left-over arguments. If such an integer is used, the
3323 arguments will not be dynamically bound but will be instead pushed on the
3324 stack before executing the byte-code.
3325 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3326 (ptrdiff_t nargs, Lisp_Object *args)
3327 {
3328 ptrdiff_t i;
3329 register Lisp_Object val = make_uninit_vector (nargs);
3330 register struct Lisp_Vector *p = XVECTOR (val);
3331
3332 /* We used to purecopy everything here, if purify-flag was set. This worked
3333 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3334 dangerous, since make-byte-code is used during execution to build
3335 closures, so any closure built during the preload phase would end up
3336 copied into pure space, including its free variables, which is sometimes
3337 just wasteful and other times plainly wrong (e.g. those free vars may want
3338 to be setcar'd). */
3339
3340 for (i = 0; i < nargs; i++)
3341 p->contents[i] = args[i];
3342 make_byte_code (p);
3343 XSETCOMPILED (val, p);
3344 return val;
3345 }
3346
3347
3348 \f
3349 /***********************************************************************
3350 Symbol Allocation
3351 ***********************************************************************/
3352
3353 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3354 of the required alignment if LSB tags are used. */
3355
3356 union aligned_Lisp_Symbol
3357 {
3358 struct Lisp_Symbol s;
3359 #if USE_LSB_TAG
3360 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3361 & -GCALIGNMENT];
3362 #endif
3363 };
3364
3365 /* Each symbol_block is just under 1020 bytes long, since malloc
3366 really allocates in units of powers of two and uses 4 bytes for its
3367 own overhead. */
3368
3369 #define SYMBOL_BLOCK_SIZE \
3370 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3371
3372 struct symbol_block
3373 {
3374 /* Place `symbols' first, to preserve alignment. */
3375 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3376 struct symbol_block *next;
3377 };
3378
3379 /* Current symbol block and index of first unused Lisp_Symbol
3380 structure in it. */
3381
3382 static struct symbol_block *symbol_block;
3383 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3384 /* Pointer to the first symbol_block that contains pinned symbols.
3385 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3386 10K of which are pinned (and all but 250 of them are interned in obarray),
3387 whereas a "typical session" has in the order of 30K symbols.
3388 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3389 than 30K to find the 10K symbols we need to mark. */
3390 static struct symbol_block *symbol_block_pinned;
3391
3392 /* List of free symbols. */
3393
3394 static struct Lisp_Symbol *symbol_free_list;
3395
3396 static void
3397 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3398 {
3399 XSYMBOL (sym)->name = name;
3400 }
3401
3402 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3403 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3404 Its value is void, and its function definition and property list are nil. */)
3405 (Lisp_Object name)
3406 {
3407 register Lisp_Object val;
3408 register struct Lisp_Symbol *p;
3409
3410 CHECK_STRING (name);
3411
3412 MALLOC_BLOCK_INPUT;
3413
3414 if (symbol_free_list)
3415 {
3416 XSETSYMBOL (val, symbol_free_list);
3417 symbol_free_list = symbol_free_list->next;
3418 }
3419 else
3420 {
3421 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3422 {
3423 struct symbol_block *new
3424 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3425 new->next = symbol_block;
3426 symbol_block = new;
3427 symbol_block_index = 0;
3428 total_free_symbols += SYMBOL_BLOCK_SIZE;
3429 }
3430 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3431 symbol_block_index++;
3432 }
3433
3434 MALLOC_UNBLOCK_INPUT;
3435
3436 p = XSYMBOL (val);
3437 set_symbol_name (val, name);
3438 set_symbol_plist (val, Qnil);
3439 p->redirect = SYMBOL_PLAINVAL;
3440 SET_SYMBOL_VAL (p, Qunbound);
3441 set_symbol_function (val, Qnil);
3442 set_symbol_next (val, NULL);
3443 p->gcmarkbit = false;
3444 p->interned = SYMBOL_UNINTERNED;
3445 p->constant = 0;
3446 p->declared_special = false;
3447 p->pinned = false;
3448 consing_since_gc += sizeof (struct Lisp_Symbol);
3449 symbols_consed++;
3450 total_free_symbols--;
3451 return val;
3452 }
3453
3454
3455 \f
3456 /***********************************************************************
3457 Marker (Misc) Allocation
3458 ***********************************************************************/
3459
3460 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3461 the required alignment when LSB tags are used. */
3462
3463 union aligned_Lisp_Misc
3464 {
3465 union Lisp_Misc m;
3466 #if USE_LSB_TAG
3467 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3468 & -GCALIGNMENT];
3469 #endif
3470 };
3471
3472 /* Allocation of markers and other objects that share that structure.
3473 Works like allocation of conses. */
3474
3475 #define MARKER_BLOCK_SIZE \
3476 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3477
3478 struct marker_block
3479 {
3480 /* Place `markers' first, to preserve alignment. */
3481 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3482 struct marker_block *next;
3483 };
3484
3485 static struct marker_block *marker_block;
3486 static int marker_block_index = MARKER_BLOCK_SIZE;
3487
3488 static union Lisp_Misc *marker_free_list;
3489
3490 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3491
3492 static Lisp_Object
3493 allocate_misc (enum Lisp_Misc_Type type)
3494 {
3495 Lisp_Object val;
3496
3497 MALLOC_BLOCK_INPUT;
3498
3499 if (marker_free_list)
3500 {
3501 XSETMISC (val, marker_free_list);
3502 marker_free_list = marker_free_list->u_free.chain;
3503 }
3504 else
3505 {
3506 if (marker_block_index == MARKER_BLOCK_SIZE)
3507 {
3508 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3509 new->next = marker_block;
3510 marker_block = new;
3511 marker_block_index = 0;
3512 total_free_markers += MARKER_BLOCK_SIZE;
3513 }
3514 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3515 marker_block_index++;
3516 }
3517
3518 MALLOC_UNBLOCK_INPUT;
3519
3520 --total_free_markers;
3521 consing_since_gc += sizeof (union Lisp_Misc);
3522 misc_objects_consed++;
3523 XMISCANY (val)->type = type;
3524 XMISCANY (val)->gcmarkbit = 0;
3525 return val;
3526 }
3527
3528 /* Free a Lisp_Misc object. */
3529
3530 void
3531 free_misc (Lisp_Object misc)
3532 {
3533 XMISCANY (misc)->type = Lisp_Misc_Free;
3534 XMISC (misc)->u_free.chain = marker_free_list;
3535 marker_free_list = XMISC (misc);
3536 consing_since_gc -= sizeof (union Lisp_Misc);
3537 total_free_markers++;
3538 }
3539
3540 /* Verify properties of Lisp_Save_Value's representation
3541 that are assumed here and elsewhere. */
3542
3543 verify (SAVE_UNUSED == 0);
3544 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3545 >> SAVE_SLOT_BITS)
3546 == 0);
3547
3548 /* Return Lisp_Save_Value objects for the various combinations
3549 that callers need. */
3550
3551 Lisp_Object
3552 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3553 {
3554 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3555 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3556 p->save_type = SAVE_TYPE_INT_INT_INT;
3557 p->data[0].integer = a;
3558 p->data[1].integer = b;
3559 p->data[2].integer = c;
3560 return val;
3561 }
3562
3563 Lisp_Object
3564 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3565 Lisp_Object d)
3566 {
3567 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3568 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3569 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3570 p->data[0].object = a;
3571 p->data[1].object = b;
3572 p->data[2].object = c;
3573 p->data[3].object = d;
3574 return val;
3575 }
3576
3577 Lisp_Object
3578 make_save_ptr (void *a)
3579 {
3580 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3581 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3582 p->save_type = SAVE_POINTER;
3583 p->data[0].pointer = a;
3584 return val;
3585 }
3586
3587 Lisp_Object
3588 make_save_ptr_int (void *a, ptrdiff_t b)
3589 {
3590 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3591 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3592 p->save_type = SAVE_TYPE_PTR_INT;
3593 p->data[0].pointer = a;
3594 p->data[1].integer = b;
3595 return val;
3596 }
3597
3598 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3599 Lisp_Object
3600 make_save_ptr_ptr (void *a, void *b)
3601 {
3602 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3603 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3604 p->save_type = SAVE_TYPE_PTR_PTR;
3605 p->data[0].pointer = a;
3606 p->data[1].pointer = b;
3607 return val;
3608 }
3609 #endif
3610
3611 Lisp_Object
3612 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3613 {
3614 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3615 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3616 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3617 p->data[0].funcpointer = a;
3618 p->data[1].pointer = b;
3619 p->data[2].object = c;
3620 return val;
3621 }
3622
3623 /* Return a Lisp_Save_Value object that represents an array A
3624 of N Lisp objects. */
3625
3626 Lisp_Object
3627 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3628 {
3629 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3630 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3631 p->save_type = SAVE_TYPE_MEMORY;
3632 p->data[0].pointer = a;
3633 p->data[1].integer = n;
3634 return val;
3635 }
3636
3637 /* Free a Lisp_Save_Value object. Do not use this function
3638 if SAVE contains pointer other than returned by xmalloc. */
3639
3640 void
3641 free_save_value (Lisp_Object save)
3642 {
3643 xfree (XSAVE_POINTER (save, 0));
3644 free_misc (save);
3645 }
3646
3647 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3648
3649 Lisp_Object
3650 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3651 {
3652 register Lisp_Object overlay;
3653
3654 overlay = allocate_misc (Lisp_Misc_Overlay);
3655 OVERLAY_START (overlay) = start;
3656 OVERLAY_END (overlay) = end;
3657 set_overlay_plist (overlay, plist);
3658 XOVERLAY (overlay)->next = NULL;
3659 return overlay;
3660 }
3661
3662 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3663 doc: /* Return a newly allocated marker which does not point at any place. */)
3664 (void)
3665 {
3666 register Lisp_Object val;
3667 register struct Lisp_Marker *p;
3668
3669 val = allocate_misc (Lisp_Misc_Marker);
3670 p = XMARKER (val);
3671 p->buffer = 0;
3672 p->bytepos = 0;
3673 p->charpos = 0;
3674 p->next = NULL;
3675 p->insertion_type = 0;
3676 p->need_adjustment = 0;
3677 return val;
3678 }
3679
3680 /* Return a newly allocated marker which points into BUF
3681 at character position CHARPOS and byte position BYTEPOS. */
3682
3683 Lisp_Object
3684 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3685 {
3686 Lisp_Object obj;
3687 struct Lisp_Marker *m;
3688
3689 /* No dead buffers here. */
3690 eassert (BUFFER_LIVE_P (buf));
3691
3692 /* Every character is at least one byte. */
3693 eassert (charpos <= bytepos);
3694
3695 obj = allocate_misc (Lisp_Misc_Marker);
3696 m = XMARKER (obj);
3697 m->buffer = buf;
3698 m->charpos = charpos;
3699 m->bytepos = bytepos;
3700 m->insertion_type = 0;
3701 m->need_adjustment = 0;
3702 m->next = BUF_MARKERS (buf);
3703 BUF_MARKERS (buf) = m;
3704 return obj;
3705 }
3706
3707 /* Put MARKER back on the free list after using it temporarily. */
3708
3709 void
3710 free_marker (Lisp_Object marker)
3711 {
3712 unchain_marker (XMARKER (marker));
3713 free_misc (marker);
3714 }
3715
3716 \f
3717 /* Return a newly created vector or string with specified arguments as
3718 elements. If all the arguments are characters that can fit
3719 in a string of events, make a string; otherwise, make a vector.
3720
3721 Any number of arguments, even zero arguments, are allowed. */
3722
3723 Lisp_Object
3724 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3725 {
3726 ptrdiff_t i;
3727
3728 for (i = 0; i < nargs; i++)
3729 /* The things that fit in a string
3730 are characters that are in 0...127,
3731 after discarding the meta bit and all the bits above it. */
3732 if (!INTEGERP (args[i])
3733 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3734 return Fvector (nargs, args);
3735
3736 /* Since the loop exited, we know that all the things in it are
3737 characters, so we can make a string. */
3738 {
3739 Lisp_Object result;
3740
3741 result = Fmake_string (make_number (nargs), make_number (0));
3742 for (i = 0; i < nargs; i++)
3743 {
3744 SSET (result, i, XINT (args[i]));
3745 /* Move the meta bit to the right place for a string char. */
3746 if (XINT (args[i]) & CHAR_META)
3747 SSET (result, i, SREF (result, i) | 0x80);
3748 }
3749
3750 return result;
3751 }
3752 }
3753
3754
3755 \f
3756 /************************************************************************
3757 Memory Full Handling
3758 ************************************************************************/
3759
3760
3761 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3762 there may have been size_t overflow so that malloc was never
3763 called, or perhaps malloc was invoked successfully but the
3764 resulting pointer had problems fitting into a tagged EMACS_INT. In
3765 either case this counts as memory being full even though malloc did
3766 not fail. */
3767
3768 void
3769 memory_full (size_t nbytes)
3770 {
3771 /* Do not go into hysterics merely because a large request failed. */
3772 bool enough_free_memory = 0;
3773 if (SPARE_MEMORY < nbytes)
3774 {
3775 void *p;
3776
3777 MALLOC_BLOCK_INPUT;
3778 p = malloc (SPARE_MEMORY);
3779 if (p)
3780 {
3781 free (p);
3782 enough_free_memory = 1;
3783 }
3784 MALLOC_UNBLOCK_INPUT;
3785 }
3786
3787 if (! enough_free_memory)
3788 {
3789 int i;
3790
3791 Vmemory_full = Qt;
3792
3793 memory_full_cons_threshold = sizeof (struct cons_block);
3794
3795 /* The first time we get here, free the spare memory. */
3796 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3797 if (spare_memory[i])
3798 {
3799 if (i == 0)
3800 free (spare_memory[i]);
3801 else if (i >= 1 && i <= 4)
3802 lisp_align_free (spare_memory[i]);
3803 else
3804 lisp_free (spare_memory[i]);
3805 spare_memory[i] = 0;
3806 }
3807 }
3808
3809 /* This used to call error, but if we've run out of memory, we could
3810 get infinite recursion trying to build the string. */
3811 xsignal (Qnil, Vmemory_signal_data);
3812 }
3813
3814 /* If we released our reserve (due to running out of memory),
3815 and we have a fair amount free once again,
3816 try to set aside another reserve in case we run out once more.
3817
3818 This is called when a relocatable block is freed in ralloc.c,
3819 and also directly from this file, in case we're not using ralloc.c. */
3820
3821 void
3822 refill_memory_reserve (void)
3823 {
3824 #ifndef SYSTEM_MALLOC
3825 if (spare_memory[0] == 0)
3826 spare_memory[0] = malloc (SPARE_MEMORY);
3827 if (spare_memory[1] == 0)
3828 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3829 MEM_TYPE_SPARE);
3830 if (spare_memory[2] == 0)
3831 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3832 MEM_TYPE_SPARE);
3833 if (spare_memory[3] == 0)
3834 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3835 MEM_TYPE_SPARE);
3836 if (spare_memory[4] == 0)
3837 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3838 MEM_TYPE_SPARE);
3839 if (spare_memory[5] == 0)
3840 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3841 MEM_TYPE_SPARE);
3842 if (spare_memory[6] == 0)
3843 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3844 MEM_TYPE_SPARE);
3845 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3846 Vmemory_full = Qnil;
3847 #endif
3848 }
3849 \f
3850 /************************************************************************
3851 C Stack Marking
3852 ************************************************************************/
3853
3854 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3855
3856 /* Conservative C stack marking requires a method to identify possibly
3857 live Lisp objects given a pointer value. We do this by keeping
3858 track of blocks of Lisp data that are allocated in a red-black tree
3859 (see also the comment of mem_node which is the type of nodes in
3860 that tree). Function lisp_malloc adds information for an allocated
3861 block to the red-black tree with calls to mem_insert, and function
3862 lisp_free removes it with mem_delete. Functions live_string_p etc
3863 call mem_find to lookup information about a given pointer in the
3864 tree, and use that to determine if the pointer points to a Lisp
3865 object or not. */
3866
3867 /* Initialize this part of alloc.c. */
3868
3869 static void
3870 mem_init (void)
3871 {
3872 mem_z.left = mem_z.right = MEM_NIL;
3873 mem_z.parent = NULL;
3874 mem_z.color = MEM_BLACK;
3875 mem_z.start = mem_z.end = NULL;
3876 mem_root = MEM_NIL;
3877 }
3878
3879
3880 /* Value is a pointer to the mem_node containing START. Value is
3881 MEM_NIL if there is no node in the tree containing START. */
3882
3883 static struct mem_node *
3884 mem_find (void *start)
3885 {
3886 struct mem_node *p;
3887
3888 if (start < min_heap_address || start > max_heap_address)
3889 return MEM_NIL;
3890
3891 /* Make the search always successful to speed up the loop below. */
3892 mem_z.start = start;
3893 mem_z.end = (char *) start + 1;
3894
3895 p = mem_root;
3896 while (start < p->start || start >= p->end)
3897 p = start < p->start ? p->left : p->right;
3898 return p;
3899 }
3900
3901
3902 /* Insert a new node into the tree for a block of memory with start
3903 address START, end address END, and type TYPE. Value is a
3904 pointer to the node that was inserted. */
3905
3906 static struct mem_node *
3907 mem_insert (void *start, void *end, enum mem_type type)
3908 {
3909 struct mem_node *c, *parent, *x;
3910
3911 if (min_heap_address == NULL || start < min_heap_address)
3912 min_heap_address = start;
3913 if (max_heap_address == NULL || end > max_heap_address)
3914 max_heap_address = end;
3915
3916 /* See where in the tree a node for START belongs. In this
3917 particular application, it shouldn't happen that a node is already
3918 present. For debugging purposes, let's check that. */
3919 c = mem_root;
3920 parent = NULL;
3921
3922 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3923
3924 while (c != MEM_NIL)
3925 {
3926 if (start >= c->start && start < c->end)
3927 emacs_abort ();
3928 parent = c;
3929 c = start < c->start ? c->left : c->right;
3930 }
3931
3932 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3933
3934 while (c != MEM_NIL)
3935 {
3936 parent = c;
3937 c = start < c->start ? c->left : c->right;
3938 }
3939
3940 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3941
3942 /* Create a new node. */
3943 #ifdef GC_MALLOC_CHECK
3944 x = malloc (sizeof *x);
3945 if (x == NULL)
3946 emacs_abort ();
3947 #else
3948 x = xmalloc (sizeof *x);
3949 #endif
3950 x->start = start;
3951 x->end = end;
3952 x->type = type;
3953 x->parent = parent;
3954 x->left = x->right = MEM_NIL;
3955 x->color = MEM_RED;
3956
3957 /* Insert it as child of PARENT or install it as root. */
3958 if (parent)
3959 {
3960 if (start < parent->start)
3961 parent->left = x;
3962 else
3963 parent->right = x;
3964 }
3965 else
3966 mem_root = x;
3967
3968 /* Re-establish red-black tree properties. */
3969 mem_insert_fixup (x);
3970
3971 return x;
3972 }
3973
3974
3975 /* Re-establish the red-black properties of the tree, and thereby
3976 balance the tree, after node X has been inserted; X is always red. */
3977
3978 static void
3979 mem_insert_fixup (struct mem_node *x)
3980 {
3981 while (x != mem_root && x->parent->color == MEM_RED)
3982 {
3983 /* X is red and its parent is red. This is a violation of
3984 red-black tree property #3. */
3985
3986 if (x->parent == x->parent->parent->left)
3987 {
3988 /* We're on the left side of our grandparent, and Y is our
3989 "uncle". */
3990 struct mem_node *y = x->parent->parent->right;
3991
3992 if (y->color == MEM_RED)
3993 {
3994 /* Uncle and parent are red but should be black because
3995 X is red. Change the colors accordingly and proceed
3996 with the grandparent. */
3997 x->parent->color = MEM_BLACK;
3998 y->color = MEM_BLACK;
3999 x->parent->parent->color = MEM_RED;
4000 x = x->parent->parent;
4001 }
4002 else
4003 {
4004 /* Parent and uncle have different colors; parent is
4005 red, uncle is black. */
4006 if (x == x->parent->right)
4007 {
4008 x = x->parent;
4009 mem_rotate_left (x);
4010 }
4011
4012 x->parent->color = MEM_BLACK;
4013 x->parent->parent->color = MEM_RED;
4014 mem_rotate_right (x->parent->parent);
4015 }
4016 }
4017 else
4018 {
4019 /* This is the symmetrical case of above. */
4020 struct mem_node *y = x->parent->parent->left;
4021
4022 if (y->color == MEM_RED)
4023 {
4024 x->parent->color = MEM_BLACK;
4025 y->color = MEM_BLACK;
4026 x->parent->parent->color = MEM_RED;
4027 x = x->parent->parent;
4028 }
4029 else
4030 {
4031 if (x == x->parent->left)
4032 {
4033 x = x->parent;
4034 mem_rotate_right (x);
4035 }
4036
4037 x->parent->color = MEM_BLACK;
4038 x->parent->parent->color = MEM_RED;
4039 mem_rotate_left (x->parent->parent);
4040 }
4041 }
4042 }
4043
4044 /* The root may have been changed to red due to the algorithm. Set
4045 it to black so that property #5 is satisfied. */
4046 mem_root->color = MEM_BLACK;
4047 }
4048
4049
4050 /* (x) (y)
4051 / \ / \
4052 a (y) ===> (x) c
4053 / \ / \
4054 b c a b */
4055
4056 static void
4057 mem_rotate_left (struct mem_node *x)
4058 {
4059 struct mem_node *y;
4060
4061 /* Turn y's left sub-tree into x's right sub-tree. */
4062 y = x->right;
4063 x->right = y->left;
4064 if (y->left != MEM_NIL)
4065 y->left->parent = x;
4066
4067 /* Y's parent was x's parent. */
4068 if (y != MEM_NIL)
4069 y->parent = x->parent;
4070
4071 /* Get the parent to point to y instead of x. */
4072 if (x->parent)
4073 {
4074 if (x == x->parent->left)
4075 x->parent->left = y;
4076 else
4077 x->parent->right = y;
4078 }
4079 else
4080 mem_root = y;
4081
4082 /* Put x on y's left. */
4083 y->left = x;
4084 if (x != MEM_NIL)
4085 x->parent = y;
4086 }
4087
4088
4089 /* (x) (Y)
4090 / \ / \
4091 (y) c ===> a (x)
4092 / \ / \
4093 a b b c */
4094
4095 static void
4096 mem_rotate_right (struct mem_node *x)
4097 {
4098 struct mem_node *y = x->left;
4099
4100 x->left = y->right;
4101 if (y->right != MEM_NIL)
4102 y->right->parent = x;
4103
4104 if (y != MEM_NIL)
4105 y->parent = x->parent;
4106 if (x->parent)
4107 {
4108 if (x == x->parent->right)
4109 x->parent->right = y;
4110 else
4111 x->parent->left = y;
4112 }
4113 else
4114 mem_root = y;
4115
4116 y->right = x;
4117 if (x != MEM_NIL)
4118 x->parent = y;
4119 }
4120
4121
4122 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4123
4124 static void
4125 mem_delete (struct mem_node *z)
4126 {
4127 struct mem_node *x, *y;
4128
4129 if (!z || z == MEM_NIL)
4130 return;
4131
4132 if (z->left == MEM_NIL || z->right == MEM_NIL)
4133 y = z;
4134 else
4135 {
4136 y = z->right;
4137 while (y->left != MEM_NIL)
4138 y = y->left;
4139 }
4140
4141 if (y->left != MEM_NIL)
4142 x = y->left;
4143 else
4144 x = y->right;
4145
4146 x->parent = y->parent;
4147 if (y->parent)
4148 {
4149 if (y == y->parent->left)
4150 y->parent->left = x;
4151 else
4152 y->parent->right = x;
4153 }
4154 else
4155 mem_root = x;
4156
4157 if (y != z)
4158 {
4159 z->start = y->start;
4160 z->end = y->end;
4161 z->type = y->type;
4162 }
4163
4164 if (y->color == MEM_BLACK)
4165 mem_delete_fixup (x);
4166
4167 #ifdef GC_MALLOC_CHECK
4168 free (y);
4169 #else
4170 xfree (y);
4171 #endif
4172 }
4173
4174
4175 /* Re-establish the red-black properties of the tree, after a
4176 deletion. */
4177
4178 static void
4179 mem_delete_fixup (struct mem_node *x)
4180 {
4181 while (x != mem_root && x->color == MEM_BLACK)
4182 {
4183 if (x == x->parent->left)
4184 {
4185 struct mem_node *w = x->parent->right;
4186
4187 if (w->color == MEM_RED)
4188 {
4189 w->color = MEM_BLACK;
4190 x->parent->color = MEM_RED;
4191 mem_rotate_left (x->parent);
4192 w = x->parent->right;
4193 }
4194
4195 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4196 {
4197 w->color = MEM_RED;
4198 x = x->parent;
4199 }
4200 else
4201 {
4202 if (w->right->color == MEM_BLACK)
4203 {
4204 w->left->color = MEM_BLACK;
4205 w->color = MEM_RED;
4206 mem_rotate_right (w);
4207 w = x->parent->right;
4208 }
4209 w->color = x->parent->color;
4210 x->parent->color = MEM_BLACK;
4211 w->right->color = MEM_BLACK;
4212 mem_rotate_left (x->parent);
4213 x = mem_root;
4214 }
4215 }
4216 else
4217 {
4218 struct mem_node *w = x->parent->left;
4219
4220 if (w->color == MEM_RED)
4221 {
4222 w->color = MEM_BLACK;
4223 x->parent->color = MEM_RED;
4224 mem_rotate_right (x->parent);
4225 w = x->parent->left;
4226 }
4227
4228 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4229 {
4230 w->color = MEM_RED;
4231 x = x->parent;
4232 }
4233 else
4234 {
4235 if (w->left->color == MEM_BLACK)
4236 {
4237 w->right->color = MEM_BLACK;
4238 w->color = MEM_RED;
4239 mem_rotate_left (w);
4240 w = x->parent->left;
4241 }
4242
4243 w->color = x->parent->color;
4244 x->parent->color = MEM_BLACK;
4245 w->left->color = MEM_BLACK;
4246 mem_rotate_right (x->parent);
4247 x = mem_root;
4248 }
4249 }
4250 }
4251
4252 x->color = MEM_BLACK;
4253 }
4254
4255
4256 /* Value is non-zero if P is a pointer to a live Lisp string on
4257 the heap. M is a pointer to the mem_block for P. */
4258
4259 static bool
4260 live_string_p (struct mem_node *m, void *p)
4261 {
4262 if (m->type == MEM_TYPE_STRING)
4263 {
4264 struct string_block *b = m->start;
4265 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4266
4267 /* P must point to the start of a Lisp_String structure, and it
4268 must not be on the free-list. */
4269 return (offset >= 0
4270 && offset % sizeof b->strings[0] == 0
4271 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4272 && ((struct Lisp_String *) p)->data != NULL);
4273 }
4274 else
4275 return 0;
4276 }
4277
4278
4279 /* Value is non-zero if P is a pointer to a live Lisp cons on
4280 the heap. M is a pointer to the mem_block for P. */
4281
4282 static bool
4283 live_cons_p (struct mem_node *m, void *p)
4284 {
4285 if (m->type == MEM_TYPE_CONS)
4286 {
4287 struct cons_block *b = m->start;
4288 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4289
4290 /* P must point to the start of a Lisp_Cons, not be
4291 one of the unused cells in the current cons block,
4292 and not be on the free-list. */
4293 return (offset >= 0
4294 && offset % sizeof b->conses[0] == 0
4295 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4296 && (b != cons_block
4297 || offset / sizeof b->conses[0] < cons_block_index)
4298 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4299 }
4300 else
4301 return 0;
4302 }
4303
4304
4305 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4306 the heap. M is a pointer to the mem_block for P. */
4307
4308 static bool
4309 live_symbol_p (struct mem_node *m, void *p)
4310 {
4311 if (m->type == MEM_TYPE_SYMBOL)
4312 {
4313 struct symbol_block *b = m->start;
4314 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4315
4316 /* P must point to the start of a Lisp_Symbol, not be
4317 one of the unused cells in the current symbol block,
4318 and not be on the free-list. */
4319 return (offset >= 0
4320 && offset % sizeof b->symbols[0] == 0
4321 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4322 && (b != symbol_block
4323 || offset / sizeof b->symbols[0] < symbol_block_index)
4324 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4325 }
4326 else
4327 return 0;
4328 }
4329
4330
4331 /* Value is non-zero if P is a pointer to a live Lisp float on
4332 the heap. M is a pointer to the mem_block for P. */
4333
4334 static bool
4335 live_float_p (struct mem_node *m, void *p)
4336 {
4337 if (m->type == MEM_TYPE_FLOAT)
4338 {
4339 struct float_block *b = m->start;
4340 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4341
4342 /* P must point to the start of a Lisp_Float and not be
4343 one of the unused cells in the current float block. */
4344 return (offset >= 0
4345 && offset % sizeof b->floats[0] == 0
4346 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4347 && (b != float_block
4348 || offset / sizeof b->floats[0] < float_block_index));
4349 }
4350 else
4351 return 0;
4352 }
4353
4354
4355 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4356 the heap. M is a pointer to the mem_block for P. */
4357
4358 static bool
4359 live_misc_p (struct mem_node *m, void *p)
4360 {
4361 if (m->type == MEM_TYPE_MISC)
4362 {
4363 struct marker_block *b = m->start;
4364 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4365
4366 /* P must point to the start of a Lisp_Misc, not be
4367 one of the unused cells in the current misc block,
4368 and not be on the free-list. */
4369 return (offset >= 0
4370 && offset % sizeof b->markers[0] == 0
4371 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4372 && (b != marker_block
4373 || offset / sizeof b->markers[0] < marker_block_index)
4374 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4375 }
4376 else
4377 return 0;
4378 }
4379
4380
4381 /* Value is non-zero if P is a pointer to a live vector-like object.
4382 M is a pointer to the mem_block for P. */
4383
4384 static bool
4385 live_vector_p (struct mem_node *m, void *p)
4386 {
4387 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4388 {
4389 /* This memory node corresponds to a vector block. */
4390 struct vector_block *block = m->start;
4391 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4392
4393 /* P is in the block's allocation range. Scan the block
4394 up to P and see whether P points to the start of some
4395 vector which is not on a free list. FIXME: check whether
4396 some allocation patterns (probably a lot of short vectors)
4397 may cause a substantial overhead of this loop. */
4398 while (VECTOR_IN_BLOCK (vector, block)
4399 && vector <= (struct Lisp_Vector *) p)
4400 {
4401 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4402 return 1;
4403 else
4404 vector = ADVANCE (vector, vector_nbytes (vector));
4405 }
4406 }
4407 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4408 /* This memory node corresponds to a large vector. */
4409 return 1;
4410 return 0;
4411 }
4412
4413
4414 /* Value is non-zero if P is a pointer to a live buffer. M is a
4415 pointer to the mem_block for P. */
4416
4417 static bool
4418 live_buffer_p (struct mem_node *m, void *p)
4419 {
4420 /* P must point to the start of the block, and the buffer
4421 must not have been killed. */
4422 return (m->type == MEM_TYPE_BUFFER
4423 && p == m->start
4424 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4425 }
4426
4427 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4428
4429 #if GC_MARK_STACK
4430
4431 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4432
4433 /* Currently not used, but may be called from gdb. */
4434
4435 void dump_zombies (void) EXTERNALLY_VISIBLE;
4436
4437 /* Array of objects that are kept alive because the C stack contains
4438 a pattern that looks like a reference to them. */
4439
4440 #define MAX_ZOMBIES 10
4441 static Lisp_Object zombies[MAX_ZOMBIES];
4442
4443 /* Number of zombie objects. */
4444
4445 static EMACS_INT nzombies;
4446
4447 /* Number of garbage collections. */
4448
4449 static EMACS_INT ngcs;
4450
4451 /* Average percentage of zombies per collection. */
4452
4453 static double avg_zombies;
4454
4455 /* Max. number of live and zombie objects. */
4456
4457 static EMACS_INT max_live, max_zombies;
4458
4459 /* Average number of live objects per GC. */
4460
4461 static double avg_live;
4462
4463 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4464 doc: /* Show information about live and zombie objects. */)
4465 (void)
4466 {
4467 Lisp_Object args[8], zombie_list = Qnil;
4468 EMACS_INT i;
4469 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4470 zombie_list = Fcons (zombies[i], zombie_list);
4471 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4472 args[1] = make_number (ngcs);
4473 args[2] = make_float (avg_live);
4474 args[3] = make_float (avg_zombies);
4475 args[4] = make_float (avg_zombies / avg_live / 100);
4476 args[5] = make_number (max_live);
4477 args[6] = make_number (max_zombies);
4478 args[7] = zombie_list;
4479 return Fmessage (8, args);
4480 }
4481
4482 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4483
4484
4485 /* Mark OBJ if we can prove it's a Lisp_Object. */
4486
4487 static void
4488 mark_maybe_object (Lisp_Object obj)
4489 {
4490 void *po;
4491 struct mem_node *m;
4492
4493 #if USE_VALGRIND
4494 if (valgrind_p)
4495 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4496 #endif
4497
4498 if (INTEGERP (obj))
4499 return;
4500
4501 po = (void *) XPNTR (obj);
4502 m = mem_find (po);
4503
4504 if (m != MEM_NIL)
4505 {
4506 bool mark_p = 0;
4507
4508 switch (XTYPE (obj))
4509 {
4510 case Lisp_String:
4511 mark_p = (live_string_p (m, po)
4512 && !STRING_MARKED_P ((struct Lisp_String *) po));
4513 break;
4514
4515 case Lisp_Cons:
4516 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4517 break;
4518
4519 case Lisp_Symbol:
4520 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4521 break;
4522
4523 case Lisp_Float:
4524 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4525 break;
4526
4527 case Lisp_Vectorlike:
4528 /* Note: can't check BUFFERP before we know it's a
4529 buffer because checking that dereferences the pointer
4530 PO which might point anywhere. */
4531 if (live_vector_p (m, po))
4532 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4533 else if (live_buffer_p (m, po))
4534 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4535 break;
4536
4537 case Lisp_Misc:
4538 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4539 break;
4540
4541 default:
4542 break;
4543 }
4544
4545 if (mark_p)
4546 {
4547 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4548 if (nzombies < MAX_ZOMBIES)
4549 zombies[nzombies] = obj;
4550 ++nzombies;
4551 #endif
4552 mark_object (obj);
4553 }
4554 }
4555 }
4556
4557 /* Return true if P can point to Lisp data, and false otherwise.
4558 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4559 Otherwise, assume that Lisp data is aligned on even addresses. */
4560
4561 static bool
4562 maybe_lisp_pointer (void *p)
4563 {
4564 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4565 }
4566
4567 /* If P points to Lisp data, mark that as live if it isn't already
4568 marked. */
4569
4570 static void
4571 mark_maybe_pointer (void *p)
4572 {
4573 struct mem_node *m;
4574
4575 #if USE_VALGRIND
4576 if (valgrind_p)
4577 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4578 #endif
4579
4580 if (!maybe_lisp_pointer (p))
4581 return;
4582
4583 m = mem_find (p);
4584 if (m != MEM_NIL)
4585 {
4586 Lisp_Object obj = Qnil;
4587
4588 switch (m->type)
4589 {
4590 case MEM_TYPE_NON_LISP:
4591 case MEM_TYPE_SPARE:
4592 /* Nothing to do; not a pointer to Lisp memory. */
4593 break;
4594
4595 case MEM_TYPE_BUFFER:
4596 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4597 XSETVECTOR (obj, p);
4598 break;
4599
4600 case MEM_TYPE_CONS:
4601 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4602 XSETCONS (obj, p);
4603 break;
4604
4605 case MEM_TYPE_STRING:
4606 if (live_string_p (m, p)
4607 && !STRING_MARKED_P ((struct Lisp_String *) p))
4608 XSETSTRING (obj, p);
4609 break;
4610
4611 case MEM_TYPE_MISC:
4612 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4613 XSETMISC (obj, p);
4614 break;
4615
4616 case MEM_TYPE_SYMBOL:
4617 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4618 XSETSYMBOL (obj, p);
4619 break;
4620
4621 case MEM_TYPE_FLOAT:
4622 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4623 XSETFLOAT (obj, p);
4624 break;
4625
4626 case MEM_TYPE_VECTORLIKE:
4627 case MEM_TYPE_VECTOR_BLOCK:
4628 if (live_vector_p (m, p))
4629 {
4630 Lisp_Object tem;
4631 XSETVECTOR (tem, p);
4632 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4633 obj = tem;
4634 }
4635 break;
4636
4637 default:
4638 emacs_abort ();
4639 }
4640
4641 if (!NILP (obj))
4642 mark_object (obj);
4643 }
4644 }
4645
4646
4647 /* Alignment of pointer values. Use alignof, as it sometimes returns
4648 a smaller alignment than GCC's __alignof__ and mark_memory might
4649 miss objects if __alignof__ were used. */
4650 #define GC_POINTER_ALIGNMENT alignof (void *)
4651
4652 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4653 not suffice, which is the typical case. A host where a Lisp_Object is
4654 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4655 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4656 suffice to widen it to to a Lisp_Object and check it that way. */
4657 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4658 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4659 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4660 nor mark_maybe_object can follow the pointers. This should not occur on
4661 any practical porting target. */
4662 # error "MSB type bits straddle pointer-word boundaries"
4663 # endif
4664 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4665 pointer words that hold pointers ORed with type bits. */
4666 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4667 #else
4668 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4669 words that hold unmodified pointers. */
4670 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4671 #endif
4672
4673 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4674 or END+OFFSET..START. */
4675
4676 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4677 mark_memory (void *start, void *end)
4678 {
4679 void **pp;
4680 int i;
4681
4682 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4683 nzombies = 0;
4684 #endif
4685
4686 /* Make START the pointer to the start of the memory region,
4687 if it isn't already. */
4688 if (end < start)
4689 {
4690 void *tem = start;
4691 start = end;
4692 end = tem;
4693 }
4694
4695 /* Mark Lisp data pointed to. This is necessary because, in some
4696 situations, the C compiler optimizes Lisp objects away, so that
4697 only a pointer to them remains. Example:
4698
4699 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4700 ()
4701 {
4702 Lisp_Object obj = build_string ("test");
4703 struct Lisp_String *s = XSTRING (obj);
4704 Fgarbage_collect ();
4705 fprintf (stderr, "test `%s'\n", s->data);
4706 return Qnil;
4707 }
4708
4709 Here, `obj' isn't really used, and the compiler optimizes it
4710 away. The only reference to the life string is through the
4711 pointer `s'. */
4712
4713 for (pp = start; (void *) pp < end; pp++)
4714 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4715 {
4716 void *p = *(void **) ((char *) pp + i);
4717 mark_maybe_pointer (p);
4718 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4719 mark_maybe_object (XIL ((intptr_t) p));
4720 }
4721 }
4722
4723 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4724
4725 static bool setjmp_tested_p;
4726 static int longjmps_done;
4727
4728 #define SETJMP_WILL_LIKELY_WORK "\
4729 \n\
4730 Emacs garbage collector has been changed to use conservative stack\n\
4731 marking. Emacs has determined that the method it uses to do the\n\
4732 marking will likely work on your system, but this isn't sure.\n\
4733 \n\
4734 If you are a system-programmer, or can get the help of a local wizard\n\
4735 who is, please take a look at the function mark_stack in alloc.c, and\n\
4736 verify that the methods used are appropriate for your system.\n\
4737 \n\
4738 Please mail the result to <emacs-devel@gnu.org>.\n\
4739 "
4740
4741 #define SETJMP_WILL_NOT_WORK "\
4742 \n\
4743 Emacs garbage collector has been changed to use conservative stack\n\
4744 marking. Emacs has determined that the default method it uses to do the\n\
4745 marking will not work on your system. We will need a system-dependent\n\
4746 solution for your system.\n\
4747 \n\
4748 Please take a look at the function mark_stack in alloc.c, and\n\
4749 try to find a way to make it work on your system.\n\
4750 \n\
4751 Note that you may get false negatives, depending on the compiler.\n\
4752 In particular, you need to use -O with GCC for this test.\n\
4753 \n\
4754 Please mail the result to <emacs-devel@gnu.org>.\n\
4755 "
4756
4757
4758 /* Perform a quick check if it looks like setjmp saves registers in a
4759 jmp_buf. Print a message to stderr saying so. When this test
4760 succeeds, this is _not_ a proof that setjmp is sufficient for
4761 conservative stack marking. Only the sources or a disassembly
4762 can prove that. */
4763
4764 static void
4765 test_setjmp (void)
4766 {
4767 char buf[10];
4768 register int x;
4769 sys_jmp_buf jbuf;
4770
4771 /* Arrange for X to be put in a register. */
4772 sprintf (buf, "1");
4773 x = strlen (buf);
4774 x = 2 * x - 1;
4775
4776 sys_setjmp (jbuf);
4777 if (longjmps_done == 1)
4778 {
4779 /* Came here after the longjmp at the end of the function.
4780
4781 If x == 1, the longjmp has restored the register to its
4782 value before the setjmp, and we can hope that setjmp
4783 saves all such registers in the jmp_buf, although that
4784 isn't sure.
4785
4786 For other values of X, either something really strange is
4787 taking place, or the setjmp just didn't save the register. */
4788
4789 if (x == 1)
4790 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4791 else
4792 {
4793 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4794 exit (1);
4795 }
4796 }
4797
4798 ++longjmps_done;
4799 x = 2;
4800 if (longjmps_done == 1)
4801 sys_longjmp (jbuf, 1);
4802 }
4803
4804 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4805
4806
4807 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4808
4809 /* Abort if anything GCPRO'd doesn't survive the GC. */
4810
4811 static void
4812 check_gcpros (void)
4813 {
4814 struct gcpro *p;
4815 ptrdiff_t i;
4816
4817 for (p = gcprolist; p; p = p->next)
4818 for (i = 0; i < p->nvars; ++i)
4819 if (!survives_gc_p (p->var[i]))
4820 /* FIXME: It's not necessarily a bug. It might just be that the
4821 GCPRO is unnecessary or should release the object sooner. */
4822 emacs_abort ();
4823 }
4824
4825 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4826
4827 void
4828 dump_zombies (void)
4829 {
4830 int i;
4831
4832 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4833 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4834 {
4835 fprintf (stderr, " %d = ", i);
4836 debug_print (zombies[i]);
4837 }
4838 }
4839
4840 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4841
4842
4843 /* Mark live Lisp objects on the C stack.
4844
4845 There are several system-dependent problems to consider when
4846 porting this to new architectures:
4847
4848 Processor Registers
4849
4850 We have to mark Lisp objects in CPU registers that can hold local
4851 variables or are used to pass parameters.
4852
4853 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4854 something that either saves relevant registers on the stack, or
4855 calls mark_maybe_object passing it each register's contents.
4856
4857 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4858 implementation assumes that calling setjmp saves registers we need
4859 to see in a jmp_buf which itself lies on the stack. This doesn't
4860 have to be true! It must be verified for each system, possibly
4861 by taking a look at the source code of setjmp.
4862
4863 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4864 can use it as a machine independent method to store all registers
4865 to the stack. In this case the macros described in the previous
4866 two paragraphs are not used.
4867
4868 Stack Layout
4869
4870 Architectures differ in the way their processor stack is organized.
4871 For example, the stack might look like this
4872
4873 +----------------+
4874 | Lisp_Object | size = 4
4875 +----------------+
4876 | something else | size = 2
4877 +----------------+
4878 | Lisp_Object | size = 4
4879 +----------------+
4880 | ... |
4881
4882 In such a case, not every Lisp_Object will be aligned equally. To
4883 find all Lisp_Object on the stack it won't be sufficient to walk
4884 the stack in steps of 4 bytes. Instead, two passes will be
4885 necessary, one starting at the start of the stack, and a second
4886 pass starting at the start of the stack + 2. Likewise, if the
4887 minimal alignment of Lisp_Objects on the stack is 1, four passes
4888 would be necessary, each one starting with one byte more offset
4889 from the stack start. */
4890
4891 static void
4892 mark_stack (void *end)
4893 {
4894
4895 /* This assumes that the stack is a contiguous region in memory. If
4896 that's not the case, something has to be done here to iterate
4897 over the stack segments. */
4898 mark_memory (stack_base, end);
4899
4900 /* Allow for marking a secondary stack, like the register stack on the
4901 ia64. */
4902 #ifdef GC_MARK_SECONDARY_STACK
4903 GC_MARK_SECONDARY_STACK ();
4904 #endif
4905
4906 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4907 check_gcpros ();
4908 #endif
4909 }
4910
4911 #else /* GC_MARK_STACK == 0 */
4912
4913 #define mark_maybe_object(obj) emacs_abort ()
4914
4915 #endif /* GC_MARK_STACK != 0 */
4916
4917
4918 /* Determine whether it is safe to access memory at address P. */
4919 static int
4920 valid_pointer_p (void *p)
4921 {
4922 #ifdef WINDOWSNT
4923 return w32_valid_pointer_p (p, 16);
4924 #else
4925 int fd[2];
4926
4927 /* Obviously, we cannot just access it (we would SEGV trying), so we
4928 trick the o/s to tell us whether p is a valid pointer.
4929 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4930 not validate p in that case. */
4931
4932 if (emacs_pipe (fd) == 0)
4933 {
4934 bool valid = emacs_write (fd[1], p, 16) == 16;
4935 emacs_close (fd[1]);
4936 emacs_close (fd[0]);
4937 return valid;
4938 }
4939
4940 return -1;
4941 #endif
4942 }
4943
4944 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4945 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4946 cannot validate OBJ. This function can be quite slow, so its primary
4947 use is the manual debugging. The only exception is print_object, where
4948 we use it to check whether the memory referenced by the pointer of
4949 Lisp_Save_Value object contains valid objects. */
4950
4951 int
4952 valid_lisp_object_p (Lisp_Object obj)
4953 {
4954 void *p;
4955 #if GC_MARK_STACK
4956 struct mem_node *m;
4957 #endif
4958
4959 if (INTEGERP (obj))
4960 return 1;
4961
4962 p = (void *) XPNTR (obj);
4963 if (PURE_POINTER_P (p))
4964 return 1;
4965
4966 if (p == &buffer_defaults || p == &buffer_local_symbols)
4967 return 2;
4968
4969 #if !GC_MARK_STACK
4970 return valid_pointer_p (p);
4971 #else
4972
4973 m = mem_find (p);
4974
4975 if (m == MEM_NIL)
4976 {
4977 int valid = valid_pointer_p (p);
4978 if (valid <= 0)
4979 return valid;
4980
4981 if (SUBRP (obj))
4982 return 1;
4983
4984 return 0;
4985 }
4986
4987 switch (m->type)
4988 {
4989 case MEM_TYPE_NON_LISP:
4990 case MEM_TYPE_SPARE:
4991 return 0;
4992
4993 case MEM_TYPE_BUFFER:
4994 return live_buffer_p (m, p) ? 1 : 2;
4995
4996 case MEM_TYPE_CONS:
4997 return live_cons_p (m, p);
4998
4999 case MEM_TYPE_STRING:
5000 return live_string_p (m, p);
5001
5002 case MEM_TYPE_MISC:
5003 return live_misc_p (m, p);
5004
5005 case MEM_TYPE_SYMBOL:
5006 return live_symbol_p (m, p);
5007
5008 case MEM_TYPE_FLOAT:
5009 return live_float_p (m, p);
5010
5011 case MEM_TYPE_VECTORLIKE:
5012 case MEM_TYPE_VECTOR_BLOCK:
5013 return live_vector_p (m, p);
5014
5015 default:
5016 break;
5017 }
5018
5019 return 0;
5020 #endif
5021 }
5022
5023 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5024 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5025 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5026 This function is slow and should be used for debugging purposes. */
5027
5028 int
5029 relocatable_string_data_p (const char *str)
5030 {
5031 if (PURE_POINTER_P (str))
5032 return 0;
5033 #if GC_MARK_STACK
5034 if (str)
5035 {
5036 struct sdata *sdata
5037 = (struct sdata *) (str - offsetof (struct sdata, data));
5038
5039 if (valid_pointer_p (sdata)
5040 && valid_pointer_p (sdata->string)
5041 && maybe_lisp_pointer (sdata->string))
5042 return (valid_lisp_object_p
5043 (make_lisp_ptr (sdata->string, Lisp_String))
5044 && (const char *) sdata->string->data == str);
5045 }
5046 return 0;
5047 #endif /* GC_MARK_STACK */
5048 return -1;
5049 }
5050
5051 /***********************************************************************
5052 Pure Storage Management
5053 ***********************************************************************/
5054
5055 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5056 pointer to it. TYPE is the Lisp type for which the memory is
5057 allocated. TYPE < 0 means it's not used for a Lisp object. */
5058
5059 static void *
5060 pure_alloc (size_t size, int type)
5061 {
5062 void *result;
5063 #if USE_LSB_TAG
5064 size_t alignment = GCALIGNMENT;
5065 #else
5066 size_t alignment = alignof (EMACS_INT);
5067
5068 /* Give Lisp_Floats an extra alignment. */
5069 if (type == Lisp_Float)
5070 alignment = alignof (struct Lisp_Float);
5071 #endif
5072
5073 again:
5074 if (type >= 0)
5075 {
5076 /* Allocate space for a Lisp object from the beginning of the free
5077 space with taking account of alignment. */
5078 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5079 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5080 }
5081 else
5082 {
5083 /* Allocate space for a non-Lisp object from the end of the free
5084 space. */
5085 pure_bytes_used_non_lisp += size;
5086 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5087 }
5088 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5089
5090 if (pure_bytes_used <= pure_size)
5091 return result;
5092
5093 /* Don't allocate a large amount here,
5094 because it might get mmap'd and then its address
5095 might not be usable. */
5096 purebeg = xmalloc (10000);
5097 pure_size = 10000;
5098 pure_bytes_used_before_overflow += pure_bytes_used - size;
5099 pure_bytes_used = 0;
5100 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5101 goto again;
5102 }
5103
5104
5105 /* Print a warning if PURESIZE is too small. */
5106
5107 void
5108 check_pure_size (void)
5109 {
5110 if (pure_bytes_used_before_overflow)
5111 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5112 " bytes needed)"),
5113 pure_bytes_used + pure_bytes_used_before_overflow);
5114 }
5115
5116
5117 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5118 the non-Lisp data pool of the pure storage, and return its start
5119 address. Return NULL if not found. */
5120
5121 static char *
5122 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5123 {
5124 int i;
5125 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5126 const unsigned char *p;
5127 char *non_lisp_beg;
5128
5129 if (pure_bytes_used_non_lisp <= nbytes)
5130 return NULL;
5131
5132 /* Set up the Boyer-Moore table. */
5133 skip = nbytes + 1;
5134 for (i = 0; i < 256; i++)
5135 bm_skip[i] = skip;
5136
5137 p = (const unsigned char *) data;
5138 while (--skip > 0)
5139 bm_skip[*p++] = skip;
5140
5141 last_char_skip = bm_skip['\0'];
5142
5143 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5144 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5145
5146 /* See the comments in the function `boyer_moore' (search.c) for the
5147 use of `infinity'. */
5148 infinity = pure_bytes_used_non_lisp + 1;
5149 bm_skip['\0'] = infinity;
5150
5151 p = (const unsigned char *) non_lisp_beg + nbytes;
5152 start = 0;
5153 do
5154 {
5155 /* Check the last character (== '\0'). */
5156 do
5157 {
5158 start += bm_skip[*(p + start)];
5159 }
5160 while (start <= start_max);
5161
5162 if (start < infinity)
5163 /* Couldn't find the last character. */
5164 return NULL;
5165
5166 /* No less than `infinity' means we could find the last
5167 character at `p[start - infinity]'. */
5168 start -= infinity;
5169
5170 /* Check the remaining characters. */
5171 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5172 /* Found. */
5173 return non_lisp_beg + start;
5174
5175 start += last_char_skip;
5176 }
5177 while (start <= start_max);
5178
5179 return NULL;
5180 }
5181
5182
5183 /* Return a string allocated in pure space. DATA is a buffer holding
5184 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5185 means make the result string multibyte.
5186
5187 Must get an error if pure storage is full, since if it cannot hold
5188 a large string it may be able to hold conses that point to that
5189 string; then the string is not protected from gc. */
5190
5191 Lisp_Object
5192 make_pure_string (const char *data,
5193 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5194 {
5195 Lisp_Object string;
5196 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5197 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5198 if (s->data == NULL)
5199 {
5200 s->data = pure_alloc (nbytes + 1, -1);
5201 memcpy (s->data, data, nbytes);
5202 s->data[nbytes] = '\0';
5203 }
5204 s->size = nchars;
5205 s->size_byte = multibyte ? nbytes : -1;
5206 s->intervals = NULL;
5207 XSETSTRING (string, s);
5208 return string;
5209 }
5210
5211 /* Return a string allocated in pure space. Do not
5212 allocate the string data, just point to DATA. */
5213
5214 Lisp_Object
5215 make_pure_c_string (const char *data, ptrdiff_t nchars)
5216 {
5217 Lisp_Object string;
5218 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5219 s->size = nchars;
5220 s->size_byte = -1;
5221 s->data = (unsigned char *) data;
5222 s->intervals = NULL;
5223 XSETSTRING (string, s);
5224 return string;
5225 }
5226
5227 static Lisp_Object purecopy (Lisp_Object obj);
5228
5229 /* Return a cons allocated from pure space. Give it pure copies
5230 of CAR as car and CDR as cdr. */
5231
5232 Lisp_Object
5233 pure_cons (Lisp_Object car, Lisp_Object cdr)
5234 {
5235 Lisp_Object new;
5236 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5237 XSETCONS (new, p);
5238 XSETCAR (new, purecopy (car));
5239 XSETCDR (new, purecopy (cdr));
5240 return new;
5241 }
5242
5243
5244 /* Value is a float object with value NUM allocated from pure space. */
5245
5246 static Lisp_Object
5247 make_pure_float (double num)
5248 {
5249 Lisp_Object new;
5250 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5251 XSETFLOAT (new, p);
5252 XFLOAT_INIT (new, num);
5253 return new;
5254 }
5255
5256
5257 /* Return a vector with room for LEN Lisp_Objects allocated from
5258 pure space. */
5259
5260 static Lisp_Object
5261 make_pure_vector (ptrdiff_t len)
5262 {
5263 Lisp_Object new;
5264 size_t size = header_size + len * word_size;
5265 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5266 XSETVECTOR (new, p);
5267 XVECTOR (new)->header.size = len;
5268 return new;
5269 }
5270
5271
5272 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5273 doc: /* Make a copy of object OBJ in pure storage.
5274 Recursively copies contents of vectors and cons cells.
5275 Does not copy symbols. Copies strings without text properties. */)
5276 (register Lisp_Object obj)
5277 {
5278 if (NILP (Vpurify_flag))
5279 return obj;
5280 else if (MARKERP (obj) || OVERLAYP (obj)
5281 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5282 /* Can't purify those. */
5283 return obj;
5284 else
5285 return purecopy (obj);
5286 }
5287
5288 static Lisp_Object
5289 purecopy (Lisp_Object obj)
5290 {
5291 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5292 return obj; /* Already pure. */
5293
5294 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5295 {
5296 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5297 if (!NILP (tmp))
5298 return tmp;
5299 }
5300
5301 if (CONSP (obj))
5302 obj = pure_cons (XCAR (obj), XCDR (obj));
5303 else if (FLOATP (obj))
5304 obj = make_pure_float (XFLOAT_DATA (obj));
5305 else if (STRINGP (obj))
5306 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5307 SBYTES (obj),
5308 STRING_MULTIBYTE (obj));
5309 else if (COMPILEDP (obj) || VECTORP (obj))
5310 {
5311 register struct Lisp_Vector *vec;
5312 register ptrdiff_t i;
5313 ptrdiff_t size;
5314
5315 size = ASIZE (obj);
5316 if (size & PSEUDOVECTOR_FLAG)
5317 size &= PSEUDOVECTOR_SIZE_MASK;
5318 vec = XVECTOR (make_pure_vector (size));
5319 for (i = 0; i < size; i++)
5320 vec->contents[i] = purecopy (AREF (obj, i));
5321 if (COMPILEDP (obj))
5322 {
5323 XSETPVECTYPE (vec, PVEC_COMPILED);
5324 XSETCOMPILED (obj, vec);
5325 }
5326 else
5327 XSETVECTOR (obj, vec);
5328 }
5329 else if (SYMBOLP (obj))
5330 {
5331 if (!XSYMBOL (obj)->pinned)
5332 { /* We can't purify them, but they appear in many pure objects.
5333 Mark them as `pinned' so we know to mark them at every GC cycle. */
5334 XSYMBOL (obj)->pinned = true;
5335 symbol_block_pinned = symbol_block;
5336 }
5337 return obj;
5338 }
5339 else
5340 {
5341 Lisp_Object args[2];
5342 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5343 args[1] = obj;
5344 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5345 }
5346
5347 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5348 Fputhash (obj, obj, Vpurify_flag);
5349
5350 return obj;
5351 }
5352
5353
5354 \f
5355 /***********************************************************************
5356 Protection from GC
5357 ***********************************************************************/
5358
5359 /* Put an entry in staticvec, pointing at the variable with address
5360 VARADDRESS. */
5361
5362 void
5363 staticpro (Lisp_Object *varaddress)
5364 {
5365 if (staticidx >= NSTATICS)
5366 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5367 staticvec[staticidx++] = varaddress;
5368 }
5369
5370 \f
5371 /***********************************************************************
5372 Protection from GC
5373 ***********************************************************************/
5374
5375 /* Temporarily prevent garbage collection. */
5376
5377 ptrdiff_t
5378 inhibit_garbage_collection (void)
5379 {
5380 ptrdiff_t count = SPECPDL_INDEX ();
5381
5382 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5383 return count;
5384 }
5385
5386 /* Used to avoid possible overflows when
5387 converting from C to Lisp integers. */
5388
5389 static Lisp_Object
5390 bounded_number (EMACS_INT number)
5391 {
5392 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5393 }
5394
5395 /* Calculate total bytes of live objects. */
5396
5397 static size_t
5398 total_bytes_of_live_objects (void)
5399 {
5400 size_t tot = 0;
5401 tot += total_conses * sizeof (struct Lisp_Cons);
5402 tot += total_symbols * sizeof (struct Lisp_Symbol);
5403 tot += total_markers * sizeof (union Lisp_Misc);
5404 tot += total_string_bytes;
5405 tot += total_vector_slots * word_size;
5406 tot += total_floats * sizeof (struct Lisp_Float);
5407 tot += total_intervals * sizeof (struct interval);
5408 tot += total_strings * sizeof (struct Lisp_String);
5409 return tot;
5410 }
5411
5412 #ifdef HAVE_WINDOW_SYSTEM
5413
5414 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5415
5416 #if !defined (HAVE_NTGUI)
5417
5418 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5419 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5420
5421 static Lisp_Object
5422 compact_font_cache_entry (Lisp_Object entry)
5423 {
5424 Lisp_Object tail, *prev = &entry;
5425
5426 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5427 {
5428 bool drop = 0;
5429 Lisp_Object obj = XCAR (tail);
5430
5431 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5432 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5433 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5434 && VECTORP (XCDR (obj)))
5435 {
5436 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5437
5438 /* If font-spec is not marked, most likely all font-entities
5439 are not marked too. But we must be sure that nothing is
5440 marked within OBJ before we really drop it. */
5441 for (i = 0; i < size; i++)
5442 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5443 break;
5444
5445 if (i == size)
5446 drop = 1;
5447 }
5448 if (drop)
5449 *prev = XCDR (tail);
5450 else
5451 prev = xcdr_addr (tail);
5452 }
5453 return entry;
5454 }
5455
5456 #endif /* not HAVE_NTGUI */
5457
5458 /* Compact font caches on all terminals and mark
5459 everything which is still here after compaction. */
5460
5461 static void
5462 compact_font_caches (void)
5463 {
5464 struct terminal *t;
5465
5466 for (t = terminal_list; t; t = t->next_terminal)
5467 {
5468 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5469 #if !defined (HAVE_NTGUI)
5470 if (CONSP (cache))
5471 {
5472 Lisp_Object entry;
5473
5474 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5475 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5476 }
5477 #endif /* not HAVE_NTGUI */
5478 mark_object (cache);
5479 }
5480 }
5481
5482 #else /* not HAVE_WINDOW_SYSTEM */
5483
5484 #define compact_font_caches() (void)(0)
5485
5486 #endif /* HAVE_WINDOW_SYSTEM */
5487
5488 /* Remove (MARKER . DATA) entries with unmarked MARKER
5489 from buffer undo LIST and return changed list. */
5490
5491 static Lisp_Object
5492 compact_undo_list (Lisp_Object list)
5493 {
5494 Lisp_Object tail, *prev = &list;
5495
5496 for (tail = list; CONSP (tail); tail = XCDR (tail))
5497 {
5498 if (CONSP (XCAR (tail))
5499 && MARKERP (XCAR (XCAR (tail)))
5500 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5501 *prev = XCDR (tail);
5502 else
5503 prev = xcdr_addr (tail);
5504 }
5505 return list;
5506 }
5507
5508 static void
5509 mark_pinned_symbols (void)
5510 {
5511 struct symbol_block *sblk;
5512 int lim = (symbol_block_pinned == symbol_block
5513 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5514
5515 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5516 {
5517 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5518 for (; sym < end; ++sym)
5519 if (sym->s.pinned)
5520 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5521
5522 lim = SYMBOL_BLOCK_SIZE;
5523 }
5524 }
5525
5526 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5527 separate function so that we could limit mark_stack in searching
5528 the stack frames below this function, thus avoiding the rare cases
5529 where mark_stack finds values that look like live Lisp objects on
5530 portions of stack that couldn't possibly contain such live objects.
5531 For more details of this, see the discussion at
5532 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5533 static Lisp_Object
5534 garbage_collect_1 (void *end)
5535 {
5536 struct buffer *nextb;
5537 char stack_top_variable;
5538 ptrdiff_t i;
5539 bool message_p;
5540 ptrdiff_t count = SPECPDL_INDEX ();
5541 struct timespec start;
5542 Lisp_Object retval = Qnil;
5543 size_t tot_before = 0;
5544
5545 if (abort_on_gc)
5546 emacs_abort ();
5547
5548 /* Can't GC if pure storage overflowed because we can't determine
5549 if something is a pure object or not. */
5550 if (pure_bytes_used_before_overflow)
5551 return Qnil;
5552
5553 /* Record this function, so it appears on the profiler's backtraces. */
5554 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5555
5556 check_cons_list ();
5557
5558 /* Don't keep undo information around forever.
5559 Do this early on, so it is no problem if the user quits. */
5560 FOR_EACH_BUFFER (nextb)
5561 compact_buffer (nextb);
5562
5563 if (profiler_memory_running)
5564 tot_before = total_bytes_of_live_objects ();
5565
5566 start = current_timespec ();
5567
5568 /* In case user calls debug_print during GC,
5569 don't let that cause a recursive GC. */
5570 consing_since_gc = 0;
5571
5572 /* Save what's currently displayed in the echo area. */
5573 message_p = push_message ();
5574 record_unwind_protect_void (pop_message_unwind);
5575
5576 /* Save a copy of the contents of the stack, for debugging. */
5577 #if MAX_SAVE_STACK > 0
5578 if (NILP (Vpurify_flag))
5579 {
5580 char *stack;
5581 ptrdiff_t stack_size;
5582 if (&stack_top_variable < stack_bottom)
5583 {
5584 stack = &stack_top_variable;
5585 stack_size = stack_bottom - &stack_top_variable;
5586 }
5587 else
5588 {
5589 stack = stack_bottom;
5590 stack_size = &stack_top_variable - stack_bottom;
5591 }
5592 if (stack_size <= MAX_SAVE_STACK)
5593 {
5594 if (stack_copy_size < stack_size)
5595 {
5596 stack_copy = xrealloc (stack_copy, stack_size);
5597 stack_copy_size = stack_size;
5598 }
5599 no_sanitize_memcpy (stack_copy, stack, stack_size);
5600 }
5601 }
5602 #endif /* MAX_SAVE_STACK > 0 */
5603
5604 if (garbage_collection_messages)
5605 message1_nolog ("Garbage collecting...");
5606
5607 block_input ();
5608
5609 shrink_regexp_cache ();
5610
5611 gc_in_progress = 1;
5612
5613 /* Mark all the special slots that serve as the roots of accessibility. */
5614
5615 mark_buffer (&buffer_defaults);
5616 mark_buffer (&buffer_local_symbols);
5617
5618 for (i = 0; i < staticidx; i++)
5619 mark_object (*staticvec[i]);
5620
5621 mark_pinned_symbols ();
5622 mark_specpdl ();
5623 mark_terminals ();
5624 mark_kboards ();
5625
5626 #ifdef USE_GTK
5627 xg_mark_data ();
5628 #endif
5629
5630 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5631 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5632 mark_stack (end);
5633 #else
5634 {
5635 register struct gcpro *tail;
5636 for (tail = gcprolist; tail; tail = tail->next)
5637 for (i = 0; i < tail->nvars; i++)
5638 mark_object (tail->var[i]);
5639 }
5640 mark_byte_stack ();
5641 #endif
5642 {
5643 struct handler *handler;
5644 for (handler = handlerlist; handler; handler = handler->next)
5645 {
5646 mark_object (handler->tag_or_ch);
5647 mark_object (handler->val);
5648 }
5649 }
5650 #ifdef HAVE_WINDOW_SYSTEM
5651 mark_fringe_data ();
5652 #endif
5653
5654 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5655 mark_stack (end);
5656 #endif
5657
5658 /* Everything is now marked, except for the data in font caches
5659 and undo lists. They're compacted by removing an items which
5660 aren't reachable otherwise. */
5661
5662 compact_font_caches ();
5663
5664 FOR_EACH_BUFFER (nextb)
5665 {
5666 if (!EQ (BVAR (nextb, undo_list), Qt))
5667 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5668 /* Now that we have stripped the elements that need not be
5669 in the undo_list any more, we can finally mark the list. */
5670 mark_object (BVAR (nextb, undo_list));
5671 }
5672
5673 gc_sweep ();
5674
5675 /* Clear the mark bits that we set in certain root slots. */
5676
5677 unmark_byte_stack ();
5678 VECTOR_UNMARK (&buffer_defaults);
5679 VECTOR_UNMARK (&buffer_local_symbols);
5680
5681 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5682 dump_zombies ();
5683 #endif
5684
5685 check_cons_list ();
5686
5687 gc_in_progress = 0;
5688
5689 unblock_input ();
5690
5691 consing_since_gc = 0;
5692 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5693 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5694
5695 gc_relative_threshold = 0;
5696 if (FLOATP (Vgc_cons_percentage))
5697 { /* Set gc_cons_combined_threshold. */
5698 double tot = total_bytes_of_live_objects ();
5699
5700 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5701 if (0 < tot)
5702 {
5703 if (tot < TYPE_MAXIMUM (EMACS_INT))
5704 gc_relative_threshold = tot;
5705 else
5706 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5707 }
5708 }
5709
5710 if (garbage_collection_messages)
5711 {
5712 if (message_p || minibuf_level > 0)
5713 restore_message ();
5714 else
5715 message1_nolog ("Garbage collecting...done");
5716 }
5717
5718 unbind_to (count, Qnil);
5719 {
5720 Lisp_Object total[11];
5721 int total_size = 10;
5722
5723 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5724 bounded_number (total_conses),
5725 bounded_number (total_free_conses));
5726
5727 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5728 bounded_number (total_symbols),
5729 bounded_number (total_free_symbols));
5730
5731 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5732 bounded_number (total_markers),
5733 bounded_number (total_free_markers));
5734
5735 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5736 bounded_number (total_strings),
5737 bounded_number (total_free_strings));
5738
5739 total[4] = list3 (Qstring_bytes, make_number (1),
5740 bounded_number (total_string_bytes));
5741
5742 total[5] = list3 (Qvectors,
5743 make_number (header_size + sizeof (Lisp_Object)),
5744 bounded_number (total_vectors));
5745
5746 total[6] = list4 (Qvector_slots, make_number (word_size),
5747 bounded_number (total_vector_slots),
5748 bounded_number (total_free_vector_slots));
5749
5750 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5751 bounded_number (total_floats),
5752 bounded_number (total_free_floats));
5753
5754 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5755 bounded_number (total_intervals),
5756 bounded_number (total_free_intervals));
5757
5758 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5759 bounded_number (total_buffers));
5760
5761 #ifdef DOUG_LEA_MALLOC
5762 total_size++;
5763 total[10] = list4 (Qheap, make_number (1024),
5764 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5765 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5766 #endif
5767 retval = Flist (total_size, total);
5768 }
5769
5770 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5771 {
5772 /* Compute average percentage of zombies. */
5773 double nlive
5774 = (total_conses + total_symbols + total_markers + total_strings
5775 + total_vectors + total_floats + total_intervals + total_buffers);
5776
5777 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5778 max_live = max (nlive, max_live);
5779 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5780 max_zombies = max (nzombies, max_zombies);
5781 ++ngcs;
5782 }
5783 #endif
5784
5785 if (!NILP (Vpost_gc_hook))
5786 {
5787 ptrdiff_t gc_count = inhibit_garbage_collection ();
5788 safe_run_hooks (Qpost_gc_hook);
5789 unbind_to (gc_count, Qnil);
5790 }
5791
5792 /* Accumulate statistics. */
5793 if (FLOATP (Vgc_elapsed))
5794 {
5795 struct timespec since_start = timespec_sub (current_timespec (), start);
5796 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5797 + timespectod (since_start));
5798 }
5799
5800 gcs_done++;
5801
5802 /* Collect profiling data. */
5803 if (profiler_memory_running)
5804 {
5805 size_t swept = 0;
5806 size_t tot_after = total_bytes_of_live_objects ();
5807 if (tot_before > tot_after)
5808 swept = tot_before - tot_after;
5809 malloc_probe (swept);
5810 }
5811
5812 return retval;
5813 }
5814
5815 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5816 doc: /* Reclaim storage for Lisp objects no longer needed.
5817 Garbage collection happens automatically if you cons more than
5818 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5819 `garbage-collect' normally returns a list with info on amount of space in use,
5820 where each entry has the form (NAME SIZE USED FREE), where:
5821 - NAME is a symbol describing the kind of objects this entry represents,
5822 - SIZE is the number of bytes used by each one,
5823 - USED is the number of those objects that were found live in the heap,
5824 - FREE is the number of those objects that are not live but that Emacs
5825 keeps around for future allocations (maybe because it does not know how
5826 to return them to the OS).
5827 However, if there was overflow in pure space, `garbage-collect'
5828 returns nil, because real GC can't be done.
5829 See Info node `(elisp)Garbage Collection'. */)
5830 (void)
5831 {
5832 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5833 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5834 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5835 void *end;
5836
5837 #ifdef HAVE___BUILTIN_UNWIND_INIT
5838 /* Force callee-saved registers and register windows onto the stack.
5839 This is the preferred method if available, obviating the need for
5840 machine dependent methods. */
5841 __builtin_unwind_init ();
5842 end = &end;
5843 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5844 #ifndef GC_SAVE_REGISTERS_ON_STACK
5845 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5846 union aligned_jmpbuf {
5847 Lisp_Object o;
5848 sys_jmp_buf j;
5849 } j;
5850 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5851 #endif
5852 /* This trick flushes the register windows so that all the state of
5853 the process is contained in the stack. */
5854 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5855 needed on ia64 too. See mach_dep.c, where it also says inline
5856 assembler doesn't work with relevant proprietary compilers. */
5857 #ifdef __sparc__
5858 #if defined (__sparc64__) && defined (__FreeBSD__)
5859 /* FreeBSD does not have a ta 3 handler. */
5860 asm ("flushw");
5861 #else
5862 asm ("ta 3");
5863 #endif
5864 #endif
5865
5866 /* Save registers that we need to see on the stack. We need to see
5867 registers used to hold register variables and registers used to
5868 pass parameters. */
5869 #ifdef GC_SAVE_REGISTERS_ON_STACK
5870 GC_SAVE_REGISTERS_ON_STACK (end);
5871 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5872
5873 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5874 setjmp will definitely work, test it
5875 and print a message with the result
5876 of the test. */
5877 if (!setjmp_tested_p)
5878 {
5879 setjmp_tested_p = 1;
5880 test_setjmp ();
5881 }
5882 #endif /* GC_SETJMP_WORKS */
5883
5884 sys_setjmp (j.j);
5885 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5886 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5887 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5888 return garbage_collect_1 (end);
5889 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5890 /* Old GCPROs-based method without stack marking. */
5891 return garbage_collect_1 (NULL);
5892 #else
5893 emacs_abort ();
5894 #endif /* GC_MARK_STACK */
5895 }
5896
5897 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5898 only interesting objects referenced from glyphs are strings. */
5899
5900 static void
5901 mark_glyph_matrix (struct glyph_matrix *matrix)
5902 {
5903 struct glyph_row *row = matrix->rows;
5904 struct glyph_row *end = row + matrix->nrows;
5905
5906 for (; row < end; ++row)
5907 if (row->enabled_p)
5908 {
5909 int area;
5910 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5911 {
5912 struct glyph *glyph = row->glyphs[area];
5913 struct glyph *end_glyph = glyph + row->used[area];
5914
5915 for (; glyph < end_glyph; ++glyph)
5916 if (STRINGP (glyph->object)
5917 && !STRING_MARKED_P (XSTRING (glyph->object)))
5918 mark_object (glyph->object);
5919 }
5920 }
5921 }
5922
5923 /* Mark reference to a Lisp_Object.
5924 If the object referred to has not been seen yet, recursively mark
5925 all the references contained in it. */
5926
5927 #define LAST_MARKED_SIZE 500
5928 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5929 static int last_marked_index;
5930
5931 /* For debugging--call abort when we cdr down this many
5932 links of a list, in mark_object. In debugging,
5933 the call to abort will hit a breakpoint.
5934 Normally this is zero and the check never goes off. */
5935 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5936
5937 static void
5938 mark_vectorlike (struct Lisp_Vector *ptr)
5939 {
5940 ptrdiff_t size = ptr->header.size;
5941 ptrdiff_t i;
5942
5943 eassert (!VECTOR_MARKED_P (ptr));
5944 VECTOR_MARK (ptr); /* Else mark it. */
5945 if (size & PSEUDOVECTOR_FLAG)
5946 size &= PSEUDOVECTOR_SIZE_MASK;
5947
5948 /* Note that this size is not the memory-footprint size, but only
5949 the number of Lisp_Object fields that we should trace.
5950 The distinction is used e.g. by Lisp_Process which places extra
5951 non-Lisp_Object fields at the end of the structure... */
5952 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5953 mark_object (ptr->contents[i]);
5954 }
5955
5956 /* Like mark_vectorlike but optimized for char-tables (and
5957 sub-char-tables) assuming that the contents are mostly integers or
5958 symbols. */
5959
5960 static void
5961 mark_char_table (struct Lisp_Vector *ptr)
5962 {
5963 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5964 int i;
5965
5966 eassert (!VECTOR_MARKED_P (ptr));
5967 VECTOR_MARK (ptr);
5968 for (i = 0; i < size; i++)
5969 {
5970 Lisp_Object val = ptr->contents[i];
5971
5972 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5973 continue;
5974 if (SUB_CHAR_TABLE_P (val))
5975 {
5976 if (! VECTOR_MARKED_P (XVECTOR (val)))
5977 mark_char_table (XVECTOR (val));
5978 }
5979 else
5980 mark_object (val);
5981 }
5982 }
5983
5984 NO_INLINE /* To reduce stack depth in mark_object. */
5985 static Lisp_Object
5986 mark_compiled (struct Lisp_Vector *ptr)
5987 {
5988 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5989
5990 VECTOR_MARK (ptr);
5991 for (i = 0; i < size; i++)
5992 if (i != COMPILED_CONSTANTS)
5993 mark_object (ptr->contents[i]);
5994 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5995 }
5996
5997 /* Mark the chain of overlays starting at PTR. */
5998
5999 static void
6000 mark_overlay (struct Lisp_Overlay *ptr)
6001 {
6002 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6003 {
6004 ptr->gcmarkbit = 1;
6005 mark_object (ptr->start);
6006 mark_object (ptr->end);
6007 mark_object (ptr->plist);
6008 }
6009 }
6010
6011 /* Mark Lisp_Objects and special pointers in BUFFER. */
6012
6013 static void
6014 mark_buffer (struct buffer *buffer)
6015 {
6016 /* This is handled much like other pseudovectors... */
6017 mark_vectorlike ((struct Lisp_Vector *) buffer);
6018
6019 /* ...but there are some buffer-specific things. */
6020
6021 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6022
6023 /* For now, we just don't mark the undo_list. It's done later in
6024 a special way just before the sweep phase, and after stripping
6025 some of its elements that are not needed any more. */
6026
6027 mark_overlay (buffer->overlays_before);
6028 mark_overlay (buffer->overlays_after);
6029
6030 /* If this is an indirect buffer, mark its base buffer. */
6031 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6032 mark_buffer (buffer->base_buffer);
6033 }
6034
6035 /* Mark Lisp faces in the face cache C. */
6036
6037 NO_INLINE /* To reduce stack depth in mark_object. */
6038 static void
6039 mark_face_cache (struct face_cache *c)
6040 {
6041 if (c)
6042 {
6043 int i, j;
6044 for (i = 0; i < c->used; ++i)
6045 {
6046 struct face *face = FACE_FROM_ID (c->f, i);
6047
6048 if (face)
6049 {
6050 if (face->font && !VECTOR_MARKED_P (face->font))
6051 mark_vectorlike ((struct Lisp_Vector *) face->font);
6052
6053 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6054 mark_object (face->lface[j]);
6055 }
6056 }
6057 }
6058 }
6059
6060 NO_INLINE /* To reduce stack depth in mark_object. */
6061 static void
6062 mark_localized_symbol (struct Lisp_Symbol *ptr)
6063 {
6064 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6065 Lisp_Object where = blv->where;
6066 /* If the value is set up for a killed buffer or deleted
6067 frame, restore its global binding. If the value is
6068 forwarded to a C variable, either it's not a Lisp_Object
6069 var, or it's staticpro'd already. */
6070 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6071 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6072 swap_in_global_binding (ptr);
6073 mark_object (blv->where);
6074 mark_object (blv->valcell);
6075 mark_object (blv->defcell);
6076 }
6077
6078 NO_INLINE /* To reduce stack depth in mark_object. */
6079 static void
6080 mark_save_value (struct Lisp_Save_Value *ptr)
6081 {
6082 /* If `save_type' is zero, `data[0].pointer' is the address
6083 of a memory area containing `data[1].integer' potential
6084 Lisp_Objects. */
6085 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6086 {
6087 Lisp_Object *p = ptr->data[0].pointer;
6088 ptrdiff_t nelt;
6089 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6090 mark_maybe_object (*p);
6091 }
6092 else
6093 {
6094 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6095 int i;
6096 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6097 if (save_type (ptr, i) == SAVE_OBJECT)
6098 mark_object (ptr->data[i].object);
6099 }
6100 }
6101
6102 /* Remove killed buffers or items whose car is a killed buffer from
6103 LIST, and mark other items. Return changed LIST, which is marked. */
6104
6105 static Lisp_Object
6106 mark_discard_killed_buffers (Lisp_Object list)
6107 {
6108 Lisp_Object tail, *prev = &list;
6109
6110 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6111 tail = XCDR (tail))
6112 {
6113 Lisp_Object tem = XCAR (tail);
6114 if (CONSP (tem))
6115 tem = XCAR (tem);
6116 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6117 *prev = XCDR (tail);
6118 else
6119 {
6120 CONS_MARK (XCONS (tail));
6121 mark_object (XCAR (tail));
6122 prev = xcdr_addr (tail);
6123 }
6124 }
6125 mark_object (tail);
6126 return list;
6127 }
6128
6129 /* Determine type of generic Lisp_Object and mark it accordingly.
6130
6131 This function implements a straightforward depth-first marking
6132 algorithm and so the recursion depth may be very high (a few
6133 tens of thousands is not uncommon). To minimize stack usage,
6134 a few cold paths are moved out to NO_INLINE functions above.
6135 In general, inlining them doesn't help you to gain more speed. */
6136
6137 void
6138 mark_object (Lisp_Object arg)
6139 {
6140 register Lisp_Object obj = arg;
6141 #ifdef GC_CHECK_MARKED_OBJECTS
6142 void *po;
6143 struct mem_node *m;
6144 #endif
6145 ptrdiff_t cdr_count = 0;
6146
6147 loop:
6148
6149 if (PURE_POINTER_P (XPNTR (obj)))
6150 return;
6151
6152 last_marked[last_marked_index++] = obj;
6153 if (last_marked_index == LAST_MARKED_SIZE)
6154 last_marked_index = 0;
6155
6156 /* Perform some sanity checks on the objects marked here. Abort if
6157 we encounter an object we know is bogus. This increases GC time
6158 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6159 #ifdef GC_CHECK_MARKED_OBJECTS
6160
6161 po = (void *) XPNTR (obj);
6162
6163 /* Check that the object pointed to by PO is known to be a Lisp
6164 structure allocated from the heap. */
6165 #define CHECK_ALLOCATED() \
6166 do { \
6167 m = mem_find (po); \
6168 if (m == MEM_NIL) \
6169 emacs_abort (); \
6170 } while (0)
6171
6172 /* Check that the object pointed to by PO is live, using predicate
6173 function LIVEP. */
6174 #define CHECK_LIVE(LIVEP) \
6175 do { \
6176 if (!LIVEP (m, po)) \
6177 emacs_abort (); \
6178 } while (0)
6179
6180 /* Check both of the above conditions. */
6181 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6182 do { \
6183 CHECK_ALLOCATED (); \
6184 CHECK_LIVE (LIVEP); \
6185 } while (0) \
6186
6187 #else /* not GC_CHECK_MARKED_OBJECTS */
6188
6189 #define CHECK_LIVE(LIVEP) (void) 0
6190 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6191
6192 #endif /* not GC_CHECK_MARKED_OBJECTS */
6193
6194 switch (XTYPE (obj))
6195 {
6196 case Lisp_String:
6197 {
6198 register struct Lisp_String *ptr = XSTRING (obj);
6199 if (STRING_MARKED_P (ptr))
6200 break;
6201 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6202 MARK_STRING (ptr);
6203 MARK_INTERVAL_TREE (ptr->intervals);
6204 #ifdef GC_CHECK_STRING_BYTES
6205 /* Check that the string size recorded in the string is the
6206 same as the one recorded in the sdata structure. */
6207 string_bytes (ptr);
6208 #endif /* GC_CHECK_STRING_BYTES */
6209 }
6210 break;
6211
6212 case Lisp_Vectorlike:
6213 {
6214 register struct Lisp_Vector *ptr = XVECTOR (obj);
6215 register ptrdiff_t pvectype;
6216
6217 if (VECTOR_MARKED_P (ptr))
6218 break;
6219
6220 #ifdef GC_CHECK_MARKED_OBJECTS
6221 m = mem_find (po);
6222 if (m == MEM_NIL && !SUBRP (obj))
6223 emacs_abort ();
6224 #endif /* GC_CHECK_MARKED_OBJECTS */
6225
6226 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6227 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6228 >> PSEUDOVECTOR_AREA_BITS);
6229 else
6230 pvectype = PVEC_NORMAL_VECTOR;
6231
6232 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6233 CHECK_LIVE (live_vector_p);
6234
6235 switch (pvectype)
6236 {
6237 case PVEC_BUFFER:
6238 #ifdef GC_CHECK_MARKED_OBJECTS
6239 {
6240 struct buffer *b;
6241 FOR_EACH_BUFFER (b)
6242 if (b == po)
6243 break;
6244 if (b == NULL)
6245 emacs_abort ();
6246 }
6247 #endif /* GC_CHECK_MARKED_OBJECTS */
6248 mark_buffer ((struct buffer *) ptr);
6249 break;
6250
6251 case PVEC_COMPILED:
6252 /* Although we could treat this just like a vector, mark_compiled
6253 returns the COMPILED_CONSTANTS element, which is marked at the
6254 next iteration of goto-loop here. This is done to avoid a few
6255 recursive calls to mark_object. */
6256 obj = mark_compiled (ptr);
6257 if (!NILP (obj))
6258 goto loop;
6259 break;
6260
6261 case PVEC_FRAME:
6262 {
6263 struct frame *f = (struct frame *) ptr;
6264
6265 mark_vectorlike (ptr);
6266 mark_face_cache (f->face_cache);
6267 #ifdef HAVE_WINDOW_SYSTEM
6268 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6269 {
6270 struct font *font = FRAME_FONT (f);
6271
6272 if (font && !VECTOR_MARKED_P (font))
6273 mark_vectorlike ((struct Lisp_Vector *) font);
6274 }
6275 #endif
6276 }
6277 break;
6278
6279 case PVEC_WINDOW:
6280 {
6281 struct window *w = (struct window *) ptr;
6282
6283 mark_vectorlike (ptr);
6284
6285 /* Mark glyph matrices, if any. Marking window
6286 matrices is sufficient because frame matrices
6287 use the same glyph memory. */
6288 if (w->current_matrix)
6289 {
6290 mark_glyph_matrix (w->current_matrix);
6291 mark_glyph_matrix (w->desired_matrix);
6292 }
6293
6294 /* Filter out killed buffers from both buffer lists
6295 in attempt to help GC to reclaim killed buffers faster.
6296 We can do it elsewhere for live windows, but this is the
6297 best place to do it for dead windows. */
6298 wset_prev_buffers
6299 (w, mark_discard_killed_buffers (w->prev_buffers));
6300 wset_next_buffers
6301 (w, mark_discard_killed_buffers (w->next_buffers));
6302 }
6303 break;
6304
6305 case PVEC_HASH_TABLE:
6306 {
6307 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6308
6309 mark_vectorlike (ptr);
6310 mark_object (h->test.name);
6311 mark_object (h->test.user_hash_function);
6312 mark_object (h->test.user_cmp_function);
6313 /* If hash table is not weak, mark all keys and values.
6314 For weak tables, mark only the vector. */
6315 if (NILP (h->weak))
6316 mark_object (h->key_and_value);
6317 else
6318 VECTOR_MARK (XVECTOR (h->key_and_value));
6319 }
6320 break;
6321
6322 case PVEC_CHAR_TABLE:
6323 mark_char_table (ptr);
6324 break;
6325
6326 case PVEC_BOOL_VECTOR:
6327 /* No Lisp_Objects to mark in a bool vector. */
6328 VECTOR_MARK (ptr);
6329 break;
6330
6331 case PVEC_SUBR:
6332 break;
6333
6334 case PVEC_FREE:
6335 emacs_abort ();
6336
6337 default:
6338 mark_vectorlike (ptr);
6339 }
6340 }
6341 break;
6342
6343 case Lisp_Symbol:
6344 {
6345 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6346 nextsym:
6347 if (ptr->gcmarkbit)
6348 break;
6349 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6350 ptr->gcmarkbit = 1;
6351 /* Attempt to catch bogus objects. */
6352 eassert (valid_lisp_object_p (ptr->function) >= 1);
6353 mark_object (ptr->function);
6354 mark_object (ptr->plist);
6355 switch (ptr->redirect)
6356 {
6357 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6358 case SYMBOL_VARALIAS:
6359 {
6360 Lisp_Object tem;
6361 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6362 mark_object (tem);
6363 break;
6364 }
6365 case SYMBOL_LOCALIZED:
6366 mark_localized_symbol (ptr);
6367 break;
6368 case SYMBOL_FORWARDED:
6369 /* If the value is forwarded to a buffer or keyboard field,
6370 these are marked when we see the corresponding object.
6371 And if it's forwarded to a C variable, either it's not
6372 a Lisp_Object var, or it's staticpro'd already. */
6373 break;
6374 default: emacs_abort ();
6375 }
6376 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6377 MARK_STRING (XSTRING (ptr->name));
6378 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6379 /* Inner loop to mark next symbol in this bucket, if any. */
6380 ptr = ptr->next;
6381 if (ptr)
6382 goto nextsym;
6383 }
6384 break;
6385
6386 case Lisp_Misc:
6387 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6388
6389 if (XMISCANY (obj)->gcmarkbit)
6390 break;
6391
6392 switch (XMISCTYPE (obj))
6393 {
6394 case Lisp_Misc_Marker:
6395 /* DO NOT mark thru the marker's chain.
6396 The buffer's markers chain does not preserve markers from gc;
6397 instead, markers are removed from the chain when freed by gc. */
6398 XMISCANY (obj)->gcmarkbit = 1;
6399 break;
6400
6401 case Lisp_Misc_Save_Value:
6402 XMISCANY (obj)->gcmarkbit = 1;
6403 mark_save_value (XSAVE_VALUE (obj));
6404 break;
6405
6406 case Lisp_Misc_Overlay:
6407 mark_overlay (XOVERLAY (obj));
6408 break;
6409
6410 default:
6411 emacs_abort ();
6412 }
6413 break;
6414
6415 case Lisp_Cons:
6416 {
6417 register struct Lisp_Cons *ptr = XCONS (obj);
6418 if (CONS_MARKED_P (ptr))
6419 break;
6420 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6421 CONS_MARK (ptr);
6422 /* If the cdr is nil, avoid recursion for the car. */
6423 if (EQ (ptr->u.cdr, Qnil))
6424 {
6425 obj = ptr->car;
6426 cdr_count = 0;
6427 goto loop;
6428 }
6429 mark_object (ptr->car);
6430 obj = ptr->u.cdr;
6431 cdr_count++;
6432 if (cdr_count == mark_object_loop_halt)
6433 emacs_abort ();
6434 goto loop;
6435 }
6436
6437 case Lisp_Float:
6438 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6439 FLOAT_MARK (XFLOAT (obj));
6440 break;
6441
6442 case_Lisp_Int:
6443 break;
6444
6445 default:
6446 emacs_abort ();
6447 }
6448
6449 #undef CHECK_LIVE
6450 #undef CHECK_ALLOCATED
6451 #undef CHECK_ALLOCATED_AND_LIVE
6452 }
6453 /* Mark the Lisp pointers in the terminal objects.
6454 Called by Fgarbage_collect. */
6455
6456 static void
6457 mark_terminals (void)
6458 {
6459 struct terminal *t;
6460 for (t = terminal_list; t; t = t->next_terminal)
6461 {
6462 eassert (t->name != NULL);
6463 #ifdef HAVE_WINDOW_SYSTEM
6464 /* If a terminal object is reachable from a stacpro'ed object,
6465 it might have been marked already. Make sure the image cache
6466 gets marked. */
6467 mark_image_cache (t->image_cache);
6468 #endif /* HAVE_WINDOW_SYSTEM */
6469 if (!VECTOR_MARKED_P (t))
6470 mark_vectorlike ((struct Lisp_Vector *)t);
6471 }
6472 }
6473
6474
6475
6476 /* Value is non-zero if OBJ will survive the current GC because it's
6477 either marked or does not need to be marked to survive. */
6478
6479 bool
6480 survives_gc_p (Lisp_Object obj)
6481 {
6482 bool survives_p;
6483
6484 switch (XTYPE (obj))
6485 {
6486 case_Lisp_Int:
6487 survives_p = 1;
6488 break;
6489
6490 case Lisp_Symbol:
6491 survives_p = XSYMBOL (obj)->gcmarkbit;
6492 break;
6493
6494 case Lisp_Misc:
6495 survives_p = XMISCANY (obj)->gcmarkbit;
6496 break;
6497
6498 case Lisp_String:
6499 survives_p = STRING_MARKED_P (XSTRING (obj));
6500 break;
6501
6502 case Lisp_Vectorlike:
6503 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6504 break;
6505
6506 case Lisp_Cons:
6507 survives_p = CONS_MARKED_P (XCONS (obj));
6508 break;
6509
6510 case Lisp_Float:
6511 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6512 break;
6513
6514 default:
6515 emacs_abort ();
6516 }
6517
6518 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6519 }
6520
6521
6522 \f
6523
6524 NO_INLINE /* For better stack traces */
6525 static void
6526 sweep_conses (void)
6527 {
6528 struct cons_block *cblk;
6529 struct cons_block **cprev = &cons_block;
6530 int lim = cons_block_index;
6531 EMACS_INT num_free = 0, num_used = 0;
6532
6533 cons_free_list = 0;
6534
6535 for (cblk = cons_block; cblk; cblk = *cprev)
6536 {
6537 int i = 0;
6538 int this_free = 0;
6539 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6540
6541 /* Scan the mark bits an int at a time. */
6542 for (i = 0; i < ilim; i++)
6543 {
6544 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6545 {
6546 /* Fast path - all cons cells for this int are marked. */
6547 cblk->gcmarkbits[i] = 0;
6548 num_used += BITS_PER_BITS_WORD;
6549 }
6550 else
6551 {
6552 /* Some cons cells for this int are not marked.
6553 Find which ones, and free them. */
6554 int start, pos, stop;
6555
6556 start = i * BITS_PER_BITS_WORD;
6557 stop = lim - start;
6558 if (stop > BITS_PER_BITS_WORD)
6559 stop = BITS_PER_BITS_WORD;
6560 stop += start;
6561
6562 for (pos = start; pos < stop; pos++)
6563 {
6564 if (!CONS_MARKED_P (&cblk->conses[pos]))
6565 {
6566 this_free++;
6567 cblk->conses[pos].u.chain = cons_free_list;
6568 cons_free_list = &cblk->conses[pos];
6569 #if GC_MARK_STACK
6570 cons_free_list->car = Vdead;
6571 #endif
6572 }
6573 else
6574 {
6575 num_used++;
6576 CONS_UNMARK (&cblk->conses[pos]);
6577 }
6578 }
6579 }
6580 }
6581
6582 lim = CONS_BLOCK_SIZE;
6583 /* If this block contains only free conses and we have already
6584 seen more than two blocks worth of free conses then deallocate
6585 this block. */
6586 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6587 {
6588 *cprev = cblk->next;
6589 /* Unhook from the free list. */
6590 cons_free_list = cblk->conses[0].u.chain;
6591 lisp_align_free (cblk);
6592 }
6593 else
6594 {
6595 num_free += this_free;
6596 cprev = &cblk->next;
6597 }
6598 }
6599 total_conses = num_used;
6600 total_free_conses = num_free;
6601 }
6602
6603 NO_INLINE /* For better stack traces */
6604 static void
6605 sweep_floats (void)
6606 {
6607 register struct float_block *fblk;
6608 struct float_block **fprev = &float_block;
6609 register int lim = float_block_index;
6610 EMACS_INT num_free = 0, num_used = 0;
6611
6612 float_free_list = 0;
6613
6614 for (fblk = float_block; fblk; fblk = *fprev)
6615 {
6616 register int i;
6617 int this_free = 0;
6618 for (i = 0; i < lim; i++)
6619 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6620 {
6621 this_free++;
6622 fblk->floats[i].u.chain = float_free_list;
6623 float_free_list = &fblk->floats[i];
6624 }
6625 else
6626 {
6627 num_used++;
6628 FLOAT_UNMARK (&fblk->floats[i]);
6629 }
6630 lim = FLOAT_BLOCK_SIZE;
6631 /* If this block contains only free floats and we have already
6632 seen more than two blocks worth of free floats then deallocate
6633 this block. */
6634 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6635 {
6636 *fprev = fblk->next;
6637 /* Unhook from the free list. */
6638 float_free_list = fblk->floats[0].u.chain;
6639 lisp_align_free (fblk);
6640 }
6641 else
6642 {
6643 num_free += this_free;
6644 fprev = &fblk->next;
6645 }
6646 }
6647 total_floats = num_used;
6648 total_free_floats = num_free;
6649 }
6650
6651 NO_INLINE /* For better stack traces */
6652 static void
6653 sweep_intervals (void)
6654 {
6655 register struct interval_block *iblk;
6656 struct interval_block **iprev = &interval_block;
6657 register int lim = interval_block_index;
6658 EMACS_INT num_free = 0, num_used = 0;
6659
6660 interval_free_list = 0;
6661
6662 for (iblk = interval_block; iblk; iblk = *iprev)
6663 {
6664 register int i;
6665 int this_free = 0;
6666
6667 for (i = 0; i < lim; i++)
6668 {
6669 if (!iblk->intervals[i].gcmarkbit)
6670 {
6671 set_interval_parent (&iblk->intervals[i], interval_free_list);
6672 interval_free_list = &iblk->intervals[i];
6673 this_free++;
6674 }
6675 else
6676 {
6677 num_used++;
6678 iblk->intervals[i].gcmarkbit = 0;
6679 }
6680 }
6681 lim = INTERVAL_BLOCK_SIZE;
6682 /* If this block contains only free intervals and we have already
6683 seen more than two blocks worth of free intervals then
6684 deallocate this block. */
6685 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6686 {
6687 *iprev = iblk->next;
6688 /* Unhook from the free list. */
6689 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6690 lisp_free (iblk);
6691 }
6692 else
6693 {
6694 num_free += this_free;
6695 iprev = &iblk->next;
6696 }
6697 }
6698 total_intervals = num_used;
6699 total_free_intervals = num_free;
6700 }
6701
6702 NO_INLINE /* For better stack traces */
6703 static void
6704 sweep_symbols (void)
6705 {
6706 register struct symbol_block *sblk;
6707 struct symbol_block **sprev = &symbol_block;
6708 register int lim = symbol_block_index;
6709 EMACS_INT num_free = 0, num_used = 0;
6710
6711 symbol_free_list = NULL;
6712
6713 for (sblk = symbol_block; sblk; sblk = *sprev)
6714 {
6715 int this_free = 0;
6716 union aligned_Lisp_Symbol *sym = sblk->symbols;
6717 union aligned_Lisp_Symbol *end = sym + lim;
6718
6719 for (; sym < end; ++sym)
6720 {
6721 if (!sym->s.gcmarkbit)
6722 {
6723 if (sym->s.redirect == SYMBOL_LOCALIZED)
6724 xfree (SYMBOL_BLV (&sym->s));
6725 sym->s.next = symbol_free_list;
6726 symbol_free_list = &sym->s;
6727 #if GC_MARK_STACK
6728 symbol_free_list->function = Vdead;
6729 #endif
6730 ++this_free;
6731 }
6732 else
6733 {
6734 ++num_used;
6735 sym->s.gcmarkbit = 0;
6736 /* Attempt to catch bogus objects. */
6737 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6738 }
6739 }
6740
6741 lim = SYMBOL_BLOCK_SIZE;
6742 /* If this block contains only free symbols and we have already
6743 seen more than two blocks worth of free symbols then deallocate
6744 this block. */
6745 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6746 {
6747 *sprev = sblk->next;
6748 /* Unhook from the free list. */
6749 symbol_free_list = sblk->symbols[0].s.next;
6750 lisp_free (sblk);
6751 }
6752 else
6753 {
6754 num_free += this_free;
6755 sprev = &sblk->next;
6756 }
6757 }
6758 total_symbols = num_used;
6759 total_free_symbols = num_free;
6760 }
6761
6762 NO_INLINE /* For better stack traces */
6763 static void
6764 sweep_misc (void)
6765 {
6766 register struct marker_block *mblk;
6767 struct marker_block **mprev = &marker_block;
6768 register int lim = marker_block_index;
6769 EMACS_INT num_free = 0, num_used = 0;
6770
6771 /* Put all unmarked misc's on free list. For a marker, first
6772 unchain it from the buffer it points into. */
6773
6774 marker_free_list = 0;
6775
6776 for (mblk = marker_block; mblk; mblk = *mprev)
6777 {
6778 register int i;
6779 int this_free = 0;
6780
6781 for (i = 0; i < lim; i++)
6782 {
6783 if (!mblk->markers[i].m.u_any.gcmarkbit)
6784 {
6785 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6786 unchain_marker (&mblk->markers[i].m.u_marker);
6787 /* Set the type of the freed object to Lisp_Misc_Free.
6788 We could leave the type alone, since nobody checks it,
6789 but this might catch bugs faster. */
6790 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6791 mblk->markers[i].m.u_free.chain = marker_free_list;
6792 marker_free_list = &mblk->markers[i].m;
6793 this_free++;
6794 }
6795 else
6796 {
6797 num_used++;
6798 mblk->markers[i].m.u_any.gcmarkbit = 0;
6799 }
6800 }
6801 lim = MARKER_BLOCK_SIZE;
6802 /* If this block contains only free markers and we have already
6803 seen more than two blocks worth of free markers then deallocate
6804 this block. */
6805 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6806 {
6807 *mprev = mblk->next;
6808 /* Unhook from the free list. */
6809 marker_free_list = mblk->markers[0].m.u_free.chain;
6810 lisp_free (mblk);
6811 }
6812 else
6813 {
6814 num_free += this_free;
6815 mprev = &mblk->next;
6816 }
6817 }
6818
6819 total_markers = num_used;
6820 total_free_markers = num_free;
6821 }
6822
6823 NO_INLINE /* For better stack traces */
6824 static void
6825 sweep_buffers (void)
6826 {
6827 register struct buffer *buffer, **bprev = &all_buffers;
6828
6829 total_buffers = 0;
6830 for (buffer = all_buffers; buffer; buffer = *bprev)
6831 if (!VECTOR_MARKED_P (buffer))
6832 {
6833 *bprev = buffer->next;
6834 lisp_free (buffer);
6835 }
6836 else
6837 {
6838 VECTOR_UNMARK (buffer);
6839 /* Do not use buffer_(set|get)_intervals here. */
6840 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6841 total_buffers++;
6842 bprev = &buffer->next;
6843 }
6844 }
6845
6846 /* Sweep: find all structures not marked, and free them. */
6847 static void
6848 gc_sweep (void)
6849 {
6850 /* Remove or mark entries in weak hash tables.
6851 This must be done before any object is unmarked. */
6852 sweep_weak_hash_tables ();
6853
6854 sweep_strings ();
6855 check_string_bytes (!noninteractive);
6856 sweep_conses ();
6857 sweep_floats ();
6858 sweep_intervals ();
6859 sweep_symbols ();
6860 sweep_misc ();
6861 sweep_buffers ();
6862 sweep_vectors ();
6863 check_string_bytes (!noninteractive);
6864 }
6865
6866 \f
6867 /* Debugging aids. */
6868
6869 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6870 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6871 This may be helpful in debugging Emacs's memory usage.
6872 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6873 (void)
6874 {
6875 Lisp_Object end;
6876
6877 #ifdef HAVE_NS
6878 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6879 XSETINT (end, 0);
6880 #else
6881 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6882 #endif
6883
6884 return end;
6885 }
6886
6887 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6888 doc: /* Return a list of counters that measure how much consing there has been.
6889 Each of these counters increments for a certain kind of object.
6890 The counters wrap around from the largest positive integer to zero.
6891 Garbage collection does not decrease them.
6892 The elements of the value are as follows:
6893 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6894 All are in units of 1 = one object consed
6895 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6896 objects consed.
6897 MISCS include overlays, markers, and some internal types.
6898 Frames, windows, buffers, and subprocesses count as vectors
6899 (but the contents of a buffer's text do not count here). */)
6900 (void)
6901 {
6902 return listn (CONSTYPE_HEAP, 8,
6903 bounded_number (cons_cells_consed),
6904 bounded_number (floats_consed),
6905 bounded_number (vector_cells_consed),
6906 bounded_number (symbols_consed),
6907 bounded_number (string_chars_consed),
6908 bounded_number (misc_objects_consed),
6909 bounded_number (intervals_consed),
6910 bounded_number (strings_consed));
6911 }
6912
6913 /* Find at most FIND_MAX symbols which have OBJ as their value or
6914 function. This is used in gdbinit's `xwhichsymbols' command. */
6915
6916 Lisp_Object
6917 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6918 {
6919 struct symbol_block *sblk;
6920 ptrdiff_t gc_count = inhibit_garbage_collection ();
6921 Lisp_Object found = Qnil;
6922
6923 if (! DEADP (obj))
6924 {
6925 for (sblk = symbol_block; sblk; sblk = sblk->next)
6926 {
6927 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6928 int bn;
6929
6930 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6931 {
6932 struct Lisp_Symbol *sym = &aligned_sym->s;
6933 Lisp_Object val;
6934 Lisp_Object tem;
6935
6936 if (sblk == symbol_block && bn >= symbol_block_index)
6937 break;
6938
6939 XSETSYMBOL (tem, sym);
6940 val = find_symbol_value (tem);
6941 if (EQ (val, obj)
6942 || EQ (sym->function, obj)
6943 || (!NILP (sym->function)
6944 && COMPILEDP (sym->function)
6945 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6946 || (!NILP (val)
6947 && COMPILEDP (val)
6948 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6949 {
6950 found = Fcons (tem, found);
6951 if (--find_max == 0)
6952 goto out;
6953 }
6954 }
6955 }
6956 }
6957
6958 out:
6959 unbind_to (gc_count, Qnil);
6960 return found;
6961 }
6962
6963 #ifdef SUSPICIOUS_OBJECT_CHECKING
6964
6965 static void *
6966 find_suspicious_object_in_range (void *begin, void *end)
6967 {
6968 char *begin_a = begin;
6969 char *end_a = end;
6970 int i;
6971
6972 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6973 {
6974 char *suspicious_object = suspicious_objects[i];
6975 if (begin_a <= suspicious_object && suspicious_object < end_a)
6976 return suspicious_object;
6977 }
6978
6979 return NULL;
6980 }
6981
6982 static void
6983 note_suspicious_free (void* ptr)
6984 {
6985 struct suspicious_free_record* rec;
6986
6987 rec = &suspicious_free_history[suspicious_free_history_index++];
6988 if (suspicious_free_history_index ==
6989 ARRAYELTS (suspicious_free_history))
6990 {
6991 suspicious_free_history_index = 0;
6992 }
6993
6994 memset (rec, 0, sizeof (*rec));
6995 rec->suspicious_object = ptr;
6996 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6997 }
6998
6999 static void
7000 detect_suspicious_free (void* ptr)
7001 {
7002 int i;
7003
7004 eassert (ptr != NULL);
7005
7006 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7007 if (suspicious_objects[i] == ptr)
7008 {
7009 note_suspicious_free (ptr);
7010 suspicious_objects[i] = NULL;
7011 }
7012 }
7013
7014 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7015
7016 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7017 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7018 If Emacs is compiled with suspicous object checking, capture
7019 a stack trace when OBJ is freed in order to help track down
7020 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7021 (Lisp_Object obj)
7022 {
7023 #ifdef SUSPICIOUS_OBJECT_CHECKING
7024 /* Right now, we care only about vectors. */
7025 if (VECTORLIKEP (obj))
7026 {
7027 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7028 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7029 suspicious_object_index = 0;
7030 }
7031 #endif
7032 return obj;
7033 }
7034
7035 #ifdef ENABLE_CHECKING
7036
7037 bool suppress_checking;
7038
7039 void
7040 die (const char *msg, const char *file, int line)
7041 {
7042 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7043 file, line, msg);
7044 terminate_due_to_signal (SIGABRT, INT_MAX);
7045 }
7046 #endif
7047 \f
7048 /* Initialization. */
7049
7050 void
7051 init_alloc_once (void)
7052 {
7053 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
7054 purebeg = PUREBEG;
7055 pure_size = PURESIZE;
7056
7057 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7058 mem_init ();
7059 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7060 #endif
7061
7062 #ifdef DOUG_LEA_MALLOC
7063 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7064 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7065 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7066 #endif
7067 init_strings ();
7068 init_vectors ();
7069
7070 refill_memory_reserve ();
7071 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7072 }
7073
7074 void
7075 init_alloc (void)
7076 {
7077 gcprolist = 0;
7078 byte_stack_list = 0;
7079 #if GC_MARK_STACK
7080 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7081 setjmp_tested_p = longjmps_done = 0;
7082 #endif
7083 #endif
7084 Vgc_elapsed = make_float (0.0);
7085 gcs_done = 0;
7086
7087 #if USE_VALGRIND
7088 valgrind_p = RUNNING_ON_VALGRIND != 0;
7089 #endif
7090 }
7091
7092 void
7093 syms_of_alloc (void)
7094 {
7095 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7096 doc: /* Number of bytes of consing between garbage collections.
7097 Garbage collection can happen automatically once this many bytes have been
7098 allocated since the last garbage collection. All data types count.
7099
7100 Garbage collection happens automatically only when `eval' is called.
7101
7102 By binding this temporarily to a large number, you can effectively
7103 prevent garbage collection during a part of the program.
7104 See also `gc-cons-percentage'. */);
7105
7106 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7107 doc: /* Portion of the heap used for allocation.
7108 Garbage collection can happen automatically once this portion of the heap
7109 has been allocated since the last garbage collection.
7110 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7111 Vgc_cons_percentage = make_float (0.1);
7112
7113 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7114 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7115
7116 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7117 doc: /* Number of cons cells that have been consed so far. */);
7118
7119 DEFVAR_INT ("floats-consed", floats_consed,
7120 doc: /* Number of floats that have been consed so far. */);
7121
7122 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7123 doc: /* Number of vector cells that have been consed so far. */);
7124
7125 DEFVAR_INT ("symbols-consed", symbols_consed,
7126 doc: /* Number of symbols that have been consed so far. */);
7127
7128 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7129 doc: /* Number of string characters that have been consed so far. */);
7130
7131 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7132 doc: /* Number of miscellaneous objects that have been consed so far.
7133 These include markers and overlays, plus certain objects not visible
7134 to users. */);
7135
7136 DEFVAR_INT ("intervals-consed", intervals_consed,
7137 doc: /* Number of intervals that have been consed so far. */);
7138
7139 DEFVAR_INT ("strings-consed", strings_consed,
7140 doc: /* Number of strings that have been consed so far. */);
7141
7142 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7143 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7144 This means that certain objects should be allocated in shared (pure) space.
7145 It can also be set to a hash-table, in which case this table is used to
7146 do hash-consing of the objects allocated to pure space. */);
7147
7148 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7149 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7150 garbage_collection_messages = 0;
7151
7152 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7153 doc: /* Hook run after garbage collection has finished. */);
7154 Vpost_gc_hook = Qnil;
7155 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7156
7157 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7158 doc: /* Precomputed `signal' argument for memory-full error. */);
7159 /* We build this in advance because if we wait until we need it, we might
7160 not be able to allocate the memory to hold it. */
7161 Vmemory_signal_data
7162 = listn (CONSTYPE_PURE, 2, Qerror,
7163 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7164
7165 DEFVAR_LISP ("memory-full", Vmemory_full,
7166 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7167 Vmemory_full = Qnil;
7168
7169 DEFSYM (Qconses, "conses");
7170 DEFSYM (Qsymbols, "symbols");
7171 DEFSYM (Qmiscs, "miscs");
7172 DEFSYM (Qstrings, "strings");
7173 DEFSYM (Qvectors, "vectors");
7174 DEFSYM (Qfloats, "floats");
7175 DEFSYM (Qintervals, "intervals");
7176 DEFSYM (Qbuffers, "buffers");
7177 DEFSYM (Qstring_bytes, "string-bytes");
7178 DEFSYM (Qvector_slots, "vector-slots");
7179 DEFSYM (Qheap, "heap");
7180 DEFSYM (Qautomatic_gc, "Automatic GC");
7181
7182 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7183 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7184
7185 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7186 doc: /* Accumulated time elapsed in garbage collections.
7187 The time is in seconds as a floating point value. */);
7188 DEFVAR_INT ("gcs-done", gcs_done,
7189 doc: /* Accumulated number of garbage collections done. */);
7190
7191 defsubr (&Scons);
7192 defsubr (&Slist);
7193 defsubr (&Svector);
7194 defsubr (&Sbool_vector);
7195 defsubr (&Smake_byte_code);
7196 defsubr (&Smake_list);
7197 defsubr (&Smake_vector);
7198 defsubr (&Smake_string);
7199 defsubr (&Smake_bool_vector);
7200 defsubr (&Smake_symbol);
7201 defsubr (&Smake_marker);
7202 defsubr (&Spurecopy);
7203 defsubr (&Sgarbage_collect);
7204 defsubr (&Smemory_limit);
7205 defsubr (&Smemory_use_counts);
7206 defsubr (&Ssuspicious_object);
7207
7208 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7209 defsubr (&Sgc_status);
7210 #endif
7211 }
7212
7213 /* When compiled with GCC, GDB might say "No enum type named
7214 pvec_type" if we don't have at least one symbol with that type, and
7215 then xbacktrace could fail. Similarly for the other enums and
7216 their values. Some non-GCC compilers don't like these constructs. */
7217 #ifdef __GNUC__
7218 union
7219 {
7220 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7221 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7222 enum char_bits char_bits;
7223 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7224 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7225 enum Lisp_Bits Lisp_Bits;
7226 enum Lisp_Compiled Lisp_Compiled;
7227 enum maxargs maxargs;
7228 enum MAX_ALLOCA MAX_ALLOCA;
7229 enum More_Lisp_Bits More_Lisp_Bits;
7230 enum pvec_type pvec_type;
7231 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7232 #endif /* __GNUC__ */