Port to C11 aligned_alloc, and fix some integer overflows.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206 #endif
207
208 static Lisp_Object Qconses;
209 static Lisp_Object Qsymbols;
210 static Lisp_Object Qmiscs;
211 static Lisp_Object Qstrings;
212 static Lisp_Object Qvectors;
213 static Lisp_Object Qfloats;
214 static Lisp_Object Qintervals;
215 static Lisp_Object Qbuffers;
216 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217 static Lisp_Object Qgc_cons_threshold;
218 Lisp_Object Qautomatic_gc;
219 Lisp_Object Qchar_table_extra_slots;
220
221 /* Hook run after GC has finished. */
222
223 static Lisp_Object Qpost_gc_hook;
224
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer *);
229
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
232 #endif
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
236
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
240
241 enum mem_type
242 {
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
258 };
259
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
261
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
264
265 static Lisp_Object Vdead;
266 #define DEADP(x) EQ (x, Vdead)
267
268 #ifdef GC_MALLOC_CHECK
269
270 enum mem_type allocated_mem_type;
271
272 #endif /* GC_MALLOC_CHECK */
273
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
278
279 A red-black tree is a balanced binary tree with the following
280 properties:
281
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
288
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
291
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
297
298 struct mem_node
299 {
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
303
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
306
307 /* Start and end of allocated region. */
308 void *start, *end;
309
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
312
313 /* Memory type. */
314 enum mem_type type;
315 };
316
317 /* Base address of stack. Set in main. */
318
319 Lisp_Object *stack_base;
320
321 /* Root of the tree describing allocated Lisp memory. */
322
323 static struct mem_node *mem_root;
324
325 /* Lowest and highest known address in the heap. */
326
327 static void *min_heap_address, *max_heap_address;
328
329 /* Sentinel node of the tree. */
330
331 static struct mem_node mem_z;
332 #define MEM_NIL &mem_z
333
334 static struct mem_node *mem_insert (void *, void *, enum mem_type);
335 static void mem_insert_fixup (struct mem_node *);
336 static void mem_rotate_left (struct mem_node *);
337 static void mem_rotate_right (struct mem_node *);
338 static void mem_delete (struct mem_node *);
339 static void mem_delete_fixup (struct mem_node *);
340 static struct mem_node *mem_find (void *);
341
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
343
344 #ifndef DEADP
345 # define DEADP(x) 0
346 #endif
347
348 /* Recording what needs to be marked for gc. */
349
350 struct gcpro *gcprolist;
351
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
354
355 enum { NSTATICS = 2048 };
356 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
357
358 /* Index of next unused slot in staticvec. */
359
360 static int staticidx;
361
362 static void *pure_alloc (size_t, int);
363
364 /* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
367
368 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
371
372 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
373
374 static void *
375 ALIGN (void *ptr, int alignment)
376 {
377 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
378 }
379
380 static void
381 XFLOAT_INIT (Lisp_Object f, double n)
382 {
383 XFLOAT (f)->u.data = n;
384 }
385
386 \f
387 /************************************************************************
388 Malloc
389 ************************************************************************/
390
391 /* Function malloc calls this if it finds we are near exhausting storage. */
392
393 void
394 malloc_warning (const char *str)
395 {
396 pending_malloc_warning = str;
397 }
398
399
400 /* Display an already-pending malloc warning. */
401
402 void
403 display_malloc_warning (void)
404 {
405 call3 (intern ("display-warning"),
406 intern ("alloc"),
407 build_string (pending_malloc_warning),
408 intern ("emergency"));
409 pending_malloc_warning = 0;
410 }
411 \f
412 /* Called if we can't allocate relocatable space for a buffer. */
413
414 void
415 buffer_memory_full (ptrdiff_t nbytes)
416 {
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
422 malloc. */
423
424 #ifndef REL_ALLOC
425 memory_full (nbytes);
426 #else
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430 #endif
431 }
432
433 /* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436 #define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
438
439 #ifndef XMALLOC_OVERRUN_CHECK
440 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
441 #else
442
443 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
444 around each block.
445
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
450
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
454
455 #define XMALLOC_OVERRUN_CHECK_SIZE 16
456 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
458
459 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462 #define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
464
465 #if USE_LSB_TAG
466 # define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468 #else
469 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470 #endif
471 #define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
476
477 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
482
483 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
488
489 /* Insert and extract the block size in the header. */
490
491 static void
492 xmalloc_put_size (unsigned char *ptr, size_t size)
493 {
494 int i;
495 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
496 {
497 *--ptr = size & ((1 << CHAR_BIT) - 1);
498 size >>= CHAR_BIT;
499 }
500 }
501
502 static size_t
503 xmalloc_get_size (unsigned char *ptr)
504 {
505 size_t size = 0;
506 int i;
507 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
508 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
509 {
510 size <<= CHAR_BIT;
511 size += *ptr++;
512 }
513 return size;
514 }
515
516
517 /* Like malloc, but wraps allocated block with header and trailer. */
518
519 static void *
520 overrun_check_malloc (size_t size)
521 {
522 register unsigned char *val;
523 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
524 emacs_abort ();
525
526 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
527 if (val)
528 {
529 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
530 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
531 xmalloc_put_size (val, size);
532 memcpy (val + size, xmalloc_overrun_check_trailer,
533 XMALLOC_OVERRUN_CHECK_SIZE);
534 }
535 return val;
536 }
537
538
539 /* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
541
542 static void *
543 overrun_check_realloc (void *block, size_t size)
544 {
545 register unsigned char *val = (unsigned char *) block;
546 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
547 emacs_abort ();
548
549 if (val
550 && memcmp (xmalloc_overrun_check_header,
551 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
552 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
553 {
554 size_t osize = xmalloc_get_size (val);
555 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
556 XMALLOC_OVERRUN_CHECK_SIZE))
557 emacs_abort ();
558 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
559 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
560 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
561 }
562
563 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
564
565 if (val)
566 {
567 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
568 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 xmalloc_put_size (val, size);
570 memcpy (val + size, xmalloc_overrun_check_trailer,
571 XMALLOC_OVERRUN_CHECK_SIZE);
572 }
573 return val;
574 }
575
576 /* Like free, but checks block for overrun. */
577
578 static void
579 overrun_check_free (void *block)
580 {
581 unsigned char *val = (unsigned char *) block;
582
583 if (val
584 && memcmp (xmalloc_overrun_check_header,
585 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
586 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
587 {
588 size_t osize = xmalloc_get_size (val);
589 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
590 XMALLOC_OVERRUN_CHECK_SIZE))
591 emacs_abort ();
592 #ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
594 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
595 #else
596 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
597 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
599 #endif
600 }
601
602 free (val);
603 }
604
605 #undef malloc
606 #undef realloc
607 #undef free
608 #define malloc overrun_check_malloc
609 #define realloc overrun_check_realloc
610 #define free overrun_check_free
611 #endif
612
613 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
620 ugly head again. */
621 #ifdef XMALLOC_BLOCK_INPUT_CHECK
622 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
623 static void
624 malloc_block_input (void)
625 {
626 if (block_input_in_memory_allocators)
627 block_input ();
628 }
629 static void
630 malloc_unblock_input (void)
631 {
632 if (block_input_in_memory_allocators)
633 unblock_input ();
634 }
635 # define MALLOC_BLOCK_INPUT malloc_block_input ()
636 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637 #else
638 # define MALLOC_BLOCK_INPUT ((void) 0)
639 # define MALLOC_UNBLOCK_INPUT ((void) 0)
640 #endif
641
642 #define MALLOC_PROBE(size) \
643 do { \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
646 } while (0)
647
648
649 /* Like malloc but check for no memory and block interrupt input.. */
650
651 void *
652 xmalloc (size_t size)
653 {
654 void *val;
655
656 MALLOC_BLOCK_INPUT;
657 val = malloc (size);
658 MALLOC_UNBLOCK_INPUT;
659
660 if (!val && size)
661 memory_full (size);
662 MALLOC_PROBE (size);
663 return val;
664 }
665
666 /* Like the above, but zeroes out the memory just allocated. */
667
668 void *
669 xzalloc (size_t size)
670 {
671 void *val;
672
673 MALLOC_BLOCK_INPUT;
674 val = malloc (size);
675 MALLOC_UNBLOCK_INPUT;
676
677 if (!val && size)
678 memory_full (size);
679 memset (val, 0, size);
680 MALLOC_PROBE (size);
681 return val;
682 }
683
684 /* Like realloc but check for no memory and block interrupt input.. */
685
686 void *
687 xrealloc (void *block, size_t size)
688 {
689 void *val;
690
691 MALLOC_BLOCK_INPUT;
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
695 val = malloc (size);
696 else
697 val = realloc (block, size);
698 MALLOC_UNBLOCK_INPUT;
699
700 if (!val && size)
701 memory_full (size);
702 MALLOC_PROBE (size);
703 return val;
704 }
705
706
707 /* Like free but block interrupt input. */
708
709 void
710 xfree (void *block)
711 {
712 if (!block)
713 return;
714 MALLOC_BLOCK_INPUT;
715 free (block);
716 MALLOC_UNBLOCK_INPUT;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
719 }
720
721
722 /* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
724 be safe. */
725 verify (INT_MAX <= PTRDIFF_MAX);
726
727
728 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
730
731 void *
732 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
733 {
734 eassert (0 <= nitems && 0 < item_size);
735 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
736 memory_full (SIZE_MAX);
737 return xmalloc (nitems * item_size);
738 }
739
740
741 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
743
744 void *
745 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
746 {
747 eassert (0 <= nitems && 0 < item_size);
748 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
749 memory_full (SIZE_MAX);
750 return xrealloc (pa, nitems * item_size);
751 }
752
753
754 /* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
759
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
762 infinity.
763
764 If PA is null, then allocate a new array instead of reallocating
765 the old one.
766
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
769 return).
770
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
776
777 void *
778 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
779 ptrdiff_t nitems_max, ptrdiff_t item_size)
780 {
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
783 library malloc. */
784 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
785
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n = *nitems;
789 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
790 ptrdiff_t half_again = n >> 1;
791 ptrdiff_t incr_estimate = max (tiny_max, half_again);
792
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
796 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
797 ? nitems_max : C_language_max);
798 ptrdiff_t nitems_incr_max = n_max - n;
799 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
800
801 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
802 if (! pa)
803 *nitems = 0;
804 if (nitems_incr_max < incr)
805 memory_full (SIZE_MAX);
806 n += incr;
807 pa = xrealloc (pa, n * item_size);
808 *nitems = n;
809 return pa;
810 }
811
812
813 /* Like strdup, but uses xmalloc. */
814
815 char *
816 xstrdup (const char *s)
817 {
818 ptrdiff_t size;
819 eassert (s);
820 size = strlen (s) + 1;
821 return memcpy (xmalloc (size), s, size);
822 }
823
824 /* Like above, but duplicates Lisp string to C string. */
825
826 char *
827 xlispstrdup (Lisp_Object string)
828 {
829 ptrdiff_t size = SBYTES (string) + 1;
830 return memcpy (xmalloc (size), SSDATA (string), size);
831 }
832
833 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
835
836 void
837 xputenv (char const *string)
838 {
839 if (putenv ((char *) string) != 0)
840 memory_full (0);
841 }
842
843 /* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
845 void *
846 record_xmalloc (size_t size)
847 {
848 void *p = xmalloc (size);
849 record_unwind_protect_ptr (xfree, p);
850 return p;
851 }
852
853
854 /* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
857
858 #if ! USE_LSB_TAG
859 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
860 #endif
861
862 static void *
863 lisp_malloc (size_t nbytes, enum mem_type type)
864 {
865 register void *val;
866
867 MALLOC_BLOCK_INPUT;
868
869 #ifdef GC_MALLOC_CHECK
870 allocated_mem_type = type;
871 #endif
872
873 val = malloc (nbytes);
874
875 #if ! USE_LSB_TAG
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val && type != MEM_TYPE_NON_LISP)
880 {
881 Lisp_Object tem;
882 XSETCONS (tem, (char *) val + nbytes - 1);
883 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
884 {
885 lisp_malloc_loser = val;
886 free (val);
887 val = 0;
888 }
889 }
890 #endif
891
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val && type != MEM_TYPE_NON_LISP)
894 mem_insert (val, (char *) val + nbytes, type);
895 #endif
896
897 MALLOC_UNBLOCK_INPUT;
898 if (!val && nbytes)
899 memory_full (nbytes);
900 MALLOC_PROBE (nbytes);
901 return val;
902 }
903
904 /* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
906
907 static void
908 lisp_free (void *block)
909 {
910 MALLOC_BLOCK_INPUT;
911 free (block);
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block));
914 #endif
915 MALLOC_UNBLOCK_INPUT;
916 }
917
918 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
919
920 /* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
922
923 #if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
924 # define USE_ALIGNED_ALLOC 1
925 /* Defined in gmalloc.c. */
926 void *aligned_alloc (size_t, size_t);
927 #elif defined HAVE_ALIGNED_ALLOC
928 # define USE_ALIGNED_ALLOC 1
929 #elif defined HAVE_POSIX_MEMALIGN
930 # define USE_ALIGNED_ALLOC 1
931 static void *
932 aligned_alloc (size_t alignment, size_t size)
933 {
934 void *p;
935 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
936 }
937 #endif
938
939 /* BLOCK_ALIGN has to be a power of 2. */
940 #define BLOCK_ALIGN (1 << 10)
941
942 /* Padding to leave at the end of a malloc'd block. This is to give
943 malloc a chance to minimize the amount of memory wasted to alignment.
944 It should be tuned to the particular malloc library used.
945 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
946 aligned_alloc on the other hand would ideally prefer a value of 4
947 because otherwise, there's 1020 bytes wasted between each ablocks.
948 In Emacs, testing shows that those 1020 can most of the time be
949 efficiently used by malloc to place other objects, so a value of 0 can
950 still preferable unless you have a lot of aligned blocks and virtually
951 nothing else. */
952 #define BLOCK_PADDING 0
953 #define BLOCK_BYTES \
954 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
955
956 /* Internal data structures and constants. */
957
958 #define ABLOCKS_SIZE 16
959
960 /* An aligned block of memory. */
961 struct ablock
962 {
963 union
964 {
965 char payload[BLOCK_BYTES];
966 struct ablock *next_free;
967 } x;
968 /* `abase' is the aligned base of the ablocks. */
969 /* It is overloaded to hold the virtual `busy' field that counts
970 the number of used ablock in the parent ablocks.
971 The first ablock has the `busy' field, the others have the `abase'
972 field. To tell the difference, we assume that pointers will have
973 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
974 is used to tell whether the real base of the parent ablocks is `abase'
975 (if not, the word before the first ablock holds a pointer to the
976 real base). */
977 struct ablocks *abase;
978 /* The padding of all but the last ablock is unused. The padding of
979 the last ablock in an ablocks is not allocated. */
980 #if BLOCK_PADDING
981 char padding[BLOCK_PADDING];
982 #endif
983 };
984
985 /* A bunch of consecutive aligned blocks. */
986 struct ablocks
987 {
988 struct ablock blocks[ABLOCKS_SIZE];
989 };
990
991 /* Size of the block requested from malloc or aligned_alloc. */
992 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
993
994 #define ABLOCK_ABASE(block) \
995 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
996 ? (struct ablocks *)(block) \
997 : (block)->abase)
998
999 /* Virtual `busy' field. */
1000 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1001
1002 /* Pointer to the (not necessarily aligned) malloc block. */
1003 #ifdef USE_ALIGNED_ALLOC
1004 #define ABLOCKS_BASE(abase) (abase)
1005 #else
1006 #define ABLOCKS_BASE(abase) \
1007 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1008 #endif
1009
1010 /* The list of free ablock. */
1011 static struct ablock *free_ablock;
1012
1013 /* Allocate an aligned block of nbytes.
1014 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1015 smaller or equal to BLOCK_BYTES. */
1016 static void *
1017 lisp_align_malloc (size_t nbytes, enum mem_type type)
1018 {
1019 void *base, *val;
1020 struct ablocks *abase;
1021
1022 eassert (nbytes <= BLOCK_BYTES);
1023
1024 MALLOC_BLOCK_INPUT;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 allocated_mem_type = type;
1028 #endif
1029
1030 if (!free_ablock)
1031 {
1032 int i;
1033 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1034
1035 #ifdef DOUG_LEA_MALLOC
1036 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1037 because mapped region contents are not preserved in
1038 a dumped Emacs. */
1039 mallopt (M_MMAP_MAX, 0);
1040 #endif
1041
1042 #ifdef USE_ALIGNED_ALLOC
1043 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1044 #else
1045 base = malloc (ABLOCKS_BYTES);
1046 abase = ALIGN (base, BLOCK_ALIGN);
1047 #endif
1048
1049 if (base == 0)
1050 {
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (ABLOCKS_BYTES);
1053 }
1054
1055 aligned = (base == abase);
1056 if (!aligned)
1057 ((void **) abase)[-1] = base;
1058
1059 #ifdef DOUG_LEA_MALLOC
1060 /* Back to a reasonable maximum of mmap'ed areas. */
1061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1062 #endif
1063
1064 #if ! USE_LSB_TAG
1065 /* If the memory just allocated cannot be addressed thru a Lisp
1066 object's pointer, and it needs to be, that's equivalent to
1067 running out of memory. */
1068 if (type != MEM_TYPE_NON_LISP)
1069 {
1070 Lisp_Object tem;
1071 char *end = (char *) base + ABLOCKS_BYTES - 1;
1072 XSETCONS (tem, end);
1073 if ((char *) XCONS (tem) != end)
1074 {
1075 lisp_malloc_loser = base;
1076 free (base);
1077 MALLOC_UNBLOCK_INPUT;
1078 memory_full (SIZE_MAX);
1079 }
1080 }
1081 #endif
1082
1083 /* Initialize the blocks and put them on the free list.
1084 If `base' was not properly aligned, we can't use the last block. */
1085 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1086 {
1087 abase->blocks[i].abase = abase;
1088 abase->blocks[i].x.next_free = free_ablock;
1089 free_ablock = &abase->blocks[i];
1090 }
1091 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1092
1093 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1094 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1095 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1096 eassert (ABLOCKS_BASE (abase) == base);
1097 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1098 }
1099
1100 abase = ABLOCK_ABASE (free_ablock);
1101 ABLOCKS_BUSY (abase) =
1102 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1103 val = free_ablock;
1104 free_ablock = free_ablock->x.next_free;
1105
1106 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1107 if (type != MEM_TYPE_NON_LISP)
1108 mem_insert (val, (char *) val + nbytes, type);
1109 #endif
1110
1111 MALLOC_UNBLOCK_INPUT;
1112
1113 MALLOC_PROBE (nbytes);
1114
1115 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1116 return val;
1117 }
1118
1119 static void
1120 lisp_align_free (void *block)
1121 {
1122 struct ablock *ablock = block;
1123 struct ablocks *abase = ABLOCK_ABASE (ablock);
1124
1125 MALLOC_BLOCK_INPUT;
1126 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1127 mem_delete (mem_find (block));
1128 #endif
1129 /* Put on free list. */
1130 ablock->x.next_free = free_ablock;
1131 free_ablock = ablock;
1132 /* Update busy count. */
1133 ABLOCKS_BUSY (abase)
1134 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1135
1136 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1137 { /* All the blocks are free. */
1138 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1139 struct ablock **tem = &free_ablock;
1140 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1141
1142 while (*tem)
1143 {
1144 if (*tem >= (struct ablock *) abase && *tem < atop)
1145 {
1146 i++;
1147 *tem = (*tem)->x.next_free;
1148 }
1149 else
1150 tem = &(*tem)->x.next_free;
1151 }
1152 eassert ((aligned & 1) == aligned);
1153 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1154 #ifdef USE_POSIX_MEMALIGN
1155 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1156 #endif
1157 free (ABLOCKS_BASE (abase));
1158 }
1159 MALLOC_UNBLOCK_INPUT;
1160 }
1161
1162 \f
1163 /***********************************************************************
1164 Interval Allocation
1165 ***********************************************************************/
1166
1167 /* Number of intervals allocated in an interval_block structure.
1168 The 1020 is 1024 minus malloc overhead. */
1169
1170 #define INTERVAL_BLOCK_SIZE \
1171 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1172
1173 /* Intervals are allocated in chunks in the form of an interval_block
1174 structure. */
1175
1176 struct interval_block
1177 {
1178 /* Place `intervals' first, to preserve alignment. */
1179 struct interval intervals[INTERVAL_BLOCK_SIZE];
1180 struct interval_block *next;
1181 };
1182
1183 /* Current interval block. Its `next' pointer points to older
1184 blocks. */
1185
1186 static struct interval_block *interval_block;
1187
1188 /* Index in interval_block above of the next unused interval
1189 structure. */
1190
1191 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1192
1193 /* Number of free and live intervals. */
1194
1195 static EMACS_INT total_free_intervals, total_intervals;
1196
1197 /* List of free intervals. */
1198
1199 static INTERVAL interval_free_list;
1200
1201 /* Return a new interval. */
1202
1203 INTERVAL
1204 make_interval (void)
1205 {
1206 INTERVAL val;
1207
1208 MALLOC_BLOCK_INPUT;
1209
1210 if (interval_free_list)
1211 {
1212 val = interval_free_list;
1213 interval_free_list = INTERVAL_PARENT (interval_free_list);
1214 }
1215 else
1216 {
1217 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1218 {
1219 struct interval_block *newi
1220 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1221
1222 newi->next = interval_block;
1223 interval_block = newi;
1224 interval_block_index = 0;
1225 total_free_intervals += INTERVAL_BLOCK_SIZE;
1226 }
1227 val = &interval_block->intervals[interval_block_index++];
1228 }
1229
1230 MALLOC_UNBLOCK_INPUT;
1231
1232 consing_since_gc += sizeof (struct interval);
1233 intervals_consed++;
1234 total_free_intervals--;
1235 RESET_INTERVAL (val);
1236 val->gcmarkbit = 0;
1237 return val;
1238 }
1239
1240
1241 /* Mark Lisp objects in interval I. */
1242
1243 static void
1244 mark_interval (register INTERVAL i, Lisp_Object dummy)
1245 {
1246 /* Intervals should never be shared. So, if extra internal checking is
1247 enabled, GC aborts if it seems to have visited an interval twice. */
1248 eassert (!i->gcmarkbit);
1249 i->gcmarkbit = 1;
1250 mark_object (i->plist);
1251 }
1252
1253 /* Mark the interval tree rooted in I. */
1254
1255 #define MARK_INTERVAL_TREE(i) \
1256 do { \
1257 if (i && !i->gcmarkbit) \
1258 traverse_intervals_noorder (i, mark_interval, Qnil); \
1259 } while (0)
1260
1261 /***********************************************************************
1262 String Allocation
1263 ***********************************************************************/
1264
1265 /* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
1267 added to a free-list string_free_list. When a new Lisp_String is
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1270 we keep.
1271
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1275
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
1280
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `n.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
1287
1288 /* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
1290
1291 #define SBLOCK_SIZE 8188
1292
1293 /* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
1295
1296 #define LARGE_STRING_BYTES 1024
1297
1298 /* The SDATA typedef is a struct or union describing string memory
1299 sub-allocated from an sblock. This is where the contents of Lisp
1300 strings are stored. */
1301
1302 struct sdata
1303 {
1304 /* Back-pointer to the string this sdata belongs to. If null, this
1305 structure is free, and NBYTES (in this structure or in the union below)
1306 contains the string's byte size (the same value that STRING_BYTES
1307 would return if STRING were non-null). If non-null, STRING_BYTES
1308 (STRING) is the size of the data, and DATA contains the string's
1309 contents. */
1310 struct Lisp_String *string;
1311
1312 #ifdef GC_CHECK_STRING_BYTES
1313 ptrdiff_t nbytes;
1314 #endif
1315
1316 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1317 };
1318
1319 #ifdef GC_CHECK_STRING_BYTES
1320
1321 typedef struct sdata sdata;
1322 #define SDATA_NBYTES(S) (S)->nbytes
1323 #define SDATA_DATA(S) (S)->data
1324
1325 #else
1326
1327 typedef union
1328 {
1329 struct Lisp_String *string;
1330
1331 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1332 which has a flexible array member. However, if implemented by
1333 giving this union a member of type 'struct sdata', the union
1334 could not be the last (flexible) member of 'struct sblock',
1335 because C99 prohibits a flexible array member from having a type
1336 that is itself a flexible array. So, comment this member out here,
1337 but remember that the option's there when using this union. */
1338 #if 0
1339 struct sdata u;
1340 #endif
1341
1342 /* When STRING is null. */
1343 struct
1344 {
1345 struct Lisp_String *string;
1346 ptrdiff_t nbytes;
1347 } n;
1348 } sdata;
1349
1350 #define SDATA_NBYTES(S) (S)->n.nbytes
1351 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1352
1353 #endif /* not GC_CHECK_STRING_BYTES */
1354
1355 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1356
1357 /* Structure describing a block of memory which is sub-allocated to
1358 obtain string data memory for strings. Blocks for small strings
1359 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1360 as large as needed. */
1361
1362 struct sblock
1363 {
1364 /* Next in list. */
1365 struct sblock *next;
1366
1367 /* Pointer to the next free sdata block. This points past the end
1368 of the sblock if there isn't any space left in this block. */
1369 sdata *next_free;
1370
1371 /* String data. */
1372 sdata data[FLEXIBLE_ARRAY_MEMBER];
1373 };
1374
1375 /* Number of Lisp strings in a string_block structure. The 1020 is
1376 1024 minus malloc overhead. */
1377
1378 #define STRING_BLOCK_SIZE \
1379 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1380
1381 /* Structure describing a block from which Lisp_String structures
1382 are allocated. */
1383
1384 struct string_block
1385 {
1386 /* Place `strings' first, to preserve alignment. */
1387 struct Lisp_String strings[STRING_BLOCK_SIZE];
1388 struct string_block *next;
1389 };
1390
1391 /* Head and tail of the list of sblock structures holding Lisp string
1392 data. We always allocate from current_sblock. The NEXT pointers
1393 in the sblock structures go from oldest_sblock to current_sblock. */
1394
1395 static struct sblock *oldest_sblock, *current_sblock;
1396
1397 /* List of sblocks for large strings. */
1398
1399 static struct sblock *large_sblocks;
1400
1401 /* List of string_block structures. */
1402
1403 static struct string_block *string_blocks;
1404
1405 /* Free-list of Lisp_Strings. */
1406
1407 static struct Lisp_String *string_free_list;
1408
1409 /* Number of live and free Lisp_Strings. */
1410
1411 static EMACS_INT total_strings, total_free_strings;
1412
1413 /* Number of bytes used by live strings. */
1414
1415 static EMACS_INT total_string_bytes;
1416
1417 /* Given a pointer to a Lisp_String S which is on the free-list
1418 string_free_list, return a pointer to its successor in the
1419 free-list. */
1420
1421 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1422
1423 /* Return a pointer to the sdata structure belonging to Lisp string S.
1424 S must be live, i.e. S->data must not be null. S->data is actually
1425 a pointer to the `u.data' member of its sdata structure; the
1426 structure starts at a constant offset in front of that. */
1427
1428 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1429
1430
1431 #ifdef GC_CHECK_STRING_OVERRUN
1432
1433 /* We check for overrun in string data blocks by appending a small
1434 "cookie" after each allocated string data block, and check for the
1435 presence of this cookie during GC. */
1436
1437 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1438 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1439 { '\xde', '\xad', '\xbe', '\xef' };
1440
1441 #else
1442 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1443 #endif
1444
1445 /* Value is the size of an sdata structure large enough to hold NBYTES
1446 bytes of string data. The value returned includes a terminating
1447 NUL byte, the size of the sdata structure, and padding. */
1448
1449 #ifdef GC_CHECK_STRING_BYTES
1450
1451 #define SDATA_SIZE(NBYTES) \
1452 ((SDATA_DATA_OFFSET \
1453 + (NBYTES) + 1 \
1454 + sizeof (ptrdiff_t) - 1) \
1455 & ~(sizeof (ptrdiff_t) - 1))
1456
1457 #else /* not GC_CHECK_STRING_BYTES */
1458
1459 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1460 less than the size of that member. The 'max' is not needed when
1461 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1462 alignment code reserves enough space. */
1463
1464 #define SDATA_SIZE(NBYTES) \
1465 ((SDATA_DATA_OFFSET \
1466 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1467 ? NBYTES \
1468 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1469 + 1 \
1470 + sizeof (ptrdiff_t) - 1) \
1471 & ~(sizeof (ptrdiff_t) - 1))
1472
1473 #endif /* not GC_CHECK_STRING_BYTES */
1474
1475 /* Extra bytes to allocate for each string. */
1476
1477 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1478
1479 /* Exact bound on the number of bytes in a string, not counting the
1480 terminating null. A string cannot contain more bytes than
1481 STRING_BYTES_BOUND, nor can it be so long that the size_t
1482 arithmetic in allocate_string_data would overflow while it is
1483 calculating a value to be passed to malloc. */
1484 static ptrdiff_t const STRING_BYTES_MAX =
1485 min (STRING_BYTES_BOUND,
1486 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1487 - GC_STRING_EXTRA
1488 - offsetof (struct sblock, data)
1489 - SDATA_DATA_OFFSET)
1490 & ~(sizeof (EMACS_INT) - 1)));
1491
1492 /* Initialize string allocation. Called from init_alloc_once. */
1493
1494 static void
1495 init_strings (void)
1496 {
1497 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1498 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1499 }
1500
1501
1502 #ifdef GC_CHECK_STRING_BYTES
1503
1504 static int check_string_bytes_count;
1505
1506 /* Like STRING_BYTES, but with debugging check. Can be
1507 called during GC, so pay attention to the mark bit. */
1508
1509 ptrdiff_t
1510 string_bytes (struct Lisp_String *s)
1511 {
1512 ptrdiff_t nbytes =
1513 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1514
1515 if (!PURE_POINTER_P (s)
1516 && s->data
1517 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1518 emacs_abort ();
1519 return nbytes;
1520 }
1521
1522 /* Check validity of Lisp strings' string_bytes member in B. */
1523
1524 static void
1525 check_sblock (struct sblock *b)
1526 {
1527 sdata *from, *end, *from_end;
1528
1529 end = b->next_free;
1530
1531 for (from = b->data; from < end; from = from_end)
1532 {
1533 /* Compute the next FROM here because copying below may
1534 overwrite data we need to compute it. */
1535 ptrdiff_t nbytes;
1536
1537 /* Check that the string size recorded in the string is the
1538 same as the one recorded in the sdata structure. */
1539 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1540 : SDATA_NBYTES (from));
1541 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1542 }
1543 }
1544
1545
1546 /* Check validity of Lisp strings' string_bytes member. ALL_P
1547 means check all strings, otherwise check only most
1548 recently allocated strings. Used for hunting a bug. */
1549
1550 static void
1551 check_string_bytes (bool all_p)
1552 {
1553 if (all_p)
1554 {
1555 struct sblock *b;
1556
1557 for (b = large_sblocks; b; b = b->next)
1558 {
1559 struct Lisp_String *s = b->data[0].string;
1560 if (s)
1561 string_bytes (s);
1562 }
1563
1564 for (b = oldest_sblock; b; b = b->next)
1565 check_sblock (b);
1566 }
1567 else if (current_sblock)
1568 check_sblock (current_sblock);
1569 }
1570
1571 #else /* not GC_CHECK_STRING_BYTES */
1572
1573 #define check_string_bytes(all) ((void) 0)
1574
1575 #endif /* GC_CHECK_STRING_BYTES */
1576
1577 #ifdef GC_CHECK_STRING_FREE_LIST
1578
1579 /* Walk through the string free list looking for bogus next pointers.
1580 This may catch buffer overrun from a previous string. */
1581
1582 static void
1583 check_string_free_list (void)
1584 {
1585 struct Lisp_String *s;
1586
1587 /* Pop a Lisp_String off the free-list. */
1588 s = string_free_list;
1589 while (s != NULL)
1590 {
1591 if ((uintptr_t) s < 1024)
1592 emacs_abort ();
1593 s = NEXT_FREE_LISP_STRING (s);
1594 }
1595 }
1596 #else
1597 #define check_string_free_list()
1598 #endif
1599
1600 /* Return a new Lisp_String. */
1601
1602 static struct Lisp_String *
1603 allocate_string (void)
1604 {
1605 struct Lisp_String *s;
1606
1607 MALLOC_BLOCK_INPUT;
1608
1609 /* If the free-list is empty, allocate a new string_block, and
1610 add all the Lisp_Strings in it to the free-list. */
1611 if (string_free_list == NULL)
1612 {
1613 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1614 int i;
1615
1616 b->next = string_blocks;
1617 string_blocks = b;
1618
1619 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1620 {
1621 s = b->strings + i;
1622 /* Every string on a free list should have NULL data pointer. */
1623 s->data = NULL;
1624 NEXT_FREE_LISP_STRING (s) = string_free_list;
1625 string_free_list = s;
1626 }
1627
1628 total_free_strings += STRING_BLOCK_SIZE;
1629 }
1630
1631 check_string_free_list ();
1632
1633 /* Pop a Lisp_String off the free-list. */
1634 s = string_free_list;
1635 string_free_list = NEXT_FREE_LISP_STRING (s);
1636
1637 MALLOC_UNBLOCK_INPUT;
1638
1639 --total_free_strings;
1640 ++total_strings;
1641 ++strings_consed;
1642 consing_since_gc += sizeof *s;
1643
1644 #ifdef GC_CHECK_STRING_BYTES
1645 if (!noninteractive)
1646 {
1647 if (++check_string_bytes_count == 200)
1648 {
1649 check_string_bytes_count = 0;
1650 check_string_bytes (1);
1651 }
1652 else
1653 check_string_bytes (0);
1654 }
1655 #endif /* GC_CHECK_STRING_BYTES */
1656
1657 return s;
1658 }
1659
1660
1661 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1662 plus a NUL byte at the end. Allocate an sdata structure for S, and
1663 set S->data to its `u.data' member. Store a NUL byte at the end of
1664 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1665 S->data if it was initially non-null. */
1666
1667 void
1668 allocate_string_data (struct Lisp_String *s,
1669 EMACS_INT nchars, EMACS_INT nbytes)
1670 {
1671 sdata *data, *old_data;
1672 struct sblock *b;
1673 ptrdiff_t needed, old_nbytes;
1674
1675 if (STRING_BYTES_MAX < nbytes)
1676 string_overflow ();
1677
1678 /* Determine the number of bytes needed to store NBYTES bytes
1679 of string data. */
1680 needed = SDATA_SIZE (nbytes);
1681 if (s->data)
1682 {
1683 old_data = SDATA_OF_STRING (s);
1684 old_nbytes = STRING_BYTES (s);
1685 }
1686 else
1687 old_data = NULL;
1688
1689 MALLOC_BLOCK_INPUT;
1690
1691 if (nbytes > LARGE_STRING_BYTES)
1692 {
1693 size_t size = offsetof (struct sblock, data) + needed;
1694
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1697 because mapped region contents are not preserved in
1698 a dumped Emacs.
1699
1700 In case you think of allowing it in a dumped Emacs at the
1701 cost of not being able to re-dump, there's another reason:
1702 mmap'ed data typically have an address towards the top of the
1703 address space, which won't fit into an EMACS_INT (at least on
1704 32-bit systems with the current tagging scheme). --fx */
1705 mallopt (M_MMAP_MAX, 0);
1706 #endif
1707
1708 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1709
1710 #ifdef DOUG_LEA_MALLOC
1711 /* Back to a reasonable maximum of mmap'ed areas. */
1712 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1713 #endif
1714
1715 b->next_free = b->data;
1716 b->data[0].string = NULL;
1717 b->next = large_sblocks;
1718 large_sblocks = b;
1719 }
1720 else if (current_sblock == NULL
1721 || (((char *) current_sblock + SBLOCK_SIZE
1722 - (char *) current_sblock->next_free)
1723 < (needed + GC_STRING_EXTRA)))
1724 {
1725 /* Not enough room in the current sblock. */
1726 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1727 b->next_free = b->data;
1728 b->data[0].string = NULL;
1729 b->next = NULL;
1730
1731 if (current_sblock)
1732 current_sblock->next = b;
1733 else
1734 oldest_sblock = b;
1735 current_sblock = b;
1736 }
1737 else
1738 b = current_sblock;
1739
1740 data = b->next_free;
1741 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1742
1743 MALLOC_UNBLOCK_INPUT;
1744
1745 data->string = s;
1746 s->data = SDATA_DATA (data);
1747 #ifdef GC_CHECK_STRING_BYTES
1748 SDATA_NBYTES (data) = nbytes;
1749 #endif
1750 s->size = nchars;
1751 s->size_byte = nbytes;
1752 s->data[nbytes] = '\0';
1753 #ifdef GC_CHECK_STRING_OVERRUN
1754 memcpy ((char *) data + needed, string_overrun_cookie,
1755 GC_STRING_OVERRUN_COOKIE_SIZE);
1756 #endif
1757
1758 /* Note that Faset may call to this function when S has already data
1759 assigned. In this case, mark data as free by setting it's string
1760 back-pointer to null, and record the size of the data in it. */
1761 if (old_data)
1762 {
1763 SDATA_NBYTES (old_data) = old_nbytes;
1764 old_data->string = NULL;
1765 }
1766
1767 consing_since_gc += needed;
1768 }
1769
1770
1771 /* Sweep and compact strings. */
1772
1773 static void
1774 sweep_strings (void)
1775 {
1776 struct string_block *b, *next;
1777 struct string_block *live_blocks = NULL;
1778
1779 string_free_list = NULL;
1780 total_strings = total_free_strings = 0;
1781 total_string_bytes = 0;
1782
1783 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1784 for (b = string_blocks; b; b = next)
1785 {
1786 int i, nfree = 0;
1787 struct Lisp_String *free_list_before = string_free_list;
1788
1789 next = b->next;
1790
1791 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1792 {
1793 struct Lisp_String *s = b->strings + i;
1794
1795 if (s->data)
1796 {
1797 /* String was not on free-list before. */
1798 if (STRING_MARKED_P (s))
1799 {
1800 /* String is live; unmark it and its intervals. */
1801 UNMARK_STRING (s);
1802
1803 /* Do not use string_(set|get)_intervals here. */
1804 s->intervals = balance_intervals (s->intervals);
1805
1806 ++total_strings;
1807 total_string_bytes += STRING_BYTES (s);
1808 }
1809 else
1810 {
1811 /* String is dead. Put it on the free-list. */
1812 sdata *data = SDATA_OF_STRING (s);
1813
1814 /* Save the size of S in its sdata so that we know
1815 how large that is. Reset the sdata's string
1816 back-pointer so that we know it's free. */
1817 #ifdef GC_CHECK_STRING_BYTES
1818 if (string_bytes (s) != SDATA_NBYTES (data))
1819 emacs_abort ();
1820 #else
1821 data->n.nbytes = STRING_BYTES (s);
1822 #endif
1823 data->string = NULL;
1824
1825 /* Reset the strings's `data' member so that we
1826 know it's free. */
1827 s->data = NULL;
1828
1829 /* Put the string on the free-list. */
1830 NEXT_FREE_LISP_STRING (s) = string_free_list;
1831 string_free_list = s;
1832 ++nfree;
1833 }
1834 }
1835 else
1836 {
1837 /* S was on the free-list before. Put it there again. */
1838 NEXT_FREE_LISP_STRING (s) = string_free_list;
1839 string_free_list = s;
1840 ++nfree;
1841 }
1842 }
1843
1844 /* Free blocks that contain free Lisp_Strings only, except
1845 the first two of them. */
1846 if (nfree == STRING_BLOCK_SIZE
1847 && total_free_strings > STRING_BLOCK_SIZE)
1848 {
1849 lisp_free (b);
1850 string_free_list = free_list_before;
1851 }
1852 else
1853 {
1854 total_free_strings += nfree;
1855 b->next = live_blocks;
1856 live_blocks = b;
1857 }
1858 }
1859
1860 check_string_free_list ();
1861
1862 string_blocks = live_blocks;
1863 free_large_strings ();
1864 compact_small_strings ();
1865
1866 check_string_free_list ();
1867 }
1868
1869
1870 /* Free dead large strings. */
1871
1872 static void
1873 free_large_strings (void)
1874 {
1875 struct sblock *b, *next;
1876 struct sblock *live_blocks = NULL;
1877
1878 for (b = large_sblocks; b; b = next)
1879 {
1880 next = b->next;
1881
1882 if (b->data[0].string == NULL)
1883 lisp_free (b);
1884 else
1885 {
1886 b->next = live_blocks;
1887 live_blocks = b;
1888 }
1889 }
1890
1891 large_sblocks = live_blocks;
1892 }
1893
1894
1895 /* Compact data of small strings. Free sblocks that don't contain
1896 data of live strings after compaction. */
1897
1898 static void
1899 compact_small_strings (void)
1900 {
1901 struct sblock *b, *tb, *next;
1902 sdata *from, *to, *end, *tb_end;
1903 sdata *to_end, *from_end;
1904
1905 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1906 to, and TB_END is the end of TB. */
1907 tb = oldest_sblock;
1908 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1909 to = tb->data;
1910
1911 /* Step through the blocks from the oldest to the youngest. We
1912 expect that old blocks will stabilize over time, so that less
1913 copying will happen this way. */
1914 for (b = oldest_sblock; b; b = b->next)
1915 {
1916 end = b->next_free;
1917 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1918
1919 for (from = b->data; from < end; from = from_end)
1920 {
1921 /* Compute the next FROM here because copying below may
1922 overwrite data we need to compute it. */
1923 ptrdiff_t nbytes;
1924 struct Lisp_String *s = from->string;
1925
1926 #ifdef GC_CHECK_STRING_BYTES
1927 /* Check that the string size recorded in the string is the
1928 same as the one recorded in the sdata structure. */
1929 if (s && string_bytes (s) != SDATA_NBYTES (from))
1930 emacs_abort ();
1931 #endif /* GC_CHECK_STRING_BYTES */
1932
1933 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1934 eassert (nbytes <= LARGE_STRING_BYTES);
1935
1936 nbytes = SDATA_SIZE (nbytes);
1937 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1938
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 if (memcmp (string_overrun_cookie,
1941 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1942 GC_STRING_OVERRUN_COOKIE_SIZE))
1943 emacs_abort ();
1944 #endif
1945
1946 /* Non-NULL S means it's alive. Copy its data. */
1947 if (s)
1948 {
1949 /* If TB is full, proceed with the next sblock. */
1950 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1951 if (to_end > tb_end)
1952 {
1953 tb->next_free = to;
1954 tb = tb->next;
1955 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1956 to = tb->data;
1957 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1958 }
1959
1960 /* Copy, and update the string's `data' pointer. */
1961 if (from != to)
1962 {
1963 eassert (tb != b || to < from);
1964 memmove (to, from, nbytes + GC_STRING_EXTRA);
1965 to->string->data = SDATA_DATA (to);
1966 }
1967
1968 /* Advance past the sdata we copied to. */
1969 to = to_end;
1970 }
1971 }
1972 }
1973
1974 /* The rest of the sblocks following TB don't contain live data, so
1975 we can free them. */
1976 for (b = tb->next; b; b = next)
1977 {
1978 next = b->next;
1979 lisp_free (b);
1980 }
1981
1982 tb->next_free = to;
1983 tb->next = NULL;
1984 current_sblock = tb;
1985 }
1986
1987 void
1988 string_overflow (void)
1989 {
1990 error ("Maximum string size exceeded");
1991 }
1992
1993 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1994 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1995 LENGTH must be an integer.
1996 INIT must be an integer that represents a character. */)
1997 (Lisp_Object length, Lisp_Object init)
1998 {
1999 register Lisp_Object val;
2000 int c;
2001 EMACS_INT nbytes;
2002
2003 CHECK_NATNUM (length);
2004 CHECK_CHARACTER (init);
2005
2006 c = XFASTINT (init);
2007 if (ASCII_CHAR_P (c))
2008 {
2009 nbytes = XINT (length);
2010 val = make_uninit_string (nbytes);
2011 memset (SDATA (val), c, nbytes);
2012 SDATA (val)[nbytes] = 0;
2013 }
2014 else
2015 {
2016 unsigned char str[MAX_MULTIBYTE_LENGTH];
2017 ptrdiff_t len = CHAR_STRING (c, str);
2018 EMACS_INT string_len = XINT (length);
2019 unsigned char *p, *beg, *end;
2020
2021 if (string_len > STRING_BYTES_MAX / len)
2022 string_overflow ();
2023 nbytes = len * string_len;
2024 val = make_uninit_multibyte_string (string_len, nbytes);
2025 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2026 {
2027 /* First time we just copy `str' to the data of `val'. */
2028 if (p == beg)
2029 memcpy (p, str, len);
2030 else
2031 {
2032 /* Next time we copy largest possible chunk from
2033 initialized to uninitialized part of `val'. */
2034 len = min (p - beg, end - p);
2035 memcpy (p, beg, len);
2036 }
2037 }
2038 *p = 0;
2039 }
2040
2041 return val;
2042 }
2043
2044 static EMACS_INT
2045 bool_vector_exact_payload_bytes (EMACS_INT nbits)
2046 {
2047 eassume (0 <= nbits);
2048 return (nbits + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
2049 }
2050
2051 static EMACS_INT
2052 bool_vector_payload_bytes (EMACS_INT nbits)
2053 {
2054 EMACS_INT exact_needed_bytes = bool_vector_exact_payload_bytes (nbits);
2055
2056 /* Always allocate at least one machine word of payload so that
2057 bool-vector operations in data.c don't need a special case
2058 for empty vectors. */
2059 return ROUNDUP (exact_needed_bytes + !exact_needed_bytes,
2060 sizeof (bits_word));
2061 }
2062
2063 void
2064 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2065 {
2066 EMACS_INT nbits = bool_vector_size (a);
2067 if (0 < nbits)
2068 {
2069 unsigned char *data = bool_vector_uchar_data (a);
2070 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2071 ptrdiff_t nbytes = ((nbits + BOOL_VECTOR_BITS_PER_CHAR - 1)
2072 / BOOL_VECTOR_BITS_PER_CHAR);
2073 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2074 memset (data, pattern, nbytes - 1);
2075 data[nbytes - 1] = pattern & last_mask;
2076 }
2077 }
2078
2079 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2080 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2081 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2082 (Lisp_Object length, Lisp_Object init)
2083 {
2084 Lisp_Object val;
2085 struct Lisp_Bool_Vector *p;
2086 EMACS_INT exact_payload_bytes, total_payload_bytes, needed_elements;
2087
2088 CHECK_NATNUM (length);
2089
2090 exact_payload_bytes = bool_vector_exact_payload_bytes (XFASTINT (length));
2091 total_payload_bytes = bool_vector_payload_bytes (XFASTINT (length));
2092
2093 needed_elements = ((bool_header_size - header_size + total_payload_bytes
2094 + word_size - 1)
2095 / word_size);
2096
2097 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2098 XSETVECTOR (val, p);
2099 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2100
2101 p->size = XFASTINT (length);
2102 bool_vector_fill (val, init);
2103
2104 /* Clear padding at the end. */
2105 eassume (exact_payload_bytes <= total_payload_bytes);
2106 memset (bool_vector_uchar_data (val) + exact_payload_bytes,
2107 0,
2108 total_payload_bytes - exact_payload_bytes);
2109
2110 return val;
2111 }
2112
2113
2114 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2115 of characters from the contents. This string may be unibyte or
2116 multibyte, depending on the contents. */
2117
2118 Lisp_Object
2119 make_string (const char *contents, ptrdiff_t nbytes)
2120 {
2121 register Lisp_Object val;
2122 ptrdiff_t nchars, multibyte_nbytes;
2123
2124 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2125 &nchars, &multibyte_nbytes);
2126 if (nbytes == nchars || nbytes != multibyte_nbytes)
2127 /* CONTENTS contains no multibyte sequences or contains an invalid
2128 multibyte sequence. We must make unibyte string. */
2129 val = make_unibyte_string (contents, nbytes);
2130 else
2131 val = make_multibyte_string (contents, nchars, nbytes);
2132 return val;
2133 }
2134
2135
2136 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2137
2138 Lisp_Object
2139 make_unibyte_string (const char *contents, ptrdiff_t length)
2140 {
2141 register Lisp_Object val;
2142 val = make_uninit_string (length);
2143 memcpy (SDATA (val), contents, length);
2144 return val;
2145 }
2146
2147
2148 /* Make a multibyte string from NCHARS characters occupying NBYTES
2149 bytes at CONTENTS. */
2150
2151 Lisp_Object
2152 make_multibyte_string (const char *contents,
2153 ptrdiff_t nchars, ptrdiff_t nbytes)
2154 {
2155 register Lisp_Object val;
2156 val = make_uninit_multibyte_string (nchars, nbytes);
2157 memcpy (SDATA (val), contents, nbytes);
2158 return val;
2159 }
2160
2161
2162 /* Make a string from NCHARS characters occupying NBYTES bytes at
2163 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2164
2165 Lisp_Object
2166 make_string_from_bytes (const char *contents,
2167 ptrdiff_t nchars, ptrdiff_t nbytes)
2168 {
2169 register Lisp_Object val;
2170 val = make_uninit_multibyte_string (nchars, nbytes);
2171 memcpy (SDATA (val), contents, nbytes);
2172 if (SBYTES (val) == SCHARS (val))
2173 STRING_SET_UNIBYTE (val);
2174 return val;
2175 }
2176
2177
2178 /* Make a string from NCHARS characters occupying NBYTES bytes at
2179 CONTENTS. The argument MULTIBYTE controls whether to label the
2180 string as multibyte. If NCHARS is negative, it counts the number of
2181 characters by itself. */
2182
2183 Lisp_Object
2184 make_specified_string (const char *contents,
2185 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2186 {
2187 Lisp_Object val;
2188
2189 if (nchars < 0)
2190 {
2191 if (multibyte)
2192 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2193 nbytes);
2194 else
2195 nchars = nbytes;
2196 }
2197 val = make_uninit_multibyte_string (nchars, nbytes);
2198 memcpy (SDATA (val), contents, nbytes);
2199 if (!multibyte)
2200 STRING_SET_UNIBYTE (val);
2201 return val;
2202 }
2203
2204
2205 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2206 occupying LENGTH bytes. */
2207
2208 Lisp_Object
2209 make_uninit_string (EMACS_INT length)
2210 {
2211 Lisp_Object val;
2212
2213 if (!length)
2214 return empty_unibyte_string;
2215 val = make_uninit_multibyte_string (length, length);
2216 STRING_SET_UNIBYTE (val);
2217 return val;
2218 }
2219
2220
2221 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2222 which occupy NBYTES bytes. */
2223
2224 Lisp_Object
2225 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2226 {
2227 Lisp_Object string;
2228 struct Lisp_String *s;
2229
2230 if (nchars < 0)
2231 emacs_abort ();
2232 if (!nbytes)
2233 return empty_multibyte_string;
2234
2235 s = allocate_string ();
2236 s->intervals = NULL;
2237 allocate_string_data (s, nchars, nbytes);
2238 XSETSTRING (string, s);
2239 string_chars_consed += nbytes;
2240 return string;
2241 }
2242
2243 /* Print arguments to BUF according to a FORMAT, then return
2244 a Lisp_String initialized with the data from BUF. */
2245
2246 Lisp_Object
2247 make_formatted_string (char *buf, const char *format, ...)
2248 {
2249 va_list ap;
2250 int length;
2251
2252 va_start (ap, format);
2253 length = vsprintf (buf, format, ap);
2254 va_end (ap);
2255 return make_string (buf, length);
2256 }
2257
2258 \f
2259 /***********************************************************************
2260 Float Allocation
2261 ***********************************************************************/
2262
2263 /* We store float cells inside of float_blocks, allocating a new
2264 float_block with malloc whenever necessary. Float cells reclaimed
2265 by GC are put on a free list to be reallocated before allocating
2266 any new float cells from the latest float_block. */
2267
2268 #define FLOAT_BLOCK_SIZE \
2269 (((BLOCK_BYTES - sizeof (struct float_block *) \
2270 /* The compiler might add padding at the end. */ \
2271 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2272 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2273
2274 #define GETMARKBIT(block,n) \
2275 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2276 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2277 & 1)
2278
2279 #define SETMARKBIT(block,n) \
2280 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2281 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2282
2283 #define UNSETMARKBIT(block,n) \
2284 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2285 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2286
2287 #define FLOAT_BLOCK(fptr) \
2288 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2289
2290 #define FLOAT_INDEX(fptr) \
2291 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2292
2293 struct float_block
2294 {
2295 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2296 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2297 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2298 struct float_block *next;
2299 };
2300
2301 #define FLOAT_MARKED_P(fptr) \
2302 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2303
2304 #define FLOAT_MARK(fptr) \
2305 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2306
2307 #define FLOAT_UNMARK(fptr) \
2308 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2309
2310 /* Current float_block. */
2311
2312 static struct float_block *float_block;
2313
2314 /* Index of first unused Lisp_Float in the current float_block. */
2315
2316 static int float_block_index = FLOAT_BLOCK_SIZE;
2317
2318 /* Free-list of Lisp_Floats. */
2319
2320 static struct Lisp_Float *float_free_list;
2321
2322 /* Return a new float object with value FLOAT_VALUE. */
2323
2324 Lisp_Object
2325 make_float (double float_value)
2326 {
2327 register Lisp_Object val;
2328
2329 MALLOC_BLOCK_INPUT;
2330
2331 if (float_free_list)
2332 {
2333 /* We use the data field for chaining the free list
2334 so that we won't use the same field that has the mark bit. */
2335 XSETFLOAT (val, float_free_list);
2336 float_free_list = float_free_list->u.chain;
2337 }
2338 else
2339 {
2340 if (float_block_index == FLOAT_BLOCK_SIZE)
2341 {
2342 struct float_block *new
2343 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2344 new->next = float_block;
2345 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2346 float_block = new;
2347 float_block_index = 0;
2348 total_free_floats += FLOAT_BLOCK_SIZE;
2349 }
2350 XSETFLOAT (val, &float_block->floats[float_block_index]);
2351 float_block_index++;
2352 }
2353
2354 MALLOC_UNBLOCK_INPUT;
2355
2356 XFLOAT_INIT (val, float_value);
2357 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2358 consing_since_gc += sizeof (struct Lisp_Float);
2359 floats_consed++;
2360 total_free_floats--;
2361 return val;
2362 }
2363
2364
2365 \f
2366 /***********************************************************************
2367 Cons Allocation
2368 ***********************************************************************/
2369
2370 /* We store cons cells inside of cons_blocks, allocating a new
2371 cons_block with malloc whenever necessary. Cons cells reclaimed by
2372 GC are put on a free list to be reallocated before allocating
2373 any new cons cells from the latest cons_block. */
2374
2375 #define CONS_BLOCK_SIZE \
2376 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2377 /* The compiler might add padding at the end. */ \
2378 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2379 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2380
2381 #define CONS_BLOCK(fptr) \
2382 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2383
2384 #define CONS_INDEX(fptr) \
2385 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2386
2387 struct cons_block
2388 {
2389 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2390 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2391 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2392 struct cons_block *next;
2393 };
2394
2395 #define CONS_MARKED_P(fptr) \
2396 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2397
2398 #define CONS_MARK(fptr) \
2399 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2400
2401 #define CONS_UNMARK(fptr) \
2402 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2403
2404 /* Current cons_block. */
2405
2406 static struct cons_block *cons_block;
2407
2408 /* Index of first unused Lisp_Cons in the current block. */
2409
2410 static int cons_block_index = CONS_BLOCK_SIZE;
2411
2412 /* Free-list of Lisp_Cons structures. */
2413
2414 static struct Lisp_Cons *cons_free_list;
2415
2416 /* Explicitly free a cons cell by putting it on the free-list. */
2417
2418 void
2419 free_cons (struct Lisp_Cons *ptr)
2420 {
2421 ptr->u.chain = cons_free_list;
2422 #if GC_MARK_STACK
2423 ptr->car = Vdead;
2424 #endif
2425 cons_free_list = ptr;
2426 consing_since_gc -= sizeof *ptr;
2427 total_free_conses++;
2428 }
2429
2430 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2431 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2432 (Lisp_Object car, Lisp_Object cdr)
2433 {
2434 register Lisp_Object val;
2435
2436 MALLOC_BLOCK_INPUT;
2437
2438 if (cons_free_list)
2439 {
2440 /* We use the cdr for chaining the free list
2441 so that we won't use the same field that has the mark bit. */
2442 XSETCONS (val, cons_free_list);
2443 cons_free_list = cons_free_list->u.chain;
2444 }
2445 else
2446 {
2447 if (cons_block_index == CONS_BLOCK_SIZE)
2448 {
2449 struct cons_block *new
2450 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2451 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2452 new->next = cons_block;
2453 cons_block = new;
2454 cons_block_index = 0;
2455 total_free_conses += CONS_BLOCK_SIZE;
2456 }
2457 XSETCONS (val, &cons_block->conses[cons_block_index]);
2458 cons_block_index++;
2459 }
2460
2461 MALLOC_UNBLOCK_INPUT;
2462
2463 XSETCAR (val, car);
2464 XSETCDR (val, cdr);
2465 eassert (!CONS_MARKED_P (XCONS (val)));
2466 consing_since_gc += sizeof (struct Lisp_Cons);
2467 total_free_conses--;
2468 cons_cells_consed++;
2469 return val;
2470 }
2471
2472 #ifdef GC_CHECK_CONS_LIST
2473 /* Get an error now if there's any junk in the cons free list. */
2474 void
2475 check_cons_list (void)
2476 {
2477 struct Lisp_Cons *tail = cons_free_list;
2478
2479 while (tail)
2480 tail = tail->u.chain;
2481 }
2482 #endif
2483
2484 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2485
2486 Lisp_Object
2487 list1 (Lisp_Object arg1)
2488 {
2489 return Fcons (arg1, Qnil);
2490 }
2491
2492 Lisp_Object
2493 list2 (Lisp_Object arg1, Lisp_Object arg2)
2494 {
2495 return Fcons (arg1, Fcons (arg2, Qnil));
2496 }
2497
2498
2499 Lisp_Object
2500 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2501 {
2502 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2503 }
2504
2505
2506 Lisp_Object
2507 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2508 {
2509 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2510 }
2511
2512
2513 Lisp_Object
2514 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2515 {
2516 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2517 Fcons (arg5, Qnil)))));
2518 }
2519
2520 /* Make a list of COUNT Lisp_Objects, where ARG is the
2521 first one. Allocate conses from pure space if TYPE
2522 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2523
2524 Lisp_Object
2525 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2526 {
2527 va_list ap;
2528 ptrdiff_t i;
2529 Lisp_Object val, *objp;
2530
2531 /* Change to SAFE_ALLOCA if you hit this eassert. */
2532 eassert (count <= MAX_ALLOCA / word_size);
2533
2534 objp = alloca (count * word_size);
2535 objp[0] = arg;
2536 va_start (ap, arg);
2537 for (i = 1; i < count; i++)
2538 objp[i] = va_arg (ap, Lisp_Object);
2539 va_end (ap);
2540
2541 for (val = Qnil, i = count - 1; i >= 0; i--)
2542 {
2543 if (type == CONSTYPE_PURE)
2544 val = pure_cons (objp[i], val);
2545 else if (type == CONSTYPE_HEAP)
2546 val = Fcons (objp[i], val);
2547 else
2548 emacs_abort ();
2549 }
2550 return val;
2551 }
2552
2553 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2554 doc: /* Return a newly created list with specified arguments as elements.
2555 Any number of arguments, even zero arguments, are allowed.
2556 usage: (list &rest OBJECTS) */)
2557 (ptrdiff_t nargs, Lisp_Object *args)
2558 {
2559 register Lisp_Object val;
2560 val = Qnil;
2561
2562 while (nargs > 0)
2563 {
2564 nargs--;
2565 val = Fcons (args[nargs], val);
2566 }
2567 return val;
2568 }
2569
2570
2571 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2572 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2573 (register Lisp_Object length, Lisp_Object init)
2574 {
2575 register Lisp_Object val;
2576 register EMACS_INT size;
2577
2578 CHECK_NATNUM (length);
2579 size = XFASTINT (length);
2580
2581 val = Qnil;
2582 while (size > 0)
2583 {
2584 val = Fcons (init, val);
2585 --size;
2586
2587 if (size > 0)
2588 {
2589 val = Fcons (init, val);
2590 --size;
2591
2592 if (size > 0)
2593 {
2594 val = Fcons (init, val);
2595 --size;
2596
2597 if (size > 0)
2598 {
2599 val = Fcons (init, val);
2600 --size;
2601
2602 if (size > 0)
2603 {
2604 val = Fcons (init, val);
2605 --size;
2606 }
2607 }
2608 }
2609 }
2610
2611 QUIT;
2612 }
2613
2614 return val;
2615 }
2616
2617
2618 \f
2619 /***********************************************************************
2620 Vector Allocation
2621 ***********************************************************************/
2622
2623 /* Sometimes a vector's contents are merely a pointer internally used
2624 in vector allocation code. Usually you don't want to touch this. */
2625
2626 static struct Lisp_Vector *
2627 next_vector (struct Lisp_Vector *v)
2628 {
2629 return XUNTAG (v->contents[0], 0);
2630 }
2631
2632 static void
2633 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2634 {
2635 v->contents[0] = make_lisp_ptr (p, 0);
2636 }
2637
2638 /* This value is balanced well enough to avoid too much internal overhead
2639 for the most common cases; it's not required to be a power of two, but
2640 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2641
2642 #define VECTOR_BLOCK_SIZE 4096
2643
2644 enum
2645 {
2646 /* Alignment of struct Lisp_Vector objects. */
2647 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2648 USE_LSB_TAG ? GCALIGNMENT : 1),
2649
2650 /* Vector size requests are a multiple of this. */
2651 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2652 };
2653
2654 /* Verify assumptions described above. */
2655 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2656 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2657
2658 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2659 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2660 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2661 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2662
2663 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2664
2665 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2666
2667 /* Size of the minimal vector allocated from block. */
2668
2669 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2670
2671 /* Size of the largest vector allocated from block. */
2672
2673 #define VBLOCK_BYTES_MAX \
2674 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2675
2676 /* We maintain one free list for each possible block-allocated
2677 vector size, and this is the number of free lists we have. */
2678
2679 #define VECTOR_MAX_FREE_LIST_INDEX \
2680 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2681
2682 /* Common shortcut to advance vector pointer over a block data. */
2683
2684 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2685
2686 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2687
2688 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2689
2690 /* Common shortcut to setup vector on a free list. */
2691
2692 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2693 do { \
2694 (tmp) = ((nbytes - header_size) / word_size); \
2695 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2696 eassert ((nbytes) % roundup_size == 0); \
2697 (tmp) = VINDEX (nbytes); \
2698 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2699 set_next_vector (v, vector_free_lists[tmp]); \
2700 vector_free_lists[tmp] = (v); \
2701 total_free_vector_slots += (nbytes) / word_size; \
2702 } while (0)
2703
2704 /* This internal type is used to maintain the list of large vectors
2705 which are allocated at their own, e.g. outside of vector blocks.
2706
2707 struct large_vector itself cannot contain a struct Lisp_Vector, as
2708 the latter contains a flexible array member and C99 does not allow
2709 such structs to be nested. Instead, each struct large_vector
2710 object LV is followed by a struct Lisp_Vector, which is at offset
2711 large_vector_offset from LV, and whose address is therefore
2712 large_vector_vec (&LV). */
2713
2714 struct large_vector
2715 {
2716 struct large_vector *next;
2717 };
2718
2719 enum
2720 {
2721 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2722 };
2723
2724 static struct Lisp_Vector *
2725 large_vector_vec (struct large_vector *p)
2726 {
2727 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2728 }
2729
2730 /* This internal type is used to maintain an underlying storage
2731 for small vectors. */
2732
2733 struct vector_block
2734 {
2735 char data[VECTOR_BLOCK_BYTES];
2736 struct vector_block *next;
2737 };
2738
2739 /* Chain of vector blocks. */
2740
2741 static struct vector_block *vector_blocks;
2742
2743 /* Vector free lists, where NTH item points to a chain of free
2744 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2745
2746 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2747
2748 /* Singly-linked list of large vectors. */
2749
2750 static struct large_vector *large_vectors;
2751
2752 /* The only vector with 0 slots, allocated from pure space. */
2753
2754 Lisp_Object zero_vector;
2755
2756 /* Number of live vectors. */
2757
2758 static EMACS_INT total_vectors;
2759
2760 /* Total size of live and free vectors, in Lisp_Object units. */
2761
2762 static EMACS_INT total_vector_slots, total_free_vector_slots;
2763
2764 /* Get a new vector block. */
2765
2766 static struct vector_block *
2767 allocate_vector_block (void)
2768 {
2769 struct vector_block *block = xmalloc (sizeof *block);
2770
2771 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2772 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2773 MEM_TYPE_VECTOR_BLOCK);
2774 #endif
2775
2776 block->next = vector_blocks;
2777 vector_blocks = block;
2778 return block;
2779 }
2780
2781 /* Called once to initialize vector allocation. */
2782
2783 static void
2784 init_vectors (void)
2785 {
2786 zero_vector = make_pure_vector (0);
2787 }
2788
2789 /* Allocate vector from a vector block. */
2790
2791 static struct Lisp_Vector *
2792 allocate_vector_from_block (size_t nbytes)
2793 {
2794 struct Lisp_Vector *vector;
2795 struct vector_block *block;
2796 size_t index, restbytes;
2797
2798 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2799 eassert (nbytes % roundup_size == 0);
2800
2801 /* First, try to allocate from a free list
2802 containing vectors of the requested size. */
2803 index = VINDEX (nbytes);
2804 if (vector_free_lists[index])
2805 {
2806 vector = vector_free_lists[index];
2807 vector_free_lists[index] = next_vector (vector);
2808 total_free_vector_slots -= nbytes / word_size;
2809 return vector;
2810 }
2811
2812 /* Next, check free lists containing larger vectors. Since
2813 we will split the result, we should have remaining space
2814 large enough to use for one-slot vector at least. */
2815 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2816 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2817 if (vector_free_lists[index])
2818 {
2819 /* This vector is larger than requested. */
2820 vector = vector_free_lists[index];
2821 vector_free_lists[index] = next_vector (vector);
2822 total_free_vector_slots -= nbytes / word_size;
2823
2824 /* Excess bytes are used for the smaller vector,
2825 which should be set on an appropriate free list. */
2826 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2827 eassert (restbytes % roundup_size == 0);
2828 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2829 return vector;
2830 }
2831
2832 /* Finally, need a new vector block. */
2833 block = allocate_vector_block ();
2834
2835 /* New vector will be at the beginning of this block. */
2836 vector = (struct Lisp_Vector *) block->data;
2837
2838 /* If the rest of space from this block is large enough
2839 for one-slot vector at least, set up it on a free list. */
2840 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2841 if (restbytes >= VBLOCK_BYTES_MIN)
2842 {
2843 eassert (restbytes % roundup_size == 0);
2844 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2845 }
2846 return vector;
2847 }
2848
2849 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2850
2851 #define VECTOR_IN_BLOCK(vector, block) \
2852 ((char *) (vector) <= (block)->data \
2853 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2854
2855 /* Return the memory footprint of V in bytes. */
2856
2857 static ptrdiff_t
2858 vector_nbytes (struct Lisp_Vector *v)
2859 {
2860 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2861
2862 if (size & PSEUDOVECTOR_FLAG)
2863 {
2864 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2865 {
2866 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2867 ptrdiff_t payload_bytes = bool_vector_payload_bytes (bv->size);
2868 size = bool_header_size + payload_bytes;
2869 }
2870 else
2871 size = (header_size
2872 + ((size & PSEUDOVECTOR_SIZE_MASK)
2873 + ((size & PSEUDOVECTOR_REST_MASK)
2874 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2875 }
2876 else
2877 size = header_size + size * word_size;
2878 return vroundup (size);
2879 }
2880
2881 /* Release extra resources still in use by VECTOR, which may be any
2882 vector-like object. For now, this is used just to free data in
2883 font objects. */
2884
2885 static void
2886 cleanup_vector (struct Lisp_Vector *vector)
2887 {
2888 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2889 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2890 == FONT_OBJECT_MAX))
2891 ((struct font *) vector)->driver->close ((struct font *) vector);
2892 }
2893
2894 /* Reclaim space used by unmarked vectors. */
2895
2896 static void
2897 sweep_vectors (void)
2898 {
2899 struct vector_block *block, **bprev = &vector_blocks;
2900 struct large_vector *lv, **lvprev = &large_vectors;
2901 struct Lisp_Vector *vector, *next;
2902
2903 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2904 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2905
2906 /* Looking through vector blocks. */
2907
2908 for (block = vector_blocks; block; block = *bprev)
2909 {
2910 bool free_this_block = 0;
2911 ptrdiff_t nbytes;
2912
2913 for (vector = (struct Lisp_Vector *) block->data;
2914 VECTOR_IN_BLOCK (vector, block); vector = next)
2915 {
2916 if (VECTOR_MARKED_P (vector))
2917 {
2918 VECTOR_UNMARK (vector);
2919 total_vectors++;
2920 nbytes = vector_nbytes (vector);
2921 total_vector_slots += nbytes / word_size;
2922 next = ADVANCE (vector, nbytes);
2923 }
2924 else
2925 {
2926 ptrdiff_t total_bytes;
2927
2928 cleanup_vector (vector);
2929 nbytes = vector_nbytes (vector);
2930 total_bytes = nbytes;
2931 next = ADVANCE (vector, nbytes);
2932
2933 /* While NEXT is not marked, try to coalesce with VECTOR,
2934 thus making VECTOR of the largest possible size. */
2935
2936 while (VECTOR_IN_BLOCK (next, block))
2937 {
2938 if (VECTOR_MARKED_P (next))
2939 break;
2940 cleanup_vector (next);
2941 nbytes = vector_nbytes (next);
2942 total_bytes += nbytes;
2943 next = ADVANCE (next, nbytes);
2944 }
2945
2946 eassert (total_bytes % roundup_size == 0);
2947
2948 if (vector == (struct Lisp_Vector *) block->data
2949 && !VECTOR_IN_BLOCK (next, block))
2950 /* This block should be freed because all of it's
2951 space was coalesced into the only free vector. */
2952 free_this_block = 1;
2953 else
2954 {
2955 size_t tmp;
2956 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2957 }
2958 }
2959 }
2960
2961 if (free_this_block)
2962 {
2963 *bprev = block->next;
2964 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2965 mem_delete (mem_find (block->data));
2966 #endif
2967 xfree (block);
2968 }
2969 else
2970 bprev = &block->next;
2971 }
2972
2973 /* Sweep large vectors. */
2974
2975 for (lv = large_vectors; lv; lv = *lvprev)
2976 {
2977 vector = large_vector_vec (lv);
2978 if (VECTOR_MARKED_P (vector))
2979 {
2980 VECTOR_UNMARK (vector);
2981 total_vectors++;
2982 if (vector->header.size & PSEUDOVECTOR_FLAG)
2983 {
2984 /* All non-bool pseudovectors are small enough to be allocated
2985 from vector blocks. This code should be redesigned if some
2986 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2987 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2988 total_vector_slots += vector_nbytes (vector) / word_size;
2989 }
2990 else
2991 total_vector_slots
2992 += header_size / word_size + vector->header.size;
2993 lvprev = &lv->next;
2994 }
2995 else
2996 {
2997 *lvprev = lv->next;
2998 lisp_free (lv);
2999 }
3000 }
3001 }
3002
3003 /* Value is a pointer to a newly allocated Lisp_Vector structure
3004 with room for LEN Lisp_Objects. */
3005
3006 static struct Lisp_Vector *
3007 allocate_vectorlike (ptrdiff_t len)
3008 {
3009 struct Lisp_Vector *p;
3010
3011 MALLOC_BLOCK_INPUT;
3012
3013 if (len == 0)
3014 p = XVECTOR (zero_vector);
3015 else
3016 {
3017 size_t nbytes = header_size + len * word_size;
3018
3019 #ifdef DOUG_LEA_MALLOC
3020 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3021 because mapped region contents are not preserved in
3022 a dumped Emacs. */
3023 mallopt (M_MMAP_MAX, 0);
3024 #endif
3025
3026 if (nbytes <= VBLOCK_BYTES_MAX)
3027 p = allocate_vector_from_block (vroundup (nbytes));
3028 else
3029 {
3030 struct large_vector *lv
3031 = lisp_malloc ((large_vector_offset + header_size
3032 + len * word_size),
3033 MEM_TYPE_VECTORLIKE);
3034 lv->next = large_vectors;
3035 large_vectors = lv;
3036 p = large_vector_vec (lv);
3037 }
3038
3039 #ifdef DOUG_LEA_MALLOC
3040 /* Back to a reasonable maximum of mmap'ed areas. */
3041 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3042 #endif
3043
3044 consing_since_gc += nbytes;
3045 vector_cells_consed += len;
3046 }
3047
3048 MALLOC_UNBLOCK_INPUT;
3049
3050 return p;
3051 }
3052
3053
3054 /* Allocate a vector with LEN slots. */
3055
3056 struct Lisp_Vector *
3057 allocate_vector (EMACS_INT len)
3058 {
3059 struct Lisp_Vector *v;
3060 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3061
3062 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3063 memory_full (SIZE_MAX);
3064 v = allocate_vectorlike (len);
3065 v->header.size = len;
3066 return v;
3067 }
3068
3069
3070 /* Allocate other vector-like structures. */
3071
3072 struct Lisp_Vector *
3073 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3074 {
3075 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3076 int i;
3077
3078 /* Catch bogus values. */
3079 eassert (tag <= PVEC_FONT);
3080 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3081 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3082
3083 /* Only the first lisplen slots will be traced normally by the GC. */
3084 for (i = 0; i < lisplen; ++i)
3085 v->contents[i] = Qnil;
3086
3087 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3088 return v;
3089 }
3090
3091 struct buffer *
3092 allocate_buffer (void)
3093 {
3094 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3095
3096 BUFFER_PVEC_INIT (b);
3097 /* Put B on the chain of all buffers including killed ones. */
3098 b->next = all_buffers;
3099 all_buffers = b;
3100 /* Note that the rest fields of B are not initialized. */
3101 return b;
3102 }
3103
3104 struct Lisp_Hash_Table *
3105 allocate_hash_table (void)
3106 {
3107 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3108 }
3109
3110 struct window *
3111 allocate_window (void)
3112 {
3113 struct window *w;
3114
3115 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3116 /* Users assumes that non-Lisp data is zeroed. */
3117 memset (&w->current_matrix, 0,
3118 sizeof (*w) - offsetof (struct window, current_matrix));
3119 return w;
3120 }
3121
3122 struct terminal *
3123 allocate_terminal (void)
3124 {
3125 struct terminal *t;
3126
3127 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3128 /* Users assumes that non-Lisp data is zeroed. */
3129 memset (&t->next_terminal, 0,
3130 sizeof (*t) - offsetof (struct terminal, next_terminal));
3131 return t;
3132 }
3133
3134 struct frame *
3135 allocate_frame (void)
3136 {
3137 struct frame *f;
3138
3139 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3140 /* Users assumes that non-Lisp data is zeroed. */
3141 memset (&f->face_cache, 0,
3142 sizeof (*f) - offsetof (struct frame, face_cache));
3143 return f;
3144 }
3145
3146 struct Lisp_Process *
3147 allocate_process (void)
3148 {
3149 struct Lisp_Process *p;
3150
3151 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3152 /* Users assumes that non-Lisp data is zeroed. */
3153 memset (&p->pid, 0,
3154 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3155 return p;
3156 }
3157
3158 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3159 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3160 See also the function `vector'. */)
3161 (register Lisp_Object length, Lisp_Object init)
3162 {
3163 Lisp_Object vector;
3164 register ptrdiff_t sizei;
3165 register ptrdiff_t i;
3166 register struct Lisp_Vector *p;
3167
3168 CHECK_NATNUM (length);
3169
3170 p = allocate_vector (XFASTINT (length));
3171 sizei = XFASTINT (length);
3172 for (i = 0; i < sizei; i++)
3173 p->contents[i] = init;
3174
3175 XSETVECTOR (vector, p);
3176 return vector;
3177 }
3178
3179
3180 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3181 doc: /* Return a newly created vector with specified arguments as elements.
3182 Any number of arguments, even zero arguments, are allowed.
3183 usage: (vector &rest OBJECTS) */)
3184 (ptrdiff_t nargs, Lisp_Object *args)
3185 {
3186 ptrdiff_t i;
3187 register Lisp_Object val = make_uninit_vector (nargs);
3188 register struct Lisp_Vector *p = XVECTOR (val);
3189
3190 for (i = 0; i < nargs; i++)
3191 p->contents[i] = args[i];
3192 return val;
3193 }
3194
3195 void
3196 make_byte_code (struct Lisp_Vector *v)
3197 {
3198 /* Don't allow the global zero_vector to become a byte code object. */
3199 eassert(0 < v->header.size);
3200 if (v->header.size > 1 && STRINGP (v->contents[1])
3201 && STRING_MULTIBYTE (v->contents[1]))
3202 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3203 earlier because they produced a raw 8-bit string for byte-code
3204 and now such a byte-code string is loaded as multibyte while
3205 raw 8-bit characters converted to multibyte form. Thus, now we
3206 must convert them back to the original unibyte form. */
3207 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3208 XSETPVECTYPE (v, PVEC_COMPILED);
3209 }
3210
3211 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3212 doc: /* Create a byte-code object with specified arguments as elements.
3213 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3214 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3215 and (optional) INTERACTIVE-SPEC.
3216 The first four arguments are required; at most six have any
3217 significance.
3218 The ARGLIST can be either like the one of `lambda', in which case the arguments
3219 will be dynamically bound before executing the byte code, or it can be an
3220 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3221 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3222 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3223 argument to catch the left-over arguments. If such an integer is used, the
3224 arguments will not be dynamically bound but will be instead pushed on the
3225 stack before executing the byte-code.
3226 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3227 (ptrdiff_t nargs, Lisp_Object *args)
3228 {
3229 ptrdiff_t i;
3230 register Lisp_Object val = make_uninit_vector (nargs);
3231 register struct Lisp_Vector *p = XVECTOR (val);
3232
3233 /* We used to purecopy everything here, if purify-flag was set. This worked
3234 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3235 dangerous, since make-byte-code is used during execution to build
3236 closures, so any closure built during the preload phase would end up
3237 copied into pure space, including its free variables, which is sometimes
3238 just wasteful and other times plainly wrong (e.g. those free vars may want
3239 to be setcar'd). */
3240
3241 for (i = 0; i < nargs; i++)
3242 p->contents[i] = args[i];
3243 make_byte_code (p);
3244 XSETCOMPILED (val, p);
3245 return val;
3246 }
3247
3248
3249 \f
3250 /***********************************************************************
3251 Symbol Allocation
3252 ***********************************************************************/
3253
3254 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3255 of the required alignment if LSB tags are used. */
3256
3257 union aligned_Lisp_Symbol
3258 {
3259 struct Lisp_Symbol s;
3260 #if USE_LSB_TAG
3261 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3262 & -GCALIGNMENT];
3263 #endif
3264 };
3265
3266 /* Each symbol_block is just under 1020 bytes long, since malloc
3267 really allocates in units of powers of two and uses 4 bytes for its
3268 own overhead. */
3269
3270 #define SYMBOL_BLOCK_SIZE \
3271 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3272
3273 struct symbol_block
3274 {
3275 /* Place `symbols' first, to preserve alignment. */
3276 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3277 struct symbol_block *next;
3278 };
3279
3280 /* Current symbol block and index of first unused Lisp_Symbol
3281 structure in it. */
3282
3283 static struct symbol_block *symbol_block;
3284 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3285
3286 /* List of free symbols. */
3287
3288 static struct Lisp_Symbol *symbol_free_list;
3289
3290 static void
3291 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3292 {
3293 XSYMBOL (sym)->name = name;
3294 }
3295
3296 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3297 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3298 Its value is void, and its function definition and property list are nil. */)
3299 (Lisp_Object name)
3300 {
3301 register Lisp_Object val;
3302 register struct Lisp_Symbol *p;
3303
3304 CHECK_STRING (name);
3305
3306 MALLOC_BLOCK_INPUT;
3307
3308 if (symbol_free_list)
3309 {
3310 XSETSYMBOL (val, symbol_free_list);
3311 symbol_free_list = symbol_free_list->next;
3312 }
3313 else
3314 {
3315 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3316 {
3317 struct symbol_block *new
3318 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3319 new->next = symbol_block;
3320 symbol_block = new;
3321 symbol_block_index = 0;
3322 total_free_symbols += SYMBOL_BLOCK_SIZE;
3323 }
3324 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3325 symbol_block_index++;
3326 }
3327
3328 MALLOC_UNBLOCK_INPUT;
3329
3330 p = XSYMBOL (val);
3331 set_symbol_name (val, name);
3332 set_symbol_plist (val, Qnil);
3333 p->redirect = SYMBOL_PLAINVAL;
3334 SET_SYMBOL_VAL (p, Qunbound);
3335 set_symbol_function (val, Qnil);
3336 set_symbol_next (val, NULL);
3337 p->gcmarkbit = 0;
3338 p->interned = SYMBOL_UNINTERNED;
3339 p->constant = 0;
3340 p->declared_special = 0;
3341 consing_since_gc += sizeof (struct Lisp_Symbol);
3342 symbols_consed++;
3343 total_free_symbols--;
3344 return val;
3345 }
3346
3347
3348 \f
3349 /***********************************************************************
3350 Marker (Misc) Allocation
3351 ***********************************************************************/
3352
3353 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3354 the required alignment when LSB tags are used. */
3355
3356 union aligned_Lisp_Misc
3357 {
3358 union Lisp_Misc m;
3359 #if USE_LSB_TAG
3360 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3361 & -GCALIGNMENT];
3362 #endif
3363 };
3364
3365 /* Allocation of markers and other objects that share that structure.
3366 Works like allocation of conses. */
3367
3368 #define MARKER_BLOCK_SIZE \
3369 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3370
3371 struct marker_block
3372 {
3373 /* Place `markers' first, to preserve alignment. */
3374 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3375 struct marker_block *next;
3376 };
3377
3378 static struct marker_block *marker_block;
3379 static int marker_block_index = MARKER_BLOCK_SIZE;
3380
3381 static union Lisp_Misc *marker_free_list;
3382
3383 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3384
3385 static Lisp_Object
3386 allocate_misc (enum Lisp_Misc_Type type)
3387 {
3388 Lisp_Object val;
3389
3390 MALLOC_BLOCK_INPUT;
3391
3392 if (marker_free_list)
3393 {
3394 XSETMISC (val, marker_free_list);
3395 marker_free_list = marker_free_list->u_free.chain;
3396 }
3397 else
3398 {
3399 if (marker_block_index == MARKER_BLOCK_SIZE)
3400 {
3401 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3402 new->next = marker_block;
3403 marker_block = new;
3404 marker_block_index = 0;
3405 total_free_markers += MARKER_BLOCK_SIZE;
3406 }
3407 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3408 marker_block_index++;
3409 }
3410
3411 MALLOC_UNBLOCK_INPUT;
3412
3413 --total_free_markers;
3414 consing_since_gc += sizeof (union Lisp_Misc);
3415 misc_objects_consed++;
3416 XMISCANY (val)->type = type;
3417 XMISCANY (val)->gcmarkbit = 0;
3418 return val;
3419 }
3420
3421 /* Free a Lisp_Misc object. */
3422
3423 void
3424 free_misc (Lisp_Object misc)
3425 {
3426 XMISCANY (misc)->type = Lisp_Misc_Free;
3427 XMISC (misc)->u_free.chain = marker_free_list;
3428 marker_free_list = XMISC (misc);
3429 consing_since_gc -= sizeof (union Lisp_Misc);
3430 total_free_markers++;
3431 }
3432
3433 /* Verify properties of Lisp_Save_Value's representation
3434 that are assumed here and elsewhere. */
3435
3436 verify (SAVE_UNUSED == 0);
3437 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3438 >> SAVE_SLOT_BITS)
3439 == 0);
3440
3441 /* Return Lisp_Save_Value objects for the various combinations
3442 that callers need. */
3443
3444 Lisp_Object
3445 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3446 {
3447 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3448 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3449 p->save_type = SAVE_TYPE_INT_INT_INT;
3450 p->data[0].integer = a;
3451 p->data[1].integer = b;
3452 p->data[2].integer = c;
3453 return val;
3454 }
3455
3456 Lisp_Object
3457 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3458 Lisp_Object d)
3459 {
3460 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3461 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3462 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3463 p->data[0].object = a;
3464 p->data[1].object = b;
3465 p->data[2].object = c;
3466 p->data[3].object = d;
3467 return val;
3468 }
3469
3470 Lisp_Object
3471 make_save_ptr (void *a)
3472 {
3473 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3474 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3475 p->save_type = SAVE_POINTER;
3476 p->data[0].pointer = a;
3477 return val;
3478 }
3479
3480 Lisp_Object
3481 make_save_ptr_int (void *a, ptrdiff_t b)
3482 {
3483 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3484 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3485 p->save_type = SAVE_TYPE_PTR_INT;
3486 p->data[0].pointer = a;
3487 p->data[1].integer = b;
3488 return val;
3489 }
3490
3491 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3492 Lisp_Object
3493 make_save_ptr_ptr (void *a, void *b)
3494 {
3495 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3496 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3497 p->save_type = SAVE_TYPE_PTR_PTR;
3498 p->data[0].pointer = a;
3499 p->data[1].pointer = b;
3500 return val;
3501 }
3502 #endif
3503
3504 Lisp_Object
3505 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3506 {
3507 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3508 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3509 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3510 p->data[0].funcpointer = a;
3511 p->data[1].pointer = b;
3512 p->data[2].object = c;
3513 return val;
3514 }
3515
3516 /* Return a Lisp_Save_Value object that represents an array A
3517 of N Lisp objects. */
3518
3519 Lisp_Object
3520 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3521 {
3522 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3523 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3524 p->save_type = SAVE_TYPE_MEMORY;
3525 p->data[0].pointer = a;
3526 p->data[1].integer = n;
3527 return val;
3528 }
3529
3530 /* Free a Lisp_Save_Value object. Do not use this function
3531 if SAVE contains pointer other than returned by xmalloc. */
3532
3533 void
3534 free_save_value (Lisp_Object save)
3535 {
3536 xfree (XSAVE_POINTER (save, 0));
3537 free_misc (save);
3538 }
3539
3540 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3541
3542 Lisp_Object
3543 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3544 {
3545 register Lisp_Object overlay;
3546
3547 overlay = allocate_misc (Lisp_Misc_Overlay);
3548 OVERLAY_START (overlay) = start;
3549 OVERLAY_END (overlay) = end;
3550 set_overlay_plist (overlay, plist);
3551 XOVERLAY (overlay)->next = NULL;
3552 return overlay;
3553 }
3554
3555 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3556 doc: /* Return a newly allocated marker which does not point at any place. */)
3557 (void)
3558 {
3559 register Lisp_Object val;
3560 register struct Lisp_Marker *p;
3561
3562 val = allocate_misc (Lisp_Misc_Marker);
3563 p = XMARKER (val);
3564 p->buffer = 0;
3565 p->bytepos = 0;
3566 p->charpos = 0;
3567 p->next = NULL;
3568 p->insertion_type = 0;
3569 p->need_adjustment = 0;
3570 return val;
3571 }
3572
3573 /* Return a newly allocated marker which points into BUF
3574 at character position CHARPOS and byte position BYTEPOS. */
3575
3576 Lisp_Object
3577 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3578 {
3579 Lisp_Object obj;
3580 struct Lisp_Marker *m;
3581
3582 /* No dead buffers here. */
3583 eassert (BUFFER_LIVE_P (buf));
3584
3585 /* Every character is at least one byte. */
3586 eassert (charpos <= bytepos);
3587
3588 obj = allocate_misc (Lisp_Misc_Marker);
3589 m = XMARKER (obj);
3590 m->buffer = buf;
3591 m->charpos = charpos;
3592 m->bytepos = bytepos;
3593 m->insertion_type = 0;
3594 m->need_adjustment = 0;
3595 m->next = BUF_MARKERS (buf);
3596 BUF_MARKERS (buf) = m;
3597 return obj;
3598 }
3599
3600 /* Put MARKER back on the free list after using it temporarily. */
3601
3602 void
3603 free_marker (Lisp_Object marker)
3604 {
3605 unchain_marker (XMARKER (marker));
3606 free_misc (marker);
3607 }
3608
3609 \f
3610 /* Return a newly created vector or string with specified arguments as
3611 elements. If all the arguments are characters that can fit
3612 in a string of events, make a string; otherwise, make a vector.
3613
3614 Any number of arguments, even zero arguments, are allowed. */
3615
3616 Lisp_Object
3617 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3618 {
3619 ptrdiff_t i;
3620
3621 for (i = 0; i < nargs; i++)
3622 /* The things that fit in a string
3623 are characters that are in 0...127,
3624 after discarding the meta bit and all the bits above it. */
3625 if (!INTEGERP (args[i])
3626 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3627 return Fvector (nargs, args);
3628
3629 /* Since the loop exited, we know that all the things in it are
3630 characters, so we can make a string. */
3631 {
3632 Lisp_Object result;
3633
3634 result = Fmake_string (make_number (nargs), make_number (0));
3635 for (i = 0; i < nargs; i++)
3636 {
3637 SSET (result, i, XINT (args[i]));
3638 /* Move the meta bit to the right place for a string char. */
3639 if (XINT (args[i]) & CHAR_META)
3640 SSET (result, i, SREF (result, i) | 0x80);
3641 }
3642
3643 return result;
3644 }
3645 }
3646
3647
3648 \f
3649 /************************************************************************
3650 Memory Full Handling
3651 ************************************************************************/
3652
3653
3654 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3655 there may have been size_t overflow so that malloc was never
3656 called, or perhaps malloc was invoked successfully but the
3657 resulting pointer had problems fitting into a tagged EMACS_INT. In
3658 either case this counts as memory being full even though malloc did
3659 not fail. */
3660
3661 void
3662 memory_full (size_t nbytes)
3663 {
3664 /* Do not go into hysterics merely because a large request failed. */
3665 bool enough_free_memory = 0;
3666 if (SPARE_MEMORY < nbytes)
3667 {
3668 void *p;
3669
3670 MALLOC_BLOCK_INPUT;
3671 p = malloc (SPARE_MEMORY);
3672 if (p)
3673 {
3674 free (p);
3675 enough_free_memory = 1;
3676 }
3677 MALLOC_UNBLOCK_INPUT;
3678 }
3679
3680 if (! enough_free_memory)
3681 {
3682 int i;
3683
3684 Vmemory_full = Qt;
3685
3686 memory_full_cons_threshold = sizeof (struct cons_block);
3687
3688 /* The first time we get here, free the spare memory. */
3689 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3690 if (spare_memory[i])
3691 {
3692 if (i == 0)
3693 free (spare_memory[i]);
3694 else if (i >= 1 && i <= 4)
3695 lisp_align_free (spare_memory[i]);
3696 else
3697 lisp_free (spare_memory[i]);
3698 spare_memory[i] = 0;
3699 }
3700 }
3701
3702 /* This used to call error, but if we've run out of memory, we could
3703 get infinite recursion trying to build the string. */
3704 xsignal (Qnil, Vmemory_signal_data);
3705 }
3706
3707 /* If we released our reserve (due to running out of memory),
3708 and we have a fair amount free once again,
3709 try to set aside another reserve in case we run out once more.
3710
3711 This is called when a relocatable block is freed in ralloc.c,
3712 and also directly from this file, in case we're not using ralloc.c. */
3713
3714 void
3715 refill_memory_reserve (void)
3716 {
3717 #ifndef SYSTEM_MALLOC
3718 if (spare_memory[0] == 0)
3719 spare_memory[0] = malloc (SPARE_MEMORY);
3720 if (spare_memory[1] == 0)
3721 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3722 MEM_TYPE_SPARE);
3723 if (spare_memory[2] == 0)
3724 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3725 MEM_TYPE_SPARE);
3726 if (spare_memory[3] == 0)
3727 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3728 MEM_TYPE_SPARE);
3729 if (spare_memory[4] == 0)
3730 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3731 MEM_TYPE_SPARE);
3732 if (spare_memory[5] == 0)
3733 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3734 MEM_TYPE_SPARE);
3735 if (spare_memory[6] == 0)
3736 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3737 MEM_TYPE_SPARE);
3738 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3739 Vmemory_full = Qnil;
3740 #endif
3741 }
3742 \f
3743 /************************************************************************
3744 C Stack Marking
3745 ************************************************************************/
3746
3747 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3748
3749 /* Conservative C stack marking requires a method to identify possibly
3750 live Lisp objects given a pointer value. We do this by keeping
3751 track of blocks of Lisp data that are allocated in a red-black tree
3752 (see also the comment of mem_node which is the type of nodes in
3753 that tree). Function lisp_malloc adds information for an allocated
3754 block to the red-black tree with calls to mem_insert, and function
3755 lisp_free removes it with mem_delete. Functions live_string_p etc
3756 call mem_find to lookup information about a given pointer in the
3757 tree, and use that to determine if the pointer points to a Lisp
3758 object or not. */
3759
3760 /* Initialize this part of alloc.c. */
3761
3762 static void
3763 mem_init (void)
3764 {
3765 mem_z.left = mem_z.right = MEM_NIL;
3766 mem_z.parent = NULL;
3767 mem_z.color = MEM_BLACK;
3768 mem_z.start = mem_z.end = NULL;
3769 mem_root = MEM_NIL;
3770 }
3771
3772
3773 /* Value is a pointer to the mem_node containing START. Value is
3774 MEM_NIL if there is no node in the tree containing START. */
3775
3776 static struct mem_node *
3777 mem_find (void *start)
3778 {
3779 struct mem_node *p;
3780
3781 if (start < min_heap_address || start > max_heap_address)
3782 return MEM_NIL;
3783
3784 /* Make the search always successful to speed up the loop below. */
3785 mem_z.start = start;
3786 mem_z.end = (char *) start + 1;
3787
3788 p = mem_root;
3789 while (start < p->start || start >= p->end)
3790 p = start < p->start ? p->left : p->right;
3791 return p;
3792 }
3793
3794
3795 /* Insert a new node into the tree for a block of memory with start
3796 address START, end address END, and type TYPE. Value is a
3797 pointer to the node that was inserted. */
3798
3799 static struct mem_node *
3800 mem_insert (void *start, void *end, enum mem_type type)
3801 {
3802 struct mem_node *c, *parent, *x;
3803
3804 if (min_heap_address == NULL || start < min_heap_address)
3805 min_heap_address = start;
3806 if (max_heap_address == NULL || end > max_heap_address)
3807 max_heap_address = end;
3808
3809 /* See where in the tree a node for START belongs. In this
3810 particular application, it shouldn't happen that a node is already
3811 present. For debugging purposes, let's check that. */
3812 c = mem_root;
3813 parent = NULL;
3814
3815 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3816
3817 while (c != MEM_NIL)
3818 {
3819 if (start >= c->start && start < c->end)
3820 emacs_abort ();
3821 parent = c;
3822 c = start < c->start ? c->left : c->right;
3823 }
3824
3825 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3826
3827 while (c != MEM_NIL)
3828 {
3829 parent = c;
3830 c = start < c->start ? c->left : c->right;
3831 }
3832
3833 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3834
3835 /* Create a new node. */
3836 #ifdef GC_MALLOC_CHECK
3837 x = malloc (sizeof *x);
3838 if (x == NULL)
3839 emacs_abort ();
3840 #else
3841 x = xmalloc (sizeof *x);
3842 #endif
3843 x->start = start;
3844 x->end = end;
3845 x->type = type;
3846 x->parent = parent;
3847 x->left = x->right = MEM_NIL;
3848 x->color = MEM_RED;
3849
3850 /* Insert it as child of PARENT or install it as root. */
3851 if (parent)
3852 {
3853 if (start < parent->start)
3854 parent->left = x;
3855 else
3856 parent->right = x;
3857 }
3858 else
3859 mem_root = x;
3860
3861 /* Re-establish red-black tree properties. */
3862 mem_insert_fixup (x);
3863
3864 return x;
3865 }
3866
3867
3868 /* Re-establish the red-black properties of the tree, and thereby
3869 balance the tree, after node X has been inserted; X is always red. */
3870
3871 static void
3872 mem_insert_fixup (struct mem_node *x)
3873 {
3874 while (x != mem_root && x->parent->color == MEM_RED)
3875 {
3876 /* X is red and its parent is red. This is a violation of
3877 red-black tree property #3. */
3878
3879 if (x->parent == x->parent->parent->left)
3880 {
3881 /* We're on the left side of our grandparent, and Y is our
3882 "uncle". */
3883 struct mem_node *y = x->parent->parent->right;
3884
3885 if (y->color == MEM_RED)
3886 {
3887 /* Uncle and parent are red but should be black because
3888 X is red. Change the colors accordingly and proceed
3889 with the grandparent. */
3890 x->parent->color = MEM_BLACK;
3891 y->color = MEM_BLACK;
3892 x->parent->parent->color = MEM_RED;
3893 x = x->parent->parent;
3894 }
3895 else
3896 {
3897 /* Parent and uncle have different colors; parent is
3898 red, uncle is black. */
3899 if (x == x->parent->right)
3900 {
3901 x = x->parent;
3902 mem_rotate_left (x);
3903 }
3904
3905 x->parent->color = MEM_BLACK;
3906 x->parent->parent->color = MEM_RED;
3907 mem_rotate_right (x->parent->parent);
3908 }
3909 }
3910 else
3911 {
3912 /* This is the symmetrical case of above. */
3913 struct mem_node *y = x->parent->parent->left;
3914
3915 if (y->color == MEM_RED)
3916 {
3917 x->parent->color = MEM_BLACK;
3918 y->color = MEM_BLACK;
3919 x->parent->parent->color = MEM_RED;
3920 x = x->parent->parent;
3921 }
3922 else
3923 {
3924 if (x == x->parent->left)
3925 {
3926 x = x->parent;
3927 mem_rotate_right (x);
3928 }
3929
3930 x->parent->color = MEM_BLACK;
3931 x->parent->parent->color = MEM_RED;
3932 mem_rotate_left (x->parent->parent);
3933 }
3934 }
3935 }
3936
3937 /* The root may have been changed to red due to the algorithm. Set
3938 it to black so that property #5 is satisfied. */
3939 mem_root->color = MEM_BLACK;
3940 }
3941
3942
3943 /* (x) (y)
3944 / \ / \
3945 a (y) ===> (x) c
3946 / \ / \
3947 b c a b */
3948
3949 static void
3950 mem_rotate_left (struct mem_node *x)
3951 {
3952 struct mem_node *y;
3953
3954 /* Turn y's left sub-tree into x's right sub-tree. */
3955 y = x->right;
3956 x->right = y->left;
3957 if (y->left != MEM_NIL)
3958 y->left->parent = x;
3959
3960 /* Y's parent was x's parent. */
3961 if (y != MEM_NIL)
3962 y->parent = x->parent;
3963
3964 /* Get the parent to point to y instead of x. */
3965 if (x->parent)
3966 {
3967 if (x == x->parent->left)
3968 x->parent->left = y;
3969 else
3970 x->parent->right = y;
3971 }
3972 else
3973 mem_root = y;
3974
3975 /* Put x on y's left. */
3976 y->left = x;
3977 if (x != MEM_NIL)
3978 x->parent = y;
3979 }
3980
3981
3982 /* (x) (Y)
3983 / \ / \
3984 (y) c ===> a (x)
3985 / \ / \
3986 a b b c */
3987
3988 static void
3989 mem_rotate_right (struct mem_node *x)
3990 {
3991 struct mem_node *y = x->left;
3992
3993 x->left = y->right;
3994 if (y->right != MEM_NIL)
3995 y->right->parent = x;
3996
3997 if (y != MEM_NIL)
3998 y->parent = x->parent;
3999 if (x->parent)
4000 {
4001 if (x == x->parent->right)
4002 x->parent->right = y;
4003 else
4004 x->parent->left = y;
4005 }
4006 else
4007 mem_root = y;
4008
4009 y->right = x;
4010 if (x != MEM_NIL)
4011 x->parent = y;
4012 }
4013
4014
4015 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4016
4017 static void
4018 mem_delete (struct mem_node *z)
4019 {
4020 struct mem_node *x, *y;
4021
4022 if (!z || z == MEM_NIL)
4023 return;
4024
4025 if (z->left == MEM_NIL || z->right == MEM_NIL)
4026 y = z;
4027 else
4028 {
4029 y = z->right;
4030 while (y->left != MEM_NIL)
4031 y = y->left;
4032 }
4033
4034 if (y->left != MEM_NIL)
4035 x = y->left;
4036 else
4037 x = y->right;
4038
4039 x->parent = y->parent;
4040 if (y->parent)
4041 {
4042 if (y == y->parent->left)
4043 y->parent->left = x;
4044 else
4045 y->parent->right = x;
4046 }
4047 else
4048 mem_root = x;
4049
4050 if (y != z)
4051 {
4052 z->start = y->start;
4053 z->end = y->end;
4054 z->type = y->type;
4055 }
4056
4057 if (y->color == MEM_BLACK)
4058 mem_delete_fixup (x);
4059
4060 #ifdef GC_MALLOC_CHECK
4061 free (y);
4062 #else
4063 xfree (y);
4064 #endif
4065 }
4066
4067
4068 /* Re-establish the red-black properties of the tree, after a
4069 deletion. */
4070
4071 static void
4072 mem_delete_fixup (struct mem_node *x)
4073 {
4074 while (x != mem_root && x->color == MEM_BLACK)
4075 {
4076 if (x == x->parent->left)
4077 {
4078 struct mem_node *w = x->parent->right;
4079
4080 if (w->color == MEM_RED)
4081 {
4082 w->color = MEM_BLACK;
4083 x->parent->color = MEM_RED;
4084 mem_rotate_left (x->parent);
4085 w = x->parent->right;
4086 }
4087
4088 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4089 {
4090 w->color = MEM_RED;
4091 x = x->parent;
4092 }
4093 else
4094 {
4095 if (w->right->color == MEM_BLACK)
4096 {
4097 w->left->color = MEM_BLACK;
4098 w->color = MEM_RED;
4099 mem_rotate_right (w);
4100 w = x->parent->right;
4101 }
4102 w->color = x->parent->color;
4103 x->parent->color = MEM_BLACK;
4104 w->right->color = MEM_BLACK;
4105 mem_rotate_left (x->parent);
4106 x = mem_root;
4107 }
4108 }
4109 else
4110 {
4111 struct mem_node *w = x->parent->left;
4112
4113 if (w->color == MEM_RED)
4114 {
4115 w->color = MEM_BLACK;
4116 x->parent->color = MEM_RED;
4117 mem_rotate_right (x->parent);
4118 w = x->parent->left;
4119 }
4120
4121 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4122 {
4123 w->color = MEM_RED;
4124 x = x->parent;
4125 }
4126 else
4127 {
4128 if (w->left->color == MEM_BLACK)
4129 {
4130 w->right->color = MEM_BLACK;
4131 w->color = MEM_RED;
4132 mem_rotate_left (w);
4133 w = x->parent->left;
4134 }
4135
4136 w->color = x->parent->color;
4137 x->parent->color = MEM_BLACK;
4138 w->left->color = MEM_BLACK;
4139 mem_rotate_right (x->parent);
4140 x = mem_root;
4141 }
4142 }
4143 }
4144
4145 x->color = MEM_BLACK;
4146 }
4147
4148
4149 /* Value is non-zero if P is a pointer to a live Lisp string on
4150 the heap. M is a pointer to the mem_block for P. */
4151
4152 static bool
4153 live_string_p (struct mem_node *m, void *p)
4154 {
4155 if (m->type == MEM_TYPE_STRING)
4156 {
4157 struct string_block *b = m->start;
4158 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4159
4160 /* P must point to the start of a Lisp_String structure, and it
4161 must not be on the free-list. */
4162 return (offset >= 0
4163 && offset % sizeof b->strings[0] == 0
4164 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4165 && ((struct Lisp_String *) p)->data != NULL);
4166 }
4167 else
4168 return 0;
4169 }
4170
4171
4172 /* Value is non-zero if P is a pointer to a live Lisp cons on
4173 the heap. M is a pointer to the mem_block for P. */
4174
4175 static bool
4176 live_cons_p (struct mem_node *m, void *p)
4177 {
4178 if (m->type == MEM_TYPE_CONS)
4179 {
4180 struct cons_block *b = m->start;
4181 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4182
4183 /* P must point to the start of a Lisp_Cons, not be
4184 one of the unused cells in the current cons block,
4185 and not be on the free-list. */
4186 return (offset >= 0
4187 && offset % sizeof b->conses[0] == 0
4188 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4189 && (b != cons_block
4190 || offset / sizeof b->conses[0] < cons_block_index)
4191 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4192 }
4193 else
4194 return 0;
4195 }
4196
4197
4198 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4199 the heap. M is a pointer to the mem_block for P. */
4200
4201 static bool
4202 live_symbol_p (struct mem_node *m, void *p)
4203 {
4204 if (m->type == MEM_TYPE_SYMBOL)
4205 {
4206 struct symbol_block *b = m->start;
4207 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4208
4209 /* P must point to the start of a Lisp_Symbol, not be
4210 one of the unused cells in the current symbol block,
4211 and not be on the free-list. */
4212 return (offset >= 0
4213 && offset % sizeof b->symbols[0] == 0
4214 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4215 && (b != symbol_block
4216 || offset / sizeof b->symbols[0] < symbol_block_index)
4217 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4218 }
4219 else
4220 return 0;
4221 }
4222
4223
4224 /* Value is non-zero if P is a pointer to a live Lisp float on
4225 the heap. M is a pointer to the mem_block for P. */
4226
4227 static bool
4228 live_float_p (struct mem_node *m, void *p)
4229 {
4230 if (m->type == MEM_TYPE_FLOAT)
4231 {
4232 struct float_block *b = m->start;
4233 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4234
4235 /* P must point to the start of a Lisp_Float and not be
4236 one of the unused cells in the current float block. */
4237 return (offset >= 0
4238 && offset % sizeof b->floats[0] == 0
4239 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4240 && (b != float_block
4241 || offset / sizeof b->floats[0] < float_block_index));
4242 }
4243 else
4244 return 0;
4245 }
4246
4247
4248 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4249 the heap. M is a pointer to the mem_block for P. */
4250
4251 static bool
4252 live_misc_p (struct mem_node *m, void *p)
4253 {
4254 if (m->type == MEM_TYPE_MISC)
4255 {
4256 struct marker_block *b = m->start;
4257 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4258
4259 /* P must point to the start of a Lisp_Misc, not be
4260 one of the unused cells in the current misc block,
4261 and not be on the free-list. */
4262 return (offset >= 0
4263 && offset % sizeof b->markers[0] == 0
4264 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4265 && (b != marker_block
4266 || offset / sizeof b->markers[0] < marker_block_index)
4267 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4268 }
4269 else
4270 return 0;
4271 }
4272
4273
4274 /* Value is non-zero if P is a pointer to a live vector-like object.
4275 M is a pointer to the mem_block for P. */
4276
4277 static bool
4278 live_vector_p (struct mem_node *m, void *p)
4279 {
4280 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4281 {
4282 /* This memory node corresponds to a vector block. */
4283 struct vector_block *block = m->start;
4284 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4285
4286 /* P is in the block's allocation range. Scan the block
4287 up to P and see whether P points to the start of some
4288 vector which is not on a free list. FIXME: check whether
4289 some allocation patterns (probably a lot of short vectors)
4290 may cause a substantial overhead of this loop. */
4291 while (VECTOR_IN_BLOCK (vector, block)
4292 && vector <= (struct Lisp_Vector *) p)
4293 {
4294 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4295 return 1;
4296 else
4297 vector = ADVANCE (vector, vector_nbytes (vector));
4298 }
4299 }
4300 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4301 /* This memory node corresponds to a large vector. */
4302 return 1;
4303 return 0;
4304 }
4305
4306
4307 /* Value is non-zero if P is a pointer to a live buffer. M is a
4308 pointer to the mem_block for P. */
4309
4310 static bool
4311 live_buffer_p (struct mem_node *m, void *p)
4312 {
4313 /* P must point to the start of the block, and the buffer
4314 must not have been killed. */
4315 return (m->type == MEM_TYPE_BUFFER
4316 && p == m->start
4317 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4318 }
4319
4320 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4321
4322 #if GC_MARK_STACK
4323
4324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4325
4326 /* Currently not used, but may be called from gdb. */
4327
4328 void dump_zombies (void) EXTERNALLY_VISIBLE;
4329
4330 /* Array of objects that are kept alive because the C stack contains
4331 a pattern that looks like a reference to them . */
4332
4333 #define MAX_ZOMBIES 10
4334 static Lisp_Object zombies[MAX_ZOMBIES];
4335
4336 /* Number of zombie objects. */
4337
4338 static EMACS_INT nzombies;
4339
4340 /* Number of garbage collections. */
4341
4342 static EMACS_INT ngcs;
4343
4344 /* Average percentage of zombies per collection. */
4345
4346 static double avg_zombies;
4347
4348 /* Max. number of live and zombie objects. */
4349
4350 static EMACS_INT max_live, max_zombies;
4351
4352 /* Average number of live objects per GC. */
4353
4354 static double avg_live;
4355
4356 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4357 doc: /* Show information about live and zombie objects. */)
4358 (void)
4359 {
4360 Lisp_Object args[8], zombie_list = Qnil;
4361 EMACS_INT i;
4362 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4363 zombie_list = Fcons (zombies[i], zombie_list);
4364 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4365 args[1] = make_number (ngcs);
4366 args[2] = make_float (avg_live);
4367 args[3] = make_float (avg_zombies);
4368 args[4] = make_float (avg_zombies / avg_live / 100);
4369 args[5] = make_number (max_live);
4370 args[6] = make_number (max_zombies);
4371 args[7] = zombie_list;
4372 return Fmessage (8, args);
4373 }
4374
4375 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4376
4377
4378 /* Mark OBJ if we can prove it's a Lisp_Object. */
4379
4380 static void
4381 mark_maybe_object (Lisp_Object obj)
4382 {
4383 void *po;
4384 struct mem_node *m;
4385
4386 #if USE_VALGRIND
4387 if (valgrind_p)
4388 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4389 #endif
4390
4391 if (INTEGERP (obj))
4392 return;
4393
4394 po = (void *) XPNTR (obj);
4395 m = mem_find (po);
4396
4397 if (m != MEM_NIL)
4398 {
4399 bool mark_p = 0;
4400
4401 switch (XTYPE (obj))
4402 {
4403 case Lisp_String:
4404 mark_p = (live_string_p (m, po)
4405 && !STRING_MARKED_P ((struct Lisp_String *) po));
4406 break;
4407
4408 case Lisp_Cons:
4409 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4410 break;
4411
4412 case Lisp_Symbol:
4413 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4414 break;
4415
4416 case Lisp_Float:
4417 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4418 break;
4419
4420 case Lisp_Vectorlike:
4421 /* Note: can't check BUFFERP before we know it's a
4422 buffer because checking that dereferences the pointer
4423 PO which might point anywhere. */
4424 if (live_vector_p (m, po))
4425 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4426 else if (live_buffer_p (m, po))
4427 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4428 break;
4429
4430 case Lisp_Misc:
4431 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4432 break;
4433
4434 default:
4435 break;
4436 }
4437
4438 if (mark_p)
4439 {
4440 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4441 if (nzombies < MAX_ZOMBIES)
4442 zombies[nzombies] = obj;
4443 ++nzombies;
4444 #endif
4445 mark_object (obj);
4446 }
4447 }
4448 }
4449
4450
4451 /* If P points to Lisp data, mark that as live if it isn't already
4452 marked. */
4453
4454 static void
4455 mark_maybe_pointer (void *p)
4456 {
4457 struct mem_node *m;
4458
4459 #if USE_VALGRIND
4460 if (valgrind_p)
4461 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4462 #endif
4463
4464 /* Quickly rule out some values which can't point to Lisp data.
4465 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4466 Otherwise, assume that Lisp data is aligned on even addresses. */
4467 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4468 return;
4469
4470 m = mem_find (p);
4471 if (m != MEM_NIL)
4472 {
4473 Lisp_Object obj = Qnil;
4474
4475 switch (m->type)
4476 {
4477 case MEM_TYPE_NON_LISP:
4478 case MEM_TYPE_SPARE:
4479 /* Nothing to do; not a pointer to Lisp memory. */
4480 break;
4481
4482 case MEM_TYPE_BUFFER:
4483 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4484 XSETVECTOR (obj, p);
4485 break;
4486
4487 case MEM_TYPE_CONS:
4488 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4489 XSETCONS (obj, p);
4490 break;
4491
4492 case MEM_TYPE_STRING:
4493 if (live_string_p (m, p)
4494 && !STRING_MARKED_P ((struct Lisp_String *) p))
4495 XSETSTRING (obj, p);
4496 break;
4497
4498 case MEM_TYPE_MISC:
4499 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4500 XSETMISC (obj, p);
4501 break;
4502
4503 case MEM_TYPE_SYMBOL:
4504 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4505 XSETSYMBOL (obj, p);
4506 break;
4507
4508 case MEM_TYPE_FLOAT:
4509 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4510 XSETFLOAT (obj, p);
4511 break;
4512
4513 case MEM_TYPE_VECTORLIKE:
4514 case MEM_TYPE_VECTOR_BLOCK:
4515 if (live_vector_p (m, p))
4516 {
4517 Lisp_Object tem;
4518 XSETVECTOR (tem, p);
4519 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4520 obj = tem;
4521 }
4522 break;
4523
4524 default:
4525 emacs_abort ();
4526 }
4527
4528 if (!NILP (obj))
4529 mark_object (obj);
4530 }
4531 }
4532
4533
4534 /* Alignment of pointer values. Use alignof, as it sometimes returns
4535 a smaller alignment than GCC's __alignof__ and mark_memory might
4536 miss objects if __alignof__ were used. */
4537 #define GC_POINTER_ALIGNMENT alignof (void *)
4538
4539 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4540 not suffice, which is the typical case. A host where a Lisp_Object is
4541 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4542 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4543 suffice to widen it to to a Lisp_Object and check it that way. */
4544 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4545 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4546 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4547 nor mark_maybe_object can follow the pointers. This should not occur on
4548 any practical porting target. */
4549 # error "MSB type bits straddle pointer-word boundaries"
4550 # endif
4551 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4552 pointer words that hold pointers ORed with type bits. */
4553 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4554 #else
4555 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4556 words that hold unmodified pointers. */
4557 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4558 #endif
4559
4560 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4561 or END+OFFSET..START. */
4562
4563 static void
4564 mark_memory (void *start, void *end)
4565 #if defined (__clang__) && defined (__has_feature)
4566 #if __has_feature(address_sanitizer)
4567 /* Do not allow -faddress-sanitizer to check this function, since it
4568 crosses the function stack boundary, and thus would yield many
4569 false positives. */
4570 __attribute__((no_address_safety_analysis))
4571 #endif
4572 #endif
4573 {
4574 void **pp;
4575 int i;
4576
4577 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4578 nzombies = 0;
4579 #endif
4580
4581 /* Make START the pointer to the start of the memory region,
4582 if it isn't already. */
4583 if (end < start)
4584 {
4585 void *tem = start;
4586 start = end;
4587 end = tem;
4588 }
4589
4590 /* Mark Lisp data pointed to. This is necessary because, in some
4591 situations, the C compiler optimizes Lisp objects away, so that
4592 only a pointer to them remains. Example:
4593
4594 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4595 ()
4596 {
4597 Lisp_Object obj = build_string ("test");
4598 struct Lisp_String *s = XSTRING (obj);
4599 Fgarbage_collect ();
4600 fprintf (stderr, "test `%s'\n", s->data);
4601 return Qnil;
4602 }
4603
4604 Here, `obj' isn't really used, and the compiler optimizes it
4605 away. The only reference to the life string is through the
4606 pointer `s'. */
4607
4608 for (pp = start; (void *) pp < end; pp++)
4609 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4610 {
4611 void *p = *(void **) ((char *) pp + i);
4612 mark_maybe_pointer (p);
4613 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4614 mark_maybe_object (XIL ((intptr_t) p));
4615 }
4616 }
4617
4618 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4619
4620 static bool setjmp_tested_p;
4621 static int longjmps_done;
4622
4623 #define SETJMP_WILL_LIKELY_WORK "\
4624 \n\
4625 Emacs garbage collector has been changed to use conservative stack\n\
4626 marking. Emacs has determined that the method it uses to do the\n\
4627 marking will likely work on your system, but this isn't sure.\n\
4628 \n\
4629 If you are a system-programmer, or can get the help of a local wizard\n\
4630 who is, please take a look at the function mark_stack in alloc.c, and\n\
4631 verify that the methods used are appropriate for your system.\n\
4632 \n\
4633 Please mail the result to <emacs-devel@gnu.org>.\n\
4634 "
4635
4636 #define SETJMP_WILL_NOT_WORK "\
4637 \n\
4638 Emacs garbage collector has been changed to use conservative stack\n\
4639 marking. Emacs has determined that the default method it uses to do the\n\
4640 marking will not work on your system. We will need a system-dependent\n\
4641 solution for your system.\n\
4642 \n\
4643 Please take a look at the function mark_stack in alloc.c, and\n\
4644 try to find a way to make it work on your system.\n\
4645 \n\
4646 Note that you may get false negatives, depending on the compiler.\n\
4647 In particular, you need to use -O with GCC for this test.\n\
4648 \n\
4649 Please mail the result to <emacs-devel@gnu.org>.\n\
4650 "
4651
4652
4653 /* Perform a quick check if it looks like setjmp saves registers in a
4654 jmp_buf. Print a message to stderr saying so. When this test
4655 succeeds, this is _not_ a proof that setjmp is sufficient for
4656 conservative stack marking. Only the sources or a disassembly
4657 can prove that. */
4658
4659 static void
4660 test_setjmp (void)
4661 {
4662 char buf[10];
4663 register int x;
4664 sys_jmp_buf jbuf;
4665
4666 /* Arrange for X to be put in a register. */
4667 sprintf (buf, "1");
4668 x = strlen (buf);
4669 x = 2 * x - 1;
4670
4671 sys_setjmp (jbuf);
4672 if (longjmps_done == 1)
4673 {
4674 /* Came here after the longjmp at the end of the function.
4675
4676 If x == 1, the longjmp has restored the register to its
4677 value before the setjmp, and we can hope that setjmp
4678 saves all such registers in the jmp_buf, although that
4679 isn't sure.
4680
4681 For other values of X, either something really strange is
4682 taking place, or the setjmp just didn't save the register. */
4683
4684 if (x == 1)
4685 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4686 else
4687 {
4688 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4689 exit (1);
4690 }
4691 }
4692
4693 ++longjmps_done;
4694 x = 2;
4695 if (longjmps_done == 1)
4696 sys_longjmp (jbuf, 1);
4697 }
4698
4699 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4700
4701
4702 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4703
4704 /* Abort if anything GCPRO'd doesn't survive the GC. */
4705
4706 static void
4707 check_gcpros (void)
4708 {
4709 struct gcpro *p;
4710 ptrdiff_t i;
4711
4712 for (p = gcprolist; p; p = p->next)
4713 for (i = 0; i < p->nvars; ++i)
4714 if (!survives_gc_p (p->var[i]))
4715 /* FIXME: It's not necessarily a bug. It might just be that the
4716 GCPRO is unnecessary or should release the object sooner. */
4717 emacs_abort ();
4718 }
4719
4720 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4721
4722 void
4723 dump_zombies (void)
4724 {
4725 int i;
4726
4727 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4728 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4729 {
4730 fprintf (stderr, " %d = ", i);
4731 debug_print (zombies[i]);
4732 }
4733 }
4734
4735 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4736
4737
4738 /* Mark live Lisp objects on the C stack.
4739
4740 There are several system-dependent problems to consider when
4741 porting this to new architectures:
4742
4743 Processor Registers
4744
4745 We have to mark Lisp objects in CPU registers that can hold local
4746 variables or are used to pass parameters.
4747
4748 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4749 something that either saves relevant registers on the stack, or
4750 calls mark_maybe_object passing it each register's contents.
4751
4752 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4753 implementation assumes that calling setjmp saves registers we need
4754 to see in a jmp_buf which itself lies on the stack. This doesn't
4755 have to be true! It must be verified for each system, possibly
4756 by taking a look at the source code of setjmp.
4757
4758 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4759 can use it as a machine independent method to store all registers
4760 to the stack. In this case the macros described in the previous
4761 two paragraphs are not used.
4762
4763 Stack Layout
4764
4765 Architectures differ in the way their processor stack is organized.
4766 For example, the stack might look like this
4767
4768 +----------------+
4769 | Lisp_Object | size = 4
4770 +----------------+
4771 | something else | size = 2
4772 +----------------+
4773 | Lisp_Object | size = 4
4774 +----------------+
4775 | ... |
4776
4777 In such a case, not every Lisp_Object will be aligned equally. To
4778 find all Lisp_Object on the stack it won't be sufficient to walk
4779 the stack in steps of 4 bytes. Instead, two passes will be
4780 necessary, one starting at the start of the stack, and a second
4781 pass starting at the start of the stack + 2. Likewise, if the
4782 minimal alignment of Lisp_Objects on the stack is 1, four passes
4783 would be necessary, each one starting with one byte more offset
4784 from the stack start. */
4785
4786 static void
4787 mark_stack (void)
4788 {
4789 void *end;
4790
4791 #ifdef HAVE___BUILTIN_UNWIND_INIT
4792 /* Force callee-saved registers and register windows onto the stack.
4793 This is the preferred method if available, obviating the need for
4794 machine dependent methods. */
4795 __builtin_unwind_init ();
4796 end = &end;
4797 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4798 #ifndef GC_SAVE_REGISTERS_ON_STACK
4799 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4800 union aligned_jmpbuf {
4801 Lisp_Object o;
4802 sys_jmp_buf j;
4803 } j;
4804 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4805 #endif
4806 /* This trick flushes the register windows so that all the state of
4807 the process is contained in the stack. */
4808 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4809 needed on ia64 too. See mach_dep.c, where it also says inline
4810 assembler doesn't work with relevant proprietary compilers. */
4811 #ifdef __sparc__
4812 #if defined (__sparc64__) && defined (__FreeBSD__)
4813 /* FreeBSD does not have a ta 3 handler. */
4814 asm ("flushw");
4815 #else
4816 asm ("ta 3");
4817 #endif
4818 #endif
4819
4820 /* Save registers that we need to see on the stack. We need to see
4821 registers used to hold register variables and registers used to
4822 pass parameters. */
4823 #ifdef GC_SAVE_REGISTERS_ON_STACK
4824 GC_SAVE_REGISTERS_ON_STACK (end);
4825 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4826
4827 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4828 setjmp will definitely work, test it
4829 and print a message with the result
4830 of the test. */
4831 if (!setjmp_tested_p)
4832 {
4833 setjmp_tested_p = 1;
4834 test_setjmp ();
4835 }
4836 #endif /* GC_SETJMP_WORKS */
4837
4838 sys_setjmp (j.j);
4839 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4840 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4841 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4842
4843 /* This assumes that the stack is a contiguous region in memory. If
4844 that's not the case, something has to be done here to iterate
4845 over the stack segments. */
4846 mark_memory (stack_base, end);
4847
4848 /* Allow for marking a secondary stack, like the register stack on the
4849 ia64. */
4850 #ifdef GC_MARK_SECONDARY_STACK
4851 GC_MARK_SECONDARY_STACK ();
4852 #endif
4853
4854 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4855 check_gcpros ();
4856 #endif
4857 }
4858
4859 #else /* GC_MARK_STACK == 0 */
4860
4861 #define mark_maybe_object(obj) emacs_abort ()
4862
4863 #endif /* GC_MARK_STACK != 0 */
4864
4865
4866 /* Determine whether it is safe to access memory at address P. */
4867 static int
4868 valid_pointer_p (void *p)
4869 {
4870 #ifdef WINDOWSNT
4871 return w32_valid_pointer_p (p, 16);
4872 #else
4873 int fd[2];
4874
4875 /* Obviously, we cannot just access it (we would SEGV trying), so we
4876 trick the o/s to tell us whether p is a valid pointer.
4877 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4878 not validate p in that case. */
4879
4880 if (emacs_pipe (fd) == 0)
4881 {
4882 bool valid = emacs_write (fd[1], p, 16) == 16;
4883 emacs_close (fd[1]);
4884 emacs_close (fd[0]);
4885 return valid;
4886 }
4887
4888 return -1;
4889 #endif
4890 }
4891
4892 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4893 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4894 cannot validate OBJ. This function can be quite slow, so its primary
4895 use is the manual debugging. The only exception is print_object, where
4896 we use it to check whether the memory referenced by the pointer of
4897 Lisp_Save_Value object contains valid objects. */
4898
4899 int
4900 valid_lisp_object_p (Lisp_Object obj)
4901 {
4902 void *p;
4903 #if GC_MARK_STACK
4904 struct mem_node *m;
4905 #endif
4906
4907 if (INTEGERP (obj))
4908 return 1;
4909
4910 p = (void *) XPNTR (obj);
4911 if (PURE_POINTER_P (p))
4912 return 1;
4913
4914 if (p == &buffer_defaults || p == &buffer_local_symbols)
4915 return 2;
4916
4917 #if !GC_MARK_STACK
4918 return valid_pointer_p (p);
4919 #else
4920
4921 m = mem_find (p);
4922
4923 if (m == MEM_NIL)
4924 {
4925 int valid = valid_pointer_p (p);
4926 if (valid <= 0)
4927 return valid;
4928
4929 if (SUBRP (obj))
4930 return 1;
4931
4932 return 0;
4933 }
4934
4935 switch (m->type)
4936 {
4937 case MEM_TYPE_NON_LISP:
4938 case MEM_TYPE_SPARE:
4939 return 0;
4940
4941 case MEM_TYPE_BUFFER:
4942 return live_buffer_p (m, p) ? 1 : 2;
4943
4944 case MEM_TYPE_CONS:
4945 return live_cons_p (m, p);
4946
4947 case MEM_TYPE_STRING:
4948 return live_string_p (m, p);
4949
4950 case MEM_TYPE_MISC:
4951 return live_misc_p (m, p);
4952
4953 case MEM_TYPE_SYMBOL:
4954 return live_symbol_p (m, p);
4955
4956 case MEM_TYPE_FLOAT:
4957 return live_float_p (m, p);
4958
4959 case MEM_TYPE_VECTORLIKE:
4960 case MEM_TYPE_VECTOR_BLOCK:
4961 return live_vector_p (m, p);
4962
4963 default:
4964 break;
4965 }
4966
4967 return 0;
4968 #endif
4969 }
4970
4971
4972
4973 \f
4974 /***********************************************************************
4975 Pure Storage Management
4976 ***********************************************************************/
4977
4978 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4979 pointer to it. TYPE is the Lisp type for which the memory is
4980 allocated. TYPE < 0 means it's not used for a Lisp object. */
4981
4982 static void *
4983 pure_alloc (size_t size, int type)
4984 {
4985 void *result;
4986 #if USE_LSB_TAG
4987 size_t alignment = GCALIGNMENT;
4988 #else
4989 size_t alignment = alignof (EMACS_INT);
4990
4991 /* Give Lisp_Floats an extra alignment. */
4992 if (type == Lisp_Float)
4993 alignment = alignof (struct Lisp_Float);
4994 #endif
4995
4996 again:
4997 if (type >= 0)
4998 {
4999 /* Allocate space for a Lisp object from the beginning of the free
5000 space with taking account of alignment. */
5001 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5002 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5003 }
5004 else
5005 {
5006 /* Allocate space for a non-Lisp object from the end of the free
5007 space. */
5008 pure_bytes_used_non_lisp += size;
5009 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5010 }
5011 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5012
5013 if (pure_bytes_used <= pure_size)
5014 return result;
5015
5016 /* Don't allocate a large amount here,
5017 because it might get mmap'd and then its address
5018 might not be usable. */
5019 purebeg = xmalloc (10000);
5020 pure_size = 10000;
5021 pure_bytes_used_before_overflow += pure_bytes_used - size;
5022 pure_bytes_used = 0;
5023 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5024 goto again;
5025 }
5026
5027
5028 /* Print a warning if PURESIZE is too small. */
5029
5030 void
5031 check_pure_size (void)
5032 {
5033 if (pure_bytes_used_before_overflow)
5034 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5035 " bytes needed)"),
5036 pure_bytes_used + pure_bytes_used_before_overflow);
5037 }
5038
5039
5040 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5041 the non-Lisp data pool of the pure storage, and return its start
5042 address. Return NULL if not found. */
5043
5044 static char *
5045 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5046 {
5047 int i;
5048 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5049 const unsigned char *p;
5050 char *non_lisp_beg;
5051
5052 if (pure_bytes_used_non_lisp <= nbytes)
5053 return NULL;
5054
5055 /* Set up the Boyer-Moore table. */
5056 skip = nbytes + 1;
5057 for (i = 0; i < 256; i++)
5058 bm_skip[i] = skip;
5059
5060 p = (const unsigned char *) data;
5061 while (--skip > 0)
5062 bm_skip[*p++] = skip;
5063
5064 last_char_skip = bm_skip['\0'];
5065
5066 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5067 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5068
5069 /* See the comments in the function `boyer_moore' (search.c) for the
5070 use of `infinity'. */
5071 infinity = pure_bytes_used_non_lisp + 1;
5072 bm_skip['\0'] = infinity;
5073
5074 p = (const unsigned char *) non_lisp_beg + nbytes;
5075 start = 0;
5076 do
5077 {
5078 /* Check the last character (== '\0'). */
5079 do
5080 {
5081 start += bm_skip[*(p + start)];
5082 }
5083 while (start <= start_max);
5084
5085 if (start < infinity)
5086 /* Couldn't find the last character. */
5087 return NULL;
5088
5089 /* No less than `infinity' means we could find the last
5090 character at `p[start - infinity]'. */
5091 start -= infinity;
5092
5093 /* Check the remaining characters. */
5094 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5095 /* Found. */
5096 return non_lisp_beg + start;
5097
5098 start += last_char_skip;
5099 }
5100 while (start <= start_max);
5101
5102 return NULL;
5103 }
5104
5105
5106 /* Return a string allocated in pure space. DATA is a buffer holding
5107 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5108 means make the result string multibyte.
5109
5110 Must get an error if pure storage is full, since if it cannot hold
5111 a large string it may be able to hold conses that point to that
5112 string; then the string is not protected from gc. */
5113
5114 Lisp_Object
5115 make_pure_string (const char *data,
5116 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5117 {
5118 Lisp_Object string;
5119 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5120 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5121 if (s->data == NULL)
5122 {
5123 s->data = pure_alloc (nbytes + 1, -1);
5124 memcpy (s->data, data, nbytes);
5125 s->data[nbytes] = '\0';
5126 }
5127 s->size = nchars;
5128 s->size_byte = multibyte ? nbytes : -1;
5129 s->intervals = NULL;
5130 XSETSTRING (string, s);
5131 return string;
5132 }
5133
5134 /* Return a string allocated in pure space. Do not
5135 allocate the string data, just point to DATA. */
5136
5137 Lisp_Object
5138 make_pure_c_string (const char *data, ptrdiff_t nchars)
5139 {
5140 Lisp_Object string;
5141 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5142 s->size = nchars;
5143 s->size_byte = -1;
5144 s->data = (unsigned char *) data;
5145 s->intervals = NULL;
5146 XSETSTRING (string, s);
5147 return string;
5148 }
5149
5150 /* Return a cons allocated from pure space. Give it pure copies
5151 of CAR as car and CDR as cdr. */
5152
5153 Lisp_Object
5154 pure_cons (Lisp_Object car, Lisp_Object cdr)
5155 {
5156 Lisp_Object new;
5157 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5158 XSETCONS (new, p);
5159 XSETCAR (new, Fpurecopy (car));
5160 XSETCDR (new, Fpurecopy (cdr));
5161 return new;
5162 }
5163
5164
5165 /* Value is a float object with value NUM allocated from pure space. */
5166
5167 static Lisp_Object
5168 make_pure_float (double num)
5169 {
5170 Lisp_Object new;
5171 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5172 XSETFLOAT (new, p);
5173 XFLOAT_INIT (new, num);
5174 return new;
5175 }
5176
5177
5178 /* Return a vector with room for LEN Lisp_Objects allocated from
5179 pure space. */
5180
5181 static Lisp_Object
5182 make_pure_vector (ptrdiff_t len)
5183 {
5184 Lisp_Object new;
5185 size_t size = header_size + len * word_size;
5186 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5187 XSETVECTOR (new, p);
5188 XVECTOR (new)->header.size = len;
5189 return new;
5190 }
5191
5192
5193 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5194 doc: /* Make a copy of object OBJ in pure storage.
5195 Recursively copies contents of vectors and cons cells.
5196 Does not copy symbols. Copies strings without text properties. */)
5197 (register Lisp_Object obj)
5198 {
5199 if (NILP (Vpurify_flag))
5200 return obj;
5201
5202 if (PURE_POINTER_P (XPNTR (obj)))
5203 return obj;
5204
5205 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5206 {
5207 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5208 if (!NILP (tmp))
5209 return tmp;
5210 }
5211
5212 if (CONSP (obj))
5213 obj = pure_cons (XCAR (obj), XCDR (obj));
5214 else if (FLOATP (obj))
5215 obj = make_pure_float (XFLOAT_DATA (obj));
5216 else if (STRINGP (obj))
5217 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5218 SBYTES (obj),
5219 STRING_MULTIBYTE (obj));
5220 else if (COMPILEDP (obj) || VECTORP (obj))
5221 {
5222 register struct Lisp_Vector *vec;
5223 register ptrdiff_t i;
5224 ptrdiff_t size;
5225
5226 size = ASIZE (obj);
5227 if (size & PSEUDOVECTOR_FLAG)
5228 size &= PSEUDOVECTOR_SIZE_MASK;
5229 vec = XVECTOR (make_pure_vector (size));
5230 for (i = 0; i < size; i++)
5231 vec->contents[i] = Fpurecopy (AREF (obj, i));
5232 if (COMPILEDP (obj))
5233 {
5234 XSETPVECTYPE (vec, PVEC_COMPILED);
5235 XSETCOMPILED (obj, vec);
5236 }
5237 else
5238 XSETVECTOR (obj, vec);
5239 }
5240 else if (MARKERP (obj))
5241 error ("Attempt to copy a marker to pure storage");
5242 else
5243 /* Not purified, don't hash-cons. */
5244 return obj;
5245
5246 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5247 Fputhash (obj, obj, Vpurify_flag);
5248
5249 return obj;
5250 }
5251
5252
5253 \f
5254 /***********************************************************************
5255 Protection from GC
5256 ***********************************************************************/
5257
5258 /* Put an entry in staticvec, pointing at the variable with address
5259 VARADDRESS. */
5260
5261 void
5262 staticpro (Lisp_Object *varaddress)
5263 {
5264 if (staticidx >= NSTATICS)
5265 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5266 staticvec[staticidx++] = varaddress;
5267 }
5268
5269 \f
5270 /***********************************************************************
5271 Protection from GC
5272 ***********************************************************************/
5273
5274 /* Temporarily prevent garbage collection. */
5275
5276 ptrdiff_t
5277 inhibit_garbage_collection (void)
5278 {
5279 ptrdiff_t count = SPECPDL_INDEX ();
5280
5281 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5282 return count;
5283 }
5284
5285 /* Used to avoid possible overflows when
5286 converting from C to Lisp integers. */
5287
5288 static Lisp_Object
5289 bounded_number (EMACS_INT number)
5290 {
5291 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5292 }
5293
5294 /* Calculate total bytes of live objects. */
5295
5296 static size_t
5297 total_bytes_of_live_objects (void)
5298 {
5299 size_t tot = 0;
5300 tot += total_conses * sizeof (struct Lisp_Cons);
5301 tot += total_symbols * sizeof (struct Lisp_Symbol);
5302 tot += total_markers * sizeof (union Lisp_Misc);
5303 tot += total_string_bytes;
5304 tot += total_vector_slots * word_size;
5305 tot += total_floats * sizeof (struct Lisp_Float);
5306 tot += total_intervals * sizeof (struct interval);
5307 tot += total_strings * sizeof (struct Lisp_String);
5308 return tot;
5309 }
5310
5311 #ifdef HAVE_WINDOW_SYSTEM
5312
5313 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5314 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5315
5316 static Lisp_Object
5317 compact_font_cache_entry (Lisp_Object entry)
5318 {
5319 Lisp_Object tail, *prev = &entry;
5320
5321 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5322 {
5323 bool drop = 0;
5324 Lisp_Object obj = XCAR (tail);
5325
5326 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5327 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5328 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5329 && VECTORP (XCDR (obj)))
5330 {
5331 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5332
5333 /* If font-spec is not marked, most likely all font-entities
5334 are not marked too. But we must be sure that nothing is
5335 marked within OBJ before we really drop it. */
5336 for (i = 0; i < size; i++)
5337 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5338 break;
5339
5340 if (i == size)
5341 drop = 1;
5342 }
5343 if (drop)
5344 *prev = XCDR (tail);
5345 else
5346 prev = xcdr_addr (tail);
5347 }
5348 return entry;
5349 }
5350
5351 /* Compact font caches on all terminals and mark
5352 everything which is still here after compaction. */
5353
5354 static void
5355 compact_font_caches (void)
5356 {
5357 struct terminal *t;
5358
5359 for (t = terminal_list; t; t = t->next_terminal)
5360 {
5361 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5362
5363 if (CONSP (cache))
5364 {
5365 Lisp_Object entry;
5366
5367 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5368 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5369 }
5370 mark_object (cache);
5371 }
5372 }
5373
5374 #else /* not HAVE_WINDOW_SYSTEM */
5375
5376 #define compact_font_caches() (void)(0)
5377
5378 #endif /* HAVE_WINDOW_SYSTEM */
5379
5380 /* Remove (MARKER . DATA) entries with unmarked MARKER
5381 from buffer undo LIST and return changed list. */
5382
5383 static Lisp_Object
5384 compact_undo_list (Lisp_Object list)
5385 {
5386 Lisp_Object tail, *prev = &list;
5387
5388 for (tail = list; CONSP (tail); tail = XCDR (tail))
5389 {
5390 if (CONSP (XCAR (tail))
5391 && MARKERP (XCAR (XCAR (tail)))
5392 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5393 *prev = XCDR (tail);
5394 else
5395 prev = xcdr_addr (tail);
5396 }
5397 return list;
5398 }
5399
5400 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5401 doc: /* Reclaim storage for Lisp objects no longer needed.
5402 Garbage collection happens automatically if you cons more than
5403 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5404 `garbage-collect' normally returns a list with info on amount of space in use,
5405 where each entry has the form (NAME SIZE USED FREE), where:
5406 - NAME is a symbol describing the kind of objects this entry represents,
5407 - SIZE is the number of bytes used by each one,
5408 - USED is the number of those objects that were found live in the heap,
5409 - FREE is the number of those objects that are not live but that Emacs
5410 keeps around for future allocations (maybe because it does not know how
5411 to return them to the OS).
5412 However, if there was overflow in pure space, `garbage-collect'
5413 returns nil, because real GC can't be done.
5414 See Info node `(elisp)Garbage Collection'. */)
5415 (void)
5416 {
5417 struct buffer *nextb;
5418 char stack_top_variable;
5419 ptrdiff_t i;
5420 bool message_p;
5421 ptrdiff_t count = SPECPDL_INDEX ();
5422 struct timespec start;
5423 Lisp_Object retval = Qnil;
5424 size_t tot_before = 0;
5425
5426 if (abort_on_gc)
5427 emacs_abort ();
5428
5429 /* Can't GC if pure storage overflowed because we can't determine
5430 if something is a pure object or not. */
5431 if (pure_bytes_used_before_overflow)
5432 return Qnil;
5433
5434 /* Record this function, so it appears on the profiler's backtraces. */
5435 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5436
5437 check_cons_list ();
5438
5439 /* Don't keep undo information around forever.
5440 Do this early on, so it is no problem if the user quits. */
5441 FOR_EACH_BUFFER (nextb)
5442 compact_buffer (nextb);
5443
5444 if (profiler_memory_running)
5445 tot_before = total_bytes_of_live_objects ();
5446
5447 start = current_timespec ();
5448
5449 /* In case user calls debug_print during GC,
5450 don't let that cause a recursive GC. */
5451 consing_since_gc = 0;
5452
5453 /* Save what's currently displayed in the echo area. */
5454 message_p = push_message ();
5455 record_unwind_protect_void (pop_message_unwind);
5456
5457 /* Save a copy of the contents of the stack, for debugging. */
5458 #if MAX_SAVE_STACK > 0
5459 if (NILP (Vpurify_flag))
5460 {
5461 char *stack;
5462 ptrdiff_t stack_size;
5463 if (&stack_top_variable < stack_bottom)
5464 {
5465 stack = &stack_top_variable;
5466 stack_size = stack_bottom - &stack_top_variable;
5467 }
5468 else
5469 {
5470 stack = stack_bottom;
5471 stack_size = &stack_top_variable - stack_bottom;
5472 }
5473 if (stack_size <= MAX_SAVE_STACK)
5474 {
5475 if (stack_copy_size < stack_size)
5476 {
5477 stack_copy = xrealloc (stack_copy, stack_size);
5478 stack_copy_size = stack_size;
5479 }
5480 memcpy (stack_copy, stack, stack_size);
5481 }
5482 }
5483 #endif /* MAX_SAVE_STACK > 0 */
5484
5485 if (garbage_collection_messages)
5486 message1_nolog ("Garbage collecting...");
5487
5488 block_input ();
5489
5490 shrink_regexp_cache ();
5491
5492 gc_in_progress = 1;
5493
5494 /* Mark all the special slots that serve as the roots of accessibility. */
5495
5496 mark_buffer (&buffer_defaults);
5497 mark_buffer (&buffer_local_symbols);
5498
5499 for (i = 0; i < staticidx; i++)
5500 mark_object (*staticvec[i]);
5501
5502 mark_specpdl ();
5503 mark_terminals ();
5504 mark_kboards ();
5505
5506 #ifdef USE_GTK
5507 xg_mark_data ();
5508 #endif
5509
5510 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5511 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5512 mark_stack ();
5513 #else
5514 {
5515 register struct gcpro *tail;
5516 for (tail = gcprolist; tail; tail = tail->next)
5517 for (i = 0; i < tail->nvars; i++)
5518 mark_object (tail->var[i]);
5519 }
5520 mark_byte_stack ();
5521 #endif
5522 {
5523 struct handler *handler;
5524 for (handler = handlerlist; handler; handler = handler->next)
5525 {
5526 mark_object (handler->tag_or_ch);
5527 mark_object (handler->val);
5528 }
5529 }
5530 #ifdef HAVE_WINDOW_SYSTEM
5531 mark_fringe_data ();
5532 #endif
5533
5534 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5535 mark_stack ();
5536 #endif
5537
5538 /* Everything is now marked, except for the data in font caches
5539 and undo lists. They're compacted by removing an items which
5540 aren't reachable otherwise. */
5541
5542 compact_font_caches ();
5543
5544 FOR_EACH_BUFFER (nextb)
5545 {
5546 if (!EQ (BVAR (nextb, undo_list), Qt))
5547 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5548 /* Now that we have stripped the elements that need not be
5549 in the undo_list any more, we can finally mark the list. */
5550 mark_object (BVAR (nextb, undo_list));
5551 }
5552
5553 gc_sweep ();
5554
5555 /* Clear the mark bits that we set in certain root slots. */
5556
5557 unmark_byte_stack ();
5558 VECTOR_UNMARK (&buffer_defaults);
5559 VECTOR_UNMARK (&buffer_local_symbols);
5560
5561 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5562 dump_zombies ();
5563 #endif
5564
5565 check_cons_list ();
5566
5567 gc_in_progress = 0;
5568
5569 unblock_input ();
5570
5571 consing_since_gc = 0;
5572 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5573 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5574
5575 gc_relative_threshold = 0;
5576 if (FLOATP (Vgc_cons_percentage))
5577 { /* Set gc_cons_combined_threshold. */
5578 double tot = total_bytes_of_live_objects ();
5579
5580 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5581 if (0 < tot)
5582 {
5583 if (tot < TYPE_MAXIMUM (EMACS_INT))
5584 gc_relative_threshold = tot;
5585 else
5586 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5587 }
5588 }
5589
5590 if (garbage_collection_messages)
5591 {
5592 if (message_p || minibuf_level > 0)
5593 restore_message ();
5594 else
5595 message1_nolog ("Garbage collecting...done");
5596 }
5597
5598 unbind_to (count, Qnil);
5599 {
5600 Lisp_Object total[11];
5601 int total_size = 10;
5602
5603 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5604 bounded_number (total_conses),
5605 bounded_number (total_free_conses));
5606
5607 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5608 bounded_number (total_symbols),
5609 bounded_number (total_free_symbols));
5610
5611 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5612 bounded_number (total_markers),
5613 bounded_number (total_free_markers));
5614
5615 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5616 bounded_number (total_strings),
5617 bounded_number (total_free_strings));
5618
5619 total[4] = list3 (Qstring_bytes, make_number (1),
5620 bounded_number (total_string_bytes));
5621
5622 total[5] = list3 (Qvectors,
5623 make_number (header_size + sizeof (Lisp_Object)),
5624 bounded_number (total_vectors));
5625
5626 total[6] = list4 (Qvector_slots, make_number (word_size),
5627 bounded_number (total_vector_slots),
5628 bounded_number (total_free_vector_slots));
5629
5630 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5631 bounded_number (total_floats),
5632 bounded_number (total_free_floats));
5633
5634 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5635 bounded_number (total_intervals),
5636 bounded_number (total_free_intervals));
5637
5638 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5639 bounded_number (total_buffers));
5640
5641 #ifdef DOUG_LEA_MALLOC
5642 total_size++;
5643 total[10] = list4 (Qheap, make_number (1024),
5644 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5645 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5646 #endif
5647 retval = Flist (total_size, total);
5648 }
5649
5650 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5651 {
5652 /* Compute average percentage of zombies. */
5653 double nlive
5654 = (total_conses + total_symbols + total_markers + total_strings
5655 + total_vectors + total_floats + total_intervals + total_buffers);
5656
5657 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5658 max_live = max (nlive, max_live);
5659 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5660 max_zombies = max (nzombies, max_zombies);
5661 ++ngcs;
5662 }
5663 #endif
5664
5665 if (!NILP (Vpost_gc_hook))
5666 {
5667 ptrdiff_t gc_count = inhibit_garbage_collection ();
5668 safe_run_hooks (Qpost_gc_hook);
5669 unbind_to (gc_count, Qnil);
5670 }
5671
5672 /* Accumulate statistics. */
5673 if (FLOATP (Vgc_elapsed))
5674 {
5675 struct timespec since_start = timespec_sub (current_timespec (), start);
5676 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5677 + timespectod (since_start));
5678 }
5679
5680 gcs_done++;
5681
5682 /* Collect profiling data. */
5683 if (profiler_memory_running)
5684 {
5685 size_t swept = 0;
5686 size_t tot_after = total_bytes_of_live_objects ();
5687 if (tot_before > tot_after)
5688 swept = tot_before - tot_after;
5689 malloc_probe (swept);
5690 }
5691
5692 return retval;
5693 }
5694
5695
5696 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5697 only interesting objects referenced from glyphs are strings. */
5698
5699 static void
5700 mark_glyph_matrix (struct glyph_matrix *matrix)
5701 {
5702 struct glyph_row *row = matrix->rows;
5703 struct glyph_row *end = row + matrix->nrows;
5704
5705 for (; row < end; ++row)
5706 if (row->enabled_p)
5707 {
5708 int area;
5709 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5710 {
5711 struct glyph *glyph = row->glyphs[area];
5712 struct glyph *end_glyph = glyph + row->used[area];
5713
5714 for (; glyph < end_glyph; ++glyph)
5715 if (STRINGP (glyph->object)
5716 && !STRING_MARKED_P (XSTRING (glyph->object)))
5717 mark_object (glyph->object);
5718 }
5719 }
5720 }
5721
5722 /* Mark reference to a Lisp_Object.
5723 If the object referred to has not been seen yet, recursively mark
5724 all the references contained in it. */
5725
5726 #define LAST_MARKED_SIZE 500
5727 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5728 static int last_marked_index;
5729
5730 /* For debugging--call abort when we cdr down this many
5731 links of a list, in mark_object. In debugging,
5732 the call to abort will hit a breakpoint.
5733 Normally this is zero and the check never goes off. */
5734 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5735
5736 static void
5737 mark_vectorlike (struct Lisp_Vector *ptr)
5738 {
5739 ptrdiff_t size = ptr->header.size;
5740 ptrdiff_t i;
5741
5742 eassert (!VECTOR_MARKED_P (ptr));
5743 VECTOR_MARK (ptr); /* Else mark it. */
5744 if (size & PSEUDOVECTOR_FLAG)
5745 size &= PSEUDOVECTOR_SIZE_MASK;
5746
5747 /* Note that this size is not the memory-footprint size, but only
5748 the number of Lisp_Object fields that we should trace.
5749 The distinction is used e.g. by Lisp_Process which places extra
5750 non-Lisp_Object fields at the end of the structure... */
5751 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5752 mark_object (ptr->contents[i]);
5753 }
5754
5755 /* Like mark_vectorlike but optimized for char-tables (and
5756 sub-char-tables) assuming that the contents are mostly integers or
5757 symbols. */
5758
5759 static void
5760 mark_char_table (struct Lisp_Vector *ptr)
5761 {
5762 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5763 int i;
5764
5765 eassert (!VECTOR_MARKED_P (ptr));
5766 VECTOR_MARK (ptr);
5767 for (i = 0; i < size; i++)
5768 {
5769 Lisp_Object val = ptr->contents[i];
5770
5771 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5772 continue;
5773 if (SUB_CHAR_TABLE_P (val))
5774 {
5775 if (! VECTOR_MARKED_P (XVECTOR (val)))
5776 mark_char_table (XVECTOR (val));
5777 }
5778 else
5779 mark_object (val);
5780 }
5781 }
5782
5783 /* Mark the chain of overlays starting at PTR. */
5784
5785 static void
5786 mark_overlay (struct Lisp_Overlay *ptr)
5787 {
5788 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5789 {
5790 ptr->gcmarkbit = 1;
5791 mark_object (ptr->start);
5792 mark_object (ptr->end);
5793 mark_object (ptr->plist);
5794 }
5795 }
5796
5797 /* Mark Lisp_Objects and special pointers in BUFFER. */
5798
5799 static void
5800 mark_buffer (struct buffer *buffer)
5801 {
5802 /* This is handled much like other pseudovectors... */
5803 mark_vectorlike ((struct Lisp_Vector *) buffer);
5804
5805 /* ...but there are some buffer-specific things. */
5806
5807 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5808
5809 /* For now, we just don't mark the undo_list. It's done later in
5810 a special way just before the sweep phase, and after stripping
5811 some of its elements that are not needed any more. */
5812
5813 mark_overlay (buffer->overlays_before);
5814 mark_overlay (buffer->overlays_after);
5815
5816 /* If this is an indirect buffer, mark its base buffer. */
5817 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5818 mark_buffer (buffer->base_buffer);
5819 }
5820
5821 /* Mark Lisp faces in the face cache C. */
5822
5823 static void
5824 mark_face_cache (struct face_cache *c)
5825 {
5826 if (c)
5827 {
5828 int i, j;
5829 for (i = 0; i < c->used; ++i)
5830 {
5831 struct face *face = FACE_FROM_ID (c->f, i);
5832
5833 if (face)
5834 {
5835 if (face->font && !VECTOR_MARKED_P (face->font))
5836 mark_vectorlike ((struct Lisp_Vector *) face->font);
5837
5838 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5839 mark_object (face->lface[j]);
5840 }
5841 }
5842 }
5843 }
5844
5845 /* Remove killed buffers or items whose car is a killed buffer from
5846 LIST, and mark other items. Return changed LIST, which is marked. */
5847
5848 static Lisp_Object
5849 mark_discard_killed_buffers (Lisp_Object list)
5850 {
5851 Lisp_Object tail, *prev = &list;
5852
5853 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5854 tail = XCDR (tail))
5855 {
5856 Lisp_Object tem = XCAR (tail);
5857 if (CONSP (tem))
5858 tem = XCAR (tem);
5859 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5860 *prev = XCDR (tail);
5861 else
5862 {
5863 CONS_MARK (XCONS (tail));
5864 mark_object (XCAR (tail));
5865 prev = xcdr_addr (tail);
5866 }
5867 }
5868 mark_object (tail);
5869 return list;
5870 }
5871
5872 /* Determine type of generic Lisp_Object and mark it accordingly. */
5873
5874 void
5875 mark_object (Lisp_Object arg)
5876 {
5877 register Lisp_Object obj = arg;
5878 #ifdef GC_CHECK_MARKED_OBJECTS
5879 void *po;
5880 struct mem_node *m;
5881 #endif
5882 ptrdiff_t cdr_count = 0;
5883
5884 loop:
5885
5886 if (PURE_POINTER_P (XPNTR (obj)))
5887 return;
5888
5889 last_marked[last_marked_index++] = obj;
5890 if (last_marked_index == LAST_MARKED_SIZE)
5891 last_marked_index = 0;
5892
5893 /* Perform some sanity checks on the objects marked here. Abort if
5894 we encounter an object we know is bogus. This increases GC time
5895 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5896 #ifdef GC_CHECK_MARKED_OBJECTS
5897
5898 po = (void *) XPNTR (obj);
5899
5900 /* Check that the object pointed to by PO is known to be a Lisp
5901 structure allocated from the heap. */
5902 #define CHECK_ALLOCATED() \
5903 do { \
5904 m = mem_find (po); \
5905 if (m == MEM_NIL) \
5906 emacs_abort (); \
5907 } while (0)
5908
5909 /* Check that the object pointed to by PO is live, using predicate
5910 function LIVEP. */
5911 #define CHECK_LIVE(LIVEP) \
5912 do { \
5913 if (!LIVEP (m, po)) \
5914 emacs_abort (); \
5915 } while (0)
5916
5917 /* Check both of the above conditions. */
5918 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5919 do { \
5920 CHECK_ALLOCATED (); \
5921 CHECK_LIVE (LIVEP); \
5922 } while (0) \
5923
5924 #else /* not GC_CHECK_MARKED_OBJECTS */
5925
5926 #define CHECK_LIVE(LIVEP) (void) 0
5927 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5928
5929 #endif /* not GC_CHECK_MARKED_OBJECTS */
5930
5931 switch (XTYPE (obj))
5932 {
5933 case Lisp_String:
5934 {
5935 register struct Lisp_String *ptr = XSTRING (obj);
5936 if (STRING_MARKED_P (ptr))
5937 break;
5938 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5939 MARK_STRING (ptr);
5940 MARK_INTERVAL_TREE (ptr->intervals);
5941 #ifdef GC_CHECK_STRING_BYTES
5942 /* Check that the string size recorded in the string is the
5943 same as the one recorded in the sdata structure. */
5944 string_bytes (ptr);
5945 #endif /* GC_CHECK_STRING_BYTES */
5946 }
5947 break;
5948
5949 case Lisp_Vectorlike:
5950 {
5951 register struct Lisp_Vector *ptr = XVECTOR (obj);
5952 register ptrdiff_t pvectype;
5953
5954 if (VECTOR_MARKED_P (ptr))
5955 break;
5956
5957 #ifdef GC_CHECK_MARKED_OBJECTS
5958 m = mem_find (po);
5959 if (m == MEM_NIL && !SUBRP (obj))
5960 emacs_abort ();
5961 #endif /* GC_CHECK_MARKED_OBJECTS */
5962
5963 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5964 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5965 >> PSEUDOVECTOR_AREA_BITS);
5966 else
5967 pvectype = PVEC_NORMAL_VECTOR;
5968
5969 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5970 CHECK_LIVE (live_vector_p);
5971
5972 switch (pvectype)
5973 {
5974 case PVEC_BUFFER:
5975 #ifdef GC_CHECK_MARKED_OBJECTS
5976 {
5977 struct buffer *b;
5978 FOR_EACH_BUFFER (b)
5979 if (b == po)
5980 break;
5981 if (b == NULL)
5982 emacs_abort ();
5983 }
5984 #endif /* GC_CHECK_MARKED_OBJECTS */
5985 mark_buffer ((struct buffer *) ptr);
5986 break;
5987
5988 case PVEC_COMPILED:
5989 { /* We could treat this just like a vector, but it is better
5990 to save the COMPILED_CONSTANTS element for last and avoid
5991 recursion there. */
5992 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5993 int i;
5994
5995 VECTOR_MARK (ptr);
5996 for (i = 0; i < size; i++)
5997 if (i != COMPILED_CONSTANTS)
5998 mark_object (ptr->contents[i]);
5999 if (size > COMPILED_CONSTANTS)
6000 {
6001 obj = ptr->contents[COMPILED_CONSTANTS];
6002 goto loop;
6003 }
6004 }
6005 break;
6006
6007 case PVEC_FRAME:
6008 {
6009 struct frame *f = (struct frame *) ptr;
6010
6011 mark_vectorlike (ptr);
6012 mark_face_cache (f->face_cache);
6013 #ifdef HAVE_WINDOW_SYSTEM
6014 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6015 {
6016 struct font *font = FRAME_FONT (f);
6017
6018 if (font && !VECTOR_MARKED_P (font))
6019 mark_vectorlike ((struct Lisp_Vector *) font);
6020 }
6021 #endif
6022 }
6023 break;
6024
6025 case PVEC_WINDOW:
6026 {
6027 struct window *w = (struct window *) ptr;
6028
6029 mark_vectorlike (ptr);
6030
6031 /* Mark glyph matrices, if any. Marking window
6032 matrices is sufficient because frame matrices
6033 use the same glyph memory. */
6034 if (w->current_matrix)
6035 {
6036 mark_glyph_matrix (w->current_matrix);
6037 mark_glyph_matrix (w->desired_matrix);
6038 }
6039
6040 /* Filter out killed buffers from both buffer lists
6041 in attempt to help GC to reclaim killed buffers faster.
6042 We can do it elsewhere for live windows, but this is the
6043 best place to do it for dead windows. */
6044 wset_prev_buffers
6045 (w, mark_discard_killed_buffers (w->prev_buffers));
6046 wset_next_buffers
6047 (w, mark_discard_killed_buffers (w->next_buffers));
6048 }
6049 break;
6050
6051 case PVEC_HASH_TABLE:
6052 {
6053 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6054
6055 mark_vectorlike (ptr);
6056 mark_object (h->test.name);
6057 mark_object (h->test.user_hash_function);
6058 mark_object (h->test.user_cmp_function);
6059 /* If hash table is not weak, mark all keys and values.
6060 For weak tables, mark only the vector. */
6061 if (NILP (h->weak))
6062 mark_object (h->key_and_value);
6063 else
6064 VECTOR_MARK (XVECTOR (h->key_and_value));
6065 }
6066 break;
6067
6068 case PVEC_CHAR_TABLE:
6069 mark_char_table (ptr);
6070 break;
6071
6072 case PVEC_BOOL_VECTOR:
6073 /* No Lisp_Objects to mark in a bool vector. */
6074 VECTOR_MARK (ptr);
6075 break;
6076
6077 case PVEC_SUBR:
6078 break;
6079
6080 case PVEC_FREE:
6081 emacs_abort ();
6082
6083 default:
6084 mark_vectorlike (ptr);
6085 }
6086 }
6087 break;
6088
6089 case Lisp_Symbol:
6090 {
6091 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6092 struct Lisp_Symbol *ptrx;
6093
6094 if (ptr->gcmarkbit)
6095 break;
6096 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6097 ptr->gcmarkbit = 1;
6098 mark_object (ptr->function);
6099 mark_object (ptr->plist);
6100 switch (ptr->redirect)
6101 {
6102 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6103 case SYMBOL_VARALIAS:
6104 {
6105 Lisp_Object tem;
6106 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6107 mark_object (tem);
6108 break;
6109 }
6110 case SYMBOL_LOCALIZED:
6111 {
6112 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6113 Lisp_Object where = blv->where;
6114 /* If the value is set up for a killed buffer or deleted
6115 frame, restore it's global binding. If the value is
6116 forwarded to a C variable, either it's not a Lisp_Object
6117 var, or it's staticpro'd already. */
6118 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6119 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6120 swap_in_global_binding (ptr);
6121 mark_object (blv->where);
6122 mark_object (blv->valcell);
6123 mark_object (blv->defcell);
6124 break;
6125 }
6126 case SYMBOL_FORWARDED:
6127 /* If the value is forwarded to a buffer or keyboard field,
6128 these are marked when we see the corresponding object.
6129 And if it's forwarded to a C variable, either it's not
6130 a Lisp_Object var, or it's staticpro'd already. */
6131 break;
6132 default: emacs_abort ();
6133 }
6134 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6135 MARK_STRING (XSTRING (ptr->name));
6136 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6137
6138 ptr = ptr->next;
6139 if (ptr)
6140 {
6141 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6142 XSETSYMBOL (obj, ptrx);
6143 goto loop;
6144 }
6145 }
6146 break;
6147
6148 case Lisp_Misc:
6149 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6150
6151 if (XMISCANY (obj)->gcmarkbit)
6152 break;
6153
6154 switch (XMISCTYPE (obj))
6155 {
6156 case Lisp_Misc_Marker:
6157 /* DO NOT mark thru the marker's chain.
6158 The buffer's markers chain does not preserve markers from gc;
6159 instead, markers are removed from the chain when freed by gc. */
6160 XMISCANY (obj)->gcmarkbit = 1;
6161 break;
6162
6163 case Lisp_Misc_Save_Value:
6164 XMISCANY (obj)->gcmarkbit = 1;
6165 {
6166 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6167 /* If `save_type' is zero, `data[0].pointer' is the address
6168 of a memory area containing `data[1].integer' potential
6169 Lisp_Objects. */
6170 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6171 {
6172 Lisp_Object *p = ptr->data[0].pointer;
6173 ptrdiff_t nelt;
6174 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6175 mark_maybe_object (*p);
6176 }
6177 else
6178 {
6179 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6180 int i;
6181 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6182 if (save_type (ptr, i) == SAVE_OBJECT)
6183 mark_object (ptr->data[i].object);
6184 }
6185 }
6186 break;
6187
6188 case Lisp_Misc_Overlay:
6189 mark_overlay (XOVERLAY (obj));
6190 break;
6191
6192 default:
6193 emacs_abort ();
6194 }
6195 break;
6196
6197 case Lisp_Cons:
6198 {
6199 register struct Lisp_Cons *ptr = XCONS (obj);
6200 if (CONS_MARKED_P (ptr))
6201 break;
6202 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6203 CONS_MARK (ptr);
6204 /* If the cdr is nil, avoid recursion for the car. */
6205 if (EQ (ptr->u.cdr, Qnil))
6206 {
6207 obj = ptr->car;
6208 cdr_count = 0;
6209 goto loop;
6210 }
6211 mark_object (ptr->car);
6212 obj = ptr->u.cdr;
6213 cdr_count++;
6214 if (cdr_count == mark_object_loop_halt)
6215 emacs_abort ();
6216 goto loop;
6217 }
6218
6219 case Lisp_Float:
6220 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6221 FLOAT_MARK (XFLOAT (obj));
6222 break;
6223
6224 case_Lisp_Int:
6225 break;
6226
6227 default:
6228 emacs_abort ();
6229 }
6230
6231 #undef CHECK_LIVE
6232 #undef CHECK_ALLOCATED
6233 #undef CHECK_ALLOCATED_AND_LIVE
6234 }
6235 /* Mark the Lisp pointers in the terminal objects.
6236 Called by Fgarbage_collect. */
6237
6238 static void
6239 mark_terminals (void)
6240 {
6241 struct terminal *t;
6242 for (t = terminal_list; t; t = t->next_terminal)
6243 {
6244 eassert (t->name != NULL);
6245 #ifdef HAVE_WINDOW_SYSTEM
6246 /* If a terminal object is reachable from a stacpro'ed object,
6247 it might have been marked already. Make sure the image cache
6248 gets marked. */
6249 mark_image_cache (t->image_cache);
6250 #endif /* HAVE_WINDOW_SYSTEM */
6251 if (!VECTOR_MARKED_P (t))
6252 mark_vectorlike ((struct Lisp_Vector *)t);
6253 }
6254 }
6255
6256
6257
6258 /* Value is non-zero if OBJ will survive the current GC because it's
6259 either marked or does not need to be marked to survive. */
6260
6261 bool
6262 survives_gc_p (Lisp_Object obj)
6263 {
6264 bool survives_p;
6265
6266 switch (XTYPE (obj))
6267 {
6268 case_Lisp_Int:
6269 survives_p = 1;
6270 break;
6271
6272 case Lisp_Symbol:
6273 survives_p = XSYMBOL (obj)->gcmarkbit;
6274 break;
6275
6276 case Lisp_Misc:
6277 survives_p = XMISCANY (obj)->gcmarkbit;
6278 break;
6279
6280 case Lisp_String:
6281 survives_p = STRING_MARKED_P (XSTRING (obj));
6282 break;
6283
6284 case Lisp_Vectorlike:
6285 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6286 break;
6287
6288 case Lisp_Cons:
6289 survives_p = CONS_MARKED_P (XCONS (obj));
6290 break;
6291
6292 case Lisp_Float:
6293 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6294 break;
6295
6296 default:
6297 emacs_abort ();
6298 }
6299
6300 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6301 }
6302
6303
6304 \f
6305 /* Sweep: find all structures not marked, and free them. */
6306
6307 static void
6308 gc_sweep (void)
6309 {
6310 /* Remove or mark entries in weak hash tables.
6311 This must be done before any object is unmarked. */
6312 sweep_weak_hash_tables ();
6313
6314 sweep_strings ();
6315 check_string_bytes (!noninteractive);
6316
6317 /* Put all unmarked conses on free list */
6318 {
6319 register struct cons_block *cblk;
6320 struct cons_block **cprev = &cons_block;
6321 register int lim = cons_block_index;
6322 EMACS_INT num_free = 0, num_used = 0;
6323
6324 cons_free_list = 0;
6325
6326 for (cblk = cons_block; cblk; cblk = *cprev)
6327 {
6328 register int i = 0;
6329 int this_free = 0;
6330 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6331
6332 /* Scan the mark bits an int at a time. */
6333 for (i = 0; i < ilim; i++)
6334 {
6335 if (cblk->gcmarkbits[i] == -1)
6336 {
6337 /* Fast path - all cons cells for this int are marked. */
6338 cblk->gcmarkbits[i] = 0;
6339 num_used += BITS_PER_INT;
6340 }
6341 else
6342 {
6343 /* Some cons cells for this int are not marked.
6344 Find which ones, and free them. */
6345 int start, pos, stop;
6346
6347 start = i * BITS_PER_INT;
6348 stop = lim - start;
6349 if (stop > BITS_PER_INT)
6350 stop = BITS_PER_INT;
6351 stop += start;
6352
6353 for (pos = start; pos < stop; pos++)
6354 {
6355 if (!CONS_MARKED_P (&cblk->conses[pos]))
6356 {
6357 this_free++;
6358 cblk->conses[pos].u.chain = cons_free_list;
6359 cons_free_list = &cblk->conses[pos];
6360 #if GC_MARK_STACK
6361 cons_free_list->car = Vdead;
6362 #endif
6363 }
6364 else
6365 {
6366 num_used++;
6367 CONS_UNMARK (&cblk->conses[pos]);
6368 }
6369 }
6370 }
6371 }
6372
6373 lim = CONS_BLOCK_SIZE;
6374 /* If this block contains only free conses and we have already
6375 seen more than two blocks worth of free conses then deallocate
6376 this block. */
6377 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6378 {
6379 *cprev = cblk->next;
6380 /* Unhook from the free list. */
6381 cons_free_list = cblk->conses[0].u.chain;
6382 lisp_align_free (cblk);
6383 }
6384 else
6385 {
6386 num_free += this_free;
6387 cprev = &cblk->next;
6388 }
6389 }
6390 total_conses = num_used;
6391 total_free_conses = num_free;
6392 }
6393
6394 /* Put all unmarked floats on free list */
6395 {
6396 register struct float_block *fblk;
6397 struct float_block **fprev = &float_block;
6398 register int lim = float_block_index;
6399 EMACS_INT num_free = 0, num_used = 0;
6400
6401 float_free_list = 0;
6402
6403 for (fblk = float_block; fblk; fblk = *fprev)
6404 {
6405 register int i;
6406 int this_free = 0;
6407 for (i = 0; i < lim; i++)
6408 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6409 {
6410 this_free++;
6411 fblk->floats[i].u.chain = float_free_list;
6412 float_free_list = &fblk->floats[i];
6413 }
6414 else
6415 {
6416 num_used++;
6417 FLOAT_UNMARK (&fblk->floats[i]);
6418 }
6419 lim = FLOAT_BLOCK_SIZE;
6420 /* If this block contains only free floats and we have already
6421 seen more than two blocks worth of free floats then deallocate
6422 this block. */
6423 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6424 {
6425 *fprev = fblk->next;
6426 /* Unhook from the free list. */
6427 float_free_list = fblk->floats[0].u.chain;
6428 lisp_align_free (fblk);
6429 }
6430 else
6431 {
6432 num_free += this_free;
6433 fprev = &fblk->next;
6434 }
6435 }
6436 total_floats = num_used;
6437 total_free_floats = num_free;
6438 }
6439
6440 /* Put all unmarked intervals on free list */
6441 {
6442 register struct interval_block *iblk;
6443 struct interval_block **iprev = &interval_block;
6444 register int lim = interval_block_index;
6445 EMACS_INT num_free = 0, num_used = 0;
6446
6447 interval_free_list = 0;
6448
6449 for (iblk = interval_block; iblk; iblk = *iprev)
6450 {
6451 register int i;
6452 int this_free = 0;
6453
6454 for (i = 0; i < lim; i++)
6455 {
6456 if (!iblk->intervals[i].gcmarkbit)
6457 {
6458 set_interval_parent (&iblk->intervals[i], interval_free_list);
6459 interval_free_list = &iblk->intervals[i];
6460 this_free++;
6461 }
6462 else
6463 {
6464 num_used++;
6465 iblk->intervals[i].gcmarkbit = 0;
6466 }
6467 }
6468 lim = INTERVAL_BLOCK_SIZE;
6469 /* If this block contains only free intervals and we have already
6470 seen more than two blocks worth of free intervals then
6471 deallocate this block. */
6472 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6473 {
6474 *iprev = iblk->next;
6475 /* Unhook from the free list. */
6476 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6477 lisp_free (iblk);
6478 }
6479 else
6480 {
6481 num_free += this_free;
6482 iprev = &iblk->next;
6483 }
6484 }
6485 total_intervals = num_used;
6486 total_free_intervals = num_free;
6487 }
6488
6489 /* Put all unmarked symbols on free list */
6490 {
6491 register struct symbol_block *sblk;
6492 struct symbol_block **sprev = &symbol_block;
6493 register int lim = symbol_block_index;
6494 EMACS_INT num_free = 0, num_used = 0;
6495
6496 symbol_free_list = NULL;
6497
6498 for (sblk = symbol_block; sblk; sblk = *sprev)
6499 {
6500 int this_free = 0;
6501 union aligned_Lisp_Symbol *sym = sblk->symbols;
6502 union aligned_Lisp_Symbol *end = sym + lim;
6503
6504 for (; sym < end; ++sym)
6505 {
6506 /* Check if the symbol was created during loadup. In such a case
6507 it might be pointed to by pure bytecode which we don't trace,
6508 so we conservatively assume that it is live. */
6509 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6510
6511 if (!sym->s.gcmarkbit && !pure_p)
6512 {
6513 if (sym->s.redirect == SYMBOL_LOCALIZED)
6514 xfree (SYMBOL_BLV (&sym->s));
6515 sym->s.next = symbol_free_list;
6516 symbol_free_list = &sym->s;
6517 #if GC_MARK_STACK
6518 symbol_free_list->function = Vdead;
6519 #endif
6520 ++this_free;
6521 }
6522 else
6523 {
6524 ++num_used;
6525 if (!pure_p)
6526 UNMARK_STRING (XSTRING (sym->s.name));
6527 sym->s.gcmarkbit = 0;
6528 }
6529 }
6530
6531 lim = SYMBOL_BLOCK_SIZE;
6532 /* If this block contains only free symbols and we have already
6533 seen more than two blocks worth of free symbols then deallocate
6534 this block. */
6535 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6536 {
6537 *sprev = sblk->next;
6538 /* Unhook from the free list. */
6539 symbol_free_list = sblk->symbols[0].s.next;
6540 lisp_free (sblk);
6541 }
6542 else
6543 {
6544 num_free += this_free;
6545 sprev = &sblk->next;
6546 }
6547 }
6548 total_symbols = num_used;
6549 total_free_symbols = num_free;
6550 }
6551
6552 /* Put all unmarked misc's on free list.
6553 For a marker, first unchain it from the buffer it points into. */
6554 {
6555 register struct marker_block *mblk;
6556 struct marker_block **mprev = &marker_block;
6557 register int lim = marker_block_index;
6558 EMACS_INT num_free = 0, num_used = 0;
6559
6560 marker_free_list = 0;
6561
6562 for (mblk = marker_block; mblk; mblk = *mprev)
6563 {
6564 register int i;
6565 int this_free = 0;
6566
6567 for (i = 0; i < lim; i++)
6568 {
6569 if (!mblk->markers[i].m.u_any.gcmarkbit)
6570 {
6571 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6572 unchain_marker (&mblk->markers[i].m.u_marker);
6573 /* Set the type of the freed object to Lisp_Misc_Free.
6574 We could leave the type alone, since nobody checks it,
6575 but this might catch bugs faster. */
6576 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6577 mblk->markers[i].m.u_free.chain = marker_free_list;
6578 marker_free_list = &mblk->markers[i].m;
6579 this_free++;
6580 }
6581 else
6582 {
6583 num_used++;
6584 mblk->markers[i].m.u_any.gcmarkbit = 0;
6585 }
6586 }
6587 lim = MARKER_BLOCK_SIZE;
6588 /* If this block contains only free markers and we have already
6589 seen more than two blocks worth of free markers then deallocate
6590 this block. */
6591 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6592 {
6593 *mprev = mblk->next;
6594 /* Unhook from the free list. */
6595 marker_free_list = mblk->markers[0].m.u_free.chain;
6596 lisp_free (mblk);
6597 }
6598 else
6599 {
6600 num_free += this_free;
6601 mprev = &mblk->next;
6602 }
6603 }
6604
6605 total_markers = num_used;
6606 total_free_markers = num_free;
6607 }
6608
6609 /* Free all unmarked buffers */
6610 {
6611 register struct buffer *buffer, **bprev = &all_buffers;
6612
6613 total_buffers = 0;
6614 for (buffer = all_buffers; buffer; buffer = *bprev)
6615 if (!VECTOR_MARKED_P (buffer))
6616 {
6617 *bprev = buffer->next;
6618 lisp_free (buffer);
6619 }
6620 else
6621 {
6622 VECTOR_UNMARK (buffer);
6623 /* Do not use buffer_(set|get)_intervals here. */
6624 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6625 total_buffers++;
6626 bprev = &buffer->next;
6627 }
6628 }
6629
6630 sweep_vectors ();
6631 check_string_bytes (!noninteractive);
6632 }
6633
6634
6635
6636 \f
6637 /* Debugging aids. */
6638
6639 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6640 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6641 This may be helpful in debugging Emacs's memory usage.
6642 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6643 (void)
6644 {
6645 Lisp_Object end;
6646
6647 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6648
6649 return end;
6650 }
6651
6652 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6653 doc: /* Return a list of counters that measure how much consing there has been.
6654 Each of these counters increments for a certain kind of object.
6655 The counters wrap around from the largest positive integer to zero.
6656 Garbage collection does not decrease them.
6657 The elements of the value are as follows:
6658 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6659 All are in units of 1 = one object consed
6660 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6661 objects consed.
6662 MISCS include overlays, markers, and some internal types.
6663 Frames, windows, buffers, and subprocesses count as vectors
6664 (but the contents of a buffer's text do not count here). */)
6665 (void)
6666 {
6667 return listn (CONSTYPE_HEAP, 8,
6668 bounded_number (cons_cells_consed),
6669 bounded_number (floats_consed),
6670 bounded_number (vector_cells_consed),
6671 bounded_number (symbols_consed),
6672 bounded_number (string_chars_consed),
6673 bounded_number (misc_objects_consed),
6674 bounded_number (intervals_consed),
6675 bounded_number (strings_consed));
6676 }
6677
6678 /* Find at most FIND_MAX symbols which have OBJ as their value or
6679 function. This is used in gdbinit's `xwhichsymbols' command. */
6680
6681 Lisp_Object
6682 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6683 {
6684 struct symbol_block *sblk;
6685 ptrdiff_t gc_count = inhibit_garbage_collection ();
6686 Lisp_Object found = Qnil;
6687
6688 if (! DEADP (obj))
6689 {
6690 for (sblk = symbol_block; sblk; sblk = sblk->next)
6691 {
6692 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6693 int bn;
6694
6695 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6696 {
6697 struct Lisp_Symbol *sym = &aligned_sym->s;
6698 Lisp_Object val;
6699 Lisp_Object tem;
6700
6701 if (sblk == symbol_block && bn >= symbol_block_index)
6702 break;
6703
6704 XSETSYMBOL (tem, sym);
6705 val = find_symbol_value (tem);
6706 if (EQ (val, obj)
6707 || EQ (sym->function, obj)
6708 || (!NILP (sym->function)
6709 && COMPILEDP (sym->function)
6710 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6711 || (!NILP (val)
6712 && COMPILEDP (val)
6713 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6714 {
6715 found = Fcons (tem, found);
6716 if (--find_max == 0)
6717 goto out;
6718 }
6719 }
6720 }
6721 }
6722
6723 out:
6724 unbind_to (gc_count, Qnil);
6725 return found;
6726 }
6727
6728 #ifdef ENABLE_CHECKING
6729
6730 bool suppress_checking;
6731
6732 void
6733 die (const char *msg, const char *file, int line)
6734 {
6735 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6736 file, line, msg);
6737 terminate_due_to_signal (SIGABRT, INT_MAX);
6738 }
6739 #endif
6740 \f
6741 /* Initialization. */
6742
6743 void
6744 init_alloc_once (void)
6745 {
6746 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6747 purebeg = PUREBEG;
6748 pure_size = PURESIZE;
6749
6750 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6751 mem_init ();
6752 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6753 #endif
6754
6755 #ifdef DOUG_LEA_MALLOC
6756 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6757 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6758 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6759 #endif
6760 init_strings ();
6761 init_vectors ();
6762
6763 refill_memory_reserve ();
6764 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6765 }
6766
6767 void
6768 init_alloc (void)
6769 {
6770 gcprolist = 0;
6771 byte_stack_list = 0;
6772 #if GC_MARK_STACK
6773 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6774 setjmp_tested_p = longjmps_done = 0;
6775 #endif
6776 #endif
6777 Vgc_elapsed = make_float (0.0);
6778 gcs_done = 0;
6779
6780 #if USE_VALGRIND
6781 valgrind_p = RUNNING_ON_VALGRIND != 0;
6782 #endif
6783 }
6784
6785 void
6786 syms_of_alloc (void)
6787 {
6788 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6789 doc: /* Number of bytes of consing between garbage collections.
6790 Garbage collection can happen automatically once this many bytes have been
6791 allocated since the last garbage collection. All data types count.
6792
6793 Garbage collection happens automatically only when `eval' is called.
6794
6795 By binding this temporarily to a large number, you can effectively
6796 prevent garbage collection during a part of the program.
6797 See also `gc-cons-percentage'. */);
6798
6799 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6800 doc: /* Portion of the heap used for allocation.
6801 Garbage collection can happen automatically once this portion of the heap
6802 has been allocated since the last garbage collection.
6803 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6804 Vgc_cons_percentage = make_float (0.1);
6805
6806 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6807 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6808
6809 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6810 doc: /* Number of cons cells that have been consed so far. */);
6811
6812 DEFVAR_INT ("floats-consed", floats_consed,
6813 doc: /* Number of floats that have been consed so far. */);
6814
6815 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6816 doc: /* Number of vector cells that have been consed so far. */);
6817
6818 DEFVAR_INT ("symbols-consed", symbols_consed,
6819 doc: /* Number of symbols that have been consed so far. */);
6820
6821 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6822 doc: /* Number of string characters that have been consed so far. */);
6823
6824 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6825 doc: /* Number of miscellaneous objects that have been consed so far.
6826 These include markers and overlays, plus certain objects not visible
6827 to users. */);
6828
6829 DEFVAR_INT ("intervals-consed", intervals_consed,
6830 doc: /* Number of intervals that have been consed so far. */);
6831
6832 DEFVAR_INT ("strings-consed", strings_consed,
6833 doc: /* Number of strings that have been consed so far. */);
6834
6835 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6836 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6837 This means that certain objects should be allocated in shared (pure) space.
6838 It can also be set to a hash-table, in which case this table is used to
6839 do hash-consing of the objects allocated to pure space. */);
6840
6841 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6842 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6843 garbage_collection_messages = 0;
6844
6845 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6846 doc: /* Hook run after garbage collection has finished. */);
6847 Vpost_gc_hook = Qnil;
6848 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6849
6850 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6851 doc: /* Precomputed `signal' argument for memory-full error. */);
6852 /* We build this in advance because if we wait until we need it, we might
6853 not be able to allocate the memory to hold it. */
6854 Vmemory_signal_data
6855 = listn (CONSTYPE_PURE, 2, Qerror,
6856 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6857
6858 DEFVAR_LISP ("memory-full", Vmemory_full,
6859 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6860 Vmemory_full = Qnil;
6861
6862 DEFSYM (Qconses, "conses");
6863 DEFSYM (Qsymbols, "symbols");
6864 DEFSYM (Qmiscs, "miscs");
6865 DEFSYM (Qstrings, "strings");
6866 DEFSYM (Qvectors, "vectors");
6867 DEFSYM (Qfloats, "floats");
6868 DEFSYM (Qintervals, "intervals");
6869 DEFSYM (Qbuffers, "buffers");
6870 DEFSYM (Qstring_bytes, "string-bytes");
6871 DEFSYM (Qvector_slots, "vector-slots");
6872 DEFSYM (Qheap, "heap");
6873 DEFSYM (Qautomatic_gc, "Automatic GC");
6874
6875 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6876 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6877
6878 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6879 doc: /* Accumulated time elapsed in garbage collections.
6880 The time is in seconds as a floating point value. */);
6881 DEFVAR_INT ("gcs-done", gcs_done,
6882 doc: /* Accumulated number of garbage collections done. */);
6883
6884 defsubr (&Scons);
6885 defsubr (&Slist);
6886 defsubr (&Svector);
6887 defsubr (&Smake_byte_code);
6888 defsubr (&Smake_list);
6889 defsubr (&Smake_vector);
6890 defsubr (&Smake_string);
6891 defsubr (&Smake_bool_vector);
6892 defsubr (&Smake_symbol);
6893 defsubr (&Smake_marker);
6894 defsubr (&Spurecopy);
6895 defsubr (&Sgarbage_collect);
6896 defsubr (&Smemory_limit);
6897 defsubr (&Smemory_use_counts);
6898
6899 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6900 defsubr (&Sgc_status);
6901 #endif
6902 }
6903
6904 /* When compiled with GCC, GDB might say "No enum type named
6905 pvec_type" if we don't have at least one symbol with that type, and
6906 then xbacktrace could fail. Similarly for the other enums and
6907 their values. Some non-GCC compilers don't like these constructs. */
6908 #ifdef __GNUC__
6909 union
6910 {
6911 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6912 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6913 enum char_bits char_bits;
6914 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6915 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6916 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6917 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6918 enum Lisp_Bits Lisp_Bits;
6919 enum Lisp_Compiled Lisp_Compiled;
6920 enum maxargs maxargs;
6921 enum MAX_ALLOCA MAX_ALLOCA;
6922 enum More_Lisp_Bits More_Lisp_Bits;
6923 enum pvec_type pvec_type;
6924 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6925 #endif /* __GNUC__ */