Undo the DEFUN->DEFUE change.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Value of _bytes_used, when spare_memory was freed. */
143
144 static __malloc_size_t bytes_used_when_full;
145
146 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
149 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
151 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
152
153 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
155 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
156
157 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
159 strings. */
160
161 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 #ifndef VIRT_ADDR_VARIES
216 static
217 #endif
218 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
219 #define PUREBEG (char *) pure
220
221 /* Pointer to the pure area, and its size. */
222
223 static char *purebeg;
224 static size_t pure_size;
225
226 /* Number of bytes of pure storage used before pure storage overflowed.
227 If this is non-zero, this implies that an overflow occurred. */
228
229 static size_t pure_bytes_used_before_overflow;
230
231 /* Value is non-zero if P points into pure space. */
232
233 #define PURE_POINTER_P(P) \
234 (((PNTR_COMPARISON_TYPE) (P) \
235 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
236 && ((PNTR_COMPARISON_TYPE) (P) \
237 >= (PNTR_COMPARISON_TYPE) purebeg))
238
239 /* Index in pure at which next pure Lisp object will be allocated.. */
240
241 static EMACS_INT pure_bytes_used_lisp;
242
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
244
245 static EMACS_INT pure_bytes_used_non_lisp;
246
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
250 const char *pending_malloc_warning;
251
252 /* Maximum amount of C stack to save when a GC happens. */
253
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
257
258 /* Buffer in which we save a copy of the C stack at each GC. */
259
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static size_t stack_copy_size;
263 #endif
264
265 /* Non-zero means ignore malloc warnings. Set during initialization.
266 Currently not used. */
267
268 static int ignore_warnings;
269
270 static Lisp_Object Qgc_cons_threshold;
271 Lisp_Object Qchar_table_extra_slots;
272
273 /* Hook run after GC has finished. */
274
275 static Lisp_Object Qpost_gc_hook;
276
277 static void mark_buffer (Lisp_Object);
278 static void mark_terminals (void);
279 static void gc_sweep (void);
280 static void mark_glyph_matrix (struct glyph_matrix *);
281 static void mark_face_cache (struct face_cache *);
282
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288
289 /* When scanning the C stack for live Lisp objects, Emacs keeps track
290 of what memory allocated via lisp_malloc is intended for what
291 purpose. This enumeration specifies the type of memory. */
292
293 enum mem_type
294 {
295 MEM_TYPE_NON_LISP,
296 MEM_TYPE_BUFFER,
297 MEM_TYPE_CONS,
298 MEM_TYPE_STRING,
299 MEM_TYPE_MISC,
300 MEM_TYPE_SYMBOL,
301 MEM_TYPE_FLOAT,
302 /* We used to keep separate mem_types for subtypes of vectors such as
303 process, hash_table, frame, terminal, and window, but we never made
304 use of the distinction, so it only caused source-code complexity
305 and runtime slowdown. Minor but pointless. */
306 MEM_TYPE_VECTORLIKE
307 };
308
309 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
310 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
311
312
313 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
314
315 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
316 #include <stdio.h> /* For fprintf. */
317 #endif
318
319 /* A unique object in pure space used to make some Lisp objects
320 on free lists recognizable in O(1). */
321
322 static Lisp_Object Vdead;
323
324 #ifdef GC_MALLOC_CHECK
325
326 enum mem_type allocated_mem_type;
327 static int dont_register_blocks;
328
329 #endif /* GC_MALLOC_CHECK */
330
331 /* A node in the red-black tree describing allocated memory containing
332 Lisp data. Each such block is recorded with its start and end
333 address when it is allocated, and removed from the tree when it
334 is freed.
335
336 A red-black tree is a balanced binary tree with the following
337 properties:
338
339 1. Every node is either red or black.
340 2. Every leaf is black.
341 3. If a node is red, then both of its children are black.
342 4. Every simple path from a node to a descendant leaf contains
343 the same number of black nodes.
344 5. The root is always black.
345
346 When nodes are inserted into the tree, or deleted from the tree,
347 the tree is "fixed" so that these properties are always true.
348
349 A red-black tree with N internal nodes has height at most 2
350 log(N+1). Searches, insertions and deletions are done in O(log N).
351 Please see a text book about data structures for a detailed
352 description of red-black trees. Any book worth its salt should
353 describe them. */
354
355 struct mem_node
356 {
357 /* Children of this node. These pointers are never NULL. When there
358 is no child, the value is MEM_NIL, which points to a dummy node. */
359 struct mem_node *left, *right;
360
361 /* The parent of this node. In the root node, this is NULL. */
362 struct mem_node *parent;
363
364 /* Start and end of allocated region. */
365 void *start, *end;
366
367 /* Node color. */
368 enum {MEM_BLACK, MEM_RED} color;
369
370 /* Memory type. */
371 enum mem_type type;
372 };
373
374 /* Base address of stack. Set in main. */
375
376 Lisp_Object *stack_base;
377
378 /* Root of the tree describing allocated Lisp memory. */
379
380 static struct mem_node *mem_root;
381
382 /* Lowest and highest known address in the heap. */
383
384 static void *min_heap_address, *max_heap_address;
385
386 /* Sentinel node of the tree. */
387
388 static struct mem_node mem_z;
389 #define MEM_NIL &mem_z
390
391 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
392 static void lisp_free (POINTER_TYPE *);
393 static void mark_stack (void);
394 static int live_vector_p (struct mem_node *, void *);
395 static int live_buffer_p (struct mem_node *, void *);
396 static int live_string_p (struct mem_node *, void *);
397 static int live_cons_p (struct mem_node *, void *);
398 static int live_symbol_p (struct mem_node *, void *);
399 static int live_float_p (struct mem_node *, void *);
400 static int live_misc_p (struct mem_node *, void *);
401 static void mark_maybe_object (Lisp_Object);
402 static void mark_memory (void *, void *, int);
403 static void mem_init (void);
404 static struct mem_node *mem_insert (void *, void *, enum mem_type);
405 static void mem_insert_fixup (struct mem_node *);
406 static void mem_rotate_left (struct mem_node *);
407 static void mem_rotate_right (struct mem_node *);
408 static void mem_delete (struct mem_node *);
409 static void mem_delete_fixup (struct mem_node *);
410 static INLINE struct mem_node *mem_find (void *);
411
412
413 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
414 static void check_gcpros (void);
415 #endif
416
417 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
418
419 /* Recording what needs to be marked for gc. */
420
421 struct gcpro *gcprolist;
422
423 /* Addresses of staticpro'd variables. Initialize it to a nonzero
424 value; otherwise some compilers put it into BSS. */
425
426 #define NSTATICS 0x640
427 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
428
429 /* Index of next unused slot in staticvec. */
430
431 static int staticidx = 0;
432
433 static POINTER_TYPE *pure_alloc (size_t, int);
434
435
436 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
437 ALIGNMENT must be a power of 2. */
438
439 #define ALIGN(ptr, ALIGNMENT) \
440 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
441 & ~((ALIGNMENT) - 1)))
442
443
444 \f
445 /************************************************************************
446 Malloc
447 ************************************************************************/
448
449 /* Function malloc calls this if it finds we are near exhausting storage. */
450
451 void
452 malloc_warning (const char *str)
453 {
454 pending_malloc_warning = str;
455 }
456
457
458 /* Display an already-pending malloc warning. */
459
460 void
461 display_malloc_warning (void)
462 {
463 call3 (intern ("display-warning"),
464 intern ("alloc"),
465 build_string (pending_malloc_warning),
466 intern ("emergency"));
467 pending_malloc_warning = 0;
468 }
469
470
471 #ifdef DOUG_LEA_MALLOC
472 # define BYTES_USED (mallinfo ().uordblks)
473 #else
474 # define BYTES_USED _bytes_used
475 #endif
476 \f
477 /* Called if we can't allocate relocatable space for a buffer. */
478
479 void
480 buffer_memory_full (void)
481 {
482 /* If buffers use the relocating allocator, no need to free
483 spare_memory, because we may have plenty of malloc space left
484 that we could get, and if we don't, the malloc that fails will
485 itself cause spare_memory to be freed. If buffers don't use the
486 relocating allocator, treat this like any other failing
487 malloc. */
488
489 #ifndef REL_ALLOC
490 memory_full ();
491 #endif
492
493 /* This used to call error, but if we've run out of memory, we could
494 get infinite recursion trying to build the string. */
495 xsignal (Qnil, Vmemory_signal_data);
496 }
497
498
499 #ifdef XMALLOC_OVERRUN_CHECK
500
501 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
502 and a 16 byte trailer around each block.
503
504 The header consists of 12 fixed bytes + a 4 byte integer contaning the
505 original block size, while the trailer consists of 16 fixed bytes.
506
507 The header is used to detect whether this block has been allocated
508 through these functions -- as it seems that some low-level libc
509 functions may bypass the malloc hooks.
510 */
511
512
513 #define XMALLOC_OVERRUN_CHECK_SIZE 16
514
515 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
516 { 0x9a, 0x9b, 0xae, 0xaf,
517 0xbf, 0xbe, 0xce, 0xcf,
518 0xea, 0xeb, 0xec, 0xed };
519
520 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
521 { 0xaa, 0xab, 0xac, 0xad,
522 0xba, 0xbb, 0xbc, 0xbd,
523 0xca, 0xcb, 0xcc, 0xcd,
524 0xda, 0xdb, 0xdc, 0xdd };
525
526 /* Macros to insert and extract the block size in the header. */
527
528 #define XMALLOC_PUT_SIZE(ptr, size) \
529 (ptr[-1] = (size & 0xff), \
530 ptr[-2] = ((size >> 8) & 0xff), \
531 ptr[-3] = ((size >> 16) & 0xff), \
532 ptr[-4] = ((size >> 24) & 0xff))
533
534 #define XMALLOC_GET_SIZE(ptr) \
535 (size_t)((unsigned)(ptr[-1]) | \
536 ((unsigned)(ptr[-2]) << 8) | \
537 ((unsigned)(ptr[-3]) << 16) | \
538 ((unsigned)(ptr[-4]) << 24))
539
540
541 /* The call depth in overrun_check functions. For example, this might happen:
542 xmalloc()
543 overrun_check_malloc()
544 -> malloc -> (via hook)_-> emacs_blocked_malloc
545 -> overrun_check_malloc
546 call malloc (hooks are NULL, so real malloc is called).
547 malloc returns 10000.
548 add overhead, return 10016.
549 <- (back in overrun_check_malloc)
550 add overhead again, return 10032
551 xmalloc returns 10032.
552
553 (time passes).
554
555 xfree(10032)
556 overrun_check_free(10032)
557 decrease overhed
558 free(10016) <- crash, because 10000 is the original pointer. */
559
560 static int check_depth;
561
562 /* Like malloc, but wraps allocated block with header and trailer. */
563
564 POINTER_TYPE *
565 overrun_check_malloc (size)
566 size_t size;
567 {
568 register unsigned char *val;
569 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
570
571 val = (unsigned char *) malloc (size + overhead);
572 if (val && check_depth == 1)
573 {
574 memcpy (val, xmalloc_overrun_check_header,
575 XMALLOC_OVERRUN_CHECK_SIZE - 4);
576 val += XMALLOC_OVERRUN_CHECK_SIZE;
577 XMALLOC_PUT_SIZE(val, size);
578 memcpy (val + size, xmalloc_overrun_check_trailer,
579 XMALLOC_OVERRUN_CHECK_SIZE);
580 }
581 --check_depth;
582 return (POINTER_TYPE *)val;
583 }
584
585
586 /* Like realloc, but checks old block for overrun, and wraps new block
587 with header and trailer. */
588
589 POINTER_TYPE *
590 overrun_check_realloc (block, size)
591 POINTER_TYPE *block;
592 size_t size;
593 {
594 register unsigned char *val = (unsigned char *)block;
595 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
596
597 if (val
598 && check_depth == 1
599 && memcmp (xmalloc_overrun_check_header,
600 val - XMALLOC_OVERRUN_CHECK_SIZE,
601 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
602 {
603 size_t osize = XMALLOC_GET_SIZE (val);
604 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
605 XMALLOC_OVERRUN_CHECK_SIZE))
606 abort ();
607 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
608 val -= XMALLOC_OVERRUN_CHECK_SIZE;
609 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 }
611
612 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
613
614 if (val && check_depth == 1)
615 {
616 memcpy (val, xmalloc_overrun_check_header,
617 XMALLOC_OVERRUN_CHECK_SIZE - 4);
618 val += XMALLOC_OVERRUN_CHECK_SIZE;
619 XMALLOC_PUT_SIZE(val, size);
620 memcpy (val + size, xmalloc_overrun_check_trailer,
621 XMALLOC_OVERRUN_CHECK_SIZE);
622 }
623 --check_depth;
624 return (POINTER_TYPE *)val;
625 }
626
627 /* Like free, but checks block for overrun. */
628
629 void
630 overrun_check_free (block)
631 POINTER_TYPE *block;
632 {
633 unsigned char *val = (unsigned char *)block;
634
635 ++check_depth;
636 if (val
637 && check_depth == 1
638 && memcmp (xmalloc_overrun_check_header,
639 val - XMALLOC_OVERRUN_CHECK_SIZE,
640 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
641 {
642 size_t osize = XMALLOC_GET_SIZE (val);
643 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
644 XMALLOC_OVERRUN_CHECK_SIZE))
645 abort ();
646 #ifdef XMALLOC_CLEAR_FREE_MEMORY
647 val -= XMALLOC_OVERRUN_CHECK_SIZE;
648 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
649 #else
650 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
651 val -= XMALLOC_OVERRUN_CHECK_SIZE;
652 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 #endif
654 }
655
656 free (val);
657 --check_depth;
658 }
659
660 #undef malloc
661 #undef realloc
662 #undef free
663 #define malloc overrun_check_malloc
664 #define realloc overrun_check_realloc
665 #define free overrun_check_free
666 #endif
667
668 #ifdef SYNC_INPUT
669 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
670 there's no need to block input around malloc. */
671 #define MALLOC_BLOCK_INPUT ((void)0)
672 #define MALLOC_UNBLOCK_INPUT ((void)0)
673 #else
674 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
675 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
676 #endif
677
678 /* Like malloc but check for no memory and block interrupt input.. */
679
680 POINTER_TYPE *
681 xmalloc (size_t size)
682 {
683 register POINTER_TYPE *val;
684
685 MALLOC_BLOCK_INPUT;
686 val = (POINTER_TYPE *) malloc (size);
687 MALLOC_UNBLOCK_INPUT;
688
689 if (!val && size)
690 memory_full ();
691 return val;
692 }
693
694
695 /* Like realloc but check for no memory and block interrupt input.. */
696
697 POINTER_TYPE *
698 xrealloc (POINTER_TYPE *block, size_t size)
699 {
700 register POINTER_TYPE *val;
701
702 MALLOC_BLOCK_INPUT;
703 /* We must call malloc explicitly when BLOCK is 0, since some
704 reallocs don't do this. */
705 if (! block)
706 val = (POINTER_TYPE *) malloc (size);
707 else
708 val = (POINTER_TYPE *) realloc (block, size);
709 MALLOC_UNBLOCK_INPUT;
710
711 if (!val && size) memory_full ();
712 return val;
713 }
714
715
716 /* Like free but block interrupt input. */
717
718 void
719 xfree (POINTER_TYPE *block)
720 {
721 if (!block)
722 return;
723 MALLOC_BLOCK_INPUT;
724 free (block);
725 MALLOC_UNBLOCK_INPUT;
726 /* We don't call refill_memory_reserve here
727 because that duplicates doing so in emacs_blocked_free
728 and the criterion should go there. */
729 }
730
731
732 /* Like strdup, but uses xmalloc. */
733
734 char *
735 xstrdup (const char *s)
736 {
737 size_t len = strlen (s) + 1;
738 char *p = (char *) xmalloc (len);
739 memcpy (p, s, len);
740 return p;
741 }
742
743
744 /* Unwind for SAFE_ALLOCA */
745
746 Lisp_Object
747 safe_alloca_unwind (Lisp_Object arg)
748 {
749 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
750
751 p->dogc = 0;
752 xfree (p->pointer);
753 p->pointer = 0;
754 free_misc (arg);
755 return Qnil;
756 }
757
758
759 /* Like malloc but used for allocating Lisp data. NBYTES is the
760 number of bytes to allocate, TYPE describes the intended use of the
761 allcated memory block (for strings, for conses, ...). */
762
763 #ifndef USE_LSB_TAG
764 static void *lisp_malloc_loser;
765 #endif
766
767 static POINTER_TYPE *
768 lisp_malloc (size_t nbytes, enum mem_type type)
769 {
770 register void *val;
771
772 MALLOC_BLOCK_INPUT;
773
774 #ifdef GC_MALLOC_CHECK
775 allocated_mem_type = type;
776 #endif
777
778 val = (void *) malloc (nbytes);
779
780 #ifndef USE_LSB_TAG
781 /* If the memory just allocated cannot be addressed thru a Lisp
782 object's pointer, and it needs to be,
783 that's equivalent to running out of memory. */
784 if (val && type != MEM_TYPE_NON_LISP)
785 {
786 Lisp_Object tem;
787 XSETCONS (tem, (char *) val + nbytes - 1);
788 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
789 {
790 lisp_malloc_loser = val;
791 free (val);
792 val = 0;
793 }
794 }
795 #endif
796
797 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
798 if (val && type != MEM_TYPE_NON_LISP)
799 mem_insert (val, (char *) val + nbytes, type);
800 #endif
801
802 MALLOC_UNBLOCK_INPUT;
803 if (!val && nbytes)
804 memory_full ();
805 return val;
806 }
807
808 /* Free BLOCK. This must be called to free memory allocated with a
809 call to lisp_malloc. */
810
811 static void
812 lisp_free (POINTER_TYPE *block)
813 {
814 MALLOC_BLOCK_INPUT;
815 free (block);
816 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
817 mem_delete (mem_find (block));
818 #endif
819 MALLOC_UNBLOCK_INPUT;
820 }
821
822 /* Allocation of aligned blocks of memory to store Lisp data. */
823 /* The entry point is lisp_align_malloc which returns blocks of at most */
824 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
825
826 /* Use posix_memalloc if the system has it and we're using the system's
827 malloc (because our gmalloc.c routines don't have posix_memalign although
828 its memalloc could be used). */
829 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
830 #define USE_POSIX_MEMALIGN 1
831 #endif
832
833 /* BLOCK_ALIGN has to be a power of 2. */
834 #define BLOCK_ALIGN (1 << 10)
835
836 /* Padding to leave at the end of a malloc'd block. This is to give
837 malloc a chance to minimize the amount of memory wasted to alignment.
838 It should be tuned to the particular malloc library used.
839 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
840 posix_memalign on the other hand would ideally prefer a value of 4
841 because otherwise, there's 1020 bytes wasted between each ablocks.
842 In Emacs, testing shows that those 1020 can most of the time be
843 efficiently used by malloc to place other objects, so a value of 0 can
844 still preferable unless you have a lot of aligned blocks and virtually
845 nothing else. */
846 #define BLOCK_PADDING 0
847 #define BLOCK_BYTES \
848 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
849
850 /* Internal data structures and constants. */
851
852 #define ABLOCKS_SIZE 16
853
854 /* An aligned block of memory. */
855 struct ablock
856 {
857 union
858 {
859 char payload[BLOCK_BYTES];
860 struct ablock *next_free;
861 } x;
862 /* `abase' is the aligned base of the ablocks. */
863 /* It is overloaded to hold the virtual `busy' field that counts
864 the number of used ablock in the parent ablocks.
865 The first ablock has the `busy' field, the others have the `abase'
866 field. To tell the difference, we assume that pointers will have
867 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
868 is used to tell whether the real base of the parent ablocks is `abase'
869 (if not, the word before the first ablock holds a pointer to the
870 real base). */
871 struct ablocks *abase;
872 /* The padding of all but the last ablock is unused. The padding of
873 the last ablock in an ablocks is not allocated. */
874 #if BLOCK_PADDING
875 char padding[BLOCK_PADDING];
876 #endif
877 };
878
879 /* A bunch of consecutive aligned blocks. */
880 struct ablocks
881 {
882 struct ablock blocks[ABLOCKS_SIZE];
883 };
884
885 /* Size of the block requested from malloc or memalign. */
886 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
887
888 #define ABLOCK_ABASE(block) \
889 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
890 ? (struct ablocks *)(block) \
891 : (block)->abase)
892
893 /* Virtual `busy' field. */
894 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
895
896 /* Pointer to the (not necessarily aligned) malloc block. */
897 #ifdef USE_POSIX_MEMALIGN
898 #define ABLOCKS_BASE(abase) (abase)
899 #else
900 #define ABLOCKS_BASE(abase) \
901 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
902 #endif
903
904 /* The list of free ablock. */
905 static struct ablock *free_ablock;
906
907 /* Allocate an aligned block of nbytes.
908 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
909 smaller or equal to BLOCK_BYTES. */
910 static POINTER_TYPE *
911 lisp_align_malloc (size_t nbytes, enum mem_type type)
912 {
913 void *base, *val;
914 struct ablocks *abase;
915
916 eassert (nbytes <= BLOCK_BYTES);
917
918 MALLOC_BLOCK_INPUT;
919
920 #ifdef GC_MALLOC_CHECK
921 allocated_mem_type = type;
922 #endif
923
924 if (!free_ablock)
925 {
926 int i;
927 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
928
929 #ifdef DOUG_LEA_MALLOC
930 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
931 because mapped region contents are not preserved in
932 a dumped Emacs. */
933 mallopt (M_MMAP_MAX, 0);
934 #endif
935
936 #ifdef USE_POSIX_MEMALIGN
937 {
938 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
939 if (err)
940 base = NULL;
941 abase = base;
942 }
943 #else
944 base = malloc (ABLOCKS_BYTES);
945 abase = ALIGN (base, BLOCK_ALIGN);
946 #endif
947
948 if (base == 0)
949 {
950 MALLOC_UNBLOCK_INPUT;
951 memory_full ();
952 }
953
954 aligned = (base == abase);
955 if (!aligned)
956 ((void**)abase)[-1] = base;
957
958 #ifdef DOUG_LEA_MALLOC
959 /* Back to a reasonable maximum of mmap'ed areas. */
960 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
961 #endif
962
963 #ifndef USE_LSB_TAG
964 /* If the memory just allocated cannot be addressed thru a Lisp
965 object's pointer, and it needs to be, that's equivalent to
966 running out of memory. */
967 if (type != MEM_TYPE_NON_LISP)
968 {
969 Lisp_Object tem;
970 char *end = (char *) base + ABLOCKS_BYTES - 1;
971 XSETCONS (tem, end);
972 if ((char *) XCONS (tem) != end)
973 {
974 lisp_malloc_loser = base;
975 free (base);
976 MALLOC_UNBLOCK_INPUT;
977 memory_full ();
978 }
979 }
980 #endif
981
982 /* Initialize the blocks and put them on the free list.
983 Is `base' was not properly aligned, we can't use the last block. */
984 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
985 {
986 abase->blocks[i].abase = abase;
987 abase->blocks[i].x.next_free = free_ablock;
988 free_ablock = &abase->blocks[i];
989 }
990 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
991
992 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
993 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
994 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
995 eassert (ABLOCKS_BASE (abase) == base);
996 eassert (aligned == (long) ABLOCKS_BUSY (abase));
997 }
998
999 abase = ABLOCK_ABASE (free_ablock);
1000 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1001 val = free_ablock;
1002 free_ablock = free_ablock->x.next_free;
1003
1004 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1005 if (val && type != MEM_TYPE_NON_LISP)
1006 mem_insert (val, (char *) val + nbytes, type);
1007 #endif
1008
1009 MALLOC_UNBLOCK_INPUT;
1010 if (!val && nbytes)
1011 memory_full ();
1012
1013 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1014 return val;
1015 }
1016
1017 static void
1018 lisp_align_free (POINTER_TYPE *block)
1019 {
1020 struct ablock *ablock = block;
1021 struct ablocks *abase = ABLOCK_ABASE (ablock);
1022
1023 MALLOC_BLOCK_INPUT;
1024 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1025 mem_delete (mem_find (block));
1026 #endif
1027 /* Put on free list. */
1028 ablock->x.next_free = free_ablock;
1029 free_ablock = ablock;
1030 /* Update busy count. */
1031 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1032
1033 if (2 > (long) ABLOCKS_BUSY (abase))
1034 { /* All the blocks are free. */
1035 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1036 struct ablock **tem = &free_ablock;
1037 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1038
1039 while (*tem)
1040 {
1041 if (*tem >= (struct ablock *) abase && *tem < atop)
1042 {
1043 i++;
1044 *tem = (*tem)->x.next_free;
1045 }
1046 else
1047 tem = &(*tem)->x.next_free;
1048 }
1049 eassert ((aligned & 1) == aligned);
1050 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1051 #ifdef USE_POSIX_MEMALIGN
1052 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1053 #endif
1054 free (ABLOCKS_BASE (abase));
1055 }
1056 MALLOC_UNBLOCK_INPUT;
1057 }
1058
1059 /* Return a new buffer structure allocated from the heap with
1060 a call to lisp_malloc. */
1061
1062 struct buffer *
1063 allocate_buffer (void)
1064 {
1065 struct buffer *b
1066 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1067 MEM_TYPE_BUFFER);
1068 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1069 XSETPVECTYPE (b, PVEC_BUFFER);
1070 return b;
1071 }
1072
1073 \f
1074 #ifndef SYSTEM_MALLOC
1075
1076 /* Arranging to disable input signals while we're in malloc.
1077
1078 This only works with GNU malloc. To help out systems which can't
1079 use GNU malloc, all the calls to malloc, realloc, and free
1080 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1081 pair; unfortunately, we have no idea what C library functions
1082 might call malloc, so we can't really protect them unless you're
1083 using GNU malloc. Fortunately, most of the major operating systems
1084 can use GNU malloc. */
1085
1086 #ifndef SYNC_INPUT
1087 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1088 there's no need to block input around malloc. */
1089
1090 #ifndef DOUG_LEA_MALLOC
1091 extern void * (*__malloc_hook) (size_t, const void *);
1092 extern void * (*__realloc_hook) (void *, size_t, const void *);
1093 extern void (*__free_hook) (void *, const void *);
1094 /* Else declared in malloc.h, perhaps with an extra arg. */
1095 #endif /* DOUG_LEA_MALLOC */
1096 static void * (*old_malloc_hook) (size_t, const void *);
1097 static void * (*old_realloc_hook) (void *, size_t, const void*);
1098 static void (*old_free_hook) (void*, const void*);
1099
1100 static __malloc_size_t bytes_used_when_reconsidered;
1101
1102 /* This function is used as the hook for free to call. */
1103
1104 static void
1105 emacs_blocked_free (void *ptr, const void *ptr2)
1106 {
1107 BLOCK_INPUT_ALLOC;
1108
1109 #ifdef GC_MALLOC_CHECK
1110 if (ptr)
1111 {
1112 struct mem_node *m;
1113
1114 m = mem_find (ptr);
1115 if (m == MEM_NIL || m->start != ptr)
1116 {
1117 fprintf (stderr,
1118 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1119 abort ();
1120 }
1121 else
1122 {
1123 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1124 mem_delete (m);
1125 }
1126 }
1127 #endif /* GC_MALLOC_CHECK */
1128
1129 __free_hook = old_free_hook;
1130 free (ptr);
1131
1132 /* If we released our reserve (due to running out of memory),
1133 and we have a fair amount free once again,
1134 try to set aside another reserve in case we run out once more. */
1135 if (! NILP (Vmemory_full)
1136 /* Verify there is enough space that even with the malloc
1137 hysteresis this call won't run out again.
1138 The code here is correct as long as SPARE_MEMORY
1139 is substantially larger than the block size malloc uses. */
1140 && (bytes_used_when_full
1141 > ((bytes_used_when_reconsidered = BYTES_USED)
1142 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1143 refill_memory_reserve ();
1144
1145 __free_hook = emacs_blocked_free;
1146 UNBLOCK_INPUT_ALLOC;
1147 }
1148
1149
1150 /* This function is the malloc hook that Emacs uses. */
1151
1152 static void *
1153 emacs_blocked_malloc (size_t size, const void *ptr)
1154 {
1155 void *value;
1156
1157 BLOCK_INPUT_ALLOC;
1158 __malloc_hook = old_malloc_hook;
1159 #ifdef DOUG_LEA_MALLOC
1160 /* Segfaults on my system. --lorentey */
1161 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1162 #else
1163 __malloc_extra_blocks = malloc_hysteresis;
1164 #endif
1165
1166 value = (void *) malloc (size);
1167
1168 #ifdef GC_MALLOC_CHECK
1169 {
1170 struct mem_node *m = mem_find (value);
1171 if (m != MEM_NIL)
1172 {
1173 fprintf (stderr, "Malloc returned %p which is already in use\n",
1174 value);
1175 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1176 m->start, m->end, (char *) m->end - (char *) m->start,
1177 m->type);
1178 abort ();
1179 }
1180
1181 if (!dont_register_blocks)
1182 {
1183 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1184 allocated_mem_type = MEM_TYPE_NON_LISP;
1185 }
1186 }
1187 #endif /* GC_MALLOC_CHECK */
1188
1189 __malloc_hook = emacs_blocked_malloc;
1190 UNBLOCK_INPUT_ALLOC;
1191
1192 /* fprintf (stderr, "%p malloc\n", value); */
1193 return value;
1194 }
1195
1196
1197 /* This function is the realloc hook that Emacs uses. */
1198
1199 static void *
1200 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1201 {
1202 void *value;
1203
1204 BLOCK_INPUT_ALLOC;
1205 __realloc_hook = old_realloc_hook;
1206
1207 #ifdef GC_MALLOC_CHECK
1208 if (ptr)
1209 {
1210 struct mem_node *m = mem_find (ptr);
1211 if (m == MEM_NIL || m->start != ptr)
1212 {
1213 fprintf (stderr,
1214 "Realloc of %p which wasn't allocated with malloc\n",
1215 ptr);
1216 abort ();
1217 }
1218
1219 mem_delete (m);
1220 }
1221
1222 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1223
1224 /* Prevent malloc from registering blocks. */
1225 dont_register_blocks = 1;
1226 #endif /* GC_MALLOC_CHECK */
1227
1228 value = (void *) realloc (ptr, size);
1229
1230 #ifdef GC_MALLOC_CHECK
1231 dont_register_blocks = 0;
1232
1233 {
1234 struct mem_node *m = mem_find (value);
1235 if (m != MEM_NIL)
1236 {
1237 fprintf (stderr, "Realloc returns memory that is already in use\n");
1238 abort ();
1239 }
1240
1241 /* Can't handle zero size regions in the red-black tree. */
1242 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1243 }
1244
1245 /* fprintf (stderr, "%p <- realloc\n", value); */
1246 #endif /* GC_MALLOC_CHECK */
1247
1248 __realloc_hook = emacs_blocked_realloc;
1249 UNBLOCK_INPUT_ALLOC;
1250
1251 return value;
1252 }
1253
1254
1255 #ifdef HAVE_GTK_AND_PTHREAD
1256 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1257 normal malloc. Some thread implementations need this as they call
1258 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1259 calls malloc because it is the first call, and we have an endless loop. */
1260
1261 void
1262 reset_malloc_hooks ()
1263 {
1264 __free_hook = old_free_hook;
1265 __malloc_hook = old_malloc_hook;
1266 __realloc_hook = old_realloc_hook;
1267 }
1268 #endif /* HAVE_GTK_AND_PTHREAD */
1269
1270
1271 /* Called from main to set up malloc to use our hooks. */
1272
1273 void
1274 uninterrupt_malloc (void)
1275 {
1276 #ifdef HAVE_GTK_AND_PTHREAD
1277 #ifdef DOUG_LEA_MALLOC
1278 pthread_mutexattr_t attr;
1279
1280 /* GLIBC has a faster way to do this, but lets keep it portable.
1281 This is according to the Single UNIX Specification. */
1282 pthread_mutexattr_init (&attr);
1283 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1284 pthread_mutex_init (&alloc_mutex, &attr);
1285 #else /* !DOUG_LEA_MALLOC */
1286 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1287 and the bundled gmalloc.c doesn't require it. */
1288 pthread_mutex_init (&alloc_mutex, NULL);
1289 #endif /* !DOUG_LEA_MALLOC */
1290 #endif /* HAVE_GTK_AND_PTHREAD */
1291
1292 if (__free_hook != emacs_blocked_free)
1293 old_free_hook = __free_hook;
1294 __free_hook = emacs_blocked_free;
1295
1296 if (__malloc_hook != emacs_blocked_malloc)
1297 old_malloc_hook = __malloc_hook;
1298 __malloc_hook = emacs_blocked_malloc;
1299
1300 if (__realloc_hook != emacs_blocked_realloc)
1301 old_realloc_hook = __realloc_hook;
1302 __realloc_hook = emacs_blocked_realloc;
1303 }
1304
1305 #endif /* not SYNC_INPUT */
1306 #endif /* not SYSTEM_MALLOC */
1307
1308
1309 \f
1310 /***********************************************************************
1311 Interval Allocation
1312 ***********************************************************************/
1313
1314 /* Number of intervals allocated in an interval_block structure.
1315 The 1020 is 1024 minus malloc overhead. */
1316
1317 #define INTERVAL_BLOCK_SIZE \
1318 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1319
1320 /* Intervals are allocated in chunks in form of an interval_block
1321 structure. */
1322
1323 struct interval_block
1324 {
1325 /* Place `intervals' first, to preserve alignment. */
1326 struct interval intervals[INTERVAL_BLOCK_SIZE];
1327 struct interval_block *next;
1328 };
1329
1330 /* Current interval block. Its `next' pointer points to older
1331 blocks. */
1332
1333 static struct interval_block *interval_block;
1334
1335 /* Index in interval_block above of the next unused interval
1336 structure. */
1337
1338 static int interval_block_index;
1339
1340 /* Number of free and live intervals. */
1341
1342 static int total_free_intervals, total_intervals;
1343
1344 /* List of free intervals. */
1345
1346 static INTERVAL interval_free_list;
1347
1348 /* Total number of interval blocks now in use. */
1349
1350 static int n_interval_blocks;
1351
1352
1353 /* Initialize interval allocation. */
1354
1355 static void
1356 init_intervals (void)
1357 {
1358 interval_block = NULL;
1359 interval_block_index = INTERVAL_BLOCK_SIZE;
1360 interval_free_list = 0;
1361 n_interval_blocks = 0;
1362 }
1363
1364
1365 /* Return a new interval. */
1366
1367 INTERVAL
1368 make_interval (void)
1369 {
1370 INTERVAL val;
1371
1372 /* eassert (!handling_signal); */
1373
1374 MALLOC_BLOCK_INPUT;
1375
1376 if (interval_free_list)
1377 {
1378 val = interval_free_list;
1379 interval_free_list = INTERVAL_PARENT (interval_free_list);
1380 }
1381 else
1382 {
1383 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1384 {
1385 register struct interval_block *newi;
1386
1387 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1388 MEM_TYPE_NON_LISP);
1389
1390 newi->next = interval_block;
1391 interval_block = newi;
1392 interval_block_index = 0;
1393 n_interval_blocks++;
1394 }
1395 val = &interval_block->intervals[interval_block_index++];
1396 }
1397
1398 MALLOC_UNBLOCK_INPUT;
1399
1400 consing_since_gc += sizeof (struct interval);
1401 intervals_consed++;
1402 RESET_INTERVAL (val);
1403 val->gcmarkbit = 0;
1404 return val;
1405 }
1406
1407
1408 /* Mark Lisp objects in interval I. */
1409
1410 static void
1411 mark_interval (register INTERVAL i, Lisp_Object dummy)
1412 {
1413 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1414 i->gcmarkbit = 1;
1415 mark_object (i->plist);
1416 }
1417
1418
1419 /* Mark the interval tree rooted in TREE. Don't call this directly;
1420 use the macro MARK_INTERVAL_TREE instead. */
1421
1422 static void
1423 mark_interval_tree (register INTERVAL tree)
1424 {
1425 /* No need to test if this tree has been marked already; this
1426 function is always called through the MARK_INTERVAL_TREE macro,
1427 which takes care of that. */
1428
1429 traverse_intervals_noorder (tree, mark_interval, Qnil);
1430 }
1431
1432
1433 /* Mark the interval tree rooted in I. */
1434
1435 #define MARK_INTERVAL_TREE(i) \
1436 do { \
1437 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1438 mark_interval_tree (i); \
1439 } while (0)
1440
1441
1442 #define UNMARK_BALANCE_INTERVALS(i) \
1443 do { \
1444 if (! NULL_INTERVAL_P (i)) \
1445 (i) = balance_intervals (i); \
1446 } while (0)
1447
1448 \f
1449 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1450 can't create number objects in macros. */
1451 #ifndef make_number
1452 Lisp_Object
1453 make_number (EMACS_INT n)
1454 {
1455 Lisp_Object obj;
1456 obj.s.val = n;
1457 obj.s.type = Lisp_Int;
1458 return obj;
1459 }
1460 #endif
1461 \f
1462 /***********************************************************************
1463 String Allocation
1464 ***********************************************************************/
1465
1466 /* Lisp_Strings are allocated in string_block structures. When a new
1467 string_block is allocated, all the Lisp_Strings it contains are
1468 added to a free-list string_free_list. When a new Lisp_String is
1469 needed, it is taken from that list. During the sweep phase of GC,
1470 string_blocks that are entirely free are freed, except two which
1471 we keep.
1472
1473 String data is allocated from sblock structures. Strings larger
1474 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1475 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1476
1477 Sblocks consist internally of sdata structures, one for each
1478 Lisp_String. The sdata structure points to the Lisp_String it
1479 belongs to. The Lisp_String points back to the `u.data' member of
1480 its sdata structure.
1481
1482 When a Lisp_String is freed during GC, it is put back on
1483 string_free_list, and its `data' member and its sdata's `string'
1484 pointer is set to null. The size of the string is recorded in the
1485 `u.nbytes' member of the sdata. So, sdata structures that are no
1486 longer used, can be easily recognized, and it's easy to compact the
1487 sblocks of small strings which we do in compact_small_strings. */
1488
1489 /* Size in bytes of an sblock structure used for small strings. This
1490 is 8192 minus malloc overhead. */
1491
1492 #define SBLOCK_SIZE 8188
1493
1494 /* Strings larger than this are considered large strings. String data
1495 for large strings is allocated from individual sblocks. */
1496
1497 #define LARGE_STRING_BYTES 1024
1498
1499 /* Structure describing string memory sub-allocated from an sblock.
1500 This is where the contents of Lisp strings are stored. */
1501
1502 struct sdata
1503 {
1504 /* Back-pointer to the string this sdata belongs to. If null, this
1505 structure is free, and the NBYTES member of the union below
1506 contains the string's byte size (the same value that STRING_BYTES
1507 would return if STRING were non-null). If non-null, STRING_BYTES
1508 (STRING) is the size of the data, and DATA contains the string's
1509 contents. */
1510 struct Lisp_String *string;
1511
1512 #ifdef GC_CHECK_STRING_BYTES
1513
1514 EMACS_INT nbytes;
1515 unsigned char data[1];
1516
1517 #define SDATA_NBYTES(S) (S)->nbytes
1518 #define SDATA_DATA(S) (S)->data
1519
1520 #else /* not GC_CHECK_STRING_BYTES */
1521
1522 union
1523 {
1524 /* When STRING in non-null. */
1525 unsigned char data[1];
1526
1527 /* When STRING is null. */
1528 EMACS_INT nbytes;
1529 } u;
1530
1531
1532 #define SDATA_NBYTES(S) (S)->u.nbytes
1533 #define SDATA_DATA(S) (S)->u.data
1534
1535 #endif /* not GC_CHECK_STRING_BYTES */
1536 };
1537
1538
1539 /* Structure describing a block of memory which is sub-allocated to
1540 obtain string data memory for strings. Blocks for small strings
1541 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1542 as large as needed. */
1543
1544 struct sblock
1545 {
1546 /* Next in list. */
1547 struct sblock *next;
1548
1549 /* Pointer to the next free sdata block. This points past the end
1550 of the sblock if there isn't any space left in this block. */
1551 struct sdata *next_free;
1552
1553 /* Start of data. */
1554 struct sdata first_data;
1555 };
1556
1557 /* Number of Lisp strings in a string_block structure. The 1020 is
1558 1024 minus malloc overhead. */
1559
1560 #define STRING_BLOCK_SIZE \
1561 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1562
1563 /* Structure describing a block from which Lisp_String structures
1564 are allocated. */
1565
1566 struct string_block
1567 {
1568 /* Place `strings' first, to preserve alignment. */
1569 struct Lisp_String strings[STRING_BLOCK_SIZE];
1570 struct string_block *next;
1571 };
1572
1573 /* Head and tail of the list of sblock structures holding Lisp string
1574 data. We always allocate from current_sblock. The NEXT pointers
1575 in the sblock structures go from oldest_sblock to current_sblock. */
1576
1577 static struct sblock *oldest_sblock, *current_sblock;
1578
1579 /* List of sblocks for large strings. */
1580
1581 static struct sblock *large_sblocks;
1582
1583 /* List of string_block structures, and how many there are. */
1584
1585 static struct string_block *string_blocks;
1586 static int n_string_blocks;
1587
1588 /* Free-list of Lisp_Strings. */
1589
1590 static struct Lisp_String *string_free_list;
1591
1592 /* Number of live and free Lisp_Strings. */
1593
1594 static int total_strings, total_free_strings;
1595
1596 /* Number of bytes used by live strings. */
1597
1598 static EMACS_INT total_string_size;
1599
1600 /* Given a pointer to a Lisp_String S which is on the free-list
1601 string_free_list, return a pointer to its successor in the
1602 free-list. */
1603
1604 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1605
1606 /* Return a pointer to the sdata structure belonging to Lisp string S.
1607 S must be live, i.e. S->data must not be null. S->data is actually
1608 a pointer to the `u.data' member of its sdata structure; the
1609 structure starts at a constant offset in front of that. */
1610
1611 #ifdef GC_CHECK_STRING_BYTES
1612
1613 #define SDATA_OF_STRING(S) \
1614 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1615 - sizeof (EMACS_INT)))
1616
1617 #else /* not GC_CHECK_STRING_BYTES */
1618
1619 #define SDATA_OF_STRING(S) \
1620 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1621
1622 #endif /* not GC_CHECK_STRING_BYTES */
1623
1624
1625 #ifdef GC_CHECK_STRING_OVERRUN
1626
1627 /* We check for overrun in string data blocks by appending a small
1628 "cookie" after each allocated string data block, and check for the
1629 presence of this cookie during GC. */
1630
1631 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1632 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1633 { 0xde, 0xad, 0xbe, 0xef };
1634
1635 #else
1636 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1637 #endif
1638
1639 /* Value is the size of an sdata structure large enough to hold NBYTES
1640 bytes of string data. The value returned includes a terminating
1641 NUL byte, the size of the sdata structure, and padding. */
1642
1643 #ifdef GC_CHECK_STRING_BYTES
1644
1645 #define SDATA_SIZE(NBYTES) \
1646 ((sizeof (struct Lisp_String *) \
1647 + (NBYTES) + 1 \
1648 + sizeof (EMACS_INT) \
1649 + sizeof (EMACS_INT) - 1) \
1650 & ~(sizeof (EMACS_INT) - 1))
1651
1652 #else /* not GC_CHECK_STRING_BYTES */
1653
1654 #define SDATA_SIZE(NBYTES) \
1655 ((sizeof (struct Lisp_String *) \
1656 + (NBYTES) + 1 \
1657 + sizeof (EMACS_INT) - 1) \
1658 & ~(sizeof (EMACS_INT) - 1))
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 /* Extra bytes to allocate for each string. */
1663
1664 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1665
1666 /* Initialize string allocation. Called from init_alloc_once. */
1667
1668 static void
1669 init_strings (void)
1670 {
1671 total_strings = total_free_strings = total_string_size = 0;
1672 oldest_sblock = current_sblock = large_sblocks = NULL;
1673 string_blocks = NULL;
1674 n_string_blocks = 0;
1675 string_free_list = NULL;
1676 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1677 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1678 }
1679
1680
1681 #ifdef GC_CHECK_STRING_BYTES
1682
1683 static int check_string_bytes_count;
1684
1685 static void check_string_bytes (int);
1686 static void check_sblock (struct sblock *);
1687
1688 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1689
1690
1691 /* Like GC_STRING_BYTES, but with debugging check. */
1692
1693 EMACS_INT
1694 string_bytes (struct Lisp_String *s)
1695 {
1696 EMACS_INT nbytes =
1697 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1698
1699 if (!PURE_POINTER_P (s)
1700 && s->data
1701 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1702 abort ();
1703 return nbytes;
1704 }
1705
1706 /* Check validity of Lisp strings' string_bytes member in B. */
1707
1708 static void
1709 check_sblock (b)
1710 struct sblock *b;
1711 {
1712 struct sdata *from, *end, *from_end;
1713
1714 end = b->next_free;
1715
1716 for (from = &b->first_data; from < end; from = from_end)
1717 {
1718 /* Compute the next FROM here because copying below may
1719 overwrite data we need to compute it. */
1720 EMACS_INT nbytes;
1721
1722 /* Check that the string size recorded in the string is the
1723 same as the one recorded in the sdata structure. */
1724 if (from->string)
1725 CHECK_STRING_BYTES (from->string);
1726
1727 if (from->string)
1728 nbytes = GC_STRING_BYTES (from->string);
1729 else
1730 nbytes = SDATA_NBYTES (from);
1731
1732 nbytes = SDATA_SIZE (nbytes);
1733 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1734 }
1735 }
1736
1737
1738 /* Check validity of Lisp strings' string_bytes member. ALL_P
1739 non-zero means check all strings, otherwise check only most
1740 recently allocated strings. Used for hunting a bug. */
1741
1742 static void
1743 check_string_bytes (all_p)
1744 int all_p;
1745 {
1746 if (all_p)
1747 {
1748 struct sblock *b;
1749
1750 for (b = large_sblocks; b; b = b->next)
1751 {
1752 struct Lisp_String *s = b->first_data.string;
1753 if (s)
1754 CHECK_STRING_BYTES (s);
1755 }
1756
1757 for (b = oldest_sblock; b; b = b->next)
1758 check_sblock (b);
1759 }
1760 else
1761 check_sblock (current_sblock);
1762 }
1763
1764 #endif /* GC_CHECK_STRING_BYTES */
1765
1766 #ifdef GC_CHECK_STRING_FREE_LIST
1767
1768 /* Walk through the string free list looking for bogus next pointers.
1769 This may catch buffer overrun from a previous string. */
1770
1771 static void
1772 check_string_free_list ()
1773 {
1774 struct Lisp_String *s;
1775
1776 /* Pop a Lisp_String off the free-list. */
1777 s = string_free_list;
1778 while (s != NULL)
1779 {
1780 if ((unsigned long)s < 1024)
1781 abort();
1782 s = NEXT_FREE_LISP_STRING (s);
1783 }
1784 }
1785 #else
1786 #define check_string_free_list()
1787 #endif
1788
1789 /* Return a new Lisp_String. */
1790
1791 static struct Lisp_String *
1792 allocate_string (void)
1793 {
1794 struct Lisp_String *s;
1795
1796 /* eassert (!handling_signal); */
1797
1798 MALLOC_BLOCK_INPUT;
1799
1800 /* If the free-list is empty, allocate a new string_block, and
1801 add all the Lisp_Strings in it to the free-list. */
1802 if (string_free_list == NULL)
1803 {
1804 struct string_block *b;
1805 int i;
1806
1807 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1808 memset (b, 0, sizeof *b);
1809 b->next = string_blocks;
1810 string_blocks = b;
1811 ++n_string_blocks;
1812
1813 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1814 {
1815 s = b->strings + i;
1816 NEXT_FREE_LISP_STRING (s) = string_free_list;
1817 string_free_list = s;
1818 }
1819
1820 total_free_strings += STRING_BLOCK_SIZE;
1821 }
1822
1823 check_string_free_list ();
1824
1825 /* Pop a Lisp_String off the free-list. */
1826 s = string_free_list;
1827 string_free_list = NEXT_FREE_LISP_STRING (s);
1828
1829 MALLOC_UNBLOCK_INPUT;
1830
1831 /* Probably not strictly necessary, but play it safe. */
1832 memset (s, 0, sizeof *s);
1833
1834 --total_free_strings;
1835 ++total_strings;
1836 ++strings_consed;
1837 consing_since_gc += sizeof *s;
1838
1839 #ifdef GC_CHECK_STRING_BYTES
1840 if (!noninteractive)
1841 {
1842 if (++check_string_bytes_count == 200)
1843 {
1844 check_string_bytes_count = 0;
1845 check_string_bytes (1);
1846 }
1847 else
1848 check_string_bytes (0);
1849 }
1850 #endif /* GC_CHECK_STRING_BYTES */
1851
1852 return s;
1853 }
1854
1855
1856 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1857 plus a NUL byte at the end. Allocate an sdata structure for S, and
1858 set S->data to its `u.data' member. Store a NUL byte at the end of
1859 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1860 S->data if it was initially non-null. */
1861
1862 void
1863 allocate_string_data (struct Lisp_String *s,
1864 EMACS_INT nchars, EMACS_INT nbytes)
1865 {
1866 struct sdata *data, *old_data;
1867 struct sblock *b;
1868 EMACS_INT needed, old_nbytes;
1869
1870 /* Determine the number of bytes needed to store NBYTES bytes
1871 of string data. */
1872 needed = SDATA_SIZE (nbytes);
1873 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1874 old_nbytes = GC_STRING_BYTES (s);
1875
1876 MALLOC_BLOCK_INPUT;
1877
1878 if (nbytes > LARGE_STRING_BYTES)
1879 {
1880 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1881
1882 #ifdef DOUG_LEA_MALLOC
1883 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1884 because mapped region contents are not preserved in
1885 a dumped Emacs.
1886
1887 In case you think of allowing it in a dumped Emacs at the
1888 cost of not being able to re-dump, there's another reason:
1889 mmap'ed data typically have an address towards the top of the
1890 address space, which won't fit into an EMACS_INT (at least on
1891 32-bit systems with the current tagging scheme). --fx */
1892 mallopt (M_MMAP_MAX, 0);
1893 #endif
1894
1895 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1896
1897 #ifdef DOUG_LEA_MALLOC
1898 /* Back to a reasonable maximum of mmap'ed areas. */
1899 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1900 #endif
1901
1902 b->next_free = &b->first_data;
1903 b->first_data.string = NULL;
1904 b->next = large_sblocks;
1905 large_sblocks = b;
1906 }
1907 else if (current_sblock == NULL
1908 || (((char *) current_sblock + SBLOCK_SIZE
1909 - (char *) current_sblock->next_free)
1910 < (needed + GC_STRING_EXTRA)))
1911 {
1912 /* Not enough room in the current sblock. */
1913 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1914 b->next_free = &b->first_data;
1915 b->first_data.string = NULL;
1916 b->next = NULL;
1917
1918 if (current_sblock)
1919 current_sblock->next = b;
1920 else
1921 oldest_sblock = b;
1922 current_sblock = b;
1923 }
1924 else
1925 b = current_sblock;
1926
1927 data = b->next_free;
1928 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1929
1930 MALLOC_UNBLOCK_INPUT;
1931
1932 data->string = s;
1933 s->data = SDATA_DATA (data);
1934 #ifdef GC_CHECK_STRING_BYTES
1935 SDATA_NBYTES (data) = nbytes;
1936 #endif
1937 s->size = nchars;
1938 s->size_byte = nbytes;
1939 s->data[nbytes] = '\0';
1940 #ifdef GC_CHECK_STRING_OVERRUN
1941 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1942 #endif
1943
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1946 in it. */
1947 if (old_data)
1948 {
1949 SDATA_NBYTES (old_data) = old_nbytes;
1950 old_data->string = NULL;
1951 }
1952
1953 consing_since_gc += needed;
1954 }
1955
1956
1957 /* Sweep and compact strings. */
1958
1959 static void
1960 sweep_strings (void)
1961 {
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
1964
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1968
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1971 {
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1974
1975 next = b->next;
1976
1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1978 {
1979 struct Lisp_String *s = b->strings + i;
1980
1981 if (s->data)
1982 {
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1985 {
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
1988
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1991
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1994 }
1995 else
1996 {
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
1999
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006 #else
2007 data->u.nbytes = GC_STRING_BYTES (s);
2008 #endif
2009 data->string = NULL;
2010
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2014
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2019 }
2020 }
2021 else
2022 {
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2027 }
2028 }
2029
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2034 {
2035 lisp_free (b);
2036 --n_string_blocks;
2037 string_free_list = free_list_before;
2038 }
2039 else
2040 {
2041 total_free_strings += nfree;
2042 b->next = live_blocks;
2043 live_blocks = b;
2044 }
2045 }
2046
2047 check_string_free_list ();
2048
2049 string_blocks = live_blocks;
2050 free_large_strings ();
2051 compact_small_strings ();
2052
2053 check_string_free_list ();
2054 }
2055
2056
2057 /* Free dead large strings. */
2058
2059 static void
2060 free_large_strings (void)
2061 {
2062 struct sblock *b, *next;
2063 struct sblock *live_blocks = NULL;
2064
2065 for (b = large_sblocks; b; b = next)
2066 {
2067 next = b->next;
2068
2069 if (b->first_data.string == NULL)
2070 lisp_free (b);
2071 else
2072 {
2073 b->next = live_blocks;
2074 live_blocks = b;
2075 }
2076 }
2077
2078 large_sblocks = live_blocks;
2079 }
2080
2081
2082 /* Compact data of small strings. Free sblocks that don't contain
2083 data of live strings after compaction. */
2084
2085 static void
2086 compact_small_strings (void)
2087 {
2088 struct sblock *b, *tb, *next;
2089 struct sdata *from, *to, *end, *tb_end;
2090 struct sdata *to_end, *from_end;
2091
2092 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2093 to, and TB_END is the end of TB. */
2094 tb = oldest_sblock;
2095 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2096 to = &tb->first_data;
2097
2098 /* Step through the blocks from the oldest to the youngest. We
2099 expect that old blocks will stabilize over time, so that less
2100 copying will happen this way. */
2101 for (b = oldest_sblock; b; b = b->next)
2102 {
2103 end = b->next_free;
2104 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2105
2106 for (from = &b->first_data; from < end; from = from_end)
2107 {
2108 /* Compute the next FROM here because copying below may
2109 overwrite data we need to compute it. */
2110 EMACS_INT nbytes;
2111
2112 #ifdef GC_CHECK_STRING_BYTES
2113 /* Check that the string size recorded in the string is the
2114 same as the one recorded in the sdata structure. */
2115 if (from->string
2116 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2117 abort ();
2118 #endif /* GC_CHECK_STRING_BYTES */
2119
2120 if (from->string)
2121 nbytes = GC_STRING_BYTES (from->string);
2122 else
2123 nbytes = SDATA_NBYTES (from);
2124
2125 if (nbytes > LARGE_STRING_BYTES)
2126 abort ();
2127
2128 nbytes = SDATA_SIZE (nbytes);
2129 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2130
2131 #ifdef GC_CHECK_STRING_OVERRUN
2132 if (memcmp (string_overrun_cookie,
2133 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2134 GC_STRING_OVERRUN_COOKIE_SIZE))
2135 abort ();
2136 #endif
2137
2138 /* FROM->string non-null means it's alive. Copy its data. */
2139 if (from->string)
2140 {
2141 /* If TB is full, proceed with the next sblock. */
2142 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2143 if (to_end > tb_end)
2144 {
2145 tb->next_free = to;
2146 tb = tb->next;
2147 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2148 to = &tb->first_data;
2149 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2150 }
2151
2152 /* Copy, and update the string's `data' pointer. */
2153 if (from != to)
2154 {
2155 xassert (tb != b || to <= from);
2156 memmove (to, from, nbytes + GC_STRING_EXTRA);
2157 to->string->data = SDATA_DATA (to);
2158 }
2159
2160 /* Advance past the sdata we copied to. */
2161 to = to_end;
2162 }
2163 }
2164 }
2165
2166 /* The rest of the sblocks following TB don't contain live data, so
2167 we can free them. */
2168 for (b = tb->next; b; b = next)
2169 {
2170 next = b->next;
2171 lisp_free (b);
2172 }
2173
2174 tb->next_free = to;
2175 tb->next = NULL;
2176 current_sblock = tb;
2177 }
2178
2179
2180 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2181 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2182 LENGTH must be an integer.
2183 INIT must be an integer that represents a character. */)
2184 (Lisp_Object length, Lisp_Object init)
2185 {
2186 register Lisp_Object val;
2187 register unsigned char *p, *end;
2188 int c;
2189 EMACS_INT nbytes;
2190
2191 CHECK_NATNUM (length);
2192 CHECK_NUMBER (init);
2193
2194 c = XINT (init);
2195 if (ASCII_CHAR_P (c))
2196 {
2197 nbytes = XINT (length);
2198 val = make_uninit_string (nbytes);
2199 p = SDATA (val);
2200 end = p + SCHARS (val);
2201 while (p != end)
2202 *p++ = c;
2203 }
2204 else
2205 {
2206 unsigned char str[MAX_MULTIBYTE_LENGTH];
2207 int len = CHAR_STRING (c, str);
2208 EMACS_INT string_len = XINT (length);
2209
2210 if (string_len > MOST_POSITIVE_FIXNUM / len)
2211 error ("Maximum string size exceeded");
2212 nbytes = len * string_len;
2213 val = make_uninit_multibyte_string (string_len, nbytes);
2214 p = SDATA (val);
2215 end = p + nbytes;
2216 while (p != end)
2217 {
2218 memcpy (p, str, len);
2219 p += len;
2220 }
2221 }
2222
2223 *p = 0;
2224 return val;
2225 }
2226
2227
2228 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2229 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2230 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2231 (Lisp_Object length, Lisp_Object init)
2232 {
2233 register Lisp_Object val;
2234 struct Lisp_Bool_Vector *p;
2235 int real_init, i;
2236 EMACS_INT length_in_chars, length_in_elts;
2237 int bits_per_value;
2238
2239 CHECK_NATNUM (length);
2240
2241 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2242
2243 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2244 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2245 / BOOL_VECTOR_BITS_PER_CHAR);
2246
2247 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2248 slot `size' of the struct Lisp_Bool_Vector. */
2249 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2250
2251 /* Get rid of any bits that would cause confusion. */
2252 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2253 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2254 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2255
2256 p = XBOOL_VECTOR (val);
2257 p->size = XFASTINT (length);
2258
2259 real_init = (NILP (init) ? 0 : -1);
2260 for (i = 0; i < length_in_chars ; i++)
2261 p->data[i] = real_init;
2262
2263 /* Clear the extraneous bits in the last byte. */
2264 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2265 p->data[length_in_chars - 1]
2266 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2267
2268 return val;
2269 }
2270
2271
2272 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2273 of characters from the contents. This string may be unibyte or
2274 multibyte, depending on the contents. */
2275
2276 Lisp_Object
2277 make_string (const char *contents, EMACS_INT nbytes)
2278 {
2279 register Lisp_Object val;
2280 EMACS_INT nchars, multibyte_nbytes;
2281
2282 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2283 &nchars, &multibyte_nbytes);
2284 if (nbytes == nchars || nbytes != multibyte_nbytes)
2285 /* CONTENTS contains no multibyte sequences or contains an invalid
2286 multibyte sequence. We must make unibyte string. */
2287 val = make_unibyte_string (contents, nbytes);
2288 else
2289 val = make_multibyte_string (contents, nchars, nbytes);
2290 return val;
2291 }
2292
2293
2294 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2295
2296 Lisp_Object
2297 make_unibyte_string (const char *contents, EMACS_INT length)
2298 {
2299 register Lisp_Object val;
2300 val = make_uninit_string (length);
2301 memcpy (SDATA (val), contents, length);
2302 return val;
2303 }
2304
2305
2306 /* Make a multibyte string from NCHARS characters occupying NBYTES
2307 bytes at CONTENTS. */
2308
2309 Lisp_Object
2310 make_multibyte_string (const char *contents,
2311 EMACS_INT nchars, EMACS_INT nbytes)
2312 {
2313 register Lisp_Object val;
2314 val = make_uninit_multibyte_string (nchars, nbytes);
2315 memcpy (SDATA (val), contents, nbytes);
2316 return val;
2317 }
2318
2319
2320 /* Make a string from NCHARS characters occupying NBYTES bytes at
2321 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2322
2323 Lisp_Object
2324 make_string_from_bytes (const char *contents,
2325 EMACS_INT nchars, EMACS_INT nbytes)
2326 {
2327 register Lisp_Object val;
2328 val = make_uninit_multibyte_string (nchars, nbytes);
2329 memcpy (SDATA (val), contents, nbytes);
2330 if (SBYTES (val) == SCHARS (val))
2331 STRING_SET_UNIBYTE (val);
2332 return val;
2333 }
2334
2335
2336 /* Make a string from NCHARS characters occupying NBYTES bytes at
2337 CONTENTS. The argument MULTIBYTE controls whether to label the
2338 string as multibyte. If NCHARS is negative, it counts the number of
2339 characters by itself. */
2340
2341 Lisp_Object
2342 make_specified_string (const char *contents,
2343 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2344 {
2345 register Lisp_Object val;
2346
2347 if (nchars < 0)
2348 {
2349 if (multibyte)
2350 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2351 nbytes);
2352 else
2353 nchars = nbytes;
2354 }
2355 val = make_uninit_multibyte_string (nchars, nbytes);
2356 memcpy (SDATA (val), contents, nbytes);
2357 if (!multibyte)
2358 STRING_SET_UNIBYTE (val);
2359 return val;
2360 }
2361
2362
2363 /* Make a string from the data at STR, treating it as multibyte if the
2364 data warrants. */
2365
2366 Lisp_Object
2367 build_string (const char *str)
2368 {
2369 return make_string (str, strlen (str));
2370 }
2371
2372
2373 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2374 occupying LENGTH bytes. */
2375
2376 Lisp_Object
2377 make_uninit_string (EMACS_INT length)
2378 {
2379 Lisp_Object val;
2380
2381 if (!length)
2382 return empty_unibyte_string;
2383 val = make_uninit_multibyte_string (length, length);
2384 STRING_SET_UNIBYTE (val);
2385 return val;
2386 }
2387
2388
2389 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2390 which occupy NBYTES bytes. */
2391
2392 Lisp_Object
2393 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2394 {
2395 Lisp_Object string;
2396 struct Lisp_String *s;
2397
2398 if (nchars < 0)
2399 abort ();
2400 if (!nbytes)
2401 return empty_multibyte_string;
2402
2403 s = allocate_string ();
2404 allocate_string_data (s, nchars, nbytes);
2405 XSETSTRING (string, s);
2406 string_chars_consed += nbytes;
2407 return string;
2408 }
2409
2410
2411 \f
2412 /***********************************************************************
2413 Float Allocation
2414 ***********************************************************************/
2415
2416 /* We store float cells inside of float_blocks, allocating a new
2417 float_block with malloc whenever necessary. Float cells reclaimed
2418 by GC are put on a free list to be reallocated before allocating
2419 any new float cells from the latest float_block. */
2420
2421 #define FLOAT_BLOCK_SIZE \
2422 (((BLOCK_BYTES - sizeof (struct float_block *) \
2423 /* The compiler might add padding at the end. */ \
2424 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2425 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2426
2427 #define GETMARKBIT(block,n) \
2428 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2429 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2430 & 1)
2431
2432 #define SETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2435
2436 #define UNSETMARKBIT(block,n) \
2437 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2438 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2439
2440 #define FLOAT_BLOCK(fptr) \
2441 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2442
2443 #define FLOAT_INDEX(fptr) \
2444 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2445
2446 struct float_block
2447 {
2448 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2449 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2450 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2451 struct float_block *next;
2452 };
2453
2454 #define FLOAT_MARKED_P(fptr) \
2455 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456
2457 #define FLOAT_MARK(fptr) \
2458 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459
2460 #define FLOAT_UNMARK(fptr) \
2461 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462
2463 /* Current float_block. */
2464
2465 static struct float_block *float_block;
2466
2467 /* Index of first unused Lisp_Float in the current float_block. */
2468
2469 static int float_block_index;
2470
2471 /* Total number of float blocks now in use. */
2472
2473 static int n_float_blocks;
2474
2475 /* Free-list of Lisp_Floats. */
2476
2477 static struct Lisp_Float *float_free_list;
2478
2479
2480 /* Initialize float allocation. */
2481
2482 static void
2483 init_float (void)
2484 {
2485 float_block = NULL;
2486 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2487 float_free_list = 0;
2488 n_float_blocks = 0;
2489 }
2490
2491
2492 /* Return a new float object with value FLOAT_VALUE. */
2493
2494 Lisp_Object
2495 make_float (double float_value)
2496 {
2497 register Lisp_Object val;
2498
2499 /* eassert (!handling_signal); */
2500
2501 MALLOC_BLOCK_INPUT;
2502
2503 if (float_free_list)
2504 {
2505 /* We use the data field for chaining the free list
2506 so that we won't use the same field that has the mark bit. */
2507 XSETFLOAT (val, float_free_list);
2508 float_free_list = float_free_list->u.chain;
2509 }
2510 else
2511 {
2512 if (float_block_index == FLOAT_BLOCK_SIZE)
2513 {
2514 register struct float_block *new;
2515
2516 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2517 MEM_TYPE_FLOAT);
2518 new->next = float_block;
2519 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2520 float_block = new;
2521 float_block_index = 0;
2522 n_float_blocks++;
2523 }
2524 XSETFLOAT (val, &float_block->floats[float_block_index]);
2525 float_block_index++;
2526 }
2527
2528 MALLOC_UNBLOCK_INPUT;
2529
2530 XFLOAT_INIT (val, float_value);
2531 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2532 consing_since_gc += sizeof (struct Lisp_Float);
2533 floats_consed++;
2534 return val;
2535 }
2536
2537
2538 \f
2539 /***********************************************************************
2540 Cons Allocation
2541 ***********************************************************************/
2542
2543 /* We store cons cells inside of cons_blocks, allocating a new
2544 cons_block with malloc whenever necessary. Cons cells reclaimed by
2545 GC are put on a free list to be reallocated before allocating
2546 any new cons cells from the latest cons_block. */
2547
2548 #define CONS_BLOCK_SIZE \
2549 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2550 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2551
2552 #define CONS_BLOCK(fptr) \
2553 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2554
2555 #define CONS_INDEX(fptr) \
2556 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2557
2558 struct cons_block
2559 {
2560 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2561 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2562 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2563 struct cons_block *next;
2564 };
2565
2566 #define CONS_MARKED_P(fptr) \
2567 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568
2569 #define CONS_MARK(fptr) \
2570 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571
2572 #define CONS_UNMARK(fptr) \
2573 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574
2575 /* Current cons_block. */
2576
2577 static struct cons_block *cons_block;
2578
2579 /* Index of first unused Lisp_Cons in the current block. */
2580
2581 static int cons_block_index;
2582
2583 /* Free-list of Lisp_Cons structures. */
2584
2585 static struct Lisp_Cons *cons_free_list;
2586
2587 /* Total number of cons blocks now in use. */
2588
2589 static int n_cons_blocks;
2590
2591
2592 /* Initialize cons allocation. */
2593
2594 static void
2595 init_cons (void)
2596 {
2597 cons_block = NULL;
2598 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2599 cons_free_list = 0;
2600 n_cons_blocks = 0;
2601 }
2602
2603
2604 /* Explicitly free a cons cell by putting it on the free-list. */
2605
2606 void
2607 free_cons (struct Lisp_Cons *ptr)
2608 {
2609 ptr->u.chain = cons_free_list;
2610 #if GC_MARK_STACK
2611 ptr->car = Vdead;
2612 #endif
2613 cons_free_list = ptr;
2614 }
2615
2616 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2617 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2618 (Lisp_Object car, Lisp_Object cdr)
2619 {
2620 register Lisp_Object val;
2621
2622 /* eassert (!handling_signal); */
2623
2624 MALLOC_BLOCK_INPUT;
2625
2626 if (cons_free_list)
2627 {
2628 /* We use the cdr for chaining the free list
2629 so that we won't use the same field that has the mark bit. */
2630 XSETCONS (val, cons_free_list);
2631 cons_free_list = cons_free_list->u.chain;
2632 }
2633 else
2634 {
2635 if (cons_block_index == CONS_BLOCK_SIZE)
2636 {
2637 register struct cons_block *new;
2638 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2639 MEM_TYPE_CONS);
2640 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2641 new->next = cons_block;
2642 cons_block = new;
2643 cons_block_index = 0;
2644 n_cons_blocks++;
2645 }
2646 XSETCONS (val, &cons_block->conses[cons_block_index]);
2647 cons_block_index++;
2648 }
2649
2650 MALLOC_UNBLOCK_INPUT;
2651
2652 XSETCAR (val, car);
2653 XSETCDR (val, cdr);
2654 eassert (!CONS_MARKED_P (XCONS (val)));
2655 consing_since_gc += sizeof (struct Lisp_Cons);
2656 cons_cells_consed++;
2657 return val;
2658 }
2659
2660 #ifdef GC_CHECK_CONS_LIST
2661 /* Get an error now if there's any junk in the cons free list. */
2662 void
2663 check_cons_list (void)
2664 {
2665 struct Lisp_Cons *tail = cons_free_list;
2666
2667 while (tail)
2668 tail = tail->u.chain;
2669 }
2670 #endif
2671
2672 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2673
2674 Lisp_Object
2675 list1 (Lisp_Object arg1)
2676 {
2677 return Fcons (arg1, Qnil);
2678 }
2679
2680 Lisp_Object
2681 list2 (Lisp_Object arg1, Lisp_Object arg2)
2682 {
2683 return Fcons (arg1, Fcons (arg2, Qnil));
2684 }
2685
2686
2687 Lisp_Object
2688 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2689 {
2690 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2691 }
2692
2693
2694 Lisp_Object
2695 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2696 {
2697 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2698 }
2699
2700
2701 Lisp_Object
2702 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2703 {
2704 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2705 Fcons (arg5, Qnil)))));
2706 }
2707
2708
2709 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2710 doc: /* Return a newly created list with specified arguments as elements.
2711 Any number of arguments, even zero arguments, are allowed.
2712 usage: (list &rest OBJECTS) */)
2713 (size_t nargs, register Lisp_Object *args)
2714 {
2715 register Lisp_Object val;
2716 val = Qnil;
2717
2718 while (nargs > 0)
2719 {
2720 nargs--;
2721 val = Fcons (args[nargs], val);
2722 }
2723 return val;
2724 }
2725
2726
2727 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2728 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2729 (register Lisp_Object length, Lisp_Object init)
2730 {
2731 register Lisp_Object val;
2732 register EMACS_INT size;
2733
2734 CHECK_NATNUM (length);
2735 size = XFASTINT (length);
2736
2737 val = Qnil;
2738 while (size > 0)
2739 {
2740 val = Fcons (init, val);
2741 --size;
2742
2743 if (size > 0)
2744 {
2745 val = Fcons (init, val);
2746 --size;
2747
2748 if (size > 0)
2749 {
2750 val = Fcons (init, val);
2751 --size;
2752
2753 if (size > 0)
2754 {
2755 val = Fcons (init, val);
2756 --size;
2757
2758 if (size > 0)
2759 {
2760 val = Fcons (init, val);
2761 --size;
2762 }
2763 }
2764 }
2765 }
2766
2767 QUIT;
2768 }
2769
2770 return val;
2771 }
2772
2773
2774 \f
2775 /***********************************************************************
2776 Vector Allocation
2777 ***********************************************************************/
2778
2779 /* Singly-linked list of all vectors. */
2780
2781 static struct Lisp_Vector *all_vectors;
2782
2783 /* Total number of vector-like objects now in use. */
2784
2785 static int n_vectors;
2786
2787
2788 /* Value is a pointer to a newly allocated Lisp_Vector structure
2789 with room for LEN Lisp_Objects. */
2790
2791 static struct Lisp_Vector *
2792 allocate_vectorlike (EMACS_INT len)
2793 {
2794 struct Lisp_Vector *p;
2795 size_t nbytes;
2796
2797 MALLOC_BLOCK_INPUT;
2798
2799 #ifdef DOUG_LEA_MALLOC
2800 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2801 because mapped region contents are not preserved in
2802 a dumped Emacs. */
2803 mallopt (M_MMAP_MAX, 0);
2804 #endif
2805
2806 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2807 /* eassert (!handling_signal); */
2808
2809 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2810 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2811
2812 #ifdef DOUG_LEA_MALLOC
2813 /* Back to a reasonable maximum of mmap'ed areas. */
2814 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2815 #endif
2816
2817 consing_since_gc += nbytes;
2818 vector_cells_consed += len;
2819
2820 p->next = all_vectors;
2821 all_vectors = p;
2822
2823 MALLOC_UNBLOCK_INPUT;
2824
2825 ++n_vectors;
2826 return p;
2827 }
2828
2829
2830 /* Allocate a vector with NSLOTS slots. */
2831
2832 struct Lisp_Vector *
2833 allocate_vector (EMACS_INT nslots)
2834 {
2835 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2836 v->size = nslots;
2837 return v;
2838 }
2839
2840
2841 /* Allocate other vector-like structures. */
2842
2843 struct Lisp_Vector *
2844 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2845 {
2846 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2847 EMACS_INT i;
2848
2849 /* Only the first lisplen slots will be traced normally by the GC. */
2850 v->size = lisplen;
2851 for (i = 0; i < lisplen; ++i)
2852 v->contents[i] = Qnil;
2853
2854 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2855 return v;
2856 }
2857
2858 struct Lisp_Hash_Table *
2859 allocate_hash_table (void)
2860 {
2861 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2862 }
2863
2864
2865 struct window *
2866 allocate_window (void)
2867 {
2868 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2869 }
2870
2871
2872 struct terminal *
2873 allocate_terminal (void)
2874 {
2875 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2876 next_terminal, PVEC_TERMINAL);
2877 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2878 memset (&t->next_terminal, 0,
2879 (char*) (t + 1) - (char*) &t->next_terminal);
2880
2881 return t;
2882 }
2883
2884 struct frame *
2885 allocate_frame (void)
2886 {
2887 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2888 face_cache, PVEC_FRAME);
2889 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2890 memset (&f->face_cache, 0,
2891 (char *) (f + 1) - (char *) &f->face_cache);
2892 return f;
2893 }
2894
2895
2896 struct Lisp_Process *
2897 allocate_process (void)
2898 {
2899 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2900 }
2901
2902
2903 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2904 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2905 See also the function `vector'. */)
2906 (register Lisp_Object length, Lisp_Object init)
2907 {
2908 Lisp_Object vector;
2909 register EMACS_INT sizei;
2910 register EMACS_INT i;
2911 register struct Lisp_Vector *p;
2912
2913 CHECK_NATNUM (length);
2914 sizei = XFASTINT (length);
2915
2916 p = allocate_vector (sizei);
2917 for (i = 0; i < sizei; i++)
2918 p->contents[i] = init;
2919
2920 XSETVECTOR (vector, p);
2921 return vector;
2922 }
2923
2924
2925 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2926 doc: /* Return a newly created vector with specified arguments as elements.
2927 Any number of arguments, even zero arguments, are allowed.
2928 usage: (vector &rest OBJECTS) */)
2929 (register size_t nargs, Lisp_Object *args)
2930 {
2931 register Lisp_Object len, val;
2932 register size_t i;
2933 register struct Lisp_Vector *p;
2934
2935 XSETFASTINT (len, nargs);
2936 val = Fmake_vector (len, Qnil);
2937 p = XVECTOR (val);
2938 for (i = 0; i < nargs; i++)
2939 p->contents[i] = args[i];
2940 return val;
2941 }
2942
2943
2944 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2945 doc: /* Create a byte-code object with specified arguments as elements.
2946 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2947 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2948 and (optional) INTERACTIVE-SPEC.
2949 The first four arguments are required; at most six have any
2950 significance.
2951 The ARGLIST can be either like the one of `lambda', in which case the arguments
2952 will be dynamically bound before executing the byte code, or it can be an
2953 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2954 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2955 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2956 argument to catch the left-over arguments. If such an integer is used, the
2957 arguments will not be dynamically bound but will be instead pushed on the
2958 stack before executing the byte-code.
2959 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2960 (register size_t nargs, Lisp_Object *args)
2961 {
2962 register Lisp_Object len, val;
2963 register size_t i;
2964 register struct Lisp_Vector *p;
2965
2966 XSETFASTINT (len, nargs);
2967 if (!NILP (Vpurify_flag))
2968 val = make_pure_vector ((EMACS_INT) nargs);
2969 else
2970 val = Fmake_vector (len, Qnil);
2971
2972 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2973 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2974 earlier because they produced a raw 8-bit string for byte-code
2975 and now such a byte-code string is loaded as multibyte while
2976 raw 8-bit characters converted to multibyte form. Thus, now we
2977 must convert them back to the original unibyte form. */
2978 args[1] = Fstring_as_unibyte (args[1]);
2979
2980 p = XVECTOR (val);
2981 for (i = 0; i < nargs; i++)
2982 {
2983 if (!NILP (Vpurify_flag))
2984 args[i] = Fpurecopy (args[i]);
2985 p->contents[i] = args[i];
2986 }
2987 XSETPVECTYPE (p, PVEC_COMPILED);
2988 XSETCOMPILED (val, p);
2989 return val;
2990 }
2991
2992
2993 \f
2994 /***********************************************************************
2995 Symbol Allocation
2996 ***********************************************************************/
2997
2998 /* Each symbol_block is just under 1020 bytes long, since malloc
2999 really allocates in units of powers of two and uses 4 bytes for its
3000 own overhead. */
3001
3002 #define SYMBOL_BLOCK_SIZE \
3003 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3004
3005 struct symbol_block
3006 {
3007 /* Place `symbols' first, to preserve alignment. */
3008 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3009 struct symbol_block *next;
3010 };
3011
3012 /* Current symbol block and index of first unused Lisp_Symbol
3013 structure in it. */
3014
3015 static struct symbol_block *symbol_block;
3016 static int symbol_block_index;
3017
3018 /* List of free symbols. */
3019
3020 static struct Lisp_Symbol *symbol_free_list;
3021
3022 /* Total number of symbol blocks now in use. */
3023
3024 static int n_symbol_blocks;
3025
3026
3027 /* Initialize symbol allocation. */
3028
3029 static void
3030 init_symbol (void)
3031 {
3032 symbol_block = NULL;
3033 symbol_block_index = SYMBOL_BLOCK_SIZE;
3034 symbol_free_list = 0;
3035 n_symbol_blocks = 0;
3036 }
3037
3038
3039 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3040 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3041 Its value and function definition are void, and its property list is nil. */)
3042 (Lisp_Object name)
3043 {
3044 register Lisp_Object val;
3045 register struct Lisp_Symbol *p;
3046
3047 CHECK_STRING (name);
3048
3049 /* eassert (!handling_signal); */
3050
3051 MALLOC_BLOCK_INPUT;
3052
3053 if (symbol_free_list)
3054 {
3055 XSETSYMBOL (val, symbol_free_list);
3056 symbol_free_list = symbol_free_list->next;
3057 }
3058 else
3059 {
3060 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3061 {
3062 struct symbol_block *new;
3063 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3064 MEM_TYPE_SYMBOL);
3065 new->next = symbol_block;
3066 symbol_block = new;
3067 symbol_block_index = 0;
3068 n_symbol_blocks++;
3069 }
3070 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3071 symbol_block_index++;
3072 }
3073
3074 MALLOC_UNBLOCK_INPUT;
3075
3076 p = XSYMBOL (val);
3077 p->xname = name;
3078 p->plist = Qnil;
3079 p->redirect = SYMBOL_PLAINVAL;
3080 SET_SYMBOL_VAL (p, Qunbound);
3081 p->function = Qunbound;
3082 p->next = NULL;
3083 p->gcmarkbit = 0;
3084 p->interned = SYMBOL_UNINTERNED;
3085 p->constant = 0;
3086 p->declared_special = 0;
3087 consing_since_gc += sizeof (struct Lisp_Symbol);
3088 symbols_consed++;
3089 return val;
3090 }
3091
3092
3093 \f
3094 /***********************************************************************
3095 Marker (Misc) Allocation
3096 ***********************************************************************/
3097
3098 /* Allocation of markers and other objects that share that structure.
3099 Works like allocation of conses. */
3100
3101 #define MARKER_BLOCK_SIZE \
3102 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3103
3104 struct marker_block
3105 {
3106 /* Place `markers' first, to preserve alignment. */
3107 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3108 struct marker_block *next;
3109 };
3110
3111 static struct marker_block *marker_block;
3112 static int marker_block_index;
3113
3114 static union Lisp_Misc *marker_free_list;
3115
3116 /* Total number of marker blocks now in use. */
3117
3118 static int n_marker_blocks;
3119
3120 static void
3121 init_marker (void)
3122 {
3123 marker_block = NULL;
3124 marker_block_index = MARKER_BLOCK_SIZE;
3125 marker_free_list = 0;
3126 n_marker_blocks = 0;
3127 }
3128
3129 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3130
3131 Lisp_Object
3132 allocate_misc (void)
3133 {
3134 Lisp_Object val;
3135
3136 /* eassert (!handling_signal); */
3137
3138 MALLOC_BLOCK_INPUT;
3139
3140 if (marker_free_list)
3141 {
3142 XSETMISC (val, marker_free_list);
3143 marker_free_list = marker_free_list->u_free.chain;
3144 }
3145 else
3146 {
3147 if (marker_block_index == MARKER_BLOCK_SIZE)
3148 {
3149 struct marker_block *new;
3150 new = (struct marker_block *) lisp_malloc (sizeof *new,
3151 MEM_TYPE_MISC);
3152 new->next = marker_block;
3153 marker_block = new;
3154 marker_block_index = 0;
3155 n_marker_blocks++;
3156 total_free_markers += MARKER_BLOCK_SIZE;
3157 }
3158 XSETMISC (val, &marker_block->markers[marker_block_index]);
3159 marker_block_index++;
3160 }
3161
3162 MALLOC_UNBLOCK_INPUT;
3163
3164 --total_free_markers;
3165 consing_since_gc += sizeof (union Lisp_Misc);
3166 misc_objects_consed++;
3167 XMISCANY (val)->gcmarkbit = 0;
3168 return val;
3169 }
3170
3171 /* Free a Lisp_Misc object */
3172
3173 static void
3174 free_misc (Lisp_Object misc)
3175 {
3176 XMISCTYPE (misc) = Lisp_Misc_Free;
3177 XMISC (misc)->u_free.chain = marker_free_list;
3178 marker_free_list = XMISC (misc);
3179
3180 total_free_markers++;
3181 }
3182
3183 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3184 INTEGER. This is used to package C values to call record_unwind_protect.
3185 The unwind function can get the C values back using XSAVE_VALUE. */
3186
3187 Lisp_Object
3188 make_save_value (void *pointer, int integer)
3189 {
3190 register Lisp_Object val;
3191 register struct Lisp_Save_Value *p;
3192
3193 val = allocate_misc ();
3194 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3195 p = XSAVE_VALUE (val);
3196 p->pointer = pointer;
3197 p->integer = integer;
3198 p->dogc = 0;
3199 return val;
3200 }
3201
3202 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3203 doc: /* Return a newly allocated marker which does not point at any place. */)
3204 (void)
3205 {
3206 register Lisp_Object val;
3207 register struct Lisp_Marker *p;
3208
3209 val = allocate_misc ();
3210 XMISCTYPE (val) = Lisp_Misc_Marker;
3211 p = XMARKER (val);
3212 p->buffer = 0;
3213 p->bytepos = 0;
3214 p->charpos = 0;
3215 p->next = NULL;
3216 p->insertion_type = 0;
3217 return val;
3218 }
3219
3220 /* Put MARKER back on the free list after using it temporarily. */
3221
3222 void
3223 free_marker (Lisp_Object marker)
3224 {
3225 unchain_marker (XMARKER (marker));
3226 free_misc (marker);
3227 }
3228
3229 \f
3230 /* Return a newly created vector or string with specified arguments as
3231 elements. If all the arguments are characters that can fit
3232 in a string of events, make a string; otherwise, make a vector.
3233
3234 Any number of arguments, even zero arguments, are allowed. */
3235
3236 Lisp_Object
3237 make_event_array (register int nargs, Lisp_Object *args)
3238 {
3239 int i;
3240
3241 for (i = 0; i < nargs; i++)
3242 /* The things that fit in a string
3243 are characters that are in 0...127,
3244 after discarding the meta bit and all the bits above it. */
3245 if (!INTEGERP (args[i])
3246 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3247 return Fvector (nargs, args);
3248
3249 /* Since the loop exited, we know that all the things in it are
3250 characters, so we can make a string. */
3251 {
3252 Lisp_Object result;
3253
3254 result = Fmake_string (make_number (nargs), make_number (0));
3255 for (i = 0; i < nargs; i++)
3256 {
3257 SSET (result, i, XINT (args[i]));
3258 /* Move the meta bit to the right place for a string char. */
3259 if (XINT (args[i]) & CHAR_META)
3260 SSET (result, i, SREF (result, i) | 0x80);
3261 }
3262
3263 return result;
3264 }
3265 }
3266
3267
3268 \f
3269 /************************************************************************
3270 Memory Full Handling
3271 ************************************************************************/
3272
3273
3274 /* Called if malloc returns zero. */
3275
3276 void
3277 memory_full (void)
3278 {
3279 int i;
3280
3281 Vmemory_full = Qt;
3282
3283 memory_full_cons_threshold = sizeof (struct cons_block);
3284
3285 /* The first time we get here, free the spare memory. */
3286 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3287 if (spare_memory[i])
3288 {
3289 if (i == 0)
3290 free (spare_memory[i]);
3291 else if (i >= 1 && i <= 4)
3292 lisp_align_free (spare_memory[i]);
3293 else
3294 lisp_free (spare_memory[i]);
3295 spare_memory[i] = 0;
3296 }
3297
3298 /* Record the space now used. When it decreases substantially,
3299 we can refill the memory reserve. */
3300 #ifndef SYSTEM_MALLOC
3301 bytes_used_when_full = BYTES_USED;
3302 #endif
3303
3304 /* This used to call error, but if we've run out of memory, we could
3305 get infinite recursion trying to build the string. */
3306 xsignal (Qnil, Vmemory_signal_data);
3307 }
3308
3309 /* If we released our reserve (due to running out of memory),
3310 and we have a fair amount free once again,
3311 try to set aside another reserve in case we run out once more.
3312
3313 This is called when a relocatable block is freed in ralloc.c,
3314 and also directly from this file, in case we're not using ralloc.c. */
3315
3316 void
3317 refill_memory_reserve (void)
3318 {
3319 #ifndef SYSTEM_MALLOC
3320 if (spare_memory[0] == 0)
3321 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3322 if (spare_memory[1] == 0)
3323 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3324 MEM_TYPE_CONS);
3325 if (spare_memory[2] == 0)
3326 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3327 MEM_TYPE_CONS);
3328 if (spare_memory[3] == 0)
3329 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3330 MEM_TYPE_CONS);
3331 if (spare_memory[4] == 0)
3332 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3333 MEM_TYPE_CONS);
3334 if (spare_memory[5] == 0)
3335 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3336 MEM_TYPE_STRING);
3337 if (spare_memory[6] == 0)
3338 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3339 MEM_TYPE_STRING);
3340 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3341 Vmemory_full = Qnil;
3342 #endif
3343 }
3344 \f
3345 /************************************************************************
3346 C Stack Marking
3347 ************************************************************************/
3348
3349 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3350
3351 /* Conservative C stack marking requires a method to identify possibly
3352 live Lisp objects given a pointer value. We do this by keeping
3353 track of blocks of Lisp data that are allocated in a red-black tree
3354 (see also the comment of mem_node which is the type of nodes in
3355 that tree). Function lisp_malloc adds information for an allocated
3356 block to the red-black tree with calls to mem_insert, and function
3357 lisp_free removes it with mem_delete. Functions live_string_p etc
3358 call mem_find to lookup information about a given pointer in the
3359 tree, and use that to determine if the pointer points to a Lisp
3360 object or not. */
3361
3362 /* Initialize this part of alloc.c. */
3363
3364 static void
3365 mem_init (void)
3366 {
3367 mem_z.left = mem_z.right = MEM_NIL;
3368 mem_z.parent = NULL;
3369 mem_z.color = MEM_BLACK;
3370 mem_z.start = mem_z.end = NULL;
3371 mem_root = MEM_NIL;
3372 }
3373
3374
3375 /* Value is a pointer to the mem_node containing START. Value is
3376 MEM_NIL if there is no node in the tree containing START. */
3377
3378 static INLINE struct mem_node *
3379 mem_find (void *start)
3380 {
3381 struct mem_node *p;
3382
3383 if (start < min_heap_address || start > max_heap_address)
3384 return MEM_NIL;
3385
3386 /* Make the search always successful to speed up the loop below. */
3387 mem_z.start = start;
3388 mem_z.end = (char *) start + 1;
3389
3390 p = mem_root;
3391 while (start < p->start || start >= p->end)
3392 p = start < p->start ? p->left : p->right;
3393 return p;
3394 }
3395
3396
3397 /* Insert a new node into the tree for a block of memory with start
3398 address START, end address END, and type TYPE. Value is a
3399 pointer to the node that was inserted. */
3400
3401 static struct mem_node *
3402 mem_insert (void *start, void *end, enum mem_type type)
3403 {
3404 struct mem_node *c, *parent, *x;
3405
3406 if (min_heap_address == NULL || start < min_heap_address)
3407 min_heap_address = start;
3408 if (max_heap_address == NULL || end > max_heap_address)
3409 max_heap_address = end;
3410
3411 /* See where in the tree a node for START belongs. In this
3412 particular application, it shouldn't happen that a node is already
3413 present. For debugging purposes, let's check that. */
3414 c = mem_root;
3415 parent = NULL;
3416
3417 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3418
3419 while (c != MEM_NIL)
3420 {
3421 if (start >= c->start && start < c->end)
3422 abort ();
3423 parent = c;
3424 c = start < c->start ? c->left : c->right;
3425 }
3426
3427 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3428
3429 while (c != MEM_NIL)
3430 {
3431 parent = c;
3432 c = start < c->start ? c->left : c->right;
3433 }
3434
3435 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3436
3437 /* Create a new node. */
3438 #ifdef GC_MALLOC_CHECK
3439 x = (struct mem_node *) _malloc_internal (sizeof *x);
3440 if (x == NULL)
3441 abort ();
3442 #else
3443 x = (struct mem_node *) xmalloc (sizeof *x);
3444 #endif
3445 x->start = start;
3446 x->end = end;
3447 x->type = type;
3448 x->parent = parent;
3449 x->left = x->right = MEM_NIL;
3450 x->color = MEM_RED;
3451
3452 /* Insert it as child of PARENT or install it as root. */
3453 if (parent)
3454 {
3455 if (start < parent->start)
3456 parent->left = x;
3457 else
3458 parent->right = x;
3459 }
3460 else
3461 mem_root = x;
3462
3463 /* Re-establish red-black tree properties. */
3464 mem_insert_fixup (x);
3465
3466 return x;
3467 }
3468
3469
3470 /* Re-establish the red-black properties of the tree, and thereby
3471 balance the tree, after node X has been inserted; X is always red. */
3472
3473 static void
3474 mem_insert_fixup (struct mem_node *x)
3475 {
3476 while (x != mem_root && x->parent->color == MEM_RED)
3477 {
3478 /* X is red and its parent is red. This is a violation of
3479 red-black tree property #3. */
3480
3481 if (x->parent == x->parent->parent->left)
3482 {
3483 /* We're on the left side of our grandparent, and Y is our
3484 "uncle". */
3485 struct mem_node *y = x->parent->parent->right;
3486
3487 if (y->color == MEM_RED)
3488 {
3489 /* Uncle and parent are red but should be black because
3490 X is red. Change the colors accordingly and proceed
3491 with the grandparent. */
3492 x->parent->color = MEM_BLACK;
3493 y->color = MEM_BLACK;
3494 x->parent->parent->color = MEM_RED;
3495 x = x->parent->parent;
3496 }
3497 else
3498 {
3499 /* Parent and uncle have different colors; parent is
3500 red, uncle is black. */
3501 if (x == x->parent->right)
3502 {
3503 x = x->parent;
3504 mem_rotate_left (x);
3505 }
3506
3507 x->parent->color = MEM_BLACK;
3508 x->parent->parent->color = MEM_RED;
3509 mem_rotate_right (x->parent->parent);
3510 }
3511 }
3512 else
3513 {
3514 /* This is the symmetrical case of above. */
3515 struct mem_node *y = x->parent->parent->left;
3516
3517 if (y->color == MEM_RED)
3518 {
3519 x->parent->color = MEM_BLACK;
3520 y->color = MEM_BLACK;
3521 x->parent->parent->color = MEM_RED;
3522 x = x->parent->parent;
3523 }
3524 else
3525 {
3526 if (x == x->parent->left)
3527 {
3528 x = x->parent;
3529 mem_rotate_right (x);
3530 }
3531
3532 x->parent->color = MEM_BLACK;
3533 x->parent->parent->color = MEM_RED;
3534 mem_rotate_left (x->parent->parent);
3535 }
3536 }
3537 }
3538
3539 /* The root may have been changed to red due to the algorithm. Set
3540 it to black so that property #5 is satisfied. */
3541 mem_root->color = MEM_BLACK;
3542 }
3543
3544
3545 /* (x) (y)
3546 / \ / \
3547 a (y) ===> (x) c
3548 / \ / \
3549 b c a b */
3550
3551 static void
3552 mem_rotate_left (struct mem_node *x)
3553 {
3554 struct mem_node *y;
3555
3556 /* Turn y's left sub-tree into x's right sub-tree. */
3557 y = x->right;
3558 x->right = y->left;
3559 if (y->left != MEM_NIL)
3560 y->left->parent = x;
3561
3562 /* Y's parent was x's parent. */
3563 if (y != MEM_NIL)
3564 y->parent = x->parent;
3565
3566 /* Get the parent to point to y instead of x. */
3567 if (x->parent)
3568 {
3569 if (x == x->parent->left)
3570 x->parent->left = y;
3571 else
3572 x->parent->right = y;
3573 }
3574 else
3575 mem_root = y;
3576
3577 /* Put x on y's left. */
3578 y->left = x;
3579 if (x != MEM_NIL)
3580 x->parent = y;
3581 }
3582
3583
3584 /* (x) (Y)
3585 / \ / \
3586 (y) c ===> a (x)
3587 / \ / \
3588 a b b c */
3589
3590 static void
3591 mem_rotate_right (struct mem_node *x)
3592 {
3593 struct mem_node *y = x->left;
3594
3595 x->left = y->right;
3596 if (y->right != MEM_NIL)
3597 y->right->parent = x;
3598
3599 if (y != MEM_NIL)
3600 y->parent = x->parent;
3601 if (x->parent)
3602 {
3603 if (x == x->parent->right)
3604 x->parent->right = y;
3605 else
3606 x->parent->left = y;
3607 }
3608 else
3609 mem_root = y;
3610
3611 y->right = x;
3612 if (x != MEM_NIL)
3613 x->parent = y;
3614 }
3615
3616
3617 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3618
3619 static void
3620 mem_delete (struct mem_node *z)
3621 {
3622 struct mem_node *x, *y;
3623
3624 if (!z || z == MEM_NIL)
3625 return;
3626
3627 if (z->left == MEM_NIL || z->right == MEM_NIL)
3628 y = z;
3629 else
3630 {
3631 y = z->right;
3632 while (y->left != MEM_NIL)
3633 y = y->left;
3634 }
3635
3636 if (y->left != MEM_NIL)
3637 x = y->left;
3638 else
3639 x = y->right;
3640
3641 x->parent = y->parent;
3642 if (y->parent)
3643 {
3644 if (y == y->parent->left)
3645 y->parent->left = x;
3646 else
3647 y->parent->right = x;
3648 }
3649 else
3650 mem_root = x;
3651
3652 if (y != z)
3653 {
3654 z->start = y->start;
3655 z->end = y->end;
3656 z->type = y->type;
3657 }
3658
3659 if (y->color == MEM_BLACK)
3660 mem_delete_fixup (x);
3661
3662 #ifdef GC_MALLOC_CHECK
3663 _free_internal (y);
3664 #else
3665 xfree (y);
3666 #endif
3667 }
3668
3669
3670 /* Re-establish the red-black properties of the tree, after a
3671 deletion. */
3672
3673 static void
3674 mem_delete_fixup (struct mem_node *x)
3675 {
3676 while (x != mem_root && x->color == MEM_BLACK)
3677 {
3678 if (x == x->parent->left)
3679 {
3680 struct mem_node *w = x->parent->right;
3681
3682 if (w->color == MEM_RED)
3683 {
3684 w->color = MEM_BLACK;
3685 x->parent->color = MEM_RED;
3686 mem_rotate_left (x->parent);
3687 w = x->parent->right;
3688 }
3689
3690 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3691 {
3692 w->color = MEM_RED;
3693 x = x->parent;
3694 }
3695 else
3696 {
3697 if (w->right->color == MEM_BLACK)
3698 {
3699 w->left->color = MEM_BLACK;
3700 w->color = MEM_RED;
3701 mem_rotate_right (w);
3702 w = x->parent->right;
3703 }
3704 w->color = x->parent->color;
3705 x->parent->color = MEM_BLACK;
3706 w->right->color = MEM_BLACK;
3707 mem_rotate_left (x->parent);
3708 x = mem_root;
3709 }
3710 }
3711 else
3712 {
3713 struct mem_node *w = x->parent->left;
3714
3715 if (w->color == MEM_RED)
3716 {
3717 w->color = MEM_BLACK;
3718 x->parent->color = MEM_RED;
3719 mem_rotate_right (x->parent);
3720 w = x->parent->left;
3721 }
3722
3723 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3724 {
3725 w->color = MEM_RED;
3726 x = x->parent;
3727 }
3728 else
3729 {
3730 if (w->left->color == MEM_BLACK)
3731 {
3732 w->right->color = MEM_BLACK;
3733 w->color = MEM_RED;
3734 mem_rotate_left (w);
3735 w = x->parent->left;
3736 }
3737
3738 w->color = x->parent->color;
3739 x->parent->color = MEM_BLACK;
3740 w->left->color = MEM_BLACK;
3741 mem_rotate_right (x->parent);
3742 x = mem_root;
3743 }
3744 }
3745 }
3746
3747 x->color = MEM_BLACK;
3748 }
3749
3750
3751 /* Value is non-zero if P is a pointer to a live Lisp string on
3752 the heap. M is a pointer to the mem_block for P. */
3753
3754 static INLINE int
3755 live_string_p (struct mem_node *m, void *p)
3756 {
3757 if (m->type == MEM_TYPE_STRING)
3758 {
3759 struct string_block *b = (struct string_block *) m->start;
3760 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3761
3762 /* P must point to the start of a Lisp_String structure, and it
3763 must not be on the free-list. */
3764 return (offset >= 0
3765 && offset % sizeof b->strings[0] == 0
3766 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3767 && ((struct Lisp_String *) p)->data != NULL);
3768 }
3769 else
3770 return 0;
3771 }
3772
3773
3774 /* Value is non-zero if P is a pointer to a live Lisp cons on
3775 the heap. M is a pointer to the mem_block for P. */
3776
3777 static INLINE int
3778 live_cons_p (struct mem_node *m, void *p)
3779 {
3780 if (m->type == MEM_TYPE_CONS)
3781 {
3782 struct cons_block *b = (struct cons_block *) m->start;
3783 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3784
3785 /* P must point to the start of a Lisp_Cons, not be
3786 one of the unused cells in the current cons block,
3787 and not be on the free-list. */
3788 return (offset >= 0
3789 && offset % sizeof b->conses[0] == 0
3790 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3791 && (b != cons_block
3792 || offset / sizeof b->conses[0] < cons_block_index)
3793 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3794 }
3795 else
3796 return 0;
3797 }
3798
3799
3800 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3801 the heap. M is a pointer to the mem_block for P. */
3802
3803 static INLINE int
3804 live_symbol_p (struct mem_node *m, void *p)
3805 {
3806 if (m->type == MEM_TYPE_SYMBOL)
3807 {
3808 struct symbol_block *b = (struct symbol_block *) m->start;
3809 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3810
3811 /* P must point to the start of a Lisp_Symbol, not be
3812 one of the unused cells in the current symbol block,
3813 and not be on the free-list. */
3814 return (offset >= 0
3815 && offset % sizeof b->symbols[0] == 0
3816 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3817 && (b != symbol_block
3818 || offset / sizeof b->symbols[0] < symbol_block_index)
3819 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3820 }
3821 else
3822 return 0;
3823 }
3824
3825
3826 /* Value is non-zero if P is a pointer to a live Lisp float on
3827 the heap. M is a pointer to the mem_block for P. */
3828
3829 static INLINE int
3830 live_float_p (struct mem_node *m, void *p)
3831 {
3832 if (m->type == MEM_TYPE_FLOAT)
3833 {
3834 struct float_block *b = (struct float_block *) m->start;
3835 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3836
3837 /* P must point to the start of a Lisp_Float and not be
3838 one of the unused cells in the current float block. */
3839 return (offset >= 0
3840 && offset % sizeof b->floats[0] == 0
3841 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3842 && (b != float_block
3843 || offset / sizeof b->floats[0] < float_block_index));
3844 }
3845 else
3846 return 0;
3847 }
3848
3849
3850 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3851 the heap. M is a pointer to the mem_block for P. */
3852
3853 static INLINE int
3854 live_misc_p (struct mem_node *m, void *p)
3855 {
3856 if (m->type == MEM_TYPE_MISC)
3857 {
3858 struct marker_block *b = (struct marker_block *) m->start;
3859 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3860
3861 /* P must point to the start of a Lisp_Misc, not be
3862 one of the unused cells in the current misc block,
3863 and not be on the free-list. */
3864 return (offset >= 0
3865 && offset % sizeof b->markers[0] == 0
3866 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3867 && (b != marker_block
3868 || offset / sizeof b->markers[0] < marker_block_index)
3869 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3870 }
3871 else
3872 return 0;
3873 }
3874
3875
3876 /* Value is non-zero if P is a pointer to a live vector-like object.
3877 M is a pointer to the mem_block for P. */
3878
3879 static INLINE int
3880 live_vector_p (struct mem_node *m, void *p)
3881 {
3882 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3883 }
3884
3885
3886 /* Value is non-zero if P is a pointer to a live buffer. M is a
3887 pointer to the mem_block for P. */
3888
3889 static INLINE int
3890 live_buffer_p (struct mem_node *m, void *p)
3891 {
3892 /* P must point to the start of the block, and the buffer
3893 must not have been killed. */
3894 return (m->type == MEM_TYPE_BUFFER
3895 && p == m->start
3896 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3897 }
3898
3899 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3900
3901 #if GC_MARK_STACK
3902
3903 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3904
3905 /* Array of objects that are kept alive because the C stack contains
3906 a pattern that looks like a reference to them . */
3907
3908 #define MAX_ZOMBIES 10
3909 static Lisp_Object zombies[MAX_ZOMBIES];
3910
3911 /* Number of zombie objects. */
3912
3913 static int nzombies;
3914
3915 /* Number of garbage collections. */
3916
3917 static int ngcs;
3918
3919 /* Average percentage of zombies per collection. */
3920
3921 static double avg_zombies;
3922
3923 /* Max. number of live and zombie objects. */
3924
3925 static int max_live, max_zombies;
3926
3927 /* Average number of live objects per GC. */
3928
3929 static double avg_live;
3930
3931 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3932 doc: /* Show information about live and zombie objects. */)
3933 (void)
3934 {
3935 Lisp_Object args[8], zombie_list = Qnil;
3936 int i;
3937 for (i = 0; i < nzombies; i++)
3938 zombie_list = Fcons (zombies[i], zombie_list);
3939 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3940 args[1] = make_number (ngcs);
3941 args[2] = make_float (avg_live);
3942 args[3] = make_float (avg_zombies);
3943 args[4] = make_float (avg_zombies / avg_live / 100);
3944 args[5] = make_number (max_live);
3945 args[6] = make_number (max_zombies);
3946 args[7] = zombie_list;
3947 return Fmessage (8, args);
3948 }
3949
3950 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3951
3952
3953 /* Mark OBJ if we can prove it's a Lisp_Object. */
3954
3955 static INLINE void
3956 mark_maybe_object (Lisp_Object obj)
3957 {
3958 void *po;
3959 struct mem_node *m;
3960
3961 if (INTEGERP (obj))
3962 return;
3963
3964 po = (void *) XPNTR (obj);
3965 m = mem_find (po);
3966
3967 if (m != MEM_NIL)
3968 {
3969 int mark_p = 0;
3970
3971 switch (XTYPE (obj))
3972 {
3973 case Lisp_String:
3974 mark_p = (live_string_p (m, po)
3975 && !STRING_MARKED_P ((struct Lisp_String *) po));
3976 break;
3977
3978 case Lisp_Cons:
3979 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3980 break;
3981
3982 case Lisp_Symbol:
3983 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3984 break;
3985
3986 case Lisp_Float:
3987 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3988 break;
3989
3990 case Lisp_Vectorlike:
3991 /* Note: can't check BUFFERP before we know it's a
3992 buffer because checking that dereferences the pointer
3993 PO which might point anywhere. */
3994 if (live_vector_p (m, po))
3995 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3996 else if (live_buffer_p (m, po))
3997 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3998 break;
3999
4000 case Lisp_Misc:
4001 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4002 break;
4003
4004 default:
4005 break;
4006 }
4007
4008 if (mark_p)
4009 {
4010 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4011 if (nzombies < MAX_ZOMBIES)
4012 zombies[nzombies] = obj;
4013 ++nzombies;
4014 #endif
4015 mark_object (obj);
4016 }
4017 }
4018 }
4019
4020
4021 /* If P points to Lisp data, mark that as live if it isn't already
4022 marked. */
4023
4024 static INLINE void
4025 mark_maybe_pointer (void *p)
4026 {
4027 struct mem_node *m;
4028
4029 /* Quickly rule out some values which can't point to Lisp data. */
4030 if ((EMACS_INT) p %
4031 #ifdef USE_LSB_TAG
4032 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4033 #else
4034 2 /* We assume that Lisp data is aligned on even addresses. */
4035 #endif
4036 )
4037 return;
4038
4039 m = mem_find (p);
4040 if (m != MEM_NIL)
4041 {
4042 Lisp_Object obj = Qnil;
4043
4044 switch (m->type)
4045 {
4046 case MEM_TYPE_NON_LISP:
4047 /* Nothing to do; not a pointer to Lisp memory. */
4048 break;
4049
4050 case MEM_TYPE_BUFFER:
4051 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4052 XSETVECTOR (obj, p);
4053 break;
4054
4055 case MEM_TYPE_CONS:
4056 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4057 XSETCONS (obj, p);
4058 break;
4059
4060 case MEM_TYPE_STRING:
4061 if (live_string_p (m, p)
4062 && !STRING_MARKED_P ((struct Lisp_String *) p))
4063 XSETSTRING (obj, p);
4064 break;
4065
4066 case MEM_TYPE_MISC:
4067 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4068 XSETMISC (obj, p);
4069 break;
4070
4071 case MEM_TYPE_SYMBOL:
4072 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4073 XSETSYMBOL (obj, p);
4074 break;
4075
4076 case MEM_TYPE_FLOAT:
4077 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4078 XSETFLOAT (obj, p);
4079 break;
4080
4081 case MEM_TYPE_VECTORLIKE:
4082 if (live_vector_p (m, p))
4083 {
4084 Lisp_Object tem;
4085 XSETVECTOR (tem, p);
4086 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4087 obj = tem;
4088 }
4089 break;
4090
4091 default:
4092 abort ();
4093 }
4094
4095 if (!NILP (obj))
4096 mark_object (obj);
4097 }
4098 }
4099
4100
4101 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4102 or END+OFFSET..START. */
4103
4104 static void
4105 mark_memory (void *start, void *end, int offset)
4106 {
4107 Lisp_Object *p;
4108 void **pp;
4109
4110 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4111 nzombies = 0;
4112 #endif
4113
4114 /* Make START the pointer to the start of the memory region,
4115 if it isn't already. */
4116 if (end < start)
4117 {
4118 void *tem = start;
4119 start = end;
4120 end = tem;
4121 }
4122
4123 /* Mark Lisp_Objects. */
4124 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4125 mark_maybe_object (*p);
4126
4127 /* Mark Lisp data pointed to. This is necessary because, in some
4128 situations, the C compiler optimizes Lisp objects away, so that
4129 only a pointer to them remains. Example:
4130
4131 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4132 ()
4133 {
4134 Lisp_Object obj = build_string ("test");
4135 struct Lisp_String *s = XSTRING (obj);
4136 Fgarbage_collect ();
4137 fprintf (stderr, "test `%s'\n", s->data);
4138 return Qnil;
4139 }
4140
4141 Here, `obj' isn't really used, and the compiler optimizes it
4142 away. The only reference to the life string is through the
4143 pointer `s'. */
4144
4145 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4146 mark_maybe_pointer (*pp);
4147 }
4148
4149 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4150 the GCC system configuration. In gcc 3.2, the only systems for
4151 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4152 by others?) and ns32k-pc532-min. */
4153
4154 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4155
4156 static int setjmp_tested_p, longjmps_done;
4157
4158 #define SETJMP_WILL_LIKELY_WORK "\
4159 \n\
4160 Emacs garbage collector has been changed to use conservative stack\n\
4161 marking. Emacs has determined that the method it uses to do the\n\
4162 marking will likely work on your system, but this isn't sure.\n\
4163 \n\
4164 If you are a system-programmer, or can get the help of a local wizard\n\
4165 who is, please take a look at the function mark_stack in alloc.c, and\n\
4166 verify that the methods used are appropriate for your system.\n\
4167 \n\
4168 Please mail the result to <emacs-devel@gnu.org>.\n\
4169 "
4170
4171 #define SETJMP_WILL_NOT_WORK "\
4172 \n\
4173 Emacs garbage collector has been changed to use conservative stack\n\
4174 marking. Emacs has determined that the default method it uses to do the\n\
4175 marking will not work on your system. We will need a system-dependent\n\
4176 solution for your system.\n\
4177 \n\
4178 Please take a look at the function mark_stack in alloc.c, and\n\
4179 try to find a way to make it work on your system.\n\
4180 \n\
4181 Note that you may get false negatives, depending on the compiler.\n\
4182 In particular, you need to use -O with GCC for this test.\n\
4183 \n\
4184 Please mail the result to <emacs-devel@gnu.org>.\n\
4185 "
4186
4187
4188 /* Perform a quick check if it looks like setjmp saves registers in a
4189 jmp_buf. Print a message to stderr saying so. When this test
4190 succeeds, this is _not_ a proof that setjmp is sufficient for
4191 conservative stack marking. Only the sources or a disassembly
4192 can prove that. */
4193
4194 static void
4195 test_setjmp (void)
4196 {
4197 char buf[10];
4198 register int x;
4199 jmp_buf jbuf;
4200 int result = 0;
4201
4202 /* Arrange for X to be put in a register. */
4203 sprintf (buf, "1");
4204 x = strlen (buf);
4205 x = 2 * x - 1;
4206
4207 setjmp (jbuf);
4208 if (longjmps_done == 1)
4209 {
4210 /* Came here after the longjmp at the end of the function.
4211
4212 If x == 1, the longjmp has restored the register to its
4213 value before the setjmp, and we can hope that setjmp
4214 saves all such registers in the jmp_buf, although that
4215 isn't sure.
4216
4217 For other values of X, either something really strange is
4218 taking place, or the setjmp just didn't save the register. */
4219
4220 if (x == 1)
4221 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4222 else
4223 {
4224 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4225 exit (1);
4226 }
4227 }
4228
4229 ++longjmps_done;
4230 x = 2;
4231 if (longjmps_done == 1)
4232 longjmp (jbuf, 1);
4233 }
4234
4235 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4236
4237
4238 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4239
4240 /* Abort if anything GCPRO'd doesn't survive the GC. */
4241
4242 static void
4243 check_gcpros (void)
4244 {
4245 struct gcpro *p;
4246 size_t i;
4247
4248 for (p = gcprolist; p; p = p->next)
4249 for (i = 0; i < p->nvars; ++i)
4250 if (!survives_gc_p (p->var[i]))
4251 /* FIXME: It's not necessarily a bug. It might just be that the
4252 GCPRO is unnecessary or should release the object sooner. */
4253 abort ();
4254 }
4255
4256 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4257
4258 static void
4259 dump_zombies (void)
4260 {
4261 int i;
4262
4263 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4264 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4265 {
4266 fprintf (stderr, " %d = ", i);
4267 debug_print (zombies[i]);
4268 }
4269 }
4270
4271 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4272
4273
4274 /* Mark live Lisp objects on the C stack.
4275
4276 There are several system-dependent problems to consider when
4277 porting this to new architectures:
4278
4279 Processor Registers
4280
4281 We have to mark Lisp objects in CPU registers that can hold local
4282 variables or are used to pass parameters.
4283
4284 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4285 something that either saves relevant registers on the stack, or
4286 calls mark_maybe_object passing it each register's contents.
4287
4288 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4289 implementation assumes that calling setjmp saves registers we need
4290 to see in a jmp_buf which itself lies on the stack. This doesn't
4291 have to be true! It must be verified for each system, possibly
4292 by taking a look at the source code of setjmp.
4293
4294 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4295 can use it as a machine independent method to store all registers
4296 to the stack. In this case the macros described in the previous
4297 two paragraphs are not used.
4298
4299 Stack Layout
4300
4301 Architectures differ in the way their processor stack is organized.
4302 For example, the stack might look like this
4303
4304 +----------------+
4305 | Lisp_Object | size = 4
4306 +----------------+
4307 | something else | size = 2
4308 +----------------+
4309 | Lisp_Object | size = 4
4310 +----------------+
4311 | ... |
4312
4313 In such a case, not every Lisp_Object will be aligned equally. To
4314 find all Lisp_Object on the stack it won't be sufficient to walk
4315 the stack in steps of 4 bytes. Instead, two passes will be
4316 necessary, one starting at the start of the stack, and a second
4317 pass starting at the start of the stack + 2. Likewise, if the
4318 minimal alignment of Lisp_Objects on the stack is 1, four passes
4319 would be necessary, each one starting with one byte more offset
4320 from the stack start.
4321
4322 The current code assumes by default that Lisp_Objects are aligned
4323 equally on the stack. */
4324
4325 static void
4326 mark_stack (void)
4327 {
4328 int i;
4329 void *end;
4330
4331 #ifdef HAVE___BUILTIN_UNWIND_INIT
4332 /* Force callee-saved registers and register windows onto the stack.
4333 This is the preferred method if available, obviating the need for
4334 machine dependent methods. */
4335 __builtin_unwind_init ();
4336 end = &end;
4337 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4338 #ifndef GC_SAVE_REGISTERS_ON_STACK
4339 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4340 union aligned_jmpbuf {
4341 Lisp_Object o;
4342 jmp_buf j;
4343 } j;
4344 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4345 #endif
4346 /* This trick flushes the register windows so that all the state of
4347 the process is contained in the stack. */
4348 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4349 needed on ia64 too. See mach_dep.c, where it also says inline
4350 assembler doesn't work with relevant proprietary compilers. */
4351 #ifdef __sparc__
4352 #if defined (__sparc64__) && defined (__FreeBSD__)
4353 /* FreeBSD does not have a ta 3 handler. */
4354 asm ("flushw");
4355 #else
4356 asm ("ta 3");
4357 #endif
4358 #endif
4359
4360 /* Save registers that we need to see on the stack. We need to see
4361 registers used to hold register variables and registers used to
4362 pass parameters. */
4363 #ifdef GC_SAVE_REGISTERS_ON_STACK
4364 GC_SAVE_REGISTERS_ON_STACK (end);
4365 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4366
4367 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4368 setjmp will definitely work, test it
4369 and print a message with the result
4370 of the test. */
4371 if (!setjmp_tested_p)
4372 {
4373 setjmp_tested_p = 1;
4374 test_setjmp ();
4375 }
4376 #endif /* GC_SETJMP_WORKS */
4377
4378 setjmp (j.j);
4379 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4380 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4381 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4382
4383 /* This assumes that the stack is a contiguous region in memory. If
4384 that's not the case, something has to be done here to iterate
4385 over the stack segments. */
4386 #ifndef GC_LISP_OBJECT_ALIGNMENT
4387 #ifdef __GNUC__
4388 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4389 #else
4390 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4391 #endif
4392 #endif
4393 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4394 mark_memory (stack_base, end, i);
4395 /* Allow for marking a secondary stack, like the register stack on the
4396 ia64. */
4397 #ifdef GC_MARK_SECONDARY_STACK
4398 GC_MARK_SECONDARY_STACK ();
4399 #endif
4400
4401 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4402 check_gcpros ();
4403 #endif
4404 }
4405
4406 #endif /* GC_MARK_STACK != 0 */
4407
4408
4409 /* Determine whether it is safe to access memory at address P. */
4410 static int
4411 valid_pointer_p (void *p)
4412 {
4413 #ifdef WINDOWSNT
4414 return w32_valid_pointer_p (p, 16);
4415 #else
4416 int fd;
4417
4418 /* Obviously, we cannot just access it (we would SEGV trying), so we
4419 trick the o/s to tell us whether p is a valid pointer.
4420 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4421 not validate p in that case. */
4422
4423 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4424 {
4425 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4426 emacs_close (fd);
4427 unlink ("__Valid__Lisp__Object__");
4428 return valid;
4429 }
4430
4431 return -1;
4432 #endif
4433 }
4434
4435 /* Return 1 if OBJ is a valid lisp object.
4436 Return 0 if OBJ is NOT a valid lisp object.
4437 Return -1 if we cannot validate OBJ.
4438 This function can be quite slow,
4439 so it should only be used in code for manual debugging. */
4440
4441 int
4442 valid_lisp_object_p (Lisp_Object obj)
4443 {
4444 void *p;
4445 #if GC_MARK_STACK
4446 struct mem_node *m;
4447 #endif
4448
4449 if (INTEGERP (obj))
4450 return 1;
4451
4452 p = (void *) XPNTR (obj);
4453 if (PURE_POINTER_P (p))
4454 return 1;
4455
4456 #if !GC_MARK_STACK
4457 return valid_pointer_p (p);
4458 #else
4459
4460 m = mem_find (p);
4461
4462 if (m == MEM_NIL)
4463 {
4464 int valid = valid_pointer_p (p);
4465 if (valid <= 0)
4466 return valid;
4467
4468 if (SUBRP (obj))
4469 return 1;
4470
4471 return 0;
4472 }
4473
4474 switch (m->type)
4475 {
4476 case MEM_TYPE_NON_LISP:
4477 return 0;
4478
4479 case MEM_TYPE_BUFFER:
4480 return live_buffer_p (m, p);
4481
4482 case MEM_TYPE_CONS:
4483 return live_cons_p (m, p);
4484
4485 case MEM_TYPE_STRING:
4486 return live_string_p (m, p);
4487
4488 case MEM_TYPE_MISC:
4489 return live_misc_p (m, p);
4490
4491 case MEM_TYPE_SYMBOL:
4492 return live_symbol_p (m, p);
4493
4494 case MEM_TYPE_FLOAT:
4495 return live_float_p (m, p);
4496
4497 case MEM_TYPE_VECTORLIKE:
4498 return live_vector_p (m, p);
4499
4500 default:
4501 break;
4502 }
4503
4504 return 0;
4505 #endif
4506 }
4507
4508
4509
4510 \f
4511 /***********************************************************************
4512 Pure Storage Management
4513 ***********************************************************************/
4514
4515 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4516 pointer to it. TYPE is the Lisp type for which the memory is
4517 allocated. TYPE < 0 means it's not used for a Lisp object. */
4518
4519 static POINTER_TYPE *
4520 pure_alloc (size_t size, int type)
4521 {
4522 POINTER_TYPE *result;
4523 #ifdef USE_LSB_TAG
4524 size_t alignment = (1 << GCTYPEBITS);
4525 #else
4526 size_t alignment = sizeof (EMACS_INT);
4527
4528 /* Give Lisp_Floats an extra alignment. */
4529 if (type == Lisp_Float)
4530 {
4531 #if defined __GNUC__ && __GNUC__ >= 2
4532 alignment = __alignof (struct Lisp_Float);
4533 #else
4534 alignment = sizeof (struct Lisp_Float);
4535 #endif
4536 }
4537 #endif
4538
4539 again:
4540 if (type >= 0)
4541 {
4542 /* Allocate space for a Lisp object from the beginning of the free
4543 space with taking account of alignment. */
4544 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4545 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4546 }
4547 else
4548 {
4549 /* Allocate space for a non-Lisp object from the end of the free
4550 space. */
4551 pure_bytes_used_non_lisp += size;
4552 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4553 }
4554 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4555
4556 if (pure_bytes_used <= pure_size)
4557 return result;
4558
4559 /* Don't allocate a large amount here,
4560 because it might get mmap'd and then its address
4561 might not be usable. */
4562 purebeg = (char *) xmalloc (10000);
4563 pure_size = 10000;
4564 pure_bytes_used_before_overflow += pure_bytes_used - size;
4565 pure_bytes_used = 0;
4566 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4567 goto again;
4568 }
4569
4570
4571 /* Print a warning if PURESIZE is too small. */
4572
4573 void
4574 check_pure_size (void)
4575 {
4576 if (pure_bytes_used_before_overflow)
4577 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4578 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4579 }
4580
4581
4582 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4583 the non-Lisp data pool of the pure storage, and return its start
4584 address. Return NULL if not found. */
4585
4586 static char *
4587 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4588 {
4589 int i;
4590 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4591 const unsigned char *p;
4592 char *non_lisp_beg;
4593
4594 if (pure_bytes_used_non_lisp < nbytes + 1)
4595 return NULL;
4596
4597 /* Set up the Boyer-Moore table. */
4598 skip = nbytes + 1;
4599 for (i = 0; i < 256; i++)
4600 bm_skip[i] = skip;
4601
4602 p = (const unsigned char *) data;
4603 while (--skip > 0)
4604 bm_skip[*p++] = skip;
4605
4606 last_char_skip = bm_skip['\0'];
4607
4608 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4609 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4610
4611 /* See the comments in the function `boyer_moore' (search.c) for the
4612 use of `infinity'. */
4613 infinity = pure_bytes_used_non_lisp + 1;
4614 bm_skip['\0'] = infinity;
4615
4616 p = (const unsigned char *) non_lisp_beg + nbytes;
4617 start = 0;
4618 do
4619 {
4620 /* Check the last character (== '\0'). */
4621 do
4622 {
4623 start += bm_skip[*(p + start)];
4624 }
4625 while (start <= start_max);
4626
4627 if (start < infinity)
4628 /* Couldn't find the last character. */
4629 return NULL;
4630
4631 /* No less than `infinity' means we could find the last
4632 character at `p[start - infinity]'. */
4633 start -= infinity;
4634
4635 /* Check the remaining characters. */
4636 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4637 /* Found. */
4638 return non_lisp_beg + start;
4639
4640 start += last_char_skip;
4641 }
4642 while (start <= start_max);
4643
4644 return NULL;
4645 }
4646
4647
4648 /* Return a string allocated in pure space. DATA is a buffer holding
4649 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4650 non-zero means make the result string multibyte.
4651
4652 Must get an error if pure storage is full, since if it cannot hold
4653 a large string it may be able to hold conses that point to that
4654 string; then the string is not protected from gc. */
4655
4656 Lisp_Object
4657 make_pure_string (const char *data,
4658 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4659 {
4660 Lisp_Object string;
4661 struct Lisp_String *s;
4662
4663 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4664 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4665 if (s->data == NULL)
4666 {
4667 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4668 memcpy (s->data, data, nbytes);
4669 s->data[nbytes] = '\0';
4670 }
4671 s->size = nchars;
4672 s->size_byte = multibyte ? nbytes : -1;
4673 s->intervals = NULL_INTERVAL;
4674 XSETSTRING (string, s);
4675 return string;
4676 }
4677
4678 /* Return a string a string allocated in pure space. Do not allocate
4679 the string data, just point to DATA. */
4680
4681 Lisp_Object
4682 make_pure_c_string (const char *data)
4683 {
4684 Lisp_Object string;
4685 struct Lisp_String *s;
4686 EMACS_INT nchars = strlen (data);
4687
4688 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4689 s->size = nchars;
4690 s->size_byte = -1;
4691 s->data = (unsigned char *) data;
4692 s->intervals = NULL_INTERVAL;
4693 XSETSTRING (string, s);
4694 return string;
4695 }
4696
4697 /* Return a cons allocated from pure space. Give it pure copies
4698 of CAR as car and CDR as cdr. */
4699
4700 Lisp_Object
4701 pure_cons (Lisp_Object car, Lisp_Object cdr)
4702 {
4703 register Lisp_Object new;
4704 struct Lisp_Cons *p;
4705
4706 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4707 XSETCONS (new, p);
4708 XSETCAR (new, Fpurecopy (car));
4709 XSETCDR (new, Fpurecopy (cdr));
4710 return new;
4711 }
4712
4713
4714 /* Value is a float object with value NUM allocated from pure space. */
4715
4716 static Lisp_Object
4717 make_pure_float (double num)
4718 {
4719 register Lisp_Object new;
4720 struct Lisp_Float *p;
4721
4722 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4723 XSETFLOAT (new, p);
4724 XFLOAT_INIT (new, num);
4725 return new;
4726 }
4727
4728
4729 /* Return a vector with room for LEN Lisp_Objects allocated from
4730 pure space. */
4731
4732 Lisp_Object
4733 make_pure_vector (EMACS_INT len)
4734 {
4735 Lisp_Object new;
4736 struct Lisp_Vector *p;
4737 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4738
4739 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4740 XSETVECTOR (new, p);
4741 XVECTOR (new)->size = len;
4742 return new;
4743 }
4744
4745
4746 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4747 doc: /* Make a copy of object OBJ in pure storage.
4748 Recursively copies contents of vectors and cons cells.
4749 Does not copy symbols. Copies strings without text properties. */)
4750 (register Lisp_Object obj)
4751 {
4752 if (NILP (Vpurify_flag))
4753 return obj;
4754
4755 if (PURE_POINTER_P (XPNTR (obj)))
4756 return obj;
4757
4758 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4759 {
4760 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4761 if (!NILP (tmp))
4762 return tmp;
4763 }
4764
4765 if (CONSP (obj))
4766 obj = pure_cons (XCAR (obj), XCDR (obj));
4767 else if (FLOATP (obj))
4768 obj = make_pure_float (XFLOAT_DATA (obj));
4769 else if (STRINGP (obj))
4770 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4771 SBYTES (obj),
4772 STRING_MULTIBYTE (obj));
4773 else if (COMPILEDP (obj) || VECTORP (obj))
4774 {
4775 register struct Lisp_Vector *vec;
4776 register EMACS_INT i;
4777 EMACS_INT size;
4778
4779 size = XVECTOR (obj)->size;
4780 if (size & PSEUDOVECTOR_FLAG)
4781 size &= PSEUDOVECTOR_SIZE_MASK;
4782 vec = XVECTOR (make_pure_vector (size));
4783 for (i = 0; i < size; i++)
4784 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4785 if (COMPILEDP (obj))
4786 {
4787 XSETPVECTYPE (vec, PVEC_COMPILED);
4788 XSETCOMPILED (obj, vec);
4789 }
4790 else
4791 XSETVECTOR (obj, vec);
4792 }
4793 else if (MARKERP (obj))
4794 error ("Attempt to copy a marker to pure storage");
4795 else
4796 /* Not purified, don't hash-cons. */
4797 return obj;
4798
4799 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4800 Fputhash (obj, obj, Vpurify_flag);
4801
4802 return obj;
4803 }
4804
4805
4806 \f
4807 /***********************************************************************
4808 Protection from GC
4809 ***********************************************************************/
4810
4811 /* Put an entry in staticvec, pointing at the variable with address
4812 VARADDRESS. */
4813
4814 void
4815 staticpro (Lisp_Object *varaddress)
4816 {
4817 staticvec[staticidx++] = varaddress;
4818 if (staticidx >= NSTATICS)
4819 abort ();
4820 }
4821
4822 \f
4823 /***********************************************************************
4824 Protection from GC
4825 ***********************************************************************/
4826
4827 /* Temporarily prevent garbage collection. */
4828
4829 int
4830 inhibit_garbage_collection (void)
4831 {
4832 int count = SPECPDL_INDEX ();
4833 int nbits = min (VALBITS, BITS_PER_INT);
4834
4835 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4836 return count;
4837 }
4838
4839
4840 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4841 doc: /* Reclaim storage for Lisp objects no longer needed.
4842 Garbage collection happens automatically if you cons more than
4843 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4844 `garbage-collect' normally returns a list with info on amount of space in use:
4845 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4846 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4847 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4848 (USED-STRINGS . FREE-STRINGS))
4849 However, if there was overflow in pure space, `garbage-collect'
4850 returns nil, because real GC can't be done. */)
4851 (void)
4852 {
4853 register struct specbinding *bind;
4854 char stack_top_variable;
4855 register size_t i;
4856 int message_p;
4857 Lisp_Object total[8];
4858 int count = SPECPDL_INDEX ();
4859 EMACS_TIME t1, t2, t3;
4860
4861 if (abort_on_gc)
4862 abort ();
4863
4864 /* Can't GC if pure storage overflowed because we can't determine
4865 if something is a pure object or not. */
4866 if (pure_bytes_used_before_overflow)
4867 return Qnil;
4868
4869 CHECK_CONS_LIST ();
4870
4871 /* Don't keep undo information around forever.
4872 Do this early on, so it is no problem if the user quits. */
4873 {
4874 register struct buffer *nextb = all_buffers;
4875
4876 while (nextb)
4877 {
4878 /* If a buffer's undo list is Qt, that means that undo is
4879 turned off in that buffer. Calling truncate_undo_list on
4880 Qt tends to return NULL, which effectively turns undo back on.
4881 So don't call truncate_undo_list if undo_list is Qt. */
4882 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4883 truncate_undo_list (nextb);
4884
4885 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4886 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4887 && ! nextb->text->inhibit_shrinking)
4888 {
4889 /* If a buffer's gap size is more than 10% of the buffer
4890 size, or larger than 2000 bytes, then shrink it
4891 accordingly. Keep a minimum size of 20 bytes. */
4892 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4893
4894 if (nextb->text->gap_size > size)
4895 {
4896 struct buffer *save_current = current_buffer;
4897 current_buffer = nextb;
4898 make_gap (-(nextb->text->gap_size - size));
4899 current_buffer = save_current;
4900 }
4901 }
4902
4903 nextb = nextb->next;
4904 }
4905 }
4906
4907 EMACS_GET_TIME (t1);
4908
4909 /* In case user calls debug_print during GC,
4910 don't let that cause a recursive GC. */
4911 consing_since_gc = 0;
4912
4913 /* Save what's currently displayed in the echo area. */
4914 message_p = push_message ();
4915 record_unwind_protect (pop_message_unwind, Qnil);
4916
4917 /* Save a copy of the contents of the stack, for debugging. */
4918 #if MAX_SAVE_STACK > 0
4919 if (NILP (Vpurify_flag))
4920 {
4921 char *stack;
4922 size_t stack_size;
4923 if (&stack_top_variable < stack_bottom)
4924 {
4925 stack = &stack_top_variable;
4926 stack_size = stack_bottom - &stack_top_variable;
4927 }
4928 else
4929 {
4930 stack = stack_bottom;
4931 stack_size = &stack_top_variable - stack_bottom;
4932 }
4933 if (stack_size <= MAX_SAVE_STACK)
4934 {
4935 if (stack_copy_size < stack_size)
4936 {
4937 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4938 stack_copy_size = stack_size;
4939 }
4940 memcpy (stack_copy, stack, stack_size);
4941 }
4942 }
4943 #endif /* MAX_SAVE_STACK > 0 */
4944
4945 if (garbage_collection_messages)
4946 message1_nolog ("Garbage collecting...");
4947
4948 BLOCK_INPUT;
4949
4950 shrink_regexp_cache ();
4951
4952 gc_in_progress = 1;
4953
4954 /* clear_marks (); */
4955
4956 /* Mark all the special slots that serve as the roots of accessibility. */
4957
4958 for (i = 0; i < staticidx; i++)
4959 mark_object (*staticvec[i]);
4960
4961 for (bind = specpdl; bind != specpdl_ptr; bind++)
4962 {
4963 mark_object (bind->symbol);
4964 mark_object (bind->old_value);
4965 }
4966 mark_terminals ();
4967 mark_kboards ();
4968 mark_ttys ();
4969
4970 #ifdef USE_GTK
4971 {
4972 extern void xg_mark_data (void);
4973 xg_mark_data ();
4974 }
4975 #endif
4976
4977 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4978 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4979 mark_stack ();
4980 #else
4981 {
4982 register struct gcpro *tail;
4983 for (tail = gcprolist; tail; tail = tail->next)
4984 for (i = 0; i < tail->nvars; i++)
4985 mark_object (tail->var[i]);
4986 }
4987 mark_byte_stack ();
4988 {
4989 struct catchtag *catch;
4990 struct handler *handler;
4991
4992 for (catch = catchlist; catch; catch = catch->next)
4993 {
4994 mark_object (catch->tag);
4995 mark_object (catch->val);
4996 }
4997 for (handler = handlerlist; handler; handler = handler->next)
4998 {
4999 mark_object (handler->handler);
5000 mark_object (handler->var);
5001 }
5002 }
5003 mark_backtrace ();
5004 #endif
5005
5006 #ifdef HAVE_WINDOW_SYSTEM
5007 mark_fringe_data ();
5008 #endif
5009
5010 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5011 mark_stack ();
5012 #endif
5013
5014 /* Everything is now marked, except for the things that require special
5015 finalization, i.e. the undo_list.
5016 Look thru every buffer's undo list
5017 for elements that update markers that were not marked,
5018 and delete them. */
5019 {
5020 register struct buffer *nextb = all_buffers;
5021
5022 while (nextb)
5023 {
5024 /* If a buffer's undo list is Qt, that means that undo is
5025 turned off in that buffer. Calling truncate_undo_list on
5026 Qt tends to return NULL, which effectively turns undo back on.
5027 So don't call truncate_undo_list if undo_list is Qt. */
5028 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5029 {
5030 Lisp_Object tail, prev;
5031 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5032 prev = Qnil;
5033 while (CONSP (tail))
5034 {
5035 if (CONSP (XCAR (tail))
5036 && MARKERP (XCAR (XCAR (tail)))
5037 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5038 {
5039 if (NILP (prev))
5040 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5041 else
5042 {
5043 tail = XCDR (tail);
5044 XSETCDR (prev, tail);
5045 }
5046 }
5047 else
5048 {
5049 prev = tail;
5050 tail = XCDR (tail);
5051 }
5052 }
5053 }
5054 /* Now that we have stripped the elements that need not be in the
5055 undo_list any more, we can finally mark the list. */
5056 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5057
5058 nextb = nextb->next;
5059 }
5060 }
5061
5062 gc_sweep ();
5063
5064 /* Clear the mark bits that we set in certain root slots. */
5065
5066 unmark_byte_stack ();
5067 VECTOR_UNMARK (&buffer_defaults);
5068 VECTOR_UNMARK (&buffer_local_symbols);
5069
5070 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5071 dump_zombies ();
5072 #endif
5073
5074 UNBLOCK_INPUT;
5075
5076 CHECK_CONS_LIST ();
5077
5078 /* clear_marks (); */
5079 gc_in_progress = 0;
5080
5081 consing_since_gc = 0;
5082 if (gc_cons_threshold < 10000)
5083 gc_cons_threshold = 10000;
5084
5085 if (FLOATP (Vgc_cons_percentage))
5086 { /* Set gc_cons_combined_threshold. */
5087 EMACS_INT tot = 0;
5088
5089 tot += total_conses * sizeof (struct Lisp_Cons);
5090 tot += total_symbols * sizeof (struct Lisp_Symbol);
5091 tot += total_markers * sizeof (union Lisp_Misc);
5092 tot += total_string_size;
5093 tot += total_vector_size * sizeof (Lisp_Object);
5094 tot += total_floats * sizeof (struct Lisp_Float);
5095 tot += total_intervals * sizeof (struct interval);
5096 tot += total_strings * sizeof (struct Lisp_String);
5097
5098 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5099 }
5100 else
5101 gc_relative_threshold = 0;
5102
5103 if (garbage_collection_messages)
5104 {
5105 if (message_p || minibuf_level > 0)
5106 restore_message ();
5107 else
5108 message1_nolog ("Garbage collecting...done");
5109 }
5110
5111 unbind_to (count, Qnil);
5112
5113 total[0] = Fcons (make_number (total_conses),
5114 make_number (total_free_conses));
5115 total[1] = Fcons (make_number (total_symbols),
5116 make_number (total_free_symbols));
5117 total[2] = Fcons (make_number (total_markers),
5118 make_number (total_free_markers));
5119 total[3] = make_number (total_string_size);
5120 total[4] = make_number (total_vector_size);
5121 total[5] = Fcons (make_number (total_floats),
5122 make_number (total_free_floats));
5123 total[6] = Fcons (make_number (total_intervals),
5124 make_number (total_free_intervals));
5125 total[7] = Fcons (make_number (total_strings),
5126 make_number (total_free_strings));
5127
5128 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5129 {
5130 /* Compute average percentage of zombies. */
5131 double nlive = 0;
5132
5133 for (i = 0; i < 7; ++i)
5134 if (CONSP (total[i]))
5135 nlive += XFASTINT (XCAR (total[i]));
5136
5137 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5138 max_live = max (nlive, max_live);
5139 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5140 max_zombies = max (nzombies, max_zombies);
5141 ++ngcs;
5142 }
5143 #endif
5144
5145 if (!NILP (Vpost_gc_hook))
5146 {
5147 int gc_count = inhibit_garbage_collection ();
5148 safe_run_hooks (Qpost_gc_hook);
5149 unbind_to (gc_count, Qnil);
5150 }
5151
5152 /* Accumulate statistics. */
5153 EMACS_GET_TIME (t2);
5154 EMACS_SUB_TIME (t3, t2, t1);
5155 if (FLOATP (Vgc_elapsed))
5156 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5157 EMACS_SECS (t3) +
5158 EMACS_USECS (t3) * 1.0e-6);
5159 gcs_done++;
5160
5161 return Flist (sizeof total / sizeof *total, total);
5162 }
5163
5164
5165 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5166 only interesting objects referenced from glyphs are strings. */
5167
5168 static void
5169 mark_glyph_matrix (struct glyph_matrix *matrix)
5170 {
5171 struct glyph_row *row = matrix->rows;
5172 struct glyph_row *end = row + matrix->nrows;
5173
5174 for (; row < end; ++row)
5175 if (row->enabled_p)
5176 {
5177 int area;
5178 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5179 {
5180 struct glyph *glyph = row->glyphs[area];
5181 struct glyph *end_glyph = glyph + row->used[area];
5182
5183 for (; glyph < end_glyph; ++glyph)
5184 if (STRINGP (glyph->object)
5185 && !STRING_MARKED_P (XSTRING (glyph->object)))
5186 mark_object (glyph->object);
5187 }
5188 }
5189 }
5190
5191
5192 /* Mark Lisp faces in the face cache C. */
5193
5194 static void
5195 mark_face_cache (struct face_cache *c)
5196 {
5197 if (c)
5198 {
5199 int i, j;
5200 for (i = 0; i < c->used; ++i)
5201 {
5202 struct face *face = FACE_FROM_ID (c->f, i);
5203
5204 if (face)
5205 {
5206 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5207 mark_object (face->lface[j]);
5208 }
5209 }
5210 }
5211 }
5212
5213
5214 \f
5215 /* Mark reference to a Lisp_Object.
5216 If the object referred to has not been seen yet, recursively mark
5217 all the references contained in it. */
5218
5219 #define LAST_MARKED_SIZE 500
5220 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5221 static int last_marked_index;
5222
5223 /* For debugging--call abort when we cdr down this many
5224 links of a list, in mark_object. In debugging,
5225 the call to abort will hit a breakpoint.
5226 Normally this is zero and the check never goes off. */
5227 static size_t mark_object_loop_halt;
5228
5229 static void
5230 mark_vectorlike (struct Lisp_Vector *ptr)
5231 {
5232 register EMACS_UINT size = ptr->size;
5233 register EMACS_UINT i;
5234
5235 eassert (!VECTOR_MARKED_P (ptr));
5236 VECTOR_MARK (ptr); /* Else mark it */
5237 if (size & PSEUDOVECTOR_FLAG)
5238 size &= PSEUDOVECTOR_SIZE_MASK;
5239
5240 /* Note that this size is not the memory-footprint size, but only
5241 the number of Lisp_Object fields that we should trace.
5242 The distinction is used e.g. by Lisp_Process which places extra
5243 non-Lisp_Object fields at the end of the structure. */
5244 for (i = 0; i < size; i++) /* and then mark its elements */
5245 mark_object (ptr->contents[i]);
5246 }
5247
5248 /* Like mark_vectorlike but optimized for char-tables (and
5249 sub-char-tables) assuming that the contents are mostly integers or
5250 symbols. */
5251
5252 static void
5253 mark_char_table (struct Lisp_Vector *ptr)
5254 {
5255 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5256 register EMACS_UINT i;
5257
5258 eassert (!VECTOR_MARKED_P (ptr));
5259 VECTOR_MARK (ptr);
5260 for (i = 0; i < size; i++)
5261 {
5262 Lisp_Object val = ptr->contents[i];
5263
5264 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5265 continue;
5266 if (SUB_CHAR_TABLE_P (val))
5267 {
5268 if (! VECTOR_MARKED_P (XVECTOR (val)))
5269 mark_char_table (XVECTOR (val));
5270 }
5271 else
5272 mark_object (val);
5273 }
5274 }
5275
5276 void
5277 mark_object (Lisp_Object arg)
5278 {
5279 register Lisp_Object obj = arg;
5280 #ifdef GC_CHECK_MARKED_OBJECTS
5281 void *po;
5282 struct mem_node *m;
5283 #endif
5284 size_t cdr_count = 0;
5285
5286 loop:
5287
5288 if (PURE_POINTER_P (XPNTR (obj)))
5289 return;
5290
5291 last_marked[last_marked_index++] = obj;
5292 if (last_marked_index == LAST_MARKED_SIZE)
5293 last_marked_index = 0;
5294
5295 /* Perform some sanity checks on the objects marked here. Abort if
5296 we encounter an object we know is bogus. This increases GC time
5297 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5298 #ifdef GC_CHECK_MARKED_OBJECTS
5299
5300 po = (void *) XPNTR (obj);
5301
5302 /* Check that the object pointed to by PO is known to be a Lisp
5303 structure allocated from the heap. */
5304 #define CHECK_ALLOCATED() \
5305 do { \
5306 m = mem_find (po); \
5307 if (m == MEM_NIL) \
5308 abort (); \
5309 } while (0)
5310
5311 /* Check that the object pointed to by PO is live, using predicate
5312 function LIVEP. */
5313 #define CHECK_LIVE(LIVEP) \
5314 do { \
5315 if (!LIVEP (m, po)) \
5316 abort (); \
5317 } while (0)
5318
5319 /* Check both of the above conditions. */
5320 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5321 do { \
5322 CHECK_ALLOCATED (); \
5323 CHECK_LIVE (LIVEP); \
5324 } while (0) \
5325
5326 #else /* not GC_CHECK_MARKED_OBJECTS */
5327
5328 #define CHECK_LIVE(LIVEP) (void) 0
5329 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5330
5331 #endif /* not GC_CHECK_MARKED_OBJECTS */
5332
5333 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5334 {
5335 case Lisp_String:
5336 {
5337 register struct Lisp_String *ptr = XSTRING (obj);
5338 if (STRING_MARKED_P (ptr))
5339 break;
5340 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5341 MARK_INTERVAL_TREE (ptr->intervals);
5342 MARK_STRING (ptr);
5343 #ifdef GC_CHECK_STRING_BYTES
5344 /* Check that the string size recorded in the string is the
5345 same as the one recorded in the sdata structure. */
5346 CHECK_STRING_BYTES (ptr);
5347 #endif /* GC_CHECK_STRING_BYTES */
5348 }
5349 break;
5350
5351 case Lisp_Vectorlike:
5352 if (VECTOR_MARKED_P (XVECTOR (obj)))
5353 break;
5354 #ifdef GC_CHECK_MARKED_OBJECTS
5355 m = mem_find (po);
5356 if (m == MEM_NIL && !SUBRP (obj)
5357 && po != &buffer_defaults
5358 && po != &buffer_local_symbols)
5359 abort ();
5360 #endif /* GC_CHECK_MARKED_OBJECTS */
5361
5362 if (BUFFERP (obj))
5363 {
5364 #ifdef GC_CHECK_MARKED_OBJECTS
5365 if (po != &buffer_defaults && po != &buffer_local_symbols)
5366 {
5367 struct buffer *b;
5368 for (b = all_buffers; b && b != po; b = b->next)
5369 ;
5370 if (b == NULL)
5371 abort ();
5372 }
5373 #endif /* GC_CHECK_MARKED_OBJECTS */
5374 mark_buffer (obj);
5375 }
5376 else if (SUBRP (obj))
5377 break;
5378 else if (COMPILEDP (obj))
5379 /* We could treat this just like a vector, but it is better to
5380 save the COMPILED_CONSTANTS element for last and avoid
5381 recursion there. */
5382 {
5383 register struct Lisp_Vector *ptr = XVECTOR (obj);
5384 register EMACS_UINT size = ptr->size;
5385 register EMACS_UINT i;
5386
5387 CHECK_LIVE (live_vector_p);
5388 VECTOR_MARK (ptr); /* Else mark it */
5389 size &= PSEUDOVECTOR_SIZE_MASK;
5390 for (i = 0; i < size; i++) /* and then mark its elements */
5391 {
5392 if (i != COMPILED_CONSTANTS)
5393 mark_object (ptr->contents[i]);
5394 }
5395 obj = ptr->contents[COMPILED_CONSTANTS];
5396 goto loop;
5397 }
5398 else if (FRAMEP (obj))
5399 {
5400 register struct frame *ptr = XFRAME (obj);
5401 mark_vectorlike (XVECTOR (obj));
5402 mark_face_cache (ptr->face_cache);
5403 }
5404 else if (WINDOWP (obj))
5405 {
5406 register struct Lisp_Vector *ptr = XVECTOR (obj);
5407 struct window *w = XWINDOW (obj);
5408 mark_vectorlike (ptr);
5409 /* Mark glyphs for leaf windows. Marking window matrices is
5410 sufficient because frame matrices use the same glyph
5411 memory. */
5412 if (NILP (w->hchild)
5413 && NILP (w->vchild)
5414 && w->current_matrix)
5415 {
5416 mark_glyph_matrix (w->current_matrix);
5417 mark_glyph_matrix (w->desired_matrix);
5418 }
5419 }
5420 else if (HASH_TABLE_P (obj))
5421 {
5422 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5423 mark_vectorlike ((struct Lisp_Vector *)h);
5424 /* If hash table is not weak, mark all keys and values.
5425 For weak tables, mark only the vector. */
5426 if (NILP (h->weak))
5427 mark_object (h->key_and_value);
5428 else
5429 VECTOR_MARK (XVECTOR (h->key_and_value));
5430 }
5431 else if (CHAR_TABLE_P (obj))
5432 mark_char_table (XVECTOR (obj));
5433 else
5434 mark_vectorlike (XVECTOR (obj));
5435 break;
5436
5437 case Lisp_Symbol:
5438 {
5439 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5440 struct Lisp_Symbol *ptrx;
5441
5442 if (ptr->gcmarkbit)
5443 break;
5444 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5445 ptr->gcmarkbit = 1;
5446 mark_object (ptr->function);
5447 mark_object (ptr->plist);
5448 switch (ptr->redirect)
5449 {
5450 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5451 case SYMBOL_VARALIAS:
5452 {
5453 Lisp_Object tem;
5454 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5455 mark_object (tem);
5456 break;
5457 }
5458 case SYMBOL_LOCALIZED:
5459 {
5460 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5461 /* If the value is forwarded to a buffer or keyboard field,
5462 these are marked when we see the corresponding object.
5463 And if it's forwarded to a C variable, either it's not
5464 a Lisp_Object var, or it's staticpro'd already. */
5465 mark_object (blv->where);
5466 mark_object (blv->valcell);
5467 mark_object (blv->defcell);
5468 break;
5469 }
5470 case SYMBOL_FORWARDED:
5471 /* If the value is forwarded to a buffer or keyboard field,
5472 these are marked when we see the corresponding object.
5473 And if it's forwarded to a C variable, either it's not
5474 a Lisp_Object var, or it's staticpro'd already. */
5475 break;
5476 default: abort ();
5477 }
5478 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5479 MARK_STRING (XSTRING (ptr->xname));
5480 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5481
5482 ptr = ptr->next;
5483 if (ptr)
5484 {
5485 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5486 XSETSYMBOL (obj, ptrx);
5487 goto loop;
5488 }
5489 }
5490 break;
5491
5492 case Lisp_Misc:
5493 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5494 if (XMISCANY (obj)->gcmarkbit)
5495 break;
5496 XMISCANY (obj)->gcmarkbit = 1;
5497
5498 switch (XMISCTYPE (obj))
5499 {
5500
5501 case Lisp_Misc_Marker:
5502 /* DO NOT mark thru the marker's chain.
5503 The buffer's markers chain does not preserve markers from gc;
5504 instead, markers are removed from the chain when freed by gc. */
5505 break;
5506
5507 case Lisp_Misc_Save_Value:
5508 #if GC_MARK_STACK
5509 {
5510 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5511 /* If DOGC is set, POINTER is the address of a memory
5512 area containing INTEGER potential Lisp_Objects. */
5513 if (ptr->dogc)
5514 {
5515 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5516 int nelt;
5517 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5518 mark_maybe_object (*p);
5519 }
5520 }
5521 #endif
5522 break;
5523
5524 case Lisp_Misc_Overlay:
5525 {
5526 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5527 mark_object (ptr->start);
5528 mark_object (ptr->end);
5529 mark_object (ptr->plist);
5530 if (ptr->next)
5531 {
5532 XSETMISC (obj, ptr->next);
5533 goto loop;
5534 }
5535 }
5536 break;
5537
5538 default:
5539 abort ();
5540 }
5541 break;
5542
5543 case Lisp_Cons:
5544 {
5545 register struct Lisp_Cons *ptr = XCONS (obj);
5546 if (CONS_MARKED_P (ptr))
5547 break;
5548 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5549 CONS_MARK (ptr);
5550 /* If the cdr is nil, avoid recursion for the car. */
5551 if (EQ (ptr->u.cdr, Qnil))
5552 {
5553 obj = ptr->car;
5554 cdr_count = 0;
5555 goto loop;
5556 }
5557 mark_object (ptr->car);
5558 obj = ptr->u.cdr;
5559 cdr_count++;
5560 if (cdr_count == mark_object_loop_halt)
5561 abort ();
5562 goto loop;
5563 }
5564
5565 case Lisp_Float:
5566 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5567 FLOAT_MARK (XFLOAT (obj));
5568 break;
5569
5570 case_Lisp_Int:
5571 break;
5572
5573 default:
5574 abort ();
5575 }
5576
5577 #undef CHECK_LIVE
5578 #undef CHECK_ALLOCATED
5579 #undef CHECK_ALLOCATED_AND_LIVE
5580 }
5581
5582 /* Mark the pointers in a buffer structure. */
5583
5584 static void
5585 mark_buffer (Lisp_Object buf)
5586 {
5587 register struct buffer *buffer = XBUFFER (buf);
5588 register Lisp_Object *ptr, tmp;
5589 Lisp_Object base_buffer;
5590
5591 eassert (!VECTOR_MARKED_P (buffer));
5592 VECTOR_MARK (buffer);
5593
5594 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5595
5596 /* For now, we just don't mark the undo_list. It's done later in
5597 a special way just before the sweep phase, and after stripping
5598 some of its elements that are not needed any more. */
5599
5600 if (buffer->overlays_before)
5601 {
5602 XSETMISC (tmp, buffer->overlays_before);
5603 mark_object (tmp);
5604 }
5605 if (buffer->overlays_after)
5606 {
5607 XSETMISC (tmp, buffer->overlays_after);
5608 mark_object (tmp);
5609 }
5610
5611 /* buffer-local Lisp variables start at `undo_list',
5612 tho only the ones from `name' on are GC'd normally. */
5613 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5614 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5615 ptr++)
5616 mark_object (*ptr);
5617
5618 /* If this is an indirect buffer, mark its base buffer. */
5619 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5620 {
5621 XSETBUFFER (base_buffer, buffer->base_buffer);
5622 mark_buffer (base_buffer);
5623 }
5624 }
5625
5626 /* Mark the Lisp pointers in the terminal objects.
5627 Called by the Fgarbage_collector. */
5628
5629 static void
5630 mark_terminals (void)
5631 {
5632 struct terminal *t;
5633 for (t = terminal_list; t; t = t->next_terminal)
5634 {
5635 eassert (t->name != NULL);
5636 #ifdef HAVE_WINDOW_SYSTEM
5637 /* If a terminal object is reachable from a stacpro'ed object,
5638 it might have been marked already. Make sure the image cache
5639 gets marked. */
5640 mark_image_cache (t->image_cache);
5641 #endif /* HAVE_WINDOW_SYSTEM */
5642 if (!VECTOR_MARKED_P (t))
5643 mark_vectorlike ((struct Lisp_Vector *)t);
5644 }
5645 }
5646
5647
5648
5649 /* Value is non-zero if OBJ will survive the current GC because it's
5650 either marked or does not need to be marked to survive. */
5651
5652 int
5653 survives_gc_p (Lisp_Object obj)
5654 {
5655 int survives_p;
5656
5657 switch (XTYPE (obj))
5658 {
5659 case_Lisp_Int:
5660 survives_p = 1;
5661 break;
5662
5663 case Lisp_Symbol:
5664 survives_p = XSYMBOL (obj)->gcmarkbit;
5665 break;
5666
5667 case Lisp_Misc:
5668 survives_p = XMISCANY (obj)->gcmarkbit;
5669 break;
5670
5671 case Lisp_String:
5672 survives_p = STRING_MARKED_P (XSTRING (obj));
5673 break;
5674
5675 case Lisp_Vectorlike:
5676 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5677 break;
5678
5679 case Lisp_Cons:
5680 survives_p = CONS_MARKED_P (XCONS (obj));
5681 break;
5682
5683 case Lisp_Float:
5684 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5685 break;
5686
5687 default:
5688 abort ();
5689 }
5690
5691 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5692 }
5693
5694
5695 \f
5696 /* Sweep: find all structures not marked, and free them. */
5697
5698 static void
5699 gc_sweep (void)
5700 {
5701 /* Remove or mark entries in weak hash tables.
5702 This must be done before any object is unmarked. */
5703 sweep_weak_hash_tables ();
5704
5705 sweep_strings ();
5706 #ifdef GC_CHECK_STRING_BYTES
5707 if (!noninteractive)
5708 check_string_bytes (1);
5709 #endif
5710
5711 /* Put all unmarked conses on free list */
5712 {
5713 register struct cons_block *cblk;
5714 struct cons_block **cprev = &cons_block;
5715 register int lim = cons_block_index;
5716 register int num_free = 0, num_used = 0;
5717
5718 cons_free_list = 0;
5719
5720 for (cblk = cons_block; cblk; cblk = *cprev)
5721 {
5722 register int i = 0;
5723 int this_free = 0;
5724 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5725
5726 /* Scan the mark bits an int at a time. */
5727 for (i = 0; i <= ilim; i++)
5728 {
5729 if (cblk->gcmarkbits[i] == -1)
5730 {
5731 /* Fast path - all cons cells for this int are marked. */
5732 cblk->gcmarkbits[i] = 0;
5733 num_used += BITS_PER_INT;
5734 }
5735 else
5736 {
5737 /* Some cons cells for this int are not marked.
5738 Find which ones, and free them. */
5739 int start, pos, stop;
5740
5741 start = i * BITS_PER_INT;
5742 stop = lim - start;
5743 if (stop > BITS_PER_INT)
5744 stop = BITS_PER_INT;
5745 stop += start;
5746
5747 for (pos = start; pos < stop; pos++)
5748 {
5749 if (!CONS_MARKED_P (&cblk->conses[pos]))
5750 {
5751 this_free++;
5752 cblk->conses[pos].u.chain = cons_free_list;
5753 cons_free_list = &cblk->conses[pos];
5754 #if GC_MARK_STACK
5755 cons_free_list->car = Vdead;
5756 #endif
5757 }
5758 else
5759 {
5760 num_used++;
5761 CONS_UNMARK (&cblk->conses[pos]);
5762 }
5763 }
5764 }
5765 }
5766
5767 lim = CONS_BLOCK_SIZE;
5768 /* If this block contains only free conses and we have already
5769 seen more than two blocks worth of free conses then deallocate
5770 this block. */
5771 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5772 {
5773 *cprev = cblk->next;
5774 /* Unhook from the free list. */
5775 cons_free_list = cblk->conses[0].u.chain;
5776 lisp_align_free (cblk);
5777 n_cons_blocks--;
5778 }
5779 else
5780 {
5781 num_free += this_free;
5782 cprev = &cblk->next;
5783 }
5784 }
5785 total_conses = num_used;
5786 total_free_conses = num_free;
5787 }
5788
5789 /* Put all unmarked floats on free list */
5790 {
5791 register struct float_block *fblk;
5792 struct float_block **fprev = &float_block;
5793 register int lim = float_block_index;
5794 register int num_free = 0, num_used = 0;
5795
5796 float_free_list = 0;
5797
5798 for (fblk = float_block; fblk; fblk = *fprev)
5799 {
5800 register int i;
5801 int this_free = 0;
5802 for (i = 0; i < lim; i++)
5803 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5804 {
5805 this_free++;
5806 fblk->floats[i].u.chain = float_free_list;
5807 float_free_list = &fblk->floats[i];
5808 }
5809 else
5810 {
5811 num_used++;
5812 FLOAT_UNMARK (&fblk->floats[i]);
5813 }
5814 lim = FLOAT_BLOCK_SIZE;
5815 /* If this block contains only free floats and we have already
5816 seen more than two blocks worth of free floats then deallocate
5817 this block. */
5818 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5819 {
5820 *fprev = fblk->next;
5821 /* Unhook from the free list. */
5822 float_free_list = fblk->floats[0].u.chain;
5823 lisp_align_free (fblk);
5824 n_float_blocks--;
5825 }
5826 else
5827 {
5828 num_free += this_free;
5829 fprev = &fblk->next;
5830 }
5831 }
5832 total_floats = num_used;
5833 total_free_floats = num_free;
5834 }
5835
5836 /* Put all unmarked intervals on free list */
5837 {
5838 register struct interval_block *iblk;
5839 struct interval_block **iprev = &interval_block;
5840 register int lim = interval_block_index;
5841 register int num_free = 0, num_used = 0;
5842
5843 interval_free_list = 0;
5844
5845 for (iblk = interval_block; iblk; iblk = *iprev)
5846 {
5847 register int i;
5848 int this_free = 0;
5849
5850 for (i = 0; i < lim; i++)
5851 {
5852 if (!iblk->intervals[i].gcmarkbit)
5853 {
5854 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5855 interval_free_list = &iblk->intervals[i];
5856 this_free++;
5857 }
5858 else
5859 {
5860 num_used++;
5861 iblk->intervals[i].gcmarkbit = 0;
5862 }
5863 }
5864 lim = INTERVAL_BLOCK_SIZE;
5865 /* If this block contains only free intervals and we have already
5866 seen more than two blocks worth of free intervals then
5867 deallocate this block. */
5868 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5869 {
5870 *iprev = iblk->next;
5871 /* Unhook from the free list. */
5872 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5873 lisp_free (iblk);
5874 n_interval_blocks--;
5875 }
5876 else
5877 {
5878 num_free += this_free;
5879 iprev = &iblk->next;
5880 }
5881 }
5882 total_intervals = num_used;
5883 total_free_intervals = num_free;
5884 }
5885
5886 /* Put all unmarked symbols on free list */
5887 {
5888 register struct symbol_block *sblk;
5889 struct symbol_block **sprev = &symbol_block;
5890 register int lim = symbol_block_index;
5891 register int num_free = 0, num_used = 0;
5892
5893 symbol_free_list = NULL;
5894
5895 for (sblk = symbol_block; sblk; sblk = *sprev)
5896 {
5897 int this_free = 0;
5898 struct Lisp_Symbol *sym = sblk->symbols;
5899 struct Lisp_Symbol *end = sym + lim;
5900
5901 for (; sym < end; ++sym)
5902 {
5903 /* Check if the symbol was created during loadup. In such a case
5904 it might be pointed to by pure bytecode which we don't trace,
5905 so we conservatively assume that it is live. */
5906 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5907
5908 if (!sym->gcmarkbit && !pure_p)
5909 {
5910 if (sym->redirect == SYMBOL_LOCALIZED)
5911 xfree (SYMBOL_BLV (sym));
5912 sym->next = symbol_free_list;
5913 symbol_free_list = sym;
5914 #if GC_MARK_STACK
5915 symbol_free_list->function = Vdead;
5916 #endif
5917 ++this_free;
5918 }
5919 else
5920 {
5921 ++num_used;
5922 if (!pure_p)
5923 UNMARK_STRING (XSTRING (sym->xname));
5924 sym->gcmarkbit = 0;
5925 }
5926 }
5927
5928 lim = SYMBOL_BLOCK_SIZE;
5929 /* If this block contains only free symbols and we have already
5930 seen more than two blocks worth of free symbols then deallocate
5931 this block. */
5932 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5933 {
5934 *sprev = sblk->next;
5935 /* Unhook from the free list. */
5936 symbol_free_list = sblk->symbols[0].next;
5937 lisp_free (sblk);
5938 n_symbol_blocks--;
5939 }
5940 else
5941 {
5942 num_free += this_free;
5943 sprev = &sblk->next;
5944 }
5945 }
5946 total_symbols = num_used;
5947 total_free_symbols = num_free;
5948 }
5949
5950 /* Put all unmarked misc's on free list.
5951 For a marker, first unchain it from the buffer it points into. */
5952 {
5953 register struct marker_block *mblk;
5954 struct marker_block **mprev = &marker_block;
5955 register int lim = marker_block_index;
5956 register int num_free = 0, num_used = 0;
5957
5958 marker_free_list = 0;
5959
5960 for (mblk = marker_block; mblk; mblk = *mprev)
5961 {
5962 register int i;
5963 int this_free = 0;
5964
5965 for (i = 0; i < lim; i++)
5966 {
5967 if (!mblk->markers[i].u_any.gcmarkbit)
5968 {
5969 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5970 unchain_marker (&mblk->markers[i].u_marker);
5971 /* Set the type of the freed object to Lisp_Misc_Free.
5972 We could leave the type alone, since nobody checks it,
5973 but this might catch bugs faster. */
5974 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5975 mblk->markers[i].u_free.chain = marker_free_list;
5976 marker_free_list = &mblk->markers[i];
5977 this_free++;
5978 }
5979 else
5980 {
5981 num_used++;
5982 mblk->markers[i].u_any.gcmarkbit = 0;
5983 }
5984 }
5985 lim = MARKER_BLOCK_SIZE;
5986 /* If this block contains only free markers and we have already
5987 seen more than two blocks worth of free markers then deallocate
5988 this block. */
5989 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5990 {
5991 *mprev = mblk->next;
5992 /* Unhook from the free list. */
5993 marker_free_list = mblk->markers[0].u_free.chain;
5994 lisp_free (mblk);
5995 n_marker_blocks--;
5996 }
5997 else
5998 {
5999 num_free += this_free;
6000 mprev = &mblk->next;
6001 }
6002 }
6003
6004 total_markers = num_used;
6005 total_free_markers = num_free;
6006 }
6007
6008 /* Free all unmarked buffers */
6009 {
6010 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6011
6012 while (buffer)
6013 if (!VECTOR_MARKED_P (buffer))
6014 {
6015 if (prev)
6016 prev->next = buffer->next;
6017 else
6018 all_buffers = buffer->next;
6019 next = buffer->next;
6020 lisp_free (buffer);
6021 buffer = next;
6022 }
6023 else
6024 {
6025 VECTOR_UNMARK (buffer);
6026 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6027 prev = buffer, buffer = buffer->next;
6028 }
6029 }
6030
6031 /* Free all unmarked vectors */
6032 {
6033 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6034 total_vector_size = 0;
6035
6036 while (vector)
6037 if (!VECTOR_MARKED_P (vector))
6038 {
6039 if (prev)
6040 prev->next = vector->next;
6041 else
6042 all_vectors = vector->next;
6043 next = vector->next;
6044 lisp_free (vector);
6045 n_vectors--;
6046 vector = next;
6047
6048 }
6049 else
6050 {
6051 VECTOR_UNMARK (vector);
6052 if (vector->size & PSEUDOVECTOR_FLAG)
6053 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6054 else
6055 total_vector_size += vector->size;
6056 prev = vector, vector = vector->next;
6057 }
6058 }
6059
6060 #ifdef GC_CHECK_STRING_BYTES
6061 if (!noninteractive)
6062 check_string_bytes (1);
6063 #endif
6064 }
6065
6066
6067
6068 \f
6069 /* Debugging aids. */
6070
6071 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6072 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6073 This may be helpful in debugging Emacs's memory usage.
6074 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6075 (void)
6076 {
6077 Lisp_Object end;
6078
6079 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6080
6081 return end;
6082 }
6083
6084 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6085 doc: /* Return a list of counters that measure how much consing there has been.
6086 Each of these counters increments for a certain kind of object.
6087 The counters wrap around from the largest positive integer to zero.
6088 Garbage collection does not decrease them.
6089 The elements of the value are as follows:
6090 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6091 All are in units of 1 = one object consed
6092 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6093 objects consed.
6094 MISCS include overlays, markers, and some internal types.
6095 Frames, windows, buffers, and subprocesses count as vectors
6096 (but the contents of a buffer's text do not count here). */)
6097 (void)
6098 {
6099 Lisp_Object consed[8];
6100
6101 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6102 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6103 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6104 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6105 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6106 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6107 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6108 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6109
6110 return Flist (8, consed);
6111 }
6112
6113 #ifdef ENABLE_CHECKING
6114 int suppress_checking;
6115
6116 void
6117 die (const char *msg, const char *file, int line)
6118 {
6119 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6120 file, line, msg);
6121 abort ();
6122 }
6123 #endif
6124 \f
6125 /* Initialization */
6126
6127 void
6128 init_alloc_once (void)
6129 {
6130 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6131 purebeg = PUREBEG;
6132 pure_size = PURESIZE;
6133 pure_bytes_used = 0;
6134 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6135 pure_bytes_used_before_overflow = 0;
6136
6137 /* Initialize the list of free aligned blocks. */
6138 free_ablock = NULL;
6139
6140 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6141 mem_init ();
6142 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6143 #endif
6144
6145 all_vectors = 0;
6146 ignore_warnings = 1;
6147 #ifdef DOUG_LEA_MALLOC
6148 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6149 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6150 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6151 #endif
6152 init_strings ();
6153 init_cons ();
6154 init_symbol ();
6155 init_marker ();
6156 init_float ();
6157 init_intervals ();
6158 init_weak_hash_tables ();
6159
6160 #ifdef REL_ALLOC
6161 malloc_hysteresis = 32;
6162 #else
6163 malloc_hysteresis = 0;
6164 #endif
6165
6166 refill_memory_reserve ();
6167
6168 ignore_warnings = 0;
6169 gcprolist = 0;
6170 byte_stack_list = 0;
6171 staticidx = 0;
6172 consing_since_gc = 0;
6173 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6174 gc_relative_threshold = 0;
6175 }
6176
6177 void
6178 init_alloc (void)
6179 {
6180 gcprolist = 0;
6181 byte_stack_list = 0;
6182 #if GC_MARK_STACK
6183 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6184 setjmp_tested_p = longjmps_done = 0;
6185 #endif
6186 #endif
6187 Vgc_elapsed = make_float (0.0);
6188 gcs_done = 0;
6189 }
6190
6191 void
6192 syms_of_alloc (void)
6193 {
6194 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6195 doc: /* *Number of bytes of consing between garbage collections.
6196 Garbage collection can happen automatically once this many bytes have been
6197 allocated since the last garbage collection. All data types count.
6198
6199 Garbage collection happens automatically only when `eval' is called.
6200
6201 By binding this temporarily to a large number, you can effectively
6202 prevent garbage collection during a part of the program.
6203 See also `gc-cons-percentage'. */);
6204
6205 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6206 doc: /* *Portion of the heap used for allocation.
6207 Garbage collection can happen automatically once this portion of the heap
6208 has been allocated since the last garbage collection.
6209 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6210 Vgc_cons_percentage = make_float (0.1);
6211
6212 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6213 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6214
6215 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6216 doc: /* Number of cons cells that have been consed so far. */);
6217
6218 DEFVAR_INT ("floats-consed", floats_consed,
6219 doc: /* Number of floats that have been consed so far. */);
6220
6221 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6222 doc: /* Number of vector cells that have been consed so far. */);
6223
6224 DEFVAR_INT ("symbols-consed", symbols_consed,
6225 doc: /* Number of symbols that have been consed so far. */);
6226
6227 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6228 doc: /* Number of string characters that have been consed so far. */);
6229
6230 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6231 doc: /* Number of miscellaneous objects that have been consed so far. */);
6232
6233 DEFVAR_INT ("intervals-consed", intervals_consed,
6234 doc: /* Number of intervals that have been consed so far. */);
6235
6236 DEFVAR_INT ("strings-consed", strings_consed,
6237 doc: /* Number of strings that have been consed so far. */);
6238
6239 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6240 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6241 This means that certain objects should be allocated in shared (pure) space.
6242 It can also be set to a hash-table, in which case this table is used to
6243 do hash-consing of the objects allocated to pure space. */);
6244
6245 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6246 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6247 garbage_collection_messages = 0;
6248
6249 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6250 doc: /* Hook run after garbage collection has finished. */);
6251 Vpost_gc_hook = Qnil;
6252 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6253 staticpro (&Qpost_gc_hook);
6254
6255 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6256 doc: /* Precomputed `signal' argument for memory-full error. */);
6257 /* We build this in advance because if we wait until we need it, we might
6258 not be able to allocate the memory to hold it. */
6259 Vmemory_signal_data
6260 = pure_cons (Qerror,
6261 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6262
6263 DEFVAR_LISP ("memory-full", Vmemory_full,
6264 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6265 Vmemory_full = Qnil;
6266
6267 staticpro (&Qgc_cons_threshold);
6268 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6269
6270 staticpro (&Qchar_table_extra_slots);
6271 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6272
6273 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6274 doc: /* Accumulated time elapsed in garbage collections.
6275 The time is in seconds as a floating point value. */);
6276 DEFVAR_INT ("gcs-done", gcs_done,
6277 doc: /* Accumulated number of garbage collections done. */);
6278
6279 defsubr (&Scons);
6280 defsubr (&Slist);
6281 defsubr (&Svector);
6282 defsubr (&Smake_byte_code);
6283 defsubr (&Smake_list);
6284 defsubr (&Smake_vector);
6285 defsubr (&Smake_string);
6286 defsubr (&Smake_bool_vector);
6287 defsubr (&Smake_symbol);
6288 defsubr (&Smake_marker);
6289 defsubr (&Spurecopy);
6290 defsubr (&Sgarbage_collect);
6291 defsubr (&Smemory_limit);
6292 defsubr (&Smemory_use_counts);
6293
6294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6295 defsubr (&Sgc_status);
6296 #endif
6297 }