(fix_submap_inheritance, get_keyelt, store_in_keymap,
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #undef NULL
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33
34 #define min(a, b) ((a) < (b) ? (a) : (b))
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* Keymap mapping ASCII function key sequences onto their preferred forms.
79 Initialized by the terminal-specific lisp files. See DEFVAR for more
80 documentation. */
81 Lisp_Object Vfunction_key_map;
82
83 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
84 Lisp_Object Vkey_translation_map;
85
86 /* A list of all commands given new bindings since a certain time
87 when nil was stored here.
88 This is used to speed up recomputation of menu key equivalents
89 when Emacs starts up. t means don't record anything here. */
90 Lisp_Object Vdefine_key_rebound_commands;
91
92 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
93
94 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
95 in a string key sequence is equivalent to prefixing with this
96 character. */
97 extern Lisp_Object meta_prefix_char;
98
99 extern Lisp_Object Voverriding_local_map;
100
101 static Lisp_Object define_as_prefix ();
102 static Lisp_Object describe_buffer_bindings ();
103 static void describe_command (), describe_translation ();
104 static void describe_map ();
105 Lisp_Object Fcopy_keymap ();
106 \f
107 /* Keymap object support - constructors and predicates. */
108
109 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
110 "Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\
111 VECTOR is a vector which holds the bindings for the ASCII\n\
112 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
113 mouse events, and any other things that appear in the input stream.\n\
114 All entries in it are initially nil, meaning \"command undefined\".\n\n\
115 The optional arg STRING supplies a menu name for the keymap\n\
116 in case you use it as a menu with `x-popup-menu'.")
117 (string)
118 Lisp_Object string;
119 {
120 Lisp_Object tail;
121 if (!NILP (string))
122 tail = Fcons (string, Qnil);
123 else
124 tail = Qnil;
125 return Fcons (Qkeymap,
126 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
127 }
128
129 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
130 "Construct and return a new sparse-keymap list.\n\
131 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
132 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
133 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
134 Initially the alist is nil.\n\n\
135 The optional arg STRING supplies a menu name for the keymap\n\
136 in case you use it as a menu with `x-popup-menu'.")
137 (string)
138 Lisp_Object string;
139 {
140 if (!NILP (string))
141 return Fcons (Qkeymap, Fcons (string, Qnil));
142 return Fcons (Qkeymap, Qnil);
143 }
144
145 /* This function is used for installing the standard key bindings
146 at initialization time.
147
148 For example:
149
150 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
151
152 void
153 initial_define_key (keymap, key, defname)
154 Lisp_Object keymap;
155 int key;
156 char *defname;
157 {
158 store_in_keymap (keymap, make_number (key), intern (defname));
159 }
160
161 void
162 initial_define_lispy_key (keymap, keyname, defname)
163 Lisp_Object keymap;
164 char *keyname;
165 char *defname;
166 {
167 store_in_keymap (keymap, intern (keyname), intern (defname));
168 }
169
170 /* Define character fromchar in map frommap as an alias for character
171 tochar in map tomap. Subsequent redefinitions of the latter WILL
172 affect the former. */
173
174 #if 0
175 void
176 synkey (frommap, fromchar, tomap, tochar)
177 struct Lisp_Vector *frommap, *tomap;
178 int fromchar, tochar;
179 {
180 Lisp_Object v, c;
181 XSETVECTOR (v, tomap);
182 XSETFASTINT (c, tochar);
183 frommap->contents[fromchar] = Fcons (v, c);
184 }
185 #endif /* 0 */
186
187 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
188 "Return t if OBJECT is a keymap.\n\
189 \n\
190 A keymap is a list (keymap . ALIST),\n\
191 or a symbol whose function definition is itself a keymap.\n\
192 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
193 a vector of densely packed bindings for small character codes\n\
194 is also allowed as an element.")
195 (object)
196 Lisp_Object object;
197 {
198 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
199 }
200
201 /* Check that OBJECT is a keymap (after dereferencing through any
202 symbols). If it is, return it.
203
204 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
205 is an autoload form, do the autoload and try again.
206 If AUTOLOAD is nonzero, callers must assume GC is possible.
207
208 ERROR controls how we respond if OBJECT isn't a keymap.
209 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
210
211 Note that most of the time, we don't want to pursue autoloads.
212 Functions like Faccessible_keymaps which scan entire keymap trees
213 shouldn't load every autoloaded keymap. I'm not sure about this,
214 but it seems to me that only read_key_sequence, Flookup_key, and
215 Fdefine_key should cause keymaps to be autoloaded. */
216
217 Lisp_Object
218 get_keymap_1 (object, error, autoload)
219 Lisp_Object object;
220 int error, autoload;
221 {
222 Lisp_Object tem;
223
224 autoload_retry:
225 tem = indirect_function (object);
226 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
227 return tem;
228
229 /* Should we do an autoload? Autoload forms for keymaps have
230 Qkeymap as their fifth element. */
231 if (autoload
232 && SYMBOLP (object)
233 && CONSP (tem)
234 && EQ (XCONS (tem)->car, Qautoload))
235 {
236 Lisp_Object tail;
237
238 tail = Fnth (make_number (4), tem);
239 if (EQ (tail, Qkeymap))
240 {
241 struct gcpro gcpro1, gcpro2;
242
243 GCPRO2 (tem, object);
244 do_autoload (tem, object);
245 UNGCPRO;
246
247 goto autoload_retry;
248 }
249 }
250
251 if (error)
252 wrong_type_argument (Qkeymapp, object);
253 else
254 return Qnil;
255 }
256
257
258 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
259 If OBJECT doesn't denote a keymap at all, signal an error. */
260 Lisp_Object
261 get_keymap (object)
262 Lisp_Object object;
263 {
264 return get_keymap_1 (object, 1, 0);
265 }
266 \f
267 /* Return the parent map of the keymap MAP, or nil if it has none.
268 We assume that MAP is a valid keymap. */
269
270 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
271 "Return the parent keymap of KEYMAP.")
272 (keymap)
273 Lisp_Object keymap;
274 {
275 Lisp_Object list;
276
277 keymap = get_keymap_1 (keymap, 1, 1);
278
279 /* Skip past the initial element `keymap'. */
280 list = XCONS (keymap)->cdr;
281 for (; CONSP (list); list = XCONS (list)->cdr)
282 {
283 /* See if there is another `keymap'. */
284 if (EQ (Qkeymap, XCONS (list)->car))
285 return list;
286 }
287
288 return Qnil;
289 }
290
291 /* Set the parent keymap of MAP to PARENT. */
292
293 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
294 "Modify KEYMAP to set its parent map to PARENT.\n\
295 PARENT should be nil or another keymap.")
296 (keymap, parent)
297 Lisp_Object keymap, parent;
298 {
299 Lisp_Object list, prev;
300 int i;
301
302 keymap = get_keymap_1 (keymap, 1, 1);
303 if (!NILP (parent))
304 parent = get_keymap_1 (parent, 1, 1);
305
306 /* Skip past the initial element `keymap'. */
307 prev = keymap;
308 while (1)
309 {
310 list = XCONS (prev)->cdr;
311 /* If there is a parent keymap here, replace it.
312 If we came to the end, add the parent in PREV. */
313 if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
314 {
315 /* If we already have the right parent, return now
316 so that we avoid the loops below. */
317 if (EQ (XCONS (prev)->cdr, parent))
318 return parent;
319
320 XCONS (prev)->cdr = parent;
321 break;
322 }
323 prev = list;
324 }
325
326 /* Scan through for submaps, and set their parents too. */
327
328 for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
329 {
330 /* Stop the scan when we come to the parent. */
331 if (EQ (XCONS (list)->car, Qkeymap))
332 break;
333
334 /* If this element holds a prefix map, deal with it. */
335 if (CONSP (XCONS (list)->car)
336 && CONSP (XCONS (XCONS (list)->car)->cdr))
337 fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
338 XCONS (XCONS (list)->car)->cdr);
339
340 if (VECTORP (XCONS (list)->car))
341 for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
342 if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
343 fix_submap_inheritance (keymap, make_number (i),
344 XVECTOR (XCONS (list)->car)->contents[i]);
345
346 if (CHAR_TABLE_P (XCONS (list)->car))
347 {
348 Lisp_Object indices[3];
349
350 map_char_table (fix_submap_inheritance, Qnil, XCONS (list)->car,
351 keymap, 0, indices);
352 }
353 }
354
355 return parent;
356 }
357
358 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
359 if EVENT is also a prefix in MAP's parent,
360 make sure that SUBMAP inherits that definition as its own parent. */
361
362 void
363 fix_submap_inheritance (map, event, submap)
364 Lisp_Object map, event, submap;
365 {
366 Lisp_Object map_parent, parent_entry;
367
368 /* SUBMAP is a cons that we found as a key binding.
369 Discard the other things found in a menu key binding. */
370
371 if CONSP (submap)
372 {
373 /* May be an old format menu item */
374 if STRINGP (XCONS (submap)->car)
375 {
376 submap = XCONS (submap)->cdr;
377 /* Also remove a menu help string, if any,
378 following the menu item name. */
379 if (CONSP (submap) && STRINGP (XCONS (submap)->car))
380 submap = XCONS (submap)->cdr;
381 /* Also remove the sublist that caches key equivalences, if any. */
382 if (CONSP (submap)
383 && CONSP (XCONS (submap)->car))
384 {
385 Lisp_Object carcar;
386 carcar = XCONS (XCONS (submap)->car)->car;
387 if (NILP (carcar) || VECTORP (carcar))
388 submap = XCONS (submap)->cdr;
389 }
390 }
391
392 /* Or a new format menu item */
393 else if (EQ (XCONS (submap)->car, Qmenu_item)
394 && CONSP (XCONS (submap)->cdr))
395 {
396 submap = XCONS (XCONS (submap)->cdr)->cdr;
397 if (CONSP (submap))
398 submap = XCONS (submap)->car;
399 }
400 }
401
402 /* If it isn't a keymap now, there's no work to do. */
403 if (! CONSP (submap)
404 || ! EQ (XCONS (submap)->car, Qkeymap))
405 return;
406
407 map_parent = Fkeymap_parent (map);
408 if (! NILP (map_parent))
409 parent_entry = access_keymap (map_parent, event, 0, 0);
410 else
411 parent_entry = Qnil;
412
413 /* If MAP's parent has something other than a keymap,
414 our own submap shadows it completely, so use nil as SUBMAP's parent. */
415 if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
416 parent_entry = Qnil;
417
418 if (! EQ (parent_entry, submap))
419 Fset_keymap_parent (submap, parent_entry);
420 }
421 \f
422 /* Look up IDX in MAP. IDX may be any sort of event.
423 Note that this does only one level of lookup; IDX must be a single
424 event, not a sequence.
425
426 If T_OK is non-zero, bindings for Qt are treated as default
427 bindings; any key left unmentioned by other tables and bindings is
428 given the binding of Qt.
429
430 If T_OK is zero, bindings for Qt are not treated specially.
431
432 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
433
434 Lisp_Object
435 access_keymap (map, idx, t_ok, noinherit)
436 Lisp_Object map;
437 Lisp_Object idx;
438 int t_ok;
439 int noinherit;
440 {
441 int noprefix = 0;
442 Lisp_Object val;
443
444 /* If idx is a list (some sort of mouse click, perhaps?),
445 the index we want to use is the car of the list, which
446 ought to be a symbol. */
447 idx = EVENT_HEAD (idx);
448
449 /* If idx is a symbol, it might have modifiers, which need to
450 be put in the canonical order. */
451 if (SYMBOLP (idx))
452 idx = reorder_modifiers (idx);
453 else if (INTEGERP (idx))
454 /* Clobber the high bits that can be present on a machine
455 with more than 24 bits of integer. */
456 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
457
458 {
459 Lisp_Object tail;
460 Lisp_Object t_binding;
461
462 t_binding = Qnil;
463 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
464 {
465 Lisp_Object binding;
466
467 binding = XCONS (tail)->car;
468 if (SYMBOLP (binding))
469 {
470 /* If NOINHERIT, stop finding prefix definitions
471 after we pass a second occurrence of the `keymap' symbol. */
472 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
473 noprefix = 1;
474 }
475 else if (CONSP (binding))
476 {
477 if (EQ (XCONS (binding)->car, idx))
478 {
479 val = XCONS (binding)->cdr;
480 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
481 return Qnil;
482 if (CONSP (val))
483 fix_submap_inheritance (map, idx, val);
484 return val;
485 }
486 if (t_ok && EQ (XCONS (binding)->car, Qt))
487 t_binding = XCONS (binding)->cdr;
488 }
489 else if (VECTORP (binding))
490 {
491 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
492 {
493 val = XVECTOR (binding)->contents[XFASTINT (idx)];
494 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
495 return Qnil;
496 if (CONSP (val))
497 fix_submap_inheritance (map, idx, val);
498 return val;
499 }
500 }
501 else if (CHAR_TABLE_P (binding))
502 {
503 /* Character codes with modifiers
504 are not included in a char-table.
505 All character codes without modifiers are included. */
506 if (NATNUMP (idx)
507 && ! (XFASTINT (idx)
508 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
509 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
510 {
511 val = Faref (binding, idx);
512 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
513 return Qnil;
514 if (CONSP (val))
515 fix_submap_inheritance (map, idx, val);
516 return val;
517 }
518 }
519
520 QUIT;
521 }
522
523 return t_binding;
524 }
525 }
526
527 /* Given OBJECT which was found in a slot in a keymap,
528 trace indirect definitions to get the actual definition of that slot.
529 An indirect definition is a list of the form
530 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
531 and INDEX is the object to look up in KEYMAP to yield the definition.
532
533 Also if OBJECT has a menu string as the first element,
534 remove that. Also remove a menu help string as second element.
535
536 If AUTOLOAD is nonzero, load autoloadable keymaps
537 that are referred to with indirection. */
538
539 Lisp_Object
540 get_keyelt (object, autoload)
541 register Lisp_Object object;
542 int autoload;
543 {
544 while (1)
545 {
546 register Lisp_Object map, tem;
547
548 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
549 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
550 tem = Fkeymapp (map);
551 if (!NILP (tem))
552 {
553 Lisp_Object key;
554 key = Fcdr (object);
555 if (INTEGERP (key) && (XINT (key) & meta_modifier))
556 {
557 object = access_keymap (map, meta_prefix_char, 0, 0);
558 map = get_keymap_1 (object, 0, autoload);
559 object = access_keymap (map,
560 make_number (XINT (key) & ~meta_modifier),
561 0, 0);
562 }
563 else
564 object = access_keymap (map, key, 0, 0);
565 }
566
567 else if (!(CONSP (object)))
568 /* This is really the value. */
569 return object;
570
571 /* If the keymap contents looks like (STRING . DEFN),
572 use DEFN.
573 Keymap alist elements like (CHAR MENUSTRING . DEFN)
574 will be used by HierarKey menus. */
575 else if (STRINGP (XCONS (object)->car))
576 {
577 object = XCONS (object)->cdr;
578 /* Also remove a menu help string, if any,
579 following the menu item name. */
580 if (CONSP (object) && STRINGP (XCONS (object)->car))
581 object = XCONS (object)->cdr;
582 /* Also remove the sublist that caches key equivalences, if any. */
583 if (CONSP (object)
584 && CONSP (XCONS (object)->car))
585 {
586 Lisp_Object carcar;
587 carcar = XCONS (XCONS (object)->car)->car;
588 if (NILP (carcar) || VECTORP (carcar))
589 object = XCONS (object)->cdr;
590 }
591 }
592
593 /* If the keymap contents looks like (menu-item name . DEFN)
594 or (menu-item name DEFN ...) then use DEFN.
595 This is a new format menu item.
596 */
597 else if (EQ (XCONS (object)->car, Qmenu_item)
598 && CONSP (XCONS (object)->cdr))
599 {
600 object = XCONS (XCONS (object)->cdr)->cdr;
601 if (CONSP (object))
602 object = XCONS (object)->car;
603 }
604
605 else
606 /* Anything else is really the value. */
607 return object;
608 }
609 }
610
611 Lisp_Object
612 store_in_keymap (keymap, idx, def)
613 Lisp_Object keymap;
614 register Lisp_Object idx;
615 register Lisp_Object def;
616 {
617 /* If we are preparing to dump, and DEF is a menu element
618 with a menu item indicator, copy it to ensure it is not pure. */
619 if (CONSP (def) && PURE_P (def)
620 && (EQ (XCONS (def)->car, Qmenu_item) || STRINGP (XCONS (def)->car)))
621 def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
622
623 if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
624 error ("attempt to define a key in a non-keymap");
625
626 /* If idx is a list (some sort of mouse click, perhaps?),
627 the index we want to use is the car of the list, which
628 ought to be a symbol. */
629 idx = EVENT_HEAD (idx);
630
631 /* If idx is a symbol, it might have modifiers, which need to
632 be put in the canonical order. */
633 if (SYMBOLP (idx))
634 idx = reorder_modifiers (idx);
635 else if (INTEGERP (idx))
636 /* Clobber the high bits that can be present on a machine
637 with more than 24 bits of integer. */
638 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
639
640 /* Scan the keymap for a binding of idx. */
641 {
642 Lisp_Object tail;
643
644 /* The cons after which we should insert new bindings. If the
645 keymap has a table element, we record its position here, so new
646 bindings will go after it; this way, the table will stay
647 towards the front of the alist and character lookups in dense
648 keymaps will remain fast. Otherwise, this just points at the
649 front of the keymap. */
650 Lisp_Object insertion_point;
651
652 insertion_point = keymap;
653 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
654 {
655 Lisp_Object elt;
656
657 elt = XCONS (tail)->car;
658 if (VECTORP (elt))
659 {
660 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
661 {
662 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
663 return def;
664 }
665 insertion_point = tail;
666 }
667 else if (CHAR_TABLE_P (elt))
668 {
669 /* Character codes with modifiers
670 are not included in a char-table.
671 All character codes without modifiers are included. */
672 if (NATNUMP (idx)
673 && ! (XFASTINT (idx)
674 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
675 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
676 {
677 Faset (elt, idx, def);
678 return def;
679 }
680 insertion_point = tail;
681 }
682 else if (CONSP (elt))
683 {
684 if (EQ (idx, XCONS (elt)->car))
685 {
686 XCONS (elt)->cdr = def;
687 return def;
688 }
689 }
690 else if (SYMBOLP (elt))
691 {
692 /* If we find a 'keymap' symbol in the spine of KEYMAP,
693 then we must have found the start of a second keymap
694 being used as the tail of KEYMAP, and a binding for IDX
695 should be inserted before it. */
696 if (EQ (elt, Qkeymap))
697 goto keymap_end;
698 }
699
700 QUIT;
701 }
702
703 keymap_end:
704 /* We have scanned the entire keymap, and not found a binding for
705 IDX. Let's add one. */
706 XCONS (insertion_point)->cdr
707 = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
708 }
709
710 return def;
711 }
712
713 void
714 copy_keymap_1 (chartable, idx, elt)
715 Lisp_Object chartable, idx, elt;
716 {
717 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
718 Faset (chartable, idx, Fcopy_keymap (elt));
719 }
720
721 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
722 "Return a copy of the keymap KEYMAP.\n\
723 The copy starts out with the same definitions of KEYMAP,\n\
724 but changing either the copy or KEYMAP does not affect the other.\n\
725 Any key definitions that are subkeymaps are recursively copied.\n\
726 However, a key definition which is a symbol whose definition is a keymap\n\
727 is not copied.")
728 (keymap)
729 Lisp_Object keymap;
730 {
731 register Lisp_Object copy, tail;
732
733 copy = Fcopy_alist (get_keymap (keymap));
734
735 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
736 {
737 Lisp_Object elt;
738
739 elt = XCONS (tail)->car;
740 if (CHAR_TABLE_P (elt))
741 {
742 Lisp_Object indices[3];
743
744 elt = Fcopy_sequence (elt);
745 XCONS (tail)->car = elt;
746
747 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
748 }
749 else if (VECTORP (elt))
750 {
751 int i;
752
753 elt = Fcopy_sequence (elt);
754 XCONS (tail)->car = elt;
755
756 for (i = 0; i < XVECTOR (elt)->size; i++)
757 if (!SYMBOLP (XVECTOR (elt)->contents[i])
758 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
759 XVECTOR (elt)->contents[i]
760 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
761 }
762 else if (CONSP (elt) && CONSP (XCONS (elt)->cdr))
763 {
764 Lisp_Object tem;
765 tem = XCONS (elt)->cdr;
766
767 /* Is this a new format menu item. */
768 if (EQ (XCONS (tem)->car,Qmenu_item))
769 {
770 /* Copy cell with menu-item marker. */
771 XCONS (elt)->cdr
772 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
773 elt = XCONS (elt)->cdr;
774 tem = XCONS (elt)->cdr;
775 if (CONSP (tem))
776 {
777 /* Copy cell with menu-item name. */
778 XCONS (elt)->cdr
779 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
780 elt = XCONS (elt)->cdr;
781 tem = XCONS (elt)->cdr;
782 };
783 if (CONSP (tem))
784 {
785 /* Copy cell with binding and if the binding is a keymap,
786 copy that. */
787 XCONS (elt)->cdr
788 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
789 elt = XCONS (elt)->cdr;
790 tem = XCONS (elt)->car;
791 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
792 XCONS (elt)->car = Fcopy_keymap (tem);
793 tem = XCONS (elt)->cdr;
794 if (CONSP (tem) && CONSP (XCONS (tem)->car))
795 /* Delete cache for key equivalences. */
796 XCONS (elt)->cdr = XCONS (tem)->cdr;
797 }
798 }
799 else
800 {
801 /* It may be an old fomat menu item.
802 Skip the optional menu string.
803 */
804 if (STRINGP (XCONS (tem)->car))
805 {
806 /* Copy the cell, since copy-alist didn't go this deep. */
807 XCONS (elt)->cdr
808 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
809 elt = XCONS (elt)->cdr;
810 tem = XCONS (elt)->cdr;
811 /* Also skip the optional menu help string. */
812 if (CONSP (tem) && STRINGP (XCONS (tem)->car))
813 {
814 XCONS (elt)->cdr
815 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
816 elt = XCONS (elt)->cdr;
817 tem = XCONS (elt)->cdr;
818 }
819 /* There may also be a list that caches key equivalences.
820 Just delete it for the new keymap. */
821 if (CONSP (tem)
822 && CONSP (XCONS (tem)->car)
823 && (NILP (XCONS (XCONS (tem)->car)->car)
824 || VECTORP (XCONS (XCONS (tem)->car)->car)))
825 XCONS (elt)->cdr = XCONS (tem)->cdr;
826 }
827 if (CONSP (elt)
828 && ! SYMBOLP (XCONS (elt)->cdr)
829 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
830 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
831 }
832
833 }
834 }
835
836 return copy;
837 }
838 \f
839 /* Simple Keymap mutators and accessors. */
840
841 /* GC is possible in this function if it autoloads a keymap. */
842
843 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
844 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
845 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
846 meaning a sequence of keystrokes and events.\n\
847 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
848 can be included if you use a vector.\n\
849 DEF is anything that can be a key's definition:\n\
850 nil (means key is undefined in this keymap),\n\
851 a command (a Lisp function suitable for interactive calling)\n\
852 a string (treated as a keyboard macro),\n\
853 a keymap (to define a prefix key),\n\
854 a symbol. When the key is looked up, the symbol will stand for its\n\
855 function definition, which should at that time be one of the above,\n\
856 or another symbol whose function definition is used, etc.\n\
857 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
858 (DEFN should be a valid definition in its own right),\n\
859 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
860 \n\
861 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
862 the front of KEYMAP.")
863 (keymap, key, def)
864 Lisp_Object keymap;
865 Lisp_Object key;
866 Lisp_Object def;
867 {
868 register int idx;
869 register Lisp_Object c;
870 register Lisp_Object tem;
871 register Lisp_Object cmd;
872 int metized = 0;
873 int meta_bit;
874 int length;
875 struct gcpro gcpro1, gcpro2, gcpro3;
876
877 keymap = get_keymap_1 (keymap, 1, 1);
878
879 if (!VECTORP (key) && !STRINGP (key))
880 key = wrong_type_argument (Qarrayp, key);
881
882 length = XFASTINT (Flength (key));
883 if (length == 0)
884 return Qnil;
885
886 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
887 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
888
889 GCPRO3 (keymap, key, def);
890
891 if (VECTORP (key))
892 meta_bit = meta_modifier;
893 else
894 meta_bit = 0x80;
895
896 idx = 0;
897 while (1)
898 {
899 c = Faref (key, make_number (idx));
900
901 if (CONSP (c) && lucid_event_type_list_p (c))
902 c = Fevent_convert_list (c);
903
904 if (INTEGERP (c)
905 && (XINT (c) & meta_bit)
906 && !metized)
907 {
908 c = meta_prefix_char;
909 metized = 1;
910 }
911 else
912 {
913 if (INTEGERP (c))
914 XSETINT (c, XINT (c) & ~meta_bit);
915
916 metized = 0;
917 idx++;
918 }
919
920 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
921 error ("Key sequence contains invalid events");
922
923 if (idx == length)
924 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
925
926 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
927
928 /* If this key is undefined, make it a prefix. */
929 if (NILP (cmd))
930 cmd = define_as_prefix (keymap, c);
931
932 keymap = get_keymap_1 (cmd, 0, 1);
933 if (NILP (keymap))
934 /* We must use Fkey_description rather than just passing key to
935 error; key might be a vector, not a string. */
936 error ("Key sequence %s uses invalid prefix characters",
937 XSTRING (Fkey_description (key))->data);
938 }
939 }
940
941 /* Value is number if KEY is too long; NIL if valid but has no definition. */
942 /* GC is possible in this function if it autoloads a keymap. */
943
944 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
945 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
946 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
947 \n\
948 A number as value means KEY is \"too long\";\n\
949 that is, characters or symbols in it except for the last one\n\
950 fail to be a valid sequence of prefix characters in KEYMAP.\n\
951 The number is how many characters at the front of KEY\n\
952 it takes to reach a non-prefix command.\n\
953 \n\
954 Normally, `lookup-key' ignores bindings for t, which act as default\n\
955 bindings, used when nothing else in the keymap applies; this makes it\n\
956 usable as a general function for probing keymaps. However, if the\n\
957 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
958 recognize the default bindings, just as `read-key-sequence' does.")
959 (keymap, key, accept_default)
960 register Lisp_Object keymap;
961 Lisp_Object key;
962 Lisp_Object accept_default;
963 {
964 register int idx;
965 register Lisp_Object tem;
966 register Lisp_Object cmd;
967 register Lisp_Object c;
968 int metized = 0;
969 int length;
970 int t_ok = ! NILP (accept_default);
971 int meta_bit;
972 struct gcpro gcpro1;
973
974 keymap = get_keymap_1 (keymap, 1, 1);
975
976 if (!VECTORP (key) && !STRINGP (key))
977 key = wrong_type_argument (Qarrayp, key);
978
979 length = XFASTINT (Flength (key));
980 if (length == 0)
981 return keymap;
982
983 if (VECTORP (key))
984 meta_bit = meta_modifier;
985 else
986 meta_bit = 0x80;
987
988 GCPRO1 (key);
989
990 idx = 0;
991 while (1)
992 {
993 c = Faref (key, make_number (idx));
994
995 if (CONSP (c) && lucid_event_type_list_p (c))
996 c = Fevent_convert_list (c);
997
998 if (INTEGERP (c)
999 && (XINT (c) & meta_bit)
1000 && !metized)
1001 {
1002 c = meta_prefix_char;
1003 metized = 1;
1004 }
1005 else
1006 {
1007 if (INTEGERP (c))
1008 XSETINT (c, XINT (c) & ~meta_bit);
1009
1010 metized = 0;
1011 idx++;
1012 }
1013
1014 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1015 if (idx == length)
1016 RETURN_UNGCPRO (cmd);
1017
1018 keymap = get_keymap_1 (cmd, 0, 1);
1019 if (NILP (keymap))
1020 RETURN_UNGCPRO (make_number (idx));
1021
1022 QUIT;
1023 }
1024 }
1025
1026 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1027 Assume that currently it does not define C at all.
1028 Return the keymap. */
1029
1030 static Lisp_Object
1031 define_as_prefix (keymap, c)
1032 Lisp_Object keymap, c;
1033 {
1034 Lisp_Object inherit, cmd;
1035
1036 cmd = Fmake_sparse_keymap (Qnil);
1037 /* If this key is defined as a prefix in an inherited keymap,
1038 make it a prefix in this map, and make its definition
1039 inherit the other prefix definition. */
1040 inherit = access_keymap (keymap, c, 0, 0);
1041 #if 0
1042 /* This code is needed to do the right thing in the following case:
1043 keymap A inherits from B,
1044 you define KEY as a prefix in A,
1045 then later you define KEY as a prefix in B.
1046 We want the old prefix definition in A to inherit from that in B.
1047 It is hard to do that retroactively, so this code
1048 creates the prefix in B right away.
1049
1050 But it turns out that this code causes problems immediately
1051 when the prefix in A is defined: it causes B to define KEY
1052 as a prefix with no subcommands.
1053
1054 So I took out this code. */
1055 if (NILP (inherit))
1056 {
1057 /* If there's an inherited keymap
1058 and it doesn't define this key,
1059 make it define this key. */
1060 Lisp_Object tail;
1061
1062 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
1063 if (EQ (XCONS (tail)->car, Qkeymap))
1064 break;
1065
1066 if (!NILP (tail))
1067 inherit = define_as_prefix (tail, c);
1068 }
1069 #endif
1070
1071 cmd = nconc2 (cmd, inherit);
1072 store_in_keymap (keymap, c, cmd);
1073
1074 return cmd;
1075 }
1076
1077 /* Append a key to the end of a key sequence. We always make a vector. */
1078
1079 Lisp_Object
1080 append_key (key_sequence, key)
1081 Lisp_Object key_sequence, key;
1082 {
1083 Lisp_Object args[2];
1084
1085 args[0] = key_sequence;
1086
1087 args[1] = Fcons (key, Qnil);
1088 return Fvconcat (2, args);
1089 }
1090
1091 \f
1092 /* Global, local, and minor mode keymap stuff. */
1093
1094 /* We can't put these variables inside current_minor_maps, since under
1095 some systems, static gets macro-defined to be the empty string.
1096 Ickypoo. */
1097 static Lisp_Object *cmm_modes, *cmm_maps;
1098 static int cmm_size;
1099
1100 /* Error handler used in current_minor_maps. */
1101 static Lisp_Object
1102 current_minor_maps_error ()
1103 {
1104 return Qnil;
1105 }
1106
1107 /* Store a pointer to an array of the keymaps of the currently active
1108 minor modes in *buf, and return the number of maps it contains.
1109
1110 This function always returns a pointer to the same buffer, and may
1111 free or reallocate it, so if you want to keep it for a long time or
1112 hand it out to lisp code, copy it. This procedure will be called
1113 for every key sequence read, so the nice lispy approach (return a
1114 new assoclist, list, what have you) for each invocation would
1115 result in a lot of consing over time.
1116
1117 If we used xrealloc/xmalloc and ran out of memory, they would throw
1118 back to the command loop, which would try to read a key sequence,
1119 which would call this function again, resulting in an infinite
1120 loop. Instead, we'll use realloc/malloc and silently truncate the
1121 list, let the key sequence be read, and hope some other piece of
1122 code signals the error. */
1123 int
1124 current_minor_maps (modeptr, mapptr)
1125 Lisp_Object **modeptr, **mapptr;
1126 {
1127 int i = 0;
1128 int list_number = 0;
1129 Lisp_Object alist, assoc, var, val;
1130 Lisp_Object lists[2];
1131
1132 lists[0] = Vminor_mode_overriding_map_alist;
1133 lists[1] = Vminor_mode_map_alist;
1134
1135 for (list_number = 0; list_number < 2; list_number++)
1136 for (alist = lists[list_number];
1137 CONSP (alist);
1138 alist = XCONS (alist)->cdr)
1139 if ((assoc = XCONS (alist)->car, CONSP (assoc))
1140 && (var = XCONS (assoc)->car, SYMBOLP (var))
1141 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1142 && ! NILP (val))
1143 {
1144 Lisp_Object temp;
1145
1146 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1147 and also an entry in Vminor_mode_map_alist,
1148 ignore the latter. */
1149 if (list_number == 1)
1150 {
1151 val = assq_no_quit (var, lists[0]);
1152 if (!NILP (val))
1153 break;
1154 }
1155
1156 if (i >= cmm_size)
1157 {
1158 Lisp_Object *newmodes, *newmaps;
1159
1160 if (cmm_maps)
1161 {
1162 BLOCK_INPUT;
1163 cmm_size *= 2;
1164 newmodes
1165 = (Lisp_Object *) realloc (cmm_modes,
1166 cmm_size * sizeof (Lisp_Object));
1167 newmaps
1168 = (Lisp_Object *) realloc (cmm_maps,
1169 cmm_size * sizeof (Lisp_Object));
1170 UNBLOCK_INPUT;
1171 }
1172 else
1173 {
1174 BLOCK_INPUT;
1175 cmm_size = 30;
1176 newmodes
1177 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1178 newmaps
1179 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1180 UNBLOCK_INPUT;
1181 }
1182
1183 if (newmaps && newmodes)
1184 {
1185 cmm_modes = newmodes;
1186 cmm_maps = newmaps;
1187 }
1188 else
1189 break;
1190 }
1191
1192 /* Get the keymap definition--or nil if it is not defined. */
1193 temp = internal_condition_case_1 (Findirect_function,
1194 XCONS (assoc)->cdr,
1195 Qerror, current_minor_maps_error);
1196 if (!NILP (temp))
1197 {
1198 cmm_modes[i] = var;
1199 cmm_maps [i] = temp;
1200 i++;
1201 }
1202 }
1203
1204 if (modeptr) *modeptr = cmm_modes;
1205 if (mapptr) *mapptr = cmm_maps;
1206 return i;
1207 }
1208
1209 /* GC is possible in this function if it autoloads a keymap. */
1210
1211 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1212 "Return the binding for command KEY in current keymaps.\n\
1213 KEY is a string or vector, a sequence of keystrokes.\n\
1214 The binding is probably a symbol with a function definition.\n\
1215 \n\
1216 Normally, `key-binding' ignores bindings for t, which act as default\n\
1217 bindings, used when nothing else in the keymap applies; this makes it\n\
1218 usable as a general function for probing keymaps. However, if the\n\
1219 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1220 recognize the default bindings, just as `read-key-sequence' does.")
1221 (key, accept_default)
1222 Lisp_Object key, accept_default;
1223 {
1224 Lisp_Object *maps, value;
1225 int nmaps, i;
1226 struct gcpro gcpro1;
1227
1228 GCPRO1 (key);
1229
1230 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1231 {
1232 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1233 key, accept_default);
1234 if (! NILP (value) && !INTEGERP (value))
1235 RETURN_UNGCPRO (value);
1236 }
1237 else if (!NILP (Voverriding_local_map))
1238 {
1239 value = Flookup_key (Voverriding_local_map, key, accept_default);
1240 if (! NILP (value) && !INTEGERP (value))
1241 RETURN_UNGCPRO (value);
1242 }
1243 else
1244 {
1245 Lisp_Object local;
1246
1247 nmaps = current_minor_maps (0, &maps);
1248 /* Note that all these maps are GCPRO'd
1249 in the places where we found them. */
1250
1251 for (i = 0; i < nmaps; i++)
1252 if (! NILP (maps[i]))
1253 {
1254 value = Flookup_key (maps[i], key, accept_default);
1255 if (! NILP (value) && !INTEGERP (value))
1256 RETURN_UNGCPRO (value);
1257 }
1258
1259 local = get_local_map (PT, current_buffer);
1260
1261 if (! NILP (local))
1262 {
1263 value = Flookup_key (local, key, accept_default);
1264 if (! NILP (value) && !INTEGERP (value))
1265 RETURN_UNGCPRO (value);
1266 }
1267 }
1268
1269 value = Flookup_key (current_global_map, key, accept_default);
1270 UNGCPRO;
1271 if (! NILP (value) && !INTEGERP (value))
1272 return value;
1273
1274 return Qnil;
1275 }
1276
1277 /* GC is possible in this function if it autoloads a keymap. */
1278
1279 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1280 "Return the binding for command KEYS in current local keymap only.\n\
1281 KEYS is a string, a sequence of keystrokes.\n\
1282 The binding is probably a symbol with a function definition.\n\
1283 \n\
1284 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1285 bindings; see the description of `lookup-key' for more details about this.")
1286 (keys, accept_default)
1287 Lisp_Object keys, accept_default;
1288 {
1289 register Lisp_Object map;
1290 map = current_buffer->keymap;
1291 if (NILP (map))
1292 return Qnil;
1293 return Flookup_key (map, keys, accept_default);
1294 }
1295
1296 /* GC is possible in this function if it autoloads a keymap. */
1297
1298 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1299 "Return the binding for command KEYS in current global keymap only.\n\
1300 KEYS is a string, a sequence of keystrokes.\n\
1301 The binding is probably a symbol with a function definition.\n\
1302 This function's return values are the same as those of lookup-key\n\
1303 \(which see).\n\
1304 \n\
1305 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1306 bindings; see the description of `lookup-key' for more details about this.")
1307 (keys, accept_default)
1308 Lisp_Object keys, accept_default;
1309 {
1310 return Flookup_key (current_global_map, keys, accept_default);
1311 }
1312
1313 /* GC is possible in this function if it autoloads a keymap. */
1314
1315 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1316 "Find the visible minor mode bindings of KEY.\n\
1317 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1318 the symbol which names the minor mode binding KEY, and BINDING is\n\
1319 KEY's definition in that mode. In particular, if KEY has no\n\
1320 minor-mode bindings, return nil. If the first binding is a\n\
1321 non-prefix, all subsequent bindings will be omitted, since they would\n\
1322 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1323 that come after prefix bindings.\n\
1324 \n\
1325 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1326 bindings; see the description of `lookup-key' for more details about this.")
1327 (key, accept_default)
1328 Lisp_Object key, accept_default;
1329 {
1330 Lisp_Object *modes, *maps;
1331 int nmaps;
1332 Lisp_Object binding;
1333 int i, j;
1334 struct gcpro gcpro1, gcpro2;
1335
1336 nmaps = current_minor_maps (&modes, &maps);
1337 /* Note that all these maps are GCPRO'd
1338 in the places where we found them. */
1339
1340 binding = Qnil;
1341 GCPRO2 (key, binding);
1342
1343 for (i = j = 0; i < nmaps; i++)
1344 if (! NILP (maps[i])
1345 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1346 && !INTEGERP (binding))
1347 {
1348 if (! NILP (get_keymap (binding)))
1349 maps[j++] = Fcons (modes[i], binding);
1350 else if (j == 0)
1351 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1352 }
1353
1354 UNGCPRO;
1355 return Flist (j, maps);
1356 }
1357
1358 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
1359 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1360 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1361 If a second optional argument MAPVAR is given, the map is stored as\n\
1362 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1363 as a function.")
1364 (command, mapvar)
1365 Lisp_Object command, mapvar;
1366 {
1367 Lisp_Object map;
1368 map = Fmake_sparse_keymap (Qnil);
1369 Ffset (command, map);
1370 if (!NILP (mapvar))
1371 Fset (mapvar, map);
1372 else
1373 Fset (command, map);
1374 return command;
1375 }
1376
1377 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1378 "Select KEYMAP as the global keymap.")
1379 (keymap)
1380 Lisp_Object keymap;
1381 {
1382 keymap = get_keymap (keymap);
1383 current_global_map = keymap;
1384
1385 return Qnil;
1386 }
1387
1388 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1389 "Select KEYMAP as the local keymap.\n\
1390 If KEYMAP is nil, that means no local keymap.")
1391 (keymap)
1392 Lisp_Object keymap;
1393 {
1394 if (!NILP (keymap))
1395 keymap = get_keymap (keymap);
1396
1397 current_buffer->keymap = keymap;
1398
1399 return Qnil;
1400 }
1401
1402 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1403 "Return current buffer's local keymap, or nil if it has none.")
1404 ()
1405 {
1406 return current_buffer->keymap;
1407 }
1408
1409 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1410 "Return the current global keymap.")
1411 ()
1412 {
1413 return current_global_map;
1414 }
1415
1416 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1417 "Return a list of keymaps for the minor modes of the current buffer.")
1418 ()
1419 {
1420 Lisp_Object *maps;
1421 int nmaps = current_minor_maps (0, &maps);
1422
1423 return Flist (nmaps, maps);
1424 }
1425 \f
1426 /* Help functions for describing and documenting keymaps. */
1427
1428 static void accessible_keymaps_char_table ();
1429
1430 /* This function cannot GC. */
1431
1432 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1433 1, 2, 0,
1434 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1435 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1436 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1437 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1438 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1439 then the value includes only maps for prefixes that start with PREFIX.")
1440 (keymap, prefix)
1441 Lisp_Object keymap, prefix;
1442 {
1443 Lisp_Object maps, good_maps, tail;
1444 int prefixlen = 0;
1445
1446 /* no need for gcpro because we don't autoload any keymaps. */
1447
1448 if (!NILP (prefix))
1449 prefixlen = XINT (Flength (prefix));
1450
1451 if (!NILP (prefix))
1452 {
1453 /* If a prefix was specified, start with the keymap (if any) for
1454 that prefix, so we don't waste time considering other prefixes. */
1455 Lisp_Object tem;
1456 tem = Flookup_key (keymap, prefix, Qt);
1457 /* Flookup_key may give us nil, or a number,
1458 if the prefix is not defined in this particular map.
1459 It might even give us a list that isn't a keymap. */
1460 tem = get_keymap_1 (tem, 0, 0);
1461 if (!NILP (tem))
1462 {
1463 /* Convert PREFIX to a vector now, so that later on
1464 we don't have to deal with the possibility of a string. */
1465 if (STRINGP (prefix))
1466 {
1467 int i, i_byte, c;
1468 Lisp_Object copy;
1469
1470 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1471 for (i = 0, i_byte; i < XSTRING (prefix)->size;)
1472 {
1473 int i_before = i;
1474 if (STRING_MULTIBYTE (prefix))
1475 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1476 else
1477 c = XSTRING (prefix)->data[i++];
1478 if (c & 0200)
1479 c ^= 0200 | meta_modifier;
1480 XVECTOR (copy)->contents[i_before] = make_number (c);
1481 }
1482 prefix = copy;
1483 }
1484 maps = Fcons (Fcons (prefix, tem), Qnil);
1485 }
1486 else
1487 return Qnil;
1488 }
1489 else
1490 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1491 get_keymap (keymap)),
1492 Qnil);
1493
1494 /* For each map in the list maps,
1495 look at any other maps it points to,
1496 and stick them at the end if they are not already in the list.
1497
1498 This is a breadth-first traversal, where tail is the queue of
1499 nodes, and maps accumulates a list of all nodes visited. */
1500
1501 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1502 {
1503 register Lisp_Object thisseq, thismap;
1504 Lisp_Object last;
1505 /* Does the current sequence end in the meta-prefix-char? */
1506 int is_metized;
1507
1508 thisseq = Fcar (Fcar (tail));
1509 thismap = Fcdr (Fcar (tail));
1510 last = make_number (XINT (Flength (thisseq)) - 1);
1511 is_metized = (XINT (last) >= 0
1512 /* Don't metize the last char of PREFIX. */
1513 && XINT (last) >= prefixlen
1514 && EQ (Faref (thisseq, last), meta_prefix_char));
1515
1516 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1517 {
1518 Lisp_Object elt;
1519
1520 elt = XCONS (thismap)->car;
1521
1522 QUIT;
1523
1524 if (CHAR_TABLE_P (elt))
1525 {
1526 Lisp_Object indices[3];
1527
1528 map_char_table (accessible_keymaps_char_table, Qnil,
1529 elt, Fcons (maps, Fcons (tail, thisseq)),
1530 0, indices);
1531 }
1532 else if (VECTORP (elt))
1533 {
1534 register int i;
1535
1536 /* Vector keymap. Scan all the elements. */
1537 for (i = 0; i < XVECTOR (elt)->size; i++)
1538 {
1539 register Lisp_Object tem;
1540 register Lisp_Object cmd;
1541
1542 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1543 if (NILP (cmd)) continue;
1544 tem = Fkeymapp (cmd);
1545 if (!NILP (tem))
1546 {
1547 cmd = get_keymap (cmd);
1548 /* Ignore keymaps that are already added to maps. */
1549 tem = Frassq (cmd, maps);
1550 if (NILP (tem))
1551 {
1552 /* If the last key in thisseq is meta-prefix-char,
1553 turn it into a meta-ized keystroke. We know
1554 that the event we're about to append is an
1555 ascii keystroke since we're processing a
1556 keymap table. */
1557 if (is_metized)
1558 {
1559 int meta_bit = meta_modifier;
1560 tem = Fcopy_sequence (thisseq);
1561
1562 Faset (tem, last, make_number (i | meta_bit));
1563
1564 /* This new sequence is the same length as
1565 thisseq, so stick it in the list right
1566 after this one. */
1567 XCONS (tail)->cdr
1568 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1569 }
1570 else
1571 {
1572 tem = append_key (thisseq, make_number (i));
1573 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1574 }
1575 }
1576 }
1577 }
1578 }
1579 else if (CONSP (elt))
1580 {
1581 register Lisp_Object cmd, tem, filter;
1582
1583 cmd = get_keyelt (XCONS (elt)->cdr, 0);
1584 /* Ignore definitions that aren't keymaps themselves. */
1585 tem = Fkeymapp (cmd);
1586 if (!NILP (tem))
1587 {
1588 /* Ignore keymaps that have been seen already. */
1589 cmd = get_keymap (cmd);
1590 tem = Frassq (cmd, maps);
1591 if (NILP (tem))
1592 {
1593 /* Let elt be the event defined by this map entry. */
1594 elt = XCONS (elt)->car;
1595
1596 /* If the last key in thisseq is meta-prefix-char, and
1597 this entry is a binding for an ascii keystroke,
1598 turn it into a meta-ized keystroke. */
1599 if (is_metized && INTEGERP (elt))
1600 {
1601 Lisp_Object element;
1602
1603 element = thisseq;
1604 tem = Fvconcat (1, &element);
1605 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1606 XINT (elt) | meta_modifier);
1607
1608 /* This new sequence is the same length as
1609 thisseq, so stick it in the list right
1610 after this one. */
1611 XCONS (tail)->cdr
1612 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1613 }
1614 else
1615 nconc2 (tail,
1616 Fcons (Fcons (append_key (thisseq, elt), cmd),
1617 Qnil));
1618 }
1619 }
1620 }
1621 }
1622 }
1623
1624 if (NILP (prefix))
1625 return maps;
1626
1627 /* Now find just the maps whose access prefixes start with PREFIX. */
1628
1629 good_maps = Qnil;
1630 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1631 {
1632 Lisp_Object elt, thisseq;
1633 elt = XCONS (maps)->car;
1634 thisseq = XCONS (elt)->car;
1635 /* The access prefix must be at least as long as PREFIX,
1636 and the first elements must match those of PREFIX. */
1637 if (XINT (Flength (thisseq)) >= prefixlen)
1638 {
1639 int i;
1640 for (i = 0; i < prefixlen; i++)
1641 {
1642 Lisp_Object i1;
1643 XSETFASTINT (i1, i);
1644 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1645 break;
1646 }
1647 if (i == prefixlen)
1648 good_maps = Fcons (elt, good_maps);
1649 }
1650 }
1651
1652 return Fnreverse (good_maps);
1653 }
1654
1655 static void
1656 accessible_keymaps_char_table (args, index, cmd)
1657 Lisp_Object args, index, cmd;
1658 {
1659 Lisp_Object tem;
1660 Lisp_Object maps, tail, thisseq;
1661
1662 if (NILP (cmd))
1663 return;
1664
1665 maps = XCONS (args)->car;
1666 tail = XCONS (XCONS (args)->cdr)->car;
1667 thisseq = XCONS (XCONS (args)->cdr)->cdr;
1668
1669 tem = Fkeymapp (cmd);
1670 if (!NILP (tem))
1671 {
1672 cmd = get_keymap (cmd);
1673 /* Ignore keymaps that are already added to maps. */
1674 tem = Frassq (cmd, maps);
1675 if (NILP (tem))
1676 {
1677 tem = append_key (thisseq, index);
1678 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1679 }
1680 }
1681 }
1682 \f
1683 Lisp_Object Qsingle_key_description, Qkey_description;
1684
1685 /* This function cannot GC. */
1686
1687 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1688 "Return a pretty description of key-sequence KEYS.\n\
1689 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1690 spaces are put between sequence elements, etc.")
1691 (keys)
1692 Lisp_Object keys;
1693 {
1694 int len;
1695 int i, i_byte;
1696 Lisp_Object sep;
1697 Lisp_Object *args;
1698
1699 if (STRINGP (keys))
1700 {
1701 Lisp_Object vector;
1702 vector = Fmake_vector (Flength (keys), Qnil);
1703 for (i = 0; i < XSTRING (keys)->size; )
1704 {
1705 int c;
1706 int i_before = i;
1707
1708 if (STRING_MULTIBYTE (keys))
1709 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1710 else
1711 c = XSTRING (keys)->data[i++];
1712
1713 if (c & 0x80)
1714 XSETFASTINT (XVECTOR (vector)->contents[i_before],
1715 meta_modifier | (c & ~0x80));
1716 else
1717 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1718 }
1719 keys = vector;
1720 }
1721 else if (!VECTORP (keys))
1722 keys = wrong_type_argument (Qarrayp, keys);
1723
1724 /* In effect, this computes
1725 (mapconcat 'single-key-description keys " ")
1726 but we shouldn't use mapconcat because it can do GC. */
1727
1728 len = XVECTOR (keys)->size;
1729 sep = build_string (" ");
1730 /* This has one extra element at the end that we don't pass to Fconcat. */
1731 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1732
1733 for (i = 0; i < len; i++)
1734 {
1735 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1736 args[i * 2 + 1] = sep;
1737 }
1738
1739 return Fconcat (len * 2 - 1, args);
1740 }
1741
1742 char *
1743 push_key_description (c, p)
1744 register unsigned int c;
1745 register char *p;
1746 {
1747 /* Clear all the meaningless bits above the meta bit. */
1748 c &= meta_modifier | ~ - meta_modifier;
1749
1750 if (c & alt_modifier)
1751 {
1752 *p++ = 'A';
1753 *p++ = '-';
1754 c -= alt_modifier;
1755 }
1756 if (c & ctrl_modifier)
1757 {
1758 *p++ = 'C';
1759 *p++ = '-';
1760 c -= ctrl_modifier;
1761 }
1762 if (c & hyper_modifier)
1763 {
1764 *p++ = 'H';
1765 *p++ = '-';
1766 c -= hyper_modifier;
1767 }
1768 if (c & meta_modifier)
1769 {
1770 *p++ = 'M';
1771 *p++ = '-';
1772 c -= meta_modifier;
1773 }
1774 if (c & shift_modifier)
1775 {
1776 *p++ = 'S';
1777 *p++ = '-';
1778 c -= shift_modifier;
1779 }
1780 if (c & super_modifier)
1781 {
1782 *p++ = 's';
1783 *p++ = '-';
1784 c -= super_modifier;
1785 }
1786 if (c < 040)
1787 {
1788 if (c == 033)
1789 {
1790 *p++ = 'E';
1791 *p++ = 'S';
1792 *p++ = 'C';
1793 }
1794 else if (c == '\t')
1795 {
1796 *p++ = 'T';
1797 *p++ = 'A';
1798 *p++ = 'B';
1799 }
1800 else if (c == Ctl ('M'))
1801 {
1802 *p++ = 'R';
1803 *p++ = 'E';
1804 *p++ = 'T';
1805 }
1806 else
1807 {
1808 *p++ = 'C';
1809 *p++ = '-';
1810 if (c > 0 && c <= Ctl ('Z'))
1811 *p++ = c + 0140;
1812 else
1813 *p++ = c + 0100;
1814 }
1815 }
1816 else if (c == 0177)
1817 {
1818 *p++ = 'D';
1819 *p++ = 'E';
1820 *p++ = 'L';
1821 }
1822 else if (c == ' ')
1823 {
1824 *p++ = 'S';
1825 *p++ = 'P';
1826 *p++ = 'C';
1827 }
1828 else if (c < 128)
1829 *p++ = c;
1830 else if (c < 512)
1831 {
1832 *p++ = '\\';
1833 *p++ = (7 & (c >> 6)) + '0';
1834 *p++ = (7 & (c >> 3)) + '0';
1835 *p++ = (7 & (c >> 0)) + '0';
1836 }
1837 else
1838 {
1839 *p++ = '\\';
1840 *p++ = (7 & (c >> 15)) + '0';
1841 *p++ = (7 & (c >> 12)) + '0';
1842 *p++ = (7 & (c >> 9)) + '0';
1843 *p++ = (7 & (c >> 6)) + '0';
1844 *p++ = (7 & (c >> 3)) + '0';
1845 *p++ = (7 & (c >> 0)) + '0';
1846 }
1847
1848 return p;
1849 }
1850
1851 /* This function cannot GC. */
1852
1853 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1854 "Return a pretty description of command character KEY.\n\
1855 Control characters turn into C-whatever, etc.")
1856 (key)
1857 Lisp_Object key;
1858 {
1859 char tem[20];
1860
1861 key = EVENT_HEAD (key);
1862
1863 if (INTEGERP (key)) /* Normal character */
1864 {
1865 *push_key_description (XUINT (key), tem) = 0;
1866 return build_string (tem);
1867 }
1868 else if (SYMBOLP (key)) /* Function key or event-symbol */
1869 return Fsymbol_name (key);
1870 else if (STRINGP (key)) /* Buffer names in the menubar. */
1871 return Fcopy_sequence (key);
1872 else
1873 error ("KEY must be an integer, cons, symbol, or string");
1874 }
1875
1876 char *
1877 push_text_char_description (c, p)
1878 register unsigned int c;
1879 register char *p;
1880 {
1881 if (c >= 0200)
1882 {
1883 *p++ = 'M';
1884 *p++ = '-';
1885 c -= 0200;
1886 }
1887 if (c < 040)
1888 {
1889 *p++ = '^';
1890 *p++ = c + 64; /* 'A' - 1 */
1891 }
1892 else if (c == 0177)
1893 {
1894 *p++ = '^';
1895 *p++ = '?';
1896 }
1897 else
1898 *p++ = c;
1899 return p;
1900 }
1901
1902 /* This function cannot GC. */
1903
1904 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1905 "Return a pretty description of file-character CHARACTER.\n\
1906 Control characters turn into \"^char\", etc.")
1907 (character)
1908 Lisp_Object character;
1909 {
1910 char tem[6];
1911
1912 CHECK_NUMBER (character, 0);
1913
1914 if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
1915 {
1916 unsigned char *str;
1917 int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
1918
1919 return make_multibyte_string (str, 1, len);
1920 }
1921
1922 *push_text_char_description (XINT (character) & 0377, tem) = 0;
1923
1924 return build_string (tem);
1925 }
1926
1927 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1928 a meta bit. */
1929 static int
1930 ascii_sequence_p (seq)
1931 Lisp_Object seq;
1932 {
1933 int i;
1934 int len = XINT (Flength (seq));
1935
1936 for (i = 0; i < len; i++)
1937 {
1938 Lisp_Object ii, elt;
1939
1940 XSETFASTINT (ii, i);
1941 elt = Faref (seq, ii);
1942
1943 if (!INTEGERP (elt)
1944 || (XUINT (elt) & ~CHAR_META) >= 0x80)
1945 return 0;
1946 }
1947
1948 return 1;
1949 }
1950
1951 \f
1952 /* where-is - finding a command in a set of keymaps. */
1953
1954 static Lisp_Object where_is_internal_1 ();
1955 static void where_is_internal_2 ();
1956
1957 /* This function can GC if Flookup_key autoloads any keymaps. */
1958
1959 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
1960 "Return list of keys that invoke DEFINITION.\n\
1961 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
1962 If KEYMAP is nil, search all the currently active keymaps.\n\
1963 \n\
1964 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
1965 rather than a list of all possible key sequences.\n\
1966 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
1967 no matter what it is.\n\
1968 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
1969 and entirely reject menu bindings.\n\
1970 \n\
1971 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
1972 to other keymaps or slots. This makes it possible to search for an\n\
1973 indirect definition itself.")
1974 (definition, keymap, firstonly, noindirect)
1975 Lisp_Object definition, keymap;
1976 Lisp_Object firstonly, noindirect;
1977 {
1978 Lisp_Object maps;
1979 Lisp_Object found, sequences;
1980 Lisp_Object keymap1;
1981 int keymap_specified = !NILP (keymap);
1982 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
1983 /* 1 means ignore all menu bindings entirely. */
1984 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
1985
1986 /* Find keymaps accessible from `keymap' or the current
1987 context. But don't muck with the value of `keymap',
1988 because `where_is_internal_1' uses it to check for
1989 shadowed bindings. */
1990 keymap1 = keymap;
1991 if (! keymap_specified)
1992 {
1993 #ifdef USE_TEXT_PROPERTIES
1994 keymap1 = get_local_map (PT, current_buffer);
1995 #else
1996 keymap1 = current_buffer->keymap;
1997 #endif
1998 }
1999
2000 if (!NILP (keymap1))
2001 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2002 Faccessible_keymaps (get_keymap (current_global_map),
2003 Qnil));
2004 else
2005 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2006
2007 /* Put the minor mode keymaps on the front. */
2008 if (! keymap_specified)
2009 {
2010 Lisp_Object minors;
2011 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2012 while (!NILP (minors))
2013 {
2014 maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
2015 Qnil),
2016 maps);
2017 minors = XCONS (minors)->cdr;
2018 }
2019 }
2020
2021 GCPRO5 (definition, keymap, maps, found, sequences);
2022 found = Qnil;
2023 sequences = Qnil;
2024
2025 for (; !NILP (maps); maps = Fcdr (maps))
2026 {
2027 /* Key sequence to reach map, and the map that it reaches */
2028 register Lisp_Object this, map;
2029
2030 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2031 [M-CHAR] sequences, check if last character of the sequence
2032 is the meta-prefix char. */
2033 Lisp_Object last;
2034 int last_is_meta;
2035
2036 this = Fcar (Fcar (maps));
2037 map = Fcdr (Fcar (maps));
2038 last = make_number (XINT (Flength (this)) - 1);
2039 last_is_meta = (XINT (last) >= 0
2040 && EQ (Faref (this, last), meta_prefix_char));
2041
2042 QUIT;
2043
2044 while (CONSP (map))
2045 {
2046 /* Because the code we want to run on each binding is rather
2047 large, we don't want to have two separate loop bodies for
2048 sparse keymap bindings and tables; we want to iterate one
2049 loop body over both keymap and vector bindings.
2050
2051 For this reason, if Fcar (map) is a vector, we don't
2052 advance map to the next element until i indicates that we
2053 have finished off the vector. */
2054 Lisp_Object elt, key, binding;
2055 elt = XCONS (map)->car;
2056 map = XCONS (map)->cdr;
2057
2058 sequences = Qnil;
2059
2060 QUIT;
2061
2062 /* Set key and binding to the current key and binding, and
2063 advance map and i to the next binding. */
2064 if (VECTORP (elt))
2065 {
2066 Lisp_Object sequence;
2067 int i;
2068 /* In a vector, look at each element. */
2069 for (i = 0; i < XVECTOR (elt)->size; i++)
2070 {
2071 binding = XVECTOR (elt)->contents[i];
2072 XSETFASTINT (key, i);
2073 sequence = where_is_internal_1 (binding, key, definition,
2074 noindirect, keymap, this,
2075 last, nomenus, last_is_meta);
2076 if (!NILP (sequence))
2077 sequences = Fcons (sequence, sequences);
2078 }
2079 }
2080 else if (CHAR_TABLE_P (elt))
2081 {
2082 Lisp_Object indices[3];
2083 Lisp_Object args;
2084
2085 args = Fcons (Fcons (Fcons (definition, noindirect),
2086 Fcons (keymap, Qnil)),
2087 Fcons (Fcons (this, last),
2088 Fcons (make_number (nomenus),
2089 make_number (last_is_meta))));
2090
2091 map_char_table (where_is_internal_2, Qnil, elt, args,
2092 0, indices);
2093 sequences = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2094 }
2095 else if (CONSP (elt))
2096 {
2097 Lisp_Object sequence;
2098
2099 key = XCONS (elt)->car;
2100 binding = XCONS (elt)->cdr;
2101
2102 sequence = where_is_internal_1 (binding, key, definition,
2103 noindirect, keymap, this,
2104 last, nomenus, last_is_meta);
2105 if (!NILP (sequence))
2106 sequences = Fcons (sequence, sequences);
2107 }
2108
2109
2110 for (; ! NILP (sequences); sequences = XCONS (sequences)->cdr)
2111 {
2112 Lisp_Object sequence;
2113
2114 sequence = XCONS (sequences)->car;
2115
2116 /* It is a true unshadowed match. Record it, unless it's already
2117 been seen (as could happen when inheriting keymaps). */
2118 if (NILP (Fmember (sequence, found)))
2119 found = Fcons (sequence, found);
2120
2121 /* If firstonly is Qnon_ascii, then we can return the first
2122 binding we find. If firstonly is not Qnon_ascii but not
2123 nil, then we should return the first ascii-only binding
2124 we find. */
2125 if (EQ (firstonly, Qnon_ascii))
2126 RETURN_UNGCPRO (sequence);
2127 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2128 RETURN_UNGCPRO (sequence);
2129 }
2130 }
2131 }
2132
2133 UNGCPRO;
2134
2135 found = Fnreverse (found);
2136
2137 /* firstonly may have been t, but we may have gone all the way through
2138 the keymaps without finding an all-ASCII key sequence. So just
2139 return the best we could find. */
2140 if (! NILP (firstonly))
2141 return Fcar (found);
2142
2143 return found;
2144 }
2145
2146 /* This is the function that Fwhere_is_internal calls using map_char_table.
2147 ARGS has the form
2148 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2149 .
2150 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2151 Since map_char_table doesn't really use the return value from this function,
2152 we the result append to RESULT, the slot in ARGS. */
2153
2154 static void
2155 where_is_internal_2 (args, key, binding)
2156 Lisp_Object args, key, binding;
2157 {
2158 Lisp_Object definition, noindirect, keymap, this, last;
2159 Lisp_Object result, sequence;
2160 int nomenus, last_is_meta;
2161
2162 result = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2163 definition = XCONS (XCONS (XCONS (args)->car)->car)->car;
2164 noindirect = XCONS (XCONS (XCONS (args)->car)->car)->cdr;
2165 keymap = XCONS (XCONS (XCONS (args)->car)->cdr)->car;
2166 this = XCONS (XCONS (XCONS (args)->cdr)->car)->car;
2167 last = XCONS (XCONS (XCONS (args)->cdr)->car)->cdr;
2168 nomenus = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->car);
2169 last_is_meta = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->cdr);
2170
2171 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2172 this, last, nomenus, last_is_meta);
2173
2174 if (!NILP (sequence))
2175 XCONS (XCONS (XCONS (args)->car)->cdr)->cdr
2176 = Fcons (sequence, result);
2177 }
2178
2179 static Lisp_Object
2180 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2181 nomenus, last_is_meta)
2182 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2183 int nomenus, last_is_meta;
2184 {
2185 Lisp_Object sequence;
2186 int keymap_specified = !NILP (keymap);
2187
2188 /* Search through indirections unless that's not wanted. */
2189 if (NILP (noindirect))
2190 {
2191 if (nomenus)
2192 {
2193 while (1)
2194 {
2195 Lisp_Object map, tem;
2196 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2197 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2198 tem = Fkeymapp (map);
2199 if (!NILP (tem))
2200 definition = access_keymap (map, Fcdr (definition), 0, 0);
2201 else
2202 break;
2203 }
2204 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2205 if (CONSP (definition)
2206 && (EQ (XCONS (definition)->car,Qmenu_item)
2207 || STRINGP (XCONS (definition)->car)))
2208 return Qnil;
2209 }
2210 else
2211 binding = get_keyelt (binding, 0);
2212 }
2213
2214 /* End this iteration if this element does not match
2215 the target. */
2216
2217 if (CONSP (definition))
2218 {
2219 Lisp_Object tem;
2220 tem = Fequal (binding, definition);
2221 if (NILP (tem))
2222 return Qnil;
2223 }
2224 else
2225 if (!EQ (binding, definition))
2226 return Qnil;
2227
2228 /* We have found a match.
2229 Construct the key sequence where we found it. */
2230 if (INTEGERP (key) && last_is_meta)
2231 {
2232 sequence = Fcopy_sequence (this);
2233 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2234 }
2235 else
2236 sequence = append_key (this, key);
2237
2238 /* Verify that this key binding is not shadowed by another
2239 binding for the same key, before we say it exists.
2240
2241 Mechanism: look for local definition of this key and if
2242 it is defined and does not match what we found then
2243 ignore this key.
2244
2245 Either nil or number as value from Flookup_key
2246 means undefined. */
2247 if (keymap_specified)
2248 {
2249 binding = Flookup_key (keymap, sequence, Qnil);
2250 if (!NILP (binding) && !INTEGERP (binding))
2251 {
2252 if (CONSP (definition))
2253 {
2254 Lisp_Object tem;
2255 tem = Fequal (binding, definition);
2256 if (NILP (tem))
2257 return Qnil;
2258 }
2259 else
2260 if (!EQ (binding, definition))
2261 return Qnil;
2262 }
2263 }
2264 else
2265 {
2266 binding = Fkey_binding (sequence, Qnil);
2267 if (!EQ (binding, definition))
2268 return Qnil;
2269 }
2270
2271 return sequence;
2272 }
2273 \f
2274 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2275
2276 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2277 "Show a list of all defined keys, and their definitions.\n\
2278 We put that list in a buffer, and display the buffer.\n\
2279 \n\
2280 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2281 \(Ordinarily these are omitted from the output.)\n\
2282 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2283 then we display only bindings that start with that prefix.")
2284 (menus, prefix)
2285 Lisp_Object menus, prefix;
2286 {
2287 register Lisp_Object thisbuf;
2288 XSETBUFFER (thisbuf, current_buffer);
2289 internal_with_output_to_temp_buffer ("*Help*",
2290 describe_buffer_bindings,
2291 list3 (thisbuf, prefix, menus));
2292 return Qnil;
2293 }
2294
2295 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2296
2297 static Lisp_Object
2298 describe_buffer_bindings (arg)
2299 Lisp_Object arg;
2300 {
2301 Lisp_Object descbuf, prefix, shadow;
2302 int nomenu;
2303 register Lisp_Object start1;
2304 struct gcpro gcpro1;
2305
2306 char *alternate_heading
2307 = "\
2308 Keyboard translations:\n\n\
2309 You type Translation\n\
2310 -------- -----------\n";
2311
2312 descbuf = XCONS (arg)->car;
2313 arg = XCONS (arg)->cdr;
2314 prefix = XCONS (arg)->car;
2315 arg = XCONS (arg)->cdr;
2316 nomenu = NILP (XCONS (arg)->car);
2317
2318 shadow = Qnil;
2319 GCPRO1 (shadow);
2320
2321 Fset_buffer (Vstandard_output);
2322
2323 /* Report on alternates for keys. */
2324 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2325 {
2326 int c;
2327 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2328 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2329
2330 for (c = 0; c < translate_len; c++)
2331 if (translate[c] != c)
2332 {
2333 char buf[20];
2334 char *bufend;
2335
2336 if (alternate_heading)
2337 {
2338 insert_string (alternate_heading);
2339 alternate_heading = 0;
2340 }
2341
2342 bufend = push_key_description (translate[c], buf);
2343 insert (buf, bufend - buf);
2344 Findent_to (make_number (16), make_number (1));
2345 bufend = push_key_description (c, buf);
2346 insert (buf, bufend - buf);
2347
2348 insert ("\n", 1);
2349 }
2350
2351 insert ("\n", 1);
2352 }
2353
2354 if (!NILP (Vkey_translation_map))
2355 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2356 "Key translations", nomenu, 1, 0);
2357
2358 {
2359 int i, nmaps;
2360 Lisp_Object *modes, *maps;
2361
2362 /* Temporarily switch to descbuf, so that we can get that buffer's
2363 minor modes correctly. */
2364 Fset_buffer (descbuf);
2365
2366 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2367 || !NILP (Voverriding_local_map))
2368 nmaps = 0;
2369 else
2370 nmaps = current_minor_maps (&modes, &maps);
2371 Fset_buffer (Vstandard_output);
2372
2373 /* Print the minor mode maps. */
2374 for (i = 0; i < nmaps; i++)
2375 {
2376 /* The title for a minor mode keymap
2377 is constructed at run time.
2378 We let describe_map_tree do the actual insertion
2379 because it takes care of other features when doing so. */
2380 char *title, *p;
2381
2382 if (!SYMBOLP (modes[i]))
2383 abort();
2384
2385 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2386 *p++ = '`';
2387 bcopy (XSYMBOL (modes[i])->name->data, p,
2388 XSYMBOL (modes[i])->name->size);
2389 p += XSYMBOL (modes[i])->name->size;
2390 *p++ = '\'';
2391 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2392 p += sizeof (" Minor Mode Bindings") - 1;
2393 *p = 0;
2394
2395 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2396 shadow = Fcons (maps[i], shadow);
2397 }
2398 }
2399
2400 /* Print the (major mode) local map. */
2401 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2402 start1 = current_kboard->Voverriding_terminal_local_map;
2403 else if (!NILP (Voverriding_local_map))
2404 start1 = Voverriding_local_map;
2405 else
2406 start1 = XBUFFER (descbuf)->keymap;
2407
2408 if (!NILP (start1))
2409 {
2410 describe_map_tree (start1, 1, shadow, prefix,
2411 "Major Mode Bindings", nomenu, 0, 0);
2412 shadow = Fcons (start1, shadow);
2413 }
2414
2415 describe_map_tree (current_global_map, 1, shadow, prefix,
2416 "Global Bindings", nomenu, 0, 1);
2417
2418 /* Print the function-key-map translations under this prefix. */
2419 if (!NILP (Vfunction_key_map))
2420 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2421 "Function key map translations", nomenu, 1, 0);
2422
2423 call0 (intern ("help-mode"));
2424 Fset_buffer (descbuf);
2425 UNGCPRO;
2426 return Qnil;
2427 }
2428
2429 /* Insert a description of the key bindings in STARTMAP,
2430 followed by those of all maps reachable through STARTMAP.
2431 If PARTIAL is nonzero, omit certain "uninteresting" commands
2432 (such as `undefined').
2433 If SHADOW is non-nil, it is a list of maps;
2434 don't mention keys which would be shadowed by any of them.
2435 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2436 TITLE, if not 0, is a string to insert at the beginning.
2437 TITLE should not end with a colon or a newline; we supply that.
2438 If NOMENU is not 0, then omit menu-bar commands.
2439
2440 If TRANSL is nonzero, the definitions are actually key translations
2441 so print strings and vectors differently.
2442
2443 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2444 to look through. */
2445
2446 void
2447 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2448 always_title)
2449 Lisp_Object startmap, shadow, prefix;
2450 int partial;
2451 char *title;
2452 int nomenu;
2453 int transl;
2454 int always_title;
2455 {
2456 Lisp_Object maps, orig_maps, seen, sub_shadows;
2457 struct gcpro gcpro1, gcpro2, gcpro3;
2458 int something = 0;
2459 char *key_heading
2460 = "\
2461 key binding\n\
2462 --- -------\n";
2463
2464 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2465 seen = Qnil;
2466 sub_shadows = Qnil;
2467 GCPRO3 (maps, seen, sub_shadows);
2468
2469 if (nomenu)
2470 {
2471 Lisp_Object list;
2472
2473 /* Delete from MAPS each element that is for the menu bar. */
2474 for (list = maps; !NILP (list); list = XCONS (list)->cdr)
2475 {
2476 Lisp_Object elt, prefix, tem;
2477
2478 elt = Fcar (list);
2479 prefix = Fcar (elt);
2480 if (XVECTOR (prefix)->size >= 1)
2481 {
2482 tem = Faref (prefix, make_number (0));
2483 if (EQ (tem, Qmenu_bar))
2484 maps = Fdelq (elt, maps);
2485 }
2486 }
2487 }
2488
2489 if (!NILP (maps) || always_title)
2490 {
2491 if (title)
2492 {
2493 insert_string (title);
2494 if (!NILP (prefix))
2495 {
2496 insert_string (" Starting With ");
2497 insert1 (Fkey_description (prefix));
2498 }
2499 insert_string (":\n");
2500 }
2501 insert_string (key_heading);
2502 something = 1;
2503 }
2504
2505 for (; !NILP (maps); maps = Fcdr (maps))
2506 {
2507 register Lisp_Object elt, prefix, tail;
2508
2509 elt = Fcar (maps);
2510 prefix = Fcar (elt);
2511
2512 sub_shadows = Qnil;
2513
2514 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2515 {
2516 Lisp_Object shmap;
2517
2518 shmap = XCONS (tail)->car;
2519
2520 /* If the sequence by which we reach this keymap is zero-length,
2521 then the shadow map for this keymap is just SHADOW. */
2522 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2523 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2524 ;
2525 /* If the sequence by which we reach this keymap actually has
2526 some elements, then the sequence's definition in SHADOW is
2527 what we should use. */
2528 else
2529 {
2530 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2531 if (INTEGERP (shmap))
2532 shmap = Qnil;
2533 }
2534
2535 /* If shmap is not nil and not a keymap,
2536 it completely shadows this map, so don't
2537 describe this map at all. */
2538 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2539 goto skip;
2540
2541 if (!NILP (shmap))
2542 sub_shadows = Fcons (shmap, sub_shadows);
2543 }
2544
2545 /* Maps we have already listed in this loop shadow this map. */
2546 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2547 {
2548 Lisp_Object tem;
2549 tem = Fequal (Fcar (XCAR (tail)), prefix);
2550 if (! NILP (tem))
2551 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2552 }
2553
2554 describe_map (Fcdr (elt), prefix,
2555 transl ? describe_translation : describe_command,
2556 partial, sub_shadows, &seen, nomenu);
2557
2558 skip: ;
2559 }
2560
2561 if (something)
2562 insert_string ("\n");
2563
2564 UNGCPRO;
2565 }
2566
2567 static int previous_description_column;
2568
2569 static void
2570 describe_command (definition)
2571 Lisp_Object definition;
2572 {
2573 register Lisp_Object tem1;
2574 int column = current_column ();
2575 int description_column;
2576
2577 /* If column 16 is no good, go to col 32;
2578 but don't push beyond that--go to next line instead. */
2579 if (column > 30)
2580 {
2581 insert_char ('\n');
2582 description_column = 32;
2583 }
2584 else if (column > 14 || (column > 10 && previous_description_column == 32))
2585 description_column = 32;
2586 else
2587 description_column = 16;
2588
2589 Findent_to (make_number (description_column), make_number (1));
2590 previous_description_column = description_column;
2591
2592 if (SYMBOLP (definition))
2593 {
2594 XSETSTRING (tem1, XSYMBOL (definition)->name);
2595 insert1 (tem1);
2596 insert_string ("\n");
2597 }
2598 else if (STRINGP (definition) || VECTORP (definition))
2599 insert_string ("Keyboard Macro\n");
2600 else
2601 {
2602 tem1 = Fkeymapp (definition);
2603 if (!NILP (tem1))
2604 insert_string ("Prefix Command\n");
2605 else
2606 insert_string ("??\n");
2607 }
2608 }
2609
2610 static void
2611 describe_translation (definition)
2612 Lisp_Object definition;
2613 {
2614 register Lisp_Object tem1;
2615
2616 Findent_to (make_number (16), make_number (1));
2617
2618 if (SYMBOLP (definition))
2619 {
2620 XSETSTRING (tem1, XSYMBOL (definition)->name);
2621 insert1 (tem1);
2622 insert_string ("\n");
2623 }
2624 else if (STRINGP (definition) || VECTORP (definition))
2625 {
2626 insert1 (Fkey_description (definition));
2627 insert_string ("\n");
2628 }
2629 else
2630 {
2631 tem1 = Fkeymapp (definition);
2632 if (!NILP (tem1))
2633 insert_string ("Prefix Command\n");
2634 else
2635 insert_string ("??\n");
2636 }
2637 }
2638
2639 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2640 Returns the first non-nil binding found in any of those maps. */
2641
2642 static Lisp_Object
2643 shadow_lookup (shadow, key, flag)
2644 Lisp_Object shadow, key, flag;
2645 {
2646 Lisp_Object tail, value;
2647
2648 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2649 {
2650 value = Flookup_key (XCONS (tail)->car, key, flag);
2651 if (!NILP (value))
2652 return value;
2653 }
2654 return Qnil;
2655 }
2656
2657 /* Describe the contents of map MAP, assuming that this map itself is
2658 reached by the sequence of prefix keys KEYS (a string or vector).
2659 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2660
2661 static void
2662 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2663 register Lisp_Object map;
2664 Lisp_Object keys;
2665 void (*elt_describer) P_ ((Lisp_Object));
2666 int partial;
2667 Lisp_Object shadow;
2668 Lisp_Object *seen;
2669 int nomenu;
2670 {
2671 Lisp_Object elt_prefix;
2672 Lisp_Object tail, definition, event;
2673 Lisp_Object tem;
2674 Lisp_Object suppress;
2675 Lisp_Object kludge;
2676 int first = 1;
2677 struct gcpro gcpro1, gcpro2, gcpro3;
2678
2679 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2680 {
2681 /* Call Fkey_description first, to avoid GC bug for the other string. */
2682 tem = Fkey_description (keys);
2683 elt_prefix = concat2 (tem, build_string (" "));
2684 }
2685 else
2686 elt_prefix = Qnil;
2687
2688 if (partial)
2689 suppress = intern ("suppress-keymap");
2690
2691 /* This vector gets used to present single keys to Flookup_key. Since
2692 that is done once per keymap element, we don't want to cons up a
2693 fresh vector every time. */
2694 kludge = Fmake_vector (make_number (1), Qnil);
2695 definition = Qnil;
2696
2697 GCPRO3 (elt_prefix, definition, kludge);
2698
2699 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
2700 {
2701 QUIT;
2702
2703 if (VECTORP (XCONS (tail)->car)
2704 || CHAR_TABLE_P (XCONS (tail)->car))
2705 describe_vector (XCONS (tail)->car,
2706 elt_prefix, elt_describer, partial, shadow, map,
2707 (int *)0, 0);
2708 else if (CONSP (XCONS (tail)->car))
2709 {
2710 event = XCONS (XCONS (tail)->car)->car;
2711
2712 /* Ignore bindings whose "keys" are not really valid events.
2713 (We get these in the frames and buffers menu.) */
2714 if (! (SYMBOLP (event) || INTEGERP (event)))
2715 continue;
2716
2717 if (nomenu && EQ (event, Qmenu_bar))
2718 continue;
2719
2720 definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
2721
2722 /* Don't show undefined commands or suppressed commands. */
2723 if (NILP (definition)) continue;
2724 if (SYMBOLP (definition) && partial)
2725 {
2726 tem = Fget (definition, suppress);
2727 if (!NILP (tem))
2728 continue;
2729 }
2730
2731 /* Don't show a command that isn't really visible
2732 because a local definition of the same key shadows it. */
2733
2734 XVECTOR (kludge)->contents[0] = event;
2735 if (!NILP (shadow))
2736 {
2737 tem = shadow_lookup (shadow, kludge, Qt);
2738 if (!NILP (tem)) continue;
2739 }
2740
2741 tem = Flookup_key (map, kludge, Qt);
2742 if (! EQ (tem, definition)) continue;
2743
2744 if (first)
2745 {
2746 previous_description_column = 0;
2747 insert ("\n", 1);
2748 first = 0;
2749 }
2750
2751 if (!NILP (elt_prefix))
2752 insert1 (elt_prefix);
2753
2754 /* THIS gets the string to describe the character EVENT. */
2755 insert1 (Fsingle_key_description (event));
2756
2757 /* Print a description of the definition of this character.
2758 elt_describer will take care of spacing out far enough
2759 for alignment purposes. */
2760 (*elt_describer) (definition);
2761 }
2762 else if (EQ (XCONS (tail)->car, Qkeymap))
2763 {
2764 /* The same keymap might be in the structure twice, if we're
2765 using an inherited keymap. So skip anything we've already
2766 encountered. */
2767 tem = Fassq (tail, *seen);
2768 if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
2769 break;
2770 *seen = Fcons (Fcons (tail, keys), *seen);
2771 }
2772 }
2773
2774 UNGCPRO;
2775 }
2776
2777 static void
2778 describe_vector_princ (elt)
2779 Lisp_Object elt;
2780 {
2781 Findent_to (make_number (16), make_number (1));
2782 Fprinc (elt, Qnil);
2783 Fterpri (Qnil);
2784 }
2785
2786 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2787 "Insert a description of contents of VECTOR.\n\
2788 This is text showing the elements of vector matched against indices.")
2789 (vector)
2790 Lisp_Object vector;
2791 {
2792 int count = specpdl_ptr - specpdl;
2793
2794 specbind (Qstandard_output, Fcurrent_buffer ());
2795 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2796 describe_vector (vector, Qnil, describe_vector_princ, 0,
2797 Qnil, Qnil, (int *)0, 0);
2798
2799 return unbind_to (count, Qnil);
2800 }
2801
2802 /* Insert in the current buffer a description of the contents of VECTOR.
2803 We call ELT_DESCRIBER to insert the description of one value found
2804 in VECTOR.
2805
2806 ELT_PREFIX describes what "comes before" the keys or indices defined
2807 by this vector. This is a human-readable string whose size
2808 is not necessarily related to the situation.
2809
2810 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2811 leads to this keymap.
2812
2813 If the vector is a chartable, ELT_PREFIX is the vector
2814 of bytes that lead to the character set or portion of a character
2815 set described by this chartable.
2816
2817 If PARTIAL is nonzero, it means do not mention suppressed commands
2818 (that assumes the vector is in a keymap).
2819
2820 SHADOW is a list of keymaps that shadow this map.
2821 If it is non-nil, then we look up the key in those maps
2822 and we don't mention it now if it is defined by any of them.
2823
2824 ENTIRE_MAP is the keymap in which this vector appears.
2825 If the definition in effect in the whole map does not match
2826 the one in this vector, we ignore this one.
2827
2828 When describing a sub-char-table, INDICES is a list of
2829 indices at higher levels in this char-table,
2830 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2831
2832 void
2833 describe_vector (vector, elt_prefix, elt_describer,
2834 partial, shadow, entire_map,
2835 indices, char_table_depth)
2836 register Lisp_Object vector;
2837 Lisp_Object elt_prefix;
2838 void (*elt_describer) P_ ((Lisp_Object));
2839 int partial;
2840 Lisp_Object shadow;
2841 Lisp_Object entire_map;
2842 int *indices;
2843 int char_table_depth;
2844 {
2845 Lisp_Object definition;
2846 Lisp_Object tem2;
2847 register int i;
2848 Lisp_Object suppress;
2849 Lisp_Object kludge;
2850 int first = 1;
2851 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2852 /* Range of elements to be handled. */
2853 int from, to;
2854 /* A flag to tell if a leaf in this level of char-table is not a
2855 generic character (i.e. a complete multibyte character). */
2856 int complete_char;
2857 int character;
2858 int starting_i;
2859
2860 if (indices == 0)
2861 indices = (int *) alloca (3 * sizeof (int));
2862
2863 definition = Qnil;
2864
2865 /* This vector gets used to present single keys to Flookup_key. Since
2866 that is done once per vector element, we don't want to cons up a
2867 fresh vector every time. */
2868 kludge = Fmake_vector (make_number (1), Qnil);
2869 GCPRO3 (elt_prefix, definition, kludge);
2870
2871 if (partial)
2872 suppress = intern ("suppress-keymap");
2873
2874 if (CHAR_TABLE_P (vector))
2875 {
2876 if (char_table_depth == 0)
2877 {
2878 /* VECTOR is a top level char-table. */
2879 complete_char = 1;
2880 from = 0;
2881 to = CHAR_TABLE_ORDINARY_SLOTS;
2882 }
2883 else
2884 {
2885 /* VECTOR is a sub char-table. */
2886 if (char_table_depth >= 3)
2887 /* A char-table is never that deep. */
2888 error ("Too deep char table");
2889
2890 complete_char
2891 = (CHARSET_VALID_P (indices[0])
2892 && ((CHARSET_DIMENSION (indices[0]) == 1
2893 && char_table_depth == 1)
2894 || char_table_depth == 2));
2895
2896 /* Meaningful elements are from 32th to 127th. */
2897 from = 32;
2898 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2899 }
2900 }
2901 else
2902 {
2903 /* This does the right thing for ordinary vectors. */
2904
2905 complete_char = 1;
2906 from = 0;
2907 to = XVECTOR (vector)->size;
2908 }
2909
2910 for (i = from; i < to; i++)
2911 {
2912 QUIT;
2913
2914 if (CHAR_TABLE_P (vector))
2915 {
2916 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
2917 complete_char = 0;
2918
2919 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
2920 && !CHARSET_DEFINED_P (i - 128))
2921 continue;
2922
2923 definition
2924 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
2925 }
2926 else
2927 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
2928
2929 if (NILP (definition)) continue;
2930
2931 /* Don't mention suppressed commands. */
2932 if (SYMBOLP (definition) && partial)
2933 {
2934 Lisp_Object tem;
2935
2936 tem = Fget (definition, suppress);
2937
2938 if (!NILP (tem)) continue;
2939 }
2940
2941 /* Set CHARACTER to the character this entry describes, if any.
2942 Also update *INDICES. */
2943 if (CHAR_TABLE_P (vector))
2944 {
2945 indices[char_table_depth] = i;
2946
2947 if (char_table_depth == 0)
2948 {
2949 character = i;
2950 indices[0] = i - 128;
2951 }
2952 else if (complete_char)
2953 {
2954 character
2955 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
2956 }
2957 else
2958 character = 0;
2959 }
2960 else
2961 character = i;
2962
2963 /* If this binding is shadowed by some other map, ignore it. */
2964 if (!NILP (shadow) && complete_char)
2965 {
2966 Lisp_Object tem;
2967
2968 XVECTOR (kludge)->contents[0] = make_number (character);
2969 tem = shadow_lookup (shadow, kludge, Qt);
2970
2971 if (!NILP (tem)) continue;
2972 }
2973
2974 /* Ignore this definition if it is shadowed by an earlier
2975 one in the same keymap. */
2976 if (!NILP (entire_map) && complete_char)
2977 {
2978 Lisp_Object tem;
2979
2980 XVECTOR (kludge)->contents[0] = make_number (character);
2981 tem = Flookup_key (entire_map, kludge, Qt);
2982
2983 if (! EQ (tem, definition))
2984 continue;
2985 }
2986
2987 if (first)
2988 {
2989 if (char_table_depth == 0)
2990 insert ("\n", 1);
2991 first = 0;
2992 }
2993
2994 /* For a sub char-table, show the depth by indentation.
2995 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
2996 if (char_table_depth > 0)
2997 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
2998
2999 /* Output the prefix that applies to every entry in this map. */
3000 if (!NILP (elt_prefix))
3001 insert1 (elt_prefix);
3002
3003 /* Insert or describe the character this slot is for,
3004 or a description of what it is for. */
3005 if (SUB_CHAR_TABLE_P (vector))
3006 {
3007 if (complete_char)
3008 insert_char (character);
3009 else
3010 {
3011 /* We need an octal representation for this block of
3012 characters. */
3013 char work[16];
3014 sprintf (work, "(row %d)", i);
3015 insert (work, strlen (work));
3016 }
3017 }
3018 else if (CHAR_TABLE_P (vector))
3019 {
3020 if (complete_char)
3021 insert1 (Fsingle_key_description (make_number (character)));
3022 else
3023 {
3024 /* Print the information for this character set. */
3025 insert_string ("<");
3026 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3027 if (STRINGP (tem2))
3028 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3029 XSTRING (tem2)->size_byte, 0);
3030 else
3031 insert ("?", 1);
3032 insert (">", 1);
3033 }
3034 }
3035 else
3036 {
3037 insert1 (Fsingle_key_description (make_number (character)));
3038 }
3039
3040 /* If we find a sub char-table within a char-table,
3041 scan it recursively; it defines the details for
3042 a character set or a portion of a character set. */
3043 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3044 {
3045 insert ("\n", 1);
3046 describe_vector (definition, elt_prefix, elt_describer,
3047 partial, shadow, entire_map,
3048 indices, char_table_depth + 1);
3049 continue;
3050 }
3051
3052 starting_i = i;
3053
3054 /* Find all consecutive characters or rows that have the same
3055 definition. But, for elements of a top level char table, if
3056 they are for charsets, we had better describe one by one even
3057 if they have the same definition. */
3058 if (CHAR_TABLE_P (vector))
3059 {
3060 int limit = to;
3061
3062 if (char_table_depth == 0)
3063 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3064
3065 while (i + 1 < limit
3066 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3067 !NILP (tem2))
3068 && !NILP (Fequal (tem2, definition)))
3069 i++;
3070 }
3071 else
3072 while (i + 1 < to
3073 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3074 !NILP (tem2))
3075 && !NILP (Fequal (tem2, definition)))
3076 i++;
3077
3078
3079 /* If we have a range of more than one character,
3080 print where the range reaches to. */
3081
3082 if (i != starting_i)
3083 {
3084 insert (" .. ", 4);
3085
3086 if (!NILP (elt_prefix))
3087 insert1 (elt_prefix);
3088
3089 if (CHAR_TABLE_P (vector))
3090 {
3091 if (char_table_depth == 0)
3092 {
3093 insert1 (Fsingle_key_description (make_number (i)));
3094 }
3095 else if (complete_char)
3096 {
3097 indices[char_table_depth] = i;
3098 character
3099 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3100 insert_char (character);
3101 }
3102 else
3103 {
3104 /* We need an octal representation for this block of
3105 characters. */
3106 char work[16];
3107 sprintf (work, "(row %d)", i);
3108 insert (work, strlen (work));
3109 }
3110 }
3111 else
3112 {
3113 insert1 (Fsingle_key_description (make_number (i)));
3114 }
3115 }
3116
3117 /* Print a description of the definition of this character.
3118 elt_describer will take care of spacing out far enough
3119 for alignment purposes. */
3120 (*elt_describer) (definition);
3121 }
3122
3123 /* For (sub) char-table, print `defalt' slot at last. */
3124 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3125 {
3126 insert (" ", char_table_depth * 2);
3127 insert_string ("<<default>>");
3128 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3129 }
3130
3131 UNGCPRO;
3132 }
3133 \f
3134 /* Apropos - finding all symbols whose names match a regexp. */
3135 Lisp_Object apropos_predicate;
3136 Lisp_Object apropos_accumulate;
3137
3138 static void
3139 apropos_accum (symbol, string)
3140 Lisp_Object symbol, string;
3141 {
3142 register Lisp_Object tem;
3143
3144 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3145 if (!NILP (tem) && !NILP (apropos_predicate))
3146 tem = call1 (apropos_predicate, symbol);
3147 if (!NILP (tem))
3148 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3149 }
3150
3151 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3152 "Show all symbols whose names contain match for REGEXP.\n\
3153 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3154 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3155 Return list of symbols found.")
3156 (regexp, predicate)
3157 Lisp_Object regexp, predicate;
3158 {
3159 struct gcpro gcpro1, gcpro2;
3160 CHECK_STRING (regexp, 0);
3161 apropos_predicate = predicate;
3162 GCPRO2 (apropos_predicate, apropos_accumulate);
3163 apropos_accumulate = Qnil;
3164 map_obarray (Vobarray, apropos_accum, regexp);
3165 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3166 UNGCPRO;
3167 return apropos_accumulate;
3168 }
3169 \f
3170 syms_of_keymap ()
3171 {
3172 Lisp_Object tem;
3173
3174 Qkeymap = intern ("keymap");
3175 staticpro (&Qkeymap);
3176
3177 /* Now we are ready to set up this property, so we can
3178 create char tables. */
3179 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3180
3181 /* Initialize the keymaps standardly used.
3182 Each one is the value of a Lisp variable, and is also
3183 pointed to by a C variable */
3184
3185 global_map = Fmake_keymap (Qnil);
3186 Fset (intern ("global-map"), global_map);
3187
3188 current_global_map = global_map;
3189 staticpro (&global_map);
3190 staticpro (&current_global_map);
3191
3192 meta_map = Fmake_keymap (Qnil);
3193 Fset (intern ("esc-map"), meta_map);
3194 Ffset (intern ("ESC-prefix"), meta_map);
3195
3196 control_x_map = Fmake_keymap (Qnil);
3197 Fset (intern ("ctl-x-map"), control_x_map);
3198 Ffset (intern ("Control-X-prefix"), control_x_map);
3199
3200 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3201 "List of commands given new key bindings recently.\n\
3202 This is used for internal purposes during Emacs startup;\n\
3203 don't alter it yourself.");
3204 Vdefine_key_rebound_commands = Qt;
3205
3206 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3207 "Default keymap to use when reading from the minibuffer.");
3208 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3209
3210 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3211 "Local keymap for the minibuffer when spaces are not allowed.");
3212 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3213
3214 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3215 "Local keymap for minibuffer input with completion.");
3216 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3217
3218 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3219 "Local keymap for minibuffer input with completion, for exact match.");
3220 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3221
3222 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3223 "Alist of keymaps to use for minor modes.\n\
3224 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3225 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3226 If two active keymaps bind the same key, the keymap appearing earlier\n\
3227 in the list takes precedence.");
3228 Vminor_mode_map_alist = Qnil;
3229
3230 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3231 "Alist of keymaps to use for minor modes, in current major mode.\n\
3232 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3233 used the same way (and before `minor-mode-map-alist'); however,\n\
3234 it is provided for major modes to bind locally.");
3235 Vminor_mode_overriding_map_alist = Qnil;
3236
3237 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3238 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3239 This allows Emacs to recognize function keys sent from ASCII\n\
3240 terminals at any point in a key sequence.\n\
3241 \n\
3242 The `read-key-sequence' function replaces any subsequence bound by\n\
3243 `function-key-map' with its binding. More precisely, when the active\n\
3244 keymaps have no binding for the current key sequence but\n\
3245 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3246 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3247 continues with the new sequence.\n\
3248 \n\
3249 The events that come from bindings in `function-key-map' are not\n\
3250 themselves looked up in `function-key-map'.\n\
3251 \n\
3252 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3253 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3254 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3255 key, typing `ESC O P x' would return [f1 x].");
3256 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3257
3258 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3259 "Keymap of key translations that can override keymaps.\n\
3260 This keymap works like `function-key-map', but comes after that,\n\
3261 and applies even for keys that have ordinary bindings.");
3262 Vkey_translation_map = Qnil;
3263
3264 Qsingle_key_description = intern ("single-key-description");
3265 staticpro (&Qsingle_key_description);
3266
3267 Qkey_description = intern ("key-description");
3268 staticpro (&Qkey_description);
3269
3270 Qkeymapp = intern ("keymapp");
3271 staticpro (&Qkeymapp);
3272
3273 Qnon_ascii = intern ("non-ascii");
3274 staticpro (&Qnon_ascii);
3275
3276 Qmenu_item = intern ("menu-item");
3277 staticpro (&Qmenu_item);
3278
3279 defsubr (&Skeymapp);
3280 defsubr (&Skeymap_parent);
3281 defsubr (&Sset_keymap_parent);
3282 defsubr (&Smake_keymap);
3283 defsubr (&Smake_sparse_keymap);
3284 defsubr (&Scopy_keymap);
3285 defsubr (&Skey_binding);
3286 defsubr (&Slocal_key_binding);
3287 defsubr (&Sglobal_key_binding);
3288 defsubr (&Sminor_mode_key_binding);
3289 defsubr (&Sdefine_key);
3290 defsubr (&Slookup_key);
3291 defsubr (&Sdefine_prefix_command);
3292 defsubr (&Suse_global_map);
3293 defsubr (&Suse_local_map);
3294 defsubr (&Scurrent_local_map);
3295 defsubr (&Scurrent_global_map);
3296 defsubr (&Scurrent_minor_mode_maps);
3297 defsubr (&Saccessible_keymaps);
3298 defsubr (&Skey_description);
3299 defsubr (&Sdescribe_vector);
3300 defsubr (&Ssingle_key_description);
3301 defsubr (&Stext_char_description);
3302 defsubr (&Swhere_is_internal);
3303 defsubr (&Sdescribe_bindings_internal);
3304 defsubr (&Sapropos_internal);
3305 }
3306
3307 keys_of_keymap ()
3308 {
3309 Lisp_Object tem;
3310
3311 initial_define_key (global_map, 033, "ESC-prefix");
3312 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3313 }