Introduce new bytecodes for efficient catch/condition-case in lexbind.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45
46 #include <verify.h>
47
48 #if (defined ENABLE_CHECKING \
49 && defined HAVE_VALGRIND_VALGRIND_H \
50 && !defined USE_VALGRIND)
51 # define USE_VALGRIND 1
52 #endif
53
54 #if USE_VALGRIND
55 #include <valgrind/valgrind.h>
56 #include <valgrind/memcheck.h>
57 static bool valgrind_p;
58 #endif
59
60 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62 #if ! GC_MARK_STACK
63 # undef GC_CHECK_MARKED_OBJECTS
64 #endif
65
66 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
69
70 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
72 #undef GC_MALLOC_CHECK
73 #endif
74
75 #include <unistd.h>
76 #include <fcntl.h>
77
78 #ifdef USE_GTK
79 # include "gtkutil.h"
80 #endif
81 #ifdef WINDOWSNT
82 #include "w32.h"
83 #include "w32heap.h" /* for sbrk */
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89
90 /* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
92
93 #define MMAP_MAX_AREAS 100000000
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
99
100 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
102 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
103
104 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
107
108 /* Default value of gc_cons_threshold (see below). */
109
110 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
111
112 /* Global variables. */
113 struct emacs_globals globals;
114
115 /* Number of bytes of consing done since the last gc. */
116
117 EMACS_INT consing_since_gc;
118
119 /* Similar minimum, computed from Vgc_cons_percentage. */
120
121 EMACS_INT gc_relative_threshold;
122
123 /* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
125
126 EMACS_INT memory_full_cons_threshold;
127
128 /* True during GC. */
129
130 bool gc_in_progress;
131
132 /* True means abort if try to GC.
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
135
136 bool abort_on_gc;
137
138 /* Number of live and free conses etc. */
139
140 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
141 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
142 static EMACS_INT total_free_floats, total_floats;
143
144 /* Points to memory space allocated as "spare", to be freed if we run
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
147
148 static char *spare_memory[7];
149
150 /* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
152
153 #define SPARE_MEMORY (1 << 14)
154
155 /* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
160
161 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
162 #define PUREBEG (char *) pure
163
164 /* Pointer to the pure area, and its size. */
165
166 static char *purebeg;
167 static ptrdiff_t pure_size;
168
169 /* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
171
172 static ptrdiff_t pure_bytes_used_before_overflow;
173
174 /* True if P points into pure space. */
175
176 #define PURE_POINTER_P(P) \
177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
178
179 /* Index in pure at which next pure Lisp object will be allocated.. */
180
181 static ptrdiff_t pure_bytes_used_lisp;
182
183 /* Number of bytes allocated for non-Lisp objects in pure storage. */
184
185 static ptrdiff_t pure_bytes_used_non_lisp;
186
187 /* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
189
190 const char *pending_malloc_warning;
191
192 /* Maximum amount of C stack to save when a GC happens. */
193
194 #ifndef MAX_SAVE_STACK
195 #define MAX_SAVE_STACK 16000
196 #endif
197
198 /* Buffer in which we save a copy of the C stack at each GC. */
199
200 #if MAX_SAVE_STACK > 0
201 static char *stack_copy;
202 static ptrdiff_t stack_copy_size;
203 #endif
204
205 static Lisp_Object Qconses;
206 static Lisp_Object Qsymbols;
207 static Lisp_Object Qmiscs;
208 static Lisp_Object Qstrings;
209 static Lisp_Object Qvectors;
210 static Lisp_Object Qfloats;
211 static Lisp_Object Qintervals;
212 static Lisp_Object Qbuffers;
213 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
214 static Lisp_Object Qgc_cons_threshold;
215 Lisp_Object Qautomatic_gc;
216 Lisp_Object Qchar_table_extra_slots;
217
218 /* Hook run after GC has finished. */
219
220 static Lisp_Object Qpost_gc_hook;
221
222 static void mark_terminals (void);
223 static void gc_sweep (void);
224 static Lisp_Object make_pure_vector (ptrdiff_t);
225 static void mark_buffer (struct buffer *);
226
227 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
228 static void refill_memory_reserve (void);
229 #endif
230 static void compact_small_strings (void);
231 static void free_large_strings (void);
232 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
233
234 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
237
238 enum mem_type
239 {
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
255 };
256
257 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
258
259 /* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
261
262 static Lisp_Object Vdead;
263 #define DEADP(x) EQ (x, Vdead)
264
265 #ifdef GC_MALLOC_CHECK
266
267 enum mem_type allocated_mem_type;
268
269 #endif /* GC_MALLOC_CHECK */
270
271 /* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
275
276 A red-black tree is a balanced binary tree with the following
277 properties:
278
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
285
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
288
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
294
295 struct mem_node
296 {
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
300
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
303
304 /* Start and end of allocated region. */
305 void *start, *end;
306
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
309
310 /* Memory type. */
311 enum mem_type type;
312 };
313
314 /* Base address of stack. Set in main. */
315
316 Lisp_Object *stack_base;
317
318 /* Root of the tree describing allocated Lisp memory. */
319
320 static struct mem_node *mem_root;
321
322 /* Lowest and highest known address in the heap. */
323
324 static void *min_heap_address, *max_heap_address;
325
326 /* Sentinel node of the tree. */
327
328 static struct mem_node mem_z;
329 #define MEM_NIL &mem_z
330
331 static struct mem_node *mem_insert (void *, void *, enum mem_type);
332 static void mem_insert_fixup (struct mem_node *);
333 static void mem_rotate_left (struct mem_node *);
334 static void mem_rotate_right (struct mem_node *);
335 static void mem_delete (struct mem_node *);
336 static void mem_delete_fixup (struct mem_node *);
337 static struct mem_node *mem_find (void *);
338
339 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
340
341 #ifndef DEADP
342 # define DEADP(x) 0
343 #endif
344
345 /* Recording what needs to be marked for gc. */
346
347 struct gcpro *gcprolist;
348
349 /* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
351
352 enum { NSTATICS = 2048 };
353 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
354
355 /* Index of next unused slot in staticvec. */
356
357 static int staticidx;
358
359 static void *pure_alloc (size_t, int);
360
361
362 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
364
365 #define ALIGN(ptr, ALIGNMENT) \
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
368
369 static void
370 XFLOAT_INIT (Lisp_Object f, double n)
371 {
372 XFLOAT (f)->u.data = n;
373 }
374
375 \f
376 /************************************************************************
377 Malloc
378 ************************************************************************/
379
380 /* Function malloc calls this if it finds we are near exhausting storage. */
381
382 void
383 malloc_warning (const char *str)
384 {
385 pending_malloc_warning = str;
386 }
387
388
389 /* Display an already-pending malloc warning. */
390
391 void
392 display_malloc_warning (void)
393 {
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
398 pending_malloc_warning = 0;
399 }
400 \f
401 /* Called if we can't allocate relocatable space for a buffer. */
402
403 void
404 buffer_memory_full (ptrdiff_t nbytes)
405 {
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
412
413 #ifndef REL_ALLOC
414 memory_full (nbytes);
415 #else
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
418 xsignal (Qnil, Vmemory_signal_data);
419 #endif
420 }
421
422 /* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425 #define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
427
428 #ifndef XMALLOC_OVERRUN_CHECK
429 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
430 #else
431
432 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
434
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
439
440 The header is used to detect whether this block has been allocated
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
443
444 #define XMALLOC_OVERRUN_CHECK_SIZE 16
445 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
447
448 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451 #define XMALLOC_BASE_ALIGNMENT \
452 alignof (union { long double d; intmax_t i; void *p; })
453
454 #if USE_LSB_TAG
455 # define XMALLOC_HEADER_ALIGNMENT \
456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
457 #else
458 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459 #endif
460 #define XMALLOC_OVERRUN_SIZE_SIZE \
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
465
466 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
471
472 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
477
478 /* Insert and extract the block size in the header. */
479
480 static void
481 xmalloc_put_size (unsigned char *ptr, size_t size)
482 {
483 int i;
484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
485 {
486 *--ptr = size & ((1 << CHAR_BIT) - 1);
487 size >>= CHAR_BIT;
488 }
489 }
490
491 static size_t
492 xmalloc_get_size (unsigned char *ptr)
493 {
494 size_t size = 0;
495 int i;
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
498 {
499 size <<= CHAR_BIT;
500 size += *ptr++;
501 }
502 return size;
503 }
504
505
506 /* Like malloc, but wraps allocated block with header and trailer. */
507
508 static void *
509 overrun_check_malloc (size_t size)
510 {
511 register unsigned char *val;
512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
513 emacs_abort ();
514
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
517 {
518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
520 xmalloc_put_size (val, size);
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
523 }
524 return val;
525 }
526
527
528 /* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
530
531 static void *
532 overrun_check_realloc (void *block, size_t size)
533 {
534 register unsigned char *val = (unsigned char *) block;
535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
536 emacs_abort ();
537
538 if (val
539 && memcmp (xmalloc_overrun_check_header,
540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
542 {
543 size_t osize = xmalloc_get_size (val);
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
546 emacs_abort ();
547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
550 }
551
552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
553
554 if (val)
555 {
556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
558 xmalloc_put_size (val, size);
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
561 }
562 return val;
563 }
564
565 /* Like free, but checks block for overrun. */
566
567 static void
568 overrun_check_free (void *block)
569 {
570 unsigned char *val = (unsigned char *) block;
571
572 if (val
573 && memcmp (xmalloc_overrun_check_header,
574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
576 {
577 size_t osize = xmalloc_get_size (val);
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
580 emacs_abort ();
581 #ifdef XMALLOC_CLEAR_FREE_MEMORY
582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 #else
585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
588 #endif
589 }
590
591 free (val);
592 }
593
594 #undef malloc
595 #undef realloc
596 #undef free
597 #define malloc overrun_check_malloc
598 #define realloc overrun_check_realloc
599 #define free overrun_check_free
600 #endif
601
602 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610 #ifdef XMALLOC_BLOCK_INPUT_CHECK
611 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612 static void
613 malloc_block_input (void)
614 {
615 if (block_input_in_memory_allocators)
616 block_input ();
617 }
618 static void
619 malloc_unblock_input (void)
620 {
621 if (block_input_in_memory_allocators)
622 unblock_input ();
623 }
624 # define MALLOC_BLOCK_INPUT malloc_block_input ()
625 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
626 #else
627 # define MALLOC_BLOCK_INPUT ((void) 0)
628 # define MALLOC_UNBLOCK_INPUT ((void) 0)
629 #endif
630
631 #define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
636
637
638 /* Like malloc but check for no memory and block interrupt input.. */
639
640 void *
641 xmalloc (size_t size)
642 {
643 void *val;
644
645 MALLOC_BLOCK_INPUT;
646 val = malloc (size);
647 MALLOC_UNBLOCK_INPUT;
648
649 if (!val && size)
650 memory_full (size);
651 MALLOC_PROBE (size);
652 return val;
653 }
654
655 /* Like the above, but zeroes out the memory just allocated. */
656
657 void *
658 xzalloc (size_t size)
659 {
660 void *val;
661
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
665
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
669 MALLOC_PROBE (size);
670 return val;
671 }
672
673 /* Like realloc but check for no memory and block interrupt input.. */
674
675 void *
676 xrealloc (void *block, size_t size)
677 {
678 void *val;
679
680 MALLOC_BLOCK_INPUT;
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
684 val = malloc (size);
685 else
686 val = realloc (block, size);
687 MALLOC_UNBLOCK_INPUT;
688
689 if (!val && size)
690 memory_full (size);
691 MALLOC_PROBE (size);
692 return val;
693 }
694
695
696 /* Like free but block interrupt input. */
697
698 void
699 xfree (void *block)
700 {
701 if (!block)
702 return;
703 MALLOC_BLOCK_INPUT;
704 free (block);
705 MALLOC_UNBLOCK_INPUT;
706 /* We don't call refill_memory_reserve here
707 because in practice the call in r_alloc_free seems to suffice. */
708 }
709
710
711 /* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714 verify (INT_MAX <= PTRDIFF_MAX);
715
716
717 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
719
720 void *
721 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
722 {
723 eassert (0 <= nitems && 0 < item_size);
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
727 }
728
729
730 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
732
733 void *
734 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
735 {
736 eassert (0 <= nitems && 0 < item_size);
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
740 }
741
742
743 /* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
748
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
752
753 If PA is null, then allocate a new array instead of reallocating
754 the old one.
755
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
758 return).
759
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
765
766 void *
767 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
769 {
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
774
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
781
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
789
790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
799 }
800
801
802 /* Like strdup, but uses xmalloc. */
803
804 char *
805 xstrdup (const char *s)
806 {
807 ptrdiff_t size;
808 eassert (s);
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
811 }
812
813 /* Like above, but duplicates Lisp string to C string. */
814
815 char *
816 xlispstrdup (Lisp_Object string)
817 {
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
820 }
821
822 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
824
825 void
826 xputenv (char const *string)
827 {
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
830 }
831
832 /* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834 void *
835 record_xmalloc (size_t size)
836 {
837 void *p = xmalloc (size);
838 record_unwind_protect_ptr (xfree, p);
839 return p;
840 }
841
842
843 /* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
845 allocated memory block (for strings, for conses, ...). */
846
847 #if ! USE_LSB_TAG
848 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
849 #endif
850
851 static void *
852 lisp_malloc (size_t nbytes, enum mem_type type)
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = malloc (nbytes);
863
864 #if ! USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full (nbytes);
889 MALLOC_PROBE (nbytes);
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (void *block)
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
908
909 /* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
915
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
918
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
932
933 /* Internal data structures and constants. */
934
935 #define ABLOCKS_SIZE 16
936
937 /* An aligned block of memory. */
938 struct ablock
939 {
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
960 };
961
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
964 {
965 struct ablock blocks[ABLOCKS_SIZE];
966 };
967
968 /* Size of the block requested from malloc or posix_memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
970
971 #define ABLOCK_ABASE(block) \
972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
985 #endif
986
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
989
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static void *
994 lisp_align_malloc (size_t nbytes, enum mem_type type)
995 {
996 void *base, *val;
997 struct ablocks *abase;
998
999 eassert (nbytes <= BLOCK_BYTES);
1000
1001 MALLOC_BLOCK_INPUT;
1002
1003 #ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005 #endif
1006
1007 if (!free_ablock)
1008 {
1009 int i;
1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1011
1012 #ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017 #endif
1018
1019 #ifdef USE_POSIX_MEMALIGN
1020 {
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1022 if (err)
1023 base = NULL;
1024 abase = base;
1025 }
1026 #else
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
1029 #endif
1030
1031 if (base == 0)
1032 {
1033 MALLOC_UNBLOCK_INPUT;
1034 memory_full (ABLOCKS_BYTES);
1035 }
1036
1037 aligned = (base == abase);
1038 if (!aligned)
1039 ((void **) abase)[-1] = base;
1040
1041 #ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044 #endif
1045
1046 #if ! USE_LSB_TAG
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1051 {
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1056 {
1057 lisp_malloc_loser = base;
1058 free (base);
1059 MALLOC_UNBLOCK_INPUT;
1060 memory_full (SIZE_MAX);
1061 }
1062 }
1063 #endif
1064
1065 /* Initialize the blocks and put them on the free list.
1066 If `base' was not properly aligned, we can't use the last block. */
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1068 {
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1072 }
1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1074
1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1080 }
1081
1082 abase = ABLOCK_ABASE (free_ablock);
1083 ABLOCKS_BUSY (abase) =
1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1092
1093 MALLOC_UNBLOCK_INPUT;
1094
1095 MALLOC_PROBE (nbytes);
1096
1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1098 return val;
1099 }
1100
1101 static void
1102 lisp_align_free (void *block)
1103 {
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1106
1107 MALLOC_BLOCK_INPUT;
1108 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110 #endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1117
1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1140 }
1141 MALLOC_UNBLOCK_INPUT;
1142 }
1143
1144 \f
1145 /***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1148
1149 /* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1151
1152 #define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1154
1155 /* Intervals are allocated in chunks in the form of an interval_block
1156 structure. */
1157
1158 struct interval_block
1159 {
1160 /* Place `intervals' first, to preserve alignment. */
1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
1162 struct interval_block *next;
1163 };
1164
1165 /* Current interval block. Its `next' pointer points to older
1166 blocks. */
1167
1168 static struct interval_block *interval_block;
1169
1170 /* Index in interval_block above of the next unused interval
1171 structure. */
1172
1173 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1174
1175 /* Number of free and live intervals. */
1176
1177 static EMACS_INT total_free_intervals, total_intervals;
1178
1179 /* List of free intervals. */
1180
1181 static INTERVAL interval_free_list;
1182
1183 /* Return a new interval. */
1184
1185 INTERVAL
1186 make_interval (void)
1187 {
1188 INTERVAL val;
1189
1190 MALLOC_BLOCK_INPUT;
1191
1192 if (interval_free_list)
1193 {
1194 val = interval_free_list;
1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
1196 }
1197 else
1198 {
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1200 {
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1203
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
1208 }
1209 val = &interval_block->intervals[interval_block_index++];
1210 }
1211
1212 MALLOC_UNBLOCK_INPUT;
1213
1214 consing_since_gc += sizeof (struct interval);
1215 intervals_consed++;
1216 total_free_intervals--;
1217 RESET_INTERVAL (val);
1218 val->gcmarkbit = 0;
1219 return val;
1220 }
1221
1222
1223 /* Mark Lisp objects in interval I. */
1224
1225 static void
1226 mark_interval (register INTERVAL i, Lisp_Object dummy)
1227 {
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
1231 i->gcmarkbit = 1;
1232 mark_object (i->plist);
1233 }
1234
1235 /* Mark the interval tree rooted in I. */
1236
1237 #define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
1241 } while (0)
1242
1243 /***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1246
1247 /* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
1249 added to a free-list string_free_list. When a new Lisp_String is
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
1253
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1257
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
1262
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
1266 `n.nbytes' member of the sdata. So, sdata structures that are no
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
1269
1270 /* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
1272
1273 #define SBLOCK_SIZE 8188
1274
1275 /* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
1277
1278 #define LARGE_STRING_BYTES 1024
1279
1280 /* Struct or union describing string memory sub-allocated from an sblock.
1281 This is where the contents of Lisp strings are stored. */
1282
1283 #ifdef GC_CHECK_STRING_BYTES
1284
1285 typedef struct
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 ptrdiff_t nbytes;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } sdata;
1298
1299 #define SDATA_NBYTES(S) (S)->nbytes
1300 #define SDATA_DATA(S) (S)->data
1301 #define SDATA_SELECTOR(member) member
1302
1303 #else
1304
1305 typedef union
1306 {
1307 struct Lisp_String *string;
1308
1309 /* When STRING is non-null. */
1310 struct
1311 {
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
1315
1316 /* When STRING is null. */
1317 struct
1318 {
1319 struct Lisp_String *string;
1320 ptrdiff_t nbytes;
1321 } n;
1322 } sdata;
1323
1324 #define SDATA_NBYTES(S) (S)->n.nbytes
1325 #define SDATA_DATA(S) (S)->u.data
1326 #define SDATA_SELECTOR(member) u.member
1327
1328 #endif /* not GC_CHECK_STRING_BYTES */
1329
1330 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 sdata *next_free;
1346
1347 /* Start of data. */
1348 sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->n.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
1977 int c;
1978 EMACS_INT nbytes;
1979
1980 CHECK_NATNUM (length);
1981 CHECK_CHARACTER (init);
1982
1983 c = XFASTINT (init);
1984 if (ASCII_CHAR_P (c))
1985 {
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
1990 while (p != end)
1991 *p++ = c;
1992 }
1993 else
1994 {
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 int len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1998
1999 if (string_len > STRING_BYTES_MAX / len)
2000 string_overflow ();
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
2003 p = SDATA (val);
2004 end = p + nbytes;
2005 while (p != end)
2006 {
2007 memcpy (p, str, len);
2008 p += len;
2009 }
2010 }
2011
2012 *p = 0;
2013 return val;
2014 }
2015
2016 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_SIZE_T);
2017 verify ((BITS_PER_SIZE_T & (BITS_PER_SIZE_T - 1)) == 0);
2018
2019 static ptrdiff_t
2020 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2021 ptrdiff_t *exact_needed_bytes_out)
2022 {
2023 ptrdiff_t exact_needed_bytes;
2024 ptrdiff_t needed_bytes;
2025
2026 eassert_and_assume (nr_bits >= 0);
2027
2028 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2029 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_SIZE_T) / CHAR_BIT;
2030
2031 if (needed_bytes == 0)
2032 {
2033 /* Always allocate at least one machine word of payload so that
2034 bool-vector operations in data.c don't need a special case
2035 for empty vectors. */
2036 needed_bytes = sizeof (size_t);
2037 }
2038
2039 if (exact_needed_bytes_out != NULL)
2040 *exact_needed_bytes_out = exact_needed_bytes;
2041
2042 return needed_bytes;
2043 }
2044
2045 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2046 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2047 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2048 (Lisp_Object length, Lisp_Object init)
2049 {
2050 register Lisp_Object val;
2051 struct Lisp_Bool_Vector *p;
2052 ptrdiff_t exact_payload_bytes;
2053 ptrdiff_t total_payload_bytes;
2054 ptrdiff_t needed_elements;
2055
2056 CHECK_NATNUM (length);
2057 if (PTRDIFF_MAX < XFASTINT (length))
2058 memory_full (SIZE_MAX);
2059
2060 total_payload_bytes = bool_vector_payload_bytes
2061 (XFASTINT (length), &exact_payload_bytes);
2062
2063 eassert_and_assume (exact_payload_bytes <= total_payload_bytes);
2064 eassert_and_assume (0 <= exact_payload_bytes);
2065
2066 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2067 + total_payload_bytes),
2068 word_size) / word_size;
2069
2070 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2071 XSETVECTOR (val, p);
2072 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2073
2074 p->size = XFASTINT (length);
2075 if (exact_payload_bytes)
2076 {
2077 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2078
2079 /* Clear any extraneous bits in the last byte. */
2080 p->data[exact_payload_bytes - 1]
2081 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2082 }
2083
2084 /* Clear padding at the end. */
2085 memset (p->data + exact_payload_bytes,
2086 0,
2087 total_payload_bytes - exact_payload_bytes);
2088
2089 return val;
2090 }
2091
2092
2093 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2094 of characters from the contents. This string may be unibyte or
2095 multibyte, depending on the contents. */
2096
2097 Lisp_Object
2098 make_string (const char *contents, ptrdiff_t nbytes)
2099 {
2100 register Lisp_Object val;
2101 ptrdiff_t nchars, multibyte_nbytes;
2102
2103 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2104 &nchars, &multibyte_nbytes);
2105 if (nbytes == nchars || nbytes != multibyte_nbytes)
2106 /* CONTENTS contains no multibyte sequences or contains an invalid
2107 multibyte sequence. We must make unibyte string. */
2108 val = make_unibyte_string (contents, nbytes);
2109 else
2110 val = make_multibyte_string (contents, nchars, nbytes);
2111 return val;
2112 }
2113
2114
2115 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2116
2117 Lisp_Object
2118 make_unibyte_string (const char *contents, ptrdiff_t length)
2119 {
2120 register Lisp_Object val;
2121 val = make_uninit_string (length);
2122 memcpy (SDATA (val), contents, length);
2123 return val;
2124 }
2125
2126
2127 /* Make a multibyte string from NCHARS characters occupying NBYTES
2128 bytes at CONTENTS. */
2129
2130 Lisp_Object
2131 make_multibyte_string (const char *contents,
2132 ptrdiff_t nchars, ptrdiff_t nbytes)
2133 {
2134 register Lisp_Object val;
2135 val = make_uninit_multibyte_string (nchars, nbytes);
2136 memcpy (SDATA (val), contents, nbytes);
2137 return val;
2138 }
2139
2140
2141 /* Make a string from NCHARS characters occupying NBYTES bytes at
2142 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2143
2144 Lisp_Object
2145 make_string_from_bytes (const char *contents,
2146 ptrdiff_t nchars, ptrdiff_t nbytes)
2147 {
2148 register Lisp_Object val;
2149 val = make_uninit_multibyte_string (nchars, nbytes);
2150 memcpy (SDATA (val), contents, nbytes);
2151 if (SBYTES (val) == SCHARS (val))
2152 STRING_SET_UNIBYTE (val);
2153 return val;
2154 }
2155
2156
2157 /* Make a string from NCHARS characters occupying NBYTES bytes at
2158 CONTENTS. The argument MULTIBYTE controls whether to label the
2159 string as multibyte. If NCHARS is negative, it counts the number of
2160 characters by itself. */
2161
2162 Lisp_Object
2163 make_specified_string (const char *contents,
2164 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2165 {
2166 Lisp_Object val;
2167
2168 if (nchars < 0)
2169 {
2170 if (multibyte)
2171 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2172 nbytes);
2173 else
2174 nchars = nbytes;
2175 }
2176 val = make_uninit_multibyte_string (nchars, nbytes);
2177 memcpy (SDATA (val), contents, nbytes);
2178 if (!multibyte)
2179 STRING_SET_UNIBYTE (val);
2180 return val;
2181 }
2182
2183
2184 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2185 occupying LENGTH bytes. */
2186
2187 Lisp_Object
2188 make_uninit_string (EMACS_INT length)
2189 {
2190 Lisp_Object val;
2191
2192 if (!length)
2193 return empty_unibyte_string;
2194 val = make_uninit_multibyte_string (length, length);
2195 STRING_SET_UNIBYTE (val);
2196 return val;
2197 }
2198
2199
2200 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2201 which occupy NBYTES bytes. */
2202
2203 Lisp_Object
2204 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2205 {
2206 Lisp_Object string;
2207 struct Lisp_String *s;
2208
2209 if (nchars < 0)
2210 emacs_abort ();
2211 if (!nbytes)
2212 return empty_multibyte_string;
2213
2214 s = allocate_string ();
2215 s->intervals = NULL;
2216 allocate_string_data (s, nchars, nbytes);
2217 XSETSTRING (string, s);
2218 string_chars_consed += nbytes;
2219 return string;
2220 }
2221
2222 /* Print arguments to BUF according to a FORMAT, then return
2223 a Lisp_String initialized with the data from BUF. */
2224
2225 Lisp_Object
2226 make_formatted_string (char *buf, const char *format, ...)
2227 {
2228 va_list ap;
2229 int length;
2230
2231 va_start (ap, format);
2232 length = vsprintf (buf, format, ap);
2233 va_end (ap);
2234 return make_string (buf, length);
2235 }
2236
2237 \f
2238 /***********************************************************************
2239 Float Allocation
2240 ***********************************************************************/
2241
2242 /* We store float cells inside of float_blocks, allocating a new
2243 float_block with malloc whenever necessary. Float cells reclaimed
2244 by GC are put on a free list to be reallocated before allocating
2245 any new float cells from the latest float_block. */
2246
2247 #define FLOAT_BLOCK_SIZE \
2248 (((BLOCK_BYTES - sizeof (struct float_block *) \
2249 /* The compiler might add padding at the end. */ \
2250 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2251 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2252
2253 #define GETMARKBIT(block,n) \
2254 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2255 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2256 & 1)
2257
2258 #define SETMARKBIT(block,n) \
2259 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2260 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2261
2262 #define UNSETMARKBIT(block,n) \
2263 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2264 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2265
2266 #define FLOAT_BLOCK(fptr) \
2267 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2268
2269 #define FLOAT_INDEX(fptr) \
2270 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2271
2272 struct float_block
2273 {
2274 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2275 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2276 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2277 struct float_block *next;
2278 };
2279
2280 #define FLOAT_MARKED_P(fptr) \
2281 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2282
2283 #define FLOAT_MARK(fptr) \
2284 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2285
2286 #define FLOAT_UNMARK(fptr) \
2287 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2288
2289 /* Current float_block. */
2290
2291 static struct float_block *float_block;
2292
2293 /* Index of first unused Lisp_Float in the current float_block. */
2294
2295 static int float_block_index = FLOAT_BLOCK_SIZE;
2296
2297 /* Free-list of Lisp_Floats. */
2298
2299 static struct Lisp_Float *float_free_list;
2300
2301 /* Return a new float object with value FLOAT_VALUE. */
2302
2303 Lisp_Object
2304 make_float (double float_value)
2305 {
2306 register Lisp_Object val;
2307
2308 MALLOC_BLOCK_INPUT;
2309
2310 if (float_free_list)
2311 {
2312 /* We use the data field for chaining the free list
2313 so that we won't use the same field that has the mark bit. */
2314 XSETFLOAT (val, float_free_list);
2315 float_free_list = float_free_list->u.chain;
2316 }
2317 else
2318 {
2319 if (float_block_index == FLOAT_BLOCK_SIZE)
2320 {
2321 struct float_block *new
2322 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2323 new->next = float_block;
2324 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2325 float_block = new;
2326 float_block_index = 0;
2327 total_free_floats += FLOAT_BLOCK_SIZE;
2328 }
2329 XSETFLOAT (val, &float_block->floats[float_block_index]);
2330 float_block_index++;
2331 }
2332
2333 MALLOC_UNBLOCK_INPUT;
2334
2335 XFLOAT_INIT (val, float_value);
2336 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2337 consing_since_gc += sizeof (struct Lisp_Float);
2338 floats_consed++;
2339 total_free_floats--;
2340 return val;
2341 }
2342
2343
2344 \f
2345 /***********************************************************************
2346 Cons Allocation
2347 ***********************************************************************/
2348
2349 /* We store cons cells inside of cons_blocks, allocating a new
2350 cons_block with malloc whenever necessary. Cons cells reclaimed by
2351 GC are put on a free list to be reallocated before allocating
2352 any new cons cells from the latest cons_block. */
2353
2354 #define CONS_BLOCK_SIZE \
2355 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2356 /* The compiler might add padding at the end. */ \
2357 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2358 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2359
2360 #define CONS_BLOCK(fptr) \
2361 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2362
2363 #define CONS_INDEX(fptr) \
2364 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2365
2366 struct cons_block
2367 {
2368 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2369 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2370 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2371 struct cons_block *next;
2372 };
2373
2374 #define CONS_MARKED_P(fptr) \
2375 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2376
2377 #define CONS_MARK(fptr) \
2378 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2379
2380 #define CONS_UNMARK(fptr) \
2381 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2382
2383 /* Current cons_block. */
2384
2385 static struct cons_block *cons_block;
2386
2387 /* Index of first unused Lisp_Cons in the current block. */
2388
2389 static int cons_block_index = CONS_BLOCK_SIZE;
2390
2391 /* Free-list of Lisp_Cons structures. */
2392
2393 static struct Lisp_Cons *cons_free_list;
2394
2395 /* Explicitly free a cons cell by putting it on the free-list. */
2396
2397 void
2398 free_cons (struct Lisp_Cons *ptr)
2399 {
2400 ptr->u.chain = cons_free_list;
2401 #if GC_MARK_STACK
2402 ptr->car = Vdead;
2403 #endif
2404 cons_free_list = ptr;
2405 consing_since_gc -= sizeof *ptr;
2406 total_free_conses++;
2407 }
2408
2409 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2410 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2411 (Lisp_Object car, Lisp_Object cdr)
2412 {
2413 register Lisp_Object val;
2414
2415 MALLOC_BLOCK_INPUT;
2416
2417 if (cons_free_list)
2418 {
2419 /* We use the cdr for chaining the free list
2420 so that we won't use the same field that has the mark bit. */
2421 XSETCONS (val, cons_free_list);
2422 cons_free_list = cons_free_list->u.chain;
2423 }
2424 else
2425 {
2426 if (cons_block_index == CONS_BLOCK_SIZE)
2427 {
2428 struct cons_block *new
2429 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2430 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2431 new->next = cons_block;
2432 cons_block = new;
2433 cons_block_index = 0;
2434 total_free_conses += CONS_BLOCK_SIZE;
2435 }
2436 XSETCONS (val, &cons_block->conses[cons_block_index]);
2437 cons_block_index++;
2438 }
2439
2440 MALLOC_UNBLOCK_INPUT;
2441
2442 XSETCAR (val, car);
2443 XSETCDR (val, cdr);
2444 eassert (!CONS_MARKED_P (XCONS (val)));
2445 consing_since_gc += sizeof (struct Lisp_Cons);
2446 total_free_conses--;
2447 cons_cells_consed++;
2448 return val;
2449 }
2450
2451 #ifdef GC_CHECK_CONS_LIST
2452 /* Get an error now if there's any junk in the cons free list. */
2453 void
2454 check_cons_list (void)
2455 {
2456 struct Lisp_Cons *tail = cons_free_list;
2457
2458 while (tail)
2459 tail = tail->u.chain;
2460 }
2461 #endif
2462
2463 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2464
2465 Lisp_Object
2466 list1 (Lisp_Object arg1)
2467 {
2468 return Fcons (arg1, Qnil);
2469 }
2470
2471 Lisp_Object
2472 list2 (Lisp_Object arg1, Lisp_Object arg2)
2473 {
2474 return Fcons (arg1, Fcons (arg2, Qnil));
2475 }
2476
2477
2478 Lisp_Object
2479 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2480 {
2481 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2482 }
2483
2484
2485 Lisp_Object
2486 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2487 {
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2489 }
2490
2491
2492 Lisp_Object
2493 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2494 {
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2496 Fcons (arg5, Qnil)))));
2497 }
2498
2499 /* Make a list of COUNT Lisp_Objects, where ARG is the
2500 first one. Allocate conses from pure space if TYPE
2501 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2502
2503 Lisp_Object
2504 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2505 {
2506 va_list ap;
2507 ptrdiff_t i;
2508 Lisp_Object val, *objp;
2509
2510 /* Change to SAFE_ALLOCA if you hit this eassert. */
2511 eassert (count <= MAX_ALLOCA / word_size);
2512
2513 objp = alloca (count * word_size);
2514 objp[0] = arg;
2515 va_start (ap, arg);
2516 for (i = 1; i < count; i++)
2517 objp[i] = va_arg (ap, Lisp_Object);
2518 va_end (ap);
2519
2520 for (val = Qnil, i = count - 1; i >= 0; i--)
2521 {
2522 if (type == CONSTYPE_PURE)
2523 val = pure_cons (objp[i], val);
2524 else if (type == CONSTYPE_HEAP)
2525 val = Fcons (objp[i], val);
2526 else
2527 emacs_abort ();
2528 }
2529 return val;
2530 }
2531
2532 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2533 doc: /* Return a newly created list with specified arguments as elements.
2534 Any number of arguments, even zero arguments, are allowed.
2535 usage: (list &rest OBJECTS) */)
2536 (ptrdiff_t nargs, Lisp_Object *args)
2537 {
2538 register Lisp_Object val;
2539 val = Qnil;
2540
2541 while (nargs > 0)
2542 {
2543 nargs--;
2544 val = Fcons (args[nargs], val);
2545 }
2546 return val;
2547 }
2548
2549
2550 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2551 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2552 (register Lisp_Object length, Lisp_Object init)
2553 {
2554 register Lisp_Object val;
2555 register EMACS_INT size;
2556
2557 CHECK_NATNUM (length);
2558 size = XFASTINT (length);
2559
2560 val = Qnil;
2561 while (size > 0)
2562 {
2563 val = Fcons (init, val);
2564 --size;
2565
2566 if (size > 0)
2567 {
2568 val = Fcons (init, val);
2569 --size;
2570
2571 if (size > 0)
2572 {
2573 val = Fcons (init, val);
2574 --size;
2575
2576 if (size > 0)
2577 {
2578 val = Fcons (init, val);
2579 --size;
2580
2581 if (size > 0)
2582 {
2583 val = Fcons (init, val);
2584 --size;
2585 }
2586 }
2587 }
2588 }
2589
2590 QUIT;
2591 }
2592
2593 return val;
2594 }
2595
2596
2597 \f
2598 /***********************************************************************
2599 Vector Allocation
2600 ***********************************************************************/
2601
2602 /* This value is balanced well enough to avoid too much internal overhead
2603 for the most common cases; it's not required to be a power of two, but
2604 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2605
2606 #define VECTOR_BLOCK_SIZE 4096
2607
2608 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2609 enum
2610 {
2611 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2612 };
2613
2614 /* Verify assumptions described above. */
2615 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2616 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2617
2618 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2619 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2620 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2621 #define vroundup(x) (assume ((x) >= 0), vroundup_ct (x))
2622
2623 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2624
2625 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2626
2627 /* Size of the minimal vector allocated from block. */
2628
2629 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2630
2631 /* Size of the largest vector allocated from block. */
2632
2633 #define VBLOCK_BYTES_MAX \
2634 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2635
2636 /* We maintain one free list for each possible block-allocated
2637 vector size, and this is the number of free lists we have. */
2638
2639 #define VECTOR_MAX_FREE_LIST_INDEX \
2640 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2641
2642 /* Common shortcut to advance vector pointer over a block data. */
2643
2644 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2645
2646 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2647
2648 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2649
2650 /* Common shortcut to setup vector on a free list. */
2651
2652 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2653 do { \
2654 (tmp) = ((nbytes - header_size) / word_size); \
2655 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2656 eassert ((nbytes) % roundup_size == 0); \
2657 (tmp) = VINDEX (nbytes); \
2658 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2659 v->u.next = vector_free_lists[tmp]; \
2660 vector_free_lists[tmp] = (v); \
2661 total_free_vector_slots += (nbytes) / word_size; \
2662 } while (0)
2663
2664 /* This internal type is used to maintain the list of large vectors
2665 which are allocated at their own, e.g. outside of vector blocks. */
2666
2667 struct large_vector
2668 {
2669 union {
2670 struct large_vector *vector;
2671 #if USE_LSB_TAG
2672 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2673 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2674 #endif
2675 } next;
2676 struct Lisp_Vector v;
2677 };
2678
2679 /* This internal type is used to maintain an underlying storage
2680 for small vectors. */
2681
2682 struct vector_block
2683 {
2684 char data[VECTOR_BLOCK_BYTES];
2685 struct vector_block *next;
2686 };
2687
2688 /* Chain of vector blocks. */
2689
2690 static struct vector_block *vector_blocks;
2691
2692 /* Vector free lists, where NTH item points to a chain of free
2693 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2694
2695 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2696
2697 /* Singly-linked list of large vectors. */
2698
2699 static struct large_vector *large_vectors;
2700
2701 /* The only vector with 0 slots, allocated from pure space. */
2702
2703 Lisp_Object zero_vector;
2704
2705 /* Number of live vectors. */
2706
2707 static EMACS_INT total_vectors;
2708
2709 /* Total size of live and free vectors, in Lisp_Object units. */
2710
2711 static EMACS_INT total_vector_slots, total_free_vector_slots;
2712
2713 /* Get a new vector block. */
2714
2715 static struct vector_block *
2716 allocate_vector_block (void)
2717 {
2718 struct vector_block *block = xmalloc (sizeof *block);
2719
2720 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2721 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2722 MEM_TYPE_VECTOR_BLOCK);
2723 #endif
2724
2725 block->next = vector_blocks;
2726 vector_blocks = block;
2727 return block;
2728 }
2729
2730 /* Called once to initialize vector allocation. */
2731
2732 static void
2733 init_vectors (void)
2734 {
2735 zero_vector = make_pure_vector (0);
2736 }
2737
2738 /* Allocate vector from a vector block. */
2739
2740 static struct Lisp_Vector *
2741 allocate_vector_from_block (size_t nbytes)
2742 {
2743 struct Lisp_Vector *vector;
2744 struct vector_block *block;
2745 size_t index, restbytes;
2746
2747 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2748 eassert (nbytes % roundup_size == 0);
2749
2750 /* First, try to allocate from a free list
2751 containing vectors of the requested size. */
2752 index = VINDEX (nbytes);
2753 if (vector_free_lists[index])
2754 {
2755 vector = vector_free_lists[index];
2756 vector_free_lists[index] = vector->u.next;
2757 total_free_vector_slots -= nbytes / word_size;
2758 return vector;
2759 }
2760
2761 /* Next, check free lists containing larger vectors. Since
2762 we will split the result, we should have remaining space
2763 large enough to use for one-slot vector at least. */
2764 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2765 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2766 if (vector_free_lists[index])
2767 {
2768 /* This vector is larger than requested. */
2769 vector = vector_free_lists[index];
2770 vector_free_lists[index] = vector->u.next;
2771 total_free_vector_slots -= nbytes / word_size;
2772
2773 /* Excess bytes are used for the smaller vector,
2774 which should be set on an appropriate free list. */
2775 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2776 eassert (restbytes % roundup_size == 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2778 return vector;
2779 }
2780
2781 /* Finally, need a new vector block. */
2782 block = allocate_vector_block ();
2783
2784 /* New vector will be at the beginning of this block. */
2785 vector = (struct Lisp_Vector *) block->data;
2786
2787 /* If the rest of space from this block is large enough
2788 for one-slot vector at least, set up it on a free list. */
2789 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2790 if (restbytes >= VBLOCK_BYTES_MIN)
2791 {
2792 eassert (restbytes % roundup_size == 0);
2793 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2794 }
2795 return vector;
2796 }
2797
2798 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2799
2800 #define VECTOR_IN_BLOCK(vector, block) \
2801 ((char *) (vector) <= (block)->data \
2802 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2803
2804 /* Return the memory footprint of V in bytes. */
2805
2806 static ptrdiff_t
2807 vector_nbytes (struct Lisp_Vector *v)
2808 {
2809 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2810
2811 if (size & PSEUDOVECTOR_FLAG)
2812 {
2813 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2814 {
2815 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2816 ptrdiff_t payload_bytes =
2817 bool_vector_payload_bytes (bv->size, NULL);
2818
2819 eassert_and_assume (payload_bytes >= 0);
2820 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2821 }
2822 else
2823 size = (header_size
2824 + ((size & PSEUDOVECTOR_SIZE_MASK)
2825 + ((size & PSEUDOVECTOR_REST_MASK)
2826 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2827 }
2828 else
2829 size = header_size + size * word_size;
2830 return vroundup (size);
2831 }
2832
2833 /* Reclaim space used by unmarked vectors. */
2834
2835 static void
2836 sweep_vectors (void)
2837 {
2838 struct vector_block *block, **bprev = &vector_blocks;
2839 struct large_vector *lv, **lvprev = &large_vectors;
2840 struct Lisp_Vector *vector, *next;
2841
2842 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2843 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2844
2845 /* Looking through vector blocks. */
2846
2847 for (block = vector_blocks; block; block = *bprev)
2848 {
2849 bool free_this_block = 0;
2850 ptrdiff_t nbytes;
2851
2852 for (vector = (struct Lisp_Vector *) block->data;
2853 VECTOR_IN_BLOCK (vector, block); vector = next)
2854 {
2855 if (VECTOR_MARKED_P (vector))
2856 {
2857 VECTOR_UNMARK (vector);
2858 total_vectors++;
2859 nbytes = vector_nbytes (vector);
2860 total_vector_slots += nbytes / word_size;
2861 next = ADVANCE (vector, nbytes);
2862 }
2863 else
2864 {
2865 ptrdiff_t total_bytes;
2866
2867 nbytes = vector_nbytes (vector);
2868 total_bytes = nbytes;
2869 next = ADVANCE (vector, nbytes);
2870
2871 /* While NEXT is not marked, try to coalesce with VECTOR,
2872 thus making VECTOR of the largest possible size. */
2873
2874 while (VECTOR_IN_BLOCK (next, block))
2875 {
2876 if (VECTOR_MARKED_P (next))
2877 break;
2878 nbytes = vector_nbytes (next);
2879 total_bytes += nbytes;
2880 next = ADVANCE (next, nbytes);
2881 }
2882
2883 eassert (total_bytes % roundup_size == 0);
2884
2885 if (vector == (struct Lisp_Vector *) block->data
2886 && !VECTOR_IN_BLOCK (next, block))
2887 /* This block should be freed because all of it's
2888 space was coalesced into the only free vector. */
2889 free_this_block = 1;
2890 else
2891 {
2892 size_t tmp;
2893 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2894 }
2895 }
2896 }
2897
2898 if (free_this_block)
2899 {
2900 *bprev = block->next;
2901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2902 mem_delete (mem_find (block->data));
2903 #endif
2904 xfree (block);
2905 }
2906 else
2907 bprev = &block->next;
2908 }
2909
2910 /* Sweep large vectors. */
2911
2912 for (lv = large_vectors; lv; lv = *lvprev)
2913 {
2914 vector = &lv->v;
2915 if (VECTOR_MARKED_P (vector))
2916 {
2917 VECTOR_UNMARK (vector);
2918 total_vectors++;
2919 if (vector->header.size & PSEUDOVECTOR_FLAG)
2920 {
2921 /* All non-bool pseudovectors are small enough to be allocated
2922 from vector blocks. This code should be redesigned if some
2923 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2924 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2925 total_vector_slots += vector_nbytes (vector) / word_size;
2926 }
2927 else
2928 total_vector_slots
2929 += header_size / word_size + vector->header.size;
2930 lvprev = &lv->next.vector;
2931 }
2932 else
2933 {
2934 *lvprev = lv->next.vector;
2935 lisp_free (lv);
2936 }
2937 }
2938 }
2939
2940 /* Value is a pointer to a newly allocated Lisp_Vector structure
2941 with room for LEN Lisp_Objects. */
2942
2943 static struct Lisp_Vector *
2944 allocate_vectorlike (ptrdiff_t len)
2945 {
2946 struct Lisp_Vector *p;
2947
2948 MALLOC_BLOCK_INPUT;
2949
2950 if (len == 0)
2951 p = XVECTOR (zero_vector);
2952 else
2953 {
2954 size_t nbytes = header_size + len * word_size;
2955
2956 #ifdef DOUG_LEA_MALLOC
2957 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2958 because mapped region contents are not preserved in
2959 a dumped Emacs. */
2960 mallopt (M_MMAP_MAX, 0);
2961 #endif
2962
2963 if (nbytes <= VBLOCK_BYTES_MAX)
2964 p = allocate_vector_from_block (vroundup (nbytes));
2965 else
2966 {
2967 struct large_vector *lv
2968 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
2969 + len * word_size),
2970 MEM_TYPE_VECTORLIKE);
2971 lv->next.vector = large_vectors;
2972 large_vectors = lv;
2973 p = &lv->v;
2974 }
2975
2976 #ifdef DOUG_LEA_MALLOC
2977 /* Back to a reasonable maximum of mmap'ed areas. */
2978 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2979 #endif
2980
2981 consing_since_gc += nbytes;
2982 vector_cells_consed += len;
2983 }
2984
2985 MALLOC_UNBLOCK_INPUT;
2986
2987 return p;
2988 }
2989
2990
2991 /* Allocate a vector with LEN slots. */
2992
2993 struct Lisp_Vector *
2994 allocate_vector (EMACS_INT len)
2995 {
2996 struct Lisp_Vector *v;
2997 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2998
2999 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3000 memory_full (SIZE_MAX);
3001 v = allocate_vectorlike (len);
3002 v->header.size = len;
3003 return v;
3004 }
3005
3006
3007 /* Allocate other vector-like structures. */
3008
3009 struct Lisp_Vector *
3010 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3011 {
3012 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3013 int i;
3014
3015 /* Catch bogus values. */
3016 eassert (tag <= PVEC_FONT);
3017 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3018 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3019
3020 /* Only the first lisplen slots will be traced normally by the GC. */
3021 for (i = 0; i < lisplen; ++i)
3022 v->u.contents[i] = Qnil;
3023
3024 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3025 return v;
3026 }
3027
3028 struct buffer *
3029 allocate_buffer (void)
3030 {
3031 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3032
3033 BUFFER_PVEC_INIT (b);
3034 /* Put B on the chain of all buffers including killed ones. */
3035 b->next = all_buffers;
3036 all_buffers = b;
3037 /* Note that the rest fields of B are not initialized. */
3038 return b;
3039 }
3040
3041 struct Lisp_Hash_Table *
3042 allocate_hash_table (void)
3043 {
3044 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3045 }
3046
3047 struct window *
3048 allocate_window (void)
3049 {
3050 struct window *w;
3051
3052 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&w->current_matrix, 0,
3055 sizeof (*w) - offsetof (struct window, current_matrix));
3056 return w;
3057 }
3058
3059 struct terminal *
3060 allocate_terminal (void)
3061 {
3062 struct terminal *t;
3063
3064 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&t->next_terminal, 0,
3067 sizeof (*t) - offsetof (struct terminal, next_terminal));
3068 return t;
3069 }
3070
3071 struct frame *
3072 allocate_frame (void)
3073 {
3074 struct frame *f;
3075
3076 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3077 /* Users assumes that non-Lisp data is zeroed. */
3078 memset (&f->face_cache, 0,
3079 sizeof (*f) - offsetof (struct frame, face_cache));
3080 return f;
3081 }
3082
3083 struct Lisp_Process *
3084 allocate_process (void)
3085 {
3086 struct Lisp_Process *p;
3087
3088 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3089 /* Users assumes that non-Lisp data is zeroed. */
3090 memset (&p->pid, 0,
3091 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3092 return p;
3093 }
3094
3095 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3096 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3097 See also the function `vector'. */)
3098 (register Lisp_Object length, Lisp_Object init)
3099 {
3100 Lisp_Object vector;
3101 register ptrdiff_t sizei;
3102 register ptrdiff_t i;
3103 register struct Lisp_Vector *p;
3104
3105 CHECK_NATNUM (length);
3106
3107 p = allocate_vector (XFASTINT (length));
3108 sizei = XFASTINT (length);
3109 for (i = 0; i < sizei; i++)
3110 p->u.contents[i] = init;
3111
3112 XSETVECTOR (vector, p);
3113 return vector;
3114 }
3115
3116
3117 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3118 doc: /* Return a newly created vector with specified arguments as elements.
3119 Any number of arguments, even zero arguments, are allowed.
3120 usage: (vector &rest OBJECTS) */)
3121 (ptrdiff_t nargs, Lisp_Object *args)
3122 {
3123 ptrdiff_t i;
3124 register Lisp_Object val = make_uninit_vector (nargs);
3125 register struct Lisp_Vector *p = XVECTOR (val);
3126
3127 for (i = 0; i < nargs; i++)
3128 p->u.contents[i] = args[i];
3129 return val;
3130 }
3131
3132 void
3133 make_byte_code (struct Lisp_Vector *v)
3134 {
3135 /* Don't allow the global zero_vector to become a byte code object. */
3136 eassert(0 < v->header.size);
3137 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3138 && STRING_MULTIBYTE (v->u.contents[1]))
3139 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3140 earlier because they produced a raw 8-bit string for byte-code
3141 and now such a byte-code string is loaded as multibyte while
3142 raw 8-bit characters converted to multibyte form. Thus, now we
3143 must convert them back to the original unibyte form. */
3144 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3145 XSETPVECTYPE (v, PVEC_COMPILED);
3146 }
3147
3148 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3149 doc: /* Create a byte-code object with specified arguments as elements.
3150 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3151 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3152 and (optional) INTERACTIVE-SPEC.
3153 The first four arguments are required; at most six have any
3154 significance.
3155 The ARGLIST can be either like the one of `lambda', in which case the arguments
3156 will be dynamically bound before executing the byte code, or it can be an
3157 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3158 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3159 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3160 argument to catch the left-over arguments. If such an integer is used, the
3161 arguments will not be dynamically bound but will be instead pushed on the
3162 stack before executing the byte-code.
3163 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3164 (ptrdiff_t nargs, Lisp_Object *args)
3165 {
3166 ptrdiff_t i;
3167 register Lisp_Object val = make_uninit_vector (nargs);
3168 register struct Lisp_Vector *p = XVECTOR (val);
3169
3170 /* We used to purecopy everything here, if purify-flag was set. This worked
3171 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3172 dangerous, since make-byte-code is used during execution to build
3173 closures, so any closure built during the preload phase would end up
3174 copied into pure space, including its free variables, which is sometimes
3175 just wasteful and other times plainly wrong (e.g. those free vars may want
3176 to be setcar'd). */
3177
3178 for (i = 0; i < nargs; i++)
3179 p->u.contents[i] = args[i];
3180 make_byte_code (p);
3181 XSETCOMPILED (val, p);
3182 return val;
3183 }
3184
3185
3186 \f
3187 /***********************************************************************
3188 Symbol Allocation
3189 ***********************************************************************/
3190
3191 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3192 of the required alignment if LSB tags are used. */
3193
3194 union aligned_Lisp_Symbol
3195 {
3196 struct Lisp_Symbol s;
3197 #if USE_LSB_TAG
3198 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3199 & -GCALIGNMENT];
3200 #endif
3201 };
3202
3203 /* Each symbol_block is just under 1020 bytes long, since malloc
3204 really allocates in units of powers of two and uses 4 bytes for its
3205 own overhead. */
3206
3207 #define SYMBOL_BLOCK_SIZE \
3208 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3209
3210 struct symbol_block
3211 {
3212 /* Place `symbols' first, to preserve alignment. */
3213 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3214 struct symbol_block *next;
3215 };
3216
3217 /* Current symbol block and index of first unused Lisp_Symbol
3218 structure in it. */
3219
3220 static struct symbol_block *symbol_block;
3221 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3222
3223 /* List of free symbols. */
3224
3225 static struct Lisp_Symbol *symbol_free_list;
3226
3227 static void
3228 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3229 {
3230 XSYMBOL (sym)->name = name;
3231 }
3232
3233 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3234 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3235 Its value is void, and its function definition and property list are nil. */)
3236 (Lisp_Object name)
3237 {
3238 register Lisp_Object val;
3239 register struct Lisp_Symbol *p;
3240
3241 CHECK_STRING (name);
3242
3243 MALLOC_BLOCK_INPUT;
3244
3245 if (symbol_free_list)
3246 {
3247 XSETSYMBOL (val, symbol_free_list);
3248 symbol_free_list = symbol_free_list->next;
3249 }
3250 else
3251 {
3252 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3253 {
3254 struct symbol_block *new
3255 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3256 new->next = symbol_block;
3257 symbol_block = new;
3258 symbol_block_index = 0;
3259 total_free_symbols += SYMBOL_BLOCK_SIZE;
3260 }
3261 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3262 symbol_block_index++;
3263 }
3264
3265 MALLOC_UNBLOCK_INPUT;
3266
3267 p = XSYMBOL (val);
3268 set_symbol_name (val, name);
3269 set_symbol_plist (val, Qnil);
3270 p->redirect = SYMBOL_PLAINVAL;
3271 SET_SYMBOL_VAL (p, Qunbound);
3272 set_symbol_function (val, Qnil);
3273 set_symbol_next (val, NULL);
3274 p->gcmarkbit = 0;
3275 p->interned = SYMBOL_UNINTERNED;
3276 p->constant = 0;
3277 p->declared_special = 0;
3278 consing_since_gc += sizeof (struct Lisp_Symbol);
3279 symbols_consed++;
3280 total_free_symbols--;
3281 return val;
3282 }
3283
3284
3285 \f
3286 /***********************************************************************
3287 Marker (Misc) Allocation
3288 ***********************************************************************/
3289
3290 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3291 the required alignment when LSB tags are used. */
3292
3293 union aligned_Lisp_Misc
3294 {
3295 union Lisp_Misc m;
3296 #if USE_LSB_TAG
3297 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3298 & -GCALIGNMENT];
3299 #endif
3300 };
3301
3302 /* Allocation of markers and other objects that share that structure.
3303 Works like allocation of conses. */
3304
3305 #define MARKER_BLOCK_SIZE \
3306 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3307
3308 struct marker_block
3309 {
3310 /* Place `markers' first, to preserve alignment. */
3311 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3312 struct marker_block *next;
3313 };
3314
3315 static struct marker_block *marker_block;
3316 static int marker_block_index = MARKER_BLOCK_SIZE;
3317
3318 static union Lisp_Misc *marker_free_list;
3319
3320 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3321
3322 static Lisp_Object
3323 allocate_misc (enum Lisp_Misc_Type type)
3324 {
3325 Lisp_Object val;
3326
3327 MALLOC_BLOCK_INPUT;
3328
3329 if (marker_free_list)
3330 {
3331 XSETMISC (val, marker_free_list);
3332 marker_free_list = marker_free_list->u_free.chain;
3333 }
3334 else
3335 {
3336 if (marker_block_index == MARKER_BLOCK_SIZE)
3337 {
3338 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3339 new->next = marker_block;
3340 marker_block = new;
3341 marker_block_index = 0;
3342 total_free_markers += MARKER_BLOCK_SIZE;
3343 }
3344 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3345 marker_block_index++;
3346 }
3347
3348 MALLOC_UNBLOCK_INPUT;
3349
3350 --total_free_markers;
3351 consing_since_gc += sizeof (union Lisp_Misc);
3352 misc_objects_consed++;
3353 XMISCANY (val)->type = type;
3354 XMISCANY (val)->gcmarkbit = 0;
3355 return val;
3356 }
3357
3358 /* Free a Lisp_Misc object. */
3359
3360 void
3361 free_misc (Lisp_Object misc)
3362 {
3363 XMISCANY (misc)->type = Lisp_Misc_Free;
3364 XMISC (misc)->u_free.chain = marker_free_list;
3365 marker_free_list = XMISC (misc);
3366 consing_since_gc -= sizeof (union Lisp_Misc);
3367 total_free_markers++;
3368 }
3369
3370 /* Verify properties of Lisp_Save_Value's representation
3371 that are assumed here and elsewhere. */
3372
3373 verify (SAVE_UNUSED == 0);
3374 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3375 >> SAVE_SLOT_BITS)
3376 == 0);
3377
3378 /* Return Lisp_Save_Value objects for the various combinations
3379 that callers need. */
3380
3381 Lisp_Object
3382 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3383 {
3384 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3385 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3386 p->save_type = SAVE_TYPE_INT_INT_INT;
3387 p->data[0].integer = a;
3388 p->data[1].integer = b;
3389 p->data[2].integer = c;
3390 return val;
3391 }
3392
3393 Lisp_Object
3394 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3395 Lisp_Object d)
3396 {
3397 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3398 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3399 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3400 p->data[0].object = a;
3401 p->data[1].object = b;
3402 p->data[2].object = c;
3403 p->data[3].object = d;
3404 return val;
3405 }
3406
3407 #if defined HAVE_NS || defined HAVE_NTGUI
3408 Lisp_Object
3409 make_save_ptr (void *a)
3410 {
3411 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3412 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3413 p->save_type = SAVE_POINTER;
3414 p->data[0].pointer = a;
3415 return val;
3416 }
3417 #endif
3418
3419 Lisp_Object
3420 make_save_ptr_int (void *a, ptrdiff_t b)
3421 {
3422 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3423 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3424 p->save_type = SAVE_TYPE_PTR_INT;
3425 p->data[0].pointer = a;
3426 p->data[1].integer = b;
3427 return val;
3428 }
3429
3430 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3431 Lisp_Object
3432 make_save_ptr_ptr (void *a, void *b)
3433 {
3434 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3435 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3436 p->save_type = SAVE_TYPE_PTR_PTR;
3437 p->data[0].pointer = a;
3438 p->data[1].pointer = b;
3439 return val;
3440 }
3441 #endif
3442
3443 Lisp_Object
3444 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3445 {
3446 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3447 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3448 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3449 p->data[0].funcpointer = a;
3450 p->data[1].pointer = b;
3451 p->data[2].object = c;
3452 return val;
3453 }
3454
3455 /* Return a Lisp_Save_Value object that represents an array A
3456 of N Lisp objects. */
3457
3458 Lisp_Object
3459 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3460 {
3461 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3462 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3463 p->save_type = SAVE_TYPE_MEMORY;
3464 p->data[0].pointer = a;
3465 p->data[1].integer = n;
3466 return val;
3467 }
3468
3469 /* Free a Lisp_Save_Value object. Do not use this function
3470 if SAVE contains pointer other than returned by xmalloc. */
3471
3472 void
3473 free_save_value (Lisp_Object save)
3474 {
3475 xfree (XSAVE_POINTER (save, 0));
3476 free_misc (save);
3477 }
3478
3479 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3480
3481 Lisp_Object
3482 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3483 {
3484 register Lisp_Object overlay;
3485
3486 overlay = allocate_misc (Lisp_Misc_Overlay);
3487 OVERLAY_START (overlay) = start;
3488 OVERLAY_END (overlay) = end;
3489 set_overlay_plist (overlay, plist);
3490 XOVERLAY (overlay)->next = NULL;
3491 return overlay;
3492 }
3493
3494 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3495 doc: /* Return a newly allocated marker which does not point at any place. */)
3496 (void)
3497 {
3498 register Lisp_Object val;
3499 register struct Lisp_Marker *p;
3500
3501 val = allocate_misc (Lisp_Misc_Marker);
3502 p = XMARKER (val);
3503 p->buffer = 0;
3504 p->bytepos = 0;
3505 p->charpos = 0;
3506 p->next = NULL;
3507 p->insertion_type = 0;
3508 p->need_adjustment = 0;
3509 return val;
3510 }
3511
3512 /* Return a newly allocated marker which points into BUF
3513 at character position CHARPOS and byte position BYTEPOS. */
3514
3515 Lisp_Object
3516 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3517 {
3518 Lisp_Object obj;
3519 struct Lisp_Marker *m;
3520
3521 /* No dead buffers here. */
3522 eassert (BUFFER_LIVE_P (buf));
3523
3524 /* Every character is at least one byte. */
3525 eassert (charpos <= bytepos);
3526
3527 obj = allocate_misc (Lisp_Misc_Marker);
3528 m = XMARKER (obj);
3529 m->buffer = buf;
3530 m->charpos = charpos;
3531 m->bytepos = bytepos;
3532 m->insertion_type = 0;
3533 m->need_adjustment = 0;
3534 m->next = BUF_MARKERS (buf);
3535 BUF_MARKERS (buf) = m;
3536 return obj;
3537 }
3538
3539 /* Put MARKER back on the free list after using it temporarily. */
3540
3541 void
3542 free_marker (Lisp_Object marker)
3543 {
3544 unchain_marker (XMARKER (marker));
3545 free_misc (marker);
3546 }
3547
3548 \f
3549 /* Return a newly created vector or string with specified arguments as
3550 elements. If all the arguments are characters that can fit
3551 in a string of events, make a string; otherwise, make a vector.
3552
3553 Any number of arguments, even zero arguments, are allowed. */
3554
3555 Lisp_Object
3556 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3557 {
3558 ptrdiff_t i;
3559
3560 for (i = 0; i < nargs; i++)
3561 /* The things that fit in a string
3562 are characters that are in 0...127,
3563 after discarding the meta bit and all the bits above it. */
3564 if (!INTEGERP (args[i])
3565 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3566 return Fvector (nargs, args);
3567
3568 /* Since the loop exited, we know that all the things in it are
3569 characters, so we can make a string. */
3570 {
3571 Lisp_Object result;
3572
3573 result = Fmake_string (make_number (nargs), make_number (0));
3574 for (i = 0; i < nargs; i++)
3575 {
3576 SSET (result, i, XINT (args[i]));
3577 /* Move the meta bit to the right place for a string char. */
3578 if (XINT (args[i]) & CHAR_META)
3579 SSET (result, i, SREF (result, i) | 0x80);
3580 }
3581
3582 return result;
3583 }
3584 }
3585
3586
3587 \f
3588 /************************************************************************
3589 Memory Full Handling
3590 ************************************************************************/
3591
3592
3593 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3594 there may have been size_t overflow so that malloc was never
3595 called, or perhaps malloc was invoked successfully but the
3596 resulting pointer had problems fitting into a tagged EMACS_INT. In
3597 either case this counts as memory being full even though malloc did
3598 not fail. */
3599
3600 void
3601 memory_full (size_t nbytes)
3602 {
3603 /* Do not go into hysterics merely because a large request failed. */
3604 bool enough_free_memory = 0;
3605 if (SPARE_MEMORY < nbytes)
3606 {
3607 void *p;
3608
3609 MALLOC_BLOCK_INPUT;
3610 p = malloc (SPARE_MEMORY);
3611 if (p)
3612 {
3613 free (p);
3614 enough_free_memory = 1;
3615 }
3616 MALLOC_UNBLOCK_INPUT;
3617 }
3618
3619 if (! enough_free_memory)
3620 {
3621 int i;
3622
3623 Vmemory_full = Qt;
3624
3625 memory_full_cons_threshold = sizeof (struct cons_block);
3626
3627 /* The first time we get here, free the spare memory. */
3628 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3629 if (spare_memory[i])
3630 {
3631 if (i == 0)
3632 free (spare_memory[i]);
3633 else if (i >= 1 && i <= 4)
3634 lisp_align_free (spare_memory[i]);
3635 else
3636 lisp_free (spare_memory[i]);
3637 spare_memory[i] = 0;
3638 }
3639 }
3640
3641 /* This used to call error, but if we've run out of memory, we could
3642 get infinite recursion trying to build the string. */
3643 xsignal (Qnil, Vmemory_signal_data);
3644 }
3645
3646 /* If we released our reserve (due to running out of memory),
3647 and we have a fair amount free once again,
3648 try to set aside another reserve in case we run out once more.
3649
3650 This is called when a relocatable block is freed in ralloc.c,
3651 and also directly from this file, in case we're not using ralloc.c. */
3652
3653 void
3654 refill_memory_reserve (void)
3655 {
3656 #ifndef SYSTEM_MALLOC
3657 if (spare_memory[0] == 0)
3658 spare_memory[0] = malloc (SPARE_MEMORY);
3659 if (spare_memory[1] == 0)
3660 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3661 MEM_TYPE_SPARE);
3662 if (spare_memory[2] == 0)
3663 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3664 MEM_TYPE_SPARE);
3665 if (spare_memory[3] == 0)
3666 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3667 MEM_TYPE_SPARE);
3668 if (spare_memory[4] == 0)
3669 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3670 MEM_TYPE_SPARE);
3671 if (spare_memory[5] == 0)
3672 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3673 MEM_TYPE_SPARE);
3674 if (spare_memory[6] == 0)
3675 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3676 MEM_TYPE_SPARE);
3677 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3678 Vmemory_full = Qnil;
3679 #endif
3680 }
3681 \f
3682 /************************************************************************
3683 C Stack Marking
3684 ************************************************************************/
3685
3686 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3687
3688 /* Conservative C stack marking requires a method to identify possibly
3689 live Lisp objects given a pointer value. We do this by keeping
3690 track of blocks of Lisp data that are allocated in a red-black tree
3691 (see also the comment of mem_node which is the type of nodes in
3692 that tree). Function lisp_malloc adds information for an allocated
3693 block to the red-black tree with calls to mem_insert, and function
3694 lisp_free removes it with mem_delete. Functions live_string_p etc
3695 call mem_find to lookup information about a given pointer in the
3696 tree, and use that to determine if the pointer points to a Lisp
3697 object or not. */
3698
3699 /* Initialize this part of alloc.c. */
3700
3701 static void
3702 mem_init (void)
3703 {
3704 mem_z.left = mem_z.right = MEM_NIL;
3705 mem_z.parent = NULL;
3706 mem_z.color = MEM_BLACK;
3707 mem_z.start = mem_z.end = NULL;
3708 mem_root = MEM_NIL;
3709 }
3710
3711
3712 /* Value is a pointer to the mem_node containing START. Value is
3713 MEM_NIL if there is no node in the tree containing START. */
3714
3715 static struct mem_node *
3716 mem_find (void *start)
3717 {
3718 struct mem_node *p;
3719
3720 if (start < min_heap_address || start > max_heap_address)
3721 return MEM_NIL;
3722
3723 /* Make the search always successful to speed up the loop below. */
3724 mem_z.start = start;
3725 mem_z.end = (char *) start + 1;
3726
3727 p = mem_root;
3728 while (start < p->start || start >= p->end)
3729 p = start < p->start ? p->left : p->right;
3730 return p;
3731 }
3732
3733
3734 /* Insert a new node into the tree for a block of memory with start
3735 address START, end address END, and type TYPE. Value is a
3736 pointer to the node that was inserted. */
3737
3738 static struct mem_node *
3739 mem_insert (void *start, void *end, enum mem_type type)
3740 {
3741 struct mem_node *c, *parent, *x;
3742
3743 if (min_heap_address == NULL || start < min_heap_address)
3744 min_heap_address = start;
3745 if (max_heap_address == NULL || end > max_heap_address)
3746 max_heap_address = end;
3747
3748 /* See where in the tree a node for START belongs. In this
3749 particular application, it shouldn't happen that a node is already
3750 present. For debugging purposes, let's check that. */
3751 c = mem_root;
3752 parent = NULL;
3753
3754 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3755
3756 while (c != MEM_NIL)
3757 {
3758 if (start >= c->start && start < c->end)
3759 emacs_abort ();
3760 parent = c;
3761 c = start < c->start ? c->left : c->right;
3762 }
3763
3764 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3765
3766 while (c != MEM_NIL)
3767 {
3768 parent = c;
3769 c = start < c->start ? c->left : c->right;
3770 }
3771
3772 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3773
3774 /* Create a new node. */
3775 #ifdef GC_MALLOC_CHECK
3776 x = malloc (sizeof *x);
3777 if (x == NULL)
3778 emacs_abort ();
3779 #else
3780 x = xmalloc (sizeof *x);
3781 #endif
3782 x->start = start;
3783 x->end = end;
3784 x->type = type;
3785 x->parent = parent;
3786 x->left = x->right = MEM_NIL;
3787 x->color = MEM_RED;
3788
3789 /* Insert it as child of PARENT or install it as root. */
3790 if (parent)
3791 {
3792 if (start < parent->start)
3793 parent->left = x;
3794 else
3795 parent->right = x;
3796 }
3797 else
3798 mem_root = x;
3799
3800 /* Re-establish red-black tree properties. */
3801 mem_insert_fixup (x);
3802
3803 return x;
3804 }
3805
3806
3807 /* Re-establish the red-black properties of the tree, and thereby
3808 balance the tree, after node X has been inserted; X is always red. */
3809
3810 static void
3811 mem_insert_fixup (struct mem_node *x)
3812 {
3813 while (x != mem_root && x->parent->color == MEM_RED)
3814 {
3815 /* X is red and its parent is red. This is a violation of
3816 red-black tree property #3. */
3817
3818 if (x->parent == x->parent->parent->left)
3819 {
3820 /* We're on the left side of our grandparent, and Y is our
3821 "uncle". */
3822 struct mem_node *y = x->parent->parent->right;
3823
3824 if (y->color == MEM_RED)
3825 {
3826 /* Uncle and parent are red but should be black because
3827 X is red. Change the colors accordingly and proceed
3828 with the grandparent. */
3829 x->parent->color = MEM_BLACK;
3830 y->color = MEM_BLACK;
3831 x->parent->parent->color = MEM_RED;
3832 x = x->parent->parent;
3833 }
3834 else
3835 {
3836 /* Parent and uncle have different colors; parent is
3837 red, uncle is black. */
3838 if (x == x->parent->right)
3839 {
3840 x = x->parent;
3841 mem_rotate_left (x);
3842 }
3843
3844 x->parent->color = MEM_BLACK;
3845 x->parent->parent->color = MEM_RED;
3846 mem_rotate_right (x->parent->parent);
3847 }
3848 }
3849 else
3850 {
3851 /* This is the symmetrical case of above. */
3852 struct mem_node *y = x->parent->parent->left;
3853
3854 if (y->color == MEM_RED)
3855 {
3856 x->parent->color = MEM_BLACK;
3857 y->color = MEM_BLACK;
3858 x->parent->parent->color = MEM_RED;
3859 x = x->parent->parent;
3860 }
3861 else
3862 {
3863 if (x == x->parent->left)
3864 {
3865 x = x->parent;
3866 mem_rotate_right (x);
3867 }
3868
3869 x->parent->color = MEM_BLACK;
3870 x->parent->parent->color = MEM_RED;
3871 mem_rotate_left (x->parent->parent);
3872 }
3873 }
3874 }
3875
3876 /* The root may have been changed to red due to the algorithm. Set
3877 it to black so that property #5 is satisfied. */
3878 mem_root->color = MEM_BLACK;
3879 }
3880
3881
3882 /* (x) (y)
3883 / \ / \
3884 a (y) ===> (x) c
3885 / \ / \
3886 b c a b */
3887
3888 static void
3889 mem_rotate_left (struct mem_node *x)
3890 {
3891 struct mem_node *y;
3892
3893 /* Turn y's left sub-tree into x's right sub-tree. */
3894 y = x->right;
3895 x->right = y->left;
3896 if (y->left != MEM_NIL)
3897 y->left->parent = x;
3898
3899 /* Y's parent was x's parent. */
3900 if (y != MEM_NIL)
3901 y->parent = x->parent;
3902
3903 /* Get the parent to point to y instead of x. */
3904 if (x->parent)
3905 {
3906 if (x == x->parent->left)
3907 x->parent->left = y;
3908 else
3909 x->parent->right = y;
3910 }
3911 else
3912 mem_root = y;
3913
3914 /* Put x on y's left. */
3915 y->left = x;
3916 if (x != MEM_NIL)
3917 x->parent = y;
3918 }
3919
3920
3921 /* (x) (Y)
3922 / \ / \
3923 (y) c ===> a (x)
3924 / \ / \
3925 a b b c */
3926
3927 static void
3928 mem_rotate_right (struct mem_node *x)
3929 {
3930 struct mem_node *y = x->left;
3931
3932 x->left = y->right;
3933 if (y->right != MEM_NIL)
3934 y->right->parent = x;
3935
3936 if (y != MEM_NIL)
3937 y->parent = x->parent;
3938 if (x->parent)
3939 {
3940 if (x == x->parent->right)
3941 x->parent->right = y;
3942 else
3943 x->parent->left = y;
3944 }
3945 else
3946 mem_root = y;
3947
3948 y->right = x;
3949 if (x != MEM_NIL)
3950 x->parent = y;
3951 }
3952
3953
3954 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3955
3956 static void
3957 mem_delete (struct mem_node *z)
3958 {
3959 struct mem_node *x, *y;
3960
3961 if (!z || z == MEM_NIL)
3962 return;
3963
3964 if (z->left == MEM_NIL || z->right == MEM_NIL)
3965 y = z;
3966 else
3967 {
3968 y = z->right;
3969 while (y->left != MEM_NIL)
3970 y = y->left;
3971 }
3972
3973 if (y->left != MEM_NIL)
3974 x = y->left;
3975 else
3976 x = y->right;
3977
3978 x->parent = y->parent;
3979 if (y->parent)
3980 {
3981 if (y == y->parent->left)
3982 y->parent->left = x;
3983 else
3984 y->parent->right = x;
3985 }
3986 else
3987 mem_root = x;
3988
3989 if (y != z)
3990 {
3991 z->start = y->start;
3992 z->end = y->end;
3993 z->type = y->type;
3994 }
3995
3996 if (y->color == MEM_BLACK)
3997 mem_delete_fixup (x);
3998
3999 #ifdef GC_MALLOC_CHECK
4000 free (y);
4001 #else
4002 xfree (y);
4003 #endif
4004 }
4005
4006
4007 /* Re-establish the red-black properties of the tree, after a
4008 deletion. */
4009
4010 static void
4011 mem_delete_fixup (struct mem_node *x)
4012 {
4013 while (x != mem_root && x->color == MEM_BLACK)
4014 {
4015 if (x == x->parent->left)
4016 {
4017 struct mem_node *w = x->parent->right;
4018
4019 if (w->color == MEM_RED)
4020 {
4021 w->color = MEM_BLACK;
4022 x->parent->color = MEM_RED;
4023 mem_rotate_left (x->parent);
4024 w = x->parent->right;
4025 }
4026
4027 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4028 {
4029 w->color = MEM_RED;
4030 x = x->parent;
4031 }
4032 else
4033 {
4034 if (w->right->color == MEM_BLACK)
4035 {
4036 w->left->color = MEM_BLACK;
4037 w->color = MEM_RED;
4038 mem_rotate_right (w);
4039 w = x->parent->right;
4040 }
4041 w->color = x->parent->color;
4042 x->parent->color = MEM_BLACK;
4043 w->right->color = MEM_BLACK;
4044 mem_rotate_left (x->parent);
4045 x = mem_root;
4046 }
4047 }
4048 else
4049 {
4050 struct mem_node *w = x->parent->left;
4051
4052 if (w->color == MEM_RED)
4053 {
4054 w->color = MEM_BLACK;
4055 x->parent->color = MEM_RED;
4056 mem_rotate_right (x->parent);
4057 w = x->parent->left;
4058 }
4059
4060 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4061 {
4062 w->color = MEM_RED;
4063 x = x->parent;
4064 }
4065 else
4066 {
4067 if (w->left->color == MEM_BLACK)
4068 {
4069 w->right->color = MEM_BLACK;
4070 w->color = MEM_RED;
4071 mem_rotate_left (w);
4072 w = x->parent->left;
4073 }
4074
4075 w->color = x->parent->color;
4076 x->parent->color = MEM_BLACK;
4077 w->left->color = MEM_BLACK;
4078 mem_rotate_right (x->parent);
4079 x = mem_root;
4080 }
4081 }
4082 }
4083
4084 x->color = MEM_BLACK;
4085 }
4086
4087
4088 /* Value is non-zero if P is a pointer to a live Lisp string on
4089 the heap. M is a pointer to the mem_block for P. */
4090
4091 static bool
4092 live_string_p (struct mem_node *m, void *p)
4093 {
4094 if (m->type == MEM_TYPE_STRING)
4095 {
4096 struct string_block *b = m->start;
4097 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4098
4099 /* P must point to the start of a Lisp_String structure, and it
4100 must not be on the free-list. */
4101 return (offset >= 0
4102 && offset % sizeof b->strings[0] == 0
4103 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4104 && ((struct Lisp_String *) p)->data != NULL);
4105 }
4106 else
4107 return 0;
4108 }
4109
4110
4111 /* Value is non-zero if P is a pointer to a live Lisp cons on
4112 the heap. M is a pointer to the mem_block for P. */
4113
4114 static bool
4115 live_cons_p (struct mem_node *m, void *p)
4116 {
4117 if (m->type == MEM_TYPE_CONS)
4118 {
4119 struct cons_block *b = m->start;
4120 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4121
4122 /* P must point to the start of a Lisp_Cons, not be
4123 one of the unused cells in the current cons block,
4124 and not be on the free-list. */
4125 return (offset >= 0
4126 && offset % sizeof b->conses[0] == 0
4127 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4128 && (b != cons_block
4129 || offset / sizeof b->conses[0] < cons_block_index)
4130 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4131 }
4132 else
4133 return 0;
4134 }
4135
4136
4137 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4138 the heap. M is a pointer to the mem_block for P. */
4139
4140 static bool
4141 live_symbol_p (struct mem_node *m, void *p)
4142 {
4143 if (m->type == MEM_TYPE_SYMBOL)
4144 {
4145 struct symbol_block *b = m->start;
4146 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4147
4148 /* P must point to the start of a Lisp_Symbol, not be
4149 one of the unused cells in the current symbol block,
4150 and not be on the free-list. */
4151 return (offset >= 0
4152 && offset % sizeof b->symbols[0] == 0
4153 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4154 && (b != symbol_block
4155 || offset / sizeof b->symbols[0] < symbol_block_index)
4156 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4157 }
4158 else
4159 return 0;
4160 }
4161
4162
4163 /* Value is non-zero if P is a pointer to a live Lisp float on
4164 the heap. M is a pointer to the mem_block for P. */
4165
4166 static bool
4167 live_float_p (struct mem_node *m, void *p)
4168 {
4169 if (m->type == MEM_TYPE_FLOAT)
4170 {
4171 struct float_block *b = m->start;
4172 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4173
4174 /* P must point to the start of a Lisp_Float and not be
4175 one of the unused cells in the current float block. */
4176 return (offset >= 0
4177 && offset % sizeof b->floats[0] == 0
4178 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4179 && (b != float_block
4180 || offset / sizeof b->floats[0] < float_block_index));
4181 }
4182 else
4183 return 0;
4184 }
4185
4186
4187 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4188 the heap. M is a pointer to the mem_block for P. */
4189
4190 static bool
4191 live_misc_p (struct mem_node *m, void *p)
4192 {
4193 if (m->type == MEM_TYPE_MISC)
4194 {
4195 struct marker_block *b = m->start;
4196 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4197
4198 /* P must point to the start of a Lisp_Misc, not be
4199 one of the unused cells in the current misc block,
4200 and not be on the free-list. */
4201 return (offset >= 0
4202 && offset % sizeof b->markers[0] == 0
4203 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4204 && (b != marker_block
4205 || offset / sizeof b->markers[0] < marker_block_index)
4206 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4207 }
4208 else
4209 return 0;
4210 }
4211
4212
4213 /* Value is non-zero if P is a pointer to a live vector-like object.
4214 M is a pointer to the mem_block for P. */
4215
4216 static bool
4217 live_vector_p (struct mem_node *m, void *p)
4218 {
4219 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4220 {
4221 /* This memory node corresponds to a vector block. */
4222 struct vector_block *block = m->start;
4223 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4224
4225 /* P is in the block's allocation range. Scan the block
4226 up to P and see whether P points to the start of some
4227 vector which is not on a free list. FIXME: check whether
4228 some allocation patterns (probably a lot of short vectors)
4229 may cause a substantial overhead of this loop. */
4230 while (VECTOR_IN_BLOCK (vector, block)
4231 && vector <= (struct Lisp_Vector *) p)
4232 {
4233 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4234 return 1;
4235 else
4236 vector = ADVANCE (vector, vector_nbytes (vector));
4237 }
4238 }
4239 else if (m->type == MEM_TYPE_VECTORLIKE
4240 && (char *) p == ((char *) m->start
4241 + offsetof (struct large_vector, v)))
4242 /* This memory node corresponds to a large vector. */
4243 return 1;
4244 return 0;
4245 }
4246
4247
4248 /* Value is non-zero if P is a pointer to a live buffer. M is a
4249 pointer to the mem_block for P. */
4250
4251 static bool
4252 live_buffer_p (struct mem_node *m, void *p)
4253 {
4254 /* P must point to the start of the block, and the buffer
4255 must not have been killed. */
4256 return (m->type == MEM_TYPE_BUFFER
4257 && p == m->start
4258 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4259 }
4260
4261 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4262
4263 #if GC_MARK_STACK
4264
4265 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4266
4267 /* Currently not used, but may be called from gdb. */
4268
4269 void dump_zombies (void) EXTERNALLY_VISIBLE;
4270
4271 /* Array of objects that are kept alive because the C stack contains
4272 a pattern that looks like a reference to them . */
4273
4274 #define MAX_ZOMBIES 10
4275 static Lisp_Object zombies[MAX_ZOMBIES];
4276
4277 /* Number of zombie objects. */
4278
4279 static EMACS_INT nzombies;
4280
4281 /* Number of garbage collections. */
4282
4283 static EMACS_INT ngcs;
4284
4285 /* Average percentage of zombies per collection. */
4286
4287 static double avg_zombies;
4288
4289 /* Max. number of live and zombie objects. */
4290
4291 static EMACS_INT max_live, max_zombies;
4292
4293 /* Average number of live objects per GC. */
4294
4295 static double avg_live;
4296
4297 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4298 doc: /* Show information about live and zombie objects. */)
4299 (void)
4300 {
4301 Lisp_Object args[8], zombie_list = Qnil;
4302 EMACS_INT i;
4303 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4304 zombie_list = Fcons (zombies[i], zombie_list);
4305 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4306 args[1] = make_number (ngcs);
4307 args[2] = make_float (avg_live);
4308 args[3] = make_float (avg_zombies);
4309 args[4] = make_float (avg_zombies / avg_live / 100);
4310 args[5] = make_number (max_live);
4311 args[6] = make_number (max_zombies);
4312 args[7] = zombie_list;
4313 return Fmessage (8, args);
4314 }
4315
4316 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4317
4318
4319 /* Mark OBJ if we can prove it's a Lisp_Object. */
4320
4321 static void
4322 mark_maybe_object (Lisp_Object obj)
4323 {
4324 void *po;
4325 struct mem_node *m;
4326
4327 #if USE_VALGRIND
4328 if (valgrind_p)
4329 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4330 #endif
4331
4332 if (INTEGERP (obj))
4333 return;
4334
4335 po = (void *) XPNTR (obj);
4336 m = mem_find (po);
4337
4338 if (m != MEM_NIL)
4339 {
4340 bool mark_p = 0;
4341
4342 switch (XTYPE (obj))
4343 {
4344 case Lisp_String:
4345 mark_p = (live_string_p (m, po)
4346 && !STRING_MARKED_P ((struct Lisp_String *) po));
4347 break;
4348
4349 case Lisp_Cons:
4350 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4351 break;
4352
4353 case Lisp_Symbol:
4354 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4355 break;
4356
4357 case Lisp_Float:
4358 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4359 break;
4360
4361 case Lisp_Vectorlike:
4362 /* Note: can't check BUFFERP before we know it's a
4363 buffer because checking that dereferences the pointer
4364 PO which might point anywhere. */
4365 if (live_vector_p (m, po))
4366 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4367 else if (live_buffer_p (m, po))
4368 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4369 break;
4370
4371 case Lisp_Misc:
4372 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4373 break;
4374
4375 default:
4376 break;
4377 }
4378
4379 if (mark_p)
4380 {
4381 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4382 if (nzombies < MAX_ZOMBIES)
4383 zombies[nzombies] = obj;
4384 ++nzombies;
4385 #endif
4386 mark_object (obj);
4387 }
4388 }
4389 }
4390
4391
4392 /* If P points to Lisp data, mark that as live if it isn't already
4393 marked. */
4394
4395 static void
4396 mark_maybe_pointer (void *p)
4397 {
4398 struct mem_node *m;
4399
4400 #if USE_VALGRIND
4401 if (valgrind_p)
4402 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4403 #endif
4404
4405 /* Quickly rule out some values which can't point to Lisp data.
4406 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4407 Otherwise, assume that Lisp data is aligned on even addresses. */
4408 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4409 return;
4410
4411 m = mem_find (p);
4412 if (m != MEM_NIL)
4413 {
4414 Lisp_Object obj = Qnil;
4415
4416 switch (m->type)
4417 {
4418 case MEM_TYPE_NON_LISP:
4419 case MEM_TYPE_SPARE:
4420 /* Nothing to do; not a pointer to Lisp memory. */
4421 break;
4422
4423 case MEM_TYPE_BUFFER:
4424 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4425 XSETVECTOR (obj, p);
4426 break;
4427
4428 case MEM_TYPE_CONS:
4429 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4430 XSETCONS (obj, p);
4431 break;
4432
4433 case MEM_TYPE_STRING:
4434 if (live_string_p (m, p)
4435 && !STRING_MARKED_P ((struct Lisp_String *) p))
4436 XSETSTRING (obj, p);
4437 break;
4438
4439 case MEM_TYPE_MISC:
4440 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4441 XSETMISC (obj, p);
4442 break;
4443
4444 case MEM_TYPE_SYMBOL:
4445 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4446 XSETSYMBOL (obj, p);
4447 break;
4448
4449 case MEM_TYPE_FLOAT:
4450 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4451 XSETFLOAT (obj, p);
4452 break;
4453
4454 case MEM_TYPE_VECTORLIKE:
4455 case MEM_TYPE_VECTOR_BLOCK:
4456 if (live_vector_p (m, p))
4457 {
4458 Lisp_Object tem;
4459 XSETVECTOR (tem, p);
4460 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4461 obj = tem;
4462 }
4463 break;
4464
4465 default:
4466 emacs_abort ();
4467 }
4468
4469 if (!NILP (obj))
4470 mark_object (obj);
4471 }
4472 }
4473
4474
4475 /* Alignment of pointer values. Use alignof, as it sometimes returns
4476 a smaller alignment than GCC's __alignof__ and mark_memory might
4477 miss objects if __alignof__ were used. */
4478 #define GC_POINTER_ALIGNMENT alignof (void *)
4479
4480 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4481 not suffice, which is the typical case. A host where a Lisp_Object is
4482 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4483 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4484 suffice to widen it to to a Lisp_Object and check it that way. */
4485 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4486 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4487 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4488 nor mark_maybe_object can follow the pointers. This should not occur on
4489 any practical porting target. */
4490 # error "MSB type bits straddle pointer-word boundaries"
4491 # endif
4492 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4493 pointer words that hold pointers ORed with type bits. */
4494 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4495 #else
4496 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4497 words that hold unmodified pointers. */
4498 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4499 #endif
4500
4501 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4502 or END+OFFSET..START. */
4503
4504 static void
4505 mark_memory (void *start, void *end)
4506 #if defined (__clang__) && defined (__has_feature)
4507 #if __has_feature(address_sanitizer)
4508 /* Do not allow -faddress-sanitizer to check this function, since it
4509 crosses the function stack boundary, and thus would yield many
4510 false positives. */
4511 __attribute__((no_address_safety_analysis))
4512 #endif
4513 #endif
4514 {
4515 void **pp;
4516 int i;
4517
4518 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4519 nzombies = 0;
4520 #endif
4521
4522 /* Make START the pointer to the start of the memory region,
4523 if it isn't already. */
4524 if (end < start)
4525 {
4526 void *tem = start;
4527 start = end;
4528 end = tem;
4529 }
4530
4531 /* Mark Lisp data pointed to. This is necessary because, in some
4532 situations, the C compiler optimizes Lisp objects away, so that
4533 only a pointer to them remains. Example:
4534
4535 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4536 ()
4537 {
4538 Lisp_Object obj = build_string ("test");
4539 struct Lisp_String *s = XSTRING (obj);
4540 Fgarbage_collect ();
4541 fprintf (stderr, "test `%s'\n", s->data);
4542 return Qnil;
4543 }
4544
4545 Here, `obj' isn't really used, and the compiler optimizes it
4546 away. The only reference to the life string is through the
4547 pointer `s'. */
4548
4549 for (pp = start; (void *) pp < end; pp++)
4550 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4551 {
4552 void *p = *(void **) ((char *) pp + i);
4553 mark_maybe_pointer (p);
4554 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4555 mark_maybe_object (XIL ((intptr_t) p));
4556 }
4557 }
4558
4559 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4560
4561 static bool setjmp_tested_p;
4562 static int longjmps_done;
4563
4564 #define SETJMP_WILL_LIKELY_WORK "\
4565 \n\
4566 Emacs garbage collector has been changed to use conservative stack\n\
4567 marking. Emacs has determined that the method it uses to do the\n\
4568 marking will likely work on your system, but this isn't sure.\n\
4569 \n\
4570 If you are a system-programmer, or can get the help of a local wizard\n\
4571 who is, please take a look at the function mark_stack in alloc.c, and\n\
4572 verify that the methods used are appropriate for your system.\n\
4573 \n\
4574 Please mail the result to <emacs-devel@gnu.org>.\n\
4575 "
4576
4577 #define SETJMP_WILL_NOT_WORK "\
4578 \n\
4579 Emacs garbage collector has been changed to use conservative stack\n\
4580 marking. Emacs has determined that the default method it uses to do the\n\
4581 marking will not work on your system. We will need a system-dependent\n\
4582 solution for your system.\n\
4583 \n\
4584 Please take a look at the function mark_stack in alloc.c, and\n\
4585 try to find a way to make it work on your system.\n\
4586 \n\
4587 Note that you may get false negatives, depending on the compiler.\n\
4588 In particular, you need to use -O with GCC for this test.\n\
4589 \n\
4590 Please mail the result to <emacs-devel@gnu.org>.\n\
4591 "
4592
4593
4594 /* Perform a quick check if it looks like setjmp saves registers in a
4595 jmp_buf. Print a message to stderr saying so. When this test
4596 succeeds, this is _not_ a proof that setjmp is sufficient for
4597 conservative stack marking. Only the sources or a disassembly
4598 can prove that. */
4599
4600 static void
4601 test_setjmp (void)
4602 {
4603 char buf[10];
4604 register int x;
4605 sys_jmp_buf jbuf;
4606
4607 /* Arrange for X to be put in a register. */
4608 sprintf (buf, "1");
4609 x = strlen (buf);
4610 x = 2 * x - 1;
4611
4612 sys_setjmp (jbuf);
4613 if (longjmps_done == 1)
4614 {
4615 /* Came here after the longjmp at the end of the function.
4616
4617 If x == 1, the longjmp has restored the register to its
4618 value before the setjmp, and we can hope that setjmp
4619 saves all such registers in the jmp_buf, although that
4620 isn't sure.
4621
4622 For other values of X, either something really strange is
4623 taking place, or the setjmp just didn't save the register. */
4624
4625 if (x == 1)
4626 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4627 else
4628 {
4629 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4630 exit (1);
4631 }
4632 }
4633
4634 ++longjmps_done;
4635 x = 2;
4636 if (longjmps_done == 1)
4637 sys_longjmp (jbuf, 1);
4638 }
4639
4640 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4641
4642
4643 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4644
4645 /* Abort if anything GCPRO'd doesn't survive the GC. */
4646
4647 static void
4648 check_gcpros (void)
4649 {
4650 struct gcpro *p;
4651 ptrdiff_t i;
4652
4653 for (p = gcprolist; p; p = p->next)
4654 for (i = 0; i < p->nvars; ++i)
4655 if (!survives_gc_p (p->var[i]))
4656 /* FIXME: It's not necessarily a bug. It might just be that the
4657 GCPRO is unnecessary or should release the object sooner. */
4658 emacs_abort ();
4659 }
4660
4661 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4662
4663 void
4664 dump_zombies (void)
4665 {
4666 int i;
4667
4668 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4669 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4670 {
4671 fprintf (stderr, " %d = ", i);
4672 debug_print (zombies[i]);
4673 }
4674 }
4675
4676 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4677
4678
4679 /* Mark live Lisp objects on the C stack.
4680
4681 There are several system-dependent problems to consider when
4682 porting this to new architectures:
4683
4684 Processor Registers
4685
4686 We have to mark Lisp objects in CPU registers that can hold local
4687 variables or are used to pass parameters.
4688
4689 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4690 something that either saves relevant registers on the stack, or
4691 calls mark_maybe_object passing it each register's contents.
4692
4693 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4694 implementation assumes that calling setjmp saves registers we need
4695 to see in a jmp_buf which itself lies on the stack. This doesn't
4696 have to be true! It must be verified for each system, possibly
4697 by taking a look at the source code of setjmp.
4698
4699 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4700 can use it as a machine independent method to store all registers
4701 to the stack. In this case the macros described in the previous
4702 two paragraphs are not used.
4703
4704 Stack Layout
4705
4706 Architectures differ in the way their processor stack is organized.
4707 For example, the stack might look like this
4708
4709 +----------------+
4710 | Lisp_Object | size = 4
4711 +----------------+
4712 | something else | size = 2
4713 +----------------+
4714 | Lisp_Object | size = 4
4715 +----------------+
4716 | ... |
4717
4718 In such a case, not every Lisp_Object will be aligned equally. To
4719 find all Lisp_Object on the stack it won't be sufficient to walk
4720 the stack in steps of 4 bytes. Instead, two passes will be
4721 necessary, one starting at the start of the stack, and a second
4722 pass starting at the start of the stack + 2. Likewise, if the
4723 minimal alignment of Lisp_Objects on the stack is 1, four passes
4724 would be necessary, each one starting with one byte more offset
4725 from the stack start. */
4726
4727 static void
4728 mark_stack (void)
4729 {
4730 void *end;
4731
4732 #ifdef HAVE___BUILTIN_UNWIND_INIT
4733 /* Force callee-saved registers and register windows onto the stack.
4734 This is the preferred method if available, obviating the need for
4735 machine dependent methods. */
4736 __builtin_unwind_init ();
4737 end = &end;
4738 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4739 #ifndef GC_SAVE_REGISTERS_ON_STACK
4740 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4741 union aligned_jmpbuf {
4742 Lisp_Object o;
4743 sys_jmp_buf j;
4744 } j;
4745 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4746 #endif
4747 /* This trick flushes the register windows so that all the state of
4748 the process is contained in the stack. */
4749 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4750 needed on ia64 too. See mach_dep.c, where it also says inline
4751 assembler doesn't work with relevant proprietary compilers. */
4752 #ifdef __sparc__
4753 #if defined (__sparc64__) && defined (__FreeBSD__)
4754 /* FreeBSD does not have a ta 3 handler. */
4755 asm ("flushw");
4756 #else
4757 asm ("ta 3");
4758 #endif
4759 #endif
4760
4761 /* Save registers that we need to see on the stack. We need to see
4762 registers used to hold register variables and registers used to
4763 pass parameters. */
4764 #ifdef GC_SAVE_REGISTERS_ON_STACK
4765 GC_SAVE_REGISTERS_ON_STACK (end);
4766 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4767
4768 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4769 setjmp will definitely work, test it
4770 and print a message with the result
4771 of the test. */
4772 if (!setjmp_tested_p)
4773 {
4774 setjmp_tested_p = 1;
4775 test_setjmp ();
4776 }
4777 #endif /* GC_SETJMP_WORKS */
4778
4779 sys_setjmp (j.j);
4780 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4781 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4782 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4783
4784 /* This assumes that the stack is a contiguous region in memory. If
4785 that's not the case, something has to be done here to iterate
4786 over the stack segments. */
4787 mark_memory (stack_base, end);
4788
4789 /* Allow for marking a secondary stack, like the register stack on the
4790 ia64. */
4791 #ifdef GC_MARK_SECONDARY_STACK
4792 GC_MARK_SECONDARY_STACK ();
4793 #endif
4794
4795 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4796 check_gcpros ();
4797 #endif
4798 }
4799
4800 #else /* GC_MARK_STACK == 0 */
4801
4802 #define mark_maybe_object(obj) emacs_abort ()
4803
4804 #endif /* GC_MARK_STACK != 0 */
4805
4806
4807 /* Determine whether it is safe to access memory at address P. */
4808 static int
4809 valid_pointer_p (void *p)
4810 {
4811 #ifdef WINDOWSNT
4812 return w32_valid_pointer_p (p, 16);
4813 #else
4814 int fd[2];
4815
4816 /* Obviously, we cannot just access it (we would SEGV trying), so we
4817 trick the o/s to tell us whether p is a valid pointer.
4818 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4819 not validate p in that case. */
4820
4821 if (emacs_pipe (fd) == 0)
4822 {
4823 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4824 emacs_close (fd[1]);
4825 emacs_close (fd[0]);
4826 return valid;
4827 }
4828
4829 return -1;
4830 #endif
4831 }
4832
4833 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4834 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4835 cannot validate OBJ. This function can be quite slow, so its primary
4836 use is the manual debugging. The only exception is print_object, where
4837 we use it to check whether the memory referenced by the pointer of
4838 Lisp_Save_Value object contains valid objects. */
4839
4840 int
4841 valid_lisp_object_p (Lisp_Object obj)
4842 {
4843 void *p;
4844 #if GC_MARK_STACK
4845 struct mem_node *m;
4846 #endif
4847
4848 if (INTEGERP (obj))
4849 return 1;
4850
4851 p = (void *) XPNTR (obj);
4852 if (PURE_POINTER_P (p))
4853 return 1;
4854
4855 if (p == &buffer_defaults || p == &buffer_local_symbols)
4856 return 2;
4857
4858 #if !GC_MARK_STACK
4859 return valid_pointer_p (p);
4860 #else
4861
4862 m = mem_find (p);
4863
4864 if (m == MEM_NIL)
4865 {
4866 int valid = valid_pointer_p (p);
4867 if (valid <= 0)
4868 return valid;
4869
4870 if (SUBRP (obj))
4871 return 1;
4872
4873 return 0;
4874 }
4875
4876 switch (m->type)
4877 {
4878 case MEM_TYPE_NON_LISP:
4879 case MEM_TYPE_SPARE:
4880 return 0;
4881
4882 case MEM_TYPE_BUFFER:
4883 return live_buffer_p (m, p) ? 1 : 2;
4884
4885 case MEM_TYPE_CONS:
4886 return live_cons_p (m, p);
4887
4888 case MEM_TYPE_STRING:
4889 return live_string_p (m, p);
4890
4891 case MEM_TYPE_MISC:
4892 return live_misc_p (m, p);
4893
4894 case MEM_TYPE_SYMBOL:
4895 return live_symbol_p (m, p);
4896
4897 case MEM_TYPE_FLOAT:
4898 return live_float_p (m, p);
4899
4900 case MEM_TYPE_VECTORLIKE:
4901 case MEM_TYPE_VECTOR_BLOCK:
4902 return live_vector_p (m, p);
4903
4904 default:
4905 break;
4906 }
4907
4908 return 0;
4909 #endif
4910 }
4911
4912
4913
4914 \f
4915 /***********************************************************************
4916 Pure Storage Management
4917 ***********************************************************************/
4918
4919 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4920 pointer to it. TYPE is the Lisp type for which the memory is
4921 allocated. TYPE < 0 means it's not used for a Lisp object. */
4922
4923 static void *
4924 pure_alloc (size_t size, int type)
4925 {
4926 void *result;
4927 #if USE_LSB_TAG
4928 size_t alignment = GCALIGNMENT;
4929 #else
4930 size_t alignment = alignof (EMACS_INT);
4931
4932 /* Give Lisp_Floats an extra alignment. */
4933 if (type == Lisp_Float)
4934 alignment = alignof (struct Lisp_Float);
4935 #endif
4936
4937 again:
4938 if (type >= 0)
4939 {
4940 /* Allocate space for a Lisp object from the beginning of the free
4941 space with taking account of alignment. */
4942 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4943 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4944 }
4945 else
4946 {
4947 /* Allocate space for a non-Lisp object from the end of the free
4948 space. */
4949 pure_bytes_used_non_lisp += size;
4950 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4951 }
4952 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4953
4954 if (pure_bytes_used <= pure_size)
4955 return result;
4956
4957 /* Don't allocate a large amount here,
4958 because it might get mmap'd and then its address
4959 might not be usable. */
4960 purebeg = xmalloc (10000);
4961 pure_size = 10000;
4962 pure_bytes_used_before_overflow += pure_bytes_used - size;
4963 pure_bytes_used = 0;
4964 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4965 goto again;
4966 }
4967
4968
4969 /* Print a warning if PURESIZE is too small. */
4970
4971 void
4972 check_pure_size (void)
4973 {
4974 if (pure_bytes_used_before_overflow)
4975 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4976 " bytes needed)"),
4977 pure_bytes_used + pure_bytes_used_before_overflow);
4978 }
4979
4980
4981 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4982 the non-Lisp data pool of the pure storage, and return its start
4983 address. Return NULL if not found. */
4984
4985 static char *
4986 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4987 {
4988 int i;
4989 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4990 const unsigned char *p;
4991 char *non_lisp_beg;
4992
4993 if (pure_bytes_used_non_lisp <= nbytes)
4994 return NULL;
4995
4996 /* Set up the Boyer-Moore table. */
4997 skip = nbytes + 1;
4998 for (i = 0; i < 256; i++)
4999 bm_skip[i] = skip;
5000
5001 p = (const unsigned char *) data;
5002 while (--skip > 0)
5003 bm_skip[*p++] = skip;
5004
5005 last_char_skip = bm_skip['\0'];
5006
5007 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5008 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5009
5010 /* See the comments in the function `boyer_moore' (search.c) for the
5011 use of `infinity'. */
5012 infinity = pure_bytes_used_non_lisp + 1;
5013 bm_skip['\0'] = infinity;
5014
5015 p = (const unsigned char *) non_lisp_beg + nbytes;
5016 start = 0;
5017 do
5018 {
5019 /* Check the last character (== '\0'). */
5020 do
5021 {
5022 start += bm_skip[*(p + start)];
5023 }
5024 while (start <= start_max);
5025
5026 if (start < infinity)
5027 /* Couldn't find the last character. */
5028 return NULL;
5029
5030 /* No less than `infinity' means we could find the last
5031 character at `p[start - infinity]'. */
5032 start -= infinity;
5033
5034 /* Check the remaining characters. */
5035 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5036 /* Found. */
5037 return non_lisp_beg + start;
5038
5039 start += last_char_skip;
5040 }
5041 while (start <= start_max);
5042
5043 return NULL;
5044 }
5045
5046
5047 /* Return a string allocated in pure space. DATA is a buffer holding
5048 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5049 means make the result string multibyte.
5050
5051 Must get an error if pure storage is full, since if it cannot hold
5052 a large string it may be able to hold conses that point to that
5053 string; then the string is not protected from gc. */
5054
5055 Lisp_Object
5056 make_pure_string (const char *data,
5057 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5058 {
5059 Lisp_Object string;
5060 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5061 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5062 if (s->data == NULL)
5063 {
5064 s->data = pure_alloc (nbytes + 1, -1);
5065 memcpy (s->data, data, nbytes);
5066 s->data[nbytes] = '\0';
5067 }
5068 s->size = nchars;
5069 s->size_byte = multibyte ? nbytes : -1;
5070 s->intervals = NULL;
5071 XSETSTRING (string, s);
5072 return string;
5073 }
5074
5075 /* Return a string allocated in pure space. Do not
5076 allocate the string data, just point to DATA. */
5077
5078 Lisp_Object
5079 make_pure_c_string (const char *data, ptrdiff_t nchars)
5080 {
5081 Lisp_Object string;
5082 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5083 s->size = nchars;
5084 s->size_byte = -1;
5085 s->data = (unsigned char *) data;
5086 s->intervals = NULL;
5087 XSETSTRING (string, s);
5088 return string;
5089 }
5090
5091 /* Return a cons allocated from pure space. Give it pure copies
5092 of CAR as car and CDR as cdr. */
5093
5094 Lisp_Object
5095 pure_cons (Lisp_Object car, Lisp_Object cdr)
5096 {
5097 Lisp_Object new;
5098 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5099 XSETCONS (new, p);
5100 XSETCAR (new, Fpurecopy (car));
5101 XSETCDR (new, Fpurecopy (cdr));
5102 return new;
5103 }
5104
5105
5106 /* Value is a float object with value NUM allocated from pure space. */
5107
5108 static Lisp_Object
5109 make_pure_float (double num)
5110 {
5111 Lisp_Object new;
5112 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5113 XSETFLOAT (new, p);
5114 XFLOAT_INIT (new, num);
5115 return new;
5116 }
5117
5118
5119 /* Return a vector with room for LEN Lisp_Objects allocated from
5120 pure space. */
5121
5122 static Lisp_Object
5123 make_pure_vector (ptrdiff_t len)
5124 {
5125 Lisp_Object new;
5126 size_t size = header_size + len * word_size;
5127 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5128 XSETVECTOR (new, p);
5129 XVECTOR (new)->header.size = len;
5130 return new;
5131 }
5132
5133
5134 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5135 doc: /* Make a copy of object OBJ in pure storage.
5136 Recursively copies contents of vectors and cons cells.
5137 Does not copy symbols. Copies strings without text properties. */)
5138 (register Lisp_Object obj)
5139 {
5140 if (NILP (Vpurify_flag))
5141 return obj;
5142
5143 if (PURE_POINTER_P (XPNTR (obj)))
5144 return obj;
5145
5146 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5147 {
5148 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5149 if (!NILP (tmp))
5150 return tmp;
5151 }
5152
5153 if (CONSP (obj))
5154 obj = pure_cons (XCAR (obj), XCDR (obj));
5155 else if (FLOATP (obj))
5156 obj = make_pure_float (XFLOAT_DATA (obj));
5157 else if (STRINGP (obj))
5158 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5159 SBYTES (obj),
5160 STRING_MULTIBYTE (obj));
5161 else if (COMPILEDP (obj) || VECTORP (obj))
5162 {
5163 register struct Lisp_Vector *vec;
5164 register ptrdiff_t i;
5165 ptrdiff_t size;
5166
5167 size = ASIZE (obj);
5168 if (size & PSEUDOVECTOR_FLAG)
5169 size &= PSEUDOVECTOR_SIZE_MASK;
5170 vec = XVECTOR (make_pure_vector (size));
5171 for (i = 0; i < size; i++)
5172 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
5173 if (COMPILEDP (obj))
5174 {
5175 XSETPVECTYPE (vec, PVEC_COMPILED);
5176 XSETCOMPILED (obj, vec);
5177 }
5178 else
5179 XSETVECTOR (obj, vec);
5180 }
5181 else if (MARKERP (obj))
5182 error ("Attempt to copy a marker to pure storage");
5183 else
5184 /* Not purified, don't hash-cons. */
5185 return obj;
5186
5187 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5188 Fputhash (obj, obj, Vpurify_flag);
5189
5190 return obj;
5191 }
5192
5193
5194 \f
5195 /***********************************************************************
5196 Protection from GC
5197 ***********************************************************************/
5198
5199 /* Put an entry in staticvec, pointing at the variable with address
5200 VARADDRESS. */
5201
5202 void
5203 staticpro (Lisp_Object *varaddress)
5204 {
5205 if (staticidx >= NSTATICS)
5206 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5207 staticvec[staticidx++] = varaddress;
5208 }
5209
5210 \f
5211 /***********************************************************************
5212 Protection from GC
5213 ***********************************************************************/
5214
5215 /* Temporarily prevent garbage collection. */
5216
5217 ptrdiff_t
5218 inhibit_garbage_collection (void)
5219 {
5220 ptrdiff_t count = SPECPDL_INDEX ();
5221
5222 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5223 return count;
5224 }
5225
5226 /* Used to avoid possible overflows when
5227 converting from C to Lisp integers. */
5228
5229 static Lisp_Object
5230 bounded_number (EMACS_INT number)
5231 {
5232 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5233 }
5234
5235 /* Calculate total bytes of live objects. */
5236
5237 static size_t
5238 total_bytes_of_live_objects (void)
5239 {
5240 size_t tot = 0;
5241 tot += total_conses * sizeof (struct Lisp_Cons);
5242 tot += total_symbols * sizeof (struct Lisp_Symbol);
5243 tot += total_markers * sizeof (union Lisp_Misc);
5244 tot += total_string_bytes;
5245 tot += total_vector_slots * word_size;
5246 tot += total_floats * sizeof (struct Lisp_Float);
5247 tot += total_intervals * sizeof (struct interval);
5248 tot += total_strings * sizeof (struct Lisp_String);
5249 return tot;
5250 }
5251
5252 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5253 doc: /* Reclaim storage for Lisp objects no longer needed.
5254 Garbage collection happens automatically if you cons more than
5255 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5256 `garbage-collect' normally returns a list with info on amount of space in use,
5257 where each entry has the form (NAME SIZE USED FREE), where:
5258 - NAME is a symbol describing the kind of objects this entry represents,
5259 - SIZE is the number of bytes used by each one,
5260 - USED is the number of those objects that were found live in the heap,
5261 - FREE is the number of those objects that are not live but that Emacs
5262 keeps around for future allocations (maybe because it does not know how
5263 to return them to the OS).
5264 However, if there was overflow in pure space, `garbage-collect'
5265 returns nil, because real GC can't be done.
5266 See Info node `(elisp)Garbage Collection'. */)
5267 (void)
5268 {
5269 struct buffer *nextb;
5270 char stack_top_variable;
5271 ptrdiff_t i;
5272 bool message_p;
5273 ptrdiff_t count = SPECPDL_INDEX ();
5274 struct timespec start;
5275 Lisp_Object retval = Qnil;
5276 size_t tot_before = 0;
5277
5278 if (abort_on_gc)
5279 emacs_abort ();
5280
5281 /* Can't GC if pure storage overflowed because we can't determine
5282 if something is a pure object or not. */
5283 if (pure_bytes_used_before_overflow)
5284 return Qnil;
5285
5286 /* Record this function, so it appears on the profiler's backtraces. */
5287 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5288
5289 check_cons_list ();
5290
5291 /* Don't keep undo information around forever.
5292 Do this early on, so it is no problem if the user quits. */
5293 FOR_EACH_BUFFER (nextb)
5294 compact_buffer (nextb);
5295
5296 if (profiler_memory_running)
5297 tot_before = total_bytes_of_live_objects ();
5298
5299 start = current_timespec ();
5300
5301 /* In case user calls debug_print during GC,
5302 don't let that cause a recursive GC. */
5303 consing_since_gc = 0;
5304
5305 /* Save what's currently displayed in the echo area. */
5306 message_p = push_message ();
5307 record_unwind_protect_void (pop_message_unwind);
5308
5309 /* Save a copy of the contents of the stack, for debugging. */
5310 #if MAX_SAVE_STACK > 0
5311 if (NILP (Vpurify_flag))
5312 {
5313 char *stack;
5314 ptrdiff_t stack_size;
5315 if (&stack_top_variable < stack_bottom)
5316 {
5317 stack = &stack_top_variable;
5318 stack_size = stack_bottom - &stack_top_variable;
5319 }
5320 else
5321 {
5322 stack = stack_bottom;
5323 stack_size = &stack_top_variable - stack_bottom;
5324 }
5325 if (stack_size <= MAX_SAVE_STACK)
5326 {
5327 if (stack_copy_size < stack_size)
5328 {
5329 stack_copy = xrealloc (stack_copy, stack_size);
5330 stack_copy_size = stack_size;
5331 }
5332 memcpy (stack_copy, stack, stack_size);
5333 }
5334 }
5335 #endif /* MAX_SAVE_STACK > 0 */
5336
5337 if (garbage_collection_messages)
5338 message1_nolog ("Garbage collecting...");
5339
5340 block_input ();
5341
5342 shrink_regexp_cache ();
5343
5344 gc_in_progress = 1;
5345
5346 /* Mark all the special slots that serve as the roots of accessibility. */
5347
5348 mark_buffer (&buffer_defaults);
5349 mark_buffer (&buffer_local_symbols);
5350
5351 for (i = 0; i < staticidx; i++)
5352 mark_object (*staticvec[i]);
5353
5354 mark_specpdl ();
5355 mark_terminals ();
5356 mark_kboards ();
5357
5358 #ifdef USE_GTK
5359 xg_mark_data ();
5360 #endif
5361
5362 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5363 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5364 mark_stack ();
5365 #else
5366 {
5367 register struct gcpro *tail;
5368 for (tail = gcprolist; tail; tail = tail->next)
5369 for (i = 0; i < tail->nvars; i++)
5370 mark_object (tail->var[i]);
5371 }
5372 mark_byte_stack ();
5373 #endif
5374 {
5375 struct handler *handler;
5376 for (handler = handlerlist; handler; handler = handler->next)
5377 {
5378 mark_object (handler->tag_or_ch);
5379 mark_object (handler->val);
5380 }
5381 }
5382 #ifdef HAVE_WINDOW_SYSTEM
5383 mark_fringe_data ();
5384 #endif
5385
5386 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5387 mark_stack ();
5388 #endif
5389
5390 /* Everything is now marked, except for the things that require special
5391 finalization, i.e. the undo_list.
5392 Look thru every buffer's undo list
5393 for elements that update markers that were not marked,
5394 and delete them. */
5395 FOR_EACH_BUFFER (nextb)
5396 {
5397 /* If a buffer's undo list is Qt, that means that undo is
5398 turned off in that buffer. Calling truncate_undo_list on
5399 Qt tends to return NULL, which effectively turns undo back on.
5400 So don't call truncate_undo_list if undo_list is Qt. */
5401 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5402 {
5403 Lisp_Object tail, prev;
5404 tail = nextb->INTERNAL_FIELD (undo_list);
5405 prev = Qnil;
5406 while (CONSP (tail))
5407 {
5408 if (CONSP (XCAR (tail))
5409 && MARKERP (XCAR (XCAR (tail)))
5410 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5411 {
5412 if (NILP (prev))
5413 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5414 else
5415 {
5416 tail = XCDR (tail);
5417 XSETCDR (prev, tail);
5418 }
5419 }
5420 else
5421 {
5422 prev = tail;
5423 tail = XCDR (tail);
5424 }
5425 }
5426 }
5427 /* Now that we have stripped the elements that need not be in the
5428 undo_list any more, we can finally mark the list. */
5429 mark_object (nextb->INTERNAL_FIELD (undo_list));
5430 }
5431
5432 gc_sweep ();
5433
5434 /* Clear the mark bits that we set in certain root slots. */
5435
5436 unmark_byte_stack ();
5437 VECTOR_UNMARK (&buffer_defaults);
5438 VECTOR_UNMARK (&buffer_local_symbols);
5439
5440 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5441 dump_zombies ();
5442 #endif
5443
5444 check_cons_list ();
5445
5446 gc_in_progress = 0;
5447
5448 unblock_input ();
5449
5450 consing_since_gc = 0;
5451 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5452 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5453
5454 gc_relative_threshold = 0;
5455 if (FLOATP (Vgc_cons_percentage))
5456 { /* Set gc_cons_combined_threshold. */
5457 double tot = total_bytes_of_live_objects ();
5458
5459 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5460 if (0 < tot)
5461 {
5462 if (tot < TYPE_MAXIMUM (EMACS_INT))
5463 gc_relative_threshold = tot;
5464 else
5465 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5466 }
5467 }
5468
5469 if (garbage_collection_messages)
5470 {
5471 if (message_p || minibuf_level > 0)
5472 restore_message ();
5473 else
5474 message1_nolog ("Garbage collecting...done");
5475 }
5476
5477 unbind_to (count, Qnil);
5478 {
5479 Lisp_Object total[11];
5480 int total_size = 10;
5481
5482 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5483 bounded_number (total_conses),
5484 bounded_number (total_free_conses));
5485
5486 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5487 bounded_number (total_symbols),
5488 bounded_number (total_free_symbols));
5489
5490 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5491 bounded_number (total_markers),
5492 bounded_number (total_free_markers));
5493
5494 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5495 bounded_number (total_strings),
5496 bounded_number (total_free_strings));
5497
5498 total[4] = list3 (Qstring_bytes, make_number (1),
5499 bounded_number (total_string_bytes));
5500
5501 total[5] = list3 (Qvectors,
5502 make_number (header_size + sizeof (Lisp_Object)),
5503 bounded_number (total_vectors));
5504
5505 total[6] = list4 (Qvector_slots, make_number (word_size),
5506 bounded_number (total_vector_slots),
5507 bounded_number (total_free_vector_slots));
5508
5509 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5510 bounded_number (total_floats),
5511 bounded_number (total_free_floats));
5512
5513 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5514 bounded_number (total_intervals),
5515 bounded_number (total_free_intervals));
5516
5517 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5518 bounded_number (total_buffers));
5519
5520 #ifdef DOUG_LEA_MALLOC
5521 total_size++;
5522 total[10] = list4 (Qheap, make_number (1024),
5523 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5524 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5525 #endif
5526 retval = Flist (total_size, total);
5527 }
5528
5529 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5530 {
5531 /* Compute average percentage of zombies. */
5532 double nlive
5533 = (total_conses + total_symbols + total_markers + total_strings
5534 + total_vectors + total_floats + total_intervals + total_buffers);
5535
5536 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5537 max_live = max (nlive, max_live);
5538 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5539 max_zombies = max (nzombies, max_zombies);
5540 ++ngcs;
5541 }
5542 #endif
5543
5544 if (!NILP (Vpost_gc_hook))
5545 {
5546 ptrdiff_t gc_count = inhibit_garbage_collection ();
5547 safe_run_hooks (Qpost_gc_hook);
5548 unbind_to (gc_count, Qnil);
5549 }
5550
5551 /* Accumulate statistics. */
5552 if (FLOATP (Vgc_elapsed))
5553 {
5554 struct timespec since_start = timespec_sub (current_timespec (), start);
5555 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5556 + timespectod (since_start));
5557 }
5558
5559 gcs_done++;
5560
5561 /* Collect profiling data. */
5562 if (profiler_memory_running)
5563 {
5564 size_t swept = 0;
5565 size_t tot_after = total_bytes_of_live_objects ();
5566 if (tot_before > tot_after)
5567 swept = tot_before - tot_after;
5568 malloc_probe (swept);
5569 }
5570
5571 return retval;
5572 }
5573
5574
5575 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5576 only interesting objects referenced from glyphs are strings. */
5577
5578 static void
5579 mark_glyph_matrix (struct glyph_matrix *matrix)
5580 {
5581 struct glyph_row *row = matrix->rows;
5582 struct glyph_row *end = row + matrix->nrows;
5583
5584 for (; row < end; ++row)
5585 if (row->enabled_p)
5586 {
5587 int area;
5588 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5589 {
5590 struct glyph *glyph = row->glyphs[area];
5591 struct glyph *end_glyph = glyph + row->used[area];
5592
5593 for (; glyph < end_glyph; ++glyph)
5594 if (STRINGP (glyph->object)
5595 && !STRING_MARKED_P (XSTRING (glyph->object)))
5596 mark_object (glyph->object);
5597 }
5598 }
5599 }
5600
5601
5602 /* Mark Lisp faces in the face cache C. */
5603
5604 static void
5605 mark_face_cache (struct face_cache *c)
5606 {
5607 if (c)
5608 {
5609 int i, j;
5610 for (i = 0; i < c->used; ++i)
5611 {
5612 struct face *face = FACE_FROM_ID (c->f, i);
5613
5614 if (face)
5615 {
5616 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5617 mark_object (face->lface[j]);
5618 }
5619 }
5620 }
5621 }
5622
5623
5624 \f
5625 /* Mark reference to a Lisp_Object.
5626 If the object referred to has not been seen yet, recursively mark
5627 all the references contained in it. */
5628
5629 #define LAST_MARKED_SIZE 500
5630 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5631 static int last_marked_index;
5632
5633 /* For debugging--call abort when we cdr down this many
5634 links of a list, in mark_object. In debugging,
5635 the call to abort will hit a breakpoint.
5636 Normally this is zero and the check never goes off. */
5637 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5638
5639 static void
5640 mark_vectorlike (struct Lisp_Vector *ptr)
5641 {
5642 ptrdiff_t size = ptr->header.size;
5643 ptrdiff_t i;
5644
5645 eassert (!VECTOR_MARKED_P (ptr));
5646 VECTOR_MARK (ptr); /* Else mark it. */
5647 if (size & PSEUDOVECTOR_FLAG)
5648 size &= PSEUDOVECTOR_SIZE_MASK;
5649
5650 /* Note that this size is not the memory-footprint size, but only
5651 the number of Lisp_Object fields that we should trace.
5652 The distinction is used e.g. by Lisp_Process which places extra
5653 non-Lisp_Object fields at the end of the structure... */
5654 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5655 mark_object (ptr->u.contents[i]);
5656 }
5657
5658 /* Like mark_vectorlike but optimized for char-tables (and
5659 sub-char-tables) assuming that the contents are mostly integers or
5660 symbols. */
5661
5662 static void
5663 mark_char_table (struct Lisp_Vector *ptr)
5664 {
5665 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5666 int i;
5667
5668 eassert (!VECTOR_MARKED_P (ptr));
5669 VECTOR_MARK (ptr);
5670 for (i = 0; i < size; i++)
5671 {
5672 Lisp_Object val = ptr->u.contents[i];
5673
5674 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5675 continue;
5676 if (SUB_CHAR_TABLE_P (val))
5677 {
5678 if (! VECTOR_MARKED_P (XVECTOR (val)))
5679 mark_char_table (XVECTOR (val));
5680 }
5681 else
5682 mark_object (val);
5683 }
5684 }
5685
5686 /* Mark the chain of overlays starting at PTR. */
5687
5688 static void
5689 mark_overlay (struct Lisp_Overlay *ptr)
5690 {
5691 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5692 {
5693 ptr->gcmarkbit = 1;
5694 mark_object (ptr->start);
5695 mark_object (ptr->end);
5696 mark_object (ptr->plist);
5697 }
5698 }
5699
5700 /* Mark Lisp_Objects and special pointers in BUFFER. */
5701
5702 static void
5703 mark_buffer (struct buffer *buffer)
5704 {
5705 /* This is handled much like other pseudovectors... */
5706 mark_vectorlike ((struct Lisp_Vector *) buffer);
5707
5708 /* ...but there are some buffer-specific things. */
5709
5710 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5711
5712 /* For now, we just don't mark the undo_list. It's done later in
5713 a special way just before the sweep phase, and after stripping
5714 some of its elements that are not needed any more. */
5715
5716 mark_overlay (buffer->overlays_before);
5717 mark_overlay (buffer->overlays_after);
5718
5719 /* If this is an indirect buffer, mark its base buffer. */
5720 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5721 mark_buffer (buffer->base_buffer);
5722 }
5723
5724 /* Remove killed buffers or items whose car is a killed buffer from
5725 LIST, and mark other items. Return changed LIST, which is marked. */
5726
5727 static Lisp_Object
5728 mark_discard_killed_buffers (Lisp_Object list)
5729 {
5730 Lisp_Object tail, *prev = &list;
5731
5732 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5733 tail = XCDR (tail))
5734 {
5735 Lisp_Object tem = XCAR (tail);
5736 if (CONSP (tem))
5737 tem = XCAR (tem);
5738 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5739 *prev = XCDR (tail);
5740 else
5741 {
5742 CONS_MARK (XCONS (tail));
5743 mark_object (XCAR (tail));
5744 prev = xcdr_addr (tail);
5745 }
5746 }
5747 mark_object (tail);
5748 return list;
5749 }
5750
5751 /* Determine type of generic Lisp_Object and mark it accordingly. */
5752
5753 void
5754 mark_object (Lisp_Object arg)
5755 {
5756 register Lisp_Object obj = arg;
5757 #ifdef GC_CHECK_MARKED_OBJECTS
5758 void *po;
5759 struct mem_node *m;
5760 #endif
5761 ptrdiff_t cdr_count = 0;
5762
5763 loop:
5764
5765 if (PURE_POINTER_P (XPNTR (obj)))
5766 return;
5767
5768 last_marked[last_marked_index++] = obj;
5769 if (last_marked_index == LAST_MARKED_SIZE)
5770 last_marked_index = 0;
5771
5772 /* Perform some sanity checks on the objects marked here. Abort if
5773 we encounter an object we know is bogus. This increases GC time
5774 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5775 #ifdef GC_CHECK_MARKED_OBJECTS
5776
5777 po = (void *) XPNTR (obj);
5778
5779 /* Check that the object pointed to by PO is known to be a Lisp
5780 structure allocated from the heap. */
5781 #define CHECK_ALLOCATED() \
5782 do { \
5783 m = mem_find (po); \
5784 if (m == MEM_NIL) \
5785 emacs_abort (); \
5786 } while (0)
5787
5788 /* Check that the object pointed to by PO is live, using predicate
5789 function LIVEP. */
5790 #define CHECK_LIVE(LIVEP) \
5791 do { \
5792 if (!LIVEP (m, po)) \
5793 emacs_abort (); \
5794 } while (0)
5795
5796 /* Check both of the above conditions. */
5797 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5798 do { \
5799 CHECK_ALLOCATED (); \
5800 CHECK_LIVE (LIVEP); \
5801 } while (0) \
5802
5803 #else /* not GC_CHECK_MARKED_OBJECTS */
5804
5805 #define CHECK_LIVE(LIVEP) (void) 0
5806 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5807
5808 #endif /* not GC_CHECK_MARKED_OBJECTS */
5809
5810 switch (XTYPE (obj))
5811 {
5812 case Lisp_String:
5813 {
5814 register struct Lisp_String *ptr = XSTRING (obj);
5815 if (STRING_MARKED_P (ptr))
5816 break;
5817 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5818 MARK_STRING (ptr);
5819 MARK_INTERVAL_TREE (ptr->intervals);
5820 #ifdef GC_CHECK_STRING_BYTES
5821 /* Check that the string size recorded in the string is the
5822 same as the one recorded in the sdata structure. */
5823 string_bytes (ptr);
5824 #endif /* GC_CHECK_STRING_BYTES */
5825 }
5826 break;
5827
5828 case Lisp_Vectorlike:
5829 {
5830 register struct Lisp_Vector *ptr = XVECTOR (obj);
5831 register ptrdiff_t pvectype;
5832
5833 if (VECTOR_MARKED_P (ptr))
5834 break;
5835
5836 #ifdef GC_CHECK_MARKED_OBJECTS
5837 m = mem_find (po);
5838 if (m == MEM_NIL && !SUBRP (obj))
5839 emacs_abort ();
5840 #endif /* GC_CHECK_MARKED_OBJECTS */
5841
5842 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5843 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5844 >> PSEUDOVECTOR_AREA_BITS);
5845 else
5846 pvectype = PVEC_NORMAL_VECTOR;
5847
5848 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5849 CHECK_LIVE (live_vector_p);
5850
5851 switch (pvectype)
5852 {
5853 case PVEC_BUFFER:
5854 #ifdef GC_CHECK_MARKED_OBJECTS
5855 {
5856 struct buffer *b;
5857 FOR_EACH_BUFFER (b)
5858 if (b == po)
5859 break;
5860 if (b == NULL)
5861 emacs_abort ();
5862 }
5863 #endif /* GC_CHECK_MARKED_OBJECTS */
5864 mark_buffer ((struct buffer *) ptr);
5865 break;
5866
5867 case PVEC_COMPILED:
5868 { /* We could treat this just like a vector, but it is better
5869 to save the COMPILED_CONSTANTS element for last and avoid
5870 recursion there. */
5871 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5872 int i;
5873
5874 VECTOR_MARK (ptr);
5875 for (i = 0; i < size; i++)
5876 if (i != COMPILED_CONSTANTS)
5877 mark_object (ptr->u.contents[i]);
5878 if (size > COMPILED_CONSTANTS)
5879 {
5880 obj = ptr->u.contents[COMPILED_CONSTANTS];
5881 goto loop;
5882 }
5883 }
5884 break;
5885
5886 case PVEC_FRAME:
5887 mark_vectorlike (ptr);
5888 mark_face_cache (((struct frame *) ptr)->face_cache);
5889 break;
5890
5891 case PVEC_WINDOW:
5892 {
5893 struct window *w = (struct window *) ptr;
5894
5895 mark_vectorlike (ptr);
5896
5897 /* Mark glyph matrices, if any. Marking window
5898 matrices is sufficient because frame matrices
5899 use the same glyph memory. */
5900 if (w->current_matrix)
5901 {
5902 mark_glyph_matrix (w->current_matrix);
5903 mark_glyph_matrix (w->desired_matrix);
5904 }
5905
5906 /* Filter out killed buffers from both buffer lists
5907 in attempt to help GC to reclaim killed buffers faster.
5908 We can do it elsewhere for live windows, but this is the
5909 best place to do it for dead windows. */
5910 wset_prev_buffers
5911 (w, mark_discard_killed_buffers (w->prev_buffers));
5912 wset_next_buffers
5913 (w, mark_discard_killed_buffers (w->next_buffers));
5914 }
5915 break;
5916
5917 case PVEC_HASH_TABLE:
5918 {
5919 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5920
5921 mark_vectorlike (ptr);
5922 mark_object (h->test.name);
5923 mark_object (h->test.user_hash_function);
5924 mark_object (h->test.user_cmp_function);
5925 /* If hash table is not weak, mark all keys and values.
5926 For weak tables, mark only the vector. */
5927 if (NILP (h->weak))
5928 mark_object (h->key_and_value);
5929 else
5930 VECTOR_MARK (XVECTOR (h->key_and_value));
5931 }
5932 break;
5933
5934 case PVEC_CHAR_TABLE:
5935 mark_char_table (ptr);
5936 break;
5937
5938 case PVEC_BOOL_VECTOR:
5939 /* No Lisp_Objects to mark in a bool vector. */
5940 VECTOR_MARK (ptr);
5941 break;
5942
5943 case PVEC_SUBR:
5944 break;
5945
5946 case PVEC_FREE:
5947 emacs_abort ();
5948
5949 default:
5950 mark_vectorlike (ptr);
5951 }
5952 }
5953 break;
5954
5955 case Lisp_Symbol:
5956 {
5957 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5958 struct Lisp_Symbol *ptrx;
5959
5960 if (ptr->gcmarkbit)
5961 break;
5962 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5963 ptr->gcmarkbit = 1;
5964 mark_object (ptr->function);
5965 mark_object (ptr->plist);
5966 switch (ptr->redirect)
5967 {
5968 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5969 case SYMBOL_VARALIAS:
5970 {
5971 Lisp_Object tem;
5972 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5973 mark_object (tem);
5974 break;
5975 }
5976 case SYMBOL_LOCALIZED:
5977 {
5978 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5979 Lisp_Object where = blv->where;
5980 /* If the value is set up for a killed buffer or deleted
5981 frame, restore it's global binding. If the value is
5982 forwarded to a C variable, either it's not a Lisp_Object
5983 var, or it's staticpro'd already. */
5984 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5985 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5986 swap_in_global_binding (ptr);
5987 mark_object (blv->where);
5988 mark_object (blv->valcell);
5989 mark_object (blv->defcell);
5990 break;
5991 }
5992 case SYMBOL_FORWARDED:
5993 /* If the value is forwarded to a buffer or keyboard field,
5994 these are marked when we see the corresponding object.
5995 And if it's forwarded to a C variable, either it's not
5996 a Lisp_Object var, or it's staticpro'd already. */
5997 break;
5998 default: emacs_abort ();
5999 }
6000 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6001 MARK_STRING (XSTRING (ptr->name));
6002 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6003
6004 ptr = ptr->next;
6005 if (ptr)
6006 {
6007 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6008 XSETSYMBOL (obj, ptrx);
6009 goto loop;
6010 }
6011 }
6012 break;
6013
6014 case Lisp_Misc:
6015 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6016
6017 if (XMISCANY (obj)->gcmarkbit)
6018 break;
6019
6020 switch (XMISCTYPE (obj))
6021 {
6022 case Lisp_Misc_Marker:
6023 /* DO NOT mark thru the marker's chain.
6024 The buffer's markers chain does not preserve markers from gc;
6025 instead, markers are removed from the chain when freed by gc. */
6026 XMISCANY (obj)->gcmarkbit = 1;
6027 break;
6028
6029 case Lisp_Misc_Save_Value:
6030 XMISCANY (obj)->gcmarkbit = 1;
6031 {
6032 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6033 /* If `save_type' is zero, `data[0].pointer' is the address
6034 of a memory area containing `data[1].integer' potential
6035 Lisp_Objects. */
6036 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6037 {
6038 Lisp_Object *p = ptr->data[0].pointer;
6039 ptrdiff_t nelt;
6040 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6041 mark_maybe_object (*p);
6042 }
6043 else
6044 {
6045 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6046 int i;
6047 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6048 if (save_type (ptr, i) == SAVE_OBJECT)
6049 mark_object (ptr->data[i].object);
6050 }
6051 }
6052 break;
6053
6054 case Lisp_Misc_Overlay:
6055 mark_overlay (XOVERLAY (obj));
6056 break;
6057
6058 default:
6059 emacs_abort ();
6060 }
6061 break;
6062
6063 case Lisp_Cons:
6064 {
6065 register struct Lisp_Cons *ptr = XCONS (obj);
6066 if (CONS_MARKED_P (ptr))
6067 break;
6068 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6069 CONS_MARK (ptr);
6070 /* If the cdr is nil, avoid recursion for the car. */
6071 if (EQ (ptr->u.cdr, Qnil))
6072 {
6073 obj = ptr->car;
6074 cdr_count = 0;
6075 goto loop;
6076 }
6077 mark_object (ptr->car);
6078 obj = ptr->u.cdr;
6079 cdr_count++;
6080 if (cdr_count == mark_object_loop_halt)
6081 emacs_abort ();
6082 goto loop;
6083 }
6084
6085 case Lisp_Float:
6086 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6087 FLOAT_MARK (XFLOAT (obj));
6088 break;
6089
6090 case_Lisp_Int:
6091 break;
6092
6093 default:
6094 emacs_abort ();
6095 }
6096
6097 #undef CHECK_LIVE
6098 #undef CHECK_ALLOCATED
6099 #undef CHECK_ALLOCATED_AND_LIVE
6100 }
6101 /* Mark the Lisp pointers in the terminal objects.
6102 Called by Fgarbage_collect. */
6103
6104 static void
6105 mark_terminals (void)
6106 {
6107 struct terminal *t;
6108 for (t = terminal_list; t; t = t->next_terminal)
6109 {
6110 eassert (t->name != NULL);
6111 #ifdef HAVE_WINDOW_SYSTEM
6112 /* If a terminal object is reachable from a stacpro'ed object,
6113 it might have been marked already. Make sure the image cache
6114 gets marked. */
6115 mark_image_cache (t->image_cache);
6116 #endif /* HAVE_WINDOW_SYSTEM */
6117 if (!VECTOR_MARKED_P (t))
6118 mark_vectorlike ((struct Lisp_Vector *)t);
6119 }
6120 }
6121
6122
6123
6124 /* Value is non-zero if OBJ will survive the current GC because it's
6125 either marked or does not need to be marked to survive. */
6126
6127 bool
6128 survives_gc_p (Lisp_Object obj)
6129 {
6130 bool survives_p;
6131
6132 switch (XTYPE (obj))
6133 {
6134 case_Lisp_Int:
6135 survives_p = 1;
6136 break;
6137
6138 case Lisp_Symbol:
6139 survives_p = XSYMBOL (obj)->gcmarkbit;
6140 break;
6141
6142 case Lisp_Misc:
6143 survives_p = XMISCANY (obj)->gcmarkbit;
6144 break;
6145
6146 case Lisp_String:
6147 survives_p = STRING_MARKED_P (XSTRING (obj));
6148 break;
6149
6150 case Lisp_Vectorlike:
6151 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6152 break;
6153
6154 case Lisp_Cons:
6155 survives_p = CONS_MARKED_P (XCONS (obj));
6156 break;
6157
6158 case Lisp_Float:
6159 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6160 break;
6161
6162 default:
6163 emacs_abort ();
6164 }
6165
6166 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6167 }
6168
6169
6170 \f
6171 /* Sweep: find all structures not marked, and free them. */
6172
6173 static void
6174 gc_sweep (void)
6175 {
6176 /* Remove or mark entries in weak hash tables.
6177 This must be done before any object is unmarked. */
6178 sweep_weak_hash_tables ();
6179
6180 sweep_strings ();
6181 check_string_bytes (!noninteractive);
6182
6183 /* Put all unmarked conses on free list */
6184 {
6185 register struct cons_block *cblk;
6186 struct cons_block **cprev = &cons_block;
6187 register int lim = cons_block_index;
6188 EMACS_INT num_free = 0, num_used = 0;
6189
6190 cons_free_list = 0;
6191
6192 for (cblk = cons_block; cblk; cblk = *cprev)
6193 {
6194 register int i = 0;
6195 int this_free = 0;
6196 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6197
6198 /* Scan the mark bits an int at a time. */
6199 for (i = 0; i < ilim; i++)
6200 {
6201 if (cblk->gcmarkbits[i] == -1)
6202 {
6203 /* Fast path - all cons cells for this int are marked. */
6204 cblk->gcmarkbits[i] = 0;
6205 num_used += BITS_PER_INT;
6206 }
6207 else
6208 {
6209 /* Some cons cells for this int are not marked.
6210 Find which ones, and free them. */
6211 int start, pos, stop;
6212
6213 start = i * BITS_PER_INT;
6214 stop = lim - start;
6215 if (stop > BITS_PER_INT)
6216 stop = BITS_PER_INT;
6217 stop += start;
6218
6219 for (pos = start; pos < stop; pos++)
6220 {
6221 if (!CONS_MARKED_P (&cblk->conses[pos]))
6222 {
6223 this_free++;
6224 cblk->conses[pos].u.chain = cons_free_list;
6225 cons_free_list = &cblk->conses[pos];
6226 #if GC_MARK_STACK
6227 cons_free_list->car = Vdead;
6228 #endif
6229 }
6230 else
6231 {
6232 num_used++;
6233 CONS_UNMARK (&cblk->conses[pos]);
6234 }
6235 }
6236 }
6237 }
6238
6239 lim = CONS_BLOCK_SIZE;
6240 /* If this block contains only free conses and we have already
6241 seen more than two blocks worth of free conses then deallocate
6242 this block. */
6243 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6244 {
6245 *cprev = cblk->next;
6246 /* Unhook from the free list. */
6247 cons_free_list = cblk->conses[0].u.chain;
6248 lisp_align_free (cblk);
6249 }
6250 else
6251 {
6252 num_free += this_free;
6253 cprev = &cblk->next;
6254 }
6255 }
6256 total_conses = num_used;
6257 total_free_conses = num_free;
6258 }
6259
6260 /* Put all unmarked floats on free list */
6261 {
6262 register struct float_block *fblk;
6263 struct float_block **fprev = &float_block;
6264 register int lim = float_block_index;
6265 EMACS_INT num_free = 0, num_used = 0;
6266
6267 float_free_list = 0;
6268
6269 for (fblk = float_block; fblk; fblk = *fprev)
6270 {
6271 register int i;
6272 int this_free = 0;
6273 for (i = 0; i < lim; i++)
6274 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6275 {
6276 this_free++;
6277 fblk->floats[i].u.chain = float_free_list;
6278 float_free_list = &fblk->floats[i];
6279 }
6280 else
6281 {
6282 num_used++;
6283 FLOAT_UNMARK (&fblk->floats[i]);
6284 }
6285 lim = FLOAT_BLOCK_SIZE;
6286 /* If this block contains only free floats and we have already
6287 seen more than two blocks worth of free floats then deallocate
6288 this block. */
6289 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6290 {
6291 *fprev = fblk->next;
6292 /* Unhook from the free list. */
6293 float_free_list = fblk->floats[0].u.chain;
6294 lisp_align_free (fblk);
6295 }
6296 else
6297 {
6298 num_free += this_free;
6299 fprev = &fblk->next;
6300 }
6301 }
6302 total_floats = num_used;
6303 total_free_floats = num_free;
6304 }
6305
6306 /* Put all unmarked intervals on free list */
6307 {
6308 register struct interval_block *iblk;
6309 struct interval_block **iprev = &interval_block;
6310 register int lim = interval_block_index;
6311 EMACS_INT num_free = 0, num_used = 0;
6312
6313 interval_free_list = 0;
6314
6315 for (iblk = interval_block; iblk; iblk = *iprev)
6316 {
6317 register int i;
6318 int this_free = 0;
6319
6320 for (i = 0; i < lim; i++)
6321 {
6322 if (!iblk->intervals[i].gcmarkbit)
6323 {
6324 set_interval_parent (&iblk->intervals[i], interval_free_list);
6325 interval_free_list = &iblk->intervals[i];
6326 this_free++;
6327 }
6328 else
6329 {
6330 num_used++;
6331 iblk->intervals[i].gcmarkbit = 0;
6332 }
6333 }
6334 lim = INTERVAL_BLOCK_SIZE;
6335 /* If this block contains only free intervals and we have already
6336 seen more than two blocks worth of free intervals then
6337 deallocate this block. */
6338 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6339 {
6340 *iprev = iblk->next;
6341 /* Unhook from the free list. */
6342 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6343 lisp_free (iblk);
6344 }
6345 else
6346 {
6347 num_free += this_free;
6348 iprev = &iblk->next;
6349 }
6350 }
6351 total_intervals = num_used;
6352 total_free_intervals = num_free;
6353 }
6354
6355 /* Put all unmarked symbols on free list */
6356 {
6357 register struct symbol_block *sblk;
6358 struct symbol_block **sprev = &symbol_block;
6359 register int lim = symbol_block_index;
6360 EMACS_INT num_free = 0, num_used = 0;
6361
6362 symbol_free_list = NULL;
6363
6364 for (sblk = symbol_block; sblk; sblk = *sprev)
6365 {
6366 int this_free = 0;
6367 union aligned_Lisp_Symbol *sym = sblk->symbols;
6368 union aligned_Lisp_Symbol *end = sym + lim;
6369
6370 for (; sym < end; ++sym)
6371 {
6372 /* Check if the symbol was created during loadup. In such a case
6373 it might be pointed to by pure bytecode which we don't trace,
6374 so we conservatively assume that it is live. */
6375 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6376
6377 if (!sym->s.gcmarkbit && !pure_p)
6378 {
6379 if (sym->s.redirect == SYMBOL_LOCALIZED)
6380 xfree (SYMBOL_BLV (&sym->s));
6381 sym->s.next = symbol_free_list;
6382 symbol_free_list = &sym->s;
6383 #if GC_MARK_STACK
6384 symbol_free_list->function = Vdead;
6385 #endif
6386 ++this_free;
6387 }
6388 else
6389 {
6390 ++num_used;
6391 if (!pure_p)
6392 UNMARK_STRING (XSTRING (sym->s.name));
6393 sym->s.gcmarkbit = 0;
6394 }
6395 }
6396
6397 lim = SYMBOL_BLOCK_SIZE;
6398 /* If this block contains only free symbols and we have already
6399 seen more than two blocks worth of free symbols then deallocate
6400 this block. */
6401 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6402 {
6403 *sprev = sblk->next;
6404 /* Unhook from the free list. */
6405 symbol_free_list = sblk->symbols[0].s.next;
6406 lisp_free (sblk);
6407 }
6408 else
6409 {
6410 num_free += this_free;
6411 sprev = &sblk->next;
6412 }
6413 }
6414 total_symbols = num_used;
6415 total_free_symbols = num_free;
6416 }
6417
6418 /* Put all unmarked misc's on free list.
6419 For a marker, first unchain it from the buffer it points into. */
6420 {
6421 register struct marker_block *mblk;
6422 struct marker_block **mprev = &marker_block;
6423 register int lim = marker_block_index;
6424 EMACS_INT num_free = 0, num_used = 0;
6425
6426 marker_free_list = 0;
6427
6428 for (mblk = marker_block; mblk; mblk = *mprev)
6429 {
6430 register int i;
6431 int this_free = 0;
6432
6433 for (i = 0; i < lim; i++)
6434 {
6435 if (!mblk->markers[i].m.u_any.gcmarkbit)
6436 {
6437 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6438 unchain_marker (&mblk->markers[i].m.u_marker);
6439 /* Set the type of the freed object to Lisp_Misc_Free.
6440 We could leave the type alone, since nobody checks it,
6441 but this might catch bugs faster. */
6442 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6443 mblk->markers[i].m.u_free.chain = marker_free_list;
6444 marker_free_list = &mblk->markers[i].m;
6445 this_free++;
6446 }
6447 else
6448 {
6449 num_used++;
6450 mblk->markers[i].m.u_any.gcmarkbit = 0;
6451 }
6452 }
6453 lim = MARKER_BLOCK_SIZE;
6454 /* If this block contains only free markers and we have already
6455 seen more than two blocks worth of free markers then deallocate
6456 this block. */
6457 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6458 {
6459 *mprev = mblk->next;
6460 /* Unhook from the free list. */
6461 marker_free_list = mblk->markers[0].m.u_free.chain;
6462 lisp_free (mblk);
6463 }
6464 else
6465 {
6466 num_free += this_free;
6467 mprev = &mblk->next;
6468 }
6469 }
6470
6471 total_markers = num_used;
6472 total_free_markers = num_free;
6473 }
6474
6475 /* Free all unmarked buffers */
6476 {
6477 register struct buffer *buffer, **bprev = &all_buffers;
6478
6479 total_buffers = 0;
6480 for (buffer = all_buffers; buffer; buffer = *bprev)
6481 if (!VECTOR_MARKED_P (buffer))
6482 {
6483 *bprev = buffer->next;
6484 lisp_free (buffer);
6485 }
6486 else
6487 {
6488 VECTOR_UNMARK (buffer);
6489 /* Do not use buffer_(set|get)_intervals here. */
6490 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6491 total_buffers++;
6492 bprev = &buffer->next;
6493 }
6494 }
6495
6496 sweep_vectors ();
6497 check_string_bytes (!noninteractive);
6498 }
6499
6500
6501
6502 \f
6503 /* Debugging aids. */
6504
6505 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6506 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6507 This may be helpful in debugging Emacs's memory usage.
6508 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6509 (void)
6510 {
6511 Lisp_Object end;
6512
6513 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6514
6515 return end;
6516 }
6517
6518 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6519 doc: /* Return a list of counters that measure how much consing there has been.
6520 Each of these counters increments for a certain kind of object.
6521 The counters wrap around from the largest positive integer to zero.
6522 Garbage collection does not decrease them.
6523 The elements of the value are as follows:
6524 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6525 All are in units of 1 = one object consed
6526 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6527 objects consed.
6528 MISCS include overlays, markers, and some internal types.
6529 Frames, windows, buffers, and subprocesses count as vectors
6530 (but the contents of a buffer's text do not count here). */)
6531 (void)
6532 {
6533 return listn (CONSTYPE_HEAP, 8,
6534 bounded_number (cons_cells_consed),
6535 bounded_number (floats_consed),
6536 bounded_number (vector_cells_consed),
6537 bounded_number (symbols_consed),
6538 bounded_number (string_chars_consed),
6539 bounded_number (misc_objects_consed),
6540 bounded_number (intervals_consed),
6541 bounded_number (strings_consed));
6542 }
6543
6544 /* Find at most FIND_MAX symbols which have OBJ as their value or
6545 function. This is used in gdbinit's `xwhichsymbols' command. */
6546
6547 Lisp_Object
6548 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6549 {
6550 struct symbol_block *sblk;
6551 ptrdiff_t gc_count = inhibit_garbage_collection ();
6552 Lisp_Object found = Qnil;
6553
6554 if (! DEADP (obj))
6555 {
6556 for (sblk = symbol_block; sblk; sblk = sblk->next)
6557 {
6558 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6559 int bn;
6560
6561 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6562 {
6563 struct Lisp_Symbol *sym = &aligned_sym->s;
6564 Lisp_Object val;
6565 Lisp_Object tem;
6566
6567 if (sblk == symbol_block && bn >= symbol_block_index)
6568 break;
6569
6570 XSETSYMBOL (tem, sym);
6571 val = find_symbol_value (tem);
6572 if (EQ (val, obj)
6573 || EQ (sym->function, obj)
6574 || (!NILP (sym->function)
6575 && COMPILEDP (sym->function)
6576 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6577 || (!NILP (val)
6578 && COMPILEDP (val)
6579 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6580 {
6581 found = Fcons (tem, found);
6582 if (--find_max == 0)
6583 goto out;
6584 }
6585 }
6586 }
6587 }
6588
6589 out:
6590 unbind_to (gc_count, Qnil);
6591 return found;
6592 }
6593
6594 #ifdef ENABLE_CHECKING
6595
6596 bool suppress_checking;
6597
6598 void
6599 die (const char *msg, const char *file, int line)
6600 {
6601 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6602 file, line, msg);
6603 terminate_due_to_signal (SIGABRT, INT_MAX);
6604 }
6605 #endif
6606 \f
6607 /* Initialization. */
6608
6609 void
6610 init_alloc_once (void)
6611 {
6612 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6613 purebeg = PUREBEG;
6614 pure_size = PURESIZE;
6615
6616 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6617 mem_init ();
6618 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6619 #endif
6620
6621 #ifdef DOUG_LEA_MALLOC
6622 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6623 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6624 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6625 #endif
6626 init_strings ();
6627 init_vectors ();
6628
6629 refill_memory_reserve ();
6630 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6631 }
6632
6633 void
6634 init_alloc (void)
6635 {
6636 gcprolist = 0;
6637 byte_stack_list = 0;
6638 #if GC_MARK_STACK
6639 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6640 setjmp_tested_p = longjmps_done = 0;
6641 #endif
6642 #endif
6643 Vgc_elapsed = make_float (0.0);
6644 gcs_done = 0;
6645
6646 #if USE_VALGRIND
6647 valgrind_p = RUNNING_ON_VALGRIND != 0;
6648 #endif
6649 }
6650
6651 void
6652 syms_of_alloc (void)
6653 {
6654 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6655 doc: /* Number of bytes of consing between garbage collections.
6656 Garbage collection can happen automatically once this many bytes have been
6657 allocated since the last garbage collection. All data types count.
6658
6659 Garbage collection happens automatically only when `eval' is called.
6660
6661 By binding this temporarily to a large number, you can effectively
6662 prevent garbage collection during a part of the program.
6663 See also `gc-cons-percentage'. */);
6664
6665 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6666 doc: /* Portion of the heap used for allocation.
6667 Garbage collection can happen automatically once this portion of the heap
6668 has been allocated since the last garbage collection.
6669 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6670 Vgc_cons_percentage = make_float (0.1);
6671
6672 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6673 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6674
6675 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6676 doc: /* Number of cons cells that have been consed so far. */);
6677
6678 DEFVAR_INT ("floats-consed", floats_consed,
6679 doc: /* Number of floats that have been consed so far. */);
6680
6681 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6682 doc: /* Number of vector cells that have been consed so far. */);
6683
6684 DEFVAR_INT ("symbols-consed", symbols_consed,
6685 doc: /* Number of symbols that have been consed so far. */);
6686
6687 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6688 doc: /* Number of string characters that have been consed so far. */);
6689
6690 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6691 doc: /* Number of miscellaneous objects that have been consed so far.
6692 These include markers and overlays, plus certain objects not visible
6693 to users. */);
6694
6695 DEFVAR_INT ("intervals-consed", intervals_consed,
6696 doc: /* Number of intervals that have been consed so far. */);
6697
6698 DEFVAR_INT ("strings-consed", strings_consed,
6699 doc: /* Number of strings that have been consed so far. */);
6700
6701 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6702 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6703 This means that certain objects should be allocated in shared (pure) space.
6704 It can also be set to a hash-table, in which case this table is used to
6705 do hash-consing of the objects allocated to pure space. */);
6706
6707 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6708 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6709 garbage_collection_messages = 0;
6710
6711 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6712 doc: /* Hook run after garbage collection has finished. */);
6713 Vpost_gc_hook = Qnil;
6714 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6715
6716 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6717 doc: /* Precomputed `signal' argument for memory-full error. */);
6718 /* We build this in advance because if we wait until we need it, we might
6719 not be able to allocate the memory to hold it. */
6720 Vmemory_signal_data
6721 = listn (CONSTYPE_PURE, 2, Qerror,
6722 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6723
6724 DEFVAR_LISP ("memory-full", Vmemory_full,
6725 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6726 Vmemory_full = Qnil;
6727
6728 DEFSYM (Qconses, "conses");
6729 DEFSYM (Qsymbols, "symbols");
6730 DEFSYM (Qmiscs, "miscs");
6731 DEFSYM (Qstrings, "strings");
6732 DEFSYM (Qvectors, "vectors");
6733 DEFSYM (Qfloats, "floats");
6734 DEFSYM (Qintervals, "intervals");
6735 DEFSYM (Qbuffers, "buffers");
6736 DEFSYM (Qstring_bytes, "string-bytes");
6737 DEFSYM (Qvector_slots, "vector-slots");
6738 DEFSYM (Qheap, "heap");
6739 DEFSYM (Qautomatic_gc, "Automatic GC");
6740
6741 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6742 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6743
6744 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6745 doc: /* Accumulated time elapsed in garbage collections.
6746 The time is in seconds as a floating point value. */);
6747 DEFVAR_INT ("gcs-done", gcs_done,
6748 doc: /* Accumulated number of garbage collections done. */);
6749
6750 defsubr (&Scons);
6751 defsubr (&Slist);
6752 defsubr (&Svector);
6753 defsubr (&Smake_byte_code);
6754 defsubr (&Smake_list);
6755 defsubr (&Smake_vector);
6756 defsubr (&Smake_string);
6757 defsubr (&Smake_bool_vector);
6758 defsubr (&Smake_symbol);
6759 defsubr (&Smake_marker);
6760 defsubr (&Spurecopy);
6761 defsubr (&Sgarbage_collect);
6762 defsubr (&Smemory_limit);
6763 defsubr (&Smemory_use_counts);
6764
6765 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6766 defsubr (&Sgc_status);
6767 #endif
6768 }
6769
6770 /* When compiled with GCC, GDB might say "No enum type named
6771 pvec_type" if we don't have at least one symbol with that type, and
6772 then xbacktrace could fail. Similarly for the other enums and
6773 their values. Some non-GCC compilers don't like these constructs. */
6774 #ifdef __GNUC__
6775 union
6776 {
6777 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6778 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6779 enum char_bits char_bits;
6780 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6781 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6782 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6783 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6784 enum Lisp_Bits Lisp_Bits;
6785 enum Lisp_Compiled Lisp_Compiled;
6786 enum maxargs maxargs;
6787 enum MAX_ALLOCA MAX_ALLOCA;
6788 enum More_Lisp_Bits More_Lisp_Bits;
6789 enum pvec_type pvec_type;
6790 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6791 #endif /* __GNUC__ */