Undo the DEFUN->DEFUE change.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <setjmp.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "character.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
33
34 #include <sys/types.h>
35 #include "regex.h"
36
37 #define REGEXP_CACHE_SIZE 20
38
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
42 {
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 /* Syntax table for which the regexp applies. We need this because
46 of character classes. If this is t, then the compiled pattern is valid
47 for any syntax-table. */
48 Lisp_Object syntax_table;
49 struct re_pattern_buffer buf;
50 char fastmap[0400];
51 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
52 char posix;
53 };
54
55 /* The instances of that struct. */
56 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
57
58 /* The head of the linked list; points to the most recently used buffer. */
59 static struct regexp_cache *searchbuf_head;
60
61
62 /* Every call to re_match, etc., must pass &search_regs as the regs
63 argument unless you can show it is unnecessary (i.e., if re_match
64 is certainly going to be called again before region-around-match
65 can be called).
66
67 Since the registers are now dynamically allocated, we need to make
68 sure not to refer to the Nth register before checking that it has
69 been allocated by checking search_regs.num_regs.
70
71 The regex code keeps track of whether it has allocated the search
72 buffer using bits in the re_pattern_buffer. This means that whenever
73 you compile a new pattern, it completely forgets whether it has
74 allocated any registers, and will allocate new registers the next
75 time you call a searching or matching function. Therefore, we need
76 to call re_set_registers after compiling a new pattern or after
77 setting the match registers, so that the regex functions will be
78 able to free or re-allocate it properly. */
79 static struct re_registers search_regs;
80
81 /* The buffer in which the last search was performed, or
82 Qt if the last search was done in a string;
83 Qnil if no searching has been done yet. */
84 static Lisp_Object last_thing_searched;
85
86 /* error condition signaled when regexp compile_pattern fails */
87
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (EMACS_INT, EMACS_INT);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, EMACS_INT,
96 EMACS_INT, Lisp_Object, EMACS_INT, EMACS_INT,
97 EMACS_INT, EMACS_INT);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, EMACS_INT,
99 Lisp_Object, Lisp_Object, EMACS_INT,
100 EMACS_INT, int);
101 static EMACS_INT search_buffer (Lisp_Object, EMACS_INT, EMACS_INT,
102 EMACS_INT, EMACS_INT, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 EMACS_INT s1, s2;
276 register EMACS_INT i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 EMACS_INT val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos, pos_byte;
374 int i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 EMACS_INT len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 EMACS_INT
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 EMACS_INT val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 EMACS_INT
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 EMACS_INT val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 EMACS_INT
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 EMACS_INT val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 EMACS_INT
539 fast_looking_at (Lisp_Object regexp, EMACS_INT pos, EMACS_INT pos_byte, EMACS_INT limit, EMACS_INT limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 EMACS_INT s1, s2;
545 EMACS_INT len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 EMACS_INT
645 scan_buffer (register int target, EMACS_INT start, EMACS_INT end,
646 EMACS_INT count, EMACS_INT *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 EMACS_INT start_byte = CHAR_TO_BYTE (start);
680 EMACS_INT tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 EMACS_INT next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 start_byte + scan_start - base,
730 start_byte + cursor - base);
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end);
752 EMACS_INT start_byte = CHAR_TO_BYTE (start);
753 EMACS_INT tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 EMACS_INT next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 start_byte + cursor - base,
796 start_byte + scan_start - base);
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (EMACS_INT start, EMACS_INT start_byte,
839 EMACS_INT limit, EMACS_INT limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 EMACS_INT ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 EMACS_INT
934 find_next_newline_no_quit (EMACS_INT from, EMACS_INT cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (EMACS_INT *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 EMACS_INT
944 find_before_next_newline (EMACS_INT from, EMACS_INT to, EMACS_INT cnt)
945 {
946 EMACS_INT shortage;
947 EMACS_INT pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register EMACS_INT np;
962 EMACS_INT lim, lim_byte;
963 EMACS_INT n = direction;
964
965 if (!NILP (count))
966 {
967 CHECK_NUMBER (count);
968 n *= XINT (count);
969 }
970
971 CHECK_STRING (string);
972 if (NILP (bound))
973 {
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
978 }
979 else
980 {
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
991 }
992
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
996
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1006 {
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1009
1010 if (!EQ (noerror, Qt))
1011 {
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1020 }
1021 else
1022 return Qnil;
1023 }
1024
1025 if (np < BEGV || np > ZV)
1026 abort ();
1027
1028 SET_PT (np);
1029
1030 return make_number (np);
1031 }
1032 \f
1033 /* Return 1 if REGEXP it matches just one constant string. */
1034
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1037 {
1038 EMACS_INT len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1041 {
1042 switch (*s++)
1043 {
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1050 {
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1058 }
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1068
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1071
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1075
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1078
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1081 { \
1082 if (! NILP (trt)) \
1083 { \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1090 } \
1091 else \
1092 out = d; \
1093 } \
1094 while (0)
1095
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1100
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, EMACS_INT pos, EMACS_INT pos_byte,
1103 EMACS_INT lim, EMACS_INT lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1105 {
1106 EMACS_INT len = SCHARS (string);
1107 EMACS_INT len_byte = SBYTES (string);
1108 register int i;
1109
1110 if (running_asynch_code)
1111 save_search_regs ();
1112
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1116 {
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1119 }
1120
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1122 {
1123 unsigned char *p1, *p2;
1124 EMACS_INT s1, s2;
1125 struct re_pattern_buffer *bufp;
1126
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1132
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1140
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1146 {
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1150 }
1151 if (s2 < 0)
1152 {
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1155 }
1156 re_match_object = Qnil;
1157
1158 while (n < 0)
1159 {
1160 EMACS_INT val;
1161 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1162 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1163 (NILP (Vinhibit_changing_match_data)
1164 ? &search_regs : &search_regs_1),
1165 /* Don't allow match past current point */
1166 pos_byte - BEGV_BYTE);
1167 if (val == -2)
1168 {
1169 matcher_overflow ();
1170 }
1171 if (val >= 0)
1172 {
1173 if (NILP (Vinhibit_changing_match_data))
1174 {
1175 pos_byte = search_regs.start[0] + BEGV_BYTE;
1176 for (i = 0; i < search_regs.num_regs; i++)
1177 if (search_regs.start[i] >= 0)
1178 {
1179 search_regs.start[i]
1180 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1181 search_regs.end[i]
1182 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1183 }
1184 XSETBUFFER (last_thing_searched, current_buffer);
1185 /* Set pos to the new position. */
1186 pos = search_regs.start[0];
1187 }
1188 else
1189 {
1190 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1191 /* Set pos to the new position. */
1192 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1193 }
1194 }
1195 else
1196 {
1197 immediate_quit = 0;
1198 return (n);
1199 }
1200 n++;
1201 }
1202 while (n > 0)
1203 {
1204 EMACS_INT val;
1205 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1206 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1207 (NILP (Vinhibit_changing_match_data)
1208 ? &search_regs : &search_regs_1),
1209 lim_byte - BEGV_BYTE);
1210 if (val == -2)
1211 {
1212 matcher_overflow ();
1213 }
1214 if (val >= 0)
1215 {
1216 if (NILP (Vinhibit_changing_match_data))
1217 {
1218 pos_byte = search_regs.end[0] + BEGV_BYTE;
1219 for (i = 0; i < search_regs.num_regs; i++)
1220 if (search_regs.start[i] >= 0)
1221 {
1222 search_regs.start[i]
1223 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1224 search_regs.end[i]
1225 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1226 }
1227 XSETBUFFER (last_thing_searched, current_buffer);
1228 pos = search_regs.end[0];
1229 }
1230 else
1231 {
1232 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1233 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1234 }
1235 }
1236 else
1237 {
1238 immediate_quit = 0;
1239 return (0 - n);
1240 }
1241 n--;
1242 }
1243 immediate_quit = 0;
1244 return (pos);
1245 }
1246 else /* non-RE case */
1247 {
1248 unsigned char *raw_pattern, *pat;
1249 EMACS_INT raw_pattern_size;
1250 EMACS_INT raw_pattern_size_byte;
1251 unsigned char *patbuf;
1252 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1253 unsigned char *base_pat;
1254 /* Set to positive if we find a non-ASCII char that need
1255 translation. Otherwise set to zero later. */
1256 int char_base = -1;
1257 int boyer_moore_ok = 1;
1258
1259 /* MULTIBYTE says whether the text to be searched is multibyte.
1260 We must convert PATTERN to match that, or we will not really
1261 find things right. */
1262
1263 if (multibyte == STRING_MULTIBYTE (string))
1264 {
1265 raw_pattern = SDATA (string);
1266 raw_pattern_size = SCHARS (string);
1267 raw_pattern_size_byte = SBYTES (string);
1268 }
1269 else if (multibyte)
1270 {
1271 raw_pattern_size = SCHARS (string);
1272 raw_pattern_size_byte
1273 = count_size_as_multibyte (SDATA (string),
1274 raw_pattern_size);
1275 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1276 copy_text (SDATA (string), raw_pattern,
1277 SCHARS (string), 0, 1);
1278 }
1279 else
1280 {
1281 /* Converting multibyte to single-byte.
1282
1283 ??? Perhaps this conversion should be done in a special way
1284 by subtracting nonascii-insert-offset from each non-ASCII char,
1285 so that only the multibyte chars which really correspond to
1286 the chosen single-byte character set can possibly match. */
1287 raw_pattern_size = SCHARS (string);
1288 raw_pattern_size_byte = SCHARS (string);
1289 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1290 copy_text (SDATA (string), raw_pattern,
1291 SBYTES (string), 1, 0);
1292 }
1293
1294 /* Copy and optionally translate the pattern. */
1295 len = raw_pattern_size;
1296 len_byte = raw_pattern_size_byte;
1297 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1298 pat = patbuf;
1299 base_pat = raw_pattern;
1300 if (multibyte)
1301 {
1302 /* Fill patbuf by translated characters in STRING while
1303 checking if we can use boyer-moore search. If TRT is
1304 non-nil, we can use boyer-moore search only if TRT can be
1305 represented by the byte array of 256 elements. For that,
1306 all non-ASCII case-equivalents of all case-senstive
1307 characters in STRING must belong to the same charset and
1308 row. */
1309
1310 while (--len >= 0)
1311 {
1312 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1313 int c, translated, inverse;
1314 int in_charlen, charlen;
1315
1316 /* If we got here and the RE flag is set, it's because we're
1317 dealing with a regexp known to be trivial, so the backslash
1318 just quotes the next character. */
1319 if (RE && *base_pat == '\\')
1320 {
1321 len--;
1322 raw_pattern_size--;
1323 len_byte--;
1324 base_pat++;
1325 }
1326
1327 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1328
1329 if (NILP (trt))
1330 {
1331 str = base_pat;
1332 charlen = in_charlen;
1333 }
1334 else
1335 {
1336 /* Translate the character. */
1337 TRANSLATE (translated, trt, c);
1338 charlen = CHAR_STRING (translated, str_base);
1339 str = str_base;
1340
1341 /* Check if C has any other case-equivalents. */
1342 TRANSLATE (inverse, inverse_trt, c);
1343 /* If so, check if we can use boyer-moore. */
1344 if (c != inverse && boyer_moore_ok)
1345 {
1346 /* Check if all equivalents belong to the same
1347 group of characters. Note that the check of C
1348 itself is done by the last iteration. */
1349 int this_char_base = -1;
1350
1351 while (boyer_moore_ok)
1352 {
1353 if (ASCII_BYTE_P (inverse))
1354 {
1355 if (this_char_base > 0)
1356 boyer_moore_ok = 0;
1357 else
1358 this_char_base = 0;
1359 }
1360 else if (CHAR_BYTE8_P (inverse))
1361 /* Boyer-moore search can't handle a
1362 translation of an eight-bit
1363 character. */
1364 boyer_moore_ok = 0;
1365 else if (this_char_base < 0)
1366 {
1367 this_char_base = inverse & ~0x3F;
1368 if (char_base < 0)
1369 char_base = this_char_base;
1370 else if (this_char_base != char_base)
1371 boyer_moore_ok = 0;
1372 }
1373 else if ((inverse & ~0x3F) != this_char_base)
1374 boyer_moore_ok = 0;
1375 if (c == inverse)
1376 break;
1377 TRANSLATE (inverse, inverse_trt, inverse);
1378 }
1379 }
1380 }
1381
1382 /* Store this character into the translated pattern. */
1383 memcpy (pat, str, charlen);
1384 pat += charlen;
1385 base_pat += in_charlen;
1386 len_byte -= in_charlen;
1387 }
1388
1389 /* If char_base is still negative we didn't find any translated
1390 non-ASCII characters. */
1391 if (char_base < 0)
1392 char_base = 0;
1393 }
1394 else
1395 {
1396 /* Unibyte buffer. */
1397 char_base = 0;
1398 while (--len >= 0)
1399 {
1400 int c, translated;
1401
1402 /* If we got here and the RE flag is set, it's because we're
1403 dealing with a regexp known to be trivial, so the backslash
1404 just quotes the next character. */
1405 if (RE && *base_pat == '\\')
1406 {
1407 len--;
1408 raw_pattern_size--;
1409 base_pat++;
1410 }
1411 c = *base_pat++;
1412 TRANSLATE (translated, trt, c);
1413 *pat++ = translated;
1414 }
1415 }
1416
1417 len_byte = pat - patbuf;
1418 pat = base_pat = patbuf;
1419
1420 if (boyer_moore_ok)
1421 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1422 pos_byte, lim_byte,
1423 char_base);
1424 else
1425 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1426 pos, pos_byte, lim, lim_byte);
1427 }
1428 }
1429 \f
1430 /* Do a simple string search N times for the string PAT,
1431 whose length is LEN/LEN_BYTE,
1432 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1433 TRT is the translation table.
1434
1435 Return the character position where the match is found.
1436 Otherwise, if M matches remained to be found, return -M.
1437
1438 This kind of search works regardless of what is in PAT and
1439 regardless of what is in TRT. It is used in cases where
1440 boyer_moore cannot work. */
1441
1442 static EMACS_INT
1443 simple_search (EMACS_INT n, unsigned char *pat,
1444 EMACS_INT len, EMACS_INT len_byte, Lisp_Object trt,
1445 EMACS_INT pos, EMACS_INT pos_byte,
1446 EMACS_INT lim, EMACS_INT lim_byte)
1447 {
1448 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1449 int forward = n > 0;
1450 /* Number of buffer bytes matched. Note that this may be different
1451 from len_byte in a multibyte buffer. */
1452 EMACS_INT match_byte;
1453
1454 if (lim > pos && multibyte)
1455 while (n > 0)
1456 {
1457 while (1)
1458 {
1459 /* Try matching at position POS. */
1460 EMACS_INT this_pos = pos;
1461 EMACS_INT this_pos_byte = pos_byte;
1462 EMACS_INT this_len = len;
1463 unsigned char *p = pat;
1464 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1465 goto stop;
1466
1467 while (this_len > 0)
1468 {
1469 int charlen, buf_charlen;
1470 int pat_ch, buf_ch;
1471
1472 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1473 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1474 buf_charlen);
1475 TRANSLATE (buf_ch, trt, buf_ch);
1476
1477 if (buf_ch != pat_ch)
1478 break;
1479
1480 this_len--;
1481 p += charlen;
1482
1483 this_pos_byte += buf_charlen;
1484 this_pos++;
1485 }
1486
1487 if (this_len == 0)
1488 {
1489 match_byte = this_pos_byte - pos_byte;
1490 pos += len;
1491 pos_byte += match_byte;
1492 break;
1493 }
1494
1495 INC_BOTH (pos, pos_byte);
1496 }
1497
1498 n--;
1499 }
1500 else if (lim > pos)
1501 while (n > 0)
1502 {
1503 while (1)
1504 {
1505 /* Try matching at position POS. */
1506 EMACS_INT this_pos = pos;
1507 EMACS_INT this_len = len;
1508 unsigned char *p = pat;
1509
1510 if (pos + len > lim)
1511 goto stop;
1512
1513 while (this_len > 0)
1514 {
1515 int pat_ch = *p++;
1516 int buf_ch = FETCH_BYTE (this_pos);
1517 TRANSLATE (buf_ch, trt, buf_ch);
1518
1519 if (buf_ch != pat_ch)
1520 break;
1521
1522 this_len--;
1523 this_pos++;
1524 }
1525
1526 if (this_len == 0)
1527 {
1528 match_byte = len;
1529 pos += len;
1530 break;
1531 }
1532
1533 pos++;
1534 }
1535
1536 n--;
1537 }
1538 /* Backwards search. */
1539 else if (lim < pos && multibyte)
1540 while (n < 0)
1541 {
1542 while (1)
1543 {
1544 /* Try matching at position POS. */
1545 EMACS_INT this_pos = pos;
1546 EMACS_INT this_pos_byte = pos_byte;
1547 EMACS_INT this_len = len;
1548 const unsigned char *p = pat + len_byte;
1549
1550 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1551 goto stop;
1552
1553 while (this_len > 0)
1554 {
1555 int pat_ch, buf_ch;
1556
1557 DEC_BOTH (this_pos, this_pos_byte);
1558 PREV_CHAR_BOUNDARY (p, pat);
1559 pat_ch = STRING_CHAR (p);
1560 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1561 TRANSLATE (buf_ch, trt, buf_ch);
1562
1563 if (buf_ch != pat_ch)
1564 break;
1565
1566 this_len--;
1567 }
1568
1569 if (this_len == 0)
1570 {
1571 match_byte = pos_byte - this_pos_byte;
1572 pos = this_pos;
1573 pos_byte = this_pos_byte;
1574 break;
1575 }
1576
1577 DEC_BOTH (pos, pos_byte);
1578 }
1579
1580 n++;
1581 }
1582 else if (lim < pos)
1583 while (n < 0)
1584 {
1585 while (1)
1586 {
1587 /* Try matching at position POS. */
1588 EMACS_INT this_pos = pos - len;
1589 EMACS_INT this_len = len;
1590 unsigned char *p = pat;
1591
1592 if (this_pos < lim)
1593 goto stop;
1594
1595 while (this_len > 0)
1596 {
1597 int pat_ch = *p++;
1598 int buf_ch = FETCH_BYTE (this_pos);
1599 TRANSLATE (buf_ch, trt, buf_ch);
1600
1601 if (buf_ch != pat_ch)
1602 break;
1603 this_len--;
1604 this_pos++;
1605 }
1606
1607 if (this_len == 0)
1608 {
1609 match_byte = len;
1610 pos -= len;
1611 break;
1612 }
1613
1614 pos--;
1615 }
1616
1617 n++;
1618 }
1619
1620 stop:
1621 if (n == 0)
1622 {
1623 if (forward)
1624 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1625 else
1626 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1627
1628 return pos;
1629 }
1630 else if (n > 0)
1631 return -n;
1632 else
1633 return n;
1634 }
1635 \f
1636 /* Do Boyer-Moore search N times for the string BASE_PAT,
1637 whose length is LEN_BYTE,
1638 from buffer position POS_BYTE until LIM_BYTE.
1639 DIRECTION says which direction we search in.
1640 TRT and INVERSE_TRT are translation tables.
1641 Characters in PAT are already translated by TRT.
1642
1643 This kind of search works if all the characters in BASE_PAT that
1644 have nontrivial translation are the same aside from the last byte.
1645 This makes it possible to translate just the last byte of a
1646 character, and do so after just a simple test of the context.
1647 CHAR_BASE is nonzero if there is such a non-ASCII character.
1648
1649 If that criterion is not satisfied, do not call this function. */
1650
1651 static EMACS_INT
1652 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1653 EMACS_INT len_byte,
1654 Lisp_Object trt, Lisp_Object inverse_trt,
1655 EMACS_INT pos_byte, EMACS_INT lim_byte,
1656 int char_base)
1657 {
1658 int direction = ((n > 0) ? 1 : -1);
1659 register EMACS_INT dirlen;
1660 EMACS_INT limit;
1661 int stride_for_teases = 0;
1662 int BM_tab[0400];
1663 register unsigned char *cursor, *p_limit;
1664 register EMACS_INT i;
1665 register int j;
1666 unsigned char *pat, *pat_end;
1667 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1668
1669 unsigned char simple_translate[0400];
1670 /* These are set to the preceding bytes of a byte to be translated
1671 if char_base is nonzero. As the maximum byte length of a
1672 multibyte character is 5, we have to check at most four previous
1673 bytes. */
1674 int translate_prev_byte1 = 0;
1675 int translate_prev_byte2 = 0;
1676 int translate_prev_byte3 = 0;
1677
1678 /* The general approach is that we are going to maintain that we know
1679 the first (closest to the present position, in whatever direction
1680 we're searching) character that could possibly be the last
1681 (furthest from present position) character of a valid match. We
1682 advance the state of our knowledge by looking at that character
1683 and seeing whether it indeed matches the last character of the
1684 pattern. If it does, we take a closer look. If it does not, we
1685 move our pointer (to putative last characters) as far as is
1686 logically possible. This amount of movement, which I call a
1687 stride, will be the length of the pattern if the actual character
1688 appears nowhere in the pattern, otherwise it will be the distance
1689 from the last occurrence of that character to the end of the
1690 pattern. If the amount is zero we have a possible match. */
1691
1692 /* Here we make a "mickey mouse" BM table. The stride of the search
1693 is determined only by the last character of the putative match.
1694 If that character does not match, we will stride the proper
1695 distance to propose a match that superimposes it on the last
1696 instance of a character that matches it (per trt), or misses
1697 it entirely if there is none. */
1698
1699 dirlen = len_byte * direction;
1700
1701 /* Record position after the end of the pattern. */
1702 pat_end = base_pat + len_byte;
1703 /* BASE_PAT points to a character that we start scanning from.
1704 It is the first character in a forward search,
1705 the last character in a backward search. */
1706 if (direction < 0)
1707 base_pat = pat_end - 1;
1708
1709 /* A character that does not appear in the pattern induces a
1710 stride equal to the pattern length. */
1711 for (i = 0; i < 0400; i++)
1712 BM_tab[i] = dirlen;
1713
1714 /* We use this for translation, instead of TRT itself.
1715 We fill this in to handle the characters that actually
1716 occur in the pattern. Others don't matter anyway! */
1717 for (i = 0; i < 0400; i++)
1718 simple_translate[i] = i;
1719
1720 if (char_base)
1721 {
1722 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1723 byte following them are the target of translation. */
1724 unsigned char str[MAX_MULTIBYTE_LENGTH];
1725 int cblen = CHAR_STRING (char_base, str);
1726
1727 translate_prev_byte1 = str[cblen - 2];
1728 if (cblen > 2)
1729 {
1730 translate_prev_byte2 = str[cblen - 3];
1731 if (cblen > 3)
1732 translate_prev_byte3 = str[cblen - 4];
1733 }
1734 }
1735
1736 i = 0;
1737 while (i != dirlen)
1738 {
1739 unsigned char *ptr = base_pat + i;
1740 i += direction;
1741 if (! NILP (trt))
1742 {
1743 /* If the byte currently looking at is the last of a
1744 character to check case-equivalents, set CH to that
1745 character. An ASCII character and a non-ASCII character
1746 matching with CHAR_BASE are to be checked. */
1747 int ch = -1;
1748
1749 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1750 ch = *ptr;
1751 else if (char_base
1752 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1753 {
1754 unsigned char *charstart = ptr - 1;
1755
1756 while (! (CHAR_HEAD_P (*charstart)))
1757 charstart--;
1758 ch = STRING_CHAR (charstart);
1759 if (char_base != (ch & ~0x3F))
1760 ch = -1;
1761 }
1762
1763 if (ch >= 0200)
1764 j = (ch & 0x3F) | 0200;
1765 else
1766 j = *ptr;
1767
1768 if (i == dirlen)
1769 stride_for_teases = BM_tab[j];
1770
1771 BM_tab[j] = dirlen - i;
1772 /* A translation table is accompanied by its inverse -- see
1773 comment following downcase_table for details. */
1774 if (ch >= 0)
1775 {
1776 int starting_ch = ch;
1777 int starting_j = j;
1778
1779 while (1)
1780 {
1781 TRANSLATE (ch, inverse_trt, ch);
1782 if (ch >= 0200)
1783 j = (ch & 0x3F) | 0200;
1784 else
1785 j = ch;
1786
1787 /* For all the characters that map into CH,
1788 set up simple_translate to map the last byte
1789 into STARTING_J. */
1790 simple_translate[j] = starting_j;
1791 if (ch == starting_ch)
1792 break;
1793 BM_tab[j] = dirlen - i;
1794 }
1795 }
1796 }
1797 else
1798 {
1799 j = *ptr;
1800
1801 if (i == dirlen)
1802 stride_for_teases = BM_tab[j];
1803 BM_tab[j] = dirlen - i;
1804 }
1805 /* stride_for_teases tells how much to stride if we get a
1806 match on the far character but are subsequently
1807 disappointed, by recording what the stride would have been
1808 for that character if the last character had been
1809 different. */
1810 }
1811 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1812 /* loop invariant - POS_BYTE points at where last char (first
1813 char if reverse) of pattern would align in a possible match. */
1814 while (n != 0)
1815 {
1816 EMACS_INT tail_end;
1817 unsigned char *tail_end_ptr;
1818
1819 /* It's been reported that some (broken) compiler thinks that
1820 Boolean expressions in an arithmetic context are unsigned.
1821 Using an explicit ?1:0 prevents this. */
1822 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1823 < 0)
1824 return (n * (0 - direction));
1825 /* First we do the part we can by pointers (maybe nothing) */
1826 QUIT;
1827 pat = base_pat;
1828 limit = pos_byte - dirlen + direction;
1829 if (direction > 0)
1830 {
1831 limit = BUFFER_CEILING_OF (limit);
1832 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1833 can take on without hitting edge of buffer or the gap. */
1834 limit = min (limit, pos_byte + 20000);
1835 limit = min (limit, lim_byte - 1);
1836 }
1837 else
1838 {
1839 limit = BUFFER_FLOOR_OF (limit);
1840 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1841 can take on without hitting edge of buffer or the gap. */
1842 limit = max (limit, pos_byte - 20000);
1843 limit = max (limit, lim_byte);
1844 }
1845 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1846 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1847
1848 if ((limit - pos_byte) * direction > 20)
1849 {
1850 unsigned char *p2;
1851
1852 p_limit = BYTE_POS_ADDR (limit);
1853 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1854 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1855 while (1) /* use one cursor setting as long as i can */
1856 {
1857 if (direction > 0) /* worth duplicating */
1858 {
1859 while (cursor <= p_limit)
1860 {
1861 if (BM_tab[*cursor] == 0)
1862 goto hit;
1863 cursor += BM_tab[*cursor];
1864 }
1865 }
1866 else
1867 {
1868 while (cursor >= p_limit)
1869 {
1870 if (BM_tab[*cursor] == 0)
1871 goto hit;
1872 cursor += BM_tab[*cursor];
1873 }
1874 }
1875 /* If you are here, cursor is beyond the end of the
1876 searched region. You fail to match within the
1877 permitted region and would otherwise try a character
1878 beyond that region. */
1879 break;
1880
1881 hit:
1882 i = dirlen - direction;
1883 if (! NILP (trt))
1884 {
1885 while ((i -= direction) + direction != 0)
1886 {
1887 int ch;
1888 cursor -= direction;
1889 /* Translate only the last byte of a character. */
1890 if (! multibyte
1891 || ((cursor == tail_end_ptr
1892 || CHAR_HEAD_P (cursor[1]))
1893 && (CHAR_HEAD_P (cursor[0])
1894 /* Check if this is the last byte of
1895 a translable character. */
1896 || (translate_prev_byte1 == cursor[-1]
1897 && (CHAR_HEAD_P (translate_prev_byte1)
1898 || (translate_prev_byte2 == cursor[-2]
1899 && (CHAR_HEAD_P (translate_prev_byte2)
1900 || (translate_prev_byte3 == cursor[-3]))))))))
1901 ch = simple_translate[*cursor];
1902 else
1903 ch = *cursor;
1904 if (pat[i] != ch)
1905 break;
1906 }
1907 }
1908 else
1909 {
1910 while ((i -= direction) + direction != 0)
1911 {
1912 cursor -= direction;
1913 if (pat[i] != *cursor)
1914 break;
1915 }
1916 }
1917 cursor += dirlen - i - direction; /* fix cursor */
1918 if (i + direction == 0)
1919 {
1920 EMACS_INT position, start, end;
1921
1922 cursor -= direction;
1923
1924 position = pos_byte + cursor - p2 + ((direction > 0)
1925 ? 1 - len_byte : 0);
1926 set_search_regs (position, len_byte);
1927
1928 if (NILP (Vinhibit_changing_match_data))
1929 {
1930 start = search_regs.start[0];
1931 end = search_regs.end[0];
1932 }
1933 else
1934 /* If Vinhibit_changing_match_data is non-nil,
1935 search_regs will not be changed. So let's
1936 compute start and end here. */
1937 {
1938 start = BYTE_TO_CHAR (position);
1939 end = BYTE_TO_CHAR (position + len_byte);
1940 }
1941
1942 if ((n -= direction) != 0)
1943 cursor += dirlen; /* to resume search */
1944 else
1945 return direction > 0 ? end : start;
1946 }
1947 else
1948 cursor += stride_for_teases; /* <sigh> we lose - */
1949 }
1950 pos_byte += cursor - p2;
1951 }
1952 else
1953 /* Now we'll pick up a clump that has to be done the hard
1954 way because it covers a discontinuity. */
1955 {
1956 limit = ((direction > 0)
1957 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1958 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1959 limit = ((direction > 0)
1960 ? min (limit + len_byte, lim_byte - 1)
1961 : max (limit - len_byte, lim_byte));
1962 /* LIMIT is now the last value POS_BYTE can have
1963 and still be valid for a possible match. */
1964 while (1)
1965 {
1966 /* This loop can be coded for space rather than
1967 speed because it will usually run only once.
1968 (the reach is at most len + 21, and typically
1969 does not exceed len). */
1970 while ((limit - pos_byte) * direction >= 0)
1971 {
1972 int ch = FETCH_BYTE (pos_byte);
1973 if (BM_tab[ch] == 0)
1974 goto hit2;
1975 pos_byte += BM_tab[ch];
1976 }
1977 break; /* ran off the end */
1978
1979 hit2:
1980 /* Found what might be a match. */
1981 i = dirlen - direction;
1982 while ((i -= direction) + direction != 0)
1983 {
1984 int ch;
1985 unsigned char *ptr;
1986 pos_byte -= direction;
1987 ptr = BYTE_POS_ADDR (pos_byte);
1988 /* Translate only the last byte of a character. */
1989 if (! multibyte
1990 || ((ptr == tail_end_ptr
1991 || CHAR_HEAD_P (ptr[1]))
1992 && (CHAR_HEAD_P (ptr[0])
1993 /* Check if this is the last byte of a
1994 translable character. */
1995 || (translate_prev_byte1 == ptr[-1]
1996 && (CHAR_HEAD_P (translate_prev_byte1)
1997 || (translate_prev_byte2 == ptr[-2]
1998 && (CHAR_HEAD_P (translate_prev_byte2)
1999 || translate_prev_byte3 == ptr[-3])))))))
2000 ch = simple_translate[*ptr];
2001 else
2002 ch = *ptr;
2003 if (pat[i] != ch)
2004 break;
2005 }
2006 /* Above loop has moved POS_BYTE part or all the way
2007 back to the first pos (last pos if reverse).
2008 Set it once again at the last (first if reverse) char. */
2009 pos_byte += dirlen - i - direction;
2010 if (i + direction == 0)
2011 {
2012 EMACS_INT position, start, end;
2013 pos_byte -= direction;
2014
2015 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2016 set_search_regs (position, len_byte);
2017
2018 if (NILP (Vinhibit_changing_match_data))
2019 {
2020 start = search_regs.start[0];
2021 end = search_regs.end[0];
2022 }
2023 else
2024 /* If Vinhibit_changing_match_data is non-nil,
2025 search_regs will not be changed. So let's
2026 compute start and end here. */
2027 {
2028 start = BYTE_TO_CHAR (position);
2029 end = BYTE_TO_CHAR (position + len_byte);
2030 }
2031
2032 if ((n -= direction) != 0)
2033 pos_byte += dirlen; /* to resume search */
2034 else
2035 return direction > 0 ? end : start;
2036 }
2037 else
2038 pos_byte += stride_for_teases;
2039 }
2040 }
2041 /* We have done one clump. Can we continue? */
2042 if ((lim_byte - pos_byte) * direction < 0)
2043 return ((0 - n) * direction);
2044 }
2045 return BYTE_TO_CHAR (pos_byte);
2046 }
2047
2048 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2049 for the overall match just found in the current buffer.
2050 Also clear out the match data for registers 1 and up. */
2051
2052 static void
2053 set_search_regs (EMACS_INT beg_byte, EMACS_INT nbytes)
2054 {
2055 int i;
2056
2057 if (!NILP (Vinhibit_changing_match_data))
2058 return;
2059
2060 /* Make sure we have registers in which to store
2061 the match position. */
2062 if (search_regs.num_regs == 0)
2063 {
2064 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2065 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2066 search_regs.num_regs = 2;
2067 }
2068
2069 /* Clear out the other registers. */
2070 for (i = 1; i < search_regs.num_regs; i++)
2071 {
2072 search_regs.start[i] = -1;
2073 search_regs.end[i] = -1;
2074 }
2075
2076 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2077 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2078 XSETBUFFER (last_thing_searched, current_buffer);
2079 }
2080 \f
2081 /* Given STRING, a string of words separated by word delimiters,
2082 compute a regexp that matches those exact words separated by
2083 arbitrary punctuation. If LAX is nonzero, the end of the string
2084 need not match a word boundary unless it ends in whitespace. */
2085
2086 static Lisp_Object
2087 wordify (Lisp_Object string, int lax)
2088 {
2089 register unsigned char *o;
2090 register EMACS_INT i, i_byte, len, punct_count = 0, word_count = 0;
2091 Lisp_Object val;
2092 int prev_c = 0;
2093 EMACS_INT adjust;
2094 int whitespace_at_end;
2095
2096 CHECK_STRING (string);
2097 len = SCHARS (string);
2098
2099 for (i = 0, i_byte = 0; i < len; )
2100 {
2101 int c;
2102
2103 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2104
2105 if (SYNTAX (c) != Sword)
2106 {
2107 punct_count++;
2108 if (SYNTAX (prev_c) == Sword)
2109 word_count++;
2110 }
2111
2112 prev_c = c;
2113 }
2114
2115 if (SYNTAX (prev_c) == Sword)
2116 {
2117 word_count++;
2118 whitespace_at_end = 0;
2119 }
2120 else
2121 {
2122 whitespace_at_end = 1;
2123 if (!word_count)
2124 return empty_unibyte_string;
2125 }
2126
2127 adjust = - punct_count + 5 * (word_count - 1)
2128 + ((lax && !whitespace_at_end) ? 2 : 4);
2129 if (STRING_MULTIBYTE (string))
2130 val = make_uninit_multibyte_string (len + adjust,
2131 SBYTES (string)
2132 + adjust);
2133 else
2134 val = make_uninit_string (len + adjust);
2135
2136 o = SDATA (val);
2137 *o++ = '\\';
2138 *o++ = 'b';
2139 prev_c = 0;
2140
2141 for (i = 0, i_byte = 0; i < len; )
2142 {
2143 int c;
2144 EMACS_INT i_byte_orig = i_byte;
2145
2146 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2147
2148 if (SYNTAX (c) == Sword)
2149 {
2150 memcpy (o, SDATA (string) + i_byte_orig, i_byte - i_byte_orig);
2151 o += i_byte - i_byte_orig;
2152 }
2153 else if (SYNTAX (prev_c) == Sword && --word_count)
2154 {
2155 *o++ = '\\';
2156 *o++ = 'W';
2157 *o++ = '\\';
2158 *o++ = 'W';
2159 *o++ = '*';
2160 }
2161
2162 prev_c = c;
2163 }
2164
2165 if (!lax || whitespace_at_end)
2166 {
2167 *o++ = '\\';
2168 *o++ = 'b';
2169 }
2170
2171 return val;
2172 }
2173 \f
2174 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2175 "MSearch backward: ",
2176 doc: /* Search backward from point for STRING.
2177 Set point to the beginning of the occurrence found, and return point.
2178 An optional second argument bounds the search; it is a buffer position.
2179 The match found must not extend before that position.
2180 Optional third argument, if t, means if fail just return nil (no error).
2181 If not nil and not t, position at limit of search and return nil.
2182 Optional fourth argument is repeat count--search for successive occurrences.
2183
2184 Search case-sensitivity is determined by the value of the variable
2185 `case-fold-search', which see.
2186
2187 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2188 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2189 {
2190 return search_command (string, bound, noerror, count, -1, 0, 0);
2191 }
2192
2193 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2194 doc: /* Search forward from point for STRING.
2195 Set point to the end of the occurrence found, and return point.
2196 An optional second argument bounds the search; it is a buffer position.
2197 The match found must not extend after that position. A value of nil is
2198 equivalent to (point-max).
2199 Optional third argument, if t, means if fail just return nil (no error).
2200 If not nil and not t, move to limit of search and return nil.
2201 Optional fourth argument is repeat count--search for successive occurrences.
2202
2203 Search case-sensitivity is determined by the value of the variable
2204 `case-fold-search', which see.
2205
2206 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2207 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2208 {
2209 return search_command (string, bound, noerror, count, 1, 0, 0);
2210 }
2211
2212 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2213 "sWord search backward: ",
2214 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2215 Set point to the beginning of the occurrence found, and return point.
2216 An optional second argument bounds the search; it is a buffer position.
2217 The match found must not extend before that position.
2218 Optional third argument, if t, means if fail just return nil (no error).
2219 If not nil and not t, move to limit of search and return nil.
2220 Optional fourth argument is repeat count--search for successive occurrences. */)
2221 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2222 {
2223 return search_command (wordify (string, 0), bound, noerror, count, -1, 1, 0);
2224 }
2225
2226 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2227 "sWord search: ",
2228 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2229 Set point to the end of the occurrence found, and return point.
2230 An optional second argument bounds the search; it is a buffer position.
2231 The match found must not extend after that position.
2232 Optional third argument, if t, means if fail just return nil (no error).
2233 If not nil and not t, move to limit of search and return nil.
2234 Optional fourth argument is repeat count--search for successive occurrences. */)
2235 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2236 {
2237 return search_command (wordify (string, 0), bound, noerror, count, 1, 1, 0);
2238 }
2239
2240 DEFUN ("word-search-backward-lax", Fword_search_backward_lax, Sword_search_backward_lax, 1, 4,
2241 "sWord search backward: ",
2242 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2243 Set point to the beginning of the occurrence found, and return point.
2244
2245 Unlike `word-search-backward', the end of STRING need not match a word
2246 boundary unless it ends in whitespace.
2247
2248 An optional second argument bounds the search; it is a buffer position.
2249 The match found must not extend before that position.
2250 Optional third argument, if t, means if fail just return nil (no error).
2251 If not nil and not t, move to limit of search and return nil.
2252 Optional fourth argument is repeat count--search for successive occurrences. */)
2253 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2254 {
2255 return search_command (wordify (string, 1), bound, noerror, count, -1, 1, 0);
2256 }
2257
2258 DEFUN ("word-search-forward-lax", Fword_search_forward_lax, Sword_search_forward_lax, 1, 4,
2259 "sWord search: ",
2260 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2261 Set point to the end of the occurrence found, and return point.
2262
2263 Unlike `word-search-forward', the end of STRING need not match a word
2264 boundary unless it ends in whitespace.
2265
2266 An optional second argument bounds the search; it is a buffer position.
2267 The match found must not extend after that position.
2268 Optional third argument, if t, means if fail just return nil (no error).
2269 If not nil and not t, move to limit of search and return nil.
2270 Optional fourth argument is repeat count--search for successive occurrences. */)
2271 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2272 {
2273 return search_command (wordify (string, 1), bound, noerror, count, 1, 1, 0);
2274 }
2275
2276 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2277 "sRE search backward: ",
2278 doc: /* Search backward from point for match for regular expression REGEXP.
2279 Set point to the beginning of the match, and return point.
2280 The match found is the one starting last in the buffer
2281 and yet ending before the origin of the search.
2282 An optional second argument bounds the search; it is a buffer position.
2283 The match found must start at or after that position.
2284 Optional third argument, if t, means if fail just return nil (no error).
2285 If not nil and not t, move to limit of search and return nil.
2286 Optional fourth argument is repeat count--search for successive occurrences.
2287 See also the functions `match-beginning', `match-end', `match-string',
2288 and `replace-match'. */)
2289 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2290 {
2291 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2292 }
2293
2294 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2295 "sRE search: ",
2296 doc: /* Search forward from point for regular expression REGEXP.
2297 Set point to the end of the occurrence found, and return point.
2298 An optional second argument bounds the search; it is a buffer position.
2299 The match found must not extend after that position.
2300 Optional third argument, if t, means if fail just return nil (no error).
2301 If not nil and not t, move to limit of search and return nil.
2302 Optional fourth argument is repeat count--search for successive occurrences.
2303 See also the functions `match-beginning', `match-end', `match-string',
2304 and `replace-match'. */)
2305 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2306 {
2307 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2308 }
2309
2310 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2311 "sPosix search backward: ",
2312 doc: /* Search backward from point for match for regular expression REGEXP.
2313 Find the longest match in accord with Posix regular expression rules.
2314 Set point to the beginning of the match, and return point.
2315 The match found is the one starting last in the buffer
2316 and yet ending before the origin of the search.
2317 An optional second argument bounds the search; it is a buffer position.
2318 The match found must start at or after that position.
2319 Optional third argument, if t, means if fail just return nil (no error).
2320 If not nil and not t, move to limit of search and return nil.
2321 Optional fourth argument is repeat count--search for successive occurrences.
2322 See also the functions `match-beginning', `match-end', `match-string',
2323 and `replace-match'. */)
2324 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2325 {
2326 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2327 }
2328
2329 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2330 "sPosix search: ",
2331 doc: /* Search forward from point for regular expression REGEXP.
2332 Find the longest match in accord with Posix regular expression rules.
2333 Set point to the end of the occurrence found, and return point.
2334 An optional second argument bounds the search; it is a buffer position.
2335 The match found must not extend after that position.
2336 Optional third argument, if t, means if fail just return nil (no error).
2337 If not nil and not t, move to limit of search and return nil.
2338 Optional fourth argument is repeat count--search for successive occurrences.
2339 See also the functions `match-beginning', `match-end', `match-string',
2340 and `replace-match'. */)
2341 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2342 {
2343 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2344 }
2345 \f
2346 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2347 doc: /* Replace text matched by last search with NEWTEXT.
2348 Leave point at the end of the replacement text.
2349
2350 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2351 Otherwise maybe capitalize the whole text, or maybe just word initials,
2352 based on the replaced text.
2353 If the replaced text has only capital letters
2354 and has at least one multiletter word, convert NEWTEXT to all caps.
2355 Otherwise if all words are capitalized in the replaced text,
2356 capitalize each word in NEWTEXT.
2357
2358 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2359 Otherwise treat `\\' as special:
2360 `\\&' in NEWTEXT means substitute original matched text.
2361 `\\N' means substitute what matched the Nth `\\(...\\)'.
2362 If Nth parens didn't match, substitute nothing.
2363 `\\\\' means insert one `\\'.
2364 Case conversion does not apply to these substitutions.
2365
2366 FIXEDCASE and LITERAL are optional arguments.
2367
2368 The optional fourth argument STRING can be a string to modify.
2369 This is meaningful when the previous match was done against STRING,
2370 using `string-match'. When used this way, `replace-match'
2371 creates and returns a new string made by copying STRING and replacing
2372 the part of STRING that was matched.
2373
2374 The optional fifth argument SUBEXP specifies a subexpression;
2375 it says to replace just that subexpression with NEWTEXT,
2376 rather than replacing the entire matched text.
2377 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2378 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2379 NEWTEXT in place of subexp N.
2380 This is useful only after a regular expression search or match,
2381 since only regular expressions have distinguished subexpressions. */)
2382 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2383 {
2384 enum { nochange, all_caps, cap_initial } case_action;
2385 register EMACS_INT pos, pos_byte;
2386 int some_multiletter_word;
2387 int some_lowercase;
2388 int some_uppercase;
2389 int some_nonuppercase_initial;
2390 register int c, prevc;
2391 int sub;
2392 EMACS_INT opoint, newpoint;
2393
2394 CHECK_STRING (newtext);
2395
2396 if (! NILP (string))
2397 CHECK_STRING (string);
2398
2399 case_action = nochange; /* We tried an initialization */
2400 /* but some C compilers blew it */
2401
2402 if (search_regs.num_regs <= 0)
2403 error ("`replace-match' called before any match found");
2404
2405 if (NILP (subexp))
2406 sub = 0;
2407 else
2408 {
2409 CHECK_NUMBER (subexp);
2410 sub = XINT (subexp);
2411 if (sub < 0 || sub >= search_regs.num_regs)
2412 args_out_of_range (subexp, make_number (search_regs.num_regs));
2413 }
2414
2415 if (NILP (string))
2416 {
2417 if (search_regs.start[sub] < BEGV
2418 || search_regs.start[sub] > search_regs.end[sub]
2419 || search_regs.end[sub] > ZV)
2420 args_out_of_range (make_number (search_regs.start[sub]),
2421 make_number (search_regs.end[sub]));
2422 }
2423 else
2424 {
2425 if (search_regs.start[sub] < 0
2426 || search_regs.start[sub] > search_regs.end[sub]
2427 || search_regs.end[sub] > SCHARS (string))
2428 args_out_of_range (make_number (search_regs.start[sub]),
2429 make_number (search_regs.end[sub]));
2430 }
2431
2432 if (NILP (fixedcase))
2433 {
2434 /* Decide how to casify by examining the matched text. */
2435 EMACS_INT last;
2436
2437 pos = search_regs.start[sub];
2438 last = search_regs.end[sub];
2439
2440 if (NILP (string))
2441 pos_byte = CHAR_TO_BYTE (pos);
2442 else
2443 pos_byte = string_char_to_byte (string, pos);
2444
2445 prevc = '\n';
2446 case_action = all_caps;
2447
2448 /* some_multiletter_word is set nonzero if any original word
2449 is more than one letter long. */
2450 some_multiletter_word = 0;
2451 some_lowercase = 0;
2452 some_nonuppercase_initial = 0;
2453 some_uppercase = 0;
2454
2455 while (pos < last)
2456 {
2457 if (NILP (string))
2458 {
2459 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2460 INC_BOTH (pos, pos_byte);
2461 }
2462 else
2463 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2464
2465 if (lowercasep (c))
2466 {
2467 /* Cannot be all caps if any original char is lower case */
2468
2469 some_lowercase = 1;
2470 if (SYNTAX (prevc) != Sword)
2471 some_nonuppercase_initial = 1;
2472 else
2473 some_multiletter_word = 1;
2474 }
2475 else if (uppercasep (c))
2476 {
2477 some_uppercase = 1;
2478 if (SYNTAX (prevc) != Sword)
2479 ;
2480 else
2481 some_multiletter_word = 1;
2482 }
2483 else
2484 {
2485 /* If the initial is a caseless word constituent,
2486 treat that like a lowercase initial. */
2487 if (SYNTAX (prevc) != Sword)
2488 some_nonuppercase_initial = 1;
2489 }
2490
2491 prevc = c;
2492 }
2493
2494 /* Convert to all caps if the old text is all caps
2495 and has at least one multiletter word. */
2496 if (! some_lowercase && some_multiletter_word)
2497 case_action = all_caps;
2498 /* Capitalize each word, if the old text has all capitalized words. */
2499 else if (!some_nonuppercase_initial && some_multiletter_word)
2500 case_action = cap_initial;
2501 else if (!some_nonuppercase_initial && some_uppercase)
2502 /* Should x -> yz, operating on X, give Yz or YZ?
2503 We'll assume the latter. */
2504 case_action = all_caps;
2505 else
2506 case_action = nochange;
2507 }
2508
2509 /* Do replacement in a string. */
2510 if (!NILP (string))
2511 {
2512 Lisp_Object before, after;
2513
2514 before = Fsubstring (string, make_number (0),
2515 make_number (search_regs.start[sub]));
2516 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2517
2518 /* Substitute parts of the match into NEWTEXT
2519 if desired. */
2520 if (NILP (literal))
2521 {
2522 EMACS_INT lastpos = 0;
2523 EMACS_INT lastpos_byte = 0;
2524 /* We build up the substituted string in ACCUM. */
2525 Lisp_Object accum;
2526 Lisp_Object middle;
2527 EMACS_INT length = SBYTES (newtext);
2528
2529 accum = Qnil;
2530
2531 for (pos_byte = 0, pos = 0; pos_byte < length;)
2532 {
2533 EMACS_INT substart = -1;
2534 EMACS_INT subend = 0;
2535 int delbackslash = 0;
2536
2537 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2538
2539 if (c == '\\')
2540 {
2541 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2542
2543 if (c == '&')
2544 {
2545 substart = search_regs.start[sub];
2546 subend = search_regs.end[sub];
2547 }
2548 else if (c >= '1' && c <= '9')
2549 {
2550 if (search_regs.start[c - '0'] >= 0
2551 && c <= search_regs.num_regs + '0')
2552 {
2553 substart = search_regs.start[c - '0'];
2554 subend = search_regs.end[c - '0'];
2555 }
2556 else
2557 {
2558 /* If that subexp did not match,
2559 replace \\N with nothing. */
2560 substart = 0;
2561 subend = 0;
2562 }
2563 }
2564 else if (c == '\\')
2565 delbackslash = 1;
2566 else
2567 error ("Invalid use of `\\' in replacement text");
2568 }
2569 if (substart >= 0)
2570 {
2571 if (pos - 2 != lastpos)
2572 middle = substring_both (newtext, lastpos,
2573 lastpos_byte,
2574 pos - 2, pos_byte - 2);
2575 else
2576 middle = Qnil;
2577 accum = concat3 (accum, middle,
2578 Fsubstring (string,
2579 make_number (substart),
2580 make_number (subend)));
2581 lastpos = pos;
2582 lastpos_byte = pos_byte;
2583 }
2584 else if (delbackslash)
2585 {
2586 middle = substring_both (newtext, lastpos,
2587 lastpos_byte,
2588 pos - 1, pos_byte - 1);
2589
2590 accum = concat2 (accum, middle);
2591 lastpos = pos;
2592 lastpos_byte = pos_byte;
2593 }
2594 }
2595
2596 if (pos != lastpos)
2597 middle = substring_both (newtext, lastpos,
2598 lastpos_byte,
2599 pos, pos_byte);
2600 else
2601 middle = Qnil;
2602
2603 newtext = concat2 (accum, middle);
2604 }
2605
2606 /* Do case substitution in NEWTEXT if desired. */
2607 if (case_action == all_caps)
2608 newtext = Fupcase (newtext);
2609 else if (case_action == cap_initial)
2610 newtext = Fupcase_initials (newtext);
2611
2612 return concat3 (before, newtext, after);
2613 }
2614
2615 /* Record point, then move (quietly) to the start of the match. */
2616 if (PT >= search_regs.end[sub])
2617 opoint = PT - ZV;
2618 else if (PT > search_regs.start[sub])
2619 opoint = search_regs.end[sub] - ZV;
2620 else
2621 opoint = PT;
2622
2623 /* If we want non-literal replacement,
2624 perform substitution on the replacement string. */
2625 if (NILP (literal))
2626 {
2627 EMACS_INT length = SBYTES (newtext);
2628 unsigned char *substed;
2629 EMACS_INT substed_alloc_size, substed_len;
2630 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2631 int str_multibyte = STRING_MULTIBYTE (newtext);
2632 int really_changed = 0;
2633
2634 substed_alloc_size = length * 2 + 100;
2635 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2636 substed_len = 0;
2637
2638 /* Go thru NEWTEXT, producing the actual text to insert in
2639 SUBSTED while adjusting multibyteness to that of the current
2640 buffer. */
2641
2642 for (pos_byte = 0, pos = 0; pos_byte < length;)
2643 {
2644 unsigned char str[MAX_MULTIBYTE_LENGTH];
2645 const unsigned char *add_stuff = NULL;
2646 EMACS_INT add_len = 0;
2647 int idx = -1;
2648
2649 if (str_multibyte)
2650 {
2651 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2652 if (!buf_multibyte)
2653 c = multibyte_char_to_unibyte (c);
2654 }
2655 else
2656 {
2657 /* Note that we don't have to increment POS. */
2658 c = SREF (newtext, pos_byte++);
2659 if (buf_multibyte)
2660 MAKE_CHAR_MULTIBYTE (c);
2661 }
2662
2663 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2664 or set IDX to a match index, which means put that part
2665 of the buffer text into SUBSTED. */
2666
2667 if (c == '\\')
2668 {
2669 really_changed = 1;
2670
2671 if (str_multibyte)
2672 {
2673 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2674 pos, pos_byte);
2675 if (!buf_multibyte && !ASCII_CHAR_P (c))
2676 c = multibyte_char_to_unibyte (c);
2677 }
2678 else
2679 {
2680 c = SREF (newtext, pos_byte++);
2681 if (buf_multibyte)
2682 MAKE_CHAR_MULTIBYTE (c);
2683 }
2684
2685 if (c == '&')
2686 idx = sub;
2687 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2688 {
2689 if (search_regs.start[c - '0'] >= 1)
2690 idx = c - '0';
2691 }
2692 else if (c == '\\')
2693 add_len = 1, add_stuff = (unsigned char *) "\\";
2694 else
2695 {
2696 xfree (substed);
2697 error ("Invalid use of `\\' in replacement text");
2698 }
2699 }
2700 else
2701 {
2702 add_len = CHAR_STRING (c, str);
2703 add_stuff = str;
2704 }
2705
2706 /* If we want to copy part of a previous match,
2707 set up ADD_STUFF and ADD_LEN to point to it. */
2708 if (idx >= 0)
2709 {
2710 EMACS_INT begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2711 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2712 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2713 move_gap (search_regs.start[idx]);
2714 add_stuff = BYTE_POS_ADDR (begbyte);
2715 }
2716
2717 /* Now the stuff we want to add to SUBSTED
2718 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2719
2720 /* Make sure SUBSTED is big enough. */
2721 if (substed_len + add_len >= substed_alloc_size)
2722 {
2723 substed_alloc_size = substed_len + add_len + 500;
2724 substed = (unsigned char *) xrealloc (substed,
2725 substed_alloc_size + 1);
2726 }
2727
2728 /* Now add to the end of SUBSTED. */
2729 if (add_stuff)
2730 {
2731 memcpy (substed + substed_len, add_stuff, add_len);
2732 substed_len += add_len;
2733 }
2734 }
2735
2736 if (really_changed)
2737 {
2738 if (buf_multibyte)
2739 {
2740 EMACS_INT nchars =
2741 multibyte_chars_in_text (substed, substed_len);
2742
2743 newtext = make_multibyte_string ((char *) substed, nchars,
2744 substed_len);
2745 }
2746 else
2747 newtext = make_unibyte_string ((char *) substed, substed_len);
2748 }
2749 xfree (substed);
2750 }
2751
2752 /* Replace the old text with the new in the cleanest possible way. */
2753 replace_range (search_regs.start[sub], search_regs.end[sub],
2754 newtext, 1, 0, 1);
2755 newpoint = search_regs.start[sub] + SCHARS (newtext);
2756
2757 if (case_action == all_caps)
2758 Fupcase_region (make_number (search_regs.start[sub]),
2759 make_number (newpoint));
2760 else if (case_action == cap_initial)
2761 Fupcase_initials_region (make_number (search_regs.start[sub]),
2762 make_number (newpoint));
2763
2764 /* Adjust search data for this change. */
2765 {
2766 EMACS_INT oldend = search_regs.end[sub];
2767 EMACS_INT oldstart = search_regs.start[sub];
2768 EMACS_INT change = newpoint - search_regs.end[sub];
2769 int i;
2770
2771 for (i = 0; i < search_regs.num_regs; i++)
2772 {
2773 if (search_regs.start[i] >= oldend)
2774 search_regs.start[i] += change;
2775 else if (search_regs.start[i] > oldstart)
2776 search_regs.start[i] = oldstart;
2777 if (search_regs.end[i] >= oldend)
2778 search_regs.end[i] += change;
2779 else if (search_regs.end[i] > oldstart)
2780 search_regs.end[i] = oldstart;
2781 }
2782 }
2783
2784 /* Put point back where it was in the text. */
2785 if (opoint <= 0)
2786 TEMP_SET_PT (opoint + ZV);
2787 else
2788 TEMP_SET_PT (opoint);
2789
2790 /* Now move point "officially" to the start of the inserted replacement. */
2791 move_if_not_intangible (newpoint);
2792
2793 return Qnil;
2794 }
2795 \f
2796 static Lisp_Object
2797 match_limit (Lisp_Object num, int beginningp)
2798 {
2799 register int n;
2800
2801 CHECK_NUMBER (num);
2802 n = XINT (num);
2803 if (n < 0)
2804 args_out_of_range (num, make_number (0));
2805 if (search_regs.num_regs <= 0)
2806 error ("No match data, because no search succeeded");
2807 if (n >= search_regs.num_regs
2808 || search_regs.start[n] < 0)
2809 return Qnil;
2810 return (make_number ((beginningp) ? search_regs.start[n]
2811 : search_regs.end[n]));
2812 }
2813
2814 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2815 doc: /* Return position of start of text matched by last search.
2816 SUBEXP, a number, specifies which parenthesized expression in the last
2817 regexp.
2818 Value is nil if SUBEXPth pair didn't match, or there were less than
2819 SUBEXP pairs.
2820 Zero means the entire text matched by the whole regexp or whole string. */)
2821 (Lisp_Object subexp)
2822 {
2823 return match_limit (subexp, 1);
2824 }
2825
2826 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2827 doc: /* Return position of end of text matched by last search.
2828 SUBEXP, a number, specifies which parenthesized expression in the last
2829 regexp.
2830 Value is nil if SUBEXPth pair didn't match, or there were less than
2831 SUBEXP pairs.
2832 Zero means the entire text matched by the whole regexp or whole string. */)
2833 (Lisp_Object subexp)
2834 {
2835 return match_limit (subexp, 0);
2836 }
2837
2838 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2839 doc: /* Return a list containing all info on what the last search matched.
2840 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2841 All the elements are markers or nil (nil if the Nth pair didn't match)
2842 if the last match was on a buffer; integers or nil if a string was matched.
2843 Use `set-match-data' to reinstate the data in this list.
2844
2845 If INTEGERS (the optional first argument) is non-nil, always use
2846 integers \(rather than markers) to represent buffer positions. In
2847 this case, and if the last match was in a buffer, the buffer will get
2848 stored as one additional element at the end of the list.
2849
2850 If REUSE is a list, reuse it as part of the value. If REUSE is long
2851 enough to hold all the values, and if INTEGERS is non-nil, no consing
2852 is done.
2853
2854 If optional third arg RESEAT is non-nil, any previous markers on the
2855 REUSE list will be modified to point to nowhere.
2856
2857 Return value is undefined if the last search failed. */)
2858 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2859 {
2860 Lisp_Object tail, prev;
2861 Lisp_Object *data;
2862 int i, len;
2863
2864 if (!NILP (reseat))
2865 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2866 if (MARKERP (XCAR (tail)))
2867 {
2868 unchain_marker (XMARKER (XCAR (tail)));
2869 XSETCAR (tail, Qnil);
2870 }
2871
2872 if (NILP (last_thing_searched))
2873 return Qnil;
2874
2875 prev = Qnil;
2876
2877 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2878 * sizeof (Lisp_Object));
2879
2880 len = 0;
2881 for (i = 0; i < search_regs.num_regs; i++)
2882 {
2883 EMACS_INT start = search_regs.start[i];
2884 if (start >= 0)
2885 {
2886 if (EQ (last_thing_searched, Qt)
2887 || ! NILP (integers))
2888 {
2889 XSETFASTINT (data[2 * i], start);
2890 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2891 }
2892 else if (BUFFERP (last_thing_searched))
2893 {
2894 data[2 * i] = Fmake_marker ();
2895 Fset_marker (data[2 * i],
2896 make_number (start),
2897 last_thing_searched);
2898 data[2 * i + 1] = Fmake_marker ();
2899 Fset_marker (data[2 * i + 1],
2900 make_number (search_regs.end[i]),
2901 last_thing_searched);
2902 }
2903 else
2904 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2905 abort ();
2906
2907 len = 2 * i + 2;
2908 }
2909 else
2910 data[2 * i] = data[2 * i + 1] = Qnil;
2911 }
2912
2913 if (BUFFERP (last_thing_searched) && !NILP (integers))
2914 {
2915 data[len] = last_thing_searched;
2916 len++;
2917 }
2918
2919 /* If REUSE is not usable, cons up the values and return them. */
2920 if (! CONSP (reuse))
2921 return Flist (len, data);
2922
2923 /* If REUSE is a list, store as many value elements as will fit
2924 into the elements of REUSE. */
2925 for (i = 0, tail = reuse; CONSP (tail);
2926 i++, tail = XCDR (tail))
2927 {
2928 if (i < len)
2929 XSETCAR (tail, data[i]);
2930 else
2931 XSETCAR (tail, Qnil);
2932 prev = tail;
2933 }
2934
2935 /* If we couldn't fit all value elements into REUSE,
2936 cons up the rest of them and add them to the end of REUSE. */
2937 if (i < len)
2938 XSETCDR (prev, Flist (len - i, data + i));
2939
2940 return reuse;
2941 }
2942
2943 /* We used to have an internal use variant of `reseat' described as:
2944
2945 If RESEAT is `evaporate', put the markers back on the free list
2946 immediately. No other references to the markers must exist in this
2947 case, so it is used only internally on the unwind stack and
2948 save-match-data from Lisp.
2949
2950 But it was ill-conceived: those supposedly-internal markers get exposed via
2951 the undo-list, so freeing them here is unsafe. */
2952
2953 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2954 doc: /* Set internal data on last search match from elements of LIST.
2955 LIST should have been created by calling `match-data' previously.
2956
2957 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2958 (register Lisp_Object list, Lisp_Object reseat)
2959 {
2960 register int i;
2961 register Lisp_Object marker;
2962
2963 if (running_asynch_code)
2964 save_search_regs ();
2965
2966 CHECK_LIST (list);
2967
2968 /* Unless we find a marker with a buffer or an explicit buffer
2969 in LIST, assume that this match data came from a string. */
2970 last_thing_searched = Qt;
2971
2972 /* Allocate registers if they don't already exist. */
2973 {
2974 int length = XFASTINT (Flength (list)) / 2;
2975
2976 if (length > search_regs.num_regs)
2977 {
2978 if (search_regs.num_regs == 0)
2979 {
2980 search_regs.start
2981 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2982 search_regs.end
2983 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2984 }
2985 else
2986 {
2987 search_regs.start
2988 = (regoff_t *) xrealloc (search_regs.start,
2989 length * sizeof (regoff_t));
2990 search_regs.end
2991 = (regoff_t *) xrealloc (search_regs.end,
2992 length * sizeof (regoff_t));
2993 }
2994
2995 for (i = search_regs.num_regs; i < length; i++)
2996 search_regs.start[i] = -1;
2997
2998 search_regs.num_regs = length;
2999 }
3000
3001 for (i = 0; CONSP (list); i++)
3002 {
3003 marker = XCAR (list);
3004 if (BUFFERP (marker))
3005 {
3006 last_thing_searched = marker;
3007 break;
3008 }
3009 if (i >= length)
3010 break;
3011 if (NILP (marker))
3012 {
3013 search_regs.start[i] = -1;
3014 list = XCDR (list);
3015 }
3016 else
3017 {
3018 EMACS_INT from;
3019 Lisp_Object m;
3020
3021 m = marker;
3022 if (MARKERP (marker))
3023 {
3024 if (XMARKER (marker)->buffer == 0)
3025 XSETFASTINT (marker, 0);
3026 else
3027 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3028 }
3029
3030 CHECK_NUMBER_COERCE_MARKER (marker);
3031 from = XINT (marker);
3032
3033 if (!NILP (reseat) && MARKERP (m))
3034 {
3035 unchain_marker (XMARKER (m));
3036 XSETCAR (list, Qnil);
3037 }
3038
3039 if ((list = XCDR (list), !CONSP (list)))
3040 break;
3041
3042 m = marker = XCAR (list);
3043
3044 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3045 XSETFASTINT (marker, 0);
3046
3047 CHECK_NUMBER_COERCE_MARKER (marker);
3048 search_regs.start[i] = from;
3049 search_regs.end[i] = XINT (marker);
3050
3051 if (!NILP (reseat) && MARKERP (m))
3052 {
3053 unchain_marker (XMARKER (m));
3054 XSETCAR (list, Qnil);
3055 }
3056 }
3057 list = XCDR (list);
3058 }
3059
3060 for (; i < search_regs.num_regs; i++)
3061 search_regs.start[i] = -1;
3062 }
3063
3064 return Qnil;
3065 }
3066
3067 /* If non-zero the match data have been saved in saved_search_regs
3068 during the execution of a sentinel or filter. */
3069 static int search_regs_saved;
3070 static struct re_registers saved_search_regs;
3071 static Lisp_Object saved_last_thing_searched;
3072
3073 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3074 if asynchronous code (filter or sentinel) is running. */
3075 static void
3076 save_search_regs (void)
3077 {
3078 if (!search_regs_saved)
3079 {
3080 saved_search_regs.num_regs = search_regs.num_regs;
3081 saved_search_regs.start = search_regs.start;
3082 saved_search_regs.end = search_regs.end;
3083 saved_last_thing_searched = last_thing_searched;
3084 last_thing_searched = Qnil;
3085 search_regs.num_regs = 0;
3086 search_regs.start = 0;
3087 search_regs.end = 0;
3088
3089 search_regs_saved = 1;
3090 }
3091 }
3092
3093 /* Called upon exit from filters and sentinels. */
3094 void
3095 restore_search_regs (void)
3096 {
3097 if (search_regs_saved)
3098 {
3099 if (search_regs.num_regs > 0)
3100 {
3101 xfree (search_regs.start);
3102 xfree (search_regs.end);
3103 }
3104 search_regs.num_regs = saved_search_regs.num_regs;
3105 search_regs.start = saved_search_regs.start;
3106 search_regs.end = saved_search_regs.end;
3107 last_thing_searched = saved_last_thing_searched;
3108 saved_last_thing_searched = Qnil;
3109 search_regs_saved = 0;
3110 }
3111 }
3112
3113 static Lisp_Object
3114 unwind_set_match_data (Lisp_Object list)
3115 {
3116 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3117 return Fset_match_data (list, Qt);
3118 }
3119
3120 /* Called to unwind protect the match data. */
3121 void
3122 record_unwind_save_match_data (void)
3123 {
3124 record_unwind_protect (unwind_set_match_data,
3125 Fmatch_data (Qnil, Qnil, Qnil));
3126 }
3127
3128 /* Quote a string to inactivate reg-expr chars */
3129
3130 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3131 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3132 (Lisp_Object string)
3133 {
3134 register char *in, *out, *end;
3135 register char *temp;
3136 int backslashes_added = 0;
3137
3138 CHECK_STRING (string);
3139
3140 temp = (char *) alloca (SBYTES (string) * 2);
3141
3142 /* Now copy the data into the new string, inserting escapes. */
3143
3144 in = SSDATA (string);
3145 end = in + SBYTES (string);
3146 out = temp;
3147
3148 for (; in != end; in++)
3149 {
3150 if (*in == '['
3151 || *in == '*' || *in == '.' || *in == '\\'
3152 || *in == '?' || *in == '+'
3153 || *in == '^' || *in == '$')
3154 *out++ = '\\', backslashes_added++;
3155 *out++ = *in;
3156 }
3157
3158 return make_specified_string (temp,
3159 SCHARS (string) + backslashes_added,
3160 out - temp,
3161 STRING_MULTIBYTE (string));
3162 }
3163 \f
3164 void
3165 syms_of_search (void)
3166 {
3167 register int i;
3168
3169 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3170 {
3171 searchbufs[i].buf.allocated = 100;
3172 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3173 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3174 searchbufs[i].regexp = Qnil;
3175 searchbufs[i].whitespace_regexp = Qnil;
3176 searchbufs[i].syntax_table = Qnil;
3177 staticpro (&searchbufs[i].regexp);
3178 staticpro (&searchbufs[i].whitespace_regexp);
3179 staticpro (&searchbufs[i].syntax_table);
3180 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3181 }
3182 searchbuf_head = &searchbufs[0];
3183
3184 Qsearch_failed = intern_c_string ("search-failed");
3185 staticpro (&Qsearch_failed);
3186 Qinvalid_regexp = intern_c_string ("invalid-regexp");
3187 staticpro (&Qinvalid_regexp);
3188
3189 Fput (Qsearch_failed, Qerror_conditions,
3190 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3191 Fput (Qsearch_failed, Qerror_message,
3192 make_pure_c_string ("Search failed"));
3193
3194 Fput (Qinvalid_regexp, Qerror_conditions,
3195 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3196 Fput (Qinvalid_regexp, Qerror_message,
3197 make_pure_c_string ("Invalid regexp"));
3198
3199 last_thing_searched = Qnil;
3200 staticpro (&last_thing_searched);
3201
3202 saved_last_thing_searched = Qnil;
3203 staticpro (&saved_last_thing_searched);
3204
3205 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3206 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3207 Some commands use this for user-specified regexps.
3208 Spaces that occur inside character classes or repetition operators
3209 or other such regexp constructs are not replaced with this.
3210 A value of nil (which is the normal value) means treat spaces literally. */);
3211 Vsearch_spaces_regexp = Qnil;
3212
3213 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3214 doc: /* Internal use only.
3215 If non-nil, the primitive searching and matching functions
3216 such as `looking-at', `string-match', `re-search-forward', etc.,
3217 do not set the match data. The proper way to use this variable
3218 is to bind it with `let' around a small expression. */);
3219 Vinhibit_changing_match_data = Qnil;
3220
3221 defsubr (&Slooking_at);
3222 defsubr (&Sposix_looking_at);
3223 defsubr (&Sstring_match);
3224 defsubr (&Sposix_string_match);
3225 defsubr (&Ssearch_forward);
3226 defsubr (&Ssearch_backward);
3227 defsubr (&Sword_search_forward);
3228 defsubr (&Sword_search_backward);
3229 defsubr (&Sword_search_forward_lax);
3230 defsubr (&Sword_search_backward_lax);
3231 defsubr (&Sre_search_forward);
3232 defsubr (&Sre_search_backward);
3233 defsubr (&Sposix_search_forward);
3234 defsubr (&Sposix_search_backward);
3235 defsubr (&Sreplace_match);
3236 defsubr (&Smatch_beginning);
3237 defsubr (&Smatch_end);
3238 defsubr (&Smatch_data);
3239 defsubr (&Sset_match_data);
3240 defsubr (&Sregexp_quote);
3241 }