Integer overflow and signedness fixes (Bug#8873).
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78 EMACS_UINT denominator;
79
80 if (EQ (limit, Qt))
81 seed_random (getpid () + time (NULL));
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 {
84 /* Try to take our random number from the higher bits of VAL,
85 not the lower, since (says Gentzel) the low bits of `random'
86 are less random than the higher ones. We do this by using the
87 quotient rather than the remainder. At the high end of the RNG
88 it's possible to get a quotient larger than n; discarding
89 these values eliminates the bias that would otherwise appear
90 when using a large n. */
91 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
92 do
93 val = get_random () / denominator;
94 while (val >= XFASTINT (limit));
95 }
96 else
97 val = get_random ();
98 XSETINT (lispy_val, val);
99 return lispy_val;
100 }
101 \f
102 /* Heuristic on how many iterations of a tight loop can be safely done
103 before it's time to do a QUIT. This must be a power of 2. */
104 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
105
106 /* Random data-structure functions */
107
108 DEFUN ("length", Flength, Slength, 1, 1, 0,
109 doc: /* Return the length of vector, list or string SEQUENCE.
110 A byte-code function object is also allowed.
111 If the string contains multibyte characters, this is not necessarily
112 the number of bytes in the string; it is the number of characters.
113 To get the number of bytes, use `string-bytes'. */)
114 (register Lisp_Object sequence)
115 {
116 register Lisp_Object val;
117
118 if (STRINGP (sequence))
119 XSETFASTINT (val, SCHARS (sequence));
120 else if (VECTORP (sequence))
121 XSETFASTINT (val, ASIZE (sequence));
122 else if (CHAR_TABLE_P (sequence))
123 XSETFASTINT (val, MAX_CHAR);
124 else if (BOOL_VECTOR_P (sequence))
125 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
126 else if (COMPILEDP (sequence))
127 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
128 else if (CONSP (sequence))
129 {
130 EMACS_INT i = 0;
131
132 do
133 {
134 ++i;
135 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
136 {
137 if (MOST_POSITIVE_FIXNUM < i)
138 error ("List too long");
139 QUIT;
140 }
141 sequence = XCDR (sequence);
142 }
143 while (CONSP (sequence));
144
145 CHECK_LIST_END (sequence, sequence);
146
147 val = make_number (i);
148 }
149 else if (NILP (sequence))
150 XSETFASTINT (val, 0);
151 else
152 wrong_type_argument (Qsequencep, sequence);
153
154 return val;
155 }
156
157 /* This does not check for quits. That is safe since it must terminate. */
158
159 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
160 doc: /* Return the length of a list, but avoid error or infinite loop.
161 This function never gets an error. If LIST is not really a list,
162 it returns 0. If LIST is circular, it returns a finite value
163 which is at least the number of distinct elements. */)
164 (Lisp_Object list)
165 {
166 Lisp_Object tail, halftail;
167 double hilen = 0;
168 uintmax_t lolen = 1;
169
170 if (! CONSP (list))
171 return 0;
172
173 /* halftail is used to detect circular lists. */
174 for (tail = halftail = list; ; )
175 {
176 tail = XCDR (tail);
177 if (! CONSP (tail))
178 break;
179 if (EQ (tail, halftail))
180 break;
181 lolen++;
182 if ((lolen & 1) == 0)
183 {
184 halftail = XCDR (halftail);
185 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
186 {
187 QUIT;
188 if (lolen == 0)
189 hilen += UINTMAX_MAX + 1.0;
190 }
191 }
192 }
193
194 /* If the length does not fit into a fixnum, return a float.
195 On all known practical machines this returns an upper bound on
196 the true length. */
197 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
198 }
199
200 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
201 doc: /* Return the number of bytes in STRING.
202 If STRING is multibyte, this may be greater than the length of STRING. */)
203 (Lisp_Object string)
204 {
205 CHECK_STRING (string);
206 return make_number (SBYTES (string));
207 }
208
209 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
210 doc: /* Return t if two strings have identical contents.
211 Case is significant, but text properties are ignored.
212 Symbols are also allowed; their print names are used instead. */)
213 (register Lisp_Object s1, Lisp_Object s2)
214 {
215 if (SYMBOLP (s1))
216 s1 = SYMBOL_NAME (s1);
217 if (SYMBOLP (s2))
218 s2 = SYMBOL_NAME (s2);
219 CHECK_STRING (s1);
220 CHECK_STRING (s2);
221
222 if (SCHARS (s1) != SCHARS (s2)
223 || SBYTES (s1) != SBYTES (s2)
224 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
225 return Qnil;
226 return Qt;
227 }
228
229 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
230 doc: /* Compare the contents of two strings, converting to multibyte if needed.
231 In string STR1, skip the first START1 characters and stop at END1.
232 In string STR2, skip the first START2 characters and stop at END2.
233 END1 and END2 default to the full lengths of the respective strings.
234
235 Case is significant in this comparison if IGNORE-CASE is nil.
236 Unibyte strings are converted to multibyte for comparison.
237
238 The value is t if the strings (or specified portions) match.
239 If string STR1 is less, the value is a negative number N;
240 - 1 - N is the number of characters that match at the beginning.
241 If string STR1 is greater, the value is a positive number N;
242 N - 1 is the number of characters that match at the beginning. */)
243 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
244 {
245 register EMACS_INT end1_char, end2_char;
246 register EMACS_INT i1, i1_byte, i2, i2_byte;
247
248 CHECK_STRING (str1);
249 CHECK_STRING (str2);
250 if (NILP (start1))
251 start1 = make_number (0);
252 if (NILP (start2))
253 start2 = make_number (0);
254 CHECK_NATNUM (start1);
255 CHECK_NATNUM (start2);
256 if (! NILP (end1))
257 CHECK_NATNUM (end1);
258 if (! NILP (end2))
259 CHECK_NATNUM (end2);
260
261 i1 = XINT (start1);
262 i2 = XINT (start2);
263
264 i1_byte = string_char_to_byte (str1, i1);
265 i2_byte = string_char_to_byte (str2, i2);
266
267 end1_char = SCHARS (str1);
268 if (! NILP (end1) && end1_char > XINT (end1))
269 end1_char = XINT (end1);
270
271 end2_char = SCHARS (str2);
272 if (! NILP (end2) && end2_char > XINT (end2))
273 end2_char = XINT (end2);
274
275 while (i1 < end1_char && i2 < end2_char)
276 {
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
279 int c1, c2;
280
281 if (STRING_MULTIBYTE (str1))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
283 else
284 {
285 c1 = SREF (str1, i1++);
286 MAKE_CHAR_MULTIBYTE (c1);
287 }
288
289 if (STRING_MULTIBYTE (str2))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
291 else
292 {
293 c2 = SREF (str2, i2++);
294 MAKE_CHAR_MULTIBYTE (c2);
295 }
296
297 if (c1 == c2)
298 continue;
299
300 if (! NILP (ignore_case))
301 {
302 Lisp_Object tem;
303
304 tem = Fupcase (make_number (c1));
305 c1 = XINT (tem);
306 tem = Fupcase (make_number (c2));
307 c2 = XINT (tem);
308 }
309
310 if (c1 == c2)
311 continue;
312
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
316 if (c1 < c2)
317 return make_number (- i1 + XINT (start1));
318 else
319 return make_number (i1 - XINT (start1));
320 }
321
322 if (i1 < end1_char)
323 return make_number (i1 - XINT (start1) + 1);
324 if (i2 < end2_char)
325 return make_number (- i1 + XINT (start1) - 1);
326
327 return Qt;
328 }
329
330 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
331 doc: /* Return t if first arg string is less than second in lexicographic order.
332 Case is significant.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1, Lisp_Object s2)
335 {
336 register EMACS_INT end;
337 register EMACS_INT i1, i1_byte, i2, i2_byte;
338
339 if (SYMBOLP (s1))
340 s1 = SYMBOL_NAME (s1);
341 if (SYMBOLP (s2))
342 s2 = SYMBOL_NAME (s2);
343 CHECK_STRING (s1);
344 CHECK_STRING (s2);
345
346 i1 = i1_byte = i2 = i2_byte = 0;
347
348 end = SCHARS (s1);
349 if (end > SCHARS (s2))
350 end = SCHARS (s2);
351
352 while (i1 < end)
353 {
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
356 int c1, c2;
357
358 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
359 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
360
361 if (c1 != c2)
362 return c1 < c2 ? Qt : Qnil;
363 }
364 return i1 < SCHARS (s2) ? Qt : Qnil;
365 }
366 \f
367 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
368 enum Lisp_Type target_type, int last_special);
369
370 /* ARGSUSED */
371 Lisp_Object
372 concat2 (Lisp_Object s1, Lisp_Object s2)
373 {
374 Lisp_Object args[2];
375 args[0] = s1;
376 args[1] = s2;
377 return concat (2, args, Lisp_String, 0);
378 }
379
380 /* ARGSUSED */
381 Lisp_Object
382 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
383 {
384 Lisp_Object args[3];
385 args[0] = s1;
386 args[1] = s2;
387 args[2] = s3;
388 return concat (3, args, Lisp_String, 0);
389 }
390
391 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
392 doc: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs, Lisp_Object *args)
398 {
399 return concat (nargs, args, Lisp_Cons, 1);
400 }
401
402 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
403 doc: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs, Lisp_Object *args)
408 {
409 return concat (nargs, args, Lisp_String, 0);
410 }
411
412 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
413 doc: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs, Lisp_Object *args)
418 {
419 return concat (nargs, args, Lisp_Vectorlike, 0);
420 }
421
422
423 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
424 doc: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
427 (Lisp_Object arg)
428 {
429 if (NILP (arg)) return arg;
430
431 if (CHAR_TABLE_P (arg))
432 {
433 return copy_char_table (arg);
434 }
435
436 if (BOOL_VECTOR_P (arg))
437 {
438 Lisp_Object val;
439 ptrdiff_t size_in_chars
440 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
441 / BOOL_VECTOR_BITS_PER_CHAR);
442
443 val = Fmake_bool_vector (Flength (arg), Qnil);
444 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
445 size_in_chars);
446 return val;
447 }
448
449 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
450 wrong_type_argument (Qsequencep, arg);
451
452 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
453 }
454
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
457 struct textprop_rec
458 {
459 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
460 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
461 EMACS_INT to; /* refer to VAL (the target string) */
462 };
463
464 static Lisp_Object
465 concat (ptrdiff_t nargs, Lisp_Object *args,
466 enum Lisp_Type target_type, int last_special)
467 {
468 Lisp_Object val;
469 register Lisp_Object tail;
470 register Lisp_Object this;
471 EMACS_INT toindex;
472 EMACS_INT toindex_byte = 0;
473 register EMACS_INT result_len;
474 register EMACS_INT result_len_byte;
475 ptrdiff_t argnum;
476 Lisp_Object last_tail;
477 Lisp_Object prev;
478 int some_multibyte;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec *textprops = NULL;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops = 0;
487 USE_SAFE_ALLOCA;
488
489 tail = Qnil;
490
491 /* In append, the last arg isn't treated like the others */
492 if (last_special && nargs > 0)
493 {
494 nargs--;
495 last_tail = args[nargs];
496 }
497 else
498 last_tail = Qnil;
499
500 /* Check each argument. */
501 for (argnum = 0; argnum < nargs; argnum++)
502 {
503 this = args[argnum];
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep, this);
507 }
508
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
513 result_len_byte = 0;
514 result_len = 0;
515 some_multibyte = 0;
516 for (argnum = 0; argnum < nargs; argnum++)
517 {
518 EMACS_INT len;
519 this = args[argnum];
520 len = XFASTINT (Flength (this));
521 if (target_type == Lisp_String)
522 {
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
525 EMACS_INT i;
526 Lisp_Object ch;
527 int c;
528 EMACS_INT this_len_byte;
529
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i = 0; i < len; i++)
532 {
533 ch = AREF (this, i);
534 CHECK_CHARACTER (ch);
535 c = XFASTINT (ch);
536 this_len_byte = CHAR_BYTES (c);
537 result_len_byte += this_len_byte;
538 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
539 some_multibyte = 1;
540 }
541 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
542 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
543 else if (CONSP (this))
544 for (; CONSP (this); this = XCDR (this))
545 {
546 ch = XCAR (this);
547 CHECK_CHARACTER (ch);
548 c = XFASTINT (ch);
549 this_len_byte = CHAR_BYTES (c);
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 result_len_byte += SBYTES (this);
560 }
561 else
562 result_len_byte += count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 }
565 }
566
567 result_len += len;
568 if (result_len < 0)
569 error ("String overflow");
570 }
571
572 if (! some_multibyte)
573 result_len_byte = result_len;
574
575 /* Create the output object. */
576 if (target_type == Lisp_Cons)
577 val = Fmake_list (make_number (result_len), Qnil);
578 else if (target_type == Lisp_Vectorlike)
579 val = Fmake_vector (make_number (result_len), Qnil);
580 else if (some_multibyte)
581 val = make_uninit_multibyte_string (result_len, result_len_byte);
582 else
583 val = make_uninit_string (result_len);
584
585 /* In `append', if all but last arg are nil, return last arg. */
586 if (target_type == Lisp_Cons && EQ (val, Qnil))
587 return last_tail;
588
589 /* Copy the contents of the args into the result. */
590 if (CONSP (val))
591 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
592 else
593 toindex = 0, toindex_byte = 0;
594
595 prev = Qnil;
596 if (STRINGP (val))
597 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
598
599 for (argnum = 0; argnum < nargs; argnum++)
600 {
601 Lisp_Object thislen;
602 EMACS_INT thisleni = 0;
603 register EMACS_INT thisindex = 0;
604 register EMACS_INT thisindex_byte = 0;
605
606 this = args[argnum];
607 if (!CONSP (this))
608 thislen = Flength (this), thisleni = XINT (thislen);
609
610 /* Between strings of the same kind, copy fast. */
611 if (STRINGP (this) && STRINGP (val)
612 && STRING_MULTIBYTE (this) == some_multibyte)
613 {
614 EMACS_INT thislen_byte = SBYTES (this);
615
616 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
617 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
618 {
619 textprops[num_textprops].argnum = argnum;
620 textprops[num_textprops].from = 0;
621 textprops[num_textprops++].to = toindex;
622 }
623 toindex_byte += thislen_byte;
624 toindex += thisleni;
625 }
626 /* Copy a single-byte string to a multibyte string. */
627 else if (STRINGP (this) && STRINGP (val))
628 {
629 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
630 {
631 textprops[num_textprops].argnum = argnum;
632 textprops[num_textprops].from = 0;
633 textprops[num_textprops++].to = toindex;
634 }
635 toindex_byte += copy_text (SDATA (this),
636 SDATA (val) + toindex_byte,
637 SCHARS (this), 0, 1);
638 toindex += thisleni;
639 }
640 else
641 /* Copy element by element. */
642 while (1)
643 {
644 register Lisp_Object elt;
645
646 /* Fetch next element of `this' arg into `elt', or break if
647 `this' is exhausted. */
648 if (NILP (this)) break;
649 if (CONSP (this))
650 elt = XCAR (this), this = XCDR (this);
651 else if (thisindex >= thisleni)
652 break;
653 else if (STRINGP (this))
654 {
655 int c;
656 if (STRING_MULTIBYTE (this))
657 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
658 thisindex,
659 thisindex_byte);
660 else
661 {
662 c = SREF (this, thisindex); thisindex++;
663 if (some_multibyte && !ASCII_CHAR_P (c))
664 c = BYTE8_TO_CHAR (c);
665 }
666 XSETFASTINT (elt, c);
667 }
668 else if (BOOL_VECTOR_P (this))
669 {
670 int byte;
671 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
672 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
673 elt = Qt;
674 else
675 elt = Qnil;
676 thisindex++;
677 }
678 else
679 {
680 elt = AREF (this, thisindex);
681 thisindex++;
682 }
683
684 /* Store this element into the result. */
685 if (toindex < 0)
686 {
687 XSETCAR (tail, elt);
688 prev = tail;
689 tail = XCDR (tail);
690 }
691 else if (VECTORP (val))
692 {
693 ASET (val, toindex, elt);
694 toindex++;
695 }
696 else
697 {
698 int c;
699 CHECK_CHARACTER (elt);
700 c = XFASTINT (elt);
701 if (some_multibyte)
702 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
703 else
704 SSET (val, toindex_byte++, c);
705 toindex++;
706 }
707 }
708 }
709 if (!NILP (prev))
710 XSETCDR (prev, last_tail);
711
712 if (num_textprops > 0)
713 {
714 Lisp_Object props;
715 EMACS_INT last_to_end = -1;
716
717 for (argnum = 0; argnum < num_textprops; argnum++)
718 {
719 this = args[textprops[argnum].argnum];
720 props = text_property_list (this,
721 make_number (0),
722 make_number (SCHARS (this)),
723 Qnil);
724 /* If successive arguments have properties, be sure that the
725 value of `composition' property be the copy. */
726 if (last_to_end == textprops[argnum].to)
727 make_composition_value_copy (props);
728 add_text_properties_from_list (val, props,
729 make_number (textprops[argnum].to));
730 last_to_end = textprops[argnum].to + SCHARS (this);
731 }
732 }
733
734 SAFE_FREE ();
735 return val;
736 }
737 \f
738 static Lisp_Object string_char_byte_cache_string;
739 static EMACS_INT string_char_byte_cache_charpos;
740 static EMACS_INT string_char_byte_cache_bytepos;
741
742 void
743 clear_string_char_byte_cache (void)
744 {
745 string_char_byte_cache_string = Qnil;
746 }
747
748 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
749
750 EMACS_INT
751 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
752 {
753 EMACS_INT i_byte;
754 EMACS_INT best_below, best_below_byte;
755 EMACS_INT best_above, best_above_byte;
756
757 best_below = best_below_byte = 0;
758 best_above = SCHARS (string);
759 best_above_byte = SBYTES (string);
760 if (best_above == best_above_byte)
761 return char_index;
762
763 if (EQ (string, string_char_byte_cache_string))
764 {
765 if (string_char_byte_cache_charpos < char_index)
766 {
767 best_below = string_char_byte_cache_charpos;
768 best_below_byte = string_char_byte_cache_bytepos;
769 }
770 else
771 {
772 best_above = string_char_byte_cache_charpos;
773 best_above_byte = string_char_byte_cache_bytepos;
774 }
775 }
776
777 if (char_index - best_below < best_above - char_index)
778 {
779 unsigned char *p = SDATA (string) + best_below_byte;
780
781 while (best_below < char_index)
782 {
783 p += BYTES_BY_CHAR_HEAD (*p);
784 best_below++;
785 }
786 i_byte = p - SDATA (string);
787 }
788 else
789 {
790 unsigned char *p = SDATA (string) + best_above_byte;
791
792 while (best_above > char_index)
793 {
794 p--;
795 while (!CHAR_HEAD_P (*p)) p--;
796 best_above--;
797 }
798 i_byte = p - SDATA (string);
799 }
800
801 string_char_byte_cache_bytepos = i_byte;
802 string_char_byte_cache_charpos = char_index;
803 string_char_byte_cache_string = string;
804
805 return i_byte;
806 }
807 \f
808 /* Return the character index corresponding to BYTE_INDEX in STRING. */
809
810 EMACS_INT
811 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
812 {
813 EMACS_INT i, i_byte;
814 EMACS_INT best_below, best_below_byte;
815 EMACS_INT best_above, best_above_byte;
816
817 best_below = best_below_byte = 0;
818 best_above = SCHARS (string);
819 best_above_byte = SBYTES (string);
820 if (best_above == best_above_byte)
821 return byte_index;
822
823 if (EQ (string, string_char_byte_cache_string))
824 {
825 if (string_char_byte_cache_bytepos < byte_index)
826 {
827 best_below = string_char_byte_cache_charpos;
828 best_below_byte = string_char_byte_cache_bytepos;
829 }
830 else
831 {
832 best_above = string_char_byte_cache_charpos;
833 best_above_byte = string_char_byte_cache_bytepos;
834 }
835 }
836
837 if (byte_index - best_below_byte < best_above_byte - byte_index)
838 {
839 unsigned char *p = SDATA (string) + best_below_byte;
840 unsigned char *pend = SDATA (string) + byte_index;
841
842 while (p < pend)
843 {
844 p += BYTES_BY_CHAR_HEAD (*p);
845 best_below++;
846 }
847 i = best_below;
848 i_byte = p - SDATA (string);
849 }
850 else
851 {
852 unsigned char *p = SDATA (string) + best_above_byte;
853 unsigned char *pbeg = SDATA (string) + byte_index;
854
855 while (p > pbeg)
856 {
857 p--;
858 while (!CHAR_HEAD_P (*p)) p--;
859 best_above--;
860 }
861 i = best_above;
862 i_byte = p - SDATA (string);
863 }
864
865 string_char_byte_cache_bytepos = i_byte;
866 string_char_byte_cache_charpos = i;
867 string_char_byte_cache_string = string;
868
869 return i;
870 }
871 \f
872 /* Convert STRING to a multibyte string. */
873
874 static Lisp_Object
875 string_make_multibyte (Lisp_Object string)
876 {
877 unsigned char *buf;
878 EMACS_INT nbytes;
879 Lisp_Object ret;
880 USE_SAFE_ALLOCA;
881
882 if (STRING_MULTIBYTE (string))
883 return string;
884
885 nbytes = count_size_as_multibyte (SDATA (string),
886 SCHARS (string));
887 /* If all the chars are ASCII, they won't need any more bytes
888 once converted. In that case, we can return STRING itself. */
889 if (nbytes == SBYTES (string))
890 return string;
891
892 SAFE_ALLOCA (buf, unsigned char *, nbytes);
893 copy_text (SDATA (string), buf, SBYTES (string),
894 0, 1);
895
896 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
897 SAFE_FREE ();
898
899 return ret;
900 }
901
902
903 /* Convert STRING (if unibyte) to a multibyte string without changing
904 the number of characters. Characters 0200 trough 0237 are
905 converted to eight-bit characters. */
906
907 Lisp_Object
908 string_to_multibyte (Lisp_Object string)
909 {
910 unsigned char *buf;
911 EMACS_INT nbytes;
912 Lisp_Object ret;
913 USE_SAFE_ALLOCA;
914
915 if (STRING_MULTIBYTE (string))
916 return string;
917
918 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
919 /* If all the chars are ASCII, they won't need any more bytes once
920 converted. */
921 if (nbytes == SBYTES (string))
922 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
923
924 SAFE_ALLOCA (buf, unsigned char *, nbytes);
925 memcpy (buf, SDATA (string), SBYTES (string));
926 str_to_multibyte (buf, nbytes, SBYTES (string));
927
928 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
929 SAFE_FREE ();
930
931 return ret;
932 }
933
934
935 /* Convert STRING to a single-byte string. */
936
937 Lisp_Object
938 string_make_unibyte (Lisp_Object string)
939 {
940 EMACS_INT nchars;
941 unsigned char *buf;
942 Lisp_Object ret;
943 USE_SAFE_ALLOCA;
944
945 if (! STRING_MULTIBYTE (string))
946 return string;
947
948 nchars = SCHARS (string);
949
950 SAFE_ALLOCA (buf, unsigned char *, nchars);
951 copy_text (SDATA (string), buf, SBYTES (string),
952 1, 0);
953
954 ret = make_unibyte_string ((char *) buf, nchars);
955 SAFE_FREE ();
956
957 return ret;
958 }
959
960 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
961 1, 1, 0,
962 doc: /* Return the multibyte equivalent of STRING.
963 If STRING is unibyte and contains non-ASCII characters, the function
964 `unibyte-char-to-multibyte' is used to convert each unibyte character
965 to a multibyte character. In this case, the returned string is a
966 newly created string with no text properties. If STRING is multibyte
967 or entirely ASCII, it is returned unchanged. In particular, when
968 STRING is unibyte and entirely ASCII, the returned string is unibyte.
969 \(When the characters are all ASCII, Emacs primitives will treat the
970 string the same way whether it is unibyte or multibyte.) */)
971 (Lisp_Object string)
972 {
973 CHECK_STRING (string);
974
975 return string_make_multibyte (string);
976 }
977
978 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
979 1, 1, 0,
980 doc: /* Return the unibyte equivalent of STRING.
981 Multibyte character codes are converted to unibyte according to
982 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
983 If the lookup in the translation table fails, this function takes just
984 the low 8 bits of each character. */)
985 (Lisp_Object string)
986 {
987 CHECK_STRING (string);
988
989 return string_make_unibyte (string);
990 }
991
992 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
993 1, 1, 0,
994 doc: /* Return a unibyte string with the same individual bytes as STRING.
995 If STRING is unibyte, the result is STRING itself.
996 Otherwise it is a newly created string, with no text properties.
997 If STRING is multibyte and contains a character of charset
998 `eight-bit', it is converted to the corresponding single byte. */)
999 (Lisp_Object string)
1000 {
1001 CHECK_STRING (string);
1002
1003 if (STRING_MULTIBYTE (string))
1004 {
1005 EMACS_INT bytes = SBYTES (string);
1006 unsigned char *str = (unsigned char *) xmalloc (bytes);
1007
1008 memcpy (str, SDATA (string), bytes);
1009 bytes = str_as_unibyte (str, bytes);
1010 string = make_unibyte_string ((char *) str, bytes);
1011 xfree (str);
1012 }
1013 return string;
1014 }
1015
1016 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1017 1, 1, 0,
1018 doc: /* Return a multibyte string with the same individual bytes as STRING.
1019 If STRING is multibyte, the result is STRING itself.
1020 Otherwise it is a newly created string, with no text properties.
1021
1022 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1023 part of a correct utf-8 sequence), it is converted to the corresponding
1024 multibyte character of charset `eight-bit'.
1025 See also `string-to-multibyte'.
1026
1027 Beware, this often doesn't really do what you think it does.
1028 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1029 If you're not sure, whether to use `string-as-multibyte' or
1030 `string-to-multibyte', use `string-to-multibyte'. */)
1031 (Lisp_Object string)
1032 {
1033 CHECK_STRING (string);
1034
1035 if (! STRING_MULTIBYTE (string))
1036 {
1037 Lisp_Object new_string;
1038 EMACS_INT nchars, nbytes;
1039
1040 parse_str_as_multibyte (SDATA (string),
1041 SBYTES (string),
1042 &nchars, &nbytes);
1043 new_string = make_uninit_multibyte_string (nchars, nbytes);
1044 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1045 if (nbytes != SBYTES (string))
1046 str_as_multibyte (SDATA (new_string), nbytes,
1047 SBYTES (string), NULL);
1048 string = new_string;
1049 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1050 }
1051 return string;
1052 }
1053
1054 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1055 1, 1, 0,
1056 doc: /* Return a multibyte string with the same individual chars as STRING.
1057 If STRING is multibyte, the result is STRING itself.
1058 Otherwise it is a newly created string, with no text properties.
1059
1060 If STRING is unibyte and contains an 8-bit byte, it is converted to
1061 the corresponding multibyte character of charset `eight-bit'.
1062
1063 This differs from `string-as-multibyte' by converting each byte of a correct
1064 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1065 correct sequence. */)
1066 (Lisp_Object string)
1067 {
1068 CHECK_STRING (string);
1069
1070 return string_to_multibyte (string);
1071 }
1072
1073 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1074 1, 1, 0,
1075 doc: /* Return a unibyte string with the same individual chars as STRING.
1076 If STRING is unibyte, the result is STRING itself.
1077 Otherwise it is a newly created string, with no text properties,
1078 where each `eight-bit' character is converted to the corresponding byte.
1079 If STRING contains a non-ASCII, non-`eight-bit' character,
1080 an error is signaled. */)
1081 (Lisp_Object string)
1082 {
1083 CHECK_STRING (string);
1084
1085 if (STRING_MULTIBYTE (string))
1086 {
1087 EMACS_INT chars = SCHARS (string);
1088 unsigned char *str = (unsigned char *) xmalloc (chars);
1089 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1090
1091 if (converted < chars)
1092 error ("Can't convert the %"pI"dth character to unibyte", converted);
1093 string = make_unibyte_string ((char *) str, chars);
1094 xfree (str);
1095 }
1096 return string;
1097 }
1098
1099 \f
1100 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1101 doc: /* Return a copy of ALIST.
1102 This is an alist which represents the same mapping from objects to objects,
1103 but does not share the alist structure with ALIST.
1104 The objects mapped (cars and cdrs of elements of the alist)
1105 are shared, however.
1106 Elements of ALIST that are not conses are also shared. */)
1107 (Lisp_Object alist)
1108 {
1109 register Lisp_Object tem;
1110
1111 CHECK_LIST (alist);
1112 if (NILP (alist))
1113 return alist;
1114 alist = concat (1, &alist, Lisp_Cons, 0);
1115 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1116 {
1117 register Lisp_Object car;
1118 car = XCAR (tem);
1119
1120 if (CONSP (car))
1121 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1122 }
1123 return alist;
1124 }
1125
1126 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1127 doc: /* Return a new string whose contents are a substring of STRING.
1128 The returned string consists of the characters between index FROM
1129 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1130 zero-indexed: 0 means the first character of STRING. Negative values
1131 are counted from the end of STRING. If TO is nil, the substring runs
1132 to the end of STRING.
1133
1134 The STRING argument may also be a vector. In that case, the return
1135 value is a new vector that contains the elements between index FROM
1136 \(inclusive) and index TO (exclusive) of that vector argument. */)
1137 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1138 {
1139 Lisp_Object res;
1140 EMACS_INT size;
1141 EMACS_INT size_byte = 0;
1142 EMACS_INT from_char, to_char;
1143 EMACS_INT from_byte = 0, to_byte = 0;
1144
1145 CHECK_VECTOR_OR_STRING (string);
1146 CHECK_NUMBER (from);
1147
1148 if (STRINGP (string))
1149 {
1150 size = SCHARS (string);
1151 size_byte = SBYTES (string);
1152 }
1153 else
1154 size = ASIZE (string);
1155
1156 if (NILP (to))
1157 {
1158 to_char = size;
1159 to_byte = size_byte;
1160 }
1161 else
1162 {
1163 CHECK_NUMBER (to);
1164
1165 to_char = XINT (to);
1166 if (to_char < 0)
1167 to_char += size;
1168
1169 if (STRINGP (string))
1170 to_byte = string_char_to_byte (string, to_char);
1171 }
1172
1173 from_char = XINT (from);
1174 if (from_char < 0)
1175 from_char += size;
1176 if (STRINGP (string))
1177 from_byte = string_char_to_byte (string, from_char);
1178
1179 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1180 args_out_of_range_3 (string, make_number (from_char),
1181 make_number (to_char));
1182
1183 if (STRINGP (string))
1184 {
1185 res = make_specified_string (SSDATA (string) + from_byte,
1186 to_char - from_char, to_byte - from_byte,
1187 STRING_MULTIBYTE (string));
1188 copy_text_properties (make_number (from_char), make_number (to_char),
1189 string, make_number (0), res, Qnil);
1190 }
1191 else
1192 res = Fvector (to_char - from_char, &AREF (string, from_char));
1193
1194 return res;
1195 }
1196
1197
1198 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1199 doc: /* Return a substring of STRING, without text properties.
1200 It starts at index FROM and ends before TO.
1201 TO may be nil or omitted; then the substring runs to the end of STRING.
1202 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1203 If FROM or TO is negative, it counts from the end.
1204
1205 With one argument, just copy STRING without its properties. */)
1206 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1207 {
1208 EMACS_INT size, size_byte;
1209 EMACS_INT from_char, to_char;
1210 EMACS_INT from_byte, to_byte;
1211
1212 CHECK_STRING (string);
1213
1214 size = SCHARS (string);
1215 size_byte = SBYTES (string);
1216
1217 if (NILP (from))
1218 from_char = from_byte = 0;
1219 else
1220 {
1221 CHECK_NUMBER (from);
1222 from_char = XINT (from);
1223 if (from_char < 0)
1224 from_char += size;
1225
1226 from_byte = string_char_to_byte (string, from_char);
1227 }
1228
1229 if (NILP (to))
1230 {
1231 to_char = size;
1232 to_byte = size_byte;
1233 }
1234 else
1235 {
1236 CHECK_NUMBER (to);
1237
1238 to_char = XINT (to);
1239 if (to_char < 0)
1240 to_char += size;
1241
1242 to_byte = string_char_to_byte (string, to_char);
1243 }
1244
1245 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1246 args_out_of_range_3 (string, make_number (from_char),
1247 make_number (to_char));
1248
1249 return make_specified_string (SSDATA (string) + from_byte,
1250 to_char - from_char, to_byte - from_byte,
1251 STRING_MULTIBYTE (string));
1252 }
1253
1254 /* Extract a substring of STRING, giving start and end positions
1255 both in characters and in bytes. */
1256
1257 Lisp_Object
1258 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1259 EMACS_INT to, EMACS_INT to_byte)
1260 {
1261 Lisp_Object res;
1262 EMACS_INT size;
1263
1264 CHECK_VECTOR_OR_STRING (string);
1265
1266 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1267
1268 if (!(0 <= from && from <= to && to <= size))
1269 args_out_of_range_3 (string, make_number (from), make_number (to));
1270
1271 if (STRINGP (string))
1272 {
1273 res = make_specified_string (SSDATA (string) + from_byte,
1274 to - from, to_byte - from_byte,
1275 STRING_MULTIBYTE (string));
1276 copy_text_properties (make_number (from), make_number (to),
1277 string, make_number (0), res, Qnil);
1278 }
1279 else
1280 res = Fvector (to - from, &AREF (string, from));
1281
1282 return res;
1283 }
1284 \f
1285 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1286 doc: /* Take cdr N times on LIST, return the result. */)
1287 (Lisp_Object n, Lisp_Object list)
1288 {
1289 EMACS_INT i, num;
1290 CHECK_NUMBER (n);
1291 num = XINT (n);
1292 for (i = 0; i < num && !NILP (list); i++)
1293 {
1294 QUIT;
1295 CHECK_LIST_CONS (list, list);
1296 list = XCDR (list);
1297 }
1298 return list;
1299 }
1300
1301 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1302 doc: /* Return the Nth element of LIST.
1303 N counts from zero. If LIST is not that long, nil is returned. */)
1304 (Lisp_Object n, Lisp_Object list)
1305 {
1306 return Fcar (Fnthcdr (n, list));
1307 }
1308
1309 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1310 doc: /* Return element of SEQUENCE at index N. */)
1311 (register Lisp_Object sequence, Lisp_Object n)
1312 {
1313 CHECK_NUMBER (n);
1314 if (CONSP (sequence) || NILP (sequence))
1315 return Fcar (Fnthcdr (n, sequence));
1316
1317 /* Faref signals a "not array" error, so check here. */
1318 CHECK_ARRAY (sequence, Qsequencep);
1319 return Faref (sequence, n);
1320 }
1321
1322 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1323 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1324 The value is actually the tail of LIST whose car is ELT. */)
1325 (register Lisp_Object elt, Lisp_Object list)
1326 {
1327 register Lisp_Object tail;
1328 for (tail = list; CONSP (tail); tail = XCDR (tail))
1329 {
1330 register Lisp_Object tem;
1331 CHECK_LIST_CONS (tail, list);
1332 tem = XCAR (tail);
1333 if (! NILP (Fequal (elt, tem)))
1334 return tail;
1335 QUIT;
1336 }
1337 return Qnil;
1338 }
1339
1340 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1341 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1342 The value is actually the tail of LIST whose car is ELT. */)
1343 (register Lisp_Object elt, Lisp_Object list)
1344 {
1345 while (1)
1346 {
1347 if (!CONSP (list) || EQ (XCAR (list), elt))
1348 break;
1349
1350 list = XCDR (list);
1351 if (!CONSP (list) || EQ (XCAR (list), elt))
1352 break;
1353
1354 list = XCDR (list);
1355 if (!CONSP (list) || EQ (XCAR (list), elt))
1356 break;
1357
1358 list = XCDR (list);
1359 QUIT;
1360 }
1361
1362 CHECK_LIST (list);
1363 return list;
1364 }
1365
1366 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1367 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1368 The value is actually the tail of LIST whose car is ELT. */)
1369 (register Lisp_Object elt, Lisp_Object list)
1370 {
1371 register Lisp_Object tail;
1372
1373 if (!FLOATP (elt))
1374 return Fmemq (elt, list);
1375
1376 for (tail = list; CONSP (tail); tail = XCDR (tail))
1377 {
1378 register Lisp_Object tem;
1379 CHECK_LIST_CONS (tail, list);
1380 tem = XCAR (tail);
1381 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1382 return tail;
1383 QUIT;
1384 }
1385 return Qnil;
1386 }
1387
1388 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1389 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1390 The value is actually the first element of LIST whose car is KEY.
1391 Elements of LIST that are not conses are ignored. */)
1392 (Lisp_Object key, Lisp_Object list)
1393 {
1394 while (1)
1395 {
1396 if (!CONSP (list)
1397 || (CONSP (XCAR (list))
1398 && EQ (XCAR (XCAR (list)), key)))
1399 break;
1400
1401 list = XCDR (list);
1402 if (!CONSP (list)
1403 || (CONSP (XCAR (list))
1404 && EQ (XCAR (XCAR (list)), key)))
1405 break;
1406
1407 list = XCDR (list);
1408 if (!CONSP (list)
1409 || (CONSP (XCAR (list))
1410 && EQ (XCAR (XCAR (list)), key)))
1411 break;
1412
1413 list = XCDR (list);
1414 QUIT;
1415 }
1416
1417 return CAR (list);
1418 }
1419
1420 /* Like Fassq but never report an error and do not allow quits.
1421 Use only on lists known never to be circular. */
1422
1423 Lisp_Object
1424 assq_no_quit (Lisp_Object key, Lisp_Object list)
1425 {
1426 while (CONSP (list)
1427 && (!CONSP (XCAR (list))
1428 || !EQ (XCAR (XCAR (list)), key)))
1429 list = XCDR (list);
1430
1431 return CAR_SAFE (list);
1432 }
1433
1434 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1435 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1436 The value is actually the first element of LIST whose car equals KEY. */)
1437 (Lisp_Object key, Lisp_Object list)
1438 {
1439 Lisp_Object car;
1440
1441 while (1)
1442 {
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 if (!CONSP (list)
1451 || (CONSP (XCAR (list))
1452 && (car = XCAR (XCAR (list)),
1453 EQ (car, key) || !NILP (Fequal (car, key)))))
1454 break;
1455
1456 list = XCDR (list);
1457 if (!CONSP (list)
1458 || (CONSP (XCAR (list))
1459 && (car = XCAR (XCAR (list)),
1460 EQ (car, key) || !NILP (Fequal (car, key)))))
1461 break;
1462
1463 list = XCDR (list);
1464 QUIT;
1465 }
1466
1467 return CAR (list);
1468 }
1469
1470 /* Like Fassoc but never report an error and do not allow quits.
1471 Use only on lists known never to be circular. */
1472
1473 Lisp_Object
1474 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1475 {
1476 while (CONSP (list)
1477 && (!CONSP (XCAR (list))
1478 || (!EQ (XCAR (XCAR (list)), key)
1479 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1480 list = XCDR (list);
1481
1482 return CONSP (list) ? XCAR (list) : Qnil;
1483 }
1484
1485 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1486 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1487 The value is actually the first element of LIST whose cdr is KEY. */)
1488 (register Lisp_Object key, Lisp_Object list)
1489 {
1490 while (1)
1491 {
1492 if (!CONSP (list)
1493 || (CONSP (XCAR (list))
1494 && EQ (XCDR (XCAR (list)), key)))
1495 break;
1496
1497 list = XCDR (list);
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && EQ (XCDR (XCAR (list)), key)))
1501 break;
1502
1503 list = XCDR (list);
1504 if (!CONSP (list)
1505 || (CONSP (XCAR (list))
1506 && EQ (XCDR (XCAR (list)), key)))
1507 break;
1508
1509 list = XCDR (list);
1510 QUIT;
1511 }
1512
1513 return CAR (list);
1514 }
1515
1516 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1517 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1518 The value is actually the first element of LIST whose cdr equals KEY. */)
1519 (Lisp_Object key, Lisp_Object list)
1520 {
1521 Lisp_Object cdr;
1522
1523 while (1)
1524 {
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 if (!CONSP (list)
1533 || (CONSP (XCAR (list))
1534 && (cdr = XCDR (XCAR (list)),
1535 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1536 break;
1537
1538 list = XCDR (list);
1539 if (!CONSP (list)
1540 || (CONSP (XCAR (list))
1541 && (cdr = XCDR (XCAR (list)),
1542 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1543 break;
1544
1545 list = XCDR (list);
1546 QUIT;
1547 }
1548
1549 return CAR (list);
1550 }
1551 \f
1552 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1553 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1554 The modified LIST is returned. Comparison is done with `eq'.
1555 If the first member of LIST is ELT, there is no way to remove it by side effect;
1556 therefore, write `(setq foo (delq element foo))'
1557 to be sure of changing the value of `foo'. */)
1558 (register Lisp_Object elt, Lisp_Object list)
1559 {
1560 register Lisp_Object tail, prev;
1561 register Lisp_Object tem;
1562
1563 tail = list;
1564 prev = Qnil;
1565 while (!NILP (tail))
1566 {
1567 CHECK_LIST_CONS (tail, list);
1568 tem = XCAR (tail);
1569 if (EQ (elt, tem))
1570 {
1571 if (NILP (prev))
1572 list = XCDR (tail);
1573 else
1574 Fsetcdr (prev, XCDR (tail));
1575 }
1576 else
1577 prev = tail;
1578 tail = XCDR (tail);
1579 QUIT;
1580 }
1581 return list;
1582 }
1583
1584 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1585 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1586 SEQ must be a list, a vector, or a string.
1587 The modified SEQ is returned. Comparison is done with `equal'.
1588 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1589 is not a side effect; it is simply using a different sequence.
1590 Therefore, write `(setq foo (delete element foo))'
1591 to be sure of changing the value of `foo'. */)
1592 (Lisp_Object elt, Lisp_Object seq)
1593 {
1594 if (VECTORP (seq))
1595 {
1596 EMACS_INT i, n;
1597
1598 for (i = n = 0; i < ASIZE (seq); ++i)
1599 if (NILP (Fequal (AREF (seq, i), elt)))
1600 ++n;
1601
1602 if (n != ASIZE (seq))
1603 {
1604 struct Lisp_Vector *p = allocate_vector (n);
1605
1606 for (i = n = 0; i < ASIZE (seq); ++i)
1607 if (NILP (Fequal (AREF (seq, i), elt)))
1608 p->contents[n++] = AREF (seq, i);
1609
1610 XSETVECTOR (seq, p);
1611 }
1612 }
1613 else if (STRINGP (seq))
1614 {
1615 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1616 int c;
1617
1618 for (i = nchars = nbytes = ibyte = 0;
1619 i < SCHARS (seq);
1620 ++i, ibyte += cbytes)
1621 {
1622 if (STRING_MULTIBYTE (seq))
1623 {
1624 c = STRING_CHAR (SDATA (seq) + ibyte);
1625 cbytes = CHAR_BYTES (c);
1626 }
1627 else
1628 {
1629 c = SREF (seq, i);
1630 cbytes = 1;
1631 }
1632
1633 if (!INTEGERP (elt) || c != XINT (elt))
1634 {
1635 ++nchars;
1636 nbytes += cbytes;
1637 }
1638 }
1639
1640 if (nchars != SCHARS (seq))
1641 {
1642 Lisp_Object tem;
1643
1644 tem = make_uninit_multibyte_string (nchars, nbytes);
1645 if (!STRING_MULTIBYTE (seq))
1646 STRING_SET_UNIBYTE (tem);
1647
1648 for (i = nchars = nbytes = ibyte = 0;
1649 i < SCHARS (seq);
1650 ++i, ibyte += cbytes)
1651 {
1652 if (STRING_MULTIBYTE (seq))
1653 {
1654 c = STRING_CHAR (SDATA (seq) + ibyte);
1655 cbytes = CHAR_BYTES (c);
1656 }
1657 else
1658 {
1659 c = SREF (seq, i);
1660 cbytes = 1;
1661 }
1662
1663 if (!INTEGERP (elt) || c != XINT (elt))
1664 {
1665 unsigned char *from = SDATA (seq) + ibyte;
1666 unsigned char *to = SDATA (tem) + nbytes;
1667 EMACS_INT n;
1668
1669 ++nchars;
1670 nbytes += cbytes;
1671
1672 for (n = cbytes; n--; )
1673 *to++ = *from++;
1674 }
1675 }
1676
1677 seq = tem;
1678 }
1679 }
1680 else
1681 {
1682 Lisp_Object tail, prev;
1683
1684 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1685 {
1686 CHECK_LIST_CONS (tail, seq);
1687
1688 if (!NILP (Fequal (elt, XCAR (tail))))
1689 {
1690 if (NILP (prev))
1691 seq = XCDR (tail);
1692 else
1693 Fsetcdr (prev, XCDR (tail));
1694 }
1695 else
1696 prev = tail;
1697 QUIT;
1698 }
1699 }
1700
1701 return seq;
1702 }
1703
1704 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1705 doc: /* Reverse LIST by modifying cdr pointers.
1706 Return the reversed list. */)
1707 (Lisp_Object list)
1708 {
1709 register Lisp_Object prev, tail, next;
1710
1711 if (NILP (list)) return list;
1712 prev = Qnil;
1713 tail = list;
1714 while (!NILP (tail))
1715 {
1716 QUIT;
1717 CHECK_LIST_CONS (tail, list);
1718 next = XCDR (tail);
1719 Fsetcdr (tail, prev);
1720 prev = tail;
1721 tail = next;
1722 }
1723 return prev;
1724 }
1725
1726 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1727 doc: /* Reverse LIST, copying. Return the reversed list.
1728 See also the function `nreverse', which is used more often. */)
1729 (Lisp_Object list)
1730 {
1731 Lisp_Object new;
1732
1733 for (new = Qnil; CONSP (list); list = XCDR (list))
1734 {
1735 QUIT;
1736 new = Fcons (XCAR (list), new);
1737 }
1738 CHECK_LIST_END (list, list);
1739 return new;
1740 }
1741 \f
1742 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1743
1744 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1745 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1746 Returns the sorted list. LIST is modified by side effects.
1747 PREDICATE is called with two elements of LIST, and should return non-nil
1748 if the first element should sort before the second. */)
1749 (Lisp_Object list, Lisp_Object predicate)
1750 {
1751 Lisp_Object front, back;
1752 register Lisp_Object len, tem;
1753 struct gcpro gcpro1, gcpro2;
1754 EMACS_INT length;
1755
1756 front = list;
1757 len = Flength (list);
1758 length = XINT (len);
1759 if (length < 2)
1760 return list;
1761
1762 XSETINT (len, (length / 2) - 1);
1763 tem = Fnthcdr (len, list);
1764 back = Fcdr (tem);
1765 Fsetcdr (tem, Qnil);
1766
1767 GCPRO2 (front, back);
1768 front = Fsort (front, predicate);
1769 back = Fsort (back, predicate);
1770 UNGCPRO;
1771 return merge (front, back, predicate);
1772 }
1773
1774 Lisp_Object
1775 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1776 {
1777 Lisp_Object value;
1778 register Lisp_Object tail;
1779 Lisp_Object tem;
1780 register Lisp_Object l1, l2;
1781 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1782
1783 l1 = org_l1;
1784 l2 = org_l2;
1785 tail = Qnil;
1786 value = Qnil;
1787
1788 /* It is sufficient to protect org_l1 and org_l2.
1789 When l1 and l2 are updated, we copy the new values
1790 back into the org_ vars. */
1791 GCPRO4 (org_l1, org_l2, pred, value);
1792
1793 while (1)
1794 {
1795 if (NILP (l1))
1796 {
1797 UNGCPRO;
1798 if (NILP (tail))
1799 return l2;
1800 Fsetcdr (tail, l2);
1801 return value;
1802 }
1803 if (NILP (l2))
1804 {
1805 UNGCPRO;
1806 if (NILP (tail))
1807 return l1;
1808 Fsetcdr (tail, l1);
1809 return value;
1810 }
1811 tem = call2 (pred, Fcar (l2), Fcar (l1));
1812 if (NILP (tem))
1813 {
1814 tem = l1;
1815 l1 = Fcdr (l1);
1816 org_l1 = l1;
1817 }
1818 else
1819 {
1820 tem = l2;
1821 l2 = Fcdr (l2);
1822 org_l2 = l2;
1823 }
1824 if (NILP (tail))
1825 value = tem;
1826 else
1827 Fsetcdr (tail, tem);
1828 tail = tem;
1829 }
1830 }
1831
1832 \f
1833 /* This does not check for quits. That is safe since it must terminate. */
1834
1835 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1836 doc: /* Extract a value from a property list.
1837 PLIST is a property list, which is a list of the form
1838 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1839 corresponding to the given PROP, or nil if PROP is not one of the
1840 properties on the list. This function never signals an error. */)
1841 (Lisp_Object plist, Lisp_Object prop)
1842 {
1843 Lisp_Object tail, halftail;
1844
1845 /* halftail is used to detect circular lists. */
1846 tail = halftail = plist;
1847 while (CONSP (tail) && CONSP (XCDR (tail)))
1848 {
1849 if (EQ (prop, XCAR (tail)))
1850 return XCAR (XCDR (tail));
1851
1852 tail = XCDR (XCDR (tail));
1853 halftail = XCDR (halftail);
1854 if (EQ (tail, halftail))
1855 break;
1856
1857 #if 0 /* Unsafe version. */
1858 /* This function can be called asynchronously
1859 (setup_coding_system). Don't QUIT in that case. */
1860 if (!interrupt_input_blocked)
1861 QUIT;
1862 #endif
1863 }
1864
1865 return Qnil;
1866 }
1867
1868 DEFUN ("get", Fget, Sget, 2, 2, 0,
1869 doc: /* Return the value of SYMBOL's PROPNAME property.
1870 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1871 (Lisp_Object symbol, Lisp_Object propname)
1872 {
1873 CHECK_SYMBOL (symbol);
1874 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1875 }
1876
1877 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1878 doc: /* Change value in PLIST of PROP to VAL.
1879 PLIST is a property list, which is a list of the form
1880 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1881 If PROP is already a property on the list, its value is set to VAL,
1882 otherwise the new PROP VAL pair is added. The new plist is returned;
1883 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1884 The PLIST is modified by side effects. */)
1885 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1886 {
1887 register Lisp_Object tail, prev;
1888 Lisp_Object newcell;
1889 prev = Qnil;
1890 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1891 tail = XCDR (XCDR (tail)))
1892 {
1893 if (EQ (prop, XCAR (tail)))
1894 {
1895 Fsetcar (XCDR (tail), val);
1896 return plist;
1897 }
1898
1899 prev = tail;
1900 QUIT;
1901 }
1902 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1903 if (NILP (prev))
1904 return newcell;
1905 else
1906 Fsetcdr (XCDR (prev), newcell);
1907 return plist;
1908 }
1909
1910 DEFUN ("put", Fput, Sput, 3, 3, 0,
1911 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1912 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1913 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1914 {
1915 CHECK_SYMBOL (symbol);
1916 XSYMBOL (symbol)->plist
1917 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1918 return value;
1919 }
1920 \f
1921 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1922 doc: /* Extract a value from a property list, comparing with `equal'.
1923 PLIST is a property list, which is a list of the form
1924 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1925 corresponding to the given PROP, or nil if PROP is not
1926 one of the properties on the list. */)
1927 (Lisp_Object plist, Lisp_Object prop)
1928 {
1929 Lisp_Object tail;
1930
1931 for (tail = plist;
1932 CONSP (tail) && CONSP (XCDR (tail));
1933 tail = XCDR (XCDR (tail)))
1934 {
1935 if (! NILP (Fequal (prop, XCAR (tail))))
1936 return XCAR (XCDR (tail));
1937
1938 QUIT;
1939 }
1940
1941 CHECK_LIST_END (tail, prop);
1942
1943 return Qnil;
1944 }
1945
1946 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1947 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1948 PLIST is a property list, which is a list of the form
1949 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1950 If PROP is already a property on the list, its value is set to VAL,
1951 otherwise the new PROP VAL pair is added. The new plist is returned;
1952 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1953 The PLIST is modified by side effects. */)
1954 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1955 {
1956 register Lisp_Object tail, prev;
1957 Lisp_Object newcell;
1958 prev = Qnil;
1959 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1960 tail = XCDR (XCDR (tail)))
1961 {
1962 if (! NILP (Fequal (prop, XCAR (tail))))
1963 {
1964 Fsetcar (XCDR (tail), val);
1965 return plist;
1966 }
1967
1968 prev = tail;
1969 QUIT;
1970 }
1971 newcell = Fcons (prop, Fcons (val, Qnil));
1972 if (NILP (prev))
1973 return newcell;
1974 else
1975 Fsetcdr (XCDR (prev), newcell);
1976 return plist;
1977 }
1978 \f
1979 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1980 doc: /* Return t if the two args are the same Lisp object.
1981 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1982 (Lisp_Object obj1, Lisp_Object obj2)
1983 {
1984 if (FLOATP (obj1))
1985 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1986 else
1987 return EQ (obj1, obj2) ? Qt : Qnil;
1988 }
1989
1990 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1991 doc: /* Return t if two Lisp objects have similar structure and contents.
1992 They must have the same data type.
1993 Conses are compared by comparing the cars and the cdrs.
1994 Vectors and strings are compared element by element.
1995 Numbers are compared by value, but integers cannot equal floats.
1996 (Use `=' if you want integers and floats to be able to be equal.)
1997 Symbols must match exactly. */)
1998 (register Lisp_Object o1, Lisp_Object o2)
1999 {
2000 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2001 }
2002
2003 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2004 doc: /* Return t if two Lisp objects have similar structure and contents.
2005 This is like `equal' except that it compares the text properties
2006 of strings. (`equal' ignores text properties.) */)
2007 (register Lisp_Object o1, Lisp_Object o2)
2008 {
2009 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2010 }
2011
2012 /* DEPTH is current depth of recursion. Signal an error if it
2013 gets too deep.
2014 PROPS, if non-nil, means compare string text properties too. */
2015
2016 static int
2017 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2018 {
2019 if (depth > 200)
2020 error ("Stack overflow in equal");
2021
2022 tail_recurse:
2023 QUIT;
2024 if (EQ (o1, o2))
2025 return 1;
2026 if (XTYPE (o1) != XTYPE (o2))
2027 return 0;
2028
2029 switch (XTYPE (o1))
2030 {
2031 case Lisp_Float:
2032 {
2033 double d1, d2;
2034
2035 d1 = extract_float (o1);
2036 d2 = extract_float (o2);
2037 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2038 though they are not =. */
2039 return d1 == d2 || (d1 != d1 && d2 != d2);
2040 }
2041
2042 case Lisp_Cons:
2043 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2044 return 0;
2045 o1 = XCDR (o1);
2046 o2 = XCDR (o2);
2047 goto tail_recurse;
2048
2049 case Lisp_Misc:
2050 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2051 return 0;
2052 if (OVERLAYP (o1))
2053 {
2054 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2055 depth + 1, props)
2056 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2057 depth + 1, props))
2058 return 0;
2059 o1 = XOVERLAY (o1)->plist;
2060 o2 = XOVERLAY (o2)->plist;
2061 goto tail_recurse;
2062 }
2063 if (MARKERP (o1))
2064 {
2065 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2066 && (XMARKER (o1)->buffer == 0
2067 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2068 }
2069 break;
2070
2071 case Lisp_Vectorlike:
2072 {
2073 register int i;
2074 EMACS_INT size = ASIZE (o1);
2075 /* Pseudovectors have the type encoded in the size field, so this test
2076 actually checks that the objects have the same type as well as the
2077 same size. */
2078 if (ASIZE (o2) != size)
2079 return 0;
2080 /* Boolvectors are compared much like strings. */
2081 if (BOOL_VECTOR_P (o1))
2082 {
2083 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2084 return 0;
2085 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2086 ((XBOOL_VECTOR (o1)->size
2087 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2088 / BOOL_VECTOR_BITS_PER_CHAR)))
2089 return 0;
2090 return 1;
2091 }
2092 if (WINDOW_CONFIGURATIONP (o1))
2093 return compare_window_configurations (o1, o2, 0);
2094
2095 /* Aside from them, only true vectors, char-tables, compiled
2096 functions, and fonts (font-spec, font-entity, font-object)
2097 are sensible to compare, so eliminate the others now. */
2098 if (size & PSEUDOVECTOR_FLAG)
2099 {
2100 if (!(size & (PVEC_COMPILED
2101 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2102 return 0;
2103 size &= PSEUDOVECTOR_SIZE_MASK;
2104 }
2105 for (i = 0; i < size; i++)
2106 {
2107 Lisp_Object v1, v2;
2108 v1 = AREF (o1, i);
2109 v2 = AREF (o2, i);
2110 if (!internal_equal (v1, v2, depth + 1, props))
2111 return 0;
2112 }
2113 return 1;
2114 }
2115 break;
2116
2117 case Lisp_String:
2118 if (SCHARS (o1) != SCHARS (o2))
2119 return 0;
2120 if (SBYTES (o1) != SBYTES (o2))
2121 return 0;
2122 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2123 return 0;
2124 if (props && !compare_string_intervals (o1, o2))
2125 return 0;
2126 return 1;
2127
2128 default:
2129 break;
2130 }
2131
2132 return 0;
2133 }
2134 \f
2135
2136 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2137 doc: /* Store each element of ARRAY with ITEM.
2138 ARRAY is a vector, string, char-table, or bool-vector. */)
2139 (Lisp_Object array, Lisp_Object item)
2140 {
2141 register EMACS_INT size, idx;
2142 int charval;
2143
2144 if (VECTORP (array))
2145 {
2146 register Lisp_Object *p = XVECTOR (array)->contents;
2147 size = ASIZE (array);
2148 for (idx = 0; idx < size; idx++)
2149 p[idx] = item;
2150 }
2151 else if (CHAR_TABLE_P (array))
2152 {
2153 int i;
2154
2155 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2156 XCHAR_TABLE (array)->contents[i] = item;
2157 XCHAR_TABLE (array)->defalt = item;
2158 }
2159 else if (STRINGP (array))
2160 {
2161 register unsigned char *p = SDATA (array);
2162 CHECK_NUMBER (item);
2163 charval = XINT (item);
2164 size = SCHARS (array);
2165 if (STRING_MULTIBYTE (array))
2166 {
2167 unsigned char str[MAX_MULTIBYTE_LENGTH];
2168 int len = CHAR_STRING (charval, str);
2169 EMACS_INT size_byte = SBYTES (array);
2170 unsigned char *p1 = p, *endp = p + size_byte;
2171 int i;
2172
2173 if (size != size_byte)
2174 while (p1 < endp)
2175 {
2176 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2177 if (len != this_len)
2178 error ("Attempt to change byte length of a string");
2179 p1 += this_len;
2180 }
2181 for (i = 0; i < size_byte; i++)
2182 *p++ = str[i % len];
2183 }
2184 else
2185 for (idx = 0; idx < size; idx++)
2186 p[idx] = charval;
2187 }
2188 else if (BOOL_VECTOR_P (array))
2189 {
2190 register unsigned char *p = XBOOL_VECTOR (array)->data;
2191 int size_in_chars
2192 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2193 / BOOL_VECTOR_BITS_PER_CHAR);
2194
2195 charval = (! NILP (item) ? -1 : 0);
2196 for (idx = 0; idx < size_in_chars - 1; idx++)
2197 p[idx] = charval;
2198 if (idx < size_in_chars)
2199 {
2200 /* Mask out bits beyond the vector size. */
2201 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2202 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2203 p[idx] = charval;
2204 }
2205 }
2206 else
2207 wrong_type_argument (Qarrayp, array);
2208 return array;
2209 }
2210
2211 DEFUN ("clear-string", Fclear_string, Sclear_string,
2212 1, 1, 0,
2213 doc: /* Clear the contents of STRING.
2214 This makes STRING unibyte and may change its length. */)
2215 (Lisp_Object string)
2216 {
2217 EMACS_INT len;
2218 CHECK_STRING (string);
2219 len = SBYTES (string);
2220 memset (SDATA (string), 0, len);
2221 STRING_SET_CHARS (string, len);
2222 STRING_SET_UNIBYTE (string);
2223 return Qnil;
2224 }
2225 \f
2226 /* ARGSUSED */
2227 Lisp_Object
2228 nconc2 (Lisp_Object s1, Lisp_Object s2)
2229 {
2230 Lisp_Object args[2];
2231 args[0] = s1;
2232 args[1] = s2;
2233 return Fnconc (2, args);
2234 }
2235
2236 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2237 doc: /* Concatenate any number of lists by altering them.
2238 Only the last argument is not altered, and need not be a list.
2239 usage: (nconc &rest LISTS) */)
2240 (ptrdiff_t nargs, Lisp_Object *args)
2241 {
2242 ptrdiff_t argnum;
2243 register Lisp_Object tail, tem, val;
2244
2245 val = tail = Qnil;
2246
2247 for (argnum = 0; argnum < nargs; argnum++)
2248 {
2249 tem = args[argnum];
2250 if (NILP (tem)) continue;
2251
2252 if (NILP (val))
2253 val = tem;
2254
2255 if (argnum + 1 == nargs) break;
2256
2257 CHECK_LIST_CONS (tem, tem);
2258
2259 while (CONSP (tem))
2260 {
2261 tail = tem;
2262 tem = XCDR (tail);
2263 QUIT;
2264 }
2265
2266 tem = args[argnum + 1];
2267 Fsetcdr (tail, tem);
2268 if (NILP (tem))
2269 args[argnum + 1] = tail;
2270 }
2271
2272 return val;
2273 }
2274 \f
2275 /* This is the guts of all mapping functions.
2276 Apply FN to each element of SEQ, one by one,
2277 storing the results into elements of VALS, a C vector of Lisp_Objects.
2278 LENI is the length of VALS, which should also be the length of SEQ. */
2279
2280 static void
2281 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2282 {
2283 register Lisp_Object tail;
2284 Lisp_Object dummy;
2285 register EMACS_INT i;
2286 struct gcpro gcpro1, gcpro2, gcpro3;
2287
2288 if (vals)
2289 {
2290 /* Don't let vals contain any garbage when GC happens. */
2291 for (i = 0; i < leni; i++)
2292 vals[i] = Qnil;
2293
2294 GCPRO3 (dummy, fn, seq);
2295 gcpro1.var = vals;
2296 gcpro1.nvars = leni;
2297 }
2298 else
2299 GCPRO2 (fn, seq);
2300 /* We need not explicitly protect `tail' because it is used only on lists, and
2301 1) lists are not relocated and 2) the list is marked via `seq' so will not
2302 be freed */
2303
2304 if (VECTORP (seq) || COMPILEDP (seq))
2305 {
2306 for (i = 0; i < leni; i++)
2307 {
2308 dummy = call1 (fn, AREF (seq, i));
2309 if (vals)
2310 vals[i] = dummy;
2311 }
2312 }
2313 else if (BOOL_VECTOR_P (seq))
2314 {
2315 for (i = 0; i < leni; i++)
2316 {
2317 int byte;
2318 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2319 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2320 dummy = call1 (fn, dummy);
2321 if (vals)
2322 vals[i] = dummy;
2323 }
2324 }
2325 else if (STRINGP (seq))
2326 {
2327 EMACS_INT i_byte;
2328
2329 for (i = 0, i_byte = 0; i < leni;)
2330 {
2331 int c;
2332 EMACS_INT i_before = i;
2333
2334 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2335 XSETFASTINT (dummy, c);
2336 dummy = call1 (fn, dummy);
2337 if (vals)
2338 vals[i_before] = dummy;
2339 }
2340 }
2341 else /* Must be a list, since Flength did not get an error */
2342 {
2343 tail = seq;
2344 for (i = 0; i < leni && CONSP (tail); i++)
2345 {
2346 dummy = call1 (fn, XCAR (tail));
2347 if (vals)
2348 vals[i] = dummy;
2349 tail = XCDR (tail);
2350 }
2351 }
2352
2353 UNGCPRO;
2354 }
2355
2356 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2357 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2358 In between each pair of results, stick in SEPARATOR. Thus, " " as
2359 SEPARATOR results in spaces between the values returned by FUNCTION.
2360 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2361 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2362 {
2363 Lisp_Object len;
2364 register EMACS_INT leni;
2365 ptrdiff_t i, nargs;
2366 register Lisp_Object *args;
2367 struct gcpro gcpro1;
2368 Lisp_Object ret;
2369 USE_SAFE_ALLOCA;
2370
2371 len = Flength (sequence);
2372 if (CHAR_TABLE_P (sequence))
2373 wrong_type_argument (Qlistp, sequence);
2374 leni = XINT (len);
2375 nargs = leni + leni - 1;
2376 if (nargs < 0) return empty_unibyte_string;
2377
2378 SAFE_ALLOCA_LISP (args, nargs);
2379
2380 GCPRO1 (separator);
2381 mapcar1 (leni, args, function, sequence);
2382 UNGCPRO;
2383
2384 for (i = leni - 1; i > 0; i--)
2385 args[i + i] = args[i];
2386
2387 for (i = 1; i < nargs; i += 2)
2388 args[i] = separator;
2389
2390 ret = Fconcat (nargs, args);
2391 SAFE_FREE ();
2392
2393 return ret;
2394 }
2395
2396 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2397 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2398 The result is a list just as long as SEQUENCE.
2399 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2400 (Lisp_Object function, Lisp_Object sequence)
2401 {
2402 register Lisp_Object len;
2403 register EMACS_INT leni;
2404 register Lisp_Object *args;
2405 Lisp_Object ret;
2406 USE_SAFE_ALLOCA;
2407
2408 len = Flength (sequence);
2409 if (CHAR_TABLE_P (sequence))
2410 wrong_type_argument (Qlistp, sequence);
2411 leni = XFASTINT (len);
2412
2413 SAFE_ALLOCA_LISP (args, leni);
2414
2415 mapcar1 (leni, args, function, sequence);
2416
2417 ret = Flist (leni, args);
2418 SAFE_FREE ();
2419
2420 return ret;
2421 }
2422
2423 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2424 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2425 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2426 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2427 (Lisp_Object function, Lisp_Object sequence)
2428 {
2429 register EMACS_INT leni;
2430
2431 leni = XFASTINT (Flength (sequence));
2432 if (CHAR_TABLE_P (sequence))
2433 wrong_type_argument (Qlistp, sequence);
2434 mapcar1 (leni, 0, function, sequence);
2435
2436 return sequence;
2437 }
2438 \f
2439 /* This is how C code calls `yes-or-no-p' and allows the user
2440 to redefined it.
2441
2442 Anything that calls this function must protect from GC! */
2443
2444 Lisp_Object
2445 do_yes_or_no_p (Lisp_Object prompt)
2446 {
2447 return call1 (intern ("yes-or-no-p"), prompt);
2448 }
2449
2450 /* Anything that calls this function must protect from GC! */
2451
2452 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2453 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2454 PROMPT is the string to display to ask the question. It should end in
2455 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2456
2457 The user must confirm the answer with RET, and can edit it until it
2458 has been confirmed.
2459
2460 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2461 is nil, and `use-dialog-box' is non-nil. */)
2462 (Lisp_Object prompt)
2463 {
2464 register Lisp_Object ans;
2465 Lisp_Object args[2];
2466 struct gcpro gcpro1;
2467
2468 CHECK_STRING (prompt);
2469
2470 #ifdef HAVE_MENUS
2471 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2472 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2473 && use_dialog_box
2474 && have_menus_p ())
2475 {
2476 Lisp_Object pane, menu, obj;
2477 redisplay_preserve_echo_area (4);
2478 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2479 Fcons (Fcons (build_string ("No"), Qnil),
2480 Qnil));
2481 GCPRO1 (pane);
2482 menu = Fcons (prompt, pane);
2483 obj = Fx_popup_dialog (Qt, menu, Qnil);
2484 UNGCPRO;
2485 return obj;
2486 }
2487 #endif /* HAVE_MENUS */
2488
2489 args[0] = prompt;
2490 args[1] = build_string ("(yes or no) ");
2491 prompt = Fconcat (2, args);
2492
2493 GCPRO1 (prompt);
2494
2495 while (1)
2496 {
2497 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2498 Qyes_or_no_p_history, Qnil,
2499 Qnil));
2500 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2501 {
2502 UNGCPRO;
2503 return Qt;
2504 }
2505 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2506 {
2507 UNGCPRO;
2508 return Qnil;
2509 }
2510
2511 Fding (Qnil);
2512 Fdiscard_input ();
2513 message ("Please answer yes or no.");
2514 Fsleep_for (make_number (2), Qnil);
2515 }
2516 }
2517 \f
2518 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2519 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2520
2521 Each of the three load averages is multiplied by 100, then converted
2522 to integer.
2523
2524 When USE-FLOATS is non-nil, floats will be used instead of integers.
2525 These floats are not multiplied by 100.
2526
2527 If the 5-minute or 15-minute load averages are not available, return a
2528 shortened list, containing only those averages which are available.
2529
2530 An error is thrown if the load average can't be obtained. In some
2531 cases making it work would require Emacs being installed setuid or
2532 setgid so that it can read kernel information, and that usually isn't
2533 advisable. */)
2534 (Lisp_Object use_floats)
2535 {
2536 double load_ave[3];
2537 int loads = getloadavg (load_ave, 3);
2538 Lisp_Object ret = Qnil;
2539
2540 if (loads < 0)
2541 error ("load-average not implemented for this operating system");
2542
2543 while (loads-- > 0)
2544 {
2545 Lisp_Object load = (NILP (use_floats)
2546 ? make_number (100.0 * load_ave[loads])
2547 : make_float (load_ave[loads]));
2548 ret = Fcons (load, ret);
2549 }
2550
2551 return ret;
2552 }
2553 \f
2554 static Lisp_Object Qsubfeatures;
2555
2556 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2557 doc: /* Return t if FEATURE is present in this Emacs.
2558
2559 Use this to conditionalize execution of lisp code based on the
2560 presence or absence of Emacs or environment extensions.
2561 Use `provide' to declare that a feature is available. This function
2562 looks at the value of the variable `features'. The optional argument
2563 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2564 (Lisp_Object feature, Lisp_Object subfeature)
2565 {
2566 register Lisp_Object tem;
2567 CHECK_SYMBOL (feature);
2568 tem = Fmemq (feature, Vfeatures);
2569 if (!NILP (tem) && !NILP (subfeature))
2570 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2571 return (NILP (tem)) ? Qnil : Qt;
2572 }
2573
2574 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2575 doc: /* Announce that FEATURE is a feature of the current Emacs.
2576 The optional argument SUBFEATURES should be a list of symbols listing
2577 particular subfeatures supported in this version of FEATURE. */)
2578 (Lisp_Object feature, Lisp_Object subfeatures)
2579 {
2580 register Lisp_Object tem;
2581 CHECK_SYMBOL (feature);
2582 CHECK_LIST (subfeatures);
2583 if (!NILP (Vautoload_queue))
2584 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2585 Vautoload_queue);
2586 tem = Fmemq (feature, Vfeatures);
2587 if (NILP (tem))
2588 Vfeatures = Fcons (feature, Vfeatures);
2589 if (!NILP (subfeatures))
2590 Fput (feature, Qsubfeatures, subfeatures);
2591 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2592
2593 /* Run any load-hooks for this file. */
2594 tem = Fassq (feature, Vafter_load_alist);
2595 if (CONSP (tem))
2596 Fprogn (XCDR (tem));
2597
2598 return feature;
2599 }
2600 \f
2601 /* `require' and its subroutines. */
2602
2603 /* List of features currently being require'd, innermost first. */
2604
2605 static Lisp_Object require_nesting_list;
2606
2607 static Lisp_Object
2608 require_unwind (Lisp_Object old_value)
2609 {
2610 return require_nesting_list = old_value;
2611 }
2612
2613 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2614 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2615 If FEATURE is not a member of the list `features', then the feature
2616 is not loaded; so load the file FILENAME.
2617 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2618 and `load' will try to load this name appended with the suffix `.elc' or
2619 `.el', in that order. The name without appended suffix will not be used.
2620 If the optional third argument NOERROR is non-nil,
2621 then return nil if the file is not found instead of signaling an error.
2622 Normally the return value is FEATURE.
2623 The normal messages at start and end of loading FILENAME are suppressed. */)
2624 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2625 {
2626 register Lisp_Object tem;
2627 struct gcpro gcpro1, gcpro2;
2628 int from_file = load_in_progress;
2629
2630 CHECK_SYMBOL (feature);
2631
2632 /* Record the presence of `require' in this file
2633 even if the feature specified is already loaded.
2634 But not more than once in any file,
2635 and not when we aren't loading or reading from a file. */
2636 if (!from_file)
2637 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2638 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2639 from_file = 1;
2640
2641 if (from_file)
2642 {
2643 tem = Fcons (Qrequire, feature);
2644 if (NILP (Fmember (tem, Vcurrent_load_list)))
2645 LOADHIST_ATTACH (tem);
2646 }
2647 tem = Fmemq (feature, Vfeatures);
2648
2649 if (NILP (tem))
2650 {
2651 int count = SPECPDL_INDEX ();
2652 int nesting = 0;
2653
2654 /* This is to make sure that loadup.el gives a clear picture
2655 of what files are preloaded and when. */
2656 if (! NILP (Vpurify_flag))
2657 error ("(require %s) while preparing to dump",
2658 SDATA (SYMBOL_NAME (feature)));
2659
2660 /* A certain amount of recursive `require' is legitimate,
2661 but if we require the same feature recursively 3 times,
2662 signal an error. */
2663 tem = require_nesting_list;
2664 while (! NILP (tem))
2665 {
2666 if (! NILP (Fequal (feature, XCAR (tem))))
2667 nesting++;
2668 tem = XCDR (tem);
2669 }
2670 if (nesting > 3)
2671 error ("Recursive `require' for feature `%s'",
2672 SDATA (SYMBOL_NAME (feature)));
2673
2674 /* Update the list for any nested `require's that occur. */
2675 record_unwind_protect (require_unwind, require_nesting_list);
2676 require_nesting_list = Fcons (feature, require_nesting_list);
2677
2678 /* Value saved here is to be restored into Vautoload_queue */
2679 record_unwind_protect (un_autoload, Vautoload_queue);
2680 Vautoload_queue = Qt;
2681
2682 /* Load the file. */
2683 GCPRO2 (feature, filename);
2684 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2685 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2686 UNGCPRO;
2687
2688 /* If load failed entirely, return nil. */
2689 if (NILP (tem))
2690 return unbind_to (count, Qnil);
2691
2692 tem = Fmemq (feature, Vfeatures);
2693 if (NILP (tem))
2694 error ("Required feature `%s' was not provided",
2695 SDATA (SYMBOL_NAME (feature)));
2696
2697 /* Once loading finishes, don't undo it. */
2698 Vautoload_queue = Qt;
2699 feature = unbind_to (count, feature);
2700 }
2701
2702 return feature;
2703 }
2704 \f
2705 /* Primitives for work of the "widget" library.
2706 In an ideal world, this section would not have been necessary.
2707 However, lisp function calls being as slow as they are, it turns
2708 out that some functions in the widget library (wid-edit.el) are the
2709 bottleneck of Widget operation. Here is their translation to C,
2710 for the sole reason of efficiency. */
2711
2712 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2713 doc: /* Return non-nil if PLIST has the property PROP.
2714 PLIST is a property list, which is a list of the form
2715 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2716 Unlike `plist-get', this allows you to distinguish between a missing
2717 property and a property with the value nil.
2718 The value is actually the tail of PLIST whose car is PROP. */)
2719 (Lisp_Object plist, Lisp_Object prop)
2720 {
2721 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2722 {
2723 QUIT;
2724 plist = XCDR (plist);
2725 plist = CDR (plist);
2726 }
2727 return plist;
2728 }
2729
2730 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2731 doc: /* In WIDGET, set PROPERTY to VALUE.
2732 The value can later be retrieved with `widget-get'. */)
2733 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2734 {
2735 CHECK_CONS (widget);
2736 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2737 return value;
2738 }
2739
2740 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2741 doc: /* In WIDGET, get the value of PROPERTY.
2742 The value could either be specified when the widget was created, or
2743 later with `widget-put'. */)
2744 (Lisp_Object widget, Lisp_Object property)
2745 {
2746 Lisp_Object tmp;
2747
2748 while (1)
2749 {
2750 if (NILP (widget))
2751 return Qnil;
2752 CHECK_CONS (widget);
2753 tmp = Fplist_member (XCDR (widget), property);
2754 if (CONSP (tmp))
2755 {
2756 tmp = XCDR (tmp);
2757 return CAR (tmp);
2758 }
2759 tmp = XCAR (widget);
2760 if (NILP (tmp))
2761 return Qnil;
2762 widget = Fget (tmp, Qwidget_type);
2763 }
2764 }
2765
2766 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2767 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2768 ARGS are passed as extra arguments to the function.
2769 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2770 (ptrdiff_t nargs, Lisp_Object *args)
2771 {
2772 /* This function can GC. */
2773 Lisp_Object newargs[3];
2774 struct gcpro gcpro1, gcpro2;
2775 Lisp_Object result;
2776
2777 newargs[0] = Fwidget_get (args[0], args[1]);
2778 newargs[1] = args[0];
2779 newargs[2] = Flist (nargs - 2, args + 2);
2780 GCPRO2 (newargs[0], newargs[2]);
2781 result = Fapply (3, newargs);
2782 UNGCPRO;
2783 return result;
2784 }
2785
2786 #ifdef HAVE_LANGINFO_CODESET
2787 #include <langinfo.h>
2788 #endif
2789
2790 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2791 doc: /* Access locale data ITEM for the current C locale, if available.
2792 ITEM should be one of the following:
2793
2794 `codeset', returning the character set as a string (locale item CODESET);
2795
2796 `days', returning a 7-element vector of day names (locale items DAY_n);
2797
2798 `months', returning a 12-element vector of month names (locale items MON_n);
2799
2800 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2801 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2802
2803 If the system can't provide such information through a call to
2804 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2805
2806 See also Info node `(libc)Locales'.
2807
2808 The data read from the system are decoded using `locale-coding-system'. */)
2809 (Lisp_Object item)
2810 {
2811 char *str = NULL;
2812 #ifdef HAVE_LANGINFO_CODESET
2813 Lisp_Object val;
2814 if (EQ (item, Qcodeset))
2815 {
2816 str = nl_langinfo (CODESET);
2817 return build_string (str);
2818 }
2819 #ifdef DAY_1
2820 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2821 {
2822 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2823 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2824 int i;
2825 struct gcpro gcpro1;
2826 GCPRO1 (v);
2827 synchronize_system_time_locale ();
2828 for (i = 0; i < 7; i++)
2829 {
2830 str = nl_langinfo (days[i]);
2831 val = make_unibyte_string (str, strlen (str));
2832 /* Fixme: Is this coding system necessarily right, even if
2833 it is consistent with CODESET? If not, what to do? */
2834 Faset (v, make_number (i),
2835 code_convert_string_norecord (val, Vlocale_coding_system,
2836 0));
2837 }
2838 UNGCPRO;
2839 return v;
2840 }
2841 #endif /* DAY_1 */
2842 #ifdef MON_1
2843 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2844 {
2845 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2846 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2847 MON_8, MON_9, MON_10, MON_11, MON_12};
2848 int i;
2849 struct gcpro gcpro1;
2850 GCPRO1 (v);
2851 synchronize_system_time_locale ();
2852 for (i = 0; i < 12; i++)
2853 {
2854 str = nl_langinfo (months[i]);
2855 val = make_unibyte_string (str, strlen (str));
2856 Faset (v, make_number (i),
2857 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2858 }
2859 UNGCPRO;
2860 return v;
2861 }
2862 #endif /* MON_1 */
2863 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2864 but is in the locale files. This could be used by ps-print. */
2865 #ifdef PAPER_WIDTH
2866 else if (EQ (item, Qpaper))
2867 {
2868 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2869 make_number (nl_langinfo (PAPER_HEIGHT)));
2870 }
2871 #endif /* PAPER_WIDTH */
2872 #endif /* HAVE_LANGINFO_CODESET*/
2873 return Qnil;
2874 }
2875 \f
2876 /* base64 encode/decode functions (RFC 2045).
2877 Based on code from GNU recode. */
2878
2879 #define MIME_LINE_LENGTH 76
2880
2881 #define IS_ASCII(Character) \
2882 ((Character) < 128)
2883 #define IS_BASE64(Character) \
2884 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2885 #define IS_BASE64_IGNORABLE(Character) \
2886 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2887 || (Character) == '\f' || (Character) == '\r')
2888
2889 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2890 character or return retval if there are no characters left to
2891 process. */
2892 #define READ_QUADRUPLET_BYTE(retval) \
2893 do \
2894 { \
2895 if (i == length) \
2896 { \
2897 if (nchars_return) \
2898 *nchars_return = nchars; \
2899 return (retval); \
2900 } \
2901 c = from[i++]; \
2902 } \
2903 while (IS_BASE64_IGNORABLE (c))
2904
2905 /* Table of characters coding the 64 values. */
2906 static const char base64_value_to_char[64] =
2907 {
2908 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2909 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2910 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2911 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2912 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2913 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2914 '8', '9', '+', '/' /* 60-63 */
2915 };
2916
2917 /* Table of base64 values for first 128 characters. */
2918 static const short base64_char_to_value[128] =
2919 {
2920 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2921 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2922 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2923 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2924 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2925 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2926 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2927 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2928 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2929 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2930 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2931 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2932 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2933 };
2934
2935 /* The following diagram shows the logical steps by which three octets
2936 get transformed into four base64 characters.
2937
2938 .--------. .--------. .--------.
2939 |aaaaaabb| |bbbbcccc| |ccdddddd|
2940 `--------' `--------' `--------'
2941 6 2 4 4 2 6
2942 .--------+--------+--------+--------.
2943 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2944 `--------+--------+--------+--------'
2945
2946 .--------+--------+--------+--------.
2947 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2948 `--------+--------+--------+--------'
2949
2950 The octets are divided into 6 bit chunks, which are then encoded into
2951 base64 characters. */
2952
2953
2954 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2955 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2956 EMACS_INT *);
2957
2958 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2959 2, 3, "r",
2960 doc: /* Base64-encode the region between BEG and END.
2961 Return the length of the encoded text.
2962 Optional third argument NO-LINE-BREAK means do not break long lines
2963 into shorter lines. */)
2964 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2965 {
2966 char *encoded;
2967 EMACS_INT allength, length;
2968 EMACS_INT ibeg, iend, encoded_length;
2969 EMACS_INT old_pos = PT;
2970 USE_SAFE_ALLOCA;
2971
2972 validate_region (&beg, &end);
2973
2974 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2975 iend = CHAR_TO_BYTE (XFASTINT (end));
2976 move_gap_both (XFASTINT (beg), ibeg);
2977
2978 /* We need to allocate enough room for encoding the text.
2979 We need 33 1/3% more space, plus a newline every 76
2980 characters, and then we round up. */
2981 length = iend - ibeg;
2982 allength = length + length/3 + 1;
2983 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2984
2985 SAFE_ALLOCA (encoded, char *, allength);
2986 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2987 encoded, length, NILP (no_line_break),
2988 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2989 if (encoded_length > allength)
2990 abort ();
2991
2992 if (encoded_length < 0)
2993 {
2994 /* The encoding wasn't possible. */
2995 SAFE_FREE ();
2996 error ("Multibyte character in data for base64 encoding");
2997 }
2998
2999 /* Now we have encoded the region, so we insert the new contents
3000 and delete the old. (Insert first in order to preserve markers.) */
3001 SET_PT_BOTH (XFASTINT (beg), ibeg);
3002 insert (encoded, encoded_length);
3003 SAFE_FREE ();
3004 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3005
3006 /* If point was outside of the region, restore it exactly; else just
3007 move to the beginning of the region. */
3008 if (old_pos >= XFASTINT (end))
3009 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3010 else if (old_pos > XFASTINT (beg))
3011 old_pos = XFASTINT (beg);
3012 SET_PT (old_pos);
3013
3014 /* We return the length of the encoded text. */
3015 return make_number (encoded_length);
3016 }
3017
3018 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3019 1, 2, 0,
3020 doc: /* Base64-encode STRING and return the result.
3021 Optional second argument NO-LINE-BREAK means do not break long lines
3022 into shorter lines. */)
3023 (Lisp_Object string, Lisp_Object no_line_break)
3024 {
3025 EMACS_INT allength, length, encoded_length;
3026 char *encoded;
3027 Lisp_Object encoded_string;
3028 USE_SAFE_ALLOCA;
3029
3030 CHECK_STRING (string);
3031
3032 /* We need to allocate enough room for encoding the text.
3033 We need 33 1/3% more space, plus a newline every 76
3034 characters, and then we round up. */
3035 length = SBYTES (string);
3036 allength = length + length/3 + 1;
3037 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3038
3039 /* We need to allocate enough room for decoding the text. */
3040 SAFE_ALLOCA (encoded, char *, allength);
3041
3042 encoded_length = base64_encode_1 (SSDATA (string),
3043 encoded, length, NILP (no_line_break),
3044 STRING_MULTIBYTE (string));
3045 if (encoded_length > allength)
3046 abort ();
3047
3048 if (encoded_length < 0)
3049 {
3050 /* The encoding wasn't possible. */
3051 SAFE_FREE ();
3052 error ("Multibyte character in data for base64 encoding");
3053 }
3054
3055 encoded_string = make_unibyte_string (encoded, encoded_length);
3056 SAFE_FREE ();
3057
3058 return encoded_string;
3059 }
3060
3061 static EMACS_INT
3062 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3063 int line_break, int multibyte)
3064 {
3065 int counter = 0;
3066 EMACS_INT i = 0;
3067 char *e = to;
3068 int c;
3069 unsigned int value;
3070 int bytes;
3071
3072 while (i < length)
3073 {
3074 if (multibyte)
3075 {
3076 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3077 if (CHAR_BYTE8_P (c))
3078 c = CHAR_TO_BYTE8 (c);
3079 else if (c >= 256)
3080 return -1;
3081 i += bytes;
3082 }
3083 else
3084 c = from[i++];
3085
3086 /* Wrap line every 76 characters. */
3087
3088 if (line_break)
3089 {
3090 if (counter < MIME_LINE_LENGTH / 4)
3091 counter++;
3092 else
3093 {
3094 *e++ = '\n';
3095 counter = 1;
3096 }
3097 }
3098
3099 /* Process first byte of a triplet. */
3100
3101 *e++ = base64_value_to_char[0x3f & c >> 2];
3102 value = (0x03 & c) << 4;
3103
3104 /* Process second byte of a triplet. */
3105
3106 if (i == length)
3107 {
3108 *e++ = base64_value_to_char[value];
3109 *e++ = '=';
3110 *e++ = '=';
3111 break;
3112 }
3113
3114 if (multibyte)
3115 {
3116 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3117 if (CHAR_BYTE8_P (c))
3118 c = CHAR_TO_BYTE8 (c);
3119 else if (c >= 256)
3120 return -1;
3121 i += bytes;
3122 }
3123 else
3124 c = from[i++];
3125
3126 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3127 value = (0x0f & c) << 2;
3128
3129 /* Process third byte of a triplet. */
3130
3131 if (i == length)
3132 {
3133 *e++ = base64_value_to_char[value];
3134 *e++ = '=';
3135 break;
3136 }
3137
3138 if (multibyte)
3139 {
3140 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3141 if (CHAR_BYTE8_P (c))
3142 c = CHAR_TO_BYTE8 (c);
3143 else if (c >= 256)
3144 return -1;
3145 i += bytes;
3146 }
3147 else
3148 c = from[i++];
3149
3150 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3151 *e++ = base64_value_to_char[0x3f & c];
3152 }
3153
3154 return e - to;
3155 }
3156
3157
3158 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3159 2, 2, "r",
3160 doc: /* Base64-decode the region between BEG and END.
3161 Return the length of the decoded text.
3162 If the region can't be decoded, signal an error and don't modify the buffer. */)
3163 (Lisp_Object beg, Lisp_Object end)
3164 {
3165 EMACS_INT ibeg, iend, length, allength;
3166 char *decoded;
3167 EMACS_INT old_pos = PT;
3168 EMACS_INT decoded_length;
3169 EMACS_INT inserted_chars;
3170 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3171 USE_SAFE_ALLOCA;
3172
3173 validate_region (&beg, &end);
3174
3175 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3176 iend = CHAR_TO_BYTE (XFASTINT (end));
3177
3178 length = iend - ibeg;
3179
3180 /* We need to allocate enough room for decoding the text. If we are
3181 working on a multibyte buffer, each decoded code may occupy at
3182 most two bytes. */
3183 allength = multibyte ? length * 2 : length;
3184 SAFE_ALLOCA (decoded, char *, allength);
3185
3186 move_gap_both (XFASTINT (beg), ibeg);
3187 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3188 decoded, length,
3189 multibyte, &inserted_chars);
3190 if (decoded_length > allength)
3191 abort ();
3192
3193 if (decoded_length < 0)
3194 {
3195 /* The decoding wasn't possible. */
3196 SAFE_FREE ();
3197 error ("Invalid base64 data");
3198 }
3199
3200 /* Now we have decoded the region, so we insert the new contents
3201 and delete the old. (Insert first in order to preserve markers.) */
3202 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3203 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3204 SAFE_FREE ();
3205
3206 /* Delete the original text. */
3207 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3208 iend + decoded_length, 1);
3209
3210 /* If point was outside of the region, restore it exactly; else just
3211 move to the beginning of the region. */
3212 if (old_pos >= XFASTINT (end))
3213 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3214 else if (old_pos > XFASTINT (beg))
3215 old_pos = XFASTINT (beg);
3216 SET_PT (old_pos > ZV ? ZV : old_pos);
3217
3218 return make_number (inserted_chars);
3219 }
3220
3221 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3222 1, 1, 0,
3223 doc: /* Base64-decode STRING and return the result. */)
3224 (Lisp_Object string)
3225 {
3226 char *decoded;
3227 EMACS_INT length, decoded_length;
3228 Lisp_Object decoded_string;
3229 USE_SAFE_ALLOCA;
3230
3231 CHECK_STRING (string);
3232
3233 length = SBYTES (string);
3234 /* We need to allocate enough room for decoding the text. */
3235 SAFE_ALLOCA (decoded, char *, length);
3236
3237 /* The decoded result should be unibyte. */
3238 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3239 0, NULL);
3240 if (decoded_length > length)
3241 abort ();
3242 else if (decoded_length >= 0)
3243 decoded_string = make_unibyte_string (decoded, decoded_length);
3244 else
3245 decoded_string = Qnil;
3246
3247 SAFE_FREE ();
3248 if (!STRINGP (decoded_string))
3249 error ("Invalid base64 data");
3250
3251 return decoded_string;
3252 }
3253
3254 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3255 MULTIBYTE is nonzero, the decoded result should be in multibyte
3256 form. If NCHARS_RETRUN is not NULL, store the number of produced
3257 characters in *NCHARS_RETURN. */
3258
3259 static EMACS_INT
3260 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3261 int multibyte, EMACS_INT *nchars_return)
3262 {
3263 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3264 char *e = to;
3265 unsigned char c;
3266 unsigned long value;
3267 EMACS_INT nchars = 0;
3268
3269 while (1)
3270 {
3271 /* Process first byte of a quadruplet. */
3272
3273 READ_QUADRUPLET_BYTE (e-to);
3274
3275 if (!IS_BASE64 (c))
3276 return -1;
3277 value = base64_char_to_value[c] << 18;
3278
3279 /* Process second byte of a quadruplet. */
3280
3281 READ_QUADRUPLET_BYTE (-1);
3282
3283 if (!IS_BASE64 (c))
3284 return -1;
3285 value |= base64_char_to_value[c] << 12;
3286
3287 c = (unsigned char) (value >> 16);
3288 if (multibyte && c >= 128)
3289 e += BYTE8_STRING (c, e);
3290 else
3291 *e++ = c;
3292 nchars++;
3293
3294 /* Process third byte of a quadruplet. */
3295
3296 READ_QUADRUPLET_BYTE (-1);
3297
3298 if (c == '=')
3299 {
3300 READ_QUADRUPLET_BYTE (-1);
3301
3302 if (c != '=')
3303 return -1;
3304 continue;
3305 }
3306
3307 if (!IS_BASE64 (c))
3308 return -1;
3309 value |= base64_char_to_value[c] << 6;
3310
3311 c = (unsigned char) (0xff & value >> 8);
3312 if (multibyte && c >= 128)
3313 e += BYTE8_STRING (c, e);
3314 else
3315 *e++ = c;
3316 nchars++;
3317
3318 /* Process fourth byte of a quadruplet. */
3319
3320 READ_QUADRUPLET_BYTE (-1);
3321
3322 if (c == '=')
3323 continue;
3324
3325 if (!IS_BASE64 (c))
3326 return -1;
3327 value |= base64_char_to_value[c];
3328
3329 c = (unsigned char) (0xff & value);
3330 if (multibyte && c >= 128)
3331 e += BYTE8_STRING (c, e);
3332 else
3333 *e++ = c;
3334 nchars++;
3335 }
3336 }
3337
3338
3339 \f
3340 /***********************************************************************
3341 ***** *****
3342 ***** Hash Tables *****
3343 ***** *****
3344 ***********************************************************************/
3345
3346 /* Implemented by gerd@gnu.org. This hash table implementation was
3347 inspired by CMUCL hash tables. */
3348
3349 /* Ideas:
3350
3351 1. For small tables, association lists are probably faster than
3352 hash tables because they have lower overhead.
3353
3354 For uses of hash tables where the O(1) behavior of table
3355 operations is not a requirement, it might therefore be a good idea
3356 not to hash. Instead, we could just do a linear search in the
3357 key_and_value vector of the hash table. This could be done
3358 if a `:linear-search t' argument is given to make-hash-table. */
3359
3360
3361 /* The list of all weak hash tables. Don't staticpro this one. */
3362
3363 static struct Lisp_Hash_Table *weak_hash_tables;
3364
3365 /* Various symbols. */
3366
3367 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3368 Lisp_Object Qeq, Qeql, Qequal;
3369 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3370 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3371
3372 /* Function prototypes. */
3373
3374 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3375 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3376 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3377 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3378
3379
3380 \f
3381 /***********************************************************************
3382 Utilities
3383 ***********************************************************************/
3384
3385 /* If OBJ is a Lisp hash table, return a pointer to its struct
3386 Lisp_Hash_Table. Otherwise, signal an error. */
3387
3388 static struct Lisp_Hash_Table *
3389 check_hash_table (Lisp_Object obj)
3390 {
3391 CHECK_HASH_TABLE (obj);
3392 return XHASH_TABLE (obj);
3393 }
3394
3395
3396 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3397 number. */
3398
3399 EMACS_INT
3400 next_almost_prime (EMACS_INT n)
3401 {
3402 for (n |= 1; ; n += 2)
3403 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3404 return n;
3405 }
3406
3407
3408 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3409 which USED[I] is non-zero. If found at index I in ARGS, set
3410 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3411 0. This function is used to extract a keyword/argument pair from
3412 a DEFUN parameter list. */
3413
3414 static ptrdiff_t
3415 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3416 {
3417 ptrdiff_t i;
3418
3419 for (i = 1; i < nargs; i++)
3420 if (!used[i - 1] && EQ (args[i - 1], key))
3421 {
3422 used[i - 1] = 1;
3423 used[i] = 1;
3424 return i;
3425 }
3426
3427 return 0;
3428 }
3429
3430
3431 /* Return a Lisp vector which has the same contents as VEC but has
3432 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3433 vector that are not copied from VEC are set to INIT. */
3434
3435 Lisp_Object
3436 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3437 {
3438 struct Lisp_Vector *v;
3439 EMACS_INT i, old_size;
3440
3441 xassert (VECTORP (vec));
3442 old_size = ASIZE (vec);
3443 xassert (new_size >= old_size);
3444
3445 v = allocate_vector (new_size);
3446 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3447 for (i = old_size; i < new_size; ++i)
3448 v->contents[i] = init;
3449 XSETVECTOR (vec, v);
3450 return vec;
3451 }
3452
3453
3454 /***********************************************************************
3455 Low-level Functions
3456 ***********************************************************************/
3457
3458 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3459 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3460 KEY2 are the same. */
3461
3462 static int
3463 cmpfn_eql (struct Lisp_Hash_Table *h,
3464 Lisp_Object key1, EMACS_UINT hash1,
3465 Lisp_Object key2, EMACS_UINT hash2)
3466 {
3467 return (FLOATP (key1)
3468 && FLOATP (key2)
3469 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3470 }
3471
3472
3473 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3474 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3475 KEY2 are the same. */
3476
3477 static int
3478 cmpfn_equal (struct Lisp_Hash_Table *h,
3479 Lisp_Object key1, EMACS_UINT hash1,
3480 Lisp_Object key2, EMACS_UINT hash2)
3481 {
3482 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3483 }
3484
3485
3486 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3487 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3488 if KEY1 and KEY2 are the same. */
3489
3490 static int
3491 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3492 Lisp_Object key1, EMACS_UINT hash1,
3493 Lisp_Object key2, EMACS_UINT hash2)
3494 {
3495 if (hash1 == hash2)
3496 {
3497 Lisp_Object args[3];
3498
3499 args[0] = h->user_cmp_function;
3500 args[1] = key1;
3501 args[2] = key2;
3502 return !NILP (Ffuncall (3, args));
3503 }
3504 else
3505 return 0;
3506 }
3507
3508
3509 /* Value is a hash code for KEY for use in hash table H which uses
3510 `eq' to compare keys. The hash code returned is guaranteed to fit
3511 in a Lisp integer. */
3512
3513 static EMACS_UINT
3514 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3515 {
3516 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3517 xassert ((hash & ~INTMASK) == 0);
3518 return hash;
3519 }
3520
3521
3522 /* Value is a hash code for KEY for use in hash table H which uses
3523 `eql' to compare keys. The hash code returned is guaranteed to fit
3524 in a Lisp integer. */
3525
3526 static EMACS_UINT
3527 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3528 {
3529 EMACS_UINT hash;
3530 if (FLOATP (key))
3531 hash = sxhash (key, 0);
3532 else
3533 hash = XUINT (key) ^ XTYPE (key);
3534 xassert ((hash & ~INTMASK) == 0);
3535 return hash;
3536 }
3537
3538
3539 /* Value is a hash code for KEY for use in hash table H which uses
3540 `equal' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3542
3543 static EMACS_UINT
3544 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3545 {
3546 EMACS_UINT hash = sxhash (key, 0);
3547 xassert ((hash & ~INTMASK) == 0);
3548 return hash;
3549 }
3550
3551
3552 /* Value is a hash code for KEY for use in hash table H which uses as
3553 user-defined function to compare keys. The hash code returned is
3554 guaranteed to fit in a Lisp integer. */
3555
3556 static EMACS_UINT
3557 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3558 {
3559 Lisp_Object args[2], hash;
3560
3561 args[0] = h->user_hash_function;
3562 args[1] = key;
3563 hash = Ffuncall (2, args);
3564 if (!INTEGERP (hash))
3565 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3566 return XUINT (hash);
3567 }
3568
3569
3570 /* Create and initialize a new hash table.
3571
3572 TEST specifies the test the hash table will use to compare keys.
3573 It must be either one of the predefined tests `eq', `eql' or
3574 `equal' or a symbol denoting a user-defined test named TEST with
3575 test and hash functions USER_TEST and USER_HASH.
3576
3577 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3578
3579 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3580 new size when it becomes full is computed by adding REHASH_SIZE to
3581 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3582 table's new size is computed by multiplying its old size with
3583 REHASH_SIZE.
3584
3585 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3586 be resized when the ratio of (number of entries in the table) /
3587 (table size) is >= REHASH_THRESHOLD.
3588
3589 WEAK specifies the weakness of the table. If non-nil, it must be
3590 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3591
3592 Lisp_Object
3593 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3594 Lisp_Object rehash_threshold, Lisp_Object weak,
3595 Lisp_Object user_test, Lisp_Object user_hash)
3596 {
3597 struct Lisp_Hash_Table *h;
3598 Lisp_Object table;
3599 EMACS_INT index_size, i, sz;
3600 double index_float;
3601
3602 /* Preconditions. */
3603 xassert (SYMBOLP (test));
3604 xassert (INTEGERP (size) && XINT (size) >= 0);
3605 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3606 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3607 xassert (FLOATP (rehash_threshold)
3608 && 0 < XFLOAT_DATA (rehash_threshold)
3609 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3610
3611 if (XFASTINT (size) == 0)
3612 size = make_number (1);
3613
3614 sz = XFASTINT (size);
3615 index_float = sz / XFLOAT_DATA (rehash_threshold);
3616 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3617 ? next_almost_prime (index_float)
3618 : MOST_POSITIVE_FIXNUM + 1);
3619 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3620 error ("Hash table too large");
3621
3622 /* Allocate a table and initialize it. */
3623 h = allocate_hash_table ();
3624
3625 /* Initialize hash table slots. */
3626 h->test = test;
3627 if (EQ (test, Qeql))
3628 {
3629 h->cmpfn = cmpfn_eql;
3630 h->hashfn = hashfn_eql;
3631 }
3632 else if (EQ (test, Qeq))
3633 {
3634 h->cmpfn = NULL;
3635 h->hashfn = hashfn_eq;
3636 }
3637 else if (EQ (test, Qequal))
3638 {
3639 h->cmpfn = cmpfn_equal;
3640 h->hashfn = hashfn_equal;
3641 }
3642 else
3643 {
3644 h->user_cmp_function = user_test;
3645 h->user_hash_function = user_hash;
3646 h->cmpfn = cmpfn_user_defined;
3647 h->hashfn = hashfn_user_defined;
3648 }
3649
3650 h->weak = weak;
3651 h->rehash_threshold = rehash_threshold;
3652 h->rehash_size = rehash_size;
3653 h->count = 0;
3654 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3655 h->hash = Fmake_vector (size, Qnil);
3656 h->next = Fmake_vector (size, Qnil);
3657 h->index = Fmake_vector (make_number (index_size), Qnil);
3658
3659 /* Set up the free list. */
3660 for (i = 0; i < sz - 1; ++i)
3661 HASH_NEXT (h, i) = make_number (i + 1);
3662 h->next_free = make_number (0);
3663
3664 XSET_HASH_TABLE (table, h);
3665 xassert (HASH_TABLE_P (table));
3666 xassert (XHASH_TABLE (table) == h);
3667
3668 /* Maybe add this hash table to the list of all weak hash tables. */
3669 if (NILP (h->weak))
3670 h->next_weak = NULL;
3671 else
3672 {
3673 h->next_weak = weak_hash_tables;
3674 weak_hash_tables = h;
3675 }
3676
3677 return table;
3678 }
3679
3680
3681 /* Return a copy of hash table H1. Keys and values are not copied,
3682 only the table itself is. */
3683
3684 static Lisp_Object
3685 copy_hash_table (struct Lisp_Hash_Table *h1)
3686 {
3687 Lisp_Object table;
3688 struct Lisp_Hash_Table *h2;
3689 struct Lisp_Vector *next;
3690
3691 h2 = allocate_hash_table ();
3692 next = h2->header.next.vector;
3693 memcpy (h2, h1, sizeof *h2);
3694 h2->header.next.vector = next;
3695 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3696 h2->hash = Fcopy_sequence (h1->hash);
3697 h2->next = Fcopy_sequence (h1->next);
3698 h2->index = Fcopy_sequence (h1->index);
3699 XSET_HASH_TABLE (table, h2);
3700
3701 /* Maybe add this hash table to the list of all weak hash tables. */
3702 if (!NILP (h2->weak))
3703 {
3704 h2->next_weak = weak_hash_tables;
3705 weak_hash_tables = h2;
3706 }
3707
3708 return table;
3709 }
3710
3711
3712 /* Resize hash table H if it's too full. If H cannot be resized
3713 because it's already too large, throw an error. */
3714
3715 static inline void
3716 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3717 {
3718 if (NILP (h->next_free))
3719 {
3720 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3721 EMACS_INT i, new_size, index_size;
3722 EMACS_INT nsize;
3723 double index_float;
3724
3725 if (INTEGERP (h->rehash_size))
3726 new_size = old_size + XFASTINT (h->rehash_size);
3727 else
3728 {
3729 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3730 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3731 {
3732 new_size = float_new_size;
3733 if (new_size <= old_size)
3734 new_size = old_size + 1;
3735 }
3736 else
3737 new_size = MOST_POSITIVE_FIXNUM + 1;
3738 }
3739 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3740 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3741 ? next_almost_prime (index_float)
3742 : MOST_POSITIVE_FIXNUM + 1);
3743 nsize = max (index_size, 2 * new_size);
3744 if (nsize > MOST_POSITIVE_FIXNUM)
3745 error ("Hash table too large to resize");
3746
3747 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3748 h->next = larger_vector (h->next, new_size, Qnil);
3749 h->hash = larger_vector (h->hash, new_size, Qnil);
3750 h->index = Fmake_vector (make_number (index_size), Qnil);
3751
3752 /* Update the free list. Do it so that new entries are added at
3753 the end of the free list. This makes some operations like
3754 maphash faster. */
3755 for (i = old_size; i < new_size - 1; ++i)
3756 HASH_NEXT (h, i) = make_number (i + 1);
3757
3758 if (!NILP (h->next_free))
3759 {
3760 Lisp_Object last, next;
3761
3762 last = h->next_free;
3763 while (next = HASH_NEXT (h, XFASTINT (last)),
3764 !NILP (next))
3765 last = next;
3766
3767 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3768 }
3769 else
3770 XSETFASTINT (h->next_free, old_size);
3771
3772 /* Rehash. */
3773 for (i = 0; i < old_size; ++i)
3774 if (!NILP (HASH_HASH (h, i)))
3775 {
3776 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3777 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3778 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3779 HASH_INDEX (h, start_of_bucket) = make_number (i);
3780 }
3781 }
3782 }
3783
3784
3785 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3786 the hash code of KEY. Value is the index of the entry in H
3787 matching KEY, or -1 if not found. */
3788
3789 EMACS_INT
3790 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3791 {
3792 EMACS_UINT hash_code;
3793 EMACS_INT start_of_bucket;
3794 Lisp_Object idx;
3795
3796 hash_code = h->hashfn (h, key);
3797 if (hash)
3798 *hash = hash_code;
3799
3800 start_of_bucket = hash_code % ASIZE (h->index);
3801 idx = HASH_INDEX (h, start_of_bucket);
3802
3803 /* We need not gcpro idx since it's either an integer or nil. */
3804 while (!NILP (idx))
3805 {
3806 EMACS_INT i = XFASTINT (idx);
3807 if (EQ (key, HASH_KEY (h, i))
3808 || (h->cmpfn
3809 && h->cmpfn (h, key, hash_code,
3810 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3811 break;
3812 idx = HASH_NEXT (h, i);
3813 }
3814
3815 return NILP (idx) ? -1 : XFASTINT (idx);
3816 }
3817
3818
3819 /* Put an entry into hash table H that associates KEY with VALUE.
3820 HASH is a previously computed hash code of KEY.
3821 Value is the index of the entry in H matching KEY. */
3822
3823 EMACS_INT
3824 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3825 EMACS_UINT hash)
3826 {
3827 EMACS_INT start_of_bucket, i;
3828
3829 xassert ((hash & ~INTMASK) == 0);
3830
3831 /* Increment count after resizing because resizing may fail. */
3832 maybe_resize_hash_table (h);
3833 h->count++;
3834
3835 /* Store key/value in the key_and_value vector. */
3836 i = XFASTINT (h->next_free);
3837 h->next_free = HASH_NEXT (h, i);
3838 HASH_KEY (h, i) = key;
3839 HASH_VALUE (h, i) = value;
3840
3841 /* Remember its hash code. */
3842 HASH_HASH (h, i) = make_number (hash);
3843
3844 /* Add new entry to its collision chain. */
3845 start_of_bucket = hash % ASIZE (h->index);
3846 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3847 HASH_INDEX (h, start_of_bucket) = make_number (i);
3848 return i;
3849 }
3850
3851
3852 /* Remove the entry matching KEY from hash table H, if there is one. */
3853
3854 static void
3855 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3856 {
3857 EMACS_UINT hash_code;
3858 EMACS_INT start_of_bucket;
3859 Lisp_Object idx, prev;
3860
3861 hash_code = h->hashfn (h, key);
3862 start_of_bucket = hash_code % ASIZE (h->index);
3863 idx = HASH_INDEX (h, start_of_bucket);
3864 prev = Qnil;
3865
3866 /* We need not gcpro idx, prev since they're either integers or nil. */
3867 while (!NILP (idx))
3868 {
3869 EMACS_INT i = XFASTINT (idx);
3870
3871 if (EQ (key, HASH_KEY (h, i))
3872 || (h->cmpfn
3873 && h->cmpfn (h, key, hash_code,
3874 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3875 {
3876 /* Take entry out of collision chain. */
3877 if (NILP (prev))
3878 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3879 else
3880 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3881
3882 /* Clear slots in key_and_value and add the slots to
3883 the free list. */
3884 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3885 HASH_NEXT (h, i) = h->next_free;
3886 h->next_free = make_number (i);
3887 h->count--;
3888 xassert (h->count >= 0);
3889 break;
3890 }
3891 else
3892 {
3893 prev = idx;
3894 idx = HASH_NEXT (h, i);
3895 }
3896 }
3897 }
3898
3899
3900 /* Clear hash table H. */
3901
3902 static void
3903 hash_clear (struct Lisp_Hash_Table *h)
3904 {
3905 if (h->count > 0)
3906 {
3907 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3908
3909 for (i = 0; i < size; ++i)
3910 {
3911 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3912 HASH_KEY (h, i) = Qnil;
3913 HASH_VALUE (h, i) = Qnil;
3914 HASH_HASH (h, i) = Qnil;
3915 }
3916
3917 for (i = 0; i < ASIZE (h->index); ++i)
3918 ASET (h->index, i, Qnil);
3919
3920 h->next_free = make_number (0);
3921 h->count = 0;
3922 }
3923 }
3924
3925
3926 \f
3927 /************************************************************************
3928 Weak Hash Tables
3929 ************************************************************************/
3930
3931 void
3932 init_weak_hash_tables (void)
3933 {
3934 weak_hash_tables = NULL;
3935 }
3936
3937 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3938 entries from the table that don't survive the current GC.
3939 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3940 non-zero if anything was marked. */
3941
3942 static int
3943 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3944 {
3945 EMACS_INT bucket, n;
3946 int marked;
3947
3948 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3949 marked = 0;
3950
3951 for (bucket = 0; bucket < n; ++bucket)
3952 {
3953 Lisp_Object idx, next, prev;
3954
3955 /* Follow collision chain, removing entries that
3956 don't survive this garbage collection. */
3957 prev = Qnil;
3958 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3959 {
3960 EMACS_INT i = XFASTINT (idx);
3961 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3962 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3963 int remove_p;
3964
3965 if (EQ (h->weak, Qkey))
3966 remove_p = !key_known_to_survive_p;
3967 else if (EQ (h->weak, Qvalue))
3968 remove_p = !value_known_to_survive_p;
3969 else if (EQ (h->weak, Qkey_or_value))
3970 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3971 else if (EQ (h->weak, Qkey_and_value))
3972 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3973 else
3974 abort ();
3975
3976 next = HASH_NEXT (h, i);
3977
3978 if (remove_entries_p)
3979 {
3980 if (remove_p)
3981 {
3982 /* Take out of collision chain. */
3983 if (NILP (prev))
3984 HASH_INDEX (h, bucket) = next;
3985 else
3986 HASH_NEXT (h, XFASTINT (prev)) = next;
3987
3988 /* Add to free list. */
3989 HASH_NEXT (h, i) = h->next_free;
3990 h->next_free = idx;
3991
3992 /* Clear key, value, and hash. */
3993 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3994 HASH_HASH (h, i) = Qnil;
3995
3996 h->count--;
3997 }
3998 else
3999 {
4000 prev = idx;
4001 }
4002 }
4003 else
4004 {
4005 if (!remove_p)
4006 {
4007 /* Make sure key and value survive. */
4008 if (!key_known_to_survive_p)
4009 {
4010 mark_object (HASH_KEY (h, i));
4011 marked = 1;
4012 }
4013
4014 if (!value_known_to_survive_p)
4015 {
4016 mark_object (HASH_VALUE (h, i));
4017 marked = 1;
4018 }
4019 }
4020 }
4021 }
4022 }
4023
4024 return marked;
4025 }
4026
4027 /* Remove elements from weak hash tables that don't survive the
4028 current garbage collection. Remove weak tables that don't survive
4029 from Vweak_hash_tables. Called from gc_sweep. */
4030
4031 void
4032 sweep_weak_hash_tables (void)
4033 {
4034 struct Lisp_Hash_Table *h, *used, *next;
4035 int marked;
4036
4037 /* Mark all keys and values that are in use. Keep on marking until
4038 there is no more change. This is necessary for cases like
4039 value-weak table A containing an entry X -> Y, where Y is used in a
4040 key-weak table B, Z -> Y. If B comes after A in the list of weak
4041 tables, X -> Y might be removed from A, although when looking at B
4042 one finds that it shouldn't. */
4043 do
4044 {
4045 marked = 0;
4046 for (h = weak_hash_tables; h; h = h->next_weak)
4047 {
4048 if (h->header.size & ARRAY_MARK_FLAG)
4049 marked |= sweep_weak_table (h, 0);
4050 }
4051 }
4052 while (marked);
4053
4054 /* Remove tables and entries that aren't used. */
4055 for (h = weak_hash_tables, used = NULL; h; h = next)
4056 {
4057 next = h->next_weak;
4058
4059 if (h->header.size & ARRAY_MARK_FLAG)
4060 {
4061 /* TABLE is marked as used. Sweep its contents. */
4062 if (h->count > 0)
4063 sweep_weak_table (h, 1);
4064
4065 /* Add table to the list of used weak hash tables. */
4066 h->next_weak = used;
4067 used = h;
4068 }
4069 }
4070
4071 weak_hash_tables = used;
4072 }
4073
4074
4075 \f
4076 /***********************************************************************
4077 Hash Code Computation
4078 ***********************************************************************/
4079
4080 /* Maximum depth up to which to dive into Lisp structures. */
4081
4082 #define SXHASH_MAX_DEPTH 3
4083
4084 /* Maximum length up to which to take list and vector elements into
4085 account. */
4086
4087 #define SXHASH_MAX_LEN 7
4088
4089 /* Combine two integers X and Y for hashing. The result might not fit
4090 into a Lisp integer. */
4091
4092 #define SXHASH_COMBINE(X, Y) \
4093 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4094 + (EMACS_UINT) (Y))
4095
4096 /* Hash X, returning a value that fits into a Lisp integer. */
4097 #define SXHASH_REDUCE(X) \
4098 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4099
4100 /* Return a hash for string PTR which has length LEN. The hash
4101 code returned is guaranteed to fit in a Lisp integer. */
4102
4103 static EMACS_UINT
4104 sxhash_string (unsigned char *ptr, EMACS_INT len)
4105 {
4106 unsigned char *p = ptr;
4107 unsigned char *end = p + len;
4108 unsigned char c;
4109 EMACS_UINT hash = 0;
4110
4111 while (p != end)
4112 {
4113 c = *p++;
4114 if (c >= 0140)
4115 c -= 40;
4116 hash = SXHASH_COMBINE (hash, c);
4117 }
4118
4119 return SXHASH_REDUCE (hash);
4120 }
4121
4122 /* Return a hash for the floating point value VAL. */
4123
4124 static EMACS_INT
4125 sxhash_float (double val)
4126 {
4127 EMACS_UINT hash = 0;
4128 enum {
4129 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4130 + (sizeof val % sizeof hash != 0))
4131 };
4132 union {
4133 double val;
4134 EMACS_UINT word[WORDS_PER_DOUBLE];
4135 } u;
4136 int i;
4137 u.val = val;
4138 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4139 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4140 hash = SXHASH_COMBINE (hash, u.word[i]);
4141 return SXHASH_REDUCE (hash);
4142 }
4143
4144 /* Return a hash for list LIST. DEPTH is the current depth in the
4145 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4146
4147 static EMACS_UINT
4148 sxhash_list (Lisp_Object list, int depth)
4149 {
4150 EMACS_UINT hash = 0;
4151 int i;
4152
4153 if (depth < SXHASH_MAX_DEPTH)
4154 for (i = 0;
4155 CONSP (list) && i < SXHASH_MAX_LEN;
4156 list = XCDR (list), ++i)
4157 {
4158 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4159 hash = SXHASH_COMBINE (hash, hash2);
4160 }
4161
4162 if (!NILP (list))
4163 {
4164 EMACS_UINT hash2 = sxhash (list, depth + 1);
4165 hash = SXHASH_COMBINE (hash, hash2);
4166 }
4167
4168 return SXHASH_REDUCE (hash);
4169 }
4170
4171
4172 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4173 the Lisp structure. */
4174
4175 static EMACS_UINT
4176 sxhash_vector (Lisp_Object vec, int depth)
4177 {
4178 EMACS_UINT hash = ASIZE (vec);
4179 int i, n;
4180
4181 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4182 for (i = 0; i < n; ++i)
4183 {
4184 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4185 hash = SXHASH_COMBINE (hash, hash2);
4186 }
4187
4188 return SXHASH_REDUCE (hash);
4189 }
4190
4191 /* Return a hash for bool-vector VECTOR. */
4192
4193 static EMACS_UINT
4194 sxhash_bool_vector (Lisp_Object vec)
4195 {
4196 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4197 int i, n;
4198
4199 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4200 for (i = 0; i < n; ++i)
4201 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4202
4203 return SXHASH_REDUCE (hash);
4204 }
4205
4206
4207 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4208 structure. Value is an unsigned integer clipped to INTMASK. */
4209
4210 EMACS_UINT
4211 sxhash (Lisp_Object obj, int depth)
4212 {
4213 EMACS_UINT hash;
4214
4215 if (depth > SXHASH_MAX_DEPTH)
4216 return 0;
4217
4218 switch (XTYPE (obj))
4219 {
4220 case_Lisp_Int:
4221 hash = XUINT (obj);
4222 break;
4223
4224 case Lisp_Misc:
4225 hash = XUINT (obj);
4226 break;
4227
4228 case Lisp_Symbol:
4229 obj = SYMBOL_NAME (obj);
4230 /* Fall through. */
4231
4232 case Lisp_String:
4233 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4234 break;
4235
4236 /* This can be everything from a vector to an overlay. */
4237 case Lisp_Vectorlike:
4238 if (VECTORP (obj))
4239 /* According to the CL HyperSpec, two arrays are equal only if
4240 they are `eq', except for strings and bit-vectors. In
4241 Emacs, this works differently. We have to compare element
4242 by element. */
4243 hash = sxhash_vector (obj, depth);
4244 else if (BOOL_VECTOR_P (obj))
4245 hash = sxhash_bool_vector (obj);
4246 else
4247 /* Others are `equal' if they are `eq', so let's take their
4248 address as hash. */
4249 hash = XUINT (obj);
4250 break;
4251
4252 case Lisp_Cons:
4253 hash = sxhash_list (obj, depth);
4254 break;
4255
4256 case Lisp_Float:
4257 hash = sxhash_float (XFLOAT_DATA (obj));
4258 break;
4259
4260 default:
4261 abort ();
4262 }
4263
4264 return hash;
4265 }
4266
4267
4268 \f
4269 /***********************************************************************
4270 Lisp Interface
4271 ***********************************************************************/
4272
4273
4274 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4275 doc: /* Compute a hash code for OBJ and return it as integer. */)
4276 (Lisp_Object obj)
4277 {
4278 EMACS_UINT hash = sxhash (obj, 0);
4279 return make_number (hash);
4280 }
4281
4282
4283 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4284 doc: /* Create and return a new hash table.
4285
4286 Arguments are specified as keyword/argument pairs. The following
4287 arguments are defined:
4288
4289 :test TEST -- TEST must be a symbol that specifies how to compare
4290 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4291 `equal'. User-supplied test and hash functions can be specified via
4292 `define-hash-table-test'.
4293
4294 :size SIZE -- A hint as to how many elements will be put in the table.
4295 Default is 65.
4296
4297 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4298 fills up. If REHASH-SIZE is an integer, increase the size by that
4299 amount. If it is a float, it must be > 1.0, and the new size is the
4300 old size multiplied by that factor. Default is 1.5.
4301
4302 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4303 Resize the hash table when the ratio (number of entries / table size)
4304 is greater than or equal to THRESHOLD. Default is 0.8.
4305
4306 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4307 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4308 returned is a weak table. Key/value pairs are removed from a weak
4309 hash table when there are no non-weak references pointing to their
4310 key, value, one of key or value, or both key and value, depending on
4311 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4312 is nil.
4313
4314 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4315 (ptrdiff_t nargs, Lisp_Object *args)
4316 {
4317 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4318 Lisp_Object user_test, user_hash;
4319 char *used;
4320 ptrdiff_t i;
4321
4322 /* The vector `used' is used to keep track of arguments that
4323 have been consumed. */
4324 used = (char *) alloca (nargs * sizeof *used);
4325 memset (used, 0, nargs * sizeof *used);
4326
4327 /* See if there's a `:test TEST' among the arguments. */
4328 i = get_key_arg (QCtest, nargs, args, used);
4329 test = i ? args[i] : Qeql;
4330 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4331 {
4332 /* See if it is a user-defined test. */
4333 Lisp_Object prop;
4334
4335 prop = Fget (test, Qhash_table_test);
4336 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4337 signal_error ("Invalid hash table test", test);
4338 user_test = XCAR (prop);
4339 user_hash = XCAR (XCDR (prop));
4340 }
4341 else
4342 user_test = user_hash = Qnil;
4343
4344 /* See if there's a `:size SIZE' argument. */
4345 i = get_key_arg (QCsize, nargs, args, used);
4346 size = i ? args[i] : Qnil;
4347 if (NILP (size))
4348 size = make_number (DEFAULT_HASH_SIZE);
4349 else if (!INTEGERP (size) || XINT (size) < 0)
4350 signal_error ("Invalid hash table size", size);
4351
4352 /* Look for `:rehash-size SIZE'. */
4353 i = get_key_arg (QCrehash_size, nargs, args, used);
4354 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4355 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4356 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4357 signal_error ("Invalid hash table rehash size", rehash_size);
4358
4359 /* Look for `:rehash-threshold THRESHOLD'. */
4360 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4361 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4362 if (! (FLOATP (rehash_threshold)
4363 && 0 < XFLOAT_DATA (rehash_threshold)
4364 && XFLOAT_DATA (rehash_threshold) <= 1))
4365 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4366
4367 /* Look for `:weakness WEAK'. */
4368 i = get_key_arg (QCweakness, nargs, args, used);
4369 weak = i ? args[i] : Qnil;
4370 if (EQ (weak, Qt))
4371 weak = Qkey_and_value;
4372 if (!NILP (weak)
4373 && !EQ (weak, Qkey)
4374 && !EQ (weak, Qvalue)
4375 && !EQ (weak, Qkey_or_value)
4376 && !EQ (weak, Qkey_and_value))
4377 signal_error ("Invalid hash table weakness", weak);
4378
4379 /* Now, all args should have been used up, or there's a problem. */
4380 for (i = 0; i < nargs; ++i)
4381 if (!used[i])
4382 signal_error ("Invalid argument list", args[i]);
4383
4384 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4385 user_test, user_hash);
4386 }
4387
4388
4389 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4390 doc: /* Return a copy of hash table TABLE. */)
4391 (Lisp_Object table)
4392 {
4393 return copy_hash_table (check_hash_table (table));
4394 }
4395
4396
4397 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4398 doc: /* Return the number of elements in TABLE. */)
4399 (Lisp_Object table)
4400 {
4401 return make_number (check_hash_table (table)->count);
4402 }
4403
4404
4405 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4406 Shash_table_rehash_size, 1, 1, 0,
4407 doc: /* Return the current rehash size of TABLE. */)
4408 (Lisp_Object table)
4409 {
4410 return check_hash_table (table)->rehash_size;
4411 }
4412
4413
4414 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4415 Shash_table_rehash_threshold, 1, 1, 0,
4416 doc: /* Return the current rehash threshold of TABLE. */)
4417 (Lisp_Object table)
4418 {
4419 return check_hash_table (table)->rehash_threshold;
4420 }
4421
4422
4423 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4424 doc: /* Return the size of TABLE.
4425 The size can be used as an argument to `make-hash-table' to create
4426 a hash table than can hold as many elements as TABLE holds
4427 without need for resizing. */)
4428 (Lisp_Object table)
4429 {
4430 struct Lisp_Hash_Table *h = check_hash_table (table);
4431 return make_number (HASH_TABLE_SIZE (h));
4432 }
4433
4434
4435 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4436 doc: /* Return the test TABLE uses. */)
4437 (Lisp_Object table)
4438 {
4439 return check_hash_table (table)->test;
4440 }
4441
4442
4443 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4444 1, 1, 0,
4445 doc: /* Return the weakness of TABLE. */)
4446 (Lisp_Object table)
4447 {
4448 return check_hash_table (table)->weak;
4449 }
4450
4451
4452 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4453 doc: /* Return t if OBJ is a Lisp hash table object. */)
4454 (Lisp_Object obj)
4455 {
4456 return HASH_TABLE_P (obj) ? Qt : Qnil;
4457 }
4458
4459
4460 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4461 doc: /* Clear hash table TABLE and return it. */)
4462 (Lisp_Object table)
4463 {
4464 hash_clear (check_hash_table (table));
4465 /* Be compatible with XEmacs. */
4466 return table;
4467 }
4468
4469
4470 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4471 doc: /* Look up KEY in TABLE and return its associated value.
4472 If KEY is not found, return DFLT which defaults to nil. */)
4473 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4474 {
4475 struct Lisp_Hash_Table *h = check_hash_table (table);
4476 EMACS_INT i = hash_lookup (h, key, NULL);
4477 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4478 }
4479
4480
4481 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4482 doc: /* Associate KEY with VALUE in hash table TABLE.
4483 If KEY is already present in table, replace its current value with
4484 VALUE. In any case, return VALUE. */)
4485 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4486 {
4487 struct Lisp_Hash_Table *h = check_hash_table (table);
4488 EMACS_INT i;
4489 EMACS_UINT hash;
4490
4491 i = hash_lookup (h, key, &hash);
4492 if (i >= 0)
4493 HASH_VALUE (h, i) = value;
4494 else
4495 hash_put (h, key, value, hash);
4496
4497 return value;
4498 }
4499
4500
4501 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4502 doc: /* Remove KEY from TABLE. */)
4503 (Lisp_Object key, Lisp_Object table)
4504 {
4505 struct Lisp_Hash_Table *h = check_hash_table (table);
4506 hash_remove_from_table (h, key);
4507 return Qnil;
4508 }
4509
4510
4511 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4512 doc: /* Call FUNCTION for all entries in hash table TABLE.
4513 FUNCTION is called with two arguments, KEY and VALUE. */)
4514 (Lisp_Object function, Lisp_Object table)
4515 {
4516 struct Lisp_Hash_Table *h = check_hash_table (table);
4517 Lisp_Object args[3];
4518 EMACS_INT i;
4519
4520 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4521 if (!NILP (HASH_HASH (h, i)))
4522 {
4523 args[0] = function;
4524 args[1] = HASH_KEY (h, i);
4525 args[2] = HASH_VALUE (h, i);
4526 Ffuncall (3, args);
4527 }
4528
4529 return Qnil;
4530 }
4531
4532
4533 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4534 Sdefine_hash_table_test, 3, 3, 0,
4535 doc: /* Define a new hash table test with name NAME, a symbol.
4536
4537 In hash tables created with NAME specified as test, use TEST to
4538 compare keys, and HASH for computing hash codes of keys.
4539
4540 TEST must be a function taking two arguments and returning non-nil if
4541 both arguments are the same. HASH must be a function taking one
4542 argument and return an integer that is the hash code of the argument.
4543 Hash code computation should use the whole value range of integers,
4544 including negative integers. */)
4545 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4546 {
4547 return Fput (name, Qhash_table_test, list2 (test, hash));
4548 }
4549
4550
4551 \f
4552 /************************************************************************
4553 MD5 and SHA1
4554 ************************************************************************/
4555
4556 #include "md5.h"
4557 #include "sha1.h"
4558
4559 /* Convert a possibly-signed character to an unsigned character. This is
4560 a bit safer than casting to unsigned char, since it catches some type
4561 errors that the cast doesn't. */
4562 static inline unsigned char to_uchar (char ch) { return ch; }
4563
4564 /* TYPE: 0 for md5, 1 for sha1. */
4565
4566 static Lisp_Object
4567 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4568 {
4569 int i;
4570 EMACS_INT size;
4571 EMACS_INT size_byte = 0;
4572 EMACS_INT start_char = 0, end_char = 0;
4573 EMACS_INT start_byte = 0, end_byte = 0;
4574 register EMACS_INT b, e;
4575 register struct buffer *bp;
4576 EMACS_INT temp;
4577 Lisp_Object res=Qnil;
4578
4579 if (STRINGP (object))
4580 {
4581 if (NILP (coding_system))
4582 {
4583 /* Decide the coding-system to encode the data with. */
4584
4585 if (STRING_MULTIBYTE (object))
4586 /* use default, we can't guess correct value */
4587 coding_system = preferred_coding_system ();
4588 else
4589 coding_system = Qraw_text;
4590 }
4591
4592 if (NILP (Fcoding_system_p (coding_system)))
4593 {
4594 /* Invalid coding system. */
4595
4596 if (!NILP (noerror))
4597 coding_system = Qraw_text;
4598 else
4599 xsignal1 (Qcoding_system_error, coding_system);
4600 }
4601
4602 if (STRING_MULTIBYTE (object))
4603 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4604
4605 size = SCHARS (object);
4606 size_byte = SBYTES (object);
4607
4608 if (!NILP (start))
4609 {
4610 CHECK_NUMBER (start);
4611
4612 start_char = XINT (start);
4613
4614 if (start_char < 0)
4615 start_char += size;
4616
4617 start_byte = string_char_to_byte (object, start_char);
4618 }
4619
4620 if (NILP (end))
4621 {
4622 end_char = size;
4623 end_byte = size_byte;
4624 }
4625 else
4626 {
4627 CHECK_NUMBER (end);
4628
4629 end_char = XINT (end);
4630
4631 if (end_char < 0)
4632 end_char += size;
4633
4634 end_byte = string_char_to_byte (object, end_char);
4635 }
4636
4637 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4638 args_out_of_range_3 (object, make_number (start_char),
4639 make_number (end_char));
4640 }
4641 else
4642 {
4643 struct buffer *prev = current_buffer;
4644
4645 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4646
4647 CHECK_BUFFER (object);
4648
4649 bp = XBUFFER (object);
4650 if (bp != current_buffer)
4651 set_buffer_internal (bp);
4652
4653 if (NILP (start))
4654 b = BEGV;
4655 else
4656 {
4657 CHECK_NUMBER_COERCE_MARKER (start);
4658 b = XINT (start);
4659 }
4660
4661 if (NILP (end))
4662 e = ZV;
4663 else
4664 {
4665 CHECK_NUMBER_COERCE_MARKER (end);
4666 e = XINT (end);
4667 }
4668
4669 if (b > e)
4670 temp = b, b = e, e = temp;
4671
4672 if (!(BEGV <= b && e <= ZV))
4673 args_out_of_range (start, end);
4674
4675 if (NILP (coding_system))
4676 {
4677 /* Decide the coding-system to encode the data with.
4678 See fileio.c:Fwrite-region */
4679
4680 if (!NILP (Vcoding_system_for_write))
4681 coding_system = Vcoding_system_for_write;
4682 else
4683 {
4684 int force_raw_text = 0;
4685
4686 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4687 if (NILP (coding_system)
4688 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4689 {
4690 coding_system = Qnil;
4691 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4692 force_raw_text = 1;
4693 }
4694
4695 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4696 {
4697 /* Check file-coding-system-alist. */
4698 Lisp_Object args[4], val;
4699
4700 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4701 args[3] = Fbuffer_file_name(object);
4702 val = Ffind_operation_coding_system (4, args);
4703 if (CONSP (val) && !NILP (XCDR (val)))
4704 coding_system = XCDR (val);
4705 }
4706
4707 if (NILP (coding_system)
4708 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4709 {
4710 /* If we still have not decided a coding system, use the
4711 default value of buffer-file-coding-system. */
4712 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4713 }
4714
4715 if (!force_raw_text
4716 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4717 /* Confirm that VAL can surely encode the current region. */
4718 coding_system = call4 (Vselect_safe_coding_system_function,
4719 make_number (b), make_number (e),
4720 coding_system, Qnil);
4721
4722 if (force_raw_text)
4723 coding_system = Qraw_text;
4724 }
4725
4726 if (NILP (Fcoding_system_p (coding_system)))
4727 {
4728 /* Invalid coding system. */
4729
4730 if (!NILP (noerror))
4731 coding_system = Qraw_text;
4732 else
4733 xsignal1 (Qcoding_system_error, coding_system);
4734 }
4735 }
4736
4737 object = make_buffer_string (b, e, 0);
4738 if (prev != current_buffer)
4739 set_buffer_internal (prev);
4740 /* Discard the unwind protect for recovering the current
4741 buffer. */
4742 specpdl_ptr--;
4743
4744 if (STRING_MULTIBYTE (object))
4745 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4746 }
4747
4748 switch (type)
4749 {
4750 case 0: /* MD5 */
4751 {
4752 char digest[16];
4753 md5_buffer (SSDATA (object) + start_byte,
4754 SBYTES (object) - (size_byte - end_byte),
4755 digest);
4756
4757 if (NILP (binary))
4758 {
4759 char value[33];
4760 for (i = 0; i < 16; i++)
4761 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4762 res = make_string (value, 32);
4763 }
4764 else
4765 res = make_string (digest, 16);
4766 break;
4767 }
4768
4769 case 1: /* SHA1 */
4770 {
4771 char digest[20];
4772 sha1_buffer (SSDATA (object) + start_byte,
4773 SBYTES (object) - (size_byte - end_byte),
4774 digest);
4775 if (NILP (binary))
4776 {
4777 char value[41];
4778 for (i = 0; i < 20; i++)
4779 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4780 res = make_string (value, 40);
4781 }
4782 else
4783 res = make_string (digest, 20);
4784 break;
4785 }
4786 }
4787
4788 return res;
4789 }
4790
4791 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4792 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4793
4794 A message digest is a cryptographic checksum of a document, and the
4795 algorithm to calculate it is defined in RFC 1321.
4796
4797 The two optional arguments START and END are character positions
4798 specifying for which part of OBJECT the message digest should be
4799 computed. If nil or omitted, the digest is computed for the whole
4800 OBJECT.
4801
4802 The MD5 message digest is computed from the result of encoding the
4803 text in a coding system, not directly from the internal Emacs form of
4804 the text. The optional fourth argument CODING-SYSTEM specifies which
4805 coding system to encode the text with. It should be the same coding
4806 system that you used or will use when actually writing the text into a
4807 file.
4808
4809 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4810 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4811 system would be chosen by default for writing this text into a file.
4812
4813 If OBJECT is a string, the most preferred coding system (see the
4814 command `prefer-coding-system') is used.
4815
4816 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4817 guesswork fails. Normally, an error is signaled in such case. */)
4818 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4819 {
4820 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4821 }
4822
4823 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4824 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4825
4826 OBJECT is either a string or a buffer. Optional arguments START and
4827 END are character positions specifying which portion of OBJECT for
4828 computing the hash. If BINARY is non-nil, return a string in binary
4829 form. */)
4830 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4831 {
4832 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4833 }
4834
4835 \f
4836 void
4837 syms_of_fns (void)
4838 {
4839 /* Hash table stuff. */
4840 Qhash_table_p = intern_c_string ("hash-table-p");
4841 staticpro (&Qhash_table_p);
4842 Qeq = intern_c_string ("eq");
4843 staticpro (&Qeq);
4844 Qeql = intern_c_string ("eql");
4845 staticpro (&Qeql);
4846 Qequal = intern_c_string ("equal");
4847 staticpro (&Qequal);
4848 QCtest = intern_c_string (":test");
4849 staticpro (&QCtest);
4850 QCsize = intern_c_string (":size");
4851 staticpro (&QCsize);
4852 QCrehash_size = intern_c_string (":rehash-size");
4853 staticpro (&QCrehash_size);
4854 QCrehash_threshold = intern_c_string (":rehash-threshold");
4855 staticpro (&QCrehash_threshold);
4856 QCweakness = intern_c_string (":weakness");
4857 staticpro (&QCweakness);
4858 Qkey = intern_c_string ("key");
4859 staticpro (&Qkey);
4860 Qvalue = intern_c_string ("value");
4861 staticpro (&Qvalue);
4862 Qhash_table_test = intern_c_string ("hash-table-test");
4863 staticpro (&Qhash_table_test);
4864 Qkey_or_value = intern_c_string ("key-or-value");
4865 staticpro (&Qkey_or_value);
4866 Qkey_and_value = intern_c_string ("key-and-value");
4867 staticpro (&Qkey_and_value);
4868
4869 defsubr (&Ssxhash);
4870 defsubr (&Smake_hash_table);
4871 defsubr (&Scopy_hash_table);
4872 defsubr (&Shash_table_count);
4873 defsubr (&Shash_table_rehash_size);
4874 defsubr (&Shash_table_rehash_threshold);
4875 defsubr (&Shash_table_size);
4876 defsubr (&Shash_table_test);
4877 defsubr (&Shash_table_weakness);
4878 defsubr (&Shash_table_p);
4879 defsubr (&Sclrhash);
4880 defsubr (&Sgethash);
4881 defsubr (&Sputhash);
4882 defsubr (&Sremhash);
4883 defsubr (&Smaphash);
4884 defsubr (&Sdefine_hash_table_test);
4885
4886 Qstring_lessp = intern_c_string ("string-lessp");
4887 staticpro (&Qstring_lessp);
4888 Qprovide = intern_c_string ("provide");
4889 staticpro (&Qprovide);
4890 Qrequire = intern_c_string ("require");
4891 staticpro (&Qrequire);
4892 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4893 staticpro (&Qyes_or_no_p_history);
4894 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4895 staticpro (&Qcursor_in_echo_area);
4896 Qwidget_type = intern_c_string ("widget-type");
4897 staticpro (&Qwidget_type);
4898
4899 staticpro (&string_char_byte_cache_string);
4900 string_char_byte_cache_string = Qnil;
4901
4902 require_nesting_list = Qnil;
4903 staticpro (&require_nesting_list);
4904
4905 Fset (Qyes_or_no_p_history, Qnil);
4906
4907 DEFVAR_LISP ("features", Vfeatures,
4908 doc: /* A list of symbols which are the features of the executing Emacs.
4909 Used by `featurep' and `require', and altered by `provide'. */);
4910 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4911 Qsubfeatures = intern_c_string ("subfeatures");
4912 staticpro (&Qsubfeatures);
4913
4914 #ifdef HAVE_LANGINFO_CODESET
4915 Qcodeset = intern_c_string ("codeset");
4916 staticpro (&Qcodeset);
4917 Qdays = intern_c_string ("days");
4918 staticpro (&Qdays);
4919 Qmonths = intern_c_string ("months");
4920 staticpro (&Qmonths);
4921 Qpaper = intern_c_string ("paper");
4922 staticpro (&Qpaper);
4923 #endif /* HAVE_LANGINFO_CODESET */
4924
4925 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4926 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4927 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4928 invoked by mouse clicks and mouse menu items.
4929
4930 On some platforms, file selection dialogs are also enabled if this is
4931 non-nil. */);
4932 use_dialog_box = 1;
4933
4934 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4935 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4936 This applies to commands from menus and tool bar buttons even when
4937 they are initiated from the keyboard. If `use-dialog-box' is nil,
4938 that disables the use of a file dialog, regardless of the value of
4939 this variable. */);
4940 use_file_dialog = 1;
4941
4942 defsubr (&Sidentity);
4943 defsubr (&Srandom);
4944 defsubr (&Slength);
4945 defsubr (&Ssafe_length);
4946 defsubr (&Sstring_bytes);
4947 defsubr (&Sstring_equal);
4948 defsubr (&Scompare_strings);
4949 defsubr (&Sstring_lessp);
4950 defsubr (&Sappend);
4951 defsubr (&Sconcat);
4952 defsubr (&Svconcat);
4953 defsubr (&Scopy_sequence);
4954 defsubr (&Sstring_make_multibyte);
4955 defsubr (&Sstring_make_unibyte);
4956 defsubr (&Sstring_as_multibyte);
4957 defsubr (&Sstring_as_unibyte);
4958 defsubr (&Sstring_to_multibyte);
4959 defsubr (&Sstring_to_unibyte);
4960 defsubr (&Scopy_alist);
4961 defsubr (&Ssubstring);
4962 defsubr (&Ssubstring_no_properties);
4963 defsubr (&Snthcdr);
4964 defsubr (&Snth);
4965 defsubr (&Selt);
4966 defsubr (&Smember);
4967 defsubr (&Smemq);
4968 defsubr (&Smemql);
4969 defsubr (&Sassq);
4970 defsubr (&Sassoc);
4971 defsubr (&Srassq);
4972 defsubr (&Srassoc);
4973 defsubr (&Sdelq);
4974 defsubr (&Sdelete);
4975 defsubr (&Snreverse);
4976 defsubr (&Sreverse);
4977 defsubr (&Ssort);
4978 defsubr (&Splist_get);
4979 defsubr (&Sget);
4980 defsubr (&Splist_put);
4981 defsubr (&Sput);
4982 defsubr (&Slax_plist_get);
4983 defsubr (&Slax_plist_put);
4984 defsubr (&Seql);
4985 defsubr (&Sequal);
4986 defsubr (&Sequal_including_properties);
4987 defsubr (&Sfillarray);
4988 defsubr (&Sclear_string);
4989 defsubr (&Snconc);
4990 defsubr (&Smapcar);
4991 defsubr (&Smapc);
4992 defsubr (&Smapconcat);
4993 defsubr (&Syes_or_no_p);
4994 defsubr (&Sload_average);
4995 defsubr (&Sfeaturep);
4996 defsubr (&Srequire);
4997 defsubr (&Sprovide);
4998 defsubr (&Splist_member);
4999 defsubr (&Swidget_put);
5000 defsubr (&Swidget_get);
5001 defsubr (&Swidget_apply);
5002 defsubr (&Sbase64_encode_region);
5003 defsubr (&Sbase64_decode_region);
5004 defsubr (&Sbase64_encode_string);
5005 defsubr (&Sbase64_decode_string);
5006 defsubr (&Smd5);
5007 defsubr (&Ssha1);
5008 defsubr (&Slocale_info);
5009 }
5010
5011
5012 void
5013 init_fns (void)
5014 {
5015 }