*** empty log message ***
[bpt/emacs.git] / src / charset.h
1 /* Header for multibyte character handler.
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef EMACS_CHARSET_H
23 #define EMACS_CHARSET_H
24
25 /* #define BYTE_COMBINING_DEBUG */
26
27 /*** GENERAL NOTE on CHARACTER SET (CHARSET) ***
28
29 A character set ("charset" hereafter) is a meaningful collection
30 (i.e. language, culture, functionality, etc) of characters. Emacs
31 handles multiple charsets at once. Each charset corresponds to one
32 of ISO charsets. Emacs identifies a charset by a unique
33 identification number, whereas ISO identifies a charset by a triplet
34 of DIMENSION, CHARS and FINAL-CHAR. So, hereafter, just saying
35 "charset" means an identification number (integer value).
36
37 The value range of charset is 0x00, 0x81..0xFE. There are four
38 kinds of charset depending on DIMENSION (1 or 2) and CHARS (94 or
39 96). For instance, a charset of DIMENSION2_CHARS94 contains 94x94
40 characters.
41
42 Within Emacs Lisp, a charset is treated as a symbol which has a
43 property `charset'. The property value is a vector containing
44 various information about the charset. For readability of C codes,
45 we use the following convention for C variable names:
46 charset_symbol: Emacs Lisp symbol of a charset
47 charset_id: Emacs Lisp integer of an identification number of a charset
48 charset: C integer of an identification number of a charset
49
50 Each charset (except for ascii) is assigned a base leading-code
51 (range 0x80..0x9E). In addition, a charset of greater than 0xA0
52 (whose base leading-code is 0x9A..0x9D) is assigned an extended
53 leading-code (range 0xA0..0xFE). In this case, each base
54 leading-code specify the allowable range of extended leading-code as
55 shown in the table below. A leading-code is used to represent a
56 character in Emacs' buffer and string.
57
58 We call a charset which has extended leading-code as "private
59 charset" because those are mainly for a charset which is not yet
60 registered by ISO. On the contrary, we call a charset which does
61 not have extended leading-code as "official charset".
62
63 ---------------------------------------------------------------------------
64 charset dimension base leading-code extended leading-code
65 ---------------------------------------------------------------------------
66 0x00 official dim1 -- none -- -- none --
67 (ASCII)
68 0x01..0x7F --never used--
69 0x80 official dim1 -- none -- -- none --
70 (eight-bit-graphic)
71 0x81..0x8F official dim1 same as charset -- none --
72 0x90..0x99 official dim2 same as charset -- none --
73 0x9A..0x9D --never used--
74 0x9E official dim1 same as charset -- none --
75 (eight-bit-control)
76 0x9F --never used--
77 0xA0..0xDF private dim1 0x9A same as charset
78 of 1-column width
79 0xE0..0xEF private dim1 0x9B same as charset
80 of 2-column width
81 0xF0..0xF4 private dim2 0x9C same as charset
82 of 1-column width
83 0xF5..0xFE private dim2 0x9D same as charset
84 of 2-column width
85 0xFF --never used--
86 ---------------------------------------------------------------------------
87
88 */
89
90 /* Definition of special leading-codes. */
91 /* Leading-code followed by extended leading-code. */
92 #define LEADING_CODE_PRIVATE_11 0x9A /* for private DIMENSION1 of 1-column */
93 #define LEADING_CODE_PRIVATE_12 0x9B /* for private DIMENSION1 of 2-column */
94 #define LEADING_CODE_PRIVATE_21 0x9C /* for private DIMENSION2 of 1-column */
95 #define LEADING_CODE_PRIVATE_22 0x9D /* for private DIMENSION2 of 2-column */
96
97 #define LEADING_CODE_8_BIT_CONTROL 0x9E /* for `eight-bit-control' */
98
99 /* Extended leading-code. */
100 /* Start of each extended leading-codes. */
101 #define LEADING_CODE_EXT_11 0xA0 /* follows LEADING_CODE_PRIVATE_11 */
102 #define LEADING_CODE_EXT_12 0xE0 /* follows LEADING_CODE_PRIVATE_12 */
103 #define LEADING_CODE_EXT_21 0xF0 /* follows LEADING_CODE_PRIVATE_21 */
104 #define LEADING_CODE_EXT_22 0xF5 /* follows LEADING_CODE_PRIVATE_22 */
105 /* Maximum value of extended leading-codes. */
106 #define LEADING_CODE_EXT_MAX 0xFE
107
108 /* Definition of minimum/maximum charset of each DIMENSION. */
109 #define MIN_CHARSET_OFFICIAL_DIMENSION1 0x80
110 #define MAX_CHARSET_OFFICIAL_DIMENSION1 0x8F
111 #define MIN_CHARSET_OFFICIAL_DIMENSION2 0x90
112 #define MAX_CHARSET_OFFICIAL_DIMENSION2 0x99
113 #define MIN_CHARSET_PRIVATE_DIMENSION1 LEADING_CODE_EXT_11
114 #define MIN_CHARSET_PRIVATE_DIMENSION2 LEADING_CODE_EXT_21
115
116 /* Maximum value of overall charset identification number. */
117 #define MAX_CHARSET 0xFE
118
119 /* Definition of special charsets. */
120 #define CHARSET_ASCII 0 /* 0x00..0x7F */
121 #define CHARSET_8_BIT_CONTROL 0x9E /* 0x80..0x9F */
122 #define CHARSET_8_BIT_GRAPHIC 0x80 /* 0xA0..0xFF */
123
124 extern int charset_latin_iso8859_1; /* ISO8859-1 (Latin-1) */
125 extern int charset_jisx0208_1978; /* JISX0208.1978 (Japanese Kanji old set) */
126 extern int charset_jisx0208; /* JISX0208.1983 (Japanese Kanji) */
127 extern int charset_katakana_jisx0201; /* JISX0201.Kana (Japanese Katakana) */
128 extern int charset_latin_jisx0201; /* JISX0201.Roman (Japanese Roman) */
129 extern int charset_big5_1; /* Big5 Level 1 (Chinese Traditional) */
130 extern int charset_big5_2; /* Big5 Level 2 (Chinese Traditional) */
131
132 /* Check if CH is an ASCII character or a base leading-code.
133 Nowadays, any byte can be the first byte of a character in a
134 multibyte buffer/string. So this macro name is not appropriate. */
135 #define CHAR_HEAD_P(ch) ((unsigned char) (ch) < 0xA0)
136
137 /*** GENERAL NOTE on CHARACTER REPRESENTATION ***
138
139 At first, the term "character" or "char" is used for a multilingual
140 character (of course, including ASCII character), not for a byte in
141 computer memory. We use the term "code" or "byte" for the latter
142 case.
143
144 A character is identified by charset and one or two POSITION-CODEs.
145 POSITION-CODE is the position of the character in the charset. A
146 character of DIMENSION1 charset has one POSITION-CODE: POSITION-CODE-1.
147 A character of DIMENSION2 charset has two POSITION-CODE:
148 POSITION-CODE-1 and POSITION-CODE-2. The code range of
149 POSITION-CODE is 0x20..0x7F.
150
151 Emacs has two kinds of representation of a character: multi-byte
152 form (for buffer and string) and single-word form (for character
153 object in Emacs Lisp). The latter is called "character code" here
154 after. Both representations encode the information of charset and
155 POSITION-CODE but in a different way (for instance, MSB of
156 POSITION-CODE is set in multi-byte form).
157
158 For details of multi-byte form, see the section "2. Emacs internal
159 format handlers" of `coding.c'.
160
161 Emacs uses 19 bits for a character code. The bits are divided into
162 3 fields: FIELD1(5bits):FIELD2(7bits):FIELD3(7bits).
163
164 A character code of DIMENSION1 character uses FIELD2 to hold charset
165 and FIELD3 to hold POSITION-CODE-1. A character code of DIMENSION2
166 character uses FIELD1 to hold charset, FIELD2 and FIELD3 to hold
167 POSITION-CODE-1 and POSITION-CODE-2 respectively.
168
169 More precisely...
170
171 FIELD2 of DIMENSION1 character (except for ascii, eight-bit-control,
172 and eight-bit-graphic) is "charset - 0x70". This is to make all
173 character codes except for ASCII and 8-bit codes greater than 256.
174 So, the range of FIELD2 of DIMENSION1 character is 0, 1, or
175 0x11..0x7F.
176
177 FIELD1 of DIMENSION2 character is "charset - 0x8F" for official
178 charset and "charset - 0xE0" for private charset. So, the range of
179 FIELD1 of DIMENSION2 character is 0x01..0x1E.
180
181 -----------------------------------------------------------------------------
182 charset FIELD1 (5-bit) FIELD2 (7-bit) FIELD3 (7-bit)
183 -----------------------------------------------------------------------------
184 ascii 0 0 0x00..0x7F
185 eight-bit-control 0 1 0x00..0x1F
186 eight-bit-graphic 0 1 0x20..0x7F
187 DIMENSION1 0 charset - 0x70 POSITION-CODE-1
188 DIMENSION2(o) charset - 0x8F POSITION-CODE-1 POSITION-CODE-2
189 DIMENSION2(p) charset - 0xE0 POSITION-CODE-1 POSITION-CODE-2
190 -----------------------------------------------------------------------------
191 "(o)": official, "(p)": private
192 -----------------------------------------------------------------------------
193 */
194
195 /* Masks of each field of character code. */
196 #define CHAR_FIELD1_MASK (0x1F << 14)
197 #define CHAR_FIELD2_MASK (0x7F << 7)
198 #define CHAR_FIELD3_MASK 0x7F
199
200 /* Macros to access each field of character C. */
201 #define CHAR_FIELD1(c) (((c) & CHAR_FIELD1_MASK) >> 14)
202 #define CHAR_FIELD2(c) (((c) & CHAR_FIELD2_MASK) >> 7)
203 #define CHAR_FIELD3(c) ((c) & CHAR_FIELD3_MASK)
204
205 /* Minimum character code of character of each DIMENSION. */
206 #define MIN_CHAR_OFFICIAL_DIMENSION1 \
207 ((0x81 - 0x70) << 7)
208 #define MIN_CHAR_PRIVATE_DIMENSION1 \
209 ((MIN_CHARSET_PRIVATE_DIMENSION1 - 0x70) << 7)
210 #define MIN_CHAR_OFFICIAL_DIMENSION2 \
211 ((MIN_CHARSET_OFFICIAL_DIMENSION2 - 0x8F) << 14)
212 #define MIN_CHAR_PRIVATE_DIMENSION2 \
213 ((MIN_CHARSET_PRIVATE_DIMENSION2 - 0xE0) << 14)
214 /* Maximum character code currently used plus 1. */
215 #define MAX_CHAR (0x1F << 14)
216
217 /* 1 if C is a single byte character, else 0. */
218 #define SINGLE_BYTE_CHAR_P(c) ((unsigned) (c) < 0x100)
219
220 /* 1 if BYTE is an ASCII character in itself, in multibyte mode. */
221 #define ASCII_BYTE_P(byte) ((byte) < 0x80)
222
223 /* A char-table containing information of each character set.
224
225 Unlike ordinary char-tables, this doesn't contain any nested table.
226 Only the top level elements are used. Each element is a vector of
227 the following information:
228 CHARSET-ID, BYTES, DIMENSION, CHARS, WIDTH, DIRECTION,
229 LEADING-CODE-BASE, LEADING-CODE-EXT,
230 ISO-FINAL-CHAR, ISO-GRAPHIC-PLANE,
231 REVERSE-CHARSET, SHORT-NAME, LONG-NAME, DESCRIPTION,
232 PLIST.
233
234 CHARSET-ID (integer) is the identification number of the charset.
235
236 BYTES (integer) is the length of multi-byte form of a character in
237 the charset: one of 1, 2, 3, and 4.
238
239 DIMENSION (integer) is the number of bytes to represent a character: 1 or 2.
240
241 CHARS (integer) is the number of characters in a dimension: 94 or 96.
242
243 WIDTH (integer) is the number of columns a character in the charset
244 occupies on the screen: one of 0, 1, and 2..
245
246 DIRECTION (integer) is the rendering direction of characters in the
247 charset when rendering. If 0, render from left to right, else
248 render from right to left.
249
250 LEADING-CODE-BASE (integer) is the base leading-code for the
251 charset.
252
253 LEADING-CODE-EXT (integer) is the extended leading-code for the
254 charset. All charsets of less than 0xA0 has the value 0.
255
256 ISO-FINAL-CHAR (character) is the final character of the
257 corresponding ISO 2022 charset. It is -1 for such a character
258 that is used only internally (e.g. `eight-bit-control').
259
260 ISO-GRAPHIC-PLANE (integer) is the graphic plane to be invoked
261 while encoding to variants of ISO 2022 coding system, one of the
262 following: 0/graphic-plane-left(GL), 1/graphic-plane-right(GR). It
263 is -1 for such a character that is used only internally
264 (e.g. `eight-bit-control').
265
266 REVERSE-CHARSET (integer) is the charset which differs only in
267 LEFT-TO-RIGHT value from the charset. If there's no such a
268 charset, the value is -1.
269
270 SHORT-NAME (string) is the short name to refer to the charset.
271
272 LONG-NAME (string) is the long name to refer to the charset.
273
274 DESCRIPTION (string) is the description string of the charset.
275
276 PLIST (property list) may contain any type of information a user
277 want to put and get by functions `put-charset-property' and
278 `get-charset-property' respectively. */
279 extern Lisp_Object Vcharset_table;
280
281 /* Macros to access various information of CHARSET in Vcharset_table.
282 We provide these macros for efficiency. No range check of CHARSET. */
283
284 /* Return entry of CHARSET (C integer) in Vcharset_table. */
285 #define CHARSET_TABLE_ENTRY(charset) \
286 XCHAR_TABLE (Vcharset_table)->contents[((charset) == CHARSET_ASCII \
287 ? 0 : (charset) + 128)]
288
289 /* Return information INFO-IDX of CHARSET. */
290 #define CHARSET_TABLE_INFO(charset, info_idx) \
291 XVECTOR (CHARSET_TABLE_ENTRY (charset))->contents[info_idx]
292
293 #define CHARSET_ID_IDX (0)
294 #define CHARSET_BYTES_IDX (1)
295 #define CHARSET_DIMENSION_IDX (2)
296 #define CHARSET_CHARS_IDX (3)
297 #define CHARSET_WIDTH_IDX (4)
298 #define CHARSET_DIRECTION_IDX (5)
299 #define CHARSET_LEADING_CODE_BASE_IDX (6)
300 #define CHARSET_LEADING_CODE_EXT_IDX (7)
301 #define CHARSET_ISO_FINAL_CHAR_IDX (8)
302 #define CHARSET_ISO_GRAPHIC_PLANE_IDX (9)
303 #define CHARSET_REVERSE_CHARSET_IDX (10)
304 #define CHARSET_SHORT_NAME_IDX (11)
305 #define CHARSET_LONG_NAME_IDX (12)
306 #define CHARSET_DESCRIPTION_IDX (13)
307 #define CHARSET_PLIST_IDX (14)
308 /* Size of a vector of each entry of Vcharset_table. */
309 #define CHARSET_MAX_IDX (15)
310
311 /* And several more macros to be used frequently. */
312 #define CHARSET_BYTES(charset) \
313 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_BYTES_IDX))
314 #define CHARSET_DIMENSION(charset) \
315 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIMENSION_IDX))
316 #define CHARSET_CHARS(charset) \
317 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_CHARS_IDX))
318 #define CHARSET_WIDTH(charset) \
319 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_WIDTH_IDX))
320 #define CHARSET_DIRECTION(charset) \
321 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIRECTION_IDX))
322 #define CHARSET_LEADING_CODE_BASE(charset) \
323 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_BASE_IDX))
324 #define CHARSET_LEADING_CODE_EXT(charset) \
325 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_EXT_IDX))
326 #define CHARSET_ISO_FINAL_CHAR(charset) \
327 XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_FINAL_CHAR_IDX))
328 #define CHARSET_ISO_GRAPHIC_PLANE(charset) \
329 XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_GRAPHIC_PLANE_IDX))
330 #define CHARSET_REVERSE_CHARSET(charset) \
331 XINT (CHARSET_TABLE_INFO (charset, CHARSET_REVERSE_CHARSET_IDX))
332
333 /* Macros to specify direction of a charset. */
334 #define CHARSET_DIRECTION_LEFT_TO_RIGHT 0
335 #define CHARSET_DIRECTION_RIGHT_TO_LEFT 1
336
337 /* A vector of charset symbol indexed by charset-id. This is used
338 only for returning charset symbol from C functions. */
339 extern Lisp_Object Vcharset_symbol_table;
340
341 /* Return symbol of CHARSET. */
342 #define CHARSET_SYMBOL(charset) \
343 XVECTOR (Vcharset_symbol_table)->contents[charset]
344
345 /* 1 if CHARSET is in valid value range, else 0. */
346 #define CHARSET_VALID_P(charset) \
347 ((charset) == 0 \
348 || ((charset) > 0x80 && (charset) <= MAX_CHARSET_OFFICIAL_DIMENSION2) \
349 || ((charset) >= MIN_CHARSET_PRIVATE_DIMENSION1 \
350 && (charset) <= MAX_CHARSET) \
351 || ((charset) == CHARSET_8_BIT_CONTROL) \
352 || ((charset) == CHARSET_8_BIT_GRAPHIC))
353
354 /* 1 if CHARSET is already defined, else 0. */
355 #define CHARSET_DEFINED_P(charset) \
356 (((charset) >= 0) && ((charset) <= MAX_CHARSET) \
357 && !NILP (CHARSET_TABLE_ENTRY (charset)))
358
359 /* Since the information CHARSET-BYTES and CHARSET-WIDTH of
360 Vcharset_table can be retrieved only by the first byte of
361 multi-byte form (an ASCII code or a base leading-code), we provide
362 here tables to be used by macros BYTES_BY_CHAR_HEAD and
363 WIDTH_BY_CHAR_HEAD for faster information retrieval. */
364 extern int bytes_by_char_head[256];
365 extern int width_by_char_head[256];
366
367 #define BYTES_BY_CHAR_HEAD(char_head) \
368 (ASCII_BYTE_P (char_head) ? 1 : bytes_by_char_head[char_head])
369 #define WIDTH_BY_CHAR_HEAD(char_head) \
370 (ASCII_BYTE_P (char_head) ? 1 : width_by_char_head[char_head])
371
372 /* Charset of the character C. */
373 #define CHAR_CHARSET(c) \
374 (SINGLE_BYTE_CHAR_P (c) \
375 ? (ASCII_BYTE_P (c) \
376 ? CHARSET_ASCII \
377 : (c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC) \
378 : ((c) < MIN_CHAR_OFFICIAL_DIMENSION2 \
379 ? CHAR_FIELD2 (c) + 0x70 \
380 : ((c) < MIN_CHAR_PRIVATE_DIMENSION2 \
381 ? CHAR_FIELD1 (c) + 0x8F \
382 : CHAR_FIELD1 (c) + 0xE0)))
383
384 /* Check if two characters C1 and C2 belong to the same charset. */
385 #define SAME_CHARSET_P(c1, c2) \
386 (c1 < MIN_CHAR_OFFICIAL_DIMENSION2 \
387 ? (c1 & CHAR_FIELD2_MASK) == (c2 & CHAR_FIELD2_MASK) \
388 : (c1 & CHAR_FIELD1_MASK) == (c2 & CHAR_FIELD1_MASK))
389
390 /* Return a character of which charset is CHARSET and position-codes
391 are C1 and C2. DIMENSION1 character ignores C2. */
392 #define MAKE_CHAR(charset, c1, c2) \
393 ((charset) == CHARSET_ASCII \
394 ? (c1) & 0x7F \
395 : (((charset) == CHARSET_8_BIT_CONTROL \
396 || (charset) == CHARSET_8_BIT_GRAPHIC) \
397 ? ((c1) & 0x7F) | 0x80 \
398 : ((CHARSET_DEFINED_P (charset) \
399 ? CHARSET_DIMENSION (charset) == 1 \
400 : (charset) < MIN_CHARSET_PRIVATE_DIMENSION2) \
401 ? (((charset) - 0x70) << 7) | ((c1) <= 0 ? 0 : ((c1) & 0x7F)) \
402 : ((((charset) \
403 - ((charset) < MIN_CHARSET_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)) \
404 << 14) \
405 | ((c2) <= 0 ? 0 : ((c2) & 0x7F)) \
406 | ((c1) <= 0 ? 0 : (((c1) & 0x7F) << 7))))))
407
408
409 /* If GENERICP is nonzero, return nonzero iff C is a valid normal or
410 generic character. If GENERICP is zero, return nonzero iff C is a
411 valid normal character. */
412 #define CHAR_VALID_P(c, genericp) \
413 ((c) >= 0 \
414 && (SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, genericp)))
415
416 /* This default value is used when nonascii-translation-table or
417 nonascii-insert-offset fail to convert unibyte character to a valid
418 multibyte character. This makes a Latin-1 character. */
419
420 #define DEFAULT_NONASCII_INSERT_OFFSET 0x800
421
422 /* Parse multibyte string STR of length LENGTH and set BYTES to the
423 byte length of a character at STR. */
424
425 #ifdef BYTE_COMBINING_DEBUG
426
427 #define PARSE_MULTIBYTE_SEQ(str, length, bytes) \
428 do { \
429 int i = 1; \
430 while (i < (length) && ! CHAR_HEAD_P ((str)[i])) i++; \
431 (bytes) = BYTES_BY_CHAR_HEAD ((str)[0]); \
432 if ((bytes) > i) \
433 abort (); \
434 } while (0)
435
436 #else /* not BYTE_COMBINING_DEBUG */
437
438 #define PARSE_MULTIBYTE_SEQ(str, length, bytes) \
439 (bytes) = BYTES_BY_CHAR_HEAD ((str)[0])
440
441 #endif /* not BYTE_COMBINING_DEBUG */
442
443 /* Return 1 iff the byte sequence at unibyte string STR (LENGTH bytes)
444 is valid as a multibyte form. If valid, by a side effect, BYTES is
445 set to the byte length of the multibyte form. */
446
447 #define UNIBYTE_STR_AS_MULTIBYTE_P(str, length, bytes) \
448 (((str)[0] < 0x80 || (str)[0] >= 0xA0) \
449 ? (bytes) = 1 \
450 : (((bytes) = BYTES_BY_CHAR_HEAD ((str)[0])), \
451 ((bytes) > 1 && (bytes) <= (length) \
452 && (str)[0] != LEADING_CODE_8_BIT_CONTROL \
453 && !CHAR_HEAD_P ((str)[1]) \
454 && ((bytes) == 2 \
455 || (!CHAR_HEAD_P ((str)[2]) \
456 && ((bytes) == 3 \
457 || !CHAR_HEAD_P ((str)[3])))))))
458
459 /* Return 1 iff the byte sequence at multibyte string STR is valid as
460 a unibyte form. By a side effect, BYTES is set to the byte length
461 of one character at STR. */
462
463 #define MULTIBYTE_STR_AS_UNIBYTE_P(str, bytes) \
464 ((bytes) = BYTES_BY_CHAR_HEAD ((str)[0]), \
465 (str)[0] != LEADING_CODE_8_BIT_CONTROL)
466
467 /* The charset of character C is stored in CHARSET, and the
468 position-codes of C are stored in C1 and C2.
469 We store -1 in C2 if the dimension of the charset is 1. */
470
471 #define SPLIT_CHAR(c, charset, c1, c2) \
472 (SINGLE_BYTE_CHAR_P (c) \
473 ? ((charset \
474 = (ASCII_BYTE_P (c) \
475 ? CHARSET_ASCII \
476 : ((c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC))), \
477 c1 = (c), c2 = -1) \
478 : ((c) & CHAR_FIELD1_MASK \
479 ? (charset = (CHAR_FIELD1 (c) \
480 + ((c) < MIN_CHAR_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)), \
481 c1 = CHAR_FIELD2 (c), \
482 c2 = CHAR_FIELD3 (c)) \
483 : (charset = CHAR_FIELD2 (c) + 0x70, \
484 c1 = CHAR_FIELD3 (c), \
485 c2 = -1)))
486
487 /* Return 1 iff character C has valid printable glyph. */
488 #define CHAR_PRINTABLE_P(c) (ASCII_BYTE_P (c) || char_printable_p (c))
489
490 /* The charset of the character at STR is stored in CHARSET, and the
491 position-codes are stored in C1 and C2.
492 We store -1 in C2 if the character is just 2 bytes. */
493
494 #define SPLIT_STRING(str, len, charset, c1, c2) \
495 ((BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) < 2 \
496 || BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) > len \
497 || split_string (str, len, &charset, &c1, &c2) < 0) \
498 ? c1 = *(str), charset = CHARSET_ASCII \
499 : charset)
500
501 /* Mapping table from ISO2022's charset (specified by DIMENSION,
502 CHARS, and FINAL_CHAR) to Emacs' charset. Should be accessed by
503 macro ISO_CHARSET_TABLE (DIMENSION, CHARS, FINAL_CHAR). */
504 extern int iso_charset_table[2][2][128];
505
506 #define ISO_CHARSET_TABLE(dimension, chars, final_char) \
507 iso_charset_table[XINT (dimension) - 1][XINT (chars) > 94][XINT (final_char)]
508
509 #define BASE_LEADING_CODE_P(c) (BYTES_BY_CHAR_HEAD ((unsigned char) (c)) > 1)
510
511 /* Return how many bytes C will occupy in a multibyte buffer. */
512 #define CHAR_BYTES(c) \
513 (SINGLE_BYTE_CHAR_P (c) \
514 ? ((ASCII_BYTE_P (c) || (c) >= 0xA0) ? 1 : 2) \
515 : char_bytes (c))
516
517 /* The following two macros CHAR_STRING and STRING_CHAR are the main
518 entry points to convert between Emacs two types of character
519 representations: multi-byte form and single-word form (character
520 code). */
521
522 /* Store multi-byte form of the character C in STR. The caller should
523 allocate at least MAX_MULTIBYTE_LENGTH bytes area at STR in
524 advance. Returns the length of the multi-byte form. If C is an
525 invalid character code, signal an error. */
526
527 #define CHAR_STRING(c, str) \
528 (SINGLE_BYTE_CHAR_P (c) \
529 ? ((ASCII_BYTE_P (c) || c >= 0xA0) \
530 ? (*(str) = (unsigned char)(c), 1) \
531 : (*(str) = LEADING_CODE_8_BIT_CONTROL, *((str)+ 1) = c + 0x20, 2)) \
532 : char_to_string (c, (unsigned char *) str))
533
534 /* Return a character code of the character of which multi-byte form
535 is at STR and the length is LEN. If STR doesn't contain valid
536 multi-byte form, only the first byte in STR is returned. */
537
538 #define STRING_CHAR(str, len) \
539 (BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \
540 ? (unsigned char) *(str) \
541 : string_to_char (str, len, 0))
542
543 /* This is like STRING_CHAR but the third arg ACTUAL_LEN is set to the
544 length of the multi-byte form. Just to know the length, use
545 MULTIBYTE_FORM_LENGTH. */
546
547 #define STRING_CHAR_AND_LENGTH(str, len, actual_len) \
548 (BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \
549 ? ((actual_len) = 1), (unsigned char) *(str) \
550 : string_to_char (str, len, &(actual_len)))
551
552 /* Fetch the "next" character from Lisp string STRING at byte position
553 BYTEIDX, character position CHARIDX. Store it into OUTPUT.
554
555 All the args must be side-effect-free.
556 BYTEIDX and CHARIDX must be lvalues;
557 we increment them past the character fetched. */
558
559 #define FETCH_STRING_CHAR_ADVANCE(OUTPUT, STRING, CHARIDX, BYTEIDX) \
560 if (1) \
561 { \
562 CHARIDX++; \
563 if (STRING_MULTIBYTE (STRING)) \
564 { \
565 unsigned char *ptr = &XSTRING (STRING)->data[BYTEIDX]; \
566 int space_left = XSTRING (STRING)->size_byte - BYTEIDX; \
567 int actual_len; \
568 \
569 OUTPUT = STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \
570 BYTEIDX += actual_len; \
571 } \
572 else \
573 OUTPUT = XSTRING (STRING)->data[BYTEIDX++]; \
574 } \
575 else
576
577 /* Like FETCH_STRING_CHAR_ADVANCE but assume STRING is multibyte. */
578
579 #define FETCH_STRING_CHAR_ADVANCE_NO_CHECK(OUTPUT, STRING, CHARIDX, BYTEIDX) \
580 if (1) \
581 { \
582 unsigned char *fetch_string_char_ptr = &XSTRING (STRING)->data[BYTEIDX]; \
583 int fetch_string_char_space_left = XSTRING (STRING)->size_byte - BYTEIDX; \
584 int actual_len; \
585 \
586 OUTPUT \
587 = STRING_CHAR_AND_LENGTH (fetch_string_char_ptr, \
588 fetch_string_char_space_left, actual_len); \
589 \
590 BYTEIDX += actual_len; \
591 CHARIDX++; \
592 } \
593 else
594
595 /* Like FETCH_STRING_CHAR_ADVANCE but fetch character from the current
596 buffer. */
597
598 #define FETCH_CHAR_ADVANCE(OUTPUT, CHARIDX, BYTEIDX) \
599 if (1) \
600 { \
601 CHARIDX++; \
602 if (!NILP (current_buffer->enable_multibyte_characters)) \
603 { \
604 unsigned char *ptr = BYTE_POS_ADDR (BYTEIDX); \
605 int space_left = ((CHARIDX < GPT ? GPT_BYTE : Z_BYTE) - BYTEIDX); \
606 int actual_len; \
607 \
608 OUTPUT= STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \
609 BYTEIDX += actual_len; \
610 } \
611 else \
612 { \
613 OUTPUT = *(BYTE_POS_ADDR (BYTEIDX)); \
614 BYTEIDX++; \
615 } \
616 } \
617 else
618
619 /* Return the length of the multi-byte form at string STR of length LEN. */
620
621 #define MULTIBYTE_FORM_LENGTH(str, len) \
622 (BYTES_BY_CHAR_HEAD (*(unsigned char *)(str)) == 1 \
623 ? 1 \
624 : multibyte_form_length (str, len))
625
626 #ifdef emacs
627
628 /* Increase the buffer byte position POS_BYTE of the current buffer to
629 the next character boundary. This macro relies on the fact that
630 *GPT_ADDR and *Z_ADDR are always accessible and the values are
631 '\0'. No range checking of POS. */
632
633 #ifdef BYTE_COMBINING_DEBUG
634
635 #define INC_POS(pos_byte) \
636 do { \
637 unsigned char *p = BYTE_POS_ADDR (pos_byte); \
638 if (BASE_LEADING_CODE_P (*p)) \
639 { \
640 int len, bytes; \
641 len = Z_BYTE - pos_byte; \
642 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
643 pos_byte += bytes; \
644 } \
645 else \
646 pos_byte++; \
647 } while (0)
648
649 #else /* not BYTE_COMBINING_DEBUG */
650
651 #define INC_POS(pos_byte) \
652 do { \
653 unsigned char *p = BYTE_POS_ADDR (pos_byte); \
654 pos_byte += BYTES_BY_CHAR_HEAD (*p); \
655 } while (0)
656
657 #endif /* not BYTE_COMBINING_DEBUG */
658
659 /* Decrease the buffer byte position POS_BYTE of the current buffer to
660 the previous character boundary. No range checking of POS. */
661 #define DEC_POS(pos_byte) \
662 do { \
663 unsigned char *p, *p_min; \
664 \
665 pos_byte--; \
666 if (pos_byte < GPT_BYTE) \
667 p = BEG_ADDR + pos_byte - 1, p_min = BEG_ADDR; \
668 else \
669 p = BEG_ADDR + GAP_SIZE + pos_byte - 1, p_min = GAP_END_ADDR; \
670 if (p > p_min && !CHAR_HEAD_P (*p)) \
671 { \
672 unsigned char *pend = p--; \
673 int len, bytes; \
674 while (p > p_min && !CHAR_HEAD_P (*p)) p--; \
675 len = pend + 1 - p; \
676 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
677 if (bytes == len) \
678 pos_byte -= len - 1; \
679 } \
680 } while (0)
681
682 /* Increment both CHARPOS and BYTEPOS, each in the appropriate way. */
683
684 #define INC_BOTH(charpos, bytepos) \
685 do \
686 { \
687 (charpos)++; \
688 if (NILP (current_buffer->enable_multibyte_characters)) \
689 (bytepos)++; \
690 else \
691 INC_POS ((bytepos)); \
692 } \
693 while (0)
694
695 /* Decrement both CHARPOS and BYTEPOS, each in the appropriate way. */
696
697 #define DEC_BOTH(charpos, bytepos) \
698 do \
699 { \
700 (charpos)--; \
701 if (NILP (current_buffer->enable_multibyte_characters)) \
702 (bytepos)--; \
703 else \
704 DEC_POS ((bytepos)); \
705 } \
706 while (0)
707
708 /* Increase the buffer byte position POS_BYTE of the current buffer to
709 the next character boundary. This macro relies on the fact that
710 *GPT_ADDR and *Z_ADDR are always accessible and the values are
711 '\0'. No range checking of POS_BYTE. */
712
713 #ifdef BYTE_COMBINING_DEBUG
714
715 #define BUF_INC_POS(buf, pos_byte) \
716 do { \
717 unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \
718 if (BASE_LEADING_CODE_P (*p)) \
719 { \
720 int len, bytes; \
721 len = BUF_Z_BYTE (buf) - pos_byte; \
722 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
723 pos_byte += bytes; \
724 } \
725 else \
726 pos_byte++; \
727 } while (0)
728
729 #else /* not BYTE_COMBINING_DEBUG */
730
731 #define BUF_INC_POS(buf, pos_byte) \
732 do { \
733 unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \
734 pos_byte += BYTES_BY_CHAR_HEAD (*p); \
735 } while (0)
736
737 #endif /* not BYTE_COMBINING_DEBUG */
738
739 /* Decrease the buffer byte position POS_BYTE of the current buffer to
740 the previous character boundary. No range checking of POS_BYTE. */
741 #define BUF_DEC_POS(buf, pos_byte) \
742 do { \
743 unsigned char *p, *p_min; \
744 pos_byte--; \
745 if (pos_byte < BUF_GPT_BYTE (buf)) \
746 { \
747 p = BUF_BEG_ADDR (buf) + pos_byte - 1; \
748 p_min = BUF_BEG_ADDR (buf); \
749 } \
750 else \
751 { \
752 p = BUF_BEG_ADDR (buf) + BUF_GAP_SIZE (buf) + pos_byte - 1; \
753 p_min = BUF_GAP_END_ADDR (buf); \
754 } \
755 if (p > p_min && !CHAR_HEAD_P (*p)) \
756 { \
757 unsigned char *pend = p--; \
758 int len, bytes; \
759 while (p > p_min && !CHAR_HEAD_P (*p)) p--; \
760 len = pend + 1 - p; \
761 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
762 if (bytes == len) \
763 pos_byte -= len - 1; \
764 } \
765 } while (0)
766
767 #endif /* emacs */
768
769 /* This is the maximum byte length of multi-byte sequence. */
770 #define MAX_MULTIBYTE_LENGTH 4
771
772 extern void invalid_character P_ ((int));
773
774 extern int translate_char P_ ((Lisp_Object, int, int, int, int));
775 extern int split_string P_ ((const unsigned char *, int, int *,
776 unsigned char *, unsigned char *));
777 extern int char_to_string P_ ((int, unsigned char *));
778 extern int string_to_char P_ ((const unsigned char *, int, int *));
779 extern int char_printable_p P_ ((int c));
780 extern int multibyte_form_length P_ ((const unsigned char *, int));
781 extern void parse_str_as_multibyte P_ ((unsigned char *, int, int *, int *));
782 extern int str_as_multibyte P_ ((unsigned char *, int, int, int *));
783 extern int str_to_multibyte P_ ((unsigned char *, int, int));
784 extern int str_as_unibyte P_ ((unsigned char *, int));
785 extern int get_charset_id P_ ((Lisp_Object));
786 extern int find_charset_in_text P_ ((unsigned char *, int, int, int *,
787 Lisp_Object));
788 extern int strwidth P_ ((unsigned char *, int));
789 extern int char_bytes P_ ((int));
790 extern int char_valid_p P_ ((int, int));
791
792 extern Lisp_Object Vtranslation_table_vector;
793
794 /* Return a translation table of id number ID. */
795 #define GET_TRANSLATION_TABLE(id) \
796 (XCDR(XVECTOR(Vtranslation_table_vector)->contents[(id)]))
797
798 /* A char-table for characters which may invoke auto-filling. */
799 extern Lisp_Object Vauto_fill_chars;
800
801 /* Copy LEN bytes from FROM to TO. This macro should be used only
802 when a caller knows that LEN is short and the obvious copy loop is
803 faster than calling bcopy which has some overhead. Copying a
804 multibyte sequence of a multibyte character is the typical case. */
805
806 #define BCOPY_SHORT(from, to, len) \
807 do { \
808 int i = len; \
809 unsigned char *from_p = from, *to_p = to; \
810 while (i--) *to_p++ = *from_p++; \
811 } while (0)
812
813 #endif /* EMACS_CHARSET_H */