Port to Sun C.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
55
56 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
57
58 #ifndef HAVE_UNISTD_H
59 extern long time ();
60 #endif
61 \f
62 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
63 doc: /* Return the argument unchanged. */)
64 (Lisp_Object arg)
65 {
66 return arg;
67 }
68
69 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
70 doc: /* Return a pseudo-random number.
71 All integers representable in Lisp are equally likely.
72 On most systems, this is 29 bits' worth.
73 With positive integer LIMIT, return random number in interval [0,LIMIT).
74 With argument t, set the random number seed from the current time and pid.
75 Other values of LIMIT are ignored. */)
76 (Lisp_Object limit)
77 {
78 EMACS_INT val;
79 Lisp_Object lispy_val;
80 EMACS_UINT denominator;
81
82 if (EQ (limit, Qt))
83 seed_random (getpid () + time (NULL));
84 if (NATNUMP (limit) && XFASTINT (limit) != 0)
85 {
86 /* Try to take our random number from the higher bits of VAL,
87 not the lower, since (says Gentzel) the low bits of `random'
88 are less random than the higher ones. We do this by using the
89 quotient rather than the remainder. At the high end of the RNG
90 it's possible to get a quotient larger than n; discarding
91 these values eliminates the bias that would otherwise appear
92 when using a large n. */
93 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
94 do
95 val = get_random () / denominator;
96 while (val >= XFASTINT (limit));
97 }
98 else
99 val = get_random ();
100 XSETINT (lispy_val, val);
101 return lispy_val;
102 }
103 \f
104 /* Heuristic on how many iterations of a tight loop can be safely done
105 before it's time to do a QUIT. This must be a power of 2. */
106 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
107
108 /* Random data-structure functions */
109
110 DEFUN ("length", Flength, Slength, 1, 1, 0,
111 doc: /* Return the length of vector, list or string SEQUENCE.
112 A byte-code function object is also allowed.
113 If the string contains multibyte characters, this is not necessarily
114 the number of bytes in the string; it is the number of characters.
115 To get the number of bytes, use `string-bytes'. */)
116 (register Lisp_Object sequence)
117 {
118 register Lisp_Object val;
119
120 if (STRINGP (sequence))
121 XSETFASTINT (val, SCHARS (sequence));
122 else if (VECTORP (sequence))
123 XSETFASTINT (val, ASIZE (sequence));
124 else if (CHAR_TABLE_P (sequence))
125 XSETFASTINT (val, MAX_CHAR);
126 else if (BOOL_VECTOR_P (sequence))
127 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
128 else if (COMPILEDP (sequence))
129 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
130 else if (CONSP (sequence))
131 {
132 EMACS_INT i = 0;
133
134 do
135 {
136 ++i;
137 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
138 {
139 if (MOST_POSITIVE_FIXNUM < i)
140 error ("List too long");
141 QUIT;
142 }
143 sequence = XCDR (sequence);
144 }
145 while (CONSP (sequence));
146
147 CHECK_LIST_END (sequence, sequence);
148
149 val = make_number (i);
150 }
151 else if (NILP (sequence))
152 XSETFASTINT (val, 0);
153 else
154 wrong_type_argument (Qsequencep, sequence);
155
156 return val;
157 }
158
159 /* This does not check for quits. That is safe since it must terminate. */
160
161 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
162 doc: /* Return the length of a list, but avoid error or infinite loop.
163 This function never gets an error. If LIST is not really a list,
164 it returns 0. If LIST is circular, it returns a finite value
165 which is at least the number of distinct elements. */)
166 (Lisp_Object list)
167 {
168 Lisp_Object tail, halftail;
169 double hilen = 0;
170 uintmax_t lolen = 1;
171
172 if (! CONSP (list))
173 return make_number (0);
174
175 /* halftail is used to detect circular lists. */
176 for (tail = halftail = list; ; )
177 {
178 tail = XCDR (tail);
179 if (! CONSP (tail))
180 break;
181 if (EQ (tail, halftail))
182 break;
183 lolen++;
184 if ((lolen & 1) == 0)
185 {
186 halftail = XCDR (halftail);
187 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
188 {
189 QUIT;
190 if (lolen == 0)
191 hilen += UINTMAX_MAX + 1.0;
192 }
193 }
194 }
195
196 /* If the length does not fit into a fixnum, return a float.
197 On all known practical machines this returns an upper bound on
198 the true length. */
199 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
200 }
201
202 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
203 doc: /* Return the number of bytes in STRING.
204 If STRING is multibyte, this may be greater than the length of STRING. */)
205 (Lisp_Object string)
206 {
207 CHECK_STRING (string);
208 return make_number (SBYTES (string));
209 }
210
211 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
212 doc: /* Return t if two strings have identical contents.
213 Case is significant, but text properties are ignored.
214 Symbols are also allowed; their print names are used instead. */)
215 (register Lisp_Object s1, Lisp_Object s2)
216 {
217 if (SYMBOLP (s1))
218 s1 = SYMBOL_NAME (s1);
219 if (SYMBOLP (s2))
220 s2 = SYMBOL_NAME (s2);
221 CHECK_STRING (s1);
222 CHECK_STRING (s2);
223
224 if (SCHARS (s1) != SCHARS (s2)
225 || SBYTES (s1) != SBYTES (s2)
226 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
227 return Qnil;
228 return Qt;
229 }
230
231 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
232 doc: /* Compare the contents of two strings, converting to multibyte if needed.
233 In string STR1, skip the first START1 characters and stop at END1.
234 In string STR2, skip the first START2 characters and stop at END2.
235 END1 and END2 default to the full lengths of the respective strings.
236
237 Case is significant in this comparison if IGNORE-CASE is nil.
238 Unibyte strings are converted to multibyte for comparison.
239
240 The value is t if the strings (or specified portions) match.
241 If string STR1 is less, the value is a negative number N;
242 - 1 - N is the number of characters that match at the beginning.
243 If string STR1 is greater, the value is a positive number N;
244 N - 1 is the number of characters that match at the beginning. */)
245 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
246 {
247 register EMACS_INT end1_char, end2_char;
248 register EMACS_INT i1, i1_byte, i2, i2_byte;
249
250 CHECK_STRING (str1);
251 CHECK_STRING (str2);
252 if (NILP (start1))
253 start1 = make_number (0);
254 if (NILP (start2))
255 start2 = make_number (0);
256 CHECK_NATNUM (start1);
257 CHECK_NATNUM (start2);
258 if (! NILP (end1))
259 CHECK_NATNUM (end1);
260 if (! NILP (end2))
261 CHECK_NATNUM (end2);
262
263 i1 = XINT (start1);
264 i2 = XINT (start2);
265
266 i1_byte = string_char_to_byte (str1, i1);
267 i2_byte = string_char_to_byte (str2, i2);
268
269 end1_char = SCHARS (str1);
270 if (! NILP (end1) && end1_char > XINT (end1))
271 end1_char = XINT (end1);
272
273 end2_char = SCHARS (str2);
274 if (! NILP (end2) && end2_char > XINT (end2))
275 end2_char = XINT (end2);
276
277 while (i1 < end1_char && i2 < end2_char)
278 {
279 /* When we find a mismatch, we must compare the
280 characters, not just the bytes. */
281 int c1, c2;
282
283 if (STRING_MULTIBYTE (str1))
284 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
285 else
286 {
287 c1 = SREF (str1, i1++);
288 MAKE_CHAR_MULTIBYTE (c1);
289 }
290
291 if (STRING_MULTIBYTE (str2))
292 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
293 else
294 {
295 c2 = SREF (str2, i2++);
296 MAKE_CHAR_MULTIBYTE (c2);
297 }
298
299 if (c1 == c2)
300 continue;
301
302 if (! NILP (ignore_case))
303 {
304 Lisp_Object tem;
305
306 tem = Fupcase (make_number (c1));
307 c1 = XINT (tem);
308 tem = Fupcase (make_number (c2));
309 c2 = XINT (tem);
310 }
311
312 if (c1 == c2)
313 continue;
314
315 /* Note that I1 has already been incremented
316 past the character that we are comparing;
317 hence we don't add or subtract 1 here. */
318 if (c1 < c2)
319 return make_number (- i1 + XINT (start1));
320 else
321 return make_number (i1 - XINT (start1));
322 }
323
324 if (i1 < end1_char)
325 return make_number (i1 - XINT (start1) + 1);
326 if (i2 < end2_char)
327 return make_number (- i1 + XINT (start1) - 1);
328
329 return Qt;
330 }
331
332 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
333 doc: /* Return t if first arg string is less than second in lexicographic order.
334 Case is significant.
335 Symbols are also allowed; their print names are used instead. */)
336 (register Lisp_Object s1, Lisp_Object s2)
337 {
338 register EMACS_INT end;
339 register EMACS_INT i1, i1_byte, i2, i2_byte;
340
341 if (SYMBOLP (s1))
342 s1 = SYMBOL_NAME (s1);
343 if (SYMBOLP (s2))
344 s2 = SYMBOL_NAME (s2);
345 CHECK_STRING (s1);
346 CHECK_STRING (s2);
347
348 i1 = i1_byte = i2 = i2_byte = 0;
349
350 end = SCHARS (s1);
351 if (end > SCHARS (s2))
352 end = SCHARS (s2);
353
354 while (i1 < end)
355 {
356 /* When we find a mismatch, we must compare the
357 characters, not just the bytes. */
358 int c1, c2;
359
360 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
361 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
362
363 if (c1 != c2)
364 return c1 < c2 ? Qt : Qnil;
365 }
366 return i1 < SCHARS (s2) ? Qt : Qnil;
367 }
368 \f
369 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
370 enum Lisp_Type target_type, int last_special);
371
372 /* ARGSUSED */
373 Lisp_Object
374 concat2 (Lisp_Object s1, Lisp_Object s2)
375 {
376 Lisp_Object args[2];
377 args[0] = s1;
378 args[1] = s2;
379 return concat (2, args, Lisp_String, 0);
380 }
381
382 /* ARGSUSED */
383 Lisp_Object
384 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
385 {
386 Lisp_Object args[3];
387 args[0] = s1;
388 args[1] = s2;
389 args[2] = s3;
390 return concat (3, args, Lisp_String, 0);
391 }
392
393 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
394 doc: /* Concatenate all the arguments and make the result a list.
395 The result is a list whose elements are the elements of all the arguments.
396 Each argument may be a list, vector or string.
397 The last argument is not copied, just used as the tail of the new list.
398 usage: (append &rest SEQUENCES) */)
399 (ptrdiff_t nargs, Lisp_Object *args)
400 {
401 return concat (nargs, args, Lisp_Cons, 1);
402 }
403
404 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
405 doc: /* Concatenate all the arguments and make the result a string.
406 The result is a string whose elements are the elements of all the arguments.
407 Each argument may be a string or a list or vector of characters (integers).
408 usage: (concat &rest SEQUENCES) */)
409 (ptrdiff_t nargs, Lisp_Object *args)
410 {
411 return concat (nargs, args, Lisp_String, 0);
412 }
413
414 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
415 doc: /* Concatenate all the arguments and make the result a vector.
416 The result is a vector whose elements are the elements of all the arguments.
417 Each argument may be a list, vector or string.
418 usage: (vconcat &rest SEQUENCES) */)
419 (ptrdiff_t nargs, Lisp_Object *args)
420 {
421 return concat (nargs, args, Lisp_Vectorlike, 0);
422 }
423
424
425 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
426 doc: /* Return a copy of a list, vector, string or char-table.
427 The elements of a list or vector are not copied; they are shared
428 with the original. */)
429 (Lisp_Object arg)
430 {
431 if (NILP (arg)) return arg;
432
433 if (CHAR_TABLE_P (arg))
434 {
435 return copy_char_table (arg);
436 }
437
438 if (BOOL_VECTOR_P (arg))
439 {
440 Lisp_Object val;
441 ptrdiff_t size_in_chars
442 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
443 / BOOL_VECTOR_BITS_PER_CHAR);
444
445 val = Fmake_bool_vector (Flength (arg), Qnil);
446 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
447 size_in_chars);
448 return val;
449 }
450
451 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
452 wrong_type_argument (Qsequencep, arg);
453
454 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
455 }
456
457 /* This structure holds information of an argument of `concat' that is
458 a string and has text properties to be copied. */
459 struct textprop_rec
460 {
461 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
462 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
463 EMACS_INT to; /* refer to VAL (the target string) */
464 };
465
466 static Lisp_Object
467 concat (ptrdiff_t nargs, Lisp_Object *args,
468 enum Lisp_Type target_type, int last_special)
469 {
470 Lisp_Object val;
471 register Lisp_Object tail;
472 register Lisp_Object this;
473 EMACS_INT toindex;
474 EMACS_INT toindex_byte = 0;
475 register EMACS_INT result_len;
476 register EMACS_INT result_len_byte;
477 ptrdiff_t argnum;
478 Lisp_Object last_tail;
479 Lisp_Object prev;
480 int some_multibyte;
481 /* When we make a multibyte string, we can't copy text properties
482 while concatenating each string because the length of resulting
483 string can't be decided until we finish the whole concatenation.
484 So, we record strings that have text properties to be copied
485 here, and copy the text properties after the concatenation. */
486 struct textprop_rec *textprops = NULL;
487 /* Number of elements in textprops. */
488 ptrdiff_t num_textprops = 0;
489 USE_SAFE_ALLOCA;
490
491 tail = Qnil;
492
493 /* In append, the last arg isn't treated like the others */
494 if (last_special && nargs > 0)
495 {
496 nargs--;
497 last_tail = args[nargs];
498 }
499 else
500 last_tail = Qnil;
501
502 /* Check each argument. */
503 for (argnum = 0; argnum < nargs; argnum++)
504 {
505 this = args[argnum];
506 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
507 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
508 wrong_type_argument (Qsequencep, this);
509 }
510
511 /* Compute total length in chars of arguments in RESULT_LEN.
512 If desired output is a string, also compute length in bytes
513 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
514 whether the result should be a multibyte string. */
515 result_len_byte = 0;
516 result_len = 0;
517 some_multibyte = 0;
518 for (argnum = 0; argnum < nargs; argnum++)
519 {
520 EMACS_INT len;
521 this = args[argnum];
522 len = XFASTINT (Flength (this));
523 if (target_type == Lisp_String)
524 {
525 /* We must count the number of bytes needed in the string
526 as well as the number of characters. */
527 EMACS_INT i;
528 Lisp_Object ch;
529 int c;
530 EMACS_INT this_len_byte;
531
532 if (VECTORP (this) || COMPILEDP (this))
533 for (i = 0; i < len; i++)
534 {
535 ch = AREF (this, i);
536 CHECK_CHARACTER (ch);
537 c = XFASTINT (ch);
538 this_len_byte = CHAR_BYTES (c);
539 result_len_byte += this_len_byte;
540 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
541 some_multibyte = 1;
542 }
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
544 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
547 {
548 ch = XCAR (this);
549 CHECK_CHARACTER (ch);
550 c = XFASTINT (ch);
551 this_len_byte = CHAR_BYTES (c);
552 result_len_byte += this_len_byte;
553 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
554 some_multibyte = 1;
555 }
556 else if (STRINGP (this))
557 {
558 if (STRING_MULTIBYTE (this))
559 {
560 some_multibyte = 1;
561 result_len_byte += SBYTES (this);
562 }
563 else
564 result_len_byte += count_size_as_multibyte (SDATA (this),
565 SCHARS (this));
566 }
567 }
568
569 result_len += len;
570 if (result_len < 0)
571 error ("String overflow");
572 }
573
574 if (! some_multibyte)
575 result_len_byte = result_len;
576
577 /* Create the output object. */
578 if (target_type == Lisp_Cons)
579 val = Fmake_list (make_number (result_len), Qnil);
580 else if (target_type == Lisp_Vectorlike)
581 val = Fmake_vector (make_number (result_len), Qnil);
582 else if (some_multibyte)
583 val = make_uninit_multibyte_string (result_len, result_len_byte);
584 else
585 val = make_uninit_string (result_len);
586
587 /* In `append', if all but last arg are nil, return last arg. */
588 if (target_type == Lisp_Cons && EQ (val, Qnil))
589 return last_tail;
590
591 /* Copy the contents of the args into the result. */
592 if (CONSP (val))
593 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
594 else
595 toindex = 0, toindex_byte = 0;
596
597 prev = Qnil;
598 if (STRINGP (val))
599 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
600
601 for (argnum = 0; argnum < nargs; argnum++)
602 {
603 Lisp_Object thislen;
604 EMACS_INT thisleni = 0;
605 register EMACS_INT thisindex = 0;
606 register EMACS_INT thisindex_byte = 0;
607
608 this = args[argnum];
609 if (!CONSP (this))
610 thislen = Flength (this), thisleni = XINT (thislen);
611
612 /* Between strings of the same kind, copy fast. */
613 if (STRINGP (this) && STRINGP (val)
614 && STRING_MULTIBYTE (this) == some_multibyte)
615 {
616 EMACS_INT thislen_byte = SBYTES (this);
617
618 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
619 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
620 {
621 textprops[num_textprops].argnum = argnum;
622 textprops[num_textprops].from = 0;
623 textprops[num_textprops++].to = toindex;
624 }
625 toindex_byte += thislen_byte;
626 toindex += thisleni;
627 }
628 /* Copy a single-byte string to a multibyte string. */
629 else if (STRINGP (this) && STRINGP (val))
630 {
631 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
632 {
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
636 }
637 toindex_byte += copy_text (SDATA (this),
638 SDATA (val) + toindex_byte,
639 SCHARS (this), 0, 1);
640 toindex += thisleni;
641 }
642 else
643 /* Copy element by element. */
644 while (1)
645 {
646 register Lisp_Object elt;
647
648 /* Fetch next element of `this' arg into `elt', or break if
649 `this' is exhausted. */
650 if (NILP (this)) break;
651 if (CONSP (this))
652 elt = XCAR (this), this = XCDR (this);
653 else if (thisindex >= thisleni)
654 break;
655 else if (STRINGP (this))
656 {
657 int c;
658 if (STRING_MULTIBYTE (this))
659 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
660 thisindex,
661 thisindex_byte);
662 else
663 {
664 c = SREF (this, thisindex); thisindex++;
665 if (some_multibyte && !ASCII_CHAR_P (c))
666 c = BYTE8_TO_CHAR (c);
667 }
668 XSETFASTINT (elt, c);
669 }
670 else if (BOOL_VECTOR_P (this))
671 {
672 int byte;
673 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
674 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
675 elt = Qt;
676 else
677 elt = Qnil;
678 thisindex++;
679 }
680 else
681 {
682 elt = AREF (this, thisindex);
683 thisindex++;
684 }
685
686 /* Store this element into the result. */
687 if (toindex < 0)
688 {
689 XSETCAR (tail, elt);
690 prev = tail;
691 tail = XCDR (tail);
692 }
693 else if (VECTORP (val))
694 {
695 ASET (val, toindex, elt);
696 toindex++;
697 }
698 else
699 {
700 int c;
701 CHECK_CHARACTER (elt);
702 c = XFASTINT (elt);
703 if (some_multibyte)
704 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
705 else
706 SSET (val, toindex_byte++, c);
707 toindex++;
708 }
709 }
710 }
711 if (!NILP (prev))
712 XSETCDR (prev, last_tail);
713
714 if (num_textprops > 0)
715 {
716 Lisp_Object props;
717 EMACS_INT last_to_end = -1;
718
719 for (argnum = 0; argnum < num_textprops; argnum++)
720 {
721 this = args[textprops[argnum].argnum];
722 props = text_property_list (this,
723 make_number (0),
724 make_number (SCHARS (this)),
725 Qnil);
726 /* If successive arguments have properties, be sure that the
727 value of `composition' property be the copy. */
728 if (last_to_end == textprops[argnum].to)
729 make_composition_value_copy (props);
730 add_text_properties_from_list (val, props,
731 make_number (textprops[argnum].to));
732 last_to_end = textprops[argnum].to + SCHARS (this);
733 }
734 }
735
736 SAFE_FREE ();
737 return val;
738 }
739 \f
740 static Lisp_Object string_char_byte_cache_string;
741 static EMACS_INT string_char_byte_cache_charpos;
742 static EMACS_INT string_char_byte_cache_bytepos;
743
744 void
745 clear_string_char_byte_cache (void)
746 {
747 string_char_byte_cache_string = Qnil;
748 }
749
750 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
751
752 EMACS_INT
753 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
754 {
755 EMACS_INT i_byte;
756 EMACS_INT best_below, best_below_byte;
757 EMACS_INT best_above, best_above_byte;
758
759 best_below = best_below_byte = 0;
760 best_above = SCHARS (string);
761 best_above_byte = SBYTES (string);
762 if (best_above == best_above_byte)
763 return char_index;
764
765 if (EQ (string, string_char_byte_cache_string))
766 {
767 if (string_char_byte_cache_charpos < char_index)
768 {
769 best_below = string_char_byte_cache_charpos;
770 best_below_byte = string_char_byte_cache_bytepos;
771 }
772 else
773 {
774 best_above = string_char_byte_cache_charpos;
775 best_above_byte = string_char_byte_cache_bytepos;
776 }
777 }
778
779 if (char_index - best_below < best_above - char_index)
780 {
781 unsigned char *p = SDATA (string) + best_below_byte;
782
783 while (best_below < char_index)
784 {
785 p += BYTES_BY_CHAR_HEAD (*p);
786 best_below++;
787 }
788 i_byte = p - SDATA (string);
789 }
790 else
791 {
792 unsigned char *p = SDATA (string) + best_above_byte;
793
794 while (best_above > char_index)
795 {
796 p--;
797 while (!CHAR_HEAD_P (*p)) p--;
798 best_above--;
799 }
800 i_byte = p - SDATA (string);
801 }
802
803 string_char_byte_cache_bytepos = i_byte;
804 string_char_byte_cache_charpos = char_index;
805 string_char_byte_cache_string = string;
806
807 return i_byte;
808 }
809 \f
810 /* Return the character index corresponding to BYTE_INDEX in STRING. */
811
812 EMACS_INT
813 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
814 {
815 EMACS_INT i, i_byte;
816 EMACS_INT best_below, best_below_byte;
817 EMACS_INT best_above, best_above_byte;
818
819 best_below = best_below_byte = 0;
820 best_above = SCHARS (string);
821 best_above_byte = SBYTES (string);
822 if (best_above == best_above_byte)
823 return byte_index;
824
825 if (EQ (string, string_char_byte_cache_string))
826 {
827 if (string_char_byte_cache_bytepos < byte_index)
828 {
829 best_below = string_char_byte_cache_charpos;
830 best_below_byte = string_char_byte_cache_bytepos;
831 }
832 else
833 {
834 best_above = string_char_byte_cache_charpos;
835 best_above_byte = string_char_byte_cache_bytepos;
836 }
837 }
838
839 if (byte_index - best_below_byte < best_above_byte - byte_index)
840 {
841 unsigned char *p = SDATA (string) + best_below_byte;
842 unsigned char *pend = SDATA (string) + byte_index;
843
844 while (p < pend)
845 {
846 p += BYTES_BY_CHAR_HEAD (*p);
847 best_below++;
848 }
849 i = best_below;
850 i_byte = p - SDATA (string);
851 }
852 else
853 {
854 unsigned char *p = SDATA (string) + best_above_byte;
855 unsigned char *pbeg = SDATA (string) + byte_index;
856
857 while (p > pbeg)
858 {
859 p--;
860 while (!CHAR_HEAD_P (*p)) p--;
861 best_above--;
862 }
863 i = best_above;
864 i_byte = p - SDATA (string);
865 }
866
867 string_char_byte_cache_bytepos = i_byte;
868 string_char_byte_cache_charpos = i;
869 string_char_byte_cache_string = string;
870
871 return i;
872 }
873 \f
874 /* Convert STRING to a multibyte string. */
875
876 static Lisp_Object
877 string_make_multibyte (Lisp_Object string)
878 {
879 unsigned char *buf;
880 EMACS_INT nbytes;
881 Lisp_Object ret;
882 USE_SAFE_ALLOCA;
883
884 if (STRING_MULTIBYTE (string))
885 return string;
886
887 nbytes = count_size_as_multibyte (SDATA (string),
888 SCHARS (string));
889 /* If all the chars are ASCII, they won't need any more bytes
890 once converted. In that case, we can return STRING itself. */
891 if (nbytes == SBYTES (string))
892 return string;
893
894 SAFE_ALLOCA (buf, unsigned char *, nbytes);
895 copy_text (SDATA (string), buf, SBYTES (string),
896 0, 1);
897
898 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
899 SAFE_FREE ();
900
901 return ret;
902 }
903
904
905 /* Convert STRING (if unibyte) to a multibyte string without changing
906 the number of characters. Characters 0200 trough 0237 are
907 converted to eight-bit characters. */
908
909 Lisp_Object
910 string_to_multibyte (Lisp_Object string)
911 {
912 unsigned char *buf;
913 EMACS_INT nbytes;
914 Lisp_Object ret;
915 USE_SAFE_ALLOCA;
916
917 if (STRING_MULTIBYTE (string))
918 return string;
919
920 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
921 /* If all the chars are ASCII, they won't need any more bytes once
922 converted. */
923 if (nbytes == SBYTES (string))
924 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
925
926 SAFE_ALLOCA (buf, unsigned char *, nbytes);
927 memcpy (buf, SDATA (string), SBYTES (string));
928 str_to_multibyte (buf, nbytes, SBYTES (string));
929
930 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
931 SAFE_FREE ();
932
933 return ret;
934 }
935
936
937 /* Convert STRING to a single-byte string. */
938
939 Lisp_Object
940 string_make_unibyte (Lisp_Object string)
941 {
942 EMACS_INT nchars;
943 unsigned char *buf;
944 Lisp_Object ret;
945 USE_SAFE_ALLOCA;
946
947 if (! STRING_MULTIBYTE (string))
948 return string;
949
950 nchars = SCHARS (string);
951
952 SAFE_ALLOCA (buf, unsigned char *, nchars);
953 copy_text (SDATA (string), buf, SBYTES (string),
954 1, 0);
955
956 ret = make_unibyte_string ((char *) buf, nchars);
957 SAFE_FREE ();
958
959 return ret;
960 }
961
962 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
963 1, 1, 0,
964 doc: /* Return the multibyte equivalent of STRING.
965 If STRING is unibyte and contains non-ASCII characters, the function
966 `unibyte-char-to-multibyte' is used to convert each unibyte character
967 to a multibyte character. In this case, the returned string is a
968 newly created string with no text properties. If STRING is multibyte
969 or entirely ASCII, it is returned unchanged. In particular, when
970 STRING is unibyte and entirely ASCII, the returned string is unibyte.
971 \(When the characters are all ASCII, Emacs primitives will treat the
972 string the same way whether it is unibyte or multibyte.) */)
973 (Lisp_Object string)
974 {
975 CHECK_STRING (string);
976
977 return string_make_multibyte (string);
978 }
979
980 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
981 1, 1, 0,
982 doc: /* Return the unibyte equivalent of STRING.
983 Multibyte character codes are converted to unibyte according to
984 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
985 If the lookup in the translation table fails, this function takes just
986 the low 8 bits of each character. */)
987 (Lisp_Object string)
988 {
989 CHECK_STRING (string);
990
991 return string_make_unibyte (string);
992 }
993
994 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
995 1, 1, 0,
996 doc: /* Return a unibyte string with the same individual bytes as STRING.
997 If STRING is unibyte, the result is STRING itself.
998 Otherwise it is a newly created string, with no text properties.
999 If STRING is multibyte and contains a character of charset
1000 `eight-bit', it is converted to the corresponding single byte. */)
1001 (Lisp_Object string)
1002 {
1003 CHECK_STRING (string);
1004
1005 if (STRING_MULTIBYTE (string))
1006 {
1007 EMACS_INT bytes = SBYTES (string);
1008 unsigned char *str = (unsigned char *) xmalloc (bytes);
1009
1010 memcpy (str, SDATA (string), bytes);
1011 bytes = str_as_unibyte (str, bytes);
1012 string = make_unibyte_string ((char *) str, bytes);
1013 xfree (str);
1014 }
1015 return string;
1016 }
1017
1018 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1019 1, 1, 0,
1020 doc: /* Return a multibyte string with the same individual bytes as STRING.
1021 If STRING is multibyte, the result is STRING itself.
1022 Otherwise it is a newly created string, with no text properties.
1023
1024 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1025 part of a correct utf-8 sequence), it is converted to the corresponding
1026 multibyte character of charset `eight-bit'.
1027 See also `string-to-multibyte'.
1028
1029 Beware, this often doesn't really do what you think it does.
1030 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1031 If you're not sure, whether to use `string-as-multibyte' or
1032 `string-to-multibyte', use `string-to-multibyte'. */)
1033 (Lisp_Object string)
1034 {
1035 CHECK_STRING (string);
1036
1037 if (! STRING_MULTIBYTE (string))
1038 {
1039 Lisp_Object new_string;
1040 EMACS_INT nchars, nbytes;
1041
1042 parse_str_as_multibyte (SDATA (string),
1043 SBYTES (string),
1044 &nchars, &nbytes);
1045 new_string = make_uninit_multibyte_string (nchars, nbytes);
1046 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1047 if (nbytes != SBYTES (string))
1048 str_as_multibyte (SDATA (new_string), nbytes,
1049 SBYTES (string), NULL);
1050 string = new_string;
1051 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1052 }
1053 return string;
1054 }
1055
1056 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1057 1, 1, 0,
1058 doc: /* Return a multibyte string with the same individual chars as STRING.
1059 If STRING is multibyte, the result is STRING itself.
1060 Otherwise it is a newly created string, with no text properties.
1061
1062 If STRING is unibyte and contains an 8-bit byte, it is converted to
1063 the corresponding multibyte character of charset `eight-bit'.
1064
1065 This differs from `string-as-multibyte' by converting each byte of a correct
1066 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1067 correct sequence. */)
1068 (Lisp_Object string)
1069 {
1070 CHECK_STRING (string);
1071
1072 return string_to_multibyte (string);
1073 }
1074
1075 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1076 1, 1, 0,
1077 doc: /* Return a unibyte string with the same individual chars as STRING.
1078 If STRING is unibyte, the result is STRING itself.
1079 Otherwise it is a newly created string, with no text properties,
1080 where each `eight-bit' character is converted to the corresponding byte.
1081 If STRING contains a non-ASCII, non-`eight-bit' character,
1082 an error is signaled. */)
1083 (Lisp_Object string)
1084 {
1085 CHECK_STRING (string);
1086
1087 if (STRING_MULTIBYTE (string))
1088 {
1089 EMACS_INT chars = SCHARS (string);
1090 unsigned char *str = (unsigned char *) xmalloc (chars);
1091 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1092
1093 if (converted < chars)
1094 error ("Can't convert the %"pI"dth character to unibyte", converted);
1095 string = make_unibyte_string ((char *) str, chars);
1096 xfree (str);
1097 }
1098 return string;
1099 }
1100
1101 \f
1102 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1103 doc: /* Return a copy of ALIST.
1104 This is an alist which represents the same mapping from objects to objects,
1105 but does not share the alist structure with ALIST.
1106 The objects mapped (cars and cdrs of elements of the alist)
1107 are shared, however.
1108 Elements of ALIST that are not conses are also shared. */)
1109 (Lisp_Object alist)
1110 {
1111 register Lisp_Object tem;
1112
1113 CHECK_LIST (alist);
1114 if (NILP (alist))
1115 return alist;
1116 alist = concat (1, &alist, Lisp_Cons, 0);
1117 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1118 {
1119 register Lisp_Object car;
1120 car = XCAR (tem);
1121
1122 if (CONSP (car))
1123 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1124 }
1125 return alist;
1126 }
1127
1128 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1129 doc: /* Return a new string whose contents are a substring of STRING.
1130 The returned string consists of the characters between index FROM
1131 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1132 zero-indexed: 0 means the first character of STRING. Negative values
1133 are counted from the end of STRING. If TO is nil, the substring runs
1134 to the end of STRING.
1135
1136 The STRING argument may also be a vector. In that case, the return
1137 value is a new vector that contains the elements between index FROM
1138 \(inclusive) and index TO (exclusive) of that vector argument. */)
1139 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1140 {
1141 Lisp_Object res;
1142 EMACS_INT size;
1143 EMACS_INT size_byte = 0;
1144 EMACS_INT from_char, to_char;
1145 EMACS_INT from_byte = 0, to_byte = 0;
1146
1147 CHECK_VECTOR_OR_STRING (string);
1148 CHECK_NUMBER (from);
1149
1150 if (STRINGP (string))
1151 {
1152 size = SCHARS (string);
1153 size_byte = SBYTES (string);
1154 }
1155 else
1156 size = ASIZE (string);
1157
1158 if (NILP (to))
1159 {
1160 to_char = size;
1161 to_byte = size_byte;
1162 }
1163 else
1164 {
1165 CHECK_NUMBER (to);
1166
1167 to_char = XINT (to);
1168 if (to_char < 0)
1169 to_char += size;
1170
1171 if (STRINGP (string))
1172 to_byte = string_char_to_byte (string, to_char);
1173 }
1174
1175 from_char = XINT (from);
1176 if (from_char < 0)
1177 from_char += size;
1178 if (STRINGP (string))
1179 from_byte = string_char_to_byte (string, from_char);
1180
1181 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1182 args_out_of_range_3 (string, make_number (from_char),
1183 make_number (to_char));
1184
1185 if (STRINGP (string))
1186 {
1187 res = make_specified_string (SSDATA (string) + from_byte,
1188 to_char - from_char, to_byte - from_byte,
1189 STRING_MULTIBYTE (string));
1190 copy_text_properties (make_number (from_char), make_number (to_char),
1191 string, make_number (0), res, Qnil);
1192 }
1193 else
1194 res = Fvector (to_char - from_char, &AREF (string, from_char));
1195
1196 return res;
1197 }
1198
1199
1200 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1201 doc: /* Return a substring of STRING, without text properties.
1202 It starts at index FROM and ends before TO.
1203 TO may be nil or omitted; then the substring runs to the end of STRING.
1204 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1205 If FROM or TO is negative, it counts from the end.
1206
1207 With one argument, just copy STRING without its properties. */)
1208 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1209 {
1210 EMACS_INT size, size_byte;
1211 EMACS_INT from_char, to_char;
1212 EMACS_INT from_byte, to_byte;
1213
1214 CHECK_STRING (string);
1215
1216 size = SCHARS (string);
1217 size_byte = SBYTES (string);
1218
1219 if (NILP (from))
1220 from_char = from_byte = 0;
1221 else
1222 {
1223 CHECK_NUMBER (from);
1224 from_char = XINT (from);
1225 if (from_char < 0)
1226 from_char += size;
1227
1228 from_byte = string_char_to_byte (string, from_char);
1229 }
1230
1231 if (NILP (to))
1232 {
1233 to_char = size;
1234 to_byte = size_byte;
1235 }
1236 else
1237 {
1238 CHECK_NUMBER (to);
1239
1240 to_char = XINT (to);
1241 if (to_char < 0)
1242 to_char += size;
1243
1244 to_byte = string_char_to_byte (string, to_char);
1245 }
1246
1247 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1248 args_out_of_range_3 (string, make_number (from_char),
1249 make_number (to_char));
1250
1251 return make_specified_string (SSDATA (string) + from_byte,
1252 to_char - from_char, to_byte - from_byte,
1253 STRING_MULTIBYTE (string));
1254 }
1255
1256 /* Extract a substring of STRING, giving start and end positions
1257 both in characters and in bytes. */
1258
1259 Lisp_Object
1260 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1261 EMACS_INT to, EMACS_INT to_byte)
1262 {
1263 Lisp_Object res;
1264 EMACS_INT size;
1265
1266 CHECK_VECTOR_OR_STRING (string);
1267
1268 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1269
1270 if (!(0 <= from && from <= to && to <= size))
1271 args_out_of_range_3 (string, make_number (from), make_number (to));
1272
1273 if (STRINGP (string))
1274 {
1275 res = make_specified_string (SSDATA (string) + from_byte,
1276 to - from, to_byte - from_byte,
1277 STRING_MULTIBYTE (string));
1278 copy_text_properties (make_number (from), make_number (to),
1279 string, make_number (0), res, Qnil);
1280 }
1281 else
1282 res = Fvector (to - from, &AREF (string, from));
1283
1284 return res;
1285 }
1286 \f
1287 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1288 doc: /* Take cdr N times on LIST, return the result. */)
1289 (Lisp_Object n, Lisp_Object list)
1290 {
1291 EMACS_INT i, num;
1292 CHECK_NUMBER (n);
1293 num = XINT (n);
1294 for (i = 0; i < num && !NILP (list); i++)
1295 {
1296 QUIT;
1297 CHECK_LIST_CONS (list, list);
1298 list = XCDR (list);
1299 }
1300 return list;
1301 }
1302
1303 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1304 doc: /* Return the Nth element of LIST.
1305 N counts from zero. If LIST is not that long, nil is returned. */)
1306 (Lisp_Object n, Lisp_Object list)
1307 {
1308 return Fcar (Fnthcdr (n, list));
1309 }
1310
1311 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1312 doc: /* Return element of SEQUENCE at index N. */)
1313 (register Lisp_Object sequence, Lisp_Object n)
1314 {
1315 CHECK_NUMBER (n);
1316 if (CONSP (sequence) || NILP (sequence))
1317 return Fcar (Fnthcdr (n, sequence));
1318
1319 /* Faref signals a "not array" error, so check here. */
1320 CHECK_ARRAY (sequence, Qsequencep);
1321 return Faref (sequence, n);
1322 }
1323
1324 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1325 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1326 The value is actually the tail of LIST whose car is ELT. */)
1327 (register Lisp_Object elt, Lisp_Object list)
1328 {
1329 register Lisp_Object tail;
1330 for (tail = list; CONSP (tail); tail = XCDR (tail))
1331 {
1332 register Lisp_Object tem;
1333 CHECK_LIST_CONS (tail, list);
1334 tem = XCAR (tail);
1335 if (! NILP (Fequal (elt, tem)))
1336 return tail;
1337 QUIT;
1338 }
1339 return Qnil;
1340 }
1341
1342 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1343 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1344 The value is actually the tail of LIST whose car is ELT. */)
1345 (register Lisp_Object elt, Lisp_Object list)
1346 {
1347 while (1)
1348 {
1349 if (!CONSP (list) || EQ (XCAR (list), elt))
1350 break;
1351
1352 list = XCDR (list);
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1355
1356 list = XCDR (list);
1357 if (!CONSP (list) || EQ (XCAR (list), elt))
1358 break;
1359
1360 list = XCDR (list);
1361 QUIT;
1362 }
1363
1364 CHECK_LIST (list);
1365 return list;
1366 }
1367
1368 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1369 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1370 The value is actually the tail of LIST whose car is ELT. */)
1371 (register Lisp_Object elt, Lisp_Object list)
1372 {
1373 register Lisp_Object tail;
1374
1375 if (!FLOATP (elt))
1376 return Fmemq (elt, list);
1377
1378 for (tail = list; CONSP (tail); tail = XCDR (tail))
1379 {
1380 register Lisp_Object tem;
1381 CHECK_LIST_CONS (tail, list);
1382 tem = XCAR (tail);
1383 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1384 return tail;
1385 QUIT;
1386 }
1387 return Qnil;
1388 }
1389
1390 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1391 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1392 The value is actually the first element of LIST whose car is KEY.
1393 Elements of LIST that are not conses are ignored. */)
1394 (Lisp_Object key, Lisp_Object list)
1395 {
1396 while (1)
1397 {
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1402
1403 list = XCDR (list);
1404 if (!CONSP (list)
1405 || (CONSP (XCAR (list))
1406 && EQ (XCAR (XCAR (list)), key)))
1407 break;
1408
1409 list = XCDR (list);
1410 if (!CONSP (list)
1411 || (CONSP (XCAR (list))
1412 && EQ (XCAR (XCAR (list)), key)))
1413 break;
1414
1415 list = XCDR (list);
1416 QUIT;
1417 }
1418
1419 return CAR (list);
1420 }
1421
1422 /* Like Fassq but never report an error and do not allow quits.
1423 Use only on lists known never to be circular. */
1424
1425 Lisp_Object
1426 assq_no_quit (Lisp_Object key, Lisp_Object list)
1427 {
1428 while (CONSP (list)
1429 && (!CONSP (XCAR (list))
1430 || !EQ (XCAR (XCAR (list)), key)))
1431 list = XCDR (list);
1432
1433 return CAR_SAFE (list);
1434 }
1435
1436 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1437 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1438 The value is actually the first element of LIST whose car equals KEY. */)
1439 (Lisp_Object key, Lisp_Object list)
1440 {
1441 Lisp_Object car;
1442
1443 while (1)
1444 {
1445 if (!CONSP (list)
1446 || (CONSP (XCAR (list))
1447 && (car = XCAR (XCAR (list)),
1448 EQ (car, key) || !NILP (Fequal (car, key)))))
1449 break;
1450
1451 list = XCDR (list);
1452 if (!CONSP (list)
1453 || (CONSP (XCAR (list))
1454 && (car = XCAR (XCAR (list)),
1455 EQ (car, key) || !NILP (Fequal (car, key)))))
1456 break;
1457
1458 list = XCDR (list);
1459 if (!CONSP (list)
1460 || (CONSP (XCAR (list))
1461 && (car = XCAR (XCAR (list)),
1462 EQ (car, key) || !NILP (Fequal (car, key)))))
1463 break;
1464
1465 list = XCDR (list);
1466 QUIT;
1467 }
1468
1469 return CAR (list);
1470 }
1471
1472 /* Like Fassoc but never report an error and do not allow quits.
1473 Use only on lists known never to be circular. */
1474
1475 Lisp_Object
1476 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1477 {
1478 while (CONSP (list)
1479 && (!CONSP (XCAR (list))
1480 || (!EQ (XCAR (XCAR (list)), key)
1481 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1482 list = XCDR (list);
1483
1484 return CONSP (list) ? XCAR (list) : Qnil;
1485 }
1486
1487 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1489 The value is actually the first element of LIST whose cdr is KEY. */)
1490 (register Lisp_Object key, Lisp_Object list)
1491 {
1492 while (1)
1493 {
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1498
1499 list = XCDR (list);
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && EQ (XCDR (XCAR (list)), key)))
1503 break;
1504
1505 list = XCDR (list);
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCDR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 QUIT;
1513 }
1514
1515 return CAR (list);
1516 }
1517
1518 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1520 The value is actually the first element of LIST whose cdr equals KEY. */)
1521 (Lisp_Object key, Lisp_Object list)
1522 {
1523 Lisp_Object cdr;
1524
1525 while (1)
1526 {
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (cdr = XCDR (XCAR (list)),
1530 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 if (!CONSP (list)
1535 || (CONSP (XCAR (list))
1536 && (cdr = XCDR (XCAR (list)),
1537 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1538 break;
1539
1540 list = XCDR (list);
1541 if (!CONSP (list)
1542 || (CONSP (XCAR (list))
1543 && (cdr = XCDR (XCAR (list)),
1544 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1545 break;
1546
1547 list = XCDR (list);
1548 QUIT;
1549 }
1550
1551 return CAR (list);
1552 }
1553 \f
1554 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1555 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1556 The modified LIST is returned. Comparison is done with `eq'.
1557 If the first member of LIST is ELT, there is no way to remove it by side effect;
1558 therefore, write `(setq foo (delq element foo))'
1559 to be sure of changing the value of `foo'. */)
1560 (register Lisp_Object elt, Lisp_Object list)
1561 {
1562 register Lisp_Object tail, prev;
1563 register Lisp_Object tem;
1564
1565 tail = list;
1566 prev = Qnil;
1567 while (!NILP (tail))
1568 {
1569 CHECK_LIST_CONS (tail, list);
1570 tem = XCAR (tail);
1571 if (EQ (elt, tem))
1572 {
1573 if (NILP (prev))
1574 list = XCDR (tail);
1575 else
1576 Fsetcdr (prev, XCDR (tail));
1577 }
1578 else
1579 prev = tail;
1580 tail = XCDR (tail);
1581 QUIT;
1582 }
1583 return list;
1584 }
1585
1586 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1587 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1588 SEQ must be a list, a vector, or a string.
1589 The modified SEQ is returned. Comparison is done with `equal'.
1590 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1591 is not a side effect; it is simply using a different sequence.
1592 Therefore, write `(setq foo (delete element foo))'
1593 to be sure of changing the value of `foo'. */)
1594 (Lisp_Object elt, Lisp_Object seq)
1595 {
1596 if (VECTORP (seq))
1597 {
1598 EMACS_INT i, n;
1599
1600 for (i = n = 0; i < ASIZE (seq); ++i)
1601 if (NILP (Fequal (AREF (seq, i), elt)))
1602 ++n;
1603
1604 if (n != ASIZE (seq))
1605 {
1606 struct Lisp_Vector *p = allocate_vector (n);
1607
1608 for (i = n = 0; i < ASIZE (seq); ++i)
1609 if (NILP (Fequal (AREF (seq, i), elt)))
1610 p->contents[n++] = AREF (seq, i);
1611
1612 XSETVECTOR (seq, p);
1613 }
1614 }
1615 else if (STRINGP (seq))
1616 {
1617 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1618 int c;
1619
1620 for (i = nchars = nbytes = ibyte = 0;
1621 i < SCHARS (seq);
1622 ++i, ibyte += cbytes)
1623 {
1624 if (STRING_MULTIBYTE (seq))
1625 {
1626 c = STRING_CHAR (SDATA (seq) + ibyte);
1627 cbytes = CHAR_BYTES (c);
1628 }
1629 else
1630 {
1631 c = SREF (seq, i);
1632 cbytes = 1;
1633 }
1634
1635 if (!INTEGERP (elt) || c != XINT (elt))
1636 {
1637 ++nchars;
1638 nbytes += cbytes;
1639 }
1640 }
1641
1642 if (nchars != SCHARS (seq))
1643 {
1644 Lisp_Object tem;
1645
1646 tem = make_uninit_multibyte_string (nchars, nbytes);
1647 if (!STRING_MULTIBYTE (seq))
1648 STRING_SET_UNIBYTE (tem);
1649
1650 for (i = nchars = nbytes = ibyte = 0;
1651 i < SCHARS (seq);
1652 ++i, ibyte += cbytes)
1653 {
1654 if (STRING_MULTIBYTE (seq))
1655 {
1656 c = STRING_CHAR (SDATA (seq) + ibyte);
1657 cbytes = CHAR_BYTES (c);
1658 }
1659 else
1660 {
1661 c = SREF (seq, i);
1662 cbytes = 1;
1663 }
1664
1665 if (!INTEGERP (elt) || c != XINT (elt))
1666 {
1667 unsigned char *from = SDATA (seq) + ibyte;
1668 unsigned char *to = SDATA (tem) + nbytes;
1669 EMACS_INT n;
1670
1671 ++nchars;
1672 nbytes += cbytes;
1673
1674 for (n = cbytes; n--; )
1675 *to++ = *from++;
1676 }
1677 }
1678
1679 seq = tem;
1680 }
1681 }
1682 else
1683 {
1684 Lisp_Object tail, prev;
1685
1686 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1687 {
1688 CHECK_LIST_CONS (tail, seq);
1689
1690 if (!NILP (Fequal (elt, XCAR (tail))))
1691 {
1692 if (NILP (prev))
1693 seq = XCDR (tail);
1694 else
1695 Fsetcdr (prev, XCDR (tail));
1696 }
1697 else
1698 prev = tail;
1699 QUIT;
1700 }
1701 }
1702
1703 return seq;
1704 }
1705
1706 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1707 doc: /* Reverse LIST by modifying cdr pointers.
1708 Return the reversed list. */)
1709 (Lisp_Object list)
1710 {
1711 register Lisp_Object prev, tail, next;
1712
1713 if (NILP (list)) return list;
1714 prev = Qnil;
1715 tail = list;
1716 while (!NILP (tail))
1717 {
1718 QUIT;
1719 CHECK_LIST_CONS (tail, list);
1720 next = XCDR (tail);
1721 Fsetcdr (tail, prev);
1722 prev = tail;
1723 tail = next;
1724 }
1725 return prev;
1726 }
1727
1728 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1729 doc: /* Reverse LIST, copying. Return the reversed list.
1730 See also the function `nreverse', which is used more often. */)
1731 (Lisp_Object list)
1732 {
1733 Lisp_Object new;
1734
1735 for (new = Qnil; CONSP (list); list = XCDR (list))
1736 {
1737 QUIT;
1738 new = Fcons (XCAR (list), new);
1739 }
1740 CHECK_LIST_END (list, list);
1741 return new;
1742 }
1743 \f
1744 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1745
1746 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1747 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1748 Returns the sorted list. LIST is modified by side effects.
1749 PREDICATE is called with two elements of LIST, and should return non-nil
1750 if the first element should sort before the second. */)
1751 (Lisp_Object list, Lisp_Object predicate)
1752 {
1753 Lisp_Object front, back;
1754 register Lisp_Object len, tem;
1755 struct gcpro gcpro1, gcpro2;
1756 EMACS_INT length;
1757
1758 front = list;
1759 len = Flength (list);
1760 length = XINT (len);
1761 if (length < 2)
1762 return list;
1763
1764 XSETINT (len, (length / 2) - 1);
1765 tem = Fnthcdr (len, list);
1766 back = Fcdr (tem);
1767 Fsetcdr (tem, Qnil);
1768
1769 GCPRO2 (front, back);
1770 front = Fsort (front, predicate);
1771 back = Fsort (back, predicate);
1772 UNGCPRO;
1773 return merge (front, back, predicate);
1774 }
1775
1776 Lisp_Object
1777 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1778 {
1779 Lisp_Object value;
1780 register Lisp_Object tail;
1781 Lisp_Object tem;
1782 register Lisp_Object l1, l2;
1783 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1784
1785 l1 = org_l1;
1786 l2 = org_l2;
1787 tail = Qnil;
1788 value = Qnil;
1789
1790 /* It is sufficient to protect org_l1 and org_l2.
1791 When l1 and l2 are updated, we copy the new values
1792 back into the org_ vars. */
1793 GCPRO4 (org_l1, org_l2, pred, value);
1794
1795 while (1)
1796 {
1797 if (NILP (l1))
1798 {
1799 UNGCPRO;
1800 if (NILP (tail))
1801 return l2;
1802 Fsetcdr (tail, l2);
1803 return value;
1804 }
1805 if (NILP (l2))
1806 {
1807 UNGCPRO;
1808 if (NILP (tail))
1809 return l1;
1810 Fsetcdr (tail, l1);
1811 return value;
1812 }
1813 tem = call2 (pred, Fcar (l2), Fcar (l1));
1814 if (NILP (tem))
1815 {
1816 tem = l1;
1817 l1 = Fcdr (l1);
1818 org_l1 = l1;
1819 }
1820 else
1821 {
1822 tem = l2;
1823 l2 = Fcdr (l2);
1824 org_l2 = l2;
1825 }
1826 if (NILP (tail))
1827 value = tem;
1828 else
1829 Fsetcdr (tail, tem);
1830 tail = tem;
1831 }
1832 }
1833
1834 \f
1835 /* This does not check for quits. That is safe since it must terminate. */
1836
1837 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1838 doc: /* Extract a value from a property list.
1839 PLIST is a property list, which is a list of the form
1840 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1841 corresponding to the given PROP, or nil if PROP is not one of the
1842 properties on the list. This function never signals an error. */)
1843 (Lisp_Object plist, Lisp_Object prop)
1844 {
1845 Lisp_Object tail, halftail;
1846
1847 /* halftail is used to detect circular lists. */
1848 tail = halftail = plist;
1849 while (CONSP (tail) && CONSP (XCDR (tail)))
1850 {
1851 if (EQ (prop, XCAR (tail)))
1852 return XCAR (XCDR (tail));
1853
1854 tail = XCDR (XCDR (tail));
1855 halftail = XCDR (halftail);
1856 if (EQ (tail, halftail))
1857 break;
1858
1859 #if 0 /* Unsafe version. */
1860 /* This function can be called asynchronously
1861 (setup_coding_system). Don't QUIT in that case. */
1862 if (!interrupt_input_blocked)
1863 QUIT;
1864 #endif
1865 }
1866
1867 return Qnil;
1868 }
1869
1870 DEFUN ("get", Fget, Sget, 2, 2, 0,
1871 doc: /* Return the value of SYMBOL's PROPNAME property.
1872 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1873 (Lisp_Object symbol, Lisp_Object propname)
1874 {
1875 CHECK_SYMBOL (symbol);
1876 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1877 }
1878
1879 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1880 doc: /* Change value in PLIST of PROP to VAL.
1881 PLIST is a property list, which is a list of the form
1882 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1883 If PROP is already a property on the list, its value is set to VAL,
1884 otherwise the new PROP VAL pair is added. The new plist is returned;
1885 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1886 The PLIST is modified by side effects. */)
1887 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1888 {
1889 register Lisp_Object tail, prev;
1890 Lisp_Object newcell;
1891 prev = Qnil;
1892 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1893 tail = XCDR (XCDR (tail)))
1894 {
1895 if (EQ (prop, XCAR (tail)))
1896 {
1897 Fsetcar (XCDR (tail), val);
1898 return plist;
1899 }
1900
1901 prev = tail;
1902 QUIT;
1903 }
1904 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1905 if (NILP (prev))
1906 return newcell;
1907 else
1908 Fsetcdr (XCDR (prev), newcell);
1909 return plist;
1910 }
1911
1912 DEFUN ("put", Fput, Sput, 3, 3, 0,
1913 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1914 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1915 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1916 {
1917 CHECK_SYMBOL (symbol);
1918 XSYMBOL (symbol)->plist
1919 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1920 return value;
1921 }
1922 \f
1923 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1924 doc: /* Extract a value from a property list, comparing with `equal'.
1925 PLIST is a property list, which is a list of the form
1926 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1927 corresponding to the given PROP, or nil if PROP is not
1928 one of the properties on the list. */)
1929 (Lisp_Object plist, Lisp_Object prop)
1930 {
1931 Lisp_Object tail;
1932
1933 for (tail = plist;
1934 CONSP (tail) && CONSP (XCDR (tail));
1935 tail = XCDR (XCDR (tail)))
1936 {
1937 if (! NILP (Fequal (prop, XCAR (tail))))
1938 return XCAR (XCDR (tail));
1939
1940 QUIT;
1941 }
1942
1943 CHECK_LIST_END (tail, prop);
1944
1945 return Qnil;
1946 }
1947
1948 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1949 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1950 PLIST is a property list, which is a list of the form
1951 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1952 If PROP is already a property on the list, its value is set to VAL,
1953 otherwise the new PROP VAL pair is added. The new plist is returned;
1954 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1955 The PLIST is modified by side effects. */)
1956 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1957 {
1958 register Lisp_Object tail, prev;
1959 Lisp_Object newcell;
1960 prev = Qnil;
1961 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1962 tail = XCDR (XCDR (tail)))
1963 {
1964 if (! NILP (Fequal (prop, XCAR (tail))))
1965 {
1966 Fsetcar (XCDR (tail), val);
1967 return plist;
1968 }
1969
1970 prev = tail;
1971 QUIT;
1972 }
1973 newcell = Fcons (prop, Fcons (val, Qnil));
1974 if (NILP (prev))
1975 return newcell;
1976 else
1977 Fsetcdr (XCDR (prev), newcell);
1978 return plist;
1979 }
1980 \f
1981 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1982 doc: /* Return t if the two args are the same Lisp object.
1983 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1984 (Lisp_Object obj1, Lisp_Object obj2)
1985 {
1986 if (FLOATP (obj1))
1987 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1988 else
1989 return EQ (obj1, obj2) ? Qt : Qnil;
1990 }
1991
1992 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1993 doc: /* Return t if two Lisp objects have similar structure and contents.
1994 They must have the same data type.
1995 Conses are compared by comparing the cars and the cdrs.
1996 Vectors and strings are compared element by element.
1997 Numbers are compared by value, but integers cannot equal floats.
1998 (Use `=' if you want integers and floats to be able to be equal.)
1999 Symbols must match exactly. */)
2000 (register Lisp_Object o1, Lisp_Object o2)
2001 {
2002 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2003 }
2004
2005 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2006 doc: /* Return t if two Lisp objects have similar structure and contents.
2007 This is like `equal' except that it compares the text properties
2008 of strings. (`equal' ignores text properties.) */)
2009 (register Lisp_Object o1, Lisp_Object o2)
2010 {
2011 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2012 }
2013
2014 /* DEPTH is current depth of recursion. Signal an error if it
2015 gets too deep.
2016 PROPS, if non-nil, means compare string text properties too. */
2017
2018 static int
2019 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2020 {
2021 if (depth > 200)
2022 error ("Stack overflow in equal");
2023
2024 tail_recurse:
2025 QUIT;
2026 if (EQ (o1, o2))
2027 return 1;
2028 if (XTYPE (o1) != XTYPE (o2))
2029 return 0;
2030
2031 switch (XTYPE (o1))
2032 {
2033 case Lisp_Float:
2034 {
2035 double d1, d2;
2036
2037 d1 = extract_float (o1);
2038 d2 = extract_float (o2);
2039 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2040 though they are not =. */
2041 return d1 == d2 || (d1 != d1 && d2 != d2);
2042 }
2043
2044 case Lisp_Cons:
2045 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2046 return 0;
2047 o1 = XCDR (o1);
2048 o2 = XCDR (o2);
2049 goto tail_recurse;
2050
2051 case Lisp_Misc:
2052 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2053 return 0;
2054 if (OVERLAYP (o1))
2055 {
2056 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2057 depth + 1, props)
2058 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2059 depth + 1, props))
2060 return 0;
2061 o1 = XOVERLAY (o1)->plist;
2062 o2 = XOVERLAY (o2)->plist;
2063 goto tail_recurse;
2064 }
2065 if (MARKERP (o1))
2066 {
2067 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2068 && (XMARKER (o1)->buffer == 0
2069 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2070 }
2071 break;
2072
2073 case Lisp_Vectorlike:
2074 {
2075 register int i;
2076 EMACS_INT size = ASIZE (o1);
2077 /* Pseudovectors have the type encoded in the size field, so this test
2078 actually checks that the objects have the same type as well as the
2079 same size. */
2080 if (ASIZE (o2) != size)
2081 return 0;
2082 /* Boolvectors are compared much like strings. */
2083 if (BOOL_VECTOR_P (o1))
2084 {
2085 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2086 return 0;
2087 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2088 ((XBOOL_VECTOR (o1)->size
2089 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2090 / BOOL_VECTOR_BITS_PER_CHAR)))
2091 return 0;
2092 return 1;
2093 }
2094 if (WINDOW_CONFIGURATIONP (o1))
2095 return compare_window_configurations (o1, o2, 0);
2096
2097 /* Aside from them, only true vectors, char-tables, compiled
2098 functions, and fonts (font-spec, font-entity, font-object)
2099 are sensible to compare, so eliminate the others now. */
2100 if (size & PSEUDOVECTOR_FLAG)
2101 {
2102 if (!(size & (PVEC_COMPILED
2103 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2104 return 0;
2105 size &= PSEUDOVECTOR_SIZE_MASK;
2106 }
2107 for (i = 0; i < size; i++)
2108 {
2109 Lisp_Object v1, v2;
2110 v1 = AREF (o1, i);
2111 v2 = AREF (o2, i);
2112 if (!internal_equal (v1, v2, depth + 1, props))
2113 return 0;
2114 }
2115 return 1;
2116 }
2117 break;
2118
2119 case Lisp_String:
2120 if (SCHARS (o1) != SCHARS (o2))
2121 return 0;
2122 if (SBYTES (o1) != SBYTES (o2))
2123 return 0;
2124 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2125 return 0;
2126 if (props && !compare_string_intervals (o1, o2))
2127 return 0;
2128 return 1;
2129
2130 default:
2131 break;
2132 }
2133
2134 return 0;
2135 }
2136 \f
2137
2138 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2139 doc: /* Store each element of ARRAY with ITEM.
2140 ARRAY is a vector, string, char-table, or bool-vector. */)
2141 (Lisp_Object array, Lisp_Object item)
2142 {
2143 register EMACS_INT size, idx;
2144 int charval;
2145
2146 if (VECTORP (array))
2147 {
2148 register Lisp_Object *p = XVECTOR (array)->contents;
2149 size = ASIZE (array);
2150 for (idx = 0; idx < size; idx++)
2151 p[idx] = item;
2152 }
2153 else if (CHAR_TABLE_P (array))
2154 {
2155 int i;
2156
2157 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2158 XCHAR_TABLE (array)->contents[i] = item;
2159 XCHAR_TABLE (array)->defalt = item;
2160 }
2161 else if (STRINGP (array))
2162 {
2163 register unsigned char *p = SDATA (array);
2164 CHECK_NUMBER (item);
2165 charval = XINT (item);
2166 size = SCHARS (array);
2167 if (STRING_MULTIBYTE (array))
2168 {
2169 unsigned char str[MAX_MULTIBYTE_LENGTH];
2170 int len = CHAR_STRING (charval, str);
2171 EMACS_INT size_byte = SBYTES (array);
2172 unsigned char *p1 = p, *endp = p + size_byte;
2173 int i;
2174
2175 if (size != size_byte)
2176 while (p1 < endp)
2177 {
2178 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2179 if (len != this_len)
2180 error ("Attempt to change byte length of a string");
2181 p1 += this_len;
2182 }
2183 for (i = 0; i < size_byte; i++)
2184 *p++ = str[i % len];
2185 }
2186 else
2187 for (idx = 0; idx < size; idx++)
2188 p[idx] = charval;
2189 }
2190 else if (BOOL_VECTOR_P (array))
2191 {
2192 register unsigned char *p = XBOOL_VECTOR (array)->data;
2193 int size_in_chars
2194 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2195 / BOOL_VECTOR_BITS_PER_CHAR);
2196
2197 charval = (! NILP (item) ? -1 : 0);
2198 for (idx = 0; idx < size_in_chars - 1; idx++)
2199 p[idx] = charval;
2200 if (idx < size_in_chars)
2201 {
2202 /* Mask out bits beyond the vector size. */
2203 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2204 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2205 p[idx] = charval;
2206 }
2207 }
2208 else
2209 wrong_type_argument (Qarrayp, array);
2210 return array;
2211 }
2212
2213 DEFUN ("clear-string", Fclear_string, Sclear_string,
2214 1, 1, 0,
2215 doc: /* Clear the contents of STRING.
2216 This makes STRING unibyte and may change its length. */)
2217 (Lisp_Object string)
2218 {
2219 EMACS_INT len;
2220 CHECK_STRING (string);
2221 len = SBYTES (string);
2222 memset (SDATA (string), 0, len);
2223 STRING_SET_CHARS (string, len);
2224 STRING_SET_UNIBYTE (string);
2225 return Qnil;
2226 }
2227 \f
2228 /* ARGSUSED */
2229 Lisp_Object
2230 nconc2 (Lisp_Object s1, Lisp_Object s2)
2231 {
2232 Lisp_Object args[2];
2233 args[0] = s1;
2234 args[1] = s2;
2235 return Fnconc (2, args);
2236 }
2237
2238 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2239 doc: /* Concatenate any number of lists by altering them.
2240 Only the last argument is not altered, and need not be a list.
2241 usage: (nconc &rest LISTS) */)
2242 (ptrdiff_t nargs, Lisp_Object *args)
2243 {
2244 ptrdiff_t argnum;
2245 register Lisp_Object tail, tem, val;
2246
2247 val = tail = Qnil;
2248
2249 for (argnum = 0; argnum < nargs; argnum++)
2250 {
2251 tem = args[argnum];
2252 if (NILP (tem)) continue;
2253
2254 if (NILP (val))
2255 val = tem;
2256
2257 if (argnum + 1 == nargs) break;
2258
2259 CHECK_LIST_CONS (tem, tem);
2260
2261 while (CONSP (tem))
2262 {
2263 tail = tem;
2264 tem = XCDR (tail);
2265 QUIT;
2266 }
2267
2268 tem = args[argnum + 1];
2269 Fsetcdr (tail, tem);
2270 if (NILP (tem))
2271 args[argnum + 1] = tail;
2272 }
2273
2274 return val;
2275 }
2276 \f
2277 /* This is the guts of all mapping functions.
2278 Apply FN to each element of SEQ, one by one,
2279 storing the results into elements of VALS, a C vector of Lisp_Objects.
2280 LENI is the length of VALS, which should also be the length of SEQ. */
2281
2282 static void
2283 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2284 {
2285 register Lisp_Object tail;
2286 Lisp_Object dummy;
2287 register EMACS_INT i;
2288 struct gcpro gcpro1, gcpro2, gcpro3;
2289
2290 if (vals)
2291 {
2292 /* Don't let vals contain any garbage when GC happens. */
2293 for (i = 0; i < leni; i++)
2294 vals[i] = Qnil;
2295
2296 GCPRO3 (dummy, fn, seq);
2297 gcpro1.var = vals;
2298 gcpro1.nvars = leni;
2299 }
2300 else
2301 GCPRO2 (fn, seq);
2302 /* We need not explicitly protect `tail' because it is used only on lists, and
2303 1) lists are not relocated and 2) the list is marked via `seq' so will not
2304 be freed */
2305
2306 if (VECTORP (seq) || COMPILEDP (seq))
2307 {
2308 for (i = 0; i < leni; i++)
2309 {
2310 dummy = call1 (fn, AREF (seq, i));
2311 if (vals)
2312 vals[i] = dummy;
2313 }
2314 }
2315 else if (BOOL_VECTOR_P (seq))
2316 {
2317 for (i = 0; i < leni; i++)
2318 {
2319 int byte;
2320 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2321 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2322 dummy = call1 (fn, dummy);
2323 if (vals)
2324 vals[i] = dummy;
2325 }
2326 }
2327 else if (STRINGP (seq))
2328 {
2329 EMACS_INT i_byte;
2330
2331 for (i = 0, i_byte = 0; i < leni;)
2332 {
2333 int c;
2334 EMACS_INT i_before = i;
2335
2336 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2337 XSETFASTINT (dummy, c);
2338 dummy = call1 (fn, dummy);
2339 if (vals)
2340 vals[i_before] = dummy;
2341 }
2342 }
2343 else /* Must be a list, since Flength did not get an error */
2344 {
2345 tail = seq;
2346 for (i = 0; i < leni && CONSP (tail); i++)
2347 {
2348 dummy = call1 (fn, XCAR (tail));
2349 if (vals)
2350 vals[i] = dummy;
2351 tail = XCDR (tail);
2352 }
2353 }
2354
2355 UNGCPRO;
2356 }
2357
2358 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2359 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2360 In between each pair of results, stick in SEPARATOR. Thus, " " as
2361 SEPARATOR results in spaces between the values returned by FUNCTION.
2362 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2363 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2364 {
2365 Lisp_Object len;
2366 register EMACS_INT leni;
2367 ptrdiff_t i, nargs;
2368 register Lisp_Object *args;
2369 struct gcpro gcpro1;
2370 Lisp_Object ret;
2371 USE_SAFE_ALLOCA;
2372
2373 len = Flength (sequence);
2374 if (CHAR_TABLE_P (sequence))
2375 wrong_type_argument (Qlistp, sequence);
2376 leni = XINT (len);
2377 nargs = leni + leni - 1;
2378 if (nargs < 0) return empty_unibyte_string;
2379
2380 SAFE_ALLOCA_LISP (args, nargs);
2381
2382 GCPRO1 (separator);
2383 mapcar1 (leni, args, function, sequence);
2384 UNGCPRO;
2385
2386 for (i = leni - 1; i > 0; i--)
2387 args[i + i] = args[i];
2388
2389 for (i = 1; i < nargs; i += 2)
2390 args[i] = separator;
2391
2392 ret = Fconcat (nargs, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2400 The result is a list just as long as SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register Lisp_Object len;
2405 register EMACS_INT leni;
2406 register Lisp_Object *args;
2407 Lisp_Object ret;
2408 USE_SAFE_ALLOCA;
2409
2410 len = Flength (sequence);
2411 if (CHAR_TABLE_P (sequence))
2412 wrong_type_argument (Qlistp, sequence);
2413 leni = XFASTINT (len);
2414
2415 SAFE_ALLOCA_LISP (args, leni);
2416
2417 mapcar1 (leni, args, function, sequence);
2418
2419 ret = Flist (leni, args);
2420 SAFE_FREE ();
2421
2422 return ret;
2423 }
2424
2425 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2426 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2427 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2428 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2429 (Lisp_Object function, Lisp_Object sequence)
2430 {
2431 register EMACS_INT leni;
2432
2433 leni = XFASTINT (Flength (sequence));
2434 if (CHAR_TABLE_P (sequence))
2435 wrong_type_argument (Qlistp, sequence);
2436 mapcar1 (leni, 0, function, sequence);
2437
2438 return sequence;
2439 }
2440 \f
2441 /* This is how C code calls `yes-or-no-p' and allows the user
2442 to redefined it.
2443
2444 Anything that calls this function must protect from GC! */
2445
2446 Lisp_Object
2447 do_yes_or_no_p (Lisp_Object prompt)
2448 {
2449 return call1 (intern ("yes-or-no-p"), prompt);
2450 }
2451
2452 /* Anything that calls this function must protect from GC! */
2453
2454 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2455 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2456 PROMPT is the string to display to ask the question. It should end in
2457 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2458
2459 The user must confirm the answer with RET, and can edit it until it
2460 has been confirmed.
2461
2462 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2463 is nil, and `use-dialog-box' is non-nil. */)
2464 (Lisp_Object prompt)
2465 {
2466 register Lisp_Object ans;
2467 Lisp_Object args[2];
2468 struct gcpro gcpro1;
2469
2470 CHECK_STRING (prompt);
2471
2472 #ifdef HAVE_MENUS
2473 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2474 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2475 && use_dialog_box
2476 && have_menus_p ())
2477 {
2478 Lisp_Object pane, menu, obj;
2479 redisplay_preserve_echo_area (4);
2480 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2481 Fcons (Fcons (build_string ("No"), Qnil),
2482 Qnil));
2483 GCPRO1 (pane);
2484 menu = Fcons (prompt, pane);
2485 obj = Fx_popup_dialog (Qt, menu, Qnil);
2486 UNGCPRO;
2487 return obj;
2488 }
2489 #endif /* HAVE_MENUS */
2490
2491 args[0] = prompt;
2492 args[1] = build_string ("(yes or no) ");
2493 prompt = Fconcat (2, args);
2494
2495 GCPRO1 (prompt);
2496
2497 while (1)
2498 {
2499 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2500 Qyes_or_no_p_history, Qnil,
2501 Qnil));
2502 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2503 {
2504 UNGCPRO;
2505 return Qt;
2506 }
2507 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2508 {
2509 UNGCPRO;
2510 return Qnil;
2511 }
2512
2513 Fding (Qnil);
2514 Fdiscard_input ();
2515 message ("Please answer yes or no.");
2516 Fsleep_for (make_number (2), Qnil);
2517 }
2518 }
2519 \f
2520 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2521 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2522
2523 Each of the three load averages is multiplied by 100, then converted
2524 to integer.
2525
2526 When USE-FLOATS is non-nil, floats will be used instead of integers.
2527 These floats are not multiplied by 100.
2528
2529 If the 5-minute or 15-minute load averages are not available, return a
2530 shortened list, containing only those averages which are available.
2531
2532 An error is thrown if the load average can't be obtained. In some
2533 cases making it work would require Emacs being installed setuid or
2534 setgid so that it can read kernel information, and that usually isn't
2535 advisable. */)
2536 (Lisp_Object use_floats)
2537 {
2538 double load_ave[3];
2539 int loads = getloadavg (load_ave, 3);
2540 Lisp_Object ret = Qnil;
2541
2542 if (loads < 0)
2543 error ("load-average not implemented for this operating system");
2544
2545 while (loads-- > 0)
2546 {
2547 Lisp_Object load = (NILP (use_floats)
2548 ? make_number (100.0 * load_ave[loads])
2549 : make_float (load_ave[loads]));
2550 ret = Fcons (load, ret);
2551 }
2552
2553 return ret;
2554 }
2555 \f
2556 static Lisp_Object Qsubfeatures;
2557
2558 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2559 doc: /* Return t if FEATURE is present in this Emacs.
2560
2561 Use this to conditionalize execution of lisp code based on the
2562 presence or absence of Emacs or environment extensions.
2563 Use `provide' to declare that a feature is available. This function
2564 looks at the value of the variable `features'. The optional argument
2565 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2566 (Lisp_Object feature, Lisp_Object subfeature)
2567 {
2568 register Lisp_Object tem;
2569 CHECK_SYMBOL (feature);
2570 tem = Fmemq (feature, Vfeatures);
2571 if (!NILP (tem) && !NILP (subfeature))
2572 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2573 return (NILP (tem)) ? Qnil : Qt;
2574 }
2575
2576 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2577 doc: /* Announce that FEATURE is a feature of the current Emacs.
2578 The optional argument SUBFEATURES should be a list of symbols listing
2579 particular subfeatures supported in this version of FEATURE. */)
2580 (Lisp_Object feature, Lisp_Object subfeatures)
2581 {
2582 register Lisp_Object tem;
2583 CHECK_SYMBOL (feature);
2584 CHECK_LIST (subfeatures);
2585 if (!NILP (Vautoload_queue))
2586 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2587 Vautoload_queue);
2588 tem = Fmemq (feature, Vfeatures);
2589 if (NILP (tem))
2590 Vfeatures = Fcons (feature, Vfeatures);
2591 if (!NILP (subfeatures))
2592 Fput (feature, Qsubfeatures, subfeatures);
2593 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2594
2595 /* Run any load-hooks for this file. */
2596 tem = Fassq (feature, Vafter_load_alist);
2597 if (CONSP (tem))
2598 Fprogn (XCDR (tem));
2599
2600 return feature;
2601 }
2602 \f
2603 /* `require' and its subroutines. */
2604
2605 /* List of features currently being require'd, innermost first. */
2606
2607 static Lisp_Object require_nesting_list;
2608
2609 static Lisp_Object
2610 require_unwind (Lisp_Object old_value)
2611 {
2612 return require_nesting_list = old_value;
2613 }
2614
2615 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2616 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2617 If FEATURE is not a member of the list `features', then the feature
2618 is not loaded; so load the file FILENAME.
2619 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2620 and `load' will try to load this name appended with the suffix `.elc' or
2621 `.el', in that order. The name without appended suffix will not be used.
2622 If the optional third argument NOERROR is non-nil,
2623 then return nil if the file is not found instead of signaling an error.
2624 Normally the return value is FEATURE.
2625 The normal messages at start and end of loading FILENAME are suppressed. */)
2626 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2627 {
2628 register Lisp_Object tem;
2629 struct gcpro gcpro1, gcpro2;
2630 int from_file = load_in_progress;
2631
2632 CHECK_SYMBOL (feature);
2633
2634 /* Record the presence of `require' in this file
2635 even if the feature specified is already loaded.
2636 But not more than once in any file,
2637 and not when we aren't loading or reading from a file. */
2638 if (!from_file)
2639 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2640 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2641 from_file = 1;
2642
2643 if (from_file)
2644 {
2645 tem = Fcons (Qrequire, feature);
2646 if (NILP (Fmember (tem, Vcurrent_load_list)))
2647 LOADHIST_ATTACH (tem);
2648 }
2649 tem = Fmemq (feature, Vfeatures);
2650
2651 if (NILP (tem))
2652 {
2653 int count = SPECPDL_INDEX ();
2654 int nesting = 0;
2655
2656 /* This is to make sure that loadup.el gives a clear picture
2657 of what files are preloaded and when. */
2658 if (! NILP (Vpurify_flag))
2659 error ("(require %s) while preparing to dump",
2660 SDATA (SYMBOL_NAME (feature)));
2661
2662 /* A certain amount of recursive `require' is legitimate,
2663 but if we require the same feature recursively 3 times,
2664 signal an error. */
2665 tem = require_nesting_list;
2666 while (! NILP (tem))
2667 {
2668 if (! NILP (Fequal (feature, XCAR (tem))))
2669 nesting++;
2670 tem = XCDR (tem);
2671 }
2672 if (nesting > 3)
2673 error ("Recursive `require' for feature `%s'",
2674 SDATA (SYMBOL_NAME (feature)));
2675
2676 /* Update the list for any nested `require's that occur. */
2677 record_unwind_protect (require_unwind, require_nesting_list);
2678 require_nesting_list = Fcons (feature, require_nesting_list);
2679
2680 /* Value saved here is to be restored into Vautoload_queue */
2681 record_unwind_protect (un_autoload, Vautoload_queue);
2682 Vautoload_queue = Qt;
2683
2684 /* Load the file. */
2685 GCPRO2 (feature, filename);
2686 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2687 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2688 UNGCPRO;
2689
2690 /* If load failed entirely, return nil. */
2691 if (NILP (tem))
2692 return unbind_to (count, Qnil);
2693
2694 tem = Fmemq (feature, Vfeatures);
2695 if (NILP (tem))
2696 error ("Required feature `%s' was not provided",
2697 SDATA (SYMBOL_NAME (feature)));
2698
2699 /* Once loading finishes, don't undo it. */
2700 Vautoload_queue = Qt;
2701 feature = unbind_to (count, feature);
2702 }
2703
2704 return feature;
2705 }
2706 \f
2707 /* Primitives for work of the "widget" library.
2708 In an ideal world, this section would not have been necessary.
2709 However, lisp function calls being as slow as they are, it turns
2710 out that some functions in the widget library (wid-edit.el) are the
2711 bottleneck of Widget operation. Here is their translation to C,
2712 for the sole reason of efficiency. */
2713
2714 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2715 doc: /* Return non-nil if PLIST has the property PROP.
2716 PLIST is a property list, which is a list of the form
2717 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2718 Unlike `plist-get', this allows you to distinguish between a missing
2719 property and a property with the value nil.
2720 The value is actually the tail of PLIST whose car is PROP. */)
2721 (Lisp_Object plist, Lisp_Object prop)
2722 {
2723 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2724 {
2725 QUIT;
2726 plist = XCDR (plist);
2727 plist = CDR (plist);
2728 }
2729 return plist;
2730 }
2731
2732 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2733 doc: /* In WIDGET, set PROPERTY to VALUE.
2734 The value can later be retrieved with `widget-get'. */)
2735 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2736 {
2737 CHECK_CONS (widget);
2738 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2739 return value;
2740 }
2741
2742 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2743 doc: /* In WIDGET, get the value of PROPERTY.
2744 The value could either be specified when the widget was created, or
2745 later with `widget-put'. */)
2746 (Lisp_Object widget, Lisp_Object property)
2747 {
2748 Lisp_Object tmp;
2749
2750 while (1)
2751 {
2752 if (NILP (widget))
2753 return Qnil;
2754 CHECK_CONS (widget);
2755 tmp = Fplist_member (XCDR (widget), property);
2756 if (CONSP (tmp))
2757 {
2758 tmp = XCDR (tmp);
2759 return CAR (tmp);
2760 }
2761 tmp = XCAR (widget);
2762 if (NILP (tmp))
2763 return Qnil;
2764 widget = Fget (tmp, Qwidget_type);
2765 }
2766 }
2767
2768 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2769 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2770 ARGS are passed as extra arguments to the function.
2771 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2772 (ptrdiff_t nargs, Lisp_Object *args)
2773 {
2774 /* This function can GC. */
2775 Lisp_Object newargs[3];
2776 struct gcpro gcpro1, gcpro2;
2777 Lisp_Object result;
2778
2779 newargs[0] = Fwidget_get (args[0], args[1]);
2780 newargs[1] = args[0];
2781 newargs[2] = Flist (nargs - 2, args + 2);
2782 GCPRO2 (newargs[0], newargs[2]);
2783 result = Fapply (3, newargs);
2784 UNGCPRO;
2785 return result;
2786 }
2787
2788 #ifdef HAVE_LANGINFO_CODESET
2789 #include <langinfo.h>
2790 #endif
2791
2792 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2793 doc: /* Access locale data ITEM for the current C locale, if available.
2794 ITEM should be one of the following:
2795
2796 `codeset', returning the character set as a string (locale item CODESET);
2797
2798 `days', returning a 7-element vector of day names (locale items DAY_n);
2799
2800 `months', returning a 12-element vector of month names (locale items MON_n);
2801
2802 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2803 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2804
2805 If the system can't provide such information through a call to
2806 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2807
2808 See also Info node `(libc)Locales'.
2809
2810 The data read from the system are decoded using `locale-coding-system'. */)
2811 (Lisp_Object item)
2812 {
2813 char *str = NULL;
2814 #ifdef HAVE_LANGINFO_CODESET
2815 Lisp_Object val;
2816 if (EQ (item, Qcodeset))
2817 {
2818 str = nl_langinfo (CODESET);
2819 return build_string (str);
2820 }
2821 #ifdef DAY_1
2822 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2823 {
2824 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2825 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2826 int i;
2827 struct gcpro gcpro1;
2828 GCPRO1 (v);
2829 synchronize_system_time_locale ();
2830 for (i = 0; i < 7; i++)
2831 {
2832 str = nl_langinfo (days[i]);
2833 val = make_unibyte_string (str, strlen (str));
2834 /* Fixme: Is this coding system necessarily right, even if
2835 it is consistent with CODESET? If not, what to do? */
2836 Faset (v, make_number (i),
2837 code_convert_string_norecord (val, Vlocale_coding_system,
2838 0));
2839 }
2840 UNGCPRO;
2841 return v;
2842 }
2843 #endif /* DAY_1 */
2844 #ifdef MON_1
2845 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2846 {
2847 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2848 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2849 MON_8, MON_9, MON_10, MON_11, MON_12};
2850 int i;
2851 struct gcpro gcpro1;
2852 GCPRO1 (v);
2853 synchronize_system_time_locale ();
2854 for (i = 0; i < 12; i++)
2855 {
2856 str = nl_langinfo (months[i]);
2857 val = make_unibyte_string (str, strlen (str));
2858 Faset (v, make_number (i),
2859 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2860 }
2861 UNGCPRO;
2862 return v;
2863 }
2864 #endif /* MON_1 */
2865 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2866 but is in the locale files. This could be used by ps-print. */
2867 #ifdef PAPER_WIDTH
2868 else if (EQ (item, Qpaper))
2869 {
2870 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2871 make_number (nl_langinfo (PAPER_HEIGHT)));
2872 }
2873 #endif /* PAPER_WIDTH */
2874 #endif /* HAVE_LANGINFO_CODESET*/
2875 return Qnil;
2876 }
2877 \f
2878 /* base64 encode/decode functions (RFC 2045).
2879 Based on code from GNU recode. */
2880
2881 #define MIME_LINE_LENGTH 76
2882
2883 #define IS_ASCII(Character) \
2884 ((Character) < 128)
2885 #define IS_BASE64(Character) \
2886 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2887 #define IS_BASE64_IGNORABLE(Character) \
2888 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2889 || (Character) == '\f' || (Character) == '\r')
2890
2891 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2892 character or return retval if there are no characters left to
2893 process. */
2894 #define READ_QUADRUPLET_BYTE(retval) \
2895 do \
2896 { \
2897 if (i == length) \
2898 { \
2899 if (nchars_return) \
2900 *nchars_return = nchars; \
2901 return (retval); \
2902 } \
2903 c = from[i++]; \
2904 } \
2905 while (IS_BASE64_IGNORABLE (c))
2906
2907 /* Table of characters coding the 64 values. */
2908 static const char base64_value_to_char[64] =
2909 {
2910 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2911 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2912 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2913 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2914 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2915 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2916 '8', '9', '+', '/' /* 60-63 */
2917 };
2918
2919 /* Table of base64 values for first 128 characters. */
2920 static const short base64_char_to_value[128] =
2921 {
2922 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2923 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2924 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2925 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2926 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2927 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2928 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2929 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2930 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2931 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2932 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2933 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2934 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2935 };
2936
2937 /* The following diagram shows the logical steps by which three octets
2938 get transformed into four base64 characters.
2939
2940 .--------. .--------. .--------.
2941 |aaaaaabb| |bbbbcccc| |ccdddddd|
2942 `--------' `--------' `--------'
2943 6 2 4 4 2 6
2944 .--------+--------+--------+--------.
2945 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2946 `--------+--------+--------+--------'
2947
2948 .--------+--------+--------+--------.
2949 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2950 `--------+--------+--------+--------'
2951
2952 The octets are divided into 6 bit chunks, which are then encoded into
2953 base64 characters. */
2954
2955
2956 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2957 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2958 EMACS_INT *);
2959
2960 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2961 2, 3, "r",
2962 doc: /* Base64-encode the region between BEG and END.
2963 Return the length of the encoded text.
2964 Optional third argument NO-LINE-BREAK means do not break long lines
2965 into shorter lines. */)
2966 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2967 {
2968 char *encoded;
2969 EMACS_INT allength, length;
2970 EMACS_INT ibeg, iend, encoded_length;
2971 EMACS_INT old_pos = PT;
2972 USE_SAFE_ALLOCA;
2973
2974 validate_region (&beg, &end);
2975
2976 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2977 iend = CHAR_TO_BYTE (XFASTINT (end));
2978 move_gap_both (XFASTINT (beg), ibeg);
2979
2980 /* We need to allocate enough room for encoding the text.
2981 We need 33 1/3% more space, plus a newline every 76
2982 characters, and then we round up. */
2983 length = iend - ibeg;
2984 allength = length + length/3 + 1;
2985 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2986
2987 SAFE_ALLOCA (encoded, char *, allength);
2988 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2989 encoded, length, NILP (no_line_break),
2990 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2991 if (encoded_length > allength)
2992 abort ();
2993
2994 if (encoded_length < 0)
2995 {
2996 /* The encoding wasn't possible. */
2997 SAFE_FREE ();
2998 error ("Multibyte character in data for base64 encoding");
2999 }
3000
3001 /* Now we have encoded the region, so we insert the new contents
3002 and delete the old. (Insert first in order to preserve markers.) */
3003 SET_PT_BOTH (XFASTINT (beg), ibeg);
3004 insert (encoded, encoded_length);
3005 SAFE_FREE ();
3006 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3007
3008 /* If point was outside of the region, restore it exactly; else just
3009 move to the beginning of the region. */
3010 if (old_pos >= XFASTINT (end))
3011 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3012 else if (old_pos > XFASTINT (beg))
3013 old_pos = XFASTINT (beg);
3014 SET_PT (old_pos);
3015
3016 /* We return the length of the encoded text. */
3017 return make_number (encoded_length);
3018 }
3019
3020 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3021 1, 2, 0,
3022 doc: /* Base64-encode STRING and return the result.
3023 Optional second argument NO-LINE-BREAK means do not break long lines
3024 into shorter lines. */)
3025 (Lisp_Object string, Lisp_Object no_line_break)
3026 {
3027 EMACS_INT allength, length, encoded_length;
3028 char *encoded;
3029 Lisp_Object encoded_string;
3030 USE_SAFE_ALLOCA;
3031
3032 CHECK_STRING (string);
3033
3034 /* We need to allocate enough room for encoding the text.
3035 We need 33 1/3% more space, plus a newline every 76
3036 characters, and then we round up. */
3037 length = SBYTES (string);
3038 allength = length + length/3 + 1;
3039 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3040
3041 /* We need to allocate enough room for decoding the text. */
3042 SAFE_ALLOCA (encoded, char *, allength);
3043
3044 encoded_length = base64_encode_1 (SSDATA (string),
3045 encoded, length, NILP (no_line_break),
3046 STRING_MULTIBYTE (string));
3047 if (encoded_length > allength)
3048 abort ();
3049
3050 if (encoded_length < 0)
3051 {
3052 /* The encoding wasn't possible. */
3053 SAFE_FREE ();
3054 error ("Multibyte character in data for base64 encoding");
3055 }
3056
3057 encoded_string = make_unibyte_string (encoded, encoded_length);
3058 SAFE_FREE ();
3059
3060 return encoded_string;
3061 }
3062
3063 static EMACS_INT
3064 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3065 int line_break, int multibyte)
3066 {
3067 int counter = 0;
3068 EMACS_INT i = 0;
3069 char *e = to;
3070 int c;
3071 unsigned int value;
3072 int bytes;
3073
3074 while (i < length)
3075 {
3076 if (multibyte)
3077 {
3078 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3079 if (CHAR_BYTE8_P (c))
3080 c = CHAR_TO_BYTE8 (c);
3081 else if (c >= 256)
3082 return -1;
3083 i += bytes;
3084 }
3085 else
3086 c = from[i++];
3087
3088 /* Wrap line every 76 characters. */
3089
3090 if (line_break)
3091 {
3092 if (counter < MIME_LINE_LENGTH / 4)
3093 counter++;
3094 else
3095 {
3096 *e++ = '\n';
3097 counter = 1;
3098 }
3099 }
3100
3101 /* Process first byte of a triplet. */
3102
3103 *e++ = base64_value_to_char[0x3f & c >> 2];
3104 value = (0x03 & c) << 4;
3105
3106 /* Process second byte of a triplet. */
3107
3108 if (i == length)
3109 {
3110 *e++ = base64_value_to_char[value];
3111 *e++ = '=';
3112 *e++ = '=';
3113 break;
3114 }
3115
3116 if (multibyte)
3117 {
3118 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3119 if (CHAR_BYTE8_P (c))
3120 c = CHAR_TO_BYTE8 (c);
3121 else if (c >= 256)
3122 return -1;
3123 i += bytes;
3124 }
3125 else
3126 c = from[i++];
3127
3128 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3129 value = (0x0f & c) << 2;
3130
3131 /* Process third byte of a triplet. */
3132
3133 if (i == length)
3134 {
3135 *e++ = base64_value_to_char[value];
3136 *e++ = '=';
3137 break;
3138 }
3139
3140 if (multibyte)
3141 {
3142 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3143 if (CHAR_BYTE8_P (c))
3144 c = CHAR_TO_BYTE8 (c);
3145 else if (c >= 256)
3146 return -1;
3147 i += bytes;
3148 }
3149 else
3150 c = from[i++];
3151
3152 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3153 *e++ = base64_value_to_char[0x3f & c];
3154 }
3155
3156 return e - to;
3157 }
3158
3159
3160 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3161 2, 2, "r",
3162 doc: /* Base64-decode the region between BEG and END.
3163 Return the length of the decoded text.
3164 If the region can't be decoded, signal an error and don't modify the buffer. */)
3165 (Lisp_Object beg, Lisp_Object end)
3166 {
3167 EMACS_INT ibeg, iend, length, allength;
3168 char *decoded;
3169 EMACS_INT old_pos = PT;
3170 EMACS_INT decoded_length;
3171 EMACS_INT inserted_chars;
3172 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3173 USE_SAFE_ALLOCA;
3174
3175 validate_region (&beg, &end);
3176
3177 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3178 iend = CHAR_TO_BYTE (XFASTINT (end));
3179
3180 length = iend - ibeg;
3181
3182 /* We need to allocate enough room for decoding the text. If we are
3183 working on a multibyte buffer, each decoded code may occupy at
3184 most two bytes. */
3185 allength = multibyte ? length * 2 : length;
3186 SAFE_ALLOCA (decoded, char *, allength);
3187
3188 move_gap_both (XFASTINT (beg), ibeg);
3189 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3190 decoded, length,
3191 multibyte, &inserted_chars);
3192 if (decoded_length > allength)
3193 abort ();
3194
3195 if (decoded_length < 0)
3196 {
3197 /* The decoding wasn't possible. */
3198 SAFE_FREE ();
3199 error ("Invalid base64 data");
3200 }
3201
3202 /* Now we have decoded the region, so we insert the new contents
3203 and delete the old. (Insert first in order to preserve markers.) */
3204 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3205 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3206 SAFE_FREE ();
3207
3208 /* Delete the original text. */
3209 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3210 iend + decoded_length, 1);
3211
3212 /* If point was outside of the region, restore it exactly; else just
3213 move to the beginning of the region. */
3214 if (old_pos >= XFASTINT (end))
3215 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3216 else if (old_pos > XFASTINT (beg))
3217 old_pos = XFASTINT (beg);
3218 SET_PT (old_pos > ZV ? ZV : old_pos);
3219
3220 return make_number (inserted_chars);
3221 }
3222
3223 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3224 1, 1, 0,
3225 doc: /* Base64-decode STRING and return the result. */)
3226 (Lisp_Object string)
3227 {
3228 char *decoded;
3229 EMACS_INT length, decoded_length;
3230 Lisp_Object decoded_string;
3231 USE_SAFE_ALLOCA;
3232
3233 CHECK_STRING (string);
3234
3235 length = SBYTES (string);
3236 /* We need to allocate enough room for decoding the text. */
3237 SAFE_ALLOCA (decoded, char *, length);
3238
3239 /* The decoded result should be unibyte. */
3240 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3241 0, NULL);
3242 if (decoded_length > length)
3243 abort ();
3244 else if (decoded_length >= 0)
3245 decoded_string = make_unibyte_string (decoded, decoded_length);
3246 else
3247 decoded_string = Qnil;
3248
3249 SAFE_FREE ();
3250 if (!STRINGP (decoded_string))
3251 error ("Invalid base64 data");
3252
3253 return decoded_string;
3254 }
3255
3256 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3257 MULTIBYTE is nonzero, the decoded result should be in multibyte
3258 form. If NCHARS_RETRUN is not NULL, store the number of produced
3259 characters in *NCHARS_RETURN. */
3260
3261 static EMACS_INT
3262 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3263 int multibyte, EMACS_INT *nchars_return)
3264 {
3265 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3266 char *e = to;
3267 unsigned char c;
3268 unsigned long value;
3269 EMACS_INT nchars = 0;
3270
3271 while (1)
3272 {
3273 /* Process first byte of a quadruplet. */
3274
3275 READ_QUADRUPLET_BYTE (e-to);
3276
3277 if (!IS_BASE64 (c))
3278 return -1;
3279 value = base64_char_to_value[c] << 18;
3280
3281 /* Process second byte of a quadruplet. */
3282
3283 READ_QUADRUPLET_BYTE (-1);
3284
3285 if (!IS_BASE64 (c))
3286 return -1;
3287 value |= base64_char_to_value[c] << 12;
3288
3289 c = (unsigned char) (value >> 16);
3290 if (multibyte && c >= 128)
3291 e += BYTE8_STRING (c, e);
3292 else
3293 *e++ = c;
3294 nchars++;
3295
3296 /* Process third byte of a quadruplet. */
3297
3298 READ_QUADRUPLET_BYTE (-1);
3299
3300 if (c == '=')
3301 {
3302 READ_QUADRUPLET_BYTE (-1);
3303
3304 if (c != '=')
3305 return -1;
3306 continue;
3307 }
3308
3309 if (!IS_BASE64 (c))
3310 return -1;
3311 value |= base64_char_to_value[c] << 6;
3312
3313 c = (unsigned char) (0xff & value >> 8);
3314 if (multibyte && c >= 128)
3315 e += BYTE8_STRING (c, e);
3316 else
3317 *e++ = c;
3318 nchars++;
3319
3320 /* Process fourth byte of a quadruplet. */
3321
3322 READ_QUADRUPLET_BYTE (-1);
3323
3324 if (c == '=')
3325 continue;
3326
3327 if (!IS_BASE64 (c))
3328 return -1;
3329 value |= base64_char_to_value[c];
3330
3331 c = (unsigned char) (0xff & value);
3332 if (multibyte && c >= 128)
3333 e += BYTE8_STRING (c, e);
3334 else
3335 *e++ = c;
3336 nchars++;
3337 }
3338 }
3339
3340
3341 \f
3342 /***********************************************************************
3343 ***** *****
3344 ***** Hash Tables *****
3345 ***** *****
3346 ***********************************************************************/
3347
3348 /* Implemented by gerd@gnu.org. This hash table implementation was
3349 inspired by CMUCL hash tables. */
3350
3351 /* Ideas:
3352
3353 1. For small tables, association lists are probably faster than
3354 hash tables because they have lower overhead.
3355
3356 For uses of hash tables where the O(1) behavior of table
3357 operations is not a requirement, it might therefore be a good idea
3358 not to hash. Instead, we could just do a linear search in the
3359 key_and_value vector of the hash table. This could be done
3360 if a `:linear-search t' argument is given to make-hash-table. */
3361
3362
3363 /* The list of all weak hash tables. Don't staticpro this one. */
3364
3365 static struct Lisp_Hash_Table *weak_hash_tables;
3366
3367 /* Various symbols. */
3368
3369 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3370 Lisp_Object Qeq, Qeql, Qequal;
3371 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3372 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3373
3374 /* Function prototypes. */
3375
3376 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3377 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3378 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3379 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3380
3381
3382 \f
3383 /***********************************************************************
3384 Utilities
3385 ***********************************************************************/
3386
3387 /* If OBJ is a Lisp hash table, return a pointer to its struct
3388 Lisp_Hash_Table. Otherwise, signal an error. */
3389
3390 static struct Lisp_Hash_Table *
3391 check_hash_table (Lisp_Object obj)
3392 {
3393 CHECK_HASH_TABLE (obj);
3394 return XHASH_TABLE (obj);
3395 }
3396
3397
3398 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3399 number. */
3400
3401 EMACS_INT
3402 next_almost_prime (EMACS_INT n)
3403 {
3404 for (n |= 1; ; n += 2)
3405 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3406 return n;
3407 }
3408
3409
3410 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3411 which USED[I] is non-zero. If found at index I in ARGS, set
3412 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3413 0. This function is used to extract a keyword/argument pair from
3414 a DEFUN parameter list. */
3415
3416 static ptrdiff_t
3417 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3418 {
3419 ptrdiff_t i;
3420
3421 for (i = 1; i < nargs; i++)
3422 if (!used[i - 1] && EQ (args[i - 1], key))
3423 {
3424 used[i - 1] = 1;
3425 used[i] = 1;
3426 return i;
3427 }
3428
3429 return 0;
3430 }
3431
3432
3433 /* Return a Lisp vector which has the same contents as VEC but has
3434 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3435 vector that are not copied from VEC are set to INIT. */
3436
3437 Lisp_Object
3438 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3439 {
3440 struct Lisp_Vector *v;
3441 EMACS_INT i, old_size;
3442
3443 xassert (VECTORP (vec));
3444 old_size = ASIZE (vec);
3445 xassert (new_size >= old_size);
3446
3447 v = allocate_vector (new_size);
3448 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3449 for (i = old_size; i < new_size; ++i)
3450 v->contents[i] = init;
3451 XSETVECTOR (vec, v);
3452 return vec;
3453 }
3454
3455
3456 /***********************************************************************
3457 Low-level Functions
3458 ***********************************************************************/
3459
3460 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3461 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3462 KEY2 are the same. */
3463
3464 static int
3465 cmpfn_eql (struct Lisp_Hash_Table *h,
3466 Lisp_Object key1, EMACS_UINT hash1,
3467 Lisp_Object key2, EMACS_UINT hash2)
3468 {
3469 return (FLOATP (key1)
3470 && FLOATP (key2)
3471 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3472 }
3473
3474
3475 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3476 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3477 KEY2 are the same. */
3478
3479 static int
3480 cmpfn_equal (struct Lisp_Hash_Table *h,
3481 Lisp_Object key1, EMACS_UINT hash1,
3482 Lisp_Object key2, EMACS_UINT hash2)
3483 {
3484 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3485 }
3486
3487
3488 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3489 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3490 if KEY1 and KEY2 are the same. */
3491
3492 static int
3493 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3494 Lisp_Object key1, EMACS_UINT hash1,
3495 Lisp_Object key2, EMACS_UINT hash2)
3496 {
3497 if (hash1 == hash2)
3498 {
3499 Lisp_Object args[3];
3500
3501 args[0] = h->user_cmp_function;
3502 args[1] = key1;
3503 args[2] = key2;
3504 return !NILP (Ffuncall (3, args));
3505 }
3506 else
3507 return 0;
3508 }
3509
3510
3511 /* Value is a hash code for KEY for use in hash table H which uses
3512 `eq' to compare keys. The hash code returned is guaranteed to fit
3513 in a Lisp integer. */
3514
3515 static EMACS_UINT
3516 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3517 {
3518 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3519 xassert ((hash & ~INTMASK) == 0);
3520 return hash;
3521 }
3522
3523
3524 /* Value is a hash code for KEY for use in hash table H which uses
3525 `eql' to compare keys. The hash code returned is guaranteed to fit
3526 in a Lisp integer. */
3527
3528 static EMACS_UINT
3529 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3530 {
3531 EMACS_UINT hash;
3532 if (FLOATP (key))
3533 hash = sxhash (key, 0);
3534 else
3535 hash = XUINT (key) ^ XTYPE (key);
3536 xassert ((hash & ~INTMASK) == 0);
3537 return hash;
3538 }
3539
3540
3541 /* Value is a hash code for KEY for use in hash table H which uses
3542 `equal' to compare keys. The hash code returned is guaranteed to fit
3543 in a Lisp integer. */
3544
3545 static EMACS_UINT
3546 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3547 {
3548 EMACS_UINT hash = sxhash (key, 0);
3549 xassert ((hash & ~INTMASK) == 0);
3550 return hash;
3551 }
3552
3553
3554 /* Value is a hash code for KEY for use in hash table H which uses as
3555 user-defined function to compare keys. The hash code returned is
3556 guaranteed to fit in a Lisp integer. */
3557
3558 static EMACS_UINT
3559 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3560 {
3561 Lisp_Object args[2], hash;
3562
3563 args[0] = h->user_hash_function;
3564 args[1] = key;
3565 hash = Ffuncall (2, args);
3566 if (!INTEGERP (hash))
3567 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3568 return XUINT (hash);
3569 }
3570
3571
3572 /* Create and initialize a new hash table.
3573
3574 TEST specifies the test the hash table will use to compare keys.
3575 It must be either one of the predefined tests `eq', `eql' or
3576 `equal' or a symbol denoting a user-defined test named TEST with
3577 test and hash functions USER_TEST and USER_HASH.
3578
3579 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3580
3581 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3582 new size when it becomes full is computed by adding REHASH_SIZE to
3583 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3584 table's new size is computed by multiplying its old size with
3585 REHASH_SIZE.
3586
3587 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3588 be resized when the ratio of (number of entries in the table) /
3589 (table size) is >= REHASH_THRESHOLD.
3590
3591 WEAK specifies the weakness of the table. If non-nil, it must be
3592 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3593
3594 Lisp_Object
3595 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3596 Lisp_Object rehash_threshold, Lisp_Object weak,
3597 Lisp_Object user_test, Lisp_Object user_hash)
3598 {
3599 struct Lisp_Hash_Table *h;
3600 Lisp_Object table;
3601 EMACS_INT index_size, i, sz;
3602 double index_float;
3603
3604 /* Preconditions. */
3605 xassert (SYMBOLP (test));
3606 xassert (INTEGERP (size) && XINT (size) >= 0);
3607 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3608 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3609 xassert (FLOATP (rehash_threshold)
3610 && 0 < XFLOAT_DATA (rehash_threshold)
3611 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3612
3613 if (XFASTINT (size) == 0)
3614 size = make_number (1);
3615
3616 sz = XFASTINT (size);
3617 index_float = sz / XFLOAT_DATA (rehash_threshold);
3618 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3619 ? next_almost_prime (index_float)
3620 : MOST_POSITIVE_FIXNUM + 1);
3621 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3622 error ("Hash table too large");
3623
3624 /* Allocate a table and initialize it. */
3625 h = allocate_hash_table ();
3626
3627 /* Initialize hash table slots. */
3628 h->test = test;
3629 if (EQ (test, Qeql))
3630 {
3631 h->cmpfn = cmpfn_eql;
3632 h->hashfn = hashfn_eql;
3633 }
3634 else if (EQ (test, Qeq))
3635 {
3636 h->cmpfn = NULL;
3637 h->hashfn = hashfn_eq;
3638 }
3639 else if (EQ (test, Qequal))
3640 {
3641 h->cmpfn = cmpfn_equal;
3642 h->hashfn = hashfn_equal;
3643 }
3644 else
3645 {
3646 h->user_cmp_function = user_test;
3647 h->user_hash_function = user_hash;
3648 h->cmpfn = cmpfn_user_defined;
3649 h->hashfn = hashfn_user_defined;
3650 }
3651
3652 h->weak = weak;
3653 h->rehash_threshold = rehash_threshold;
3654 h->rehash_size = rehash_size;
3655 h->count = 0;
3656 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3657 h->hash = Fmake_vector (size, Qnil);
3658 h->next = Fmake_vector (size, Qnil);
3659 h->index = Fmake_vector (make_number (index_size), Qnil);
3660
3661 /* Set up the free list. */
3662 for (i = 0; i < sz - 1; ++i)
3663 HASH_NEXT (h, i) = make_number (i + 1);
3664 h->next_free = make_number (0);
3665
3666 XSET_HASH_TABLE (table, h);
3667 xassert (HASH_TABLE_P (table));
3668 xassert (XHASH_TABLE (table) == h);
3669
3670 /* Maybe add this hash table to the list of all weak hash tables. */
3671 if (NILP (h->weak))
3672 h->next_weak = NULL;
3673 else
3674 {
3675 h->next_weak = weak_hash_tables;
3676 weak_hash_tables = h;
3677 }
3678
3679 return table;
3680 }
3681
3682
3683 /* Return a copy of hash table H1. Keys and values are not copied,
3684 only the table itself is. */
3685
3686 static Lisp_Object
3687 copy_hash_table (struct Lisp_Hash_Table *h1)
3688 {
3689 Lisp_Object table;
3690 struct Lisp_Hash_Table *h2;
3691 struct Lisp_Vector *next;
3692
3693 h2 = allocate_hash_table ();
3694 next = h2->header.next.vector;
3695 memcpy (h2, h1, sizeof *h2);
3696 h2->header.next.vector = next;
3697 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3698 h2->hash = Fcopy_sequence (h1->hash);
3699 h2->next = Fcopy_sequence (h1->next);
3700 h2->index = Fcopy_sequence (h1->index);
3701 XSET_HASH_TABLE (table, h2);
3702
3703 /* Maybe add this hash table to the list of all weak hash tables. */
3704 if (!NILP (h2->weak))
3705 {
3706 h2->next_weak = weak_hash_tables;
3707 weak_hash_tables = h2;
3708 }
3709
3710 return table;
3711 }
3712
3713
3714 /* Resize hash table H if it's too full. If H cannot be resized
3715 because it's already too large, throw an error. */
3716
3717 static inline void
3718 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3719 {
3720 if (NILP (h->next_free))
3721 {
3722 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3723 EMACS_INT i, new_size, index_size;
3724 EMACS_INT nsize;
3725 double index_float;
3726
3727 if (INTEGERP (h->rehash_size))
3728 new_size = old_size + XFASTINT (h->rehash_size);
3729 else
3730 {
3731 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3732 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3733 {
3734 new_size = float_new_size;
3735 if (new_size <= old_size)
3736 new_size = old_size + 1;
3737 }
3738 else
3739 new_size = MOST_POSITIVE_FIXNUM + 1;
3740 }
3741 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3742 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3743 ? next_almost_prime (index_float)
3744 : MOST_POSITIVE_FIXNUM + 1);
3745 nsize = max (index_size, 2 * new_size);
3746 if (nsize > MOST_POSITIVE_FIXNUM)
3747 error ("Hash table too large to resize");
3748
3749 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3750 h->next = larger_vector (h->next, new_size, Qnil);
3751 h->hash = larger_vector (h->hash, new_size, Qnil);
3752 h->index = Fmake_vector (make_number (index_size), Qnil);
3753
3754 /* Update the free list. Do it so that new entries are added at
3755 the end of the free list. This makes some operations like
3756 maphash faster. */
3757 for (i = old_size; i < new_size - 1; ++i)
3758 HASH_NEXT (h, i) = make_number (i + 1);
3759
3760 if (!NILP (h->next_free))
3761 {
3762 Lisp_Object last, next;
3763
3764 last = h->next_free;
3765 while (next = HASH_NEXT (h, XFASTINT (last)),
3766 !NILP (next))
3767 last = next;
3768
3769 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3770 }
3771 else
3772 XSETFASTINT (h->next_free, old_size);
3773
3774 /* Rehash. */
3775 for (i = 0; i < old_size; ++i)
3776 if (!NILP (HASH_HASH (h, i)))
3777 {
3778 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3779 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3780 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3781 HASH_INDEX (h, start_of_bucket) = make_number (i);
3782 }
3783 }
3784 }
3785
3786
3787 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3788 the hash code of KEY. Value is the index of the entry in H
3789 matching KEY, or -1 if not found. */
3790
3791 EMACS_INT
3792 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3793 {
3794 EMACS_UINT hash_code;
3795 EMACS_INT start_of_bucket;
3796 Lisp_Object idx;
3797
3798 hash_code = h->hashfn (h, key);
3799 if (hash)
3800 *hash = hash_code;
3801
3802 start_of_bucket = hash_code % ASIZE (h->index);
3803 idx = HASH_INDEX (h, start_of_bucket);
3804
3805 /* We need not gcpro idx since it's either an integer or nil. */
3806 while (!NILP (idx))
3807 {
3808 EMACS_INT i = XFASTINT (idx);
3809 if (EQ (key, HASH_KEY (h, i))
3810 || (h->cmpfn
3811 && h->cmpfn (h, key, hash_code,
3812 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3813 break;
3814 idx = HASH_NEXT (h, i);
3815 }
3816
3817 return NILP (idx) ? -1 : XFASTINT (idx);
3818 }
3819
3820
3821 /* Put an entry into hash table H that associates KEY with VALUE.
3822 HASH is a previously computed hash code of KEY.
3823 Value is the index of the entry in H matching KEY. */
3824
3825 EMACS_INT
3826 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3827 EMACS_UINT hash)
3828 {
3829 EMACS_INT start_of_bucket, i;
3830
3831 xassert ((hash & ~INTMASK) == 0);
3832
3833 /* Increment count after resizing because resizing may fail. */
3834 maybe_resize_hash_table (h);
3835 h->count++;
3836
3837 /* Store key/value in the key_and_value vector. */
3838 i = XFASTINT (h->next_free);
3839 h->next_free = HASH_NEXT (h, i);
3840 HASH_KEY (h, i) = key;
3841 HASH_VALUE (h, i) = value;
3842
3843 /* Remember its hash code. */
3844 HASH_HASH (h, i) = make_number (hash);
3845
3846 /* Add new entry to its collision chain. */
3847 start_of_bucket = hash % ASIZE (h->index);
3848 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3849 HASH_INDEX (h, start_of_bucket) = make_number (i);
3850 return i;
3851 }
3852
3853
3854 /* Remove the entry matching KEY from hash table H, if there is one. */
3855
3856 static void
3857 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3858 {
3859 EMACS_UINT hash_code;
3860 EMACS_INT start_of_bucket;
3861 Lisp_Object idx, prev;
3862
3863 hash_code = h->hashfn (h, key);
3864 start_of_bucket = hash_code % ASIZE (h->index);
3865 idx = HASH_INDEX (h, start_of_bucket);
3866 prev = Qnil;
3867
3868 /* We need not gcpro idx, prev since they're either integers or nil. */
3869 while (!NILP (idx))
3870 {
3871 EMACS_INT i = XFASTINT (idx);
3872
3873 if (EQ (key, HASH_KEY (h, i))
3874 || (h->cmpfn
3875 && h->cmpfn (h, key, hash_code,
3876 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3877 {
3878 /* Take entry out of collision chain. */
3879 if (NILP (prev))
3880 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3881 else
3882 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3883
3884 /* Clear slots in key_and_value and add the slots to
3885 the free list. */
3886 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3887 HASH_NEXT (h, i) = h->next_free;
3888 h->next_free = make_number (i);
3889 h->count--;
3890 xassert (h->count >= 0);
3891 break;
3892 }
3893 else
3894 {
3895 prev = idx;
3896 idx = HASH_NEXT (h, i);
3897 }
3898 }
3899 }
3900
3901
3902 /* Clear hash table H. */
3903
3904 static void
3905 hash_clear (struct Lisp_Hash_Table *h)
3906 {
3907 if (h->count > 0)
3908 {
3909 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3910
3911 for (i = 0; i < size; ++i)
3912 {
3913 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3914 HASH_KEY (h, i) = Qnil;
3915 HASH_VALUE (h, i) = Qnil;
3916 HASH_HASH (h, i) = Qnil;
3917 }
3918
3919 for (i = 0; i < ASIZE (h->index); ++i)
3920 ASET (h->index, i, Qnil);
3921
3922 h->next_free = make_number (0);
3923 h->count = 0;
3924 }
3925 }
3926
3927
3928 \f
3929 /************************************************************************
3930 Weak Hash Tables
3931 ************************************************************************/
3932
3933 void
3934 init_weak_hash_tables (void)
3935 {
3936 weak_hash_tables = NULL;
3937 }
3938
3939 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3940 entries from the table that don't survive the current GC.
3941 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3942 non-zero if anything was marked. */
3943
3944 static int
3945 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3946 {
3947 EMACS_INT bucket, n;
3948 int marked;
3949
3950 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3951 marked = 0;
3952
3953 for (bucket = 0; bucket < n; ++bucket)
3954 {
3955 Lisp_Object idx, next, prev;
3956
3957 /* Follow collision chain, removing entries that
3958 don't survive this garbage collection. */
3959 prev = Qnil;
3960 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3961 {
3962 EMACS_INT i = XFASTINT (idx);
3963 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3964 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3965 int remove_p;
3966
3967 if (EQ (h->weak, Qkey))
3968 remove_p = !key_known_to_survive_p;
3969 else if (EQ (h->weak, Qvalue))
3970 remove_p = !value_known_to_survive_p;
3971 else if (EQ (h->weak, Qkey_or_value))
3972 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3973 else if (EQ (h->weak, Qkey_and_value))
3974 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3975 else
3976 abort ();
3977
3978 next = HASH_NEXT (h, i);
3979
3980 if (remove_entries_p)
3981 {
3982 if (remove_p)
3983 {
3984 /* Take out of collision chain. */
3985 if (NILP (prev))
3986 HASH_INDEX (h, bucket) = next;
3987 else
3988 HASH_NEXT (h, XFASTINT (prev)) = next;
3989
3990 /* Add to free list. */
3991 HASH_NEXT (h, i) = h->next_free;
3992 h->next_free = idx;
3993
3994 /* Clear key, value, and hash. */
3995 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3996 HASH_HASH (h, i) = Qnil;
3997
3998 h->count--;
3999 }
4000 else
4001 {
4002 prev = idx;
4003 }
4004 }
4005 else
4006 {
4007 if (!remove_p)
4008 {
4009 /* Make sure key and value survive. */
4010 if (!key_known_to_survive_p)
4011 {
4012 mark_object (HASH_KEY (h, i));
4013 marked = 1;
4014 }
4015
4016 if (!value_known_to_survive_p)
4017 {
4018 mark_object (HASH_VALUE (h, i));
4019 marked = 1;
4020 }
4021 }
4022 }
4023 }
4024 }
4025
4026 return marked;
4027 }
4028
4029 /* Remove elements from weak hash tables that don't survive the
4030 current garbage collection. Remove weak tables that don't survive
4031 from Vweak_hash_tables. Called from gc_sweep. */
4032
4033 void
4034 sweep_weak_hash_tables (void)
4035 {
4036 struct Lisp_Hash_Table *h, *used, *next;
4037 int marked;
4038
4039 /* Mark all keys and values that are in use. Keep on marking until
4040 there is no more change. This is necessary for cases like
4041 value-weak table A containing an entry X -> Y, where Y is used in a
4042 key-weak table B, Z -> Y. If B comes after A in the list of weak
4043 tables, X -> Y might be removed from A, although when looking at B
4044 one finds that it shouldn't. */
4045 do
4046 {
4047 marked = 0;
4048 for (h = weak_hash_tables; h; h = h->next_weak)
4049 {
4050 if (h->header.size & ARRAY_MARK_FLAG)
4051 marked |= sweep_weak_table (h, 0);
4052 }
4053 }
4054 while (marked);
4055
4056 /* Remove tables and entries that aren't used. */
4057 for (h = weak_hash_tables, used = NULL; h; h = next)
4058 {
4059 next = h->next_weak;
4060
4061 if (h->header.size & ARRAY_MARK_FLAG)
4062 {
4063 /* TABLE is marked as used. Sweep its contents. */
4064 if (h->count > 0)
4065 sweep_weak_table (h, 1);
4066
4067 /* Add table to the list of used weak hash tables. */
4068 h->next_weak = used;
4069 used = h;
4070 }
4071 }
4072
4073 weak_hash_tables = used;
4074 }
4075
4076
4077 \f
4078 /***********************************************************************
4079 Hash Code Computation
4080 ***********************************************************************/
4081
4082 /* Maximum depth up to which to dive into Lisp structures. */
4083
4084 #define SXHASH_MAX_DEPTH 3
4085
4086 /* Maximum length up to which to take list and vector elements into
4087 account. */
4088
4089 #define SXHASH_MAX_LEN 7
4090
4091 /* Combine two integers X and Y for hashing. The result might not fit
4092 into a Lisp integer. */
4093
4094 #define SXHASH_COMBINE(X, Y) \
4095 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4096 + (EMACS_UINT) (Y))
4097
4098 /* Hash X, returning a value that fits into a Lisp integer. */
4099 #define SXHASH_REDUCE(X) \
4100 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4101
4102 /* Return a hash for string PTR which has length LEN. The hash
4103 code returned is guaranteed to fit in a Lisp integer. */
4104
4105 static EMACS_UINT
4106 sxhash_string (unsigned char *ptr, EMACS_INT len)
4107 {
4108 unsigned char *p = ptr;
4109 unsigned char *end = p + len;
4110 unsigned char c;
4111 EMACS_UINT hash = 0;
4112
4113 while (p != end)
4114 {
4115 c = *p++;
4116 if (c >= 0140)
4117 c -= 40;
4118 hash = SXHASH_COMBINE (hash, c);
4119 }
4120
4121 return SXHASH_REDUCE (hash);
4122 }
4123
4124 /* Return a hash for the floating point value VAL. */
4125
4126 static EMACS_INT
4127 sxhash_float (double val)
4128 {
4129 EMACS_UINT hash = 0;
4130 enum {
4131 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4132 + (sizeof val % sizeof hash != 0))
4133 };
4134 union {
4135 double val;
4136 EMACS_UINT word[WORDS_PER_DOUBLE];
4137 } u;
4138 int i;
4139 u.val = val;
4140 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4141 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4142 hash = SXHASH_COMBINE (hash, u.word[i]);
4143 return SXHASH_REDUCE (hash);
4144 }
4145
4146 /* Return a hash for list LIST. DEPTH is the current depth in the
4147 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4148
4149 static EMACS_UINT
4150 sxhash_list (Lisp_Object list, int depth)
4151 {
4152 EMACS_UINT hash = 0;
4153 int i;
4154
4155 if (depth < SXHASH_MAX_DEPTH)
4156 for (i = 0;
4157 CONSP (list) && i < SXHASH_MAX_LEN;
4158 list = XCDR (list), ++i)
4159 {
4160 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4161 hash = SXHASH_COMBINE (hash, hash2);
4162 }
4163
4164 if (!NILP (list))
4165 {
4166 EMACS_UINT hash2 = sxhash (list, depth + 1);
4167 hash = SXHASH_COMBINE (hash, hash2);
4168 }
4169
4170 return SXHASH_REDUCE (hash);
4171 }
4172
4173
4174 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4175 the Lisp structure. */
4176
4177 static EMACS_UINT
4178 sxhash_vector (Lisp_Object vec, int depth)
4179 {
4180 EMACS_UINT hash = ASIZE (vec);
4181 int i, n;
4182
4183 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4184 for (i = 0; i < n; ++i)
4185 {
4186 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4187 hash = SXHASH_COMBINE (hash, hash2);
4188 }
4189
4190 return SXHASH_REDUCE (hash);
4191 }
4192
4193 /* Return a hash for bool-vector VECTOR. */
4194
4195 static EMACS_UINT
4196 sxhash_bool_vector (Lisp_Object vec)
4197 {
4198 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4199 int i, n;
4200
4201 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4202 for (i = 0; i < n; ++i)
4203 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4204
4205 return SXHASH_REDUCE (hash);
4206 }
4207
4208
4209 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4210 structure. Value is an unsigned integer clipped to INTMASK. */
4211
4212 EMACS_UINT
4213 sxhash (Lisp_Object obj, int depth)
4214 {
4215 EMACS_UINT hash;
4216
4217 if (depth > SXHASH_MAX_DEPTH)
4218 return 0;
4219
4220 switch (XTYPE (obj))
4221 {
4222 case_Lisp_Int:
4223 hash = XUINT (obj);
4224 break;
4225
4226 case Lisp_Misc:
4227 hash = XUINT (obj);
4228 break;
4229
4230 case Lisp_Symbol:
4231 obj = SYMBOL_NAME (obj);
4232 /* Fall through. */
4233
4234 case Lisp_String:
4235 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4236 break;
4237
4238 /* This can be everything from a vector to an overlay. */
4239 case Lisp_Vectorlike:
4240 if (VECTORP (obj))
4241 /* According to the CL HyperSpec, two arrays are equal only if
4242 they are `eq', except for strings and bit-vectors. In
4243 Emacs, this works differently. We have to compare element
4244 by element. */
4245 hash = sxhash_vector (obj, depth);
4246 else if (BOOL_VECTOR_P (obj))
4247 hash = sxhash_bool_vector (obj);
4248 else
4249 /* Others are `equal' if they are `eq', so let's take their
4250 address as hash. */
4251 hash = XUINT (obj);
4252 break;
4253
4254 case Lisp_Cons:
4255 hash = sxhash_list (obj, depth);
4256 break;
4257
4258 case Lisp_Float:
4259 hash = sxhash_float (XFLOAT_DATA (obj));
4260 break;
4261
4262 default:
4263 abort ();
4264 }
4265
4266 return hash;
4267 }
4268
4269
4270 \f
4271 /***********************************************************************
4272 Lisp Interface
4273 ***********************************************************************/
4274
4275
4276 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4277 doc: /* Compute a hash code for OBJ and return it as integer. */)
4278 (Lisp_Object obj)
4279 {
4280 EMACS_UINT hash = sxhash (obj, 0);
4281 return make_number (hash);
4282 }
4283
4284
4285 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4286 doc: /* Create and return a new hash table.
4287
4288 Arguments are specified as keyword/argument pairs. The following
4289 arguments are defined:
4290
4291 :test TEST -- TEST must be a symbol that specifies how to compare
4292 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4293 `equal'. User-supplied test and hash functions can be specified via
4294 `define-hash-table-test'.
4295
4296 :size SIZE -- A hint as to how many elements will be put in the table.
4297 Default is 65.
4298
4299 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4300 fills up. If REHASH-SIZE is an integer, increase the size by that
4301 amount. If it is a float, it must be > 1.0, and the new size is the
4302 old size multiplied by that factor. Default is 1.5.
4303
4304 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4305 Resize the hash table when the ratio (number of entries / table size)
4306 is greater than or equal to THRESHOLD. Default is 0.8.
4307
4308 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4309 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4310 returned is a weak table. Key/value pairs are removed from a weak
4311 hash table when there are no non-weak references pointing to their
4312 key, value, one of key or value, or both key and value, depending on
4313 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4314 is nil.
4315
4316 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4317 (ptrdiff_t nargs, Lisp_Object *args)
4318 {
4319 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4320 Lisp_Object user_test, user_hash;
4321 char *used;
4322 ptrdiff_t i;
4323
4324 /* The vector `used' is used to keep track of arguments that
4325 have been consumed. */
4326 used = (char *) alloca (nargs * sizeof *used);
4327 memset (used, 0, nargs * sizeof *used);
4328
4329 /* See if there's a `:test TEST' among the arguments. */
4330 i = get_key_arg (QCtest, nargs, args, used);
4331 test = i ? args[i] : Qeql;
4332 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4333 {
4334 /* See if it is a user-defined test. */
4335 Lisp_Object prop;
4336
4337 prop = Fget (test, Qhash_table_test);
4338 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4339 signal_error ("Invalid hash table test", test);
4340 user_test = XCAR (prop);
4341 user_hash = XCAR (XCDR (prop));
4342 }
4343 else
4344 user_test = user_hash = Qnil;
4345
4346 /* See if there's a `:size SIZE' argument. */
4347 i = get_key_arg (QCsize, nargs, args, used);
4348 size = i ? args[i] : Qnil;
4349 if (NILP (size))
4350 size = make_number (DEFAULT_HASH_SIZE);
4351 else if (!INTEGERP (size) || XINT (size) < 0)
4352 signal_error ("Invalid hash table size", size);
4353
4354 /* Look for `:rehash-size SIZE'. */
4355 i = get_key_arg (QCrehash_size, nargs, args, used);
4356 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4357 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4358 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4359 signal_error ("Invalid hash table rehash size", rehash_size);
4360
4361 /* Look for `:rehash-threshold THRESHOLD'. */
4362 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4363 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4364 if (! (FLOATP (rehash_threshold)
4365 && 0 < XFLOAT_DATA (rehash_threshold)
4366 && XFLOAT_DATA (rehash_threshold) <= 1))
4367 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4368
4369 /* Look for `:weakness WEAK'. */
4370 i = get_key_arg (QCweakness, nargs, args, used);
4371 weak = i ? args[i] : Qnil;
4372 if (EQ (weak, Qt))
4373 weak = Qkey_and_value;
4374 if (!NILP (weak)
4375 && !EQ (weak, Qkey)
4376 && !EQ (weak, Qvalue)
4377 && !EQ (weak, Qkey_or_value)
4378 && !EQ (weak, Qkey_and_value))
4379 signal_error ("Invalid hash table weakness", weak);
4380
4381 /* Now, all args should have been used up, or there's a problem. */
4382 for (i = 0; i < nargs; ++i)
4383 if (!used[i])
4384 signal_error ("Invalid argument list", args[i]);
4385
4386 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4387 user_test, user_hash);
4388 }
4389
4390
4391 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4392 doc: /* Return a copy of hash table TABLE. */)
4393 (Lisp_Object table)
4394 {
4395 return copy_hash_table (check_hash_table (table));
4396 }
4397
4398
4399 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4400 doc: /* Return the number of elements in TABLE. */)
4401 (Lisp_Object table)
4402 {
4403 return make_number (check_hash_table (table)->count);
4404 }
4405
4406
4407 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4408 Shash_table_rehash_size, 1, 1, 0,
4409 doc: /* Return the current rehash size of TABLE. */)
4410 (Lisp_Object table)
4411 {
4412 return check_hash_table (table)->rehash_size;
4413 }
4414
4415
4416 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4417 Shash_table_rehash_threshold, 1, 1, 0,
4418 doc: /* Return the current rehash threshold of TABLE. */)
4419 (Lisp_Object table)
4420 {
4421 return check_hash_table (table)->rehash_threshold;
4422 }
4423
4424
4425 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4426 doc: /* Return the size of TABLE.
4427 The size can be used as an argument to `make-hash-table' to create
4428 a hash table than can hold as many elements as TABLE holds
4429 without need for resizing. */)
4430 (Lisp_Object table)
4431 {
4432 struct Lisp_Hash_Table *h = check_hash_table (table);
4433 return make_number (HASH_TABLE_SIZE (h));
4434 }
4435
4436
4437 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4438 doc: /* Return the test TABLE uses. */)
4439 (Lisp_Object table)
4440 {
4441 return check_hash_table (table)->test;
4442 }
4443
4444
4445 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4446 1, 1, 0,
4447 doc: /* Return the weakness of TABLE. */)
4448 (Lisp_Object table)
4449 {
4450 return check_hash_table (table)->weak;
4451 }
4452
4453
4454 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4455 doc: /* Return t if OBJ is a Lisp hash table object. */)
4456 (Lisp_Object obj)
4457 {
4458 return HASH_TABLE_P (obj) ? Qt : Qnil;
4459 }
4460
4461
4462 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4463 doc: /* Clear hash table TABLE and return it. */)
4464 (Lisp_Object table)
4465 {
4466 hash_clear (check_hash_table (table));
4467 /* Be compatible with XEmacs. */
4468 return table;
4469 }
4470
4471
4472 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4473 doc: /* Look up KEY in TABLE and return its associated value.
4474 If KEY is not found, return DFLT which defaults to nil. */)
4475 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4476 {
4477 struct Lisp_Hash_Table *h = check_hash_table (table);
4478 EMACS_INT i = hash_lookup (h, key, NULL);
4479 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4480 }
4481
4482
4483 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4484 doc: /* Associate KEY with VALUE in hash table TABLE.
4485 If KEY is already present in table, replace its current value with
4486 VALUE. In any case, return VALUE. */)
4487 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4488 {
4489 struct Lisp_Hash_Table *h = check_hash_table (table);
4490 EMACS_INT i;
4491 EMACS_UINT hash;
4492
4493 i = hash_lookup (h, key, &hash);
4494 if (i >= 0)
4495 HASH_VALUE (h, i) = value;
4496 else
4497 hash_put (h, key, value, hash);
4498
4499 return value;
4500 }
4501
4502
4503 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4504 doc: /* Remove KEY from TABLE. */)
4505 (Lisp_Object key, Lisp_Object table)
4506 {
4507 struct Lisp_Hash_Table *h = check_hash_table (table);
4508 hash_remove_from_table (h, key);
4509 return Qnil;
4510 }
4511
4512
4513 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4514 doc: /* Call FUNCTION for all entries in hash table TABLE.
4515 FUNCTION is called with two arguments, KEY and VALUE. */)
4516 (Lisp_Object function, Lisp_Object table)
4517 {
4518 struct Lisp_Hash_Table *h = check_hash_table (table);
4519 Lisp_Object args[3];
4520 EMACS_INT i;
4521
4522 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4523 if (!NILP (HASH_HASH (h, i)))
4524 {
4525 args[0] = function;
4526 args[1] = HASH_KEY (h, i);
4527 args[2] = HASH_VALUE (h, i);
4528 Ffuncall (3, args);
4529 }
4530
4531 return Qnil;
4532 }
4533
4534
4535 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4536 Sdefine_hash_table_test, 3, 3, 0,
4537 doc: /* Define a new hash table test with name NAME, a symbol.
4538
4539 In hash tables created with NAME specified as test, use TEST to
4540 compare keys, and HASH for computing hash codes of keys.
4541
4542 TEST must be a function taking two arguments and returning non-nil if
4543 both arguments are the same. HASH must be a function taking one
4544 argument and return an integer that is the hash code of the argument.
4545 Hash code computation should use the whole value range of integers,
4546 including negative integers. */)
4547 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4548 {
4549 return Fput (name, Qhash_table_test, list2 (test, hash));
4550 }
4551
4552
4553 \f
4554 /************************************************************************
4555 MD5, SHA-1, and SHA-2
4556 ************************************************************************/
4557
4558 #include "md5.h"
4559 #include "sha1.h"
4560 #include "sha256.h"
4561 #include "sha512.h"
4562
4563 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4564
4565 static Lisp_Object
4566 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4567 {
4568 int i;
4569 EMACS_INT size;
4570 EMACS_INT size_byte = 0;
4571 EMACS_INT start_char = 0, end_char = 0;
4572 EMACS_INT start_byte = 0, end_byte = 0;
4573 register EMACS_INT b, e;
4574 register struct buffer *bp;
4575 EMACS_INT temp;
4576 int digest_size;
4577 void *(*hash_func) (const char *, size_t, void *);
4578 Lisp_Object digest;
4579
4580 CHECK_SYMBOL (algorithm);
4581
4582 if (STRINGP (object))
4583 {
4584 if (NILP (coding_system))
4585 {
4586 /* Decide the coding-system to encode the data with. */
4587
4588 if (STRING_MULTIBYTE (object))
4589 /* use default, we can't guess correct value */
4590 coding_system = preferred_coding_system ();
4591 else
4592 coding_system = Qraw_text;
4593 }
4594
4595 if (NILP (Fcoding_system_p (coding_system)))
4596 {
4597 /* Invalid coding system. */
4598
4599 if (!NILP (noerror))
4600 coding_system = Qraw_text;
4601 else
4602 xsignal1 (Qcoding_system_error, coding_system);
4603 }
4604
4605 if (STRING_MULTIBYTE (object))
4606 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4607
4608 size = SCHARS (object);
4609 size_byte = SBYTES (object);
4610
4611 if (!NILP (start))
4612 {
4613 CHECK_NUMBER (start);
4614
4615 start_char = XINT (start);
4616
4617 if (start_char < 0)
4618 start_char += size;
4619
4620 start_byte = string_char_to_byte (object, start_char);
4621 }
4622
4623 if (NILP (end))
4624 {
4625 end_char = size;
4626 end_byte = size_byte;
4627 }
4628 else
4629 {
4630 CHECK_NUMBER (end);
4631
4632 end_char = XINT (end);
4633
4634 if (end_char < 0)
4635 end_char += size;
4636
4637 end_byte = string_char_to_byte (object, end_char);
4638 }
4639
4640 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4641 args_out_of_range_3 (object, make_number (start_char),
4642 make_number (end_char));
4643 }
4644 else
4645 {
4646 struct buffer *prev = current_buffer;
4647
4648 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4649
4650 CHECK_BUFFER (object);
4651
4652 bp = XBUFFER (object);
4653 if (bp != current_buffer)
4654 set_buffer_internal (bp);
4655
4656 if (NILP (start))
4657 b = BEGV;
4658 else
4659 {
4660 CHECK_NUMBER_COERCE_MARKER (start);
4661 b = XINT (start);
4662 }
4663
4664 if (NILP (end))
4665 e = ZV;
4666 else
4667 {
4668 CHECK_NUMBER_COERCE_MARKER (end);
4669 e = XINT (end);
4670 }
4671
4672 if (b > e)
4673 temp = b, b = e, e = temp;
4674
4675 if (!(BEGV <= b && e <= ZV))
4676 args_out_of_range (start, end);
4677
4678 if (NILP (coding_system))
4679 {
4680 /* Decide the coding-system to encode the data with.
4681 See fileio.c:Fwrite-region */
4682
4683 if (!NILP (Vcoding_system_for_write))
4684 coding_system = Vcoding_system_for_write;
4685 else
4686 {
4687 int force_raw_text = 0;
4688
4689 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4690 if (NILP (coding_system)
4691 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4692 {
4693 coding_system = Qnil;
4694 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4695 force_raw_text = 1;
4696 }
4697
4698 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4699 {
4700 /* Check file-coding-system-alist. */
4701 Lisp_Object args[4], val;
4702
4703 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4704 args[3] = Fbuffer_file_name(object);
4705 val = Ffind_operation_coding_system (4, args);
4706 if (CONSP (val) && !NILP (XCDR (val)))
4707 coding_system = XCDR (val);
4708 }
4709
4710 if (NILP (coding_system)
4711 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4712 {
4713 /* If we still have not decided a coding system, use the
4714 default value of buffer-file-coding-system. */
4715 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4716 }
4717
4718 if (!force_raw_text
4719 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4720 /* Confirm that VAL can surely encode the current region. */
4721 coding_system = call4 (Vselect_safe_coding_system_function,
4722 make_number (b), make_number (e),
4723 coding_system, Qnil);
4724
4725 if (force_raw_text)
4726 coding_system = Qraw_text;
4727 }
4728
4729 if (NILP (Fcoding_system_p (coding_system)))
4730 {
4731 /* Invalid coding system. */
4732
4733 if (!NILP (noerror))
4734 coding_system = Qraw_text;
4735 else
4736 xsignal1 (Qcoding_system_error, coding_system);
4737 }
4738 }
4739
4740 object = make_buffer_string (b, e, 0);
4741 if (prev != current_buffer)
4742 set_buffer_internal (prev);
4743 /* Discard the unwind protect for recovering the current
4744 buffer. */
4745 specpdl_ptr--;
4746
4747 if (STRING_MULTIBYTE (object))
4748 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4749 }
4750
4751 if (EQ (algorithm, Qmd5))
4752 {
4753 digest_size = MD5_DIGEST_SIZE;
4754 hash_func = md5_buffer;
4755 }
4756 else if (EQ (algorithm, Qsha1))
4757 {
4758 digest_size = SHA1_DIGEST_SIZE;
4759 hash_func = sha1_buffer;
4760 }
4761 else if (EQ (algorithm, Qsha224))
4762 {
4763 digest_size = SHA224_DIGEST_SIZE;
4764 hash_func = sha224_buffer;
4765 }
4766 else if (EQ (algorithm, Qsha256))
4767 {
4768 digest_size = SHA256_DIGEST_SIZE;
4769 hash_func = sha256_buffer;
4770 }
4771 else if (EQ (algorithm, Qsha384))
4772 {
4773 digest_size = SHA384_DIGEST_SIZE;
4774 hash_func = sha384_buffer;
4775 }
4776 else if (EQ (algorithm, Qsha512))
4777 {
4778 digest_size = SHA512_DIGEST_SIZE;
4779 hash_func = sha512_buffer;
4780 }
4781 else
4782 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4783
4784 /* allocate 2 x digest_size so that it can be re-used to hold the
4785 hexified value */
4786 digest = make_uninit_string (digest_size * 2);
4787
4788 hash_func (SSDATA (object) + start_byte,
4789 SBYTES (object) - (size_byte - end_byte),
4790 SSDATA (digest));
4791
4792 if (NILP (binary))
4793 {
4794 unsigned char *p = SDATA (digest);
4795 for (i = digest_size - 1; i >= 0; i--)
4796 {
4797 static char const hexdigit[16] = "0123456789abcdef";
4798 int p_i = p[i];
4799 p[2 * i] = hexdigit[p_i >> 4];
4800 p[2 * i + 1] = hexdigit[p_i & 0xf];
4801 }
4802 return digest;
4803 }
4804 else
4805 return make_unibyte_string (SSDATA (digest), digest_size);
4806 }
4807
4808 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4809 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4810
4811 A message digest is a cryptographic checksum of a document, and the
4812 algorithm to calculate it is defined in RFC 1321.
4813
4814 The two optional arguments START and END are character positions
4815 specifying for which part of OBJECT the message digest should be
4816 computed. If nil or omitted, the digest is computed for the whole
4817 OBJECT.
4818
4819 The MD5 message digest is computed from the result of encoding the
4820 text in a coding system, not directly from the internal Emacs form of
4821 the text. The optional fourth argument CODING-SYSTEM specifies which
4822 coding system to encode the text with. It should be the same coding
4823 system that you used or will use when actually writing the text into a
4824 file.
4825
4826 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4827 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4828 system would be chosen by default for writing this text into a file.
4829
4830 If OBJECT is a string, the most preferred coding system (see the
4831 command `prefer-coding-system') is used.
4832
4833 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4834 guesswork fails. Normally, an error is signaled in such case. */)
4835 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4836 {
4837 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4838 }
4839
4840 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4841 doc: /* Return the secure hash of an OBJECT.
4842 ALGORITHM is a symbol: md5, sha1, sha224, sha256, sha384 or sha512.
4843 OBJECT is either a string or a buffer.
4844 Optional arguments START and END are character positions specifying
4845 which portion of OBJECT for computing the hash. If BINARY is non-nil,
4846 return a string in binary form. */)
4847 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4848 {
4849 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4850 }
4851 \f
4852 void
4853 syms_of_fns (void)
4854 {
4855 DEFSYM (Qmd5, "md5");
4856 DEFSYM (Qsha1, "sha1");
4857 DEFSYM (Qsha224, "sha224");
4858 DEFSYM (Qsha256, "sha256");
4859 DEFSYM (Qsha384, "sha384");
4860 DEFSYM (Qsha512, "sha512");
4861
4862 /* Hash table stuff. */
4863 Qhash_table_p = intern_c_string ("hash-table-p");
4864 staticpro (&Qhash_table_p);
4865 Qeq = intern_c_string ("eq");
4866 staticpro (&Qeq);
4867 Qeql = intern_c_string ("eql");
4868 staticpro (&Qeql);
4869 Qequal = intern_c_string ("equal");
4870 staticpro (&Qequal);
4871 QCtest = intern_c_string (":test");
4872 staticpro (&QCtest);
4873 QCsize = intern_c_string (":size");
4874 staticpro (&QCsize);
4875 QCrehash_size = intern_c_string (":rehash-size");
4876 staticpro (&QCrehash_size);
4877 QCrehash_threshold = intern_c_string (":rehash-threshold");
4878 staticpro (&QCrehash_threshold);
4879 QCweakness = intern_c_string (":weakness");
4880 staticpro (&QCweakness);
4881 Qkey = intern_c_string ("key");
4882 staticpro (&Qkey);
4883 Qvalue = intern_c_string ("value");
4884 staticpro (&Qvalue);
4885 Qhash_table_test = intern_c_string ("hash-table-test");
4886 staticpro (&Qhash_table_test);
4887 Qkey_or_value = intern_c_string ("key-or-value");
4888 staticpro (&Qkey_or_value);
4889 Qkey_and_value = intern_c_string ("key-and-value");
4890 staticpro (&Qkey_and_value);
4891
4892 defsubr (&Ssxhash);
4893 defsubr (&Smake_hash_table);
4894 defsubr (&Scopy_hash_table);
4895 defsubr (&Shash_table_count);
4896 defsubr (&Shash_table_rehash_size);
4897 defsubr (&Shash_table_rehash_threshold);
4898 defsubr (&Shash_table_size);
4899 defsubr (&Shash_table_test);
4900 defsubr (&Shash_table_weakness);
4901 defsubr (&Shash_table_p);
4902 defsubr (&Sclrhash);
4903 defsubr (&Sgethash);
4904 defsubr (&Sputhash);
4905 defsubr (&Sremhash);
4906 defsubr (&Smaphash);
4907 defsubr (&Sdefine_hash_table_test);
4908
4909 Qstring_lessp = intern_c_string ("string-lessp");
4910 staticpro (&Qstring_lessp);
4911 Qprovide = intern_c_string ("provide");
4912 staticpro (&Qprovide);
4913 Qrequire = intern_c_string ("require");
4914 staticpro (&Qrequire);
4915 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4916 staticpro (&Qyes_or_no_p_history);
4917 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4918 staticpro (&Qcursor_in_echo_area);
4919 Qwidget_type = intern_c_string ("widget-type");
4920 staticpro (&Qwidget_type);
4921
4922 staticpro (&string_char_byte_cache_string);
4923 string_char_byte_cache_string = Qnil;
4924
4925 require_nesting_list = Qnil;
4926 staticpro (&require_nesting_list);
4927
4928 Fset (Qyes_or_no_p_history, Qnil);
4929
4930 DEFVAR_LISP ("features", Vfeatures,
4931 doc: /* A list of symbols which are the features of the executing Emacs.
4932 Used by `featurep' and `require', and altered by `provide'. */);
4933 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4934 Qsubfeatures = intern_c_string ("subfeatures");
4935 staticpro (&Qsubfeatures);
4936
4937 #ifdef HAVE_LANGINFO_CODESET
4938 Qcodeset = intern_c_string ("codeset");
4939 staticpro (&Qcodeset);
4940 Qdays = intern_c_string ("days");
4941 staticpro (&Qdays);
4942 Qmonths = intern_c_string ("months");
4943 staticpro (&Qmonths);
4944 Qpaper = intern_c_string ("paper");
4945 staticpro (&Qpaper);
4946 #endif /* HAVE_LANGINFO_CODESET */
4947
4948 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4949 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4950 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4951 invoked by mouse clicks and mouse menu items.
4952
4953 On some platforms, file selection dialogs are also enabled if this is
4954 non-nil. */);
4955 use_dialog_box = 1;
4956
4957 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4958 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4959 This applies to commands from menus and tool bar buttons even when
4960 they are initiated from the keyboard. If `use-dialog-box' is nil,
4961 that disables the use of a file dialog, regardless of the value of
4962 this variable. */);
4963 use_file_dialog = 1;
4964
4965 defsubr (&Sidentity);
4966 defsubr (&Srandom);
4967 defsubr (&Slength);
4968 defsubr (&Ssafe_length);
4969 defsubr (&Sstring_bytes);
4970 defsubr (&Sstring_equal);
4971 defsubr (&Scompare_strings);
4972 defsubr (&Sstring_lessp);
4973 defsubr (&Sappend);
4974 defsubr (&Sconcat);
4975 defsubr (&Svconcat);
4976 defsubr (&Scopy_sequence);
4977 defsubr (&Sstring_make_multibyte);
4978 defsubr (&Sstring_make_unibyte);
4979 defsubr (&Sstring_as_multibyte);
4980 defsubr (&Sstring_as_unibyte);
4981 defsubr (&Sstring_to_multibyte);
4982 defsubr (&Sstring_to_unibyte);
4983 defsubr (&Scopy_alist);
4984 defsubr (&Ssubstring);
4985 defsubr (&Ssubstring_no_properties);
4986 defsubr (&Snthcdr);
4987 defsubr (&Snth);
4988 defsubr (&Selt);
4989 defsubr (&Smember);
4990 defsubr (&Smemq);
4991 defsubr (&Smemql);
4992 defsubr (&Sassq);
4993 defsubr (&Sassoc);
4994 defsubr (&Srassq);
4995 defsubr (&Srassoc);
4996 defsubr (&Sdelq);
4997 defsubr (&Sdelete);
4998 defsubr (&Snreverse);
4999 defsubr (&Sreverse);
5000 defsubr (&Ssort);
5001 defsubr (&Splist_get);
5002 defsubr (&Sget);
5003 defsubr (&Splist_put);
5004 defsubr (&Sput);
5005 defsubr (&Slax_plist_get);
5006 defsubr (&Slax_plist_put);
5007 defsubr (&Seql);
5008 defsubr (&Sequal);
5009 defsubr (&Sequal_including_properties);
5010 defsubr (&Sfillarray);
5011 defsubr (&Sclear_string);
5012 defsubr (&Snconc);
5013 defsubr (&Smapcar);
5014 defsubr (&Smapc);
5015 defsubr (&Smapconcat);
5016 defsubr (&Syes_or_no_p);
5017 defsubr (&Sload_average);
5018 defsubr (&Sfeaturep);
5019 defsubr (&Srequire);
5020 defsubr (&Sprovide);
5021 defsubr (&Splist_member);
5022 defsubr (&Swidget_put);
5023 defsubr (&Swidget_get);
5024 defsubr (&Swidget_apply);
5025 defsubr (&Sbase64_encode_region);
5026 defsubr (&Sbase64_decode_region);
5027 defsubr (&Sbase64_encode_string);
5028 defsubr (&Sbase64_decode_string);
5029 defsubr (&Smd5);
5030 defsubr (&Ssecure_hash);
5031 defsubr (&Slocale_info);
5032 }
5033
5034
5035 void
5036 init_fns (void)
5037 {
5038 }