(struct window): New member height_fixed_p.
[bpt/emacs.git] / lispref / numbers.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998 Free Software Foundation, Inc.
4 @c See the file elisp.texi for copying conditions.
5 @setfilename ../info/numbers
6 @node Numbers, Strings and Characters, Lisp Data Types, Top
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
10
11 GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating point numbers}. Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
15 2.71828. They can also be expressed in exponential notation: 1.5e2
16 equals 150; in this example, @samp{e2} stands for ten to the second
17 power, and that is multiplied by 1.5. Floating point values are not
18 exact; they have a fixed, limited amount of precision.
19
20 @menu
21 * Integer Basics:: Representation and range of integers.
22 * Float Basics:: Representation and range of floating point.
23 * Predicates on Numbers:: Testing for numbers.
24 * Comparison of Numbers:: Equality and inequality predicates.
25 * Numeric Conversions:: Converting float to integer and vice versa.
26 * Arithmetic Operations:: How to add, subtract, multiply and divide.
27 * Rounding Operations:: Explicitly rounding floating point numbers.
28 * Bitwise Operations:: Logical and, or, not, shifting.
29 * Math Functions:: Trig, exponential and logarithmic functions.
30 * Random Numbers:: Obtaining random integers, predictable or not.
31 @end menu
32
33 @node Integer Basics
34 @comment node-name, next, previous, up
35 @section Integer Basics
36
37 The range of values for an integer depends on the machine. The
38 minimum range is @minus{}134217728 to 134217727 (28 bits; i.e.,
39 @ifinfo
40 -2**27
41 @end ifinfo
42 @tex
43 $-2^{27}$
44 @end tex
45 to
46 @ifinfo
47 2**27 - 1),
48 @end ifinfo
49 @tex
50 $2^{27}-1$),
51 @end tex
52 but some machines may provide a wider range. Many examples in this
53 chapter assume an integer has 28 bits.
54 @cindex overflow
55
56 The Lisp reader reads an integer as a sequence of digits with optional
57 initial sign and optional final period.
58
59 @example
60 1 ; @r{The integer 1.}
61 1. ; @r{The integer 1.}
62 +1 ; @r{Also the integer 1.}
63 -1 ; @r{The integer @minus{}1.}
64 268435457 ; @r{Also the integer 1, due to overflow.}
65 0 ; @r{The integer 0.}
66 -0 ; @r{The integer 0.}
67 @end example
68
69 To understand how various functions work on integers, especially the
70 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
71 view the numbers in their binary form.
72
73 In 28-bit binary, the decimal integer 5 looks like this:
74
75 @example
76 0000 0000 0000 0000 0000 0000 0101
77 @end example
78
79 @noindent
80 (We have inserted spaces between groups of 4 bits, and two spaces
81 between groups of 8 bits, to make the binary integer easier to read.)
82
83 The integer @minus{}1 looks like this:
84
85 @example
86 1111 1111 1111 1111 1111 1111 1111
87 @end example
88
89 @noindent
90 @cindex two's complement
91 @minus{}1 is represented as 28 ones. (This is called @dfn{two's
92 complement} notation.)
93
94 The negative integer, @minus{}5, is creating by subtracting 4 from
95 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
96 @minus{}5 looks like this:
97
98 @example
99 1111 1111 1111 1111 1111 1111 1011
100 @end example
101
102 In this implementation, the largest 28-bit binary integer value is
103 134,217,727 in decimal. In binary, it looks like this:
104
105 @example
106 0111 1111 1111 1111 1111 1111 1111
107 @end example
108
109 Since the arithmetic functions do not check whether integers go
110 outside their range, when you add 1 to 134,217,727, the value is the
111 negative integer @minus{}134,217,728:
112
113 @example
114 (+ 1 134217727)
115 @result{} -134217728
116 @result{} 1000 0000 0000 0000 0000 0000 0000
117 @end example
118
119 Many of the functions described in this chapter accept markers for
120 arguments in place of numbers. (@xref{Markers}.) Since the actual
121 arguments to such functions may be either numbers or markers, we often
122 give these arguments the name @var{number-or-marker}. When the argument
123 value is a marker, its position value is used and its buffer is ignored.
124
125 @node Float Basics
126 @section Floating Point Basics
127
128 Floating point numbers are useful for representing numbers that are
129 not integral. The precise range of floating point numbers is
130 machine-specific; it is the same as the range of the C data type
131 @code{double} on the machine you are using.
132
133 The read-syntax for floating point numbers requires either a decimal
134 point (with at least one digit following), an exponent, or both. For
135 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
136 @samp{.15e4} are five ways of writing a floating point number whose
137 value is 1500. They are all equivalent. You can also use a minus sign
138 to write negative floating point numbers, as in @samp{-1.0}.
139
140 @cindex IEEE floating point
141 @cindex positive infinity
142 @cindex negative infinity
143 @cindex infinity
144 @cindex NaN
145 Most modern computers support the IEEE floating point standard, which
146 provides for positive infinity and negative infinity as floating point
147 values. It also provides for a class of values called NaN or
148 ``not-a-number''; numerical functions return such values in cases where
149 there is no correct answer. For example, @code{(sqrt -1.0)} returns a
150 NaN. For practical purposes, there's no significant difference between
151 different NaN values in Emacs Lisp, and there's no rule for precisely
152 which NaN value should be used in a particular case, so Emacs Lisp
153 doesn't try to distinguish them. Here are the read syntaxes for
154 these special floating point values:
155
156 @table @asis
157 @item positive infinity
158 @samp{1.0e+INF}
159 @item negative infinity
160 @samp{-1.0e+INF}
161 @item Not-a-number
162 @samp{0.0e+NaN}.
163 @end table
164
165 In addition, the value @code{-0.0} is distinguishable from ordinary
166 zero in IEEE floating point (although @code{equal} and @code{=} consider
167 them equal values).
168
169 You can use @code{logb} to extract the binary exponent of a floating
170 point number (or estimate the logarithm of an integer):
171
172 @defun logb number
173 This function returns the binary exponent of @var{number}. More
174 precisely, the value is the logarithm of @var{number} base 2, rounded
175 down to an integer.
176
177 @example
178 (logb 10)
179 @result{} 3
180 (logb 10.0e20)
181 @result{} 69
182 @end example
183 @end defun
184
185 @node Predicates on Numbers
186 @section Type Predicates for Numbers
187
188 The functions in this section test whether the argument is a number or
189 whether it is a certain sort of number. The functions @code{integerp}
190 and @code{floatp} can take any type of Lisp object as argument (the
191 predicates would not be of much use otherwise); but the @code{zerop}
192 predicate requires a number as its argument. See also
193 @code{integer-or-marker-p} and @code{number-or-marker-p}, in
194 @ref{Predicates on Markers}.
195
196 @defun floatp object
197 This predicate tests whether its argument is a floating point
198 number and returns @code{t} if so, @code{nil} otherwise.
199
200 @code{floatp} does not exist in Emacs versions 18 and earlier.
201 @end defun
202
203 @defun integerp object
204 This predicate tests whether its argument is an integer, and returns
205 @code{t} if so, @code{nil} otherwise.
206 @end defun
207
208 @defun numberp object
209 This predicate tests whether its argument is a number (either integer or
210 floating point), and returns @code{t} if so, @code{nil} otherwise.
211 @end defun
212
213 @defun wholenump object
214 @cindex natural numbers
215 The @code{wholenump} predicate (whose name comes from the phrase
216 ``whole-number-p'') tests to see whether its argument is a nonnegative
217 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is
218 considered non-negative.
219
220 @findex natnump
221 @code{natnump} is an obsolete synonym for @code{wholenump}.
222 @end defun
223
224 @defun zerop number
225 This predicate tests whether its argument is zero, and returns @code{t}
226 if so, @code{nil} otherwise. The argument must be a number.
227
228 These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}.
229 @end defun
230
231 @node Comparison of Numbers
232 @section Comparison of Numbers
233 @cindex number equality
234
235 To test numbers for numerical equality, you should normally use
236 @code{=}, not @code{eq}. There can be many distinct floating point
237 number objects with the same numeric value. If you use @code{eq} to
238 compare them, then you test whether two values are the same
239 @emph{object}. By contrast, @code{=} compares only the numeric values
240 of the objects.
241
242 At present, each integer value has a unique Lisp object in Emacs Lisp.
243 Therefore, @code{eq} is equivalent to @code{=} where integers are
244 concerned. It is sometimes convenient to use @code{eq} for comparing an
245 unknown value with an integer, because @code{eq} does not report an
246 error if the unknown value is not a number---it accepts arguments of any
247 type. By contrast, @code{=} signals an error if the arguments are not
248 numbers or markers. However, it is a good idea to use @code{=} if you
249 can, even for comparing integers, just in case we change the
250 representation of integers in a future Emacs version.
251
252 Sometimes it is useful to compare numbers with @code{equal}; it treats
253 two numbers as equal if they have the same data type (both integers, or
254 both floating point) and the same value. By contrast, @code{=} can
255 treat an integer and a floating point number as equal.
256
257 There is another wrinkle: because floating point arithmetic is not
258 exact, it is often a bad idea to check for equality of two floating
259 point values. Usually it is better to test for approximate equality.
260 Here's a function to do this:
261
262 @example
263 (defvar fuzz-factor 1.0e-6)
264 (defun approx-equal (x y)
265 (or (and (= x 0) (= y 0))
266 (< (/ (abs (- x y))
267 (max (abs x) (abs y)))
268 fuzz-factor)))
269 @end example
270
271 @cindex CL note---integers vrs @code{eq}
272 @quotation
273 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
274 @code{=} because Common Lisp implements multi-word integers, and two
275 distinct integer objects can have the same numeric value. Emacs Lisp
276 can have just one integer object for any given value because it has a
277 limited range of integer values.
278 @end quotation
279
280 @defun = number-or-marker1 number-or-marker2
281 This function tests whether its arguments are numerically equal, and
282 returns @code{t} if so, @code{nil} otherwise.
283 @end defun
284
285 @defun /= number-or-marker1 number-or-marker2
286 This function tests whether its arguments are numerically equal, and
287 returns @code{t} if they are not, and @code{nil} if they are.
288 @end defun
289
290 @defun < number-or-marker1 number-or-marker2
291 This function tests whether its first argument is strictly less than
292 its second argument. It returns @code{t} if so, @code{nil} otherwise.
293 @end defun
294
295 @defun <= number-or-marker1 number-or-marker2
296 This function tests whether its first argument is less than or equal
297 to its second argument. It returns @code{t} if so, @code{nil}
298 otherwise.
299 @end defun
300
301 @defun > number-or-marker1 number-or-marker2
302 This function tests whether its first argument is strictly greater
303 than its second argument. It returns @code{t} if so, @code{nil}
304 otherwise.
305 @end defun
306
307 @defun >= number-or-marker1 number-or-marker2
308 This function tests whether its first argument is greater than or
309 equal to its second argument. It returns @code{t} if so, @code{nil}
310 otherwise.
311 @end defun
312
313 @defun max number-or-marker &rest numbers-or-markers
314 This function returns the largest of its arguments.
315
316 @example
317 (max 20)
318 @result{} 20
319 (max 1 2.5)
320 @result{} 2.5
321 (max 1 3 2.5)
322 @result{} 3
323 @end example
324 @end defun
325
326 @defun min number-or-marker &rest numbers-or-markers
327 This function returns the smallest of its arguments.
328
329 @example
330 (min -4 1)
331 @result{} -4
332 @end example
333 @end defun
334
335 @defun abs number
336 This function returns the absolute value of @var{number}.
337 @end defun
338
339 @node Numeric Conversions
340 @section Numeric Conversions
341 @cindex rounding in conversions
342
343 To convert an integer to floating point, use the function @code{float}.
344
345 @defun float number
346 This returns @var{number} converted to floating point.
347 If @var{number} is already a floating point number, @code{float} returns
348 it unchanged.
349 @end defun
350
351 There are four functions to convert floating point numbers to integers;
352 they differ in how they round. These functions accept integer arguments
353 also, and return such arguments unchanged.
354
355 @defun truncate number
356 This returns @var{number}, converted to an integer by rounding towards
357 zero.
358 @end defun
359
360 @defun floor number &optional divisor
361 This returns @var{number}, converted to an integer by rounding downward
362 (towards negative infinity).
363
364 If @var{divisor} is specified, @var{number} is divided by @var{divisor}
365 before the floor is taken; this uses the kind of division operation that
366 corresponds to @code{mod}, rounding downward. An @code{arith-error}
367 results if @var{divisor} is 0.
368 @end defun
369
370 @defun ceiling number
371 This returns @var{number}, converted to an integer by rounding upward
372 (towards positive infinity).
373 @end defun
374
375 @defun round number
376 This returns @var{number}, converted to an integer by rounding towards the
377 nearest integer. Rounding a value equidistant between two integers
378 may choose the integer closer to zero, or it may prefer an even integer,
379 depending on your machine.
380 @end defun
381
382 @node Arithmetic Operations
383 @section Arithmetic Operations
384
385 Emacs Lisp provides the traditional four arithmetic operations:
386 addition, subtraction, multiplication, and division. Remainder and modulus
387 functions supplement the division functions. The functions to
388 add or subtract 1 are provided because they are traditional in Lisp and
389 commonly used.
390
391 All of these functions except @code{%} return a floating point value
392 if any argument is floating.
393
394 It is important to note that in Emacs Lisp, arithmetic functions
395 do not check for overflow. Thus @code{(1+ 134217727)} may evaluate to
396 @minus{}134217728, depending on your hardware.
397
398 @defun 1+ number-or-marker
399 This function returns @var{number-or-marker} plus 1.
400 For example,
401
402 @example
403 (setq foo 4)
404 @result{} 4
405 (1+ foo)
406 @result{} 5
407 @end example
408
409 This function is not analogous to the C operator @code{++}---it does not
410 increment a variable. It just computes a sum. Thus, if we continue,
411
412 @example
413 foo
414 @result{} 4
415 @end example
416
417 If you want to increment the variable, you must use @code{setq},
418 like this:
419
420 @example
421 (setq foo (1+ foo))
422 @result{} 5
423 @end example
424 @end defun
425
426 @defun 1- number-or-marker
427 This function returns @var{number-or-marker} minus 1.
428 @end defun
429
430 @defun + &rest numbers-or-markers
431 This function adds its arguments together. When given no arguments,
432 @code{+} returns 0.
433
434 @example
435 (+)
436 @result{} 0
437 (+ 1)
438 @result{} 1
439 (+ 1 2 3 4)
440 @result{} 10
441 @end example
442 @end defun
443
444 @defun - &optional number-or-marker &rest more-numbers-or-markers
445 The @code{-} function serves two purposes: negation and subtraction.
446 When @code{-} has a single argument, the value is the negative of the
447 argument. When there are multiple arguments, @code{-} subtracts each of
448 the @var{more-numbers-or-markers} from @var{number-or-marker},
449 cumulatively. If there are no arguments, the result is 0.
450
451 @example
452 (- 10 1 2 3 4)
453 @result{} 0
454 (- 10)
455 @result{} -10
456 (-)
457 @result{} 0
458 @end example
459 @end defun
460
461 @defun * &rest numbers-or-markers
462 This function multiplies its arguments together, and returns the
463 product. When given no arguments, @code{*} returns 1.
464
465 @example
466 (*)
467 @result{} 1
468 (* 1)
469 @result{} 1
470 (* 1 2 3 4)
471 @result{} 24
472 @end example
473 @end defun
474
475 @defun / dividend divisor &rest divisors
476 This function divides @var{dividend} by @var{divisor} and returns the
477 quotient. If there are additional arguments @var{divisors}, then it
478 divides @var{dividend} by each divisor in turn. Each argument may be a
479 number or a marker.
480
481 If all the arguments are integers, then the result is an integer too.
482 This means the result has to be rounded. On most machines, the result
483 is rounded towards zero after each division, but some machines may round
484 differently with negative arguments. This is because the Lisp function
485 @code{/} is implemented using the C division operator, which also
486 permits machine-dependent rounding. As a practical matter, all known
487 machines round in the standard fashion.
488
489 @cindex @code{arith-error} in division
490 If you divide an integer by 0, an @code{arith-error} error is signaled.
491 (@xref{Errors}.) Floating point division by zero returns either
492 infinity or a NaN if your machine supports IEEE floating point;
493 otherwise, it signals an @code{arith-error} error.
494
495 @example
496 @group
497 (/ 6 2)
498 @result{} 3
499 @end group
500 (/ 5 2)
501 @result{} 2
502 (/ 5.0 2)
503 @result{} 2.5
504 (/ 5 2.0)
505 @result{} 2.5
506 (/ 5.0 2.0)
507 @result{} 2.5
508 (/ 25 3 2)
509 @result{} 4
510 (/ -17 6)
511 @result{} -2
512 @end example
513
514 The result of @code{(/ -17 6)} could in principle be -3 on some
515 machines.
516 @end defun
517
518 @defun % dividend divisor
519 @cindex remainder
520 This function returns the integer remainder after division of @var{dividend}
521 by @var{divisor}. The arguments must be integers or markers.
522
523 For negative arguments, the remainder is in principle machine-dependent
524 since the quotient is; but in practice, all known machines behave alike.
525
526 An @code{arith-error} results if @var{divisor} is 0.
527
528 @example
529 (% 9 4)
530 @result{} 1
531 (% -9 4)
532 @result{} -1
533 (% 9 -4)
534 @result{} 1
535 (% -9 -4)
536 @result{} -1
537 @end example
538
539 For any two integers @var{dividend} and @var{divisor},
540
541 @example
542 @group
543 (+ (% @var{dividend} @var{divisor})
544 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
545 @end group
546 @end example
547
548 @noindent
549 always equals @var{dividend}.
550 @end defun
551
552 @defun mod dividend divisor
553 @cindex modulus
554 This function returns the value of @var{dividend} modulo @var{divisor};
555 in other words, the remainder after division of @var{dividend}
556 by @var{divisor}, but with the same sign as @var{divisor}.
557 The arguments must be numbers or markers.
558
559 Unlike @code{%}, @code{mod} returns a well-defined result for negative
560 arguments. It also permits floating point arguments; it rounds the
561 quotient downward (towards minus infinity) to an integer, and uses that
562 quotient to compute the remainder.
563
564 An @code{arith-error} results if @var{divisor} is 0.
565
566 @example
567 @group
568 (mod 9 4)
569 @result{} 1
570 @end group
571 @group
572 (mod -9 4)
573 @result{} 3
574 @end group
575 @group
576 (mod 9 -4)
577 @result{} -3
578 @end group
579 @group
580 (mod -9 -4)
581 @result{} -1
582 @end group
583 @group
584 (mod 5.5 2.5)
585 @result{} .5
586 @end group
587 @end example
588
589 For any two numbers @var{dividend} and @var{divisor},
590
591 @example
592 @group
593 (+ (mod @var{dividend} @var{divisor})
594 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
595 @end group
596 @end example
597
598 @noindent
599 always equals @var{dividend}, subject to rounding error if either
600 argument is floating point. For @code{floor}, see @ref{Numeric
601 Conversions}.
602 @end defun
603
604 @node Rounding Operations
605 @section Rounding Operations
606 @cindex rounding without conversion
607
608 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
609 @code{ftruncate} take a floating point argument and return a floating
610 point result whose value is a nearby integer. @code{ffloor} returns the
611 nearest integer below; @code{fceiling}, the nearest integer above;
612 @code{ftruncate}, the nearest integer in the direction towards zero;
613 @code{fround}, the nearest integer.
614
615 @defun ffloor float
616 This function rounds @var{float} to the next lower integral value, and
617 returns that value as a floating point number.
618 @end defun
619
620 @defun fceiling float
621 This function rounds @var{float} to the next higher integral value, and
622 returns that value as a floating point number.
623 @end defun
624
625 @defun ftruncate float
626 This function rounds @var{float} towards zero to an integral value, and
627 returns that value as a floating point number.
628 @end defun
629
630 @defun fround float
631 This function rounds @var{float} to the nearest integral value,
632 and returns that value as a floating point number.
633 @end defun
634
635 @node Bitwise Operations
636 @section Bitwise Operations on Integers
637
638 In a computer, an integer is represented as a binary number, a
639 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
640 operation acts on the individual bits of such a sequence. For example,
641 @dfn{shifting} moves the whole sequence left or right one or more places,
642 reproducing the same pattern ``moved over''.
643
644 The bitwise operations in Emacs Lisp apply only to integers.
645
646 @defun lsh integer1 count
647 @cindex logical shift
648 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
649 bits in @var{integer1} to the left @var{count} places, or to the right
650 if @var{count} is negative, bringing zeros into the vacated bits. If
651 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
652 (most-significant) bit, producing a positive result even if
653 @var{integer1} is negative. Contrast this with @code{ash}, below.
654
655 Here are two examples of @code{lsh}, shifting a pattern of bits one
656 place to the left. We show only the low-order eight bits of the binary
657 pattern; the rest are all zero.
658
659 @example
660 @group
661 (lsh 5 1)
662 @result{} 10
663 ;; @r{Decimal 5 becomes decimal 10.}
664 00000101 @result{} 00001010
665
666 (lsh 7 1)
667 @result{} 14
668 ;; @r{Decimal 7 becomes decimal 14.}
669 00000111 @result{} 00001110
670 @end group
671 @end example
672
673 @noindent
674 As the examples illustrate, shifting the pattern of bits one place to
675 the left produces a number that is twice the value of the previous
676 number.
677
678 Shifting a pattern of bits two places to the left produces results
679 like this (with 8-bit binary numbers):
680
681 @example
682 @group
683 (lsh 3 2)
684 @result{} 12
685 ;; @r{Decimal 3 becomes decimal 12.}
686 00000011 @result{} 00001100
687 @end group
688 @end example
689
690 On the other hand, shifting one place to the right looks like this:
691
692 @example
693 @group
694 (lsh 6 -1)
695 @result{} 3
696 ;; @r{Decimal 6 becomes decimal 3.}
697 00000110 @result{} 00000011
698 @end group
699
700 @group
701 (lsh 5 -1)
702 @result{} 2
703 ;; @r{Decimal 5 becomes decimal 2.}
704 00000101 @result{} 00000010
705 @end group
706 @end example
707
708 @noindent
709 As the example illustrates, shifting one place to the right divides the
710 value of a positive integer by two, rounding downward.
711
712 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
713 not check for overflow, so shifting left can discard significant bits
714 and change the sign of the number. For example, left shifting
715 134,217,727 produces @minus{}2 on a 28-bit machine:
716
717 @example
718 (lsh 134217727 1) ; @r{left shift}
719 @result{} -2
720 @end example
721
722 In binary, in the 28-bit implementation, the argument looks like this:
723
724 @example
725 @group
726 ;; @r{Decimal 134,217,727}
727 0111 1111 1111 1111 1111 1111 1111
728 @end group
729 @end example
730
731 @noindent
732 which becomes the following when left shifted:
733
734 @example
735 @group
736 ;; @r{Decimal @minus{}2}
737 1111 1111 1111 1111 1111 1111 1110
738 @end group
739 @end example
740 @end defun
741
742 @defun ash integer1 count
743 @cindex arithmetic shift
744 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
745 to the left @var{count} places, or to the right if @var{count}
746 is negative.
747
748 @code{ash} gives the same results as @code{lsh} except when
749 @var{integer1} and @var{count} are both negative. In that case,
750 @code{ash} puts ones in the empty bit positions on the left, while
751 @code{lsh} puts zeros in those bit positions.
752
753 Thus, with @code{ash}, shifting the pattern of bits one place to the right
754 looks like this:
755
756 @example
757 @group
758 (ash -6 -1) @result{} -3
759 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
760 1111 1111 1111 1111 1111 1111 1010
761 @result{}
762 1111 1111 1111 1111 1111 1111 1101
763 @end group
764 @end example
765
766 In contrast, shifting the pattern of bits one place to the right with
767 @code{lsh} looks like this:
768
769 @example
770 @group
771 (lsh -6 -1) @result{} 134217725
772 ;; @r{Decimal @minus{}6 becomes decimal 134,217,725.}
773 1111 1111 1111 1111 1111 1111 1010
774 @result{}
775 0111 1111 1111 1111 1111 1111 1101
776 @end group
777 @end example
778
779 Here are other examples:
780
781 @c !!! Check if lined up in smallbook format! XDVI shows problem
782 @c with smallbook but not with regular book! --rjc 16mar92
783 @smallexample
784 @group
785 ; @r{ 28-bit binary values}
786
787 (lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
788 @result{} 20 ; = @r{0000 0000 0000 0000 0000 0001 0100}
789 @end group
790 @group
791 (ash 5 2)
792 @result{} 20
793 (lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011}
794 @result{} -20 ; = @r{1111 1111 1111 1111 1111 1110 1100}
795 (ash -5 2)
796 @result{} -20
797 @end group
798 @group
799 (lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
800 @result{} 1 ; = @r{0000 0000 0000 0000 0000 0000 0001}
801 @end group
802 @group
803 (ash 5 -2)
804 @result{} 1
805 @end group
806 @group
807 (lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011}
808 @result{} 4194302 ; = @r{0011 1111 1111 1111 1111 1111 1110}
809 @end group
810 @group
811 (ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011}
812 @result{} -2 ; = @r{1111 1111 1111 1111 1111 1111 1110}
813 @end group
814 @end smallexample
815 @end defun
816
817 @defun logand &rest ints-or-markers
818 @cindex logical and
819 @cindex bitwise and
820 This function returns the ``logical and'' of the arguments: the
821 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
822 set in all the arguments. (``Set'' means that the value of the bit is 1
823 rather than 0.)
824
825 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
826 12 is 12: 1101 combined with 1100 produces 1100.
827 In both the binary numbers, the leftmost two bits are set (i.e., they
828 are 1's), so the leftmost two bits of the returned value are set.
829 However, for the rightmost two bits, each is zero in at least one of
830 the arguments, so the rightmost two bits of the returned value are 0's.
831
832 @noindent
833 Therefore,
834
835 @example
836 @group
837 (logand 13 12)
838 @result{} 12
839 @end group
840 @end example
841
842 If @code{logand} is not passed any argument, it returns a value of
843 @minus{}1. This number is an identity element for @code{logand}
844 because its binary representation consists entirely of ones. If
845 @code{logand} is passed just one argument, it returns that argument.
846
847 @smallexample
848 @group
849 ; @r{ 28-bit binary values}
850
851 (logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110}
852 ; 13 = @r{0000 0000 0000 0000 0000 0000 1101}
853 @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
854 @end group
855
856 @group
857 (logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110}
858 ; 13 = @r{0000 0000 0000 0000 0000 0000 1101}
859 ; 4 = @r{0000 0000 0000 0000 0000 0000 0100}
860 @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0000 0100}
861 @end group
862
863 @group
864 (logand)
865 @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111 1111}
866 @end group
867 @end smallexample
868 @end defun
869
870 @defun logior &rest ints-or-markers
871 @cindex logical inclusive or
872 @cindex bitwise or
873 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
874 is set in the result if, and only if, the @var{n}th bit is set in at least
875 one of the arguments. If there are no arguments, the result is zero,
876 which is an identity element for this operation. If @code{logior} is
877 passed just one argument, it returns that argument.
878
879 @smallexample
880 @group
881 ; @r{ 28-bit binary values}
882
883 (logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
884 ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
885 @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 0000 1101}
886 @end group
887
888 @group
889 (logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
890 ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
891 ; 7 = @r{0000 0000 0000 0000 0000 0000 0111}
892 @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 0000 1111}
893 @end group
894 @end smallexample
895 @end defun
896
897 @defun logxor &rest ints-or-markers
898 @cindex bitwise exclusive or
899 @cindex logical exclusive or
900 This function returns the ``exclusive or'' of its arguments: the
901 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
902 set in an odd number of the arguments. If there are no arguments, the
903 result is 0, which is an identity element for this operation. If
904 @code{logxor} is passed just one argument, it returns that argument.
905
906 @smallexample
907 @group
908 ; @r{ 28-bit binary values}
909
910 (logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
911 ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
912 @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 0000 1001}
913 @end group
914
915 @group
916 (logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
917 ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
918 ; 7 = @r{0000 0000 0000 0000 0000 0000 0111}
919 @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 0000 1110}
920 @end group
921 @end smallexample
922 @end defun
923
924 @defun lognot integer
925 @cindex logical not
926 @cindex bitwise not
927 This function returns the logical complement of its argument: the @var{n}th
928 bit is one in the result if, and only if, the @var{n}th bit is zero in
929 @var{integer}, and vice-versa.
930
931 @example
932 (lognot 5)
933 @result{} -6
934 ;; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
935 ;; @r{becomes}
936 ;; -6 = @r{1111 1111 1111 1111 1111 1111 1010}
937 @end example
938 @end defun
939
940 @node Math Functions
941 @section Standard Mathematical Functions
942 @cindex transcendental functions
943 @cindex mathematical functions
944
945 These mathematical functions allow integers as well as floating point
946 numbers as arguments.
947
948 @defun sin arg
949 @defunx cos arg
950 @defunx tan arg
951 These are the ordinary trigonometric functions, with argument measured
952 in radians.
953 @end defun
954
955 @defun asin arg
956 The value of @code{(asin @var{arg})} is a number between
957 @ifinfo
958 @minus{}pi/2
959 @end ifinfo
960 @tex
961 $-\pi/2$
962 @end tex
963 and
964 @ifinfo
965 pi/2
966 @end ifinfo
967 @tex
968 $\pi/2$
969 @end tex
970 (inclusive) whose sine is @var{arg}; if, however, @var{arg}
971 is out of range (outside [-1, 1]), then the result is a NaN.
972 @end defun
973
974 @defun acos arg
975 The value of @code{(acos @var{arg})} is a number between 0 and
976 @ifinfo
977 pi
978 @end ifinfo
979 @tex
980 $\pi$
981 @end tex
982 (inclusive) whose cosine is @var{arg}; if, however, @var{arg}
983 is out of range (outside [-1, 1]), then the result is a NaN.
984 @end defun
985
986 @defun atan arg
987 The value of @code{(atan @var{arg})} is a number between
988 @ifinfo
989 @minus{}pi/2
990 @end ifinfo
991 @tex
992 $-\pi/2$
993 @end tex
994 and
995 @ifinfo
996 pi/2
997 @end ifinfo
998 @tex
999 $\pi/2$
1000 @end tex
1001 (exclusive) whose tangent is @var{arg}.
1002 @end defun
1003
1004 @defun exp arg
1005 This is the exponential function; it returns
1006 @tex
1007 $e$
1008 @end tex
1009 @ifinfo
1010 @i{e}
1011 @end ifinfo
1012 to the power @var{arg}.
1013 @tex
1014 $e$
1015 @end tex
1016 @ifinfo
1017 @i{e}
1018 @end ifinfo
1019 is a fundamental mathematical constant also called the base of natural
1020 logarithms.
1021 @end defun
1022
1023 @defun log arg &optional base
1024 This function returns the logarithm of @var{arg}, with base @var{base}.
1025 If you don't specify @var{base}, the base
1026 @tex
1027 $e$
1028 @end tex
1029 @ifinfo
1030 @i{e}
1031 @end ifinfo
1032 is used. If @var{arg}
1033 is negative, the result is a NaN.
1034 @end defun
1035
1036 @ignore
1037 @defun expm1 arg
1038 This function returns @code{(1- (exp @var{arg}))}, but it is more
1039 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1040 is close to 1.
1041 @end defun
1042
1043 @defun log1p arg
1044 This function returns @code{(log (1+ @var{arg}))}, but it is more
1045 accurate than that when @var{arg} is so small that adding 1 to it would
1046 lose accuracy.
1047 @end defun
1048 @end ignore
1049
1050 @defun log10 arg
1051 This function returns the logarithm of @var{arg}, with base 10. If
1052 @var{arg} is negative, the result is a NaN. @code{(log10 @var{x})}
1053 @equiv{} @code{(log @var{x} 10)}, at least approximately.
1054 @end defun
1055
1056 @defun expt x y
1057 This function returns @var{x} raised to power @var{y}. If both
1058 arguments are integers and @var{y} is positive, the result is an
1059 integer; in this case, it is truncated to fit the range of possible
1060 integer values.
1061 @end defun
1062
1063 @defun sqrt arg
1064 This returns the square root of @var{arg}. If @var{arg} is negative,
1065 the value is a NaN.
1066 @end defun
1067
1068 @node Random Numbers
1069 @section Random Numbers
1070 @cindex random numbers
1071
1072 A deterministic computer program cannot generate true random numbers.
1073 For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1074 pseudo-random numbers is generated in a deterministic fashion. The
1075 numbers are not truly random, but they have certain properties that
1076 mimic a random series. For example, all possible values occur equally
1077 often in a pseudo-random series.
1078
1079 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1080 Starting from any given seed, the @code{random} function always
1081 generates the same sequence of numbers. Emacs always starts with the
1082 same seed value, so the sequence of values of @code{random} is actually
1083 the same in each Emacs run! For example, in one operating system, the
1084 first call to @code{(random)} after you start Emacs always returns
1085 -1457731, and the second one always returns -7692030. This
1086 repeatability is helpful for debugging.
1087
1088 If you want truly unpredictable random numbers, execute @code{(random
1089 t)}. This chooses a new seed based on the current time of day and on
1090 Emacs's process @sc{id} number.
1091
1092 @defun random &optional limit
1093 This function returns a pseudo-random integer. Repeated calls return a
1094 series of pseudo-random integers.
1095
1096 If @var{limit} is a positive integer, the value is chosen to be
1097 nonnegative and less than @var{limit}.
1098
1099 If @var{limit} is @code{t}, it means to choose a new seed based on the
1100 current time of day and on Emacs's process @sc{id} number.
1101 @c "Emacs'" is incorrect usage!
1102
1103 On some machines, any integer representable in Lisp may be the result
1104 of @code{random}. On other machines, the result can never be larger
1105 than a certain maximum or less than a certain (negative) minimum.
1106 @end defun