*** empty log message ***
[bpt/emacs.git] / src / dispnew.c
1 /* Updating of data structures for redisplay.
2 Copyright (C) 1985, 86, 87, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <signal.h>
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #ifdef HAVE_UNISTD_H
28 #include <unistd.h>
29 #endif
30
31 #include "lisp.h"
32 #include "termchar.h"
33 #include "termopts.h"
34 #include "termhooks.h"
35 /* cm.h must come after dispextern.h on Windows. */
36 #include "dispextern.h"
37 #include "cm.h"
38 #include "buffer.h"
39 #include "charset.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "window.h"
43 #include "commands.h"
44 #include "disptab.h"
45 #include "indent.h"
46 #include "intervals.h"
47 #include "blockinput.h"
48 #include "process.h"
49
50 /* I don't know why DEC Alpha OSF1 fail to compile this file if we
51 include the following file. */
52 /* #include "systty.h" */
53 #include "syssignal.h"
54
55 #ifdef HAVE_X_WINDOWS
56 #include "xterm.h"
57 #endif /* HAVE_X_WINDOWS */
58
59 #ifdef HAVE_NTGUI
60 #include "w32term.h"
61 #endif /* HAVE_NTGUI */
62
63 #ifdef macintosh
64 #include "macterm.h"
65 #endif /* macintosh */
66
67 /* Include systime.h after xterm.h to avoid double inclusion of time.h. */
68
69 #include "systime.h"
70 #include <errno.h>
71
72 /* To get the prototype for `sleep'. */
73
74 #ifdef HAVE_UNISTD_H
75 #include <unistd.h>
76 #endif
77
78 /* Get number of chars of output now in the buffer of a stdio stream.
79 This ought to be built in in stdio, but it isn't. Some s- files
80 override this because their stdio internals differ. */
81
82 #ifdef __GNU_LIBRARY__
83
84 /* The s- file might have overridden the definition with one that
85 works for the system's C library. But we are using the GNU C
86 library, so this is the right definition for every system. */
87
88 #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
89 #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
90 #else
91 #undef PENDING_OUTPUT_COUNT
92 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
93 #endif
94 #else /* not __GNU_LIBRARY__ */
95 #if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING
96 #include <stdio_ext.h>
97 #define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE)
98 #endif
99 #ifndef PENDING_OUTPUT_COUNT
100 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
101 #endif
102 #endif /* not __GNU_LIBRARY__ */
103
104 #if defined(HAVE_TERM_H) && defined (LINUX) && defined (HAVE_LIBNCURSES)
105 #include <term.h> /* for tgetent */
106 #endif
107 \f
108 /* Structure to pass dimensions around. Used for character bounding
109 boxes, glyph matrix dimensions and alike. */
110
111 struct dim
112 {
113 int width;
114 int height;
115 };
116
117 \f
118 /* Function prototypes. */
119
120 static struct glyph_matrix *save_current_matrix P_ ((struct frame *));
121 static void restore_current_matrix P_ ((struct frame *, struct glyph_matrix *));
122 static void fake_current_matrices P_ ((Lisp_Object));
123 static void redraw_overlapping_rows P_ ((struct window *, int));
124 static void redraw_overlapped_rows P_ ((struct window *, int));
125 static int count_blanks P_ ((struct glyph *, int));
126 static int count_match P_ ((struct glyph *, struct glyph *,
127 struct glyph *, struct glyph *));
128 static unsigned line_draw_cost P_ ((struct glyph_matrix *, int));
129 static void update_frame_line P_ ((struct frame *, int));
130 static struct dim allocate_matrices_for_frame_redisplay
131 P_ ((Lisp_Object, int, int, int, int *));
132 static void allocate_matrices_for_window_redisplay P_ ((struct window *));
133 static int realloc_glyph_pool P_ ((struct glyph_pool *, struct dim));
134 static void adjust_frame_glyphs P_ ((struct frame *));
135 struct glyph_matrix *new_glyph_matrix P_ ((struct glyph_pool *));
136 static void free_glyph_matrix P_ ((struct glyph_matrix *));
137 static void adjust_glyph_matrix P_ ((struct window *, struct glyph_matrix *,
138 int, int, struct dim));
139 static void change_frame_size_1 P_ ((struct frame *, int, int, int, int, int));
140 static void swap_glyph_pointers P_ ((struct glyph_row *, struct glyph_row *));
141 #if GLYPH_DEBUG
142 static int glyph_row_slice_p P_ ((struct glyph_row *, struct glyph_row *));
143 #endif
144 static void fill_up_frame_row_with_spaces P_ ((struct glyph_row *, int));
145 static void build_frame_matrix_from_window_tree P_ ((struct glyph_matrix *,
146 struct window *));
147 static void build_frame_matrix_from_leaf_window P_ ((struct glyph_matrix *,
148 struct window *));
149 static struct glyph_pool *new_glyph_pool P_ ((void));
150 static void free_glyph_pool P_ ((struct glyph_pool *));
151 static void adjust_frame_glyphs_initially P_ ((void));
152 static void adjust_frame_message_buffer P_ ((struct frame *));
153 static void adjust_decode_mode_spec_buffer P_ ((struct frame *));
154 static void fill_up_glyph_row_with_spaces P_ ((struct glyph_row *));
155 static void build_frame_matrix P_ ((struct frame *));
156 void clear_current_matrices P_ ((struct frame *));
157 void scroll_glyph_matrix_range P_ ((struct glyph_matrix *, int, int,
158 int, int));
159 static void clear_window_matrices P_ ((struct window *, int));
160 static void fill_up_glyph_row_area_with_spaces P_ ((struct glyph_row *, int));
161 static int scrolling_window P_ ((struct window *, int));
162 static int update_window_line P_ ((struct window *, int, int *));
163 static void update_marginal_area P_ ((struct window *, int, int));
164 static int update_text_area P_ ((struct window *, int));
165 static void make_current P_ ((struct glyph_matrix *, struct glyph_matrix *,
166 int));
167 static void mirror_make_current P_ ((struct window *, int));
168 void check_window_matrix_pointers P_ ((struct window *));
169 #if GLYPH_DEBUG
170 static void check_matrix_pointers P_ ((struct glyph_matrix *,
171 struct glyph_matrix *));
172 #endif
173 static void mirror_line_dance P_ ((struct window *, int, int, int *, char *));
174 static int update_window_tree P_ ((struct window *, int));
175 static int update_window P_ ((struct window *, int));
176 static int update_frame_1 P_ ((struct frame *, int, int));
177 static void set_window_cursor_after_update P_ ((struct window *));
178 static int row_equal_p P_ ((struct window *, struct glyph_row *,
179 struct glyph_row *, int));
180 static void adjust_frame_glyphs_for_window_redisplay P_ ((struct frame *));
181 static void adjust_frame_glyphs_for_frame_redisplay P_ ((struct frame *));
182 static void reverse_rows P_ ((struct glyph_matrix *, int, int));
183 static int margin_glyphs_to_reserve P_ ((struct window *, int, Lisp_Object));
184 static void sync_window_with_frame_matrix_rows P_ ((struct window *));
185 struct window *frame_row_to_window P_ ((struct window *, int));
186
187 \f
188 /* Non-zero means don't pause redisplay for pending input. (This is
189 for debugging and for a future implementation of EDT-like
190 scrolling. */
191
192 int redisplay_dont_pause;
193
194 /* Nonzero upon entry to redisplay means do not assume anything about
195 current contents of actual terminal frame; clear and redraw it. */
196
197 int frame_garbaged;
198
199 /* Nonzero means last display completed. Zero means it was preempted. */
200
201 int display_completed;
202
203 /* Lisp variable visible-bell; enables use of screen-flash instead of
204 audible bell. */
205
206 int visible_bell;
207
208 /* Invert the color of the whole frame, at a low level. */
209
210 int inverse_video;
211
212 /* Line speed of the terminal. */
213
214 int baud_rate;
215
216 /* Either nil or a symbol naming the window system under which Emacs
217 is running. */
218
219 Lisp_Object Vwindow_system;
220
221 /* Version number of X windows: 10, 11 or nil. */
222
223 Lisp_Object Vwindow_system_version;
224
225 /* Vector of glyph definitions. Indexed by glyph number, the contents
226 are a string which is how to output the glyph.
227
228 If Vglyph_table is nil, a glyph is output by using its low 8 bits
229 as a character code.
230
231 This is an obsolete feature that is no longer used. The variable
232 is retained for compatibility. */
233
234 Lisp_Object Vglyph_table;
235
236 /* Display table to use for vectors that don't specify their own. */
237
238 Lisp_Object Vstandard_display_table;
239
240 /* Nonzero means reading single-character input with prompt so put
241 cursor on mini-buffer after the prompt. positive means at end of
242 text in echo area; negative means at beginning of line. */
243
244 int cursor_in_echo_area;
245
246 Lisp_Object Qdisplay_table, Qredisplay_dont_pause;
247
248 \f
249 /* The currently selected frame. In a single-frame version, this
250 variable always equals the_only_frame. */
251
252 Lisp_Object selected_frame;
253
254 /* A frame which is not just a mini-buffer, or 0 if there are no such
255 frames. This is usually the most recent such frame that was
256 selected. In a single-frame version, this variable always holds
257 the address of the_only_frame. */
258
259 struct frame *last_nonminibuf_frame;
260
261 /* Stdio stream being used for copy of all output. */
262
263 FILE *termscript;
264
265 /* Structure for info on cursor positioning. */
266
267 struct cm Wcm;
268
269 /* 1 means SIGWINCH happened when not safe. */
270
271 int delayed_size_change;
272
273 /* 1 means glyph initialization has been completed at startup. */
274
275 static int glyphs_initialized_initially_p;
276
277 /* Updated window if != 0. Set by update_window. */
278
279 struct window *updated_window;
280
281 /* Glyph row updated in update_window_line, and area that is updated. */
282
283 struct glyph_row *updated_row;
284 int updated_area;
285
286 /* A glyph for a space. */
287
288 struct glyph space_glyph;
289
290 /* Non-zero means update has been performed directly, so that there's
291 no need for redisplay_internal to do much work. Set by
292 direct_output_for_insert. */
293
294 int redisplay_performed_directly_p;
295
296 /* Counts of allocated structures. These counts serve to diagnose
297 memory leaks and double frees. */
298
299 int glyph_matrix_count;
300 int glyph_pool_count;
301
302 /* If non-null, the frame whose frame matrices are manipulated. If
303 null, window matrices are worked on. */
304
305 static struct frame *frame_matrix_frame;
306
307 /* Current interface for window-based redisplay. Set from init_xterm.
308 A null value means we are not using window-based redisplay. */
309
310 struct redisplay_interface *rif;
311
312 /* Non-zero means that fonts have been loaded since the last glyph
313 matrix adjustments. Redisplay must stop, and glyph matrices must
314 be adjusted when this flag becomes non-zero during display. The
315 reason fonts can be loaded so late is that fonts of fontsets are
316 loaded on demand. */
317
318 int fonts_changed_p;
319
320 /* Convert vpos and hpos from frame to window and vice versa.
321 This may only be used for terminal frames. */
322
323 #if GLYPH_DEBUG
324
325 static int window_to_frame_vpos P_ ((struct window *, int));
326 static int window_to_frame_hpos P_ ((struct window *, int));
327 #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
328 #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
329
330 /* One element of the ring buffer containing redisplay history
331 information. */
332
333 struct redisplay_history
334 {
335 char trace[512 + 100];
336 };
337
338 /* The size of the history buffer. */
339
340 #define REDISPLAY_HISTORY_SIZE 30
341
342 /* The redisplay history buffer. */
343
344 static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE];
345
346 /* Next free entry in redisplay_history. */
347
348 static int history_idx;
349
350 /* A tick that's incremented each time something is added to the
351 history. */
352
353 static unsigned history_tick;
354
355 static void add_frame_display_history P_ ((struct frame *, int));
356 static void add_window_display_history P_ ((struct window *, char *, int));
357
358
359 /* Add to the redisplay history how window W has been displayed.
360 MSG is a trace containing the information how W's glyph matrix
361 has been contructed. PAUSED_P non-zero means that the update
362 has been interrupted for pending input. */
363
364 static void
365 add_window_display_history (w, msg, paused_p)
366 struct window *w;
367 char *msg;
368 int paused_p;
369 {
370 char *buf;
371
372 if (history_idx >= REDISPLAY_HISTORY_SIZE)
373 history_idx = 0;
374 buf = redisplay_history[history_idx].trace;
375 ++history_idx;
376
377 sprintf (buf, "%d: window %p (`%s')%s\n",
378 history_tick++,
379 w,
380 ((BUFFERP (w->buffer)
381 && STRINGP (XBUFFER (w->buffer)->name))
382 ? (char *) XSTRING (XBUFFER (w->buffer)->name)->data
383 : "???"),
384 paused_p ? " ***paused***" : "");
385 strcat (buf, msg);
386 }
387
388
389 /* Add to the redisplay history that frame F has been displayed.
390 PAUSED_P non-zero means that the update has been interrupted for
391 pending input. */
392
393 static void
394 add_frame_display_history (f, paused_p)
395 struct frame *f;
396 int paused_p;
397 {
398 char *buf;
399
400 if (history_idx >= REDISPLAY_HISTORY_SIZE)
401 history_idx = 0;
402 buf = redisplay_history[history_idx].trace;
403 ++history_idx;
404
405 sprintf (buf, "%d: update frame %p%s",
406 history_tick++,
407 f, paused_p ? " ***paused***" : "");
408 }
409
410
411 DEFUN ("dump-redisplay-history", Fdump_redisplay_history,
412 Sdump_redisplay_history, 0, 0, "",
413 doc: /* Dump redisplay history to stderr. */)
414 ()
415 {
416 int i;
417
418 for (i = history_idx - 1; i != history_idx; --i)
419 {
420 if (i < 0)
421 i = REDISPLAY_HISTORY_SIZE - 1;
422 fprintf (stderr, "%s\n", redisplay_history[i].trace);
423 }
424
425 return Qnil;
426 }
427
428
429 #else /* GLYPH_DEBUG == 0 */
430
431 #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + XFASTINT ((W)->top))
432 #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + XFASTINT ((W)->left))
433
434 #endif /* GLYPH_DEBUG == 0 */
435
436
437 /* Like bcopy except never gets confused by overlap. Let this be the
438 first function defined in this file, or change emacs.c where the
439 address of this function is used. */
440
441 void
442 safe_bcopy (from, to, size)
443 char *from, *to;
444 int size;
445 {
446 if (size <= 0 || from == to)
447 return;
448
449 /* If the source and destination don't overlap, then bcopy can
450 handle it. If they do overlap, but the destination is lower in
451 memory than the source, we'll assume bcopy can handle that. */
452 if (to < from || from + size <= to)
453 bcopy (from, to, size);
454
455 /* Otherwise, we'll copy from the end. */
456 else
457 {
458 register char *endf = from + size;
459 register char *endt = to + size;
460
461 /* If TO - FROM is large, then we should break the copy into
462 nonoverlapping chunks of TO - FROM bytes each. However, if
463 TO - FROM is small, then the bcopy function call overhead
464 makes this not worth it. The crossover point could be about
465 anywhere. Since I don't think the obvious copy loop is too
466 bad, I'm trying to err in its favor. */
467 if (to - from < 64)
468 {
469 do
470 *--endt = *--endf;
471 while (endf != from);
472 }
473 else
474 {
475 for (;;)
476 {
477 endt -= (to - from);
478 endf -= (to - from);
479
480 if (endt < to)
481 break;
482
483 bcopy (endf, endt, to - from);
484 }
485
486 /* If SIZE wasn't a multiple of TO - FROM, there will be a
487 little left over. The amount left over is (endt + (to -
488 from)) - to, which is endt - from. */
489 bcopy (from, to, endt - from);
490 }
491 }
492 }
493
494
495 \f
496 /***********************************************************************
497 Glyph Matrices
498 ***********************************************************************/
499
500 /* Allocate and return a glyph_matrix structure. POOL is the glyph
501 pool from which memory for the matrix should be allocated, or null
502 for window-based redisplay where no glyph pools are used. The
503 member `pool' of the glyph matrix structure returned is set to
504 POOL, the structure is otherwise zeroed. */
505
506 struct glyph_matrix *
507 new_glyph_matrix (pool)
508 struct glyph_pool *pool;
509 {
510 struct glyph_matrix *result;
511
512 /* Allocate and clear. */
513 result = (struct glyph_matrix *) xmalloc (sizeof *result);
514 bzero (result, sizeof *result);
515
516 /* Increment number of allocated matrices. This count is used
517 to detect memory leaks. */
518 ++glyph_matrix_count;
519
520 /* Set pool and return. */
521 result->pool = pool;
522 return result;
523 }
524
525
526 /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
527
528 The global counter glyph_matrix_count is decremented when a matrix
529 is freed. If the count gets negative, more structures were freed
530 than allocated, i.e. one matrix was freed more than once or a bogus
531 pointer was passed to this function.
532
533 If MATRIX->pool is null, this means that the matrix manages its own
534 glyph memory---this is done for matrices on X frames. Freeing the
535 matrix also frees the glyph memory in this case. */
536
537 static void
538 free_glyph_matrix (matrix)
539 struct glyph_matrix *matrix;
540 {
541 if (matrix)
542 {
543 int i;
544
545 /* Detect the case that more matrices are freed than were
546 allocated. */
547 if (--glyph_matrix_count < 0)
548 abort ();
549
550 /* Free glyph memory if MATRIX owns it. */
551 if (matrix->pool == NULL)
552 for (i = 0; i < matrix->rows_allocated; ++i)
553 xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
554
555 /* Free row structures and the matrix itself. */
556 xfree (matrix->rows);
557 xfree (matrix);
558 }
559 }
560
561
562 /* Return the number of glyphs to reserve for a marginal area of
563 window W. TOTAL_GLYPHS is the number of glyphs in a complete
564 display line of window W. MARGIN gives the width of the marginal
565 area in canonical character units. MARGIN should be an integer
566 or a float. */
567
568 static int
569 margin_glyphs_to_reserve (w, total_glyphs, margin)
570 struct window *w;
571 int total_glyphs;
572 Lisp_Object margin;
573 {
574 int n;
575
576 if (NUMBERP (margin))
577 {
578 int width = XFASTINT (w->width);
579 double d = max (0, XFLOATINT (margin));
580 d = min (width / 2 - 1, d);
581 n = (int) ((double) total_glyphs / width * d);
582 }
583 else
584 n = 0;
585
586 return n;
587 }
588
589
590 /* Adjust glyph matrix MATRIX on window W or on a frame to changed
591 window sizes.
592
593 W is null if the function is called for a frame glyph matrix.
594 Otherwise it is the window MATRIX is a member of. X and Y are the
595 indices of the first column and row of MATRIX within the frame
596 matrix, if such a matrix exists. They are zero for purely
597 window-based redisplay. DIM is the needed size of the matrix.
598
599 In window-based redisplay, where no frame matrices exist, glyph
600 matrices manage their own glyph storage. Otherwise, they allocate
601 storage from a common frame glyph pool which can be found in
602 MATRIX->pool.
603
604 The reason for this memory management strategy is to avoid complete
605 frame redraws if possible. When we allocate from a common pool, a
606 change of the location or size of a sub-matrix within the pool
607 requires a complete redisplay of the frame because we cannot easily
608 make sure that the current matrices of all windows still agree with
609 what is displayed on the screen. While this is usually fast, it
610 leads to screen flickering. */
611
612 static void
613 adjust_glyph_matrix (w, matrix, x, y, dim)
614 struct window *w;
615 struct glyph_matrix *matrix;
616 int x, y;
617 struct dim dim;
618 {
619 int i;
620 int new_rows;
621 int marginal_areas_changed_p = 0;
622 int header_line_changed_p = 0;
623 int header_line_p = 0;
624 int left = -1, right = -1;
625 int window_x, window_y, window_width = -1, window_height;
626
627 /* See if W had a top line that has disappeared now, or vice versa. */
628 if (w)
629 {
630 header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
631 header_line_changed_p = header_line_p != matrix->header_line_p;
632 }
633 matrix->header_line_p = header_line_p;
634
635 /* Do nothing if MATRIX' size, position, vscroll, and marginal areas
636 haven't changed. This optimization is important because preserving
637 the matrix means preventing redisplay. */
638 if (matrix->pool == NULL)
639 {
640 window_box (w, -1, &window_x, &window_y, &window_width, &window_height);
641 left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_width);
642 right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_width);
643 xassert (left >= 0 && right >= 0);
644 marginal_areas_changed_p = (left != matrix->left_margin_glyphs
645 || right != matrix->right_margin_glyphs);
646
647 if (!marginal_areas_changed_p
648 && !fonts_changed_p
649 && !header_line_changed_p
650 && matrix->window_left_x == XFASTINT (w->left)
651 && matrix->window_top_y == XFASTINT (w->top)
652 && matrix->window_height == window_height
653 && matrix->window_vscroll == w->vscroll
654 && matrix->window_width == window_width)
655 return;
656 }
657
658 /* Enlarge MATRIX->rows if necessary. New rows are cleared. */
659 if (matrix->rows_allocated < dim.height)
660 {
661 int size = dim.height * sizeof (struct glyph_row);
662 new_rows = dim.height - matrix->rows_allocated;
663 matrix->rows = (struct glyph_row *) xrealloc (matrix->rows, size);
664 bzero (matrix->rows + matrix->rows_allocated,
665 new_rows * sizeof *matrix->rows);
666 matrix->rows_allocated = dim.height;
667 }
668 else
669 new_rows = 0;
670
671 /* If POOL is not null, MATRIX is a frame matrix or a window matrix
672 on a frame not using window-based redisplay. Set up pointers for
673 each row into the glyph pool. */
674 if (matrix->pool)
675 {
676 xassert (matrix->pool->glyphs);
677
678 if (w)
679 {
680 left = margin_glyphs_to_reserve (w, dim.width,
681 w->left_margin_width);
682 right = margin_glyphs_to_reserve (w, dim.width,
683 w->right_margin_width);
684 }
685 else
686 left = right = 0;
687
688 for (i = 0; i < dim.height; ++i)
689 {
690 struct glyph_row *row = &matrix->rows[i];
691
692 row->glyphs[LEFT_MARGIN_AREA]
693 = (matrix->pool->glyphs
694 + (y + i) * matrix->pool->ncolumns
695 + x);
696
697 if (w == NULL
698 || row == matrix->rows + dim.height - 1
699 || (row == matrix->rows && matrix->header_line_p))
700 {
701 row->glyphs[TEXT_AREA]
702 = row->glyphs[LEFT_MARGIN_AREA];
703 row->glyphs[RIGHT_MARGIN_AREA]
704 = row->glyphs[TEXT_AREA] + dim.width;
705 row->glyphs[LAST_AREA]
706 = row->glyphs[RIGHT_MARGIN_AREA];
707 }
708 else
709 {
710 row->glyphs[TEXT_AREA]
711 = row->glyphs[LEFT_MARGIN_AREA] + left;
712 row->glyphs[RIGHT_MARGIN_AREA]
713 = row->glyphs[TEXT_AREA] + dim.width - left - right;
714 row->glyphs[LAST_AREA]
715 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
716 }
717 }
718
719 matrix->left_margin_glyphs = left;
720 matrix->right_margin_glyphs = right;
721 }
722 else
723 {
724 /* If MATRIX->pool is null, MATRIX is responsible for managing
725 its own memory. Allocate glyph memory from the heap. */
726 if (dim.width > matrix->matrix_w
727 || new_rows
728 || header_line_changed_p
729 || marginal_areas_changed_p)
730 {
731 struct glyph_row *row = matrix->rows;
732 struct glyph_row *end = row + matrix->rows_allocated;
733
734 while (row < end)
735 {
736 row->glyphs[LEFT_MARGIN_AREA]
737 = (struct glyph *) xrealloc (row->glyphs[LEFT_MARGIN_AREA],
738 (dim.width
739 * sizeof (struct glyph)));
740
741 /* The mode line never has marginal areas. */
742 if (row == matrix->rows + dim.height - 1
743 || (row == matrix->rows && matrix->header_line_p))
744 {
745 row->glyphs[TEXT_AREA]
746 = row->glyphs[LEFT_MARGIN_AREA];
747 row->glyphs[RIGHT_MARGIN_AREA]
748 = row->glyphs[TEXT_AREA] + dim.width;
749 row->glyphs[LAST_AREA]
750 = row->glyphs[RIGHT_MARGIN_AREA];
751 }
752 else
753 {
754 row->glyphs[TEXT_AREA]
755 = row->glyphs[LEFT_MARGIN_AREA] + left;
756 row->glyphs[RIGHT_MARGIN_AREA]
757 = row->glyphs[TEXT_AREA] + dim.width - left - right;
758 row->glyphs[LAST_AREA]
759 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
760 }
761 ++row;
762 }
763 }
764
765 xassert (left >= 0 && right >= 0);
766 matrix->left_margin_glyphs = left;
767 matrix->right_margin_glyphs = right;
768 }
769
770 /* Number of rows to be used by MATRIX. */
771 matrix->nrows = dim.height;
772 xassert (matrix->nrows >= 0);
773
774 if (w)
775 {
776 if (matrix == w->current_matrix)
777 {
778 /* Mark rows in a current matrix of a window as not having
779 valid contents. It's important to not do this for
780 desired matrices. When Emacs starts, it may already be
781 building desired matrices when this function runs. */
782 if (window_width < 0)
783 window_width = window_box_width (w, -1);
784
785 /* Optimize the case that only the height has changed (C-x 2,
786 upper window). Invalidate all rows that are no longer part
787 of the window. */
788 if (!marginal_areas_changed_p
789 && !header_line_changed_p
790 && new_rows == 0
791 && dim.width == matrix->matrix_w
792 && matrix->window_left_x == XFASTINT (w->left)
793 && matrix->window_top_y == XFASTINT (w->top)
794 && matrix->window_width == window_width)
795 {
796 /* Find the last row in the window. */
797 for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i)
798 if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height)
799 {
800 ++i;
801 break;
802 }
803
804 /* Window end is invalid, if inside of the rows that
805 are invalidated below. */
806 if (INTEGERP (w->window_end_vpos)
807 && XFASTINT (w->window_end_vpos) >= i)
808 w->window_end_valid = Qnil;
809
810 while (i < matrix->nrows)
811 matrix->rows[i++].enabled_p = 0;
812 }
813 else
814 {
815 for (i = 0; i < matrix->nrows; ++i)
816 matrix->rows[i].enabled_p = 0;
817 }
818 }
819 else if (matrix == w->desired_matrix)
820 {
821 /* Rows in desired matrices always have to be cleared;
822 redisplay expects this is the case when it runs, so it
823 had better be the case when we adjust matrices between
824 redisplays. */
825 for (i = 0; i < matrix->nrows; ++i)
826 matrix->rows[i].enabled_p = 0;
827 }
828 }
829
830
831 /* Remember last values to be able to optimize frame redraws. */
832 matrix->matrix_x = x;
833 matrix->matrix_y = y;
834 matrix->matrix_w = dim.width;
835 matrix->matrix_h = dim.height;
836
837 /* Record the top y location and height of W at the time the matrix
838 was last adjusted. This is used to optimize redisplay above. */
839 if (w)
840 {
841 matrix->window_left_x = XFASTINT (w->left);
842 matrix->window_top_y = XFASTINT (w->top);
843 matrix->window_height = window_height;
844 matrix->window_width = window_width;
845 matrix->window_vscroll = w->vscroll;
846 }
847 }
848
849
850 /* Reverse the contents of rows in MATRIX between START and END. The
851 contents of the row at END - 1 end up at START, END - 2 at START +
852 1 etc. This is part of the implementation of rotate_matrix (see
853 below). */
854
855 static void
856 reverse_rows (matrix, start, end)
857 struct glyph_matrix *matrix;
858 int start, end;
859 {
860 int i, j;
861
862 for (i = start, j = end - 1; i < j; ++i, --j)
863 {
864 /* Non-ISO HP/UX compiler doesn't like auto struct
865 initialization. */
866 struct glyph_row temp;
867 temp = matrix->rows[i];
868 matrix->rows[i] = matrix->rows[j];
869 matrix->rows[j] = temp;
870 }
871 }
872
873
874 /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
875 1 by BY positions. BY < 0 means rotate left, i.e. towards lower
876 indices. (Note: this does not copy glyphs, only glyph pointers in
877 row structures are moved around).
878
879 The algorithm used for rotating the vector was, I believe, first
880 described by Kernighan. See the vector R as consisting of two
881 sub-vectors AB, where A has length BY for BY >= 0. The result
882 after rotating is then BA. Reverse both sub-vectors to get ArBr
883 and reverse the result to get (ArBr)r which is BA. Similar for
884 rotating right. */
885
886 void
887 rotate_matrix (matrix, first, last, by)
888 struct glyph_matrix *matrix;
889 int first, last, by;
890 {
891 if (by < 0)
892 {
893 /* Up (rotate left, i.e. towards lower indices). */
894 by = -by;
895 reverse_rows (matrix, first, first + by);
896 reverse_rows (matrix, first + by, last);
897 reverse_rows (matrix, first, last);
898 }
899 else if (by > 0)
900 {
901 /* Down (rotate right, i.e. towards higher indices). */
902 reverse_rows (matrix, last - by, last);
903 reverse_rows (matrix, first, last - by);
904 reverse_rows (matrix, first, last);
905 }
906 }
907
908
909 /* Increment buffer positions in glyph rows of MATRIX. Do it for rows
910 with indices START <= index < END. Increment positions by DELTA/
911 DELTA_BYTES. */
912
913 void
914 increment_matrix_positions (matrix, start, end, delta, delta_bytes)
915 struct glyph_matrix *matrix;
916 int start, end, delta, delta_bytes;
917 {
918 /* Check that START and END are reasonable values. */
919 xassert (start >= 0 && start <= matrix->nrows);
920 xassert (end >= 0 && end <= matrix->nrows);
921 xassert (start <= end);
922
923 for (; start < end; ++start)
924 increment_row_positions (matrix->rows + start, delta, delta_bytes);
925 }
926
927
928 /* Enable a range of rows in glyph matrix MATRIX. START and END are
929 the row indices of the first and last + 1 row to enable. If
930 ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
931
932 void
933 enable_glyph_matrix_rows (matrix, start, end, enabled_p)
934 struct glyph_matrix *matrix;
935 int start, end;
936 int enabled_p;
937 {
938 xassert (start <= end);
939 xassert (start >= 0 && start < matrix->nrows);
940 xassert (end >= 0 && end <= matrix->nrows);
941
942 for (; start < end; ++start)
943 matrix->rows[start].enabled_p = enabled_p != 0;
944 }
945
946
947 /* Clear MATRIX.
948
949 This empties all rows in MATRIX by setting the enabled_p flag for
950 all rows of the matrix to zero. The function prepare_desired_row
951 will eventually really clear a row when it sees one with a zero
952 enabled_p flag.
953
954 Resets update hints to defaults value. The only update hint
955 currently present is the flag MATRIX->no_scrolling_p. */
956
957 void
958 clear_glyph_matrix (matrix)
959 struct glyph_matrix *matrix;
960 {
961 if (matrix)
962 {
963 enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
964 matrix->no_scrolling_p = 0;
965 }
966 }
967
968
969 /* Shift part of the glyph matrix MATRIX of window W up or down.
970 Increment y-positions in glyph rows between START and END by DY,
971 and recompute their visible height. */
972
973 void
974 shift_glyph_matrix (w, matrix, start, end, dy)
975 struct window *w;
976 struct glyph_matrix *matrix;
977 int start, end, dy;
978 {
979 int min_y, max_y;
980
981 xassert (start <= end);
982 xassert (start >= 0 && start < matrix->nrows);
983 xassert (end >= 0 && end <= matrix->nrows);
984
985 min_y = WINDOW_DISPLAY_HEADER_LINE_HEIGHT (w);
986 max_y = WINDOW_DISPLAY_HEIGHT_NO_MODE_LINE (w);
987
988 for (; start < end; ++start)
989 {
990 struct glyph_row *row = &matrix->rows[start];
991
992 row->y += dy;
993 row->visible_height = row->height;
994
995 if (row->y < min_y)
996 row->visible_height -= min_y - row->y;
997 if (row->y + row->height > max_y)
998 row->visible_height -= row->y + row->height - max_y;
999 }
1000 }
1001
1002
1003 /* Mark all rows in current matrices of frame F as invalid. Marking
1004 invalid is done by setting enabled_p to zero for all rows in a
1005 current matrix. */
1006
1007 void
1008 clear_current_matrices (f)
1009 register struct frame *f;
1010 {
1011 /* Clear frame current matrix, if we have one. */
1012 if (f->current_matrix)
1013 clear_glyph_matrix (f->current_matrix);
1014
1015 /* Clear the matrix of the menu bar window, if such a window exists.
1016 The menu bar window is currently used to display menus on X when
1017 no toolkit support is compiled in. */
1018 if (WINDOWP (f->menu_bar_window))
1019 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
1020
1021 /* Clear the matrix of the tool-bar window, if any. */
1022 if (WINDOWP (f->tool_bar_window))
1023 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
1024
1025 /* Clear current window matrices. */
1026 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
1027 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
1028 }
1029
1030
1031 /* Clear out all display lines of F for a coming redisplay. */
1032
1033 void
1034 clear_desired_matrices (f)
1035 register struct frame *f;
1036 {
1037 if (f->desired_matrix)
1038 clear_glyph_matrix (f->desired_matrix);
1039
1040 if (WINDOWP (f->menu_bar_window))
1041 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
1042
1043 if (WINDOWP (f->tool_bar_window))
1044 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
1045
1046 /* Do it for window matrices. */
1047 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
1048 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
1049 }
1050
1051
1052 /* Clear matrices in window tree rooted in W. If DESIRED_P is
1053 non-zero clear desired matrices, otherwise clear current matrices. */
1054
1055 static void
1056 clear_window_matrices (w, desired_p)
1057 struct window *w;
1058 int desired_p;
1059 {
1060 while (w)
1061 {
1062 if (!NILP (w->hchild))
1063 {
1064 xassert (WINDOWP (w->hchild));
1065 clear_window_matrices (XWINDOW (w->hchild), desired_p);
1066 }
1067 else if (!NILP (w->vchild))
1068 {
1069 xassert (WINDOWP (w->vchild));
1070 clear_window_matrices (XWINDOW (w->vchild), desired_p);
1071 }
1072 else
1073 {
1074 if (desired_p)
1075 clear_glyph_matrix (w->desired_matrix);
1076 else
1077 {
1078 clear_glyph_matrix (w->current_matrix);
1079 w->window_end_valid = Qnil;
1080 }
1081 }
1082
1083 w = NILP (w->next) ? 0 : XWINDOW (w->next);
1084 }
1085 }
1086
1087
1088 \f
1089 /***********************************************************************
1090 Glyph Rows
1091
1092 See dispextern.h for an overall explanation of glyph rows.
1093 ***********************************************************************/
1094
1095 /* Clear glyph row ROW. Do it in a way that makes it robust against
1096 changes in the glyph_row structure, i.e. addition or removal of
1097 structure members. */
1098
1099 static struct glyph_row null_row;
1100
1101 void
1102 clear_glyph_row (row)
1103 struct glyph_row *row;
1104 {
1105 struct glyph *p[1 + LAST_AREA];
1106
1107 /* Save pointers. */
1108 p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
1109 p[TEXT_AREA] = row->glyphs[TEXT_AREA];
1110 p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
1111 p[LAST_AREA] = row->glyphs[LAST_AREA];
1112
1113 /* Clear. */
1114 *row = null_row;
1115
1116 /* Restore pointers. */
1117 row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
1118 row->glyphs[TEXT_AREA] = p[TEXT_AREA];
1119 row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
1120 row->glyphs[LAST_AREA] = p[LAST_AREA];
1121
1122 #if 0 /* At some point, some bit-fields of struct glyph were not set,
1123 which made glyphs unequal when compared with GLYPH_EQUAL_P.
1124 Redisplay outputs such glyphs, and flickering effects were
1125 the result. This also depended on the contents of memory
1126 returned by xmalloc. If flickering happens again, activate
1127 the code below If the flickering is gone with that, chances
1128 are that the flickering has the same reason as here. */
1129 bzero (p[0], (char *) p[LAST_AREA] - (char *) p[0]);
1130 #endif
1131 }
1132
1133
1134 /* Make ROW an empty, enabled row of canonical character height,
1135 in window W starting at y-position Y. */
1136
1137 void
1138 blank_row (w, row, y)
1139 struct window *w;
1140 struct glyph_row *row;
1141 int y;
1142 {
1143 int min_y, max_y;
1144
1145 min_y = WINDOW_DISPLAY_HEADER_LINE_HEIGHT (w);
1146 max_y = WINDOW_DISPLAY_HEIGHT_NO_MODE_LINE (w);
1147
1148 clear_glyph_row (row);
1149 row->y = y;
1150 row->ascent = row->phys_ascent = 0;
1151 row->height = row->phys_height = CANON_Y_UNIT (XFRAME (w->frame));
1152 row->visible_height = row->height;
1153
1154 if (row->y < min_y)
1155 row->visible_height -= min_y - row->y;
1156 if (row->y + row->height > max_y)
1157 row->visible_height -= row->y + row->height - max_y;
1158
1159 row->enabled_p = 1;
1160 }
1161
1162
1163 /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
1164 are the amounts by which to change positions. Note that the first
1165 glyph of the text area of a row can have a buffer position even if
1166 the used count of the text area is zero. Such rows display line
1167 ends. */
1168
1169 void
1170 increment_row_positions (row, delta, delta_bytes)
1171 struct glyph_row *row;
1172 int delta, delta_bytes;
1173 {
1174 int area, i;
1175
1176 /* Increment start and end positions. */
1177 MATRIX_ROW_START_CHARPOS (row) += delta;
1178 MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
1179 MATRIX_ROW_END_CHARPOS (row) += delta;
1180 MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
1181
1182 /* Increment positions in glyphs. */
1183 for (area = 0; area < LAST_AREA; ++area)
1184 for (i = 0; i < row->used[area]; ++i)
1185 if (BUFFERP (row->glyphs[area][i].object)
1186 && row->glyphs[area][i].charpos > 0)
1187 row->glyphs[area][i].charpos += delta;
1188
1189 /* Capture the case of rows displaying a line end. */
1190 if (row->used[TEXT_AREA] == 0
1191 && MATRIX_ROW_DISPLAYS_TEXT_P (row))
1192 row->glyphs[TEXT_AREA]->charpos += delta;
1193 }
1194
1195
1196 #if 0
1197 /* Swap glyphs between two glyph rows A and B. This exchanges glyph
1198 contents, i.e. glyph structure contents are exchanged between A and
1199 B without changing glyph pointers in A and B. */
1200
1201 static void
1202 swap_glyphs_in_rows (a, b)
1203 struct glyph_row *a, *b;
1204 {
1205 int area;
1206
1207 for (area = 0; area < LAST_AREA; ++area)
1208 {
1209 /* Number of glyphs to swap. */
1210 int max_used = max (a->used[area], b->used[area]);
1211
1212 /* Start of glyphs in area of row A. */
1213 struct glyph *glyph_a = a->glyphs[area];
1214
1215 /* End + 1 of glyphs in area of row A. */
1216 struct glyph *glyph_a_end = a->glyphs[max_used];
1217
1218 /* Start of glyphs in area of row B. */
1219 struct glyph *glyph_b = b->glyphs[area];
1220
1221 while (glyph_a < glyph_a_end)
1222 {
1223 /* Non-ISO HP/UX compiler doesn't like auto struct
1224 initialization. */
1225 struct glyph temp;
1226 temp = *glyph_a;
1227 *glyph_a = *glyph_b;
1228 *glyph_b = temp;
1229 ++glyph_a;
1230 ++glyph_b;
1231 }
1232 }
1233 }
1234
1235 #endif /* 0 */
1236
1237 /* Exchange pointers to glyph memory between glyph rows A and B. */
1238
1239 static INLINE void
1240 swap_glyph_pointers (a, b)
1241 struct glyph_row *a, *b;
1242 {
1243 int i;
1244 for (i = 0; i < LAST_AREA + 1; ++i)
1245 {
1246 struct glyph *temp = a->glyphs[i];
1247 a->glyphs[i] = b->glyphs[i];
1248 b->glyphs[i] = temp;
1249 }
1250 }
1251
1252
1253 /* Copy glyph row structure FROM to glyph row structure TO, except
1254 that glyph pointers in the structures are left unchanged. */
1255
1256 INLINE void
1257 copy_row_except_pointers (to, from)
1258 struct glyph_row *to, *from;
1259 {
1260 struct glyph *pointers[1 + LAST_AREA];
1261
1262 /* Save glyph pointers of TO. */
1263 bcopy (to->glyphs, pointers, sizeof to->glyphs);
1264
1265 /* Do a structure assignment. */
1266 *to = *from;
1267
1268 /* Restore original pointers of TO. */
1269 bcopy (pointers, to->glyphs, sizeof to->glyphs);
1270 }
1271
1272
1273 /* Copy contents of glyph row FROM to glyph row TO. Glyph pointers in
1274 TO and FROM are left unchanged. Glyph contents are copied from the
1275 glyph memory of FROM to the glyph memory of TO. Increment buffer
1276 positions in row TO by DELTA/ DELTA_BYTES. */
1277
1278 void
1279 copy_glyph_row_contents (to, from, delta, delta_bytes)
1280 struct glyph_row *to, *from;
1281 int delta, delta_bytes;
1282 {
1283 int area;
1284
1285 /* This is like a structure assignment TO = FROM, except that
1286 glyph pointers in the rows are left unchanged. */
1287 copy_row_except_pointers (to, from);
1288
1289 /* Copy glyphs from FROM to TO. */
1290 for (area = 0; area < LAST_AREA; ++area)
1291 if (from->used[area])
1292 bcopy (from->glyphs[area], to->glyphs[area],
1293 from->used[area] * sizeof (struct glyph));
1294
1295 /* Increment buffer positions in TO by DELTA. */
1296 increment_row_positions (to, delta, delta_bytes);
1297 }
1298
1299
1300 /* Assign glyph row FROM to glyph row TO. This works like a structure
1301 assignment TO = FROM, except that glyph pointers are not copied but
1302 exchanged between TO and FROM. Pointers must be exchanged to avoid
1303 a memory leak. */
1304
1305 static INLINE void
1306 assign_row (to, from)
1307 struct glyph_row *to, *from;
1308 {
1309 swap_glyph_pointers (to, from);
1310 copy_row_except_pointers (to, from);
1311 }
1312
1313
1314 /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
1315 a row in a window matrix, is a slice of the glyph memory of the
1316 glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
1317 is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
1318 memory of FRAME_ROW. */
1319
1320 #if GLYPH_DEBUG
1321
1322 static int
1323 glyph_row_slice_p (window_row, frame_row)
1324 struct glyph_row *window_row, *frame_row;
1325 {
1326 struct glyph *window_glyph_start = window_row->glyphs[0];
1327 struct glyph *frame_glyph_start = frame_row->glyphs[0];
1328 struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
1329
1330 return (frame_glyph_start <= window_glyph_start
1331 && window_glyph_start < frame_glyph_end);
1332 }
1333
1334 #endif /* GLYPH_DEBUG */
1335
1336 #if 0
1337
1338 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
1339 of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
1340 in WINDOW_MATRIX is found satisfying the condition. */
1341
1342 static struct glyph_row *
1343 find_glyph_row_slice (window_matrix, frame_matrix, row)
1344 struct glyph_matrix *window_matrix, *frame_matrix;
1345 int row;
1346 {
1347 int i;
1348
1349 xassert (row >= 0 && row < frame_matrix->nrows);
1350
1351 for (i = 0; i < window_matrix->nrows; ++i)
1352 if (glyph_row_slice_p (window_matrix->rows + i,
1353 frame_matrix->rows + row))
1354 break;
1355
1356 return i < window_matrix->nrows ? window_matrix->rows + i : 0;
1357 }
1358
1359 #endif /* 0 */
1360
1361 /* Prepare ROW for display. Desired rows are cleared lazily,
1362 i.e. they are only marked as to be cleared by setting their
1363 enabled_p flag to zero. When a row is to be displayed, a prior
1364 call to this function really clears it. */
1365
1366 void
1367 prepare_desired_row (row)
1368 struct glyph_row *row;
1369 {
1370 if (!row->enabled_p)
1371 {
1372 clear_glyph_row (row);
1373 row->enabled_p = 1;
1374 }
1375 }
1376
1377
1378 /* Return a hash code for glyph row ROW. */
1379
1380 int
1381 line_hash_code (row)
1382 struct glyph_row *row;
1383 {
1384 int hash = 0;
1385
1386 if (row->enabled_p)
1387 {
1388 struct glyph *glyph = row->glyphs[TEXT_AREA];
1389 struct glyph *end = glyph + row->used[TEXT_AREA];
1390
1391 while (glyph < end)
1392 {
1393 int c = glyph->u.ch;
1394 int face_id = glyph->face_id;
1395 if (must_write_spaces)
1396 c -= SPACEGLYPH;
1397 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c;
1398 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id;
1399 ++glyph;
1400 }
1401
1402 if (hash == 0)
1403 hash = 1;
1404 }
1405
1406 return hash;
1407 }
1408
1409
1410 /* Return the cost of drawing line VPOS In MATRIX. The cost equals
1411 the number of characters in the line. If must_write_spaces is
1412 zero, leading and trailing spaces are ignored. */
1413
1414 static unsigned int
1415 line_draw_cost (matrix, vpos)
1416 struct glyph_matrix *matrix;
1417 int vpos;
1418 {
1419 struct glyph_row *row = matrix->rows + vpos;
1420 struct glyph *beg = row->glyphs[TEXT_AREA];
1421 struct glyph *end = beg + row->used[TEXT_AREA];
1422 int len;
1423 Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
1424 int glyph_table_len = GLYPH_TABLE_LENGTH;
1425
1426 /* Ignore trailing and leading spaces if we can. */
1427 if (!must_write_spaces)
1428 {
1429 /* Skip from the end over trailing spaces. */
1430 while (end > beg && CHAR_GLYPH_SPACE_P (*(end - 1)))
1431 --end;
1432
1433 /* All blank line. */
1434 if (end == beg)
1435 return 0;
1436
1437 /* Skip over leading spaces. */
1438 while (CHAR_GLYPH_SPACE_P (*beg))
1439 ++beg;
1440 }
1441
1442 /* If we don't have a glyph-table, each glyph is one character,
1443 so return the number of glyphs. */
1444 if (glyph_table_base == 0)
1445 len = end - beg;
1446 else
1447 {
1448 /* Otherwise, scan the glyphs and accumulate their total length
1449 in LEN. */
1450 len = 0;
1451 while (beg < end)
1452 {
1453 GLYPH g = GLYPH_FROM_CHAR_GLYPH (*beg);
1454
1455 if (g < 0
1456 || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
1457 len += 1;
1458 else
1459 len += GLYPH_LENGTH (glyph_table_base, g);
1460
1461 ++beg;
1462 }
1463 }
1464
1465 return len;
1466 }
1467
1468
1469 /* Test two glyph rows A and B for equality. Value is non-zero if A
1470 and B have equal contents. W is the window to which the glyphs
1471 rows A and B belong. It is needed here to test for partial row
1472 visibility. MOUSE_FACE_P non-zero means compare the mouse_face_p
1473 flags of A and B, too. */
1474
1475 static INLINE int
1476 row_equal_p (w, a, b, mouse_face_p)
1477 struct window *w;
1478 struct glyph_row *a, *b;
1479 int mouse_face_p;
1480 {
1481 if (a == b)
1482 return 1;
1483 else if (a->hash != b->hash)
1484 return 0;
1485 else
1486 {
1487 struct glyph *a_glyph, *b_glyph, *a_end;
1488 int area;
1489
1490 if (mouse_face_p && a->mouse_face_p != b->mouse_face_p)
1491 return 0;
1492
1493 /* Compare glyphs. */
1494 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
1495 {
1496 if (a->used[area] != b->used[area])
1497 return 0;
1498
1499 a_glyph = a->glyphs[area];
1500 a_end = a_glyph + a->used[area];
1501 b_glyph = b->glyphs[area];
1502
1503 while (a_glyph < a_end
1504 && GLYPH_EQUAL_P (a_glyph, b_glyph))
1505 ++a_glyph, ++b_glyph;
1506
1507 if (a_glyph != a_end)
1508 return 0;
1509 }
1510
1511 if (a->truncated_on_left_p != b->truncated_on_left_p
1512 || a->fill_line_p != b->fill_line_p
1513 || a->truncated_on_right_p != b->truncated_on_right_p
1514 || a->overlay_arrow_p != b->overlay_arrow_p
1515 || a->continued_p != b->continued_p
1516 || a->indicate_empty_line_p != b->indicate_empty_line_p
1517 || a->overlapped_p != b->overlapped_p
1518 || (MATRIX_ROW_CONTINUATION_LINE_P (a)
1519 != MATRIX_ROW_CONTINUATION_LINE_P (b))
1520 /* Different partially visible characters on left margin. */
1521 || a->x != b->x
1522 /* Different height. */
1523 || a->ascent != b->ascent
1524 || a->phys_ascent != b->phys_ascent
1525 || a->phys_height != b->phys_height
1526 || a->visible_height != b->visible_height)
1527 return 0;
1528 }
1529
1530 return 1;
1531 }
1532
1533
1534 \f
1535 /***********************************************************************
1536 Glyph Pool
1537
1538 See dispextern.h for an overall explanation of glyph pools.
1539 ***********************************************************************/
1540
1541 /* Allocate a glyph_pool structure. The structure returned is
1542 initialized with zeros. The global variable glyph_pool_count is
1543 incremented for each pool allocated. */
1544
1545 static struct glyph_pool *
1546 new_glyph_pool ()
1547 {
1548 struct glyph_pool *result;
1549
1550 /* Allocate a new glyph_pool and clear it. */
1551 result = (struct glyph_pool *) xmalloc (sizeof *result);
1552 bzero (result, sizeof *result);
1553
1554 /* For memory leak and double deletion checking. */
1555 ++glyph_pool_count;
1556
1557 return result;
1558 }
1559
1560
1561 /* Free a glyph_pool structure POOL. The function may be called with
1562 a null POOL pointer. The global variable glyph_pool_count is
1563 decremented with every pool structure freed. If this count gets
1564 negative, more structures were freed than allocated, i.e. one
1565 structure must have been freed more than once or a bogus pointer
1566 was passed to free_glyph_pool. */
1567
1568 static void
1569 free_glyph_pool (pool)
1570 struct glyph_pool *pool;
1571 {
1572 if (pool)
1573 {
1574 /* More freed than allocated? */
1575 --glyph_pool_count;
1576 xassert (glyph_pool_count >= 0);
1577
1578 xfree (pool->glyphs);
1579 xfree (pool);
1580 }
1581 }
1582
1583
1584 /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
1585 columns we need. This function never shrinks a pool. The only
1586 case in which this would make sense, would be when a frame's size
1587 is changed from a large value to a smaller one. But, if someone
1588 does it once, we can expect that he will do it again.
1589
1590 Value is non-zero if the pool changed in a way which makes
1591 re-adjusting window glyph matrices necessary. */
1592
1593 static int
1594 realloc_glyph_pool (pool, matrix_dim)
1595 struct glyph_pool *pool;
1596 struct dim matrix_dim;
1597 {
1598 int needed;
1599 int changed_p;
1600
1601 changed_p = (pool->glyphs == 0
1602 || matrix_dim.height != pool->nrows
1603 || matrix_dim.width != pool->ncolumns);
1604
1605 /* Enlarge the glyph pool. */
1606 needed = matrix_dim.width * matrix_dim.height;
1607 if (needed > pool->nglyphs)
1608 {
1609 int size = needed * sizeof (struct glyph);
1610
1611 if (pool->glyphs)
1612 pool->glyphs = (struct glyph *) xrealloc (pool->glyphs, size);
1613 else
1614 {
1615 pool->glyphs = (struct glyph *) xmalloc (size);
1616 bzero (pool->glyphs, size);
1617 }
1618
1619 pool->nglyphs = needed;
1620 }
1621
1622 /* Remember the number of rows and columns because (a) we use then
1623 to do sanity checks, and (b) the number of columns determines
1624 where rows in the frame matrix start---this must be available to
1625 determine pointers to rows of window sub-matrices. */
1626 pool->nrows = matrix_dim.height;
1627 pool->ncolumns = matrix_dim.width;
1628
1629 return changed_p;
1630 }
1631
1632
1633 \f
1634 /***********************************************************************
1635 Debug Code
1636 ***********************************************************************/
1637
1638 #if GLYPH_DEBUG
1639
1640
1641 /* Flush standard output. This is sometimes useful to call from
1642 the debugger. */
1643
1644 void
1645 flush_stdout ()
1646 {
1647 fflush (stdout);
1648 }
1649
1650
1651 /* Check that no glyph pointers have been lost in MATRIX. If a
1652 pointer has been lost, e.g. by using a structure assignment between
1653 rows, at least one pointer must occur more than once in the rows of
1654 MATRIX. */
1655
1656 void
1657 check_matrix_pointer_lossage (matrix)
1658 struct glyph_matrix *matrix;
1659 {
1660 int i, j;
1661
1662 for (i = 0; i < matrix->nrows; ++i)
1663 for (j = 0; j < matrix->nrows; ++j)
1664 xassert (i == j
1665 || (matrix->rows[i].glyphs[TEXT_AREA]
1666 != matrix->rows[j].glyphs[TEXT_AREA]));
1667 }
1668
1669
1670 /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
1671
1672 struct glyph_row *
1673 matrix_row (matrix, row)
1674 struct glyph_matrix *matrix;
1675 int row;
1676 {
1677 xassert (matrix && matrix->rows);
1678 xassert (row >= 0 && row < matrix->nrows);
1679
1680 /* That's really too slow for normal testing because this function
1681 is called almost everywhere. Although---it's still astonishingly
1682 fast, so it is valuable to have for debugging purposes. */
1683 #if 0
1684 check_matrix_pointer_lossage (matrix);
1685 #endif
1686
1687 return matrix->rows + row;
1688 }
1689
1690
1691 #if 0 /* This function makes invalid assumptions when text is
1692 partially invisible. But it might come handy for debugging
1693 nevertheless. */
1694
1695 /* Check invariants that must hold for an up to date current matrix of
1696 window W. */
1697
1698 static void
1699 check_matrix_invariants (w)
1700 struct window *w;
1701 {
1702 struct glyph_matrix *matrix = w->current_matrix;
1703 int yb = window_text_bottom_y (w);
1704 struct glyph_row *row = matrix->rows;
1705 struct glyph_row *last_text_row = NULL;
1706 struct buffer *saved = current_buffer;
1707 struct buffer *buffer = XBUFFER (w->buffer);
1708 int c;
1709
1710 /* This can sometimes happen for a fresh window. */
1711 if (matrix->nrows < 2)
1712 return;
1713
1714 set_buffer_temp (buffer);
1715
1716 /* Note: last row is always reserved for the mode line. */
1717 while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
1718 && MATRIX_ROW_BOTTOM_Y (row) < yb)
1719 {
1720 struct glyph_row *next = row + 1;
1721
1722 if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
1723 last_text_row = row;
1724
1725 /* Check that character and byte positions are in sync. */
1726 xassert (MATRIX_ROW_START_BYTEPOS (row)
1727 == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
1728
1729 /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
1730 have such a position temporarily in case of a minibuffer
1731 displaying something like `[Sole completion]' at its end. */
1732 if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
1733 xassert (MATRIX_ROW_END_BYTEPOS (row)
1734 == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
1735
1736 /* Check that end position of `row' is equal to start position
1737 of next row. */
1738 if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
1739 {
1740 xassert (MATRIX_ROW_END_CHARPOS (row)
1741 == MATRIX_ROW_START_CHARPOS (next));
1742 xassert (MATRIX_ROW_END_BYTEPOS (row)
1743 == MATRIX_ROW_START_BYTEPOS (next));
1744 }
1745 row = next;
1746 }
1747
1748 xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
1749 xassert (w->desired_matrix->rows != NULL);
1750 set_buffer_temp (saved);
1751 }
1752
1753 #endif /* 0 */
1754
1755 #endif /* GLYPH_DEBUG != 0 */
1756
1757
1758 \f
1759 /**********************************************************************
1760 Allocating/ Adjusting Glyph Matrices
1761 **********************************************************************/
1762
1763 /* Allocate glyph matrices over a window tree for a frame-based
1764 redisplay
1765
1766 X and Y are column/row within the frame glyph matrix where
1767 sub-matrices for the window tree rooted at WINDOW must be
1768 allocated. CH_DIM contains the dimensions of the smallest
1769 character that could be used during display. DIM_ONLY_P non-zero
1770 means that the caller of this function is only interested in the
1771 result matrix dimension, and matrix adjustments should not be
1772 performed.
1773
1774 The function returns the total width/height of the sub-matrices of
1775 the window tree. If called on a frame root window, the computation
1776 will take the mini-buffer window into account.
1777
1778 *WINDOW_CHANGE_FLAGS is set to a bit mask with bits
1779
1780 NEW_LEAF_MATRIX set if any window in the tree did not have a
1781 glyph matrices yet, and
1782
1783 CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
1784 any window in the tree will be changed or have been changed (see
1785 DIM_ONLY_P).
1786
1787 *WINDOW_CHANGE_FLAGS must be initialized by the caller of this
1788 function.
1789
1790 Windows are arranged into chains of windows on the same level
1791 through the next fields of window structures. Such a level can be
1792 either a sequence of horizontally adjacent windows from left to
1793 right, or a sequence of vertically adjacent windows from top to
1794 bottom. Each window in a horizontal sequence can be either a leaf
1795 window or a vertical sequence; a window in a vertical sequence can
1796 be either a leaf or a horizontal sequence. All windows in a
1797 horizontal sequence have the same height, and all windows in a
1798 vertical sequence have the same width.
1799
1800 This function uses, for historical reasons, a more general
1801 algorithm to determine glyph matrix dimensions that would be
1802 necessary.
1803
1804 The matrix height of a horizontal sequence is determined by the
1805 maximum height of any matrix in the sequence. The matrix width of
1806 a horizontal sequence is computed by adding up matrix widths of
1807 windows in the sequence.
1808
1809 |<------- result width ------->|
1810 +---------+----------+---------+ ---
1811 | | | | |
1812 | | | |
1813 +---------+ | | result height
1814 | +---------+
1815 | | |
1816 +----------+ ---
1817
1818 The matrix width of a vertical sequence is the maximum matrix width
1819 of any window in the sequence. Its height is computed by adding up
1820 matrix heights of windows in the sequence.
1821
1822 |<---- result width -->|
1823 +---------+ ---
1824 | | |
1825 | | |
1826 +---------+--+ |
1827 | | |
1828 | | result height
1829 | |
1830 +------------+---------+ |
1831 | | |
1832 | | |
1833 +------------+---------+ --- */
1834
1835 /* Bit indicating that a new matrix will be allocated or has been
1836 allocated. */
1837
1838 #define NEW_LEAF_MATRIX (1 << 0)
1839
1840 /* Bit indicating that a matrix will or has changed its location or
1841 size. */
1842
1843 #define CHANGED_LEAF_MATRIX (1 << 1)
1844
1845 static struct dim
1846 allocate_matrices_for_frame_redisplay (window, x, y, dim_only_p,
1847 window_change_flags)
1848 Lisp_Object window;
1849 int x, y;
1850 int dim_only_p;
1851 int *window_change_flags;
1852 {
1853 struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
1854 int x0 = x, y0 = y;
1855 int wmax = 0, hmax = 0;
1856 struct dim total;
1857 struct dim dim;
1858 struct window *w;
1859 int in_horz_combination_p;
1860
1861 /* What combination is WINDOW part of? Compute this once since the
1862 result is the same for all windows in the `next' chain. The
1863 special case of a root window (parent equal to nil) is treated
1864 like a vertical combination because a root window's `next'
1865 points to the mini-buffer window, if any, which is arranged
1866 vertically below other windows. */
1867 in_horz_combination_p
1868 = (!NILP (XWINDOW (window)->parent)
1869 && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
1870
1871 /* For WINDOW and all windows on the same level. */
1872 do
1873 {
1874 w = XWINDOW (window);
1875
1876 /* Get the dimension of the window sub-matrix for W, depending
1877 on whether this a combination or a leaf window. */
1878 if (!NILP (w->hchild))
1879 dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y,
1880 dim_only_p,
1881 window_change_flags);
1882 else if (!NILP (w->vchild))
1883 dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y,
1884 dim_only_p,
1885 window_change_flags);
1886 else
1887 {
1888 /* If not already done, allocate sub-matrix structures. */
1889 if (w->desired_matrix == NULL)
1890 {
1891 w->desired_matrix = new_glyph_matrix (f->desired_pool);
1892 w->current_matrix = new_glyph_matrix (f->current_pool);
1893 *window_change_flags |= NEW_LEAF_MATRIX;
1894 }
1895
1896 /* Width and height MUST be chosen so that there are no
1897 holes in the frame matrix. */
1898 dim.width = required_matrix_width (w);
1899 dim.height = required_matrix_height (w);
1900
1901 /* Will matrix be re-allocated? */
1902 if (x != w->desired_matrix->matrix_x
1903 || y != w->desired_matrix->matrix_y
1904 || dim.width != w->desired_matrix->matrix_w
1905 || dim.height != w->desired_matrix->matrix_h
1906 || (margin_glyphs_to_reserve (w, dim.width,
1907 w->right_margin_width)
1908 != w->desired_matrix->left_margin_glyphs)
1909 || (margin_glyphs_to_reserve (w, dim.width,
1910 w->left_margin_width)
1911 != w->desired_matrix->right_margin_glyphs))
1912 *window_change_flags |= CHANGED_LEAF_MATRIX;
1913
1914 /* Actually change matrices, if allowed. Do not consider
1915 CHANGED_LEAF_MATRIX computed above here because the pool
1916 may have been changed which we don't now here. We trust
1917 that we only will be called with DIM_ONLY_P != 0 when
1918 necessary. */
1919 if (!dim_only_p)
1920 {
1921 adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
1922 adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
1923 }
1924 }
1925
1926 /* If we are part of a horizontal combination, advance x for
1927 windows to the right of W; otherwise advance y for windows
1928 below W. */
1929 if (in_horz_combination_p)
1930 x += dim.width;
1931 else
1932 y += dim.height;
1933
1934 /* Remember maximum glyph matrix dimensions. */
1935 wmax = max (wmax, dim.width);
1936 hmax = max (hmax, dim.height);
1937
1938 /* Next window on same level. */
1939 window = w->next;
1940 }
1941 while (!NILP (window));
1942
1943 /* Set `total' to the total glyph matrix dimension of this window
1944 level. In a vertical combination, the width is the width of the
1945 widest window; the height is the y we finally reached, corrected
1946 by the y we started with. In a horizontal combination, the total
1947 height is the height of the tallest window, and the width is the
1948 x we finally reached, corrected by the x we started with. */
1949 if (in_horz_combination_p)
1950 {
1951 total.width = x - x0;
1952 total.height = hmax;
1953 }
1954 else
1955 {
1956 total.width = wmax;
1957 total.height = y - y0;
1958 }
1959
1960 return total;
1961 }
1962
1963
1964 /* Return the required height of glyph matrices for window W. */
1965
1966 int
1967 required_matrix_height (w)
1968 struct window *w;
1969 {
1970 #ifdef HAVE_WINDOW_SYSTEM
1971 struct frame *f = XFRAME (w->frame);
1972
1973 if (FRAME_WINDOW_P (f))
1974 {
1975 int ch_height = FRAME_SMALLEST_FONT_HEIGHT (f);
1976 int window_pixel_height = window_box_height (w) + abs (w->vscroll);
1977 return (((window_pixel_height + ch_height - 1)
1978 / ch_height)
1979 /* One partially visible line at the top and
1980 bottom of the window. */
1981 + 2
1982 /* 2 for top and mode line. */
1983 + 2);
1984 }
1985 #endif /* HAVE_WINDOW_SYSTEM */
1986
1987 return XINT (w->height);
1988 }
1989
1990
1991 /* Return the required width of glyph matrices for window W. */
1992
1993 int
1994 required_matrix_width (w)
1995 struct window *w;
1996 {
1997 #ifdef HAVE_WINDOW_SYSTEM
1998 struct frame *f = XFRAME (w->frame);
1999 if (FRAME_WINDOW_P (f))
2000 {
2001 int ch_width = FRAME_SMALLEST_CHAR_WIDTH (f);
2002 int window_pixel_width = XFLOATINT (w->width) * CANON_X_UNIT (f);
2003
2004 /* Compute number of glyphs needed in a glyph row. */
2005 return (((window_pixel_width + ch_width - 1)
2006 / ch_width)
2007 /* 2 partially visible columns in the text area. */
2008 + 2
2009 /* One partially visible column at the right
2010 edge of each marginal area. */
2011 + 1 + 1);
2012 }
2013 #endif /* HAVE_WINDOW_SYSTEM */
2014
2015 return XINT (w->width);
2016 }
2017
2018
2019 /* Allocate window matrices for window-based redisplay. W is the
2020 window whose matrices must be allocated/reallocated. CH_DIM is the
2021 size of the smallest character that could potentially be used on W. */
2022
2023 static void
2024 allocate_matrices_for_window_redisplay (w)
2025 struct window *w;
2026 {
2027 while (w)
2028 {
2029 if (!NILP (w->vchild))
2030 allocate_matrices_for_window_redisplay (XWINDOW (w->vchild));
2031 else if (!NILP (w->hchild))
2032 allocate_matrices_for_window_redisplay (XWINDOW (w->hchild));
2033 else
2034 {
2035 /* W is a leaf window. */
2036 struct dim dim;
2037
2038 /* If matrices are not yet allocated, allocate them now. */
2039 if (w->desired_matrix == NULL)
2040 {
2041 w->desired_matrix = new_glyph_matrix (NULL);
2042 w->current_matrix = new_glyph_matrix (NULL);
2043 }
2044
2045 dim.width = required_matrix_width (w);
2046 dim.height = required_matrix_height (w);
2047 adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
2048 adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
2049 }
2050
2051 w = NILP (w->next) ? NULL : XWINDOW (w->next);
2052 }
2053 }
2054
2055
2056 /* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
2057 do it for all frames; otherwise do it just for the given frame.
2058 This function must be called when a new frame is created, its size
2059 changes, or its window configuration changes. */
2060
2061 void
2062 adjust_glyphs (f)
2063 struct frame *f;
2064 {
2065 /* Block input so that expose events and other events that access
2066 glyph matrices are not processed while we are changing them. */
2067 BLOCK_INPUT;
2068
2069 if (f)
2070 adjust_frame_glyphs (f);
2071 else
2072 {
2073 Lisp_Object tail, lisp_frame;
2074
2075 FOR_EACH_FRAME (tail, lisp_frame)
2076 adjust_frame_glyphs (XFRAME (lisp_frame));
2077 }
2078
2079 UNBLOCK_INPUT;
2080 }
2081
2082
2083 /* Adjust frame glyphs when Emacs is initialized.
2084
2085 To be called from init_display.
2086
2087 We need a glyph matrix because redraw will happen soon.
2088 Unfortunately, window sizes on selected_frame are not yet set to
2089 meaningful values. I believe we can assume that there are only two
2090 windows on the frame---the mini-buffer and the root window. Frame
2091 height and width seem to be correct so far. So, set the sizes of
2092 windows to estimated values. */
2093
2094 static void
2095 adjust_frame_glyphs_initially ()
2096 {
2097 struct frame *sf = SELECTED_FRAME ();
2098 struct window *root = XWINDOW (sf->root_window);
2099 struct window *mini = XWINDOW (root->next);
2100 int frame_height = FRAME_HEIGHT (sf);
2101 int frame_width = FRAME_WIDTH (sf);
2102 int top_margin = FRAME_TOP_MARGIN (sf);
2103
2104 /* Do it for the root window. */
2105 XSETFASTINT (root->top, top_margin);
2106 XSETFASTINT (root->width, frame_width);
2107 set_window_height (sf->root_window, frame_height - 1 - top_margin, 0);
2108
2109 /* Do it for the mini-buffer window. */
2110 XSETFASTINT (mini->top, frame_height - 1);
2111 XSETFASTINT (mini->width, frame_width);
2112 set_window_height (root->next, 1, 0);
2113
2114 adjust_frame_glyphs (sf);
2115 glyphs_initialized_initially_p = 1;
2116 }
2117
2118
2119 /* Allocate/reallocate glyph matrices of a single frame F. */
2120
2121 static void
2122 adjust_frame_glyphs (f)
2123 struct frame *f;
2124 {
2125 if (FRAME_WINDOW_P (f))
2126 adjust_frame_glyphs_for_window_redisplay (f);
2127 else
2128 adjust_frame_glyphs_for_frame_redisplay (f);
2129
2130 /* Don't forget the message buffer and the buffer for
2131 decode_mode_spec. */
2132 adjust_frame_message_buffer (f);
2133 adjust_decode_mode_spec_buffer (f);
2134
2135 f->glyphs_initialized_p = 1;
2136 }
2137
2138
2139 /* In the window tree with root W, build current matrices of leaf
2140 windows from the frame's current matrix. */
2141
2142 static void
2143 fake_current_matrices (window)
2144 Lisp_Object window;
2145 {
2146 struct window *w;
2147
2148 for (; !NILP (window); window = w->next)
2149 {
2150 w = XWINDOW (window);
2151
2152 if (!NILP (w->hchild))
2153 fake_current_matrices (w->hchild);
2154 else if (!NILP (w->vchild))
2155 fake_current_matrices (w->vchild);
2156 else
2157 {
2158 int i;
2159 struct frame *f = XFRAME (w->frame);
2160 struct glyph_matrix *m = w->current_matrix;
2161 struct glyph_matrix *fm = f->current_matrix;
2162
2163 xassert (m->matrix_h == XFASTINT (w->height));
2164 xassert (m->matrix_w == XFASTINT (w->width));
2165
2166 for (i = 0; i < m->matrix_h; ++i)
2167 {
2168 struct glyph_row *r = m->rows + i;
2169 struct glyph_row *fr = fm->rows + i + XFASTINT (w->top);
2170
2171 xassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA]
2172 && r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]);
2173
2174 r->enabled_p = fr->enabled_p;
2175 if (r->enabled_p)
2176 {
2177 r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs;
2178 r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs;
2179 r->used[TEXT_AREA] = (m->matrix_w
2180 - r->used[LEFT_MARGIN_AREA]
2181 - r->used[RIGHT_MARGIN_AREA]);
2182 r->mode_line_p = 0;
2183 }
2184 }
2185 }
2186 }
2187 }
2188
2189
2190 /* Save away the contents of frame F's current frame matrix. Value is
2191 a glyph matrix holding the contents of F's current frame matrix. '*/
2192
2193 static struct glyph_matrix *
2194 save_current_matrix (f)
2195 struct frame *f;
2196 {
2197 int i;
2198 struct glyph_matrix *saved;
2199
2200 saved = (struct glyph_matrix *) xmalloc (sizeof *saved);
2201 bzero (saved, sizeof *saved);
2202 saved->nrows = f->current_matrix->nrows;
2203 saved->rows = (struct glyph_row *) xmalloc (saved->nrows
2204 * sizeof *saved->rows);
2205 bzero (saved->rows, saved->nrows * sizeof *saved->rows);
2206
2207 for (i = 0; i < saved->nrows; ++i)
2208 {
2209 struct glyph_row *from = f->current_matrix->rows + i;
2210 struct glyph_row *to = saved->rows + i;
2211 size_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2212 to->glyphs[TEXT_AREA] = (struct glyph *) xmalloc (nbytes);
2213 bcopy (from->glyphs[TEXT_AREA], to->glyphs[TEXT_AREA], nbytes);
2214 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2215 }
2216
2217 return saved;
2218 }
2219
2220
2221 /* Restore the contents of frame F's current frame matrix from SAVED,
2222 and free memory associated with SAVED. */
2223
2224 static void
2225 restore_current_matrix (f, saved)
2226 struct frame *f;
2227 struct glyph_matrix *saved;
2228 {
2229 int i;
2230
2231 for (i = 0; i < saved->nrows; ++i)
2232 {
2233 struct glyph_row *from = saved->rows + i;
2234 struct glyph_row *to = f->current_matrix->rows + i;
2235 size_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2236 bcopy (from->glyphs[TEXT_AREA], to->glyphs[TEXT_AREA], nbytes);
2237 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2238 xfree (from->glyphs[TEXT_AREA]);
2239 }
2240
2241 xfree (saved->rows);
2242 xfree (saved);
2243 }
2244
2245
2246
2247 /* Allocate/reallocate glyph matrices of a single frame F for
2248 frame-based redisplay. */
2249
2250 static void
2251 adjust_frame_glyphs_for_frame_redisplay (f)
2252 struct frame *f;
2253 {
2254 struct dim ch_dim;
2255 struct dim matrix_dim;
2256 int pool_changed_p;
2257 int window_change_flags;
2258 int top_window_y;
2259
2260 if (!FRAME_LIVE_P (f))
2261 return;
2262
2263 /* Determine the smallest character in any font for F. On
2264 console windows, all characters have dimension (1, 1). */
2265 ch_dim.width = ch_dim.height = 1;
2266
2267 top_window_y = FRAME_TOP_MARGIN (f);
2268
2269 /* Allocate glyph pool structures if not already done. */
2270 if (f->desired_pool == NULL)
2271 {
2272 f->desired_pool = new_glyph_pool ();
2273 f->current_pool = new_glyph_pool ();
2274 }
2275
2276 /* Allocate frames matrix structures if needed. */
2277 if (f->desired_matrix == NULL)
2278 {
2279 f->desired_matrix = new_glyph_matrix (f->desired_pool);
2280 f->current_matrix = new_glyph_matrix (f->current_pool);
2281 }
2282
2283 /* Compute window glyph matrices. (This takes the mini-buffer
2284 window into account). The result is the size of the frame glyph
2285 matrix needed. The variable window_change_flags is set to a bit
2286 mask indicating whether new matrices will be allocated or
2287 existing matrices change their size or location within the frame
2288 matrix. */
2289 window_change_flags = 0;
2290 matrix_dim
2291 = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2292 0, top_window_y,
2293 1,
2294 &window_change_flags);
2295
2296 /* Add in menu bar lines, if any. */
2297 matrix_dim.height += top_window_y;
2298
2299 /* Enlarge pools as necessary. */
2300 pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
2301 realloc_glyph_pool (f->current_pool, matrix_dim);
2302
2303 /* Set up glyph pointers within window matrices. Do this only if
2304 absolutely necessary since it requires a frame redraw. */
2305 if (pool_changed_p || window_change_flags)
2306 {
2307 /* Do it for window matrices. */
2308 allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2309 0, top_window_y, 0,
2310 &window_change_flags);
2311
2312 /* Size of frame matrices must equal size of frame. Note
2313 that we are called for X frames with window widths NOT equal
2314 to the frame width (from CHANGE_FRAME_SIZE_1). */
2315 xassert (matrix_dim.width == FRAME_WIDTH (f)
2316 && matrix_dim.height == FRAME_HEIGHT (f));
2317
2318 /* Pointers to glyph memory in glyph rows are exchanged during
2319 the update phase of redisplay, which means in general that a
2320 frame's current matrix consists of pointers into both the
2321 desired and current glyph pool of the frame. Adjusting a
2322 matrix sets the frame matrix up so that pointers are all into
2323 the same pool. If we want to preserve glyph contents of the
2324 current matrix over a call to adjust_glyph_matrix, we must
2325 make a copy of the current glyphs, and restore the current
2326 matrix' contents from that copy. */
2327 if (display_completed
2328 && !FRAME_GARBAGED_P (f)
2329 && matrix_dim.width == f->current_matrix->matrix_w
2330 && matrix_dim.height == f->current_matrix->matrix_h)
2331 {
2332 struct glyph_matrix *copy = save_current_matrix (f);
2333 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2334 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2335 restore_current_matrix (f, copy);
2336 fake_current_matrices (FRAME_ROOT_WINDOW (f));
2337 }
2338 else
2339 {
2340 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2341 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2342 SET_FRAME_GARBAGED (f);
2343 }
2344 }
2345 }
2346
2347
2348 /* Allocate/reallocate glyph matrices of a single frame F for
2349 window-based redisplay. */
2350
2351 static void
2352 adjust_frame_glyphs_for_window_redisplay (f)
2353 struct frame *f;
2354 {
2355 struct dim ch_dim;
2356 struct window *w;
2357
2358 xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
2359
2360 /* Get minimum sizes. */
2361 #ifdef HAVE_WINDOW_SYSTEM
2362 ch_dim.width = FRAME_SMALLEST_CHAR_WIDTH (f);
2363 ch_dim.height = FRAME_SMALLEST_FONT_HEIGHT (f);
2364 #else
2365 ch_dim.width = ch_dim.height = 1;
2366 #endif
2367
2368 /* Allocate/reallocate window matrices. */
2369 allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)));
2370
2371 /* Allocate/ reallocate matrices of the dummy window used to display
2372 the menu bar under X when no X toolkit support is available. */
2373 #ifndef USE_X_TOOLKIT
2374 {
2375 /* Allocate a dummy window if not already done. */
2376 if (NILP (f->menu_bar_window))
2377 {
2378 f->menu_bar_window = make_window ();
2379 w = XWINDOW (f->menu_bar_window);
2380 XSETFRAME (w->frame, f);
2381 w->pseudo_window_p = 1;
2382 }
2383 else
2384 w = XWINDOW (f->menu_bar_window);
2385
2386 /* Set window dimensions to frame dimensions and allocate or
2387 adjust glyph matrices of W. */
2388 XSETFASTINT (w->top, 0);
2389 XSETFASTINT (w->left, 0);
2390 XSETFASTINT (w->height, FRAME_MENU_BAR_LINES (f));
2391 XSETFASTINT (w->width, FRAME_WINDOW_WIDTH (f));
2392 allocate_matrices_for_window_redisplay (w);
2393 }
2394 #endif /* not USE_X_TOOLKIT */
2395
2396 /* Allocate/ reallocate matrices of the tool bar window. If we
2397 don't have a tool bar window yet, make one. */
2398 if (NILP (f->tool_bar_window))
2399 {
2400 f->tool_bar_window = make_window ();
2401 w = XWINDOW (f->tool_bar_window);
2402 XSETFRAME (w->frame, f);
2403 w->pseudo_window_p = 1;
2404 }
2405 else
2406 w = XWINDOW (f->tool_bar_window);
2407
2408 XSETFASTINT (w->top, FRAME_MENU_BAR_LINES (f));
2409 XSETFASTINT (w->left, 0);
2410 XSETFASTINT (w->height, FRAME_TOOL_BAR_LINES (f));
2411 XSETFASTINT (w->width, FRAME_WINDOW_WIDTH (f));
2412 allocate_matrices_for_window_redisplay (w);
2413 }
2414
2415
2416 /* Adjust/ allocate message buffer of frame F.
2417
2418 Note that the message buffer is never freed. Since I could not
2419 find a free in 19.34, I assume that freeing it would be
2420 problematic in some way and don't do it either.
2421
2422 (Implementation note: It should be checked if we can free it
2423 eventually without causing trouble). */
2424
2425 static void
2426 adjust_frame_message_buffer (f)
2427 struct frame *f;
2428 {
2429 int size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
2430
2431 if (FRAME_MESSAGE_BUF (f))
2432 {
2433 char *buffer = FRAME_MESSAGE_BUF (f);
2434 char *new_buffer = (char *) xrealloc (buffer, size);
2435 FRAME_MESSAGE_BUF (f) = new_buffer;
2436 }
2437 else
2438 FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
2439 }
2440
2441
2442 /* Re-allocate buffer for decode_mode_spec on frame F. */
2443
2444 static void
2445 adjust_decode_mode_spec_buffer (f)
2446 struct frame *f;
2447 {
2448 f->decode_mode_spec_buffer
2449 = (char *) xrealloc (f->decode_mode_spec_buffer,
2450 FRAME_MESSAGE_BUF_SIZE (f) + 1);
2451 }
2452
2453
2454 \f
2455 /**********************************************************************
2456 Freeing Glyph Matrices
2457 **********************************************************************/
2458
2459 /* Free glyph memory for a frame F. F may be null. This function can
2460 be called for the same frame more than once. The root window of
2461 F may be nil when this function is called. This is the case when
2462 the function is called when F is destroyed. */
2463
2464 void
2465 free_glyphs (f)
2466 struct frame *f;
2467 {
2468 if (f && f->glyphs_initialized_p)
2469 {
2470 /* Block interrupt input so that we don't get surprised by an X
2471 event while we're in an inconsistent state. */
2472 BLOCK_INPUT;
2473 f->glyphs_initialized_p = 0;
2474
2475 /* Release window sub-matrices. */
2476 if (!NILP (f->root_window))
2477 free_window_matrices (XWINDOW (f->root_window));
2478
2479 /* Free the dummy window for menu bars without X toolkit and its
2480 glyph matrices. */
2481 if (!NILP (f->menu_bar_window))
2482 {
2483 struct window *w = XWINDOW (f->menu_bar_window);
2484 free_glyph_matrix (w->desired_matrix);
2485 free_glyph_matrix (w->current_matrix);
2486 w->desired_matrix = w->current_matrix = NULL;
2487 f->menu_bar_window = Qnil;
2488 }
2489
2490 /* Free the tool bar window and its glyph matrices. */
2491 if (!NILP (f->tool_bar_window))
2492 {
2493 struct window *w = XWINDOW (f->tool_bar_window);
2494 free_glyph_matrix (w->desired_matrix);
2495 free_glyph_matrix (w->current_matrix);
2496 w->desired_matrix = w->current_matrix = NULL;
2497 f->tool_bar_window = Qnil;
2498 }
2499
2500 /* Release frame glyph matrices. Reset fields to zero in
2501 case we are called a second time. */
2502 if (f->desired_matrix)
2503 {
2504 free_glyph_matrix (f->desired_matrix);
2505 free_glyph_matrix (f->current_matrix);
2506 f->desired_matrix = f->current_matrix = NULL;
2507 }
2508
2509 /* Release glyph pools. */
2510 if (f->desired_pool)
2511 {
2512 free_glyph_pool (f->desired_pool);
2513 free_glyph_pool (f->current_pool);
2514 f->desired_pool = f->current_pool = NULL;
2515 }
2516
2517 UNBLOCK_INPUT;
2518 }
2519 }
2520
2521
2522 /* Free glyph sub-matrices in the window tree rooted at W. This
2523 function may be called with a null pointer, and it may be called on
2524 the same tree more than once. */
2525
2526 void
2527 free_window_matrices (w)
2528 struct window *w;
2529 {
2530 while (w)
2531 {
2532 if (!NILP (w->hchild))
2533 free_window_matrices (XWINDOW (w->hchild));
2534 else if (!NILP (w->vchild))
2535 free_window_matrices (XWINDOW (w->vchild));
2536 else
2537 {
2538 /* This is a leaf window. Free its memory and reset fields
2539 to zero in case this function is called a second time for
2540 W. */
2541 free_glyph_matrix (w->current_matrix);
2542 free_glyph_matrix (w->desired_matrix);
2543 w->current_matrix = w->desired_matrix = NULL;
2544 }
2545
2546 /* Next window on same level. */
2547 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2548 }
2549 }
2550
2551
2552 /* Check glyph memory leaks. This function is called from
2553 shut_down_emacs. Note that frames are not destroyed when Emacs
2554 exits. We therefore free all glyph memory for all active frames
2555 explicitly and check that nothing is left allocated. */
2556
2557 void
2558 check_glyph_memory ()
2559 {
2560 Lisp_Object tail, frame;
2561
2562 /* Free glyph memory for all frames. */
2563 FOR_EACH_FRAME (tail, frame)
2564 free_glyphs (XFRAME (frame));
2565
2566 /* Check that nothing is left allocated. */
2567 if (glyph_matrix_count)
2568 abort ();
2569 if (glyph_pool_count)
2570 abort ();
2571 }
2572
2573
2574 \f
2575 /**********************************************************************
2576 Building a Frame Matrix
2577 **********************************************************************/
2578
2579 /* Most of the redisplay code works on glyph matrices attached to
2580 windows. This is a good solution most of the time, but it is not
2581 suitable for terminal code. Terminal output functions cannot rely
2582 on being able to set an arbitrary terminal window. Instead they
2583 must be provided with a view of the whole frame, i.e. the whole
2584 screen. We build such a view by constructing a frame matrix from
2585 window matrices in this section.
2586
2587 Windows that must be updated have their must_be_update_p flag set.
2588 For all such windows, their desired matrix is made part of the
2589 desired frame matrix. For other windows, their current matrix is
2590 made part of the desired frame matrix.
2591
2592 +-----------------+----------------+
2593 | desired | desired |
2594 | | |
2595 +-----------------+----------------+
2596 | current |
2597 | |
2598 +----------------------------------+
2599
2600 Desired window matrices can be made part of the frame matrix in a
2601 cheap way: We exploit the fact that the desired frame matrix and
2602 desired window matrices share their glyph memory. This is not
2603 possible for current window matrices. Their glyphs are copied to
2604 the desired frame matrix. The latter is equivalent to
2605 preserve_other_columns in the old redisplay.
2606
2607 Used glyphs counters for frame matrix rows are the result of adding
2608 up glyph lengths of the window matrices. A line in the frame
2609 matrix is enabled, if a corresponding line in a window matrix is
2610 enabled.
2611
2612 After building the desired frame matrix, it will be passed to
2613 terminal code, which will manipulate both the desired and current
2614 frame matrix. Changes applied to the frame's current matrix have
2615 to be visible in current window matrices afterwards, of course.
2616
2617 This problem is solved like this:
2618
2619 1. Window and frame matrices share glyphs. Window matrices are
2620 constructed in a way that their glyph contents ARE the glyph
2621 contents needed in a frame matrix. Thus, any modification of
2622 glyphs done in terminal code will be reflected in window matrices
2623 automatically.
2624
2625 2. Exchanges of rows in a frame matrix done by terminal code are
2626 intercepted by hook functions so that corresponding row operations
2627 on window matrices can be performed. This is necessary because we
2628 use pointers to glyphs in glyph row structures. To satisfy the
2629 assumption of point 1 above that glyphs are updated implicitly in
2630 window matrices when they are manipulated via the frame matrix,
2631 window and frame matrix must of course agree where to find the
2632 glyphs for their rows. Possible manipulations that must be
2633 mirrored are assignments of rows of the desired frame matrix to the
2634 current frame matrix and scrolling the current frame matrix. */
2635
2636 /* Build frame F's desired matrix from window matrices. Only windows
2637 which have the flag must_be_updated_p set have to be updated. Menu
2638 bar lines of a frame are not covered by window matrices, so make
2639 sure not to touch them in this function. */
2640
2641 static void
2642 build_frame_matrix (f)
2643 struct frame *f;
2644 {
2645 int i;
2646
2647 /* F must have a frame matrix when this function is called. */
2648 xassert (!FRAME_WINDOW_P (f));
2649
2650 /* Clear all rows in the frame matrix covered by window matrices.
2651 Menu bar lines are not covered by windows. */
2652 for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
2653 clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
2654
2655 /* Build the matrix by walking the window tree. */
2656 build_frame_matrix_from_window_tree (f->desired_matrix,
2657 XWINDOW (FRAME_ROOT_WINDOW (f)));
2658 }
2659
2660
2661 /* Walk a window tree, building a frame matrix MATRIX from window
2662 matrices. W is the root of a window tree. */
2663
2664 static void
2665 build_frame_matrix_from_window_tree (matrix, w)
2666 struct glyph_matrix *matrix;
2667 struct window *w;
2668 {
2669 while (w)
2670 {
2671 if (!NILP (w->hchild))
2672 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
2673 else if (!NILP (w->vchild))
2674 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
2675 else
2676 build_frame_matrix_from_leaf_window (matrix, w);
2677
2678 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2679 }
2680 }
2681
2682
2683 /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
2684 desired frame matrix built. W is a leaf window whose desired or
2685 current matrix is to be added to FRAME_MATRIX. W's flag
2686 must_be_updated_p determines which matrix it contributes to
2687 FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
2688 is added to FRAME_MATRIX, otherwise W's current matrix is added.
2689 Adding a desired matrix means setting up used counters and such in
2690 frame rows, while adding a current window matrix to FRAME_MATRIX
2691 means copying glyphs. The latter case corresponds to
2692 preserve_other_columns in the old redisplay. */
2693
2694 static void
2695 build_frame_matrix_from_leaf_window (frame_matrix, w)
2696 struct glyph_matrix *frame_matrix;
2697 struct window *w;
2698 {
2699 struct glyph_matrix *window_matrix;
2700 int window_y, frame_y;
2701 /* If non-zero, a glyph to insert at the right border of W. */
2702 GLYPH right_border_glyph = 0;
2703
2704 /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
2705 if (w->must_be_updated_p)
2706 {
2707 window_matrix = w->desired_matrix;
2708
2709 /* Decide whether we want to add a vertical border glyph. */
2710 if (!WINDOW_RIGHTMOST_P (w))
2711 {
2712 struct Lisp_Char_Table *dp = window_display_table (w);
2713 right_border_glyph = (dp && INTEGERP (DISP_BORDER_GLYPH (dp))
2714 ? XINT (DISP_BORDER_GLYPH (dp))
2715 : '|');
2716 }
2717 }
2718 else
2719 window_matrix = w->current_matrix;
2720
2721 /* For all rows in the window matrix and corresponding rows in the
2722 frame matrix. */
2723 window_y = 0;
2724 frame_y = window_matrix->matrix_y;
2725 while (window_y < window_matrix->nrows)
2726 {
2727 struct glyph_row *frame_row = frame_matrix->rows + frame_y;
2728 struct glyph_row *window_row = window_matrix->rows + window_y;
2729 int current_row_p = window_matrix == w->current_matrix;
2730
2731 /* Fill up the frame row with spaces up to the left margin of the
2732 window row. */
2733 fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
2734
2735 /* Fill up areas in the window matrix row with spaces. */
2736 fill_up_glyph_row_with_spaces (window_row);
2737
2738 /* If only part of W's desired matrix has been built, and
2739 window_row wasn't displayed, use the corresponding current
2740 row instead. */
2741 if (window_matrix == w->desired_matrix
2742 && !window_row->enabled_p)
2743 {
2744 window_row = w->current_matrix->rows + window_y;
2745 current_row_p = 1;
2746 }
2747
2748 if (current_row_p)
2749 {
2750 /* Copy window row to frame row. */
2751 bcopy (window_row->glyphs[0],
2752 frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
2753 window_matrix->matrix_w * sizeof (struct glyph));
2754 }
2755 else
2756 {
2757 xassert (window_row->enabled_p);
2758
2759 /* Only when a desired row has been displayed, we want
2760 the corresponding frame row to be updated. */
2761 frame_row->enabled_p = 1;
2762
2763 /* Maybe insert a vertical border between horizontally adjacent
2764 windows. */
2765 if (right_border_glyph)
2766 {
2767 struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
2768 SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
2769 }
2770
2771 /* Window row window_y must be a slice of frame row
2772 frame_y. */
2773 xassert (glyph_row_slice_p (window_row, frame_row));
2774
2775 /* If rows are in sync, we don't have to copy glyphs because
2776 frame and window share glyphs. */
2777
2778 #if GLYPH_DEBUG
2779 strcpy (w->current_matrix->method, w->desired_matrix->method);
2780 add_window_display_history (w, w->current_matrix->method, 0);
2781 #endif
2782 }
2783
2784 /* Set number of used glyphs in the frame matrix. Since we fill
2785 up with spaces, and visit leaf windows from left to right it
2786 can be done simply. */
2787 frame_row->used[TEXT_AREA]
2788 = window_matrix->matrix_x + window_matrix->matrix_w;
2789
2790 /* Next row. */
2791 ++window_y;
2792 ++frame_y;
2793 }
2794 }
2795
2796
2797 /* Add spaces to a glyph row ROW in a window matrix.
2798
2799 Each row has the form:
2800
2801 +---------+-----------------------------+------------+
2802 | left | text | right |
2803 +---------+-----------------------------+------------+
2804
2805 Left and right marginal areas are optional. This function adds
2806 spaces to areas so that there are no empty holes between areas.
2807 In other words: If the right area is not empty, the text area
2808 is filled up with spaces up to the right area. If the text area
2809 is not empty, the left area is filled up.
2810
2811 To be called for frame-based redisplay, only. */
2812
2813 static void
2814 fill_up_glyph_row_with_spaces (row)
2815 struct glyph_row *row;
2816 {
2817 fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
2818 fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
2819 fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
2820 }
2821
2822
2823 /* Fill area AREA of glyph row ROW with spaces. To be called for
2824 frame-based redisplay only. */
2825
2826 static void
2827 fill_up_glyph_row_area_with_spaces (row, area)
2828 struct glyph_row *row;
2829 int area;
2830 {
2831 if (row->glyphs[area] < row->glyphs[area + 1])
2832 {
2833 struct glyph *end = row->glyphs[area + 1];
2834 struct glyph *text = row->glyphs[area] + row->used[area];
2835
2836 while (text < end)
2837 *text++ = space_glyph;
2838 row->used[area] = text - row->glyphs[area];
2839 }
2840 }
2841
2842
2843 /* Add spaces to the end of ROW in a frame matrix until index UPTO is
2844 reached. In frame matrices only one area, TEXT_AREA, is used. */
2845
2846 static void
2847 fill_up_frame_row_with_spaces (row, upto)
2848 struct glyph_row *row;
2849 int upto;
2850 {
2851 int i = row->used[TEXT_AREA];
2852 struct glyph *glyph = row->glyphs[TEXT_AREA];
2853
2854 while (i < upto)
2855 glyph[i++] = space_glyph;
2856
2857 row->used[TEXT_AREA] = i;
2858 }
2859
2860
2861 \f
2862 /**********************************************************************
2863 Mirroring operations on frame matrices in window matrices
2864 **********************************************************************/
2865
2866 /* Set frame being updated via frame-based redisplay to F. This
2867 function must be called before updates to make explicit that we are
2868 working on frame matrices or not. */
2869
2870 static INLINE void
2871 set_frame_matrix_frame (f)
2872 struct frame *f;
2873 {
2874 frame_matrix_frame = f;
2875 }
2876
2877
2878 /* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
2879 DESIRED_MATRIX is the desired matrix corresponding to
2880 CURRENT_MATRIX. The update is done by exchanging glyph pointers
2881 between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
2882 frame_matrix_frame is non-null, this indicates that the exchange is
2883 done in frame matrices, and that we have to perform analogous
2884 operations in window matrices of frame_matrix_frame. */
2885
2886 static INLINE void
2887 make_current (desired_matrix, current_matrix, row)
2888 struct glyph_matrix *desired_matrix, *current_matrix;
2889 int row;
2890 {
2891 struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
2892 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
2893 int mouse_face_p = current_row->mouse_face_p;
2894
2895 /* Do current_row = desired_row. This exchanges glyph pointers
2896 between both rows, and does a structure assignment otherwise. */
2897 assign_row (current_row, desired_row);
2898
2899 /* Enable current_row to mark it as valid. */
2900 current_row->enabled_p = 1;
2901 current_row->mouse_face_p = mouse_face_p;
2902
2903 /* If we are called on frame matrices, perform analogous operations
2904 for window matrices. */
2905 if (frame_matrix_frame)
2906 mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
2907 }
2908
2909
2910 /* W is the root of a window tree. FRAME_ROW is the index of a row in
2911 W's frame which has been made current (by swapping pointers between
2912 current and desired matrix). Perform analogous operations in the
2913 matrices of leaf windows in the window tree rooted at W. */
2914
2915 static void
2916 mirror_make_current (w, frame_row)
2917 struct window *w;
2918 int frame_row;
2919 {
2920 while (w)
2921 {
2922 if (!NILP (w->hchild))
2923 mirror_make_current (XWINDOW (w->hchild), frame_row);
2924 else if (!NILP (w->vchild))
2925 mirror_make_current (XWINDOW (w->vchild), frame_row);
2926 else
2927 {
2928 /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
2929 here because the checks performed in debug mode there
2930 will not allow the conversion. */
2931 int row = frame_row - w->desired_matrix->matrix_y;
2932
2933 /* If FRAME_ROW is within W, assign the desired row to the
2934 current row (exchanging glyph pointers). */
2935 if (row >= 0 && row < w->desired_matrix->matrix_h)
2936 {
2937 struct glyph_row *current_row
2938 = MATRIX_ROW (w->current_matrix, row);
2939 struct glyph_row *desired_row
2940 = MATRIX_ROW (w->desired_matrix, row);
2941
2942 if (desired_row->enabled_p)
2943 assign_row (current_row, desired_row);
2944 else
2945 swap_glyph_pointers (desired_row, current_row);
2946 current_row->enabled_p = 1;
2947 }
2948 }
2949
2950 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2951 }
2952 }
2953
2954
2955 /* Perform row dance after scrolling. We are working on the range of
2956 lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
2957 including) in MATRIX. COPY_FROM is a vector containing, for each
2958 row I in the range 0 <= I < NLINES, the index of the original line
2959 to move to I. This index is relative to the row range, i.e. 0 <=
2960 index < NLINES. RETAINED_P is a vector containing zero for each
2961 row 0 <= I < NLINES which is empty.
2962
2963 This function is called from do_scrolling and do_direct_scrolling. */
2964
2965 void
2966 mirrored_line_dance (matrix, unchanged_at_top, nlines, copy_from,
2967 retained_p)
2968 struct glyph_matrix *matrix;
2969 int unchanged_at_top, nlines;
2970 int *copy_from;
2971 char *retained_p;
2972 {
2973 /* A copy of original rows. */
2974 struct glyph_row *old_rows;
2975
2976 /* Rows to assign to. */
2977 struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
2978
2979 int i;
2980
2981 /* Make a copy of the original rows. */
2982 old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
2983 bcopy (new_rows, old_rows, nlines * sizeof *old_rows);
2984
2985 /* Assign new rows, maybe clear lines. */
2986 for (i = 0; i < nlines; ++i)
2987 {
2988 int enabled_before_p = new_rows[i].enabled_p;
2989
2990 xassert (i + unchanged_at_top < matrix->nrows);
2991 xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
2992 new_rows[i] = old_rows[copy_from[i]];
2993 new_rows[i].enabled_p = enabled_before_p;
2994
2995 /* RETAINED_P is zero for empty lines. */
2996 if (!retained_p[copy_from[i]])
2997 new_rows[i].enabled_p = 0;
2998 }
2999
3000 /* Do the same for window matrices, if MATRIX Is a frame matrix. */
3001 if (frame_matrix_frame)
3002 mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
3003 unchanged_at_top, nlines, copy_from, retained_p);
3004 }
3005
3006
3007 /* Synchronize glyph pointers in the current matrix of window W with
3008 the current frame matrix. W must be full-width, and be on a tty
3009 frame. */
3010
3011 static void
3012 sync_window_with_frame_matrix_rows (w)
3013 struct window *w;
3014 {
3015 struct frame *f = XFRAME (w->frame);
3016 struct glyph_row *window_row, *window_row_end, *frame_row;
3017
3018 /* Preconditions: W must be a leaf window and full-width. Its frame
3019 must have a frame matrix. */
3020 xassert (NILP (w->hchild) && NILP (w->vchild));
3021 xassert (WINDOW_FULL_WIDTH_P (w));
3022 xassert (!FRAME_WINDOW_P (f));
3023
3024 /* If W is a full-width window, glyph pointers in W's current matrix
3025 have, by definition, to be the same as glyph pointers in the
3026 corresponding frame matrix. */
3027 window_row = w->current_matrix->rows;
3028 window_row_end = window_row + w->current_matrix->nrows;
3029 frame_row = f->current_matrix->rows + XFASTINT (w->top);
3030 while (window_row < window_row_end)
3031 {
3032 int area;
3033
3034 for (area = LEFT_MARGIN_AREA; area <= LAST_AREA; ++area)
3035 window_row->glyphs[area] = frame_row->glyphs[area];
3036
3037 ++window_row, ++frame_row;
3038 }
3039 }
3040
3041
3042 /* Return the window in the window tree rooted in W containing frame
3043 row ROW. Value is null if none is found. */
3044
3045 struct window *
3046 frame_row_to_window (w, row)
3047 struct window *w;
3048 int row;
3049 {
3050 struct window *found = NULL;
3051
3052 while (w && !found)
3053 {
3054 if (!NILP (w->hchild))
3055 found = frame_row_to_window (XWINDOW (w->hchild), row);
3056 else if (!NILP (w->vchild))
3057 found = frame_row_to_window (XWINDOW (w->vchild), row);
3058 else if (row >= XFASTINT (w->top)
3059 && row < XFASTINT (w->top) + XFASTINT (w->height))
3060 found = w;
3061
3062 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3063 }
3064
3065 return found;
3066 }
3067
3068
3069 /* Perform a line dance in the window tree rooted at W, after
3070 scrolling a frame matrix in mirrored_line_dance.
3071
3072 We are working on the range of lines UNCHANGED_AT_TOP + 1 to
3073 UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
3074 COPY_FROM is a vector containing, for each row I in the range 0 <=
3075 I < NLINES, the index of the original line to move to I. This
3076 index is relative to the row range, i.e. 0 <= index < NLINES.
3077 RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
3078 which is empty. */
3079
3080 static void
3081 mirror_line_dance (w, unchanged_at_top, nlines, copy_from, retained_p)
3082 struct window *w;
3083 int unchanged_at_top, nlines;
3084 int *copy_from;
3085 char *retained_p;
3086 {
3087 while (w)
3088 {
3089 if (!NILP (w->hchild))
3090 mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
3091 nlines, copy_from, retained_p);
3092 else if (!NILP (w->vchild))
3093 mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
3094 nlines, copy_from, retained_p);
3095 else
3096 {
3097 /* W is a leaf window, and we are working on its current
3098 matrix m. */
3099 struct glyph_matrix *m = w->current_matrix;
3100 int i, sync_p = 0;
3101 struct glyph_row *old_rows;
3102
3103 /* Make a copy of the original rows of matrix m. */
3104 old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
3105 bcopy (m->rows, old_rows, m->nrows * sizeof *old_rows);
3106
3107 for (i = 0; i < nlines; ++i)
3108 {
3109 /* Frame relative line assigned to. */
3110 int frame_to = i + unchanged_at_top;
3111
3112 /* Frame relative line assigned. */
3113 int frame_from = copy_from[i] + unchanged_at_top;
3114
3115 /* Window relative line assigned to. */
3116 int window_to = frame_to - m->matrix_y;
3117
3118 /* Window relative line assigned. */
3119 int window_from = frame_from - m->matrix_y;
3120
3121 /* Is assigned line inside window? */
3122 int from_inside_window_p
3123 = window_from >= 0 && window_from < m->matrix_h;
3124
3125 /* Is assigned to line inside window? */
3126 int to_inside_window_p
3127 = window_to >= 0 && window_to < m->matrix_h;
3128
3129 if (from_inside_window_p && to_inside_window_p)
3130 {
3131 /* Enabled setting before assignment. */
3132 int enabled_before_p;
3133
3134 /* Do the assignment. The enabled_p flag is saved
3135 over the assignment because the old redisplay did
3136 that. */
3137 enabled_before_p = m->rows[window_to].enabled_p;
3138 m->rows[window_to] = old_rows[window_from];
3139 m->rows[window_to].enabled_p = enabled_before_p;
3140
3141 /* If frame line is empty, window line is empty, too. */
3142 if (!retained_p[copy_from[i]])
3143 m->rows[window_to].enabled_p = 0;
3144 }
3145 else if (to_inside_window_p)
3146 {
3147 /* A copy between windows. This is an infrequent
3148 case not worth optimizing. */
3149 struct frame *f = XFRAME (w->frame);
3150 struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f));
3151 struct window *w2;
3152 struct glyph_matrix *m2;
3153 int m2_from;
3154
3155 w2 = frame_row_to_window (root, frame_to);
3156 m2 = w2->current_matrix;
3157 m2_from = frame_from - m2->matrix_y;
3158 copy_row_except_pointers (m->rows + window_to,
3159 m2->rows + m2_from);
3160
3161 /* If frame line is empty, window line is empty, too. */
3162 if (!retained_p[copy_from[i]])
3163 m->rows[window_to].enabled_p = 0;
3164 sync_p = 1;
3165 }
3166 else if (from_inside_window_p)
3167 sync_p = 1;
3168 }
3169
3170 /* If there was a copy between windows, make sure glyph
3171 pointers are in sync with the frame matrix. */
3172 if (sync_p)
3173 sync_window_with_frame_matrix_rows (w);
3174
3175 /* Check that no pointers are lost. */
3176 CHECK_MATRIX (m);
3177 }
3178
3179 /* Next window on same level. */
3180 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3181 }
3182 }
3183
3184
3185 #if GLYPH_DEBUG
3186
3187 /* Check that window and frame matrices agree about their
3188 understanding where glyphs of the rows are to find. For each
3189 window in the window tree rooted at W, check that rows in the
3190 matrices of leaf window agree with their frame matrices about
3191 glyph pointers. */
3192
3193 void
3194 check_window_matrix_pointers (w)
3195 struct window *w;
3196 {
3197 while (w)
3198 {
3199 if (!NILP (w->hchild))
3200 check_window_matrix_pointers (XWINDOW (w->hchild));
3201 else if (!NILP (w->vchild))
3202 check_window_matrix_pointers (XWINDOW (w->vchild));
3203 else
3204 {
3205 struct frame *f = XFRAME (w->frame);
3206 check_matrix_pointers (w->desired_matrix, f->desired_matrix);
3207 check_matrix_pointers (w->current_matrix, f->current_matrix);
3208 }
3209
3210 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3211 }
3212 }
3213
3214
3215 /* Check that window rows are slices of frame rows. WINDOW_MATRIX is
3216 a window and FRAME_MATRIX is the corresponding frame matrix. For
3217 each row in WINDOW_MATRIX check that it's a slice of the
3218 corresponding frame row. If it isn't, abort. */
3219
3220 static void
3221 check_matrix_pointers (window_matrix, frame_matrix)
3222 struct glyph_matrix *window_matrix, *frame_matrix;
3223 {
3224 /* Row number in WINDOW_MATRIX. */
3225 int i = 0;
3226
3227 /* Row number corresponding to I in FRAME_MATRIX. */
3228 int j = window_matrix->matrix_y;
3229
3230 /* For all rows check that the row in the window matrix is a
3231 slice of the row in the frame matrix. If it isn't we didn't
3232 mirror an operation on the frame matrix correctly. */
3233 while (i < window_matrix->nrows)
3234 {
3235 if (!glyph_row_slice_p (window_matrix->rows + i,
3236 frame_matrix->rows + j))
3237 abort ();
3238 ++i, ++j;
3239 }
3240 }
3241
3242 #endif /* GLYPH_DEBUG != 0 */
3243
3244
3245 \f
3246 /**********************************************************************
3247 VPOS and HPOS translations
3248 **********************************************************************/
3249
3250 #if GLYPH_DEBUG
3251
3252 /* Translate vertical position VPOS which is relative to window W to a
3253 vertical position relative to W's frame. */
3254
3255 static int
3256 window_to_frame_vpos (w, vpos)
3257 struct window *w;
3258 int vpos;
3259 {
3260 struct frame *f = XFRAME (w->frame);
3261
3262 xassert (!FRAME_WINDOW_P (f));
3263 xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
3264 vpos += XFASTINT (w->top);
3265 xassert (vpos >= 0 && vpos <= FRAME_HEIGHT (f));
3266 return vpos;
3267 }
3268
3269
3270 /* Translate horizontal position HPOS which is relative to window W to
3271 a vertical position relative to W's frame. */
3272
3273 static int
3274 window_to_frame_hpos (w, hpos)
3275 struct window *w;
3276 int hpos;
3277 {
3278 struct frame *f = XFRAME (w->frame);
3279
3280 xassert (!FRAME_WINDOW_P (f));
3281 hpos += XFASTINT (w->left);
3282 return hpos;
3283 }
3284
3285 #endif /* GLYPH_DEBUG */
3286
3287
3288 \f
3289 /**********************************************************************
3290 Redrawing Frames
3291 **********************************************************************/
3292
3293 DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
3294 doc: /* Clear frame FRAME and output again what is supposed to appear on it. */)
3295 (frame)
3296 Lisp_Object frame;
3297 {
3298 struct frame *f;
3299
3300 CHECK_LIVE_FRAME (frame, 0);
3301 f = XFRAME (frame);
3302
3303 /* Ignore redraw requests, if frame has no glyphs yet.
3304 (Implementation note: It still has to be checked why we are
3305 called so early here). */
3306 if (!glyphs_initialized_initially_p)
3307 return Qnil;
3308
3309 update_begin (f);
3310 if (FRAME_MSDOS_P (f))
3311 set_terminal_modes ();
3312 clear_frame ();
3313 clear_current_matrices (f);
3314 update_end (f);
3315 fflush (stdout);
3316 windows_or_buffers_changed++;
3317 /* Mark all windows as inaccurate, so that every window will have
3318 its redisplay done. */
3319 mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
3320 set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
3321 f->garbaged = 0;
3322 return Qnil;
3323 }
3324
3325
3326 /* Redraw frame F. This is nothing more than a call to the Lisp
3327 function redraw-frame. */
3328
3329 void
3330 redraw_frame (f)
3331 struct frame *f;
3332 {
3333 Lisp_Object frame;
3334 XSETFRAME (frame, f);
3335 Fredraw_frame (frame);
3336 }
3337
3338
3339 DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
3340 doc: /* Clear and redisplay all visible frames. */)
3341 ()
3342 {
3343 Lisp_Object tail, frame;
3344
3345 FOR_EACH_FRAME (tail, frame)
3346 if (FRAME_VISIBLE_P (XFRAME (frame)))
3347 Fredraw_frame (frame);
3348
3349 return Qnil;
3350 }
3351
3352
3353 /* This is used when frame_garbaged is set. Call Fredraw_frame on all
3354 visible frames marked as garbaged. */
3355
3356 void
3357 redraw_garbaged_frames ()
3358 {
3359 Lisp_Object tail, frame;
3360
3361 FOR_EACH_FRAME (tail, frame)
3362 if (FRAME_VISIBLE_P (XFRAME (frame))
3363 && FRAME_GARBAGED_P (XFRAME (frame)))
3364 Fredraw_frame (frame);
3365 }
3366
3367
3368 \f
3369 /***********************************************************************
3370 Direct Operations
3371 ***********************************************************************/
3372
3373 /* Try to update display and current glyph matrix directly.
3374
3375 This function is called after a character G has been inserted into
3376 current_buffer. It tries to update the current glyph matrix and
3377 perform appropriate screen output to reflect the insertion. If it
3378 succeeds, the global flag redisplay_performed_directly_p will be
3379 set to 1, and thereby prevent the more costly general redisplay
3380 from running (see redisplay_internal).
3381
3382 This function is not called for `hairy' character insertions.
3383 In particular, it is not called when after or before change
3384 functions exist, like they are used by font-lock. See keyboard.c
3385 for details where this function is called. */
3386
3387 int
3388 direct_output_for_insert (g)
3389 int g;
3390 {
3391 register struct frame *f = SELECTED_FRAME ();
3392 struct window *w = XWINDOW (selected_window);
3393 struct it it, it2;
3394 struct glyph_row *glyph_row;
3395 struct glyph *glyphs, *glyph, *end;
3396 int n;
3397 /* Non-null means that Redisplay of W is based on window matrices. */
3398 int window_redisplay_p = FRAME_WINDOW_P (f);
3399 /* Non-null means we are in overwrite mode. */
3400 int overwrite_p = !NILP (current_buffer->overwrite_mode);
3401 int added_width;
3402 struct text_pos pos;
3403 int delta, delta_bytes;
3404
3405 /* Not done directly. */
3406 redisplay_performed_directly_p = 0;
3407
3408 /* Quickly give up for some common cases. */
3409 if (cursor_in_echo_area
3410 /* Give up if fonts have changed. */
3411 || fonts_changed_p
3412 /* Give up if face attributes have been changed. */
3413 || face_change_count
3414 /* Give up if cursor position not really known. */
3415 || !display_completed
3416 /* Give up if buffer appears in two places. */
3417 || buffer_shared > 1
3418 /* Give up if currently displaying a message instead of the
3419 minibuffer contents. */
3420 || (EQ (selected_window, minibuf_window)
3421 && EQ (minibuf_window, echo_area_window))
3422 /* Give up for hscrolled mini-buffer because display of the prompt
3423 is handled specially there (see display_line). */
3424 || (MINI_WINDOW_P (w) && XFASTINT (w->hscroll))
3425 /* Give up if overwriting in the middle of a line. */
3426 || (overwrite_p
3427 && PT != ZV
3428 && FETCH_BYTE (PT) != '\n')
3429 /* Give up for tabs and line ends. */
3430 || g == '\t'
3431 || g == '\n'
3432 || g == '\r'
3433 /* Give up if unable to display the cursor in the window. */
3434 || w->cursor.vpos < 0
3435 /* Give up if we are showing a message or just cleared the message
3436 because we might need to resize the echo area window. */
3437 || !NILP (echo_area_buffer[0])
3438 || !NILP (echo_area_buffer[1])
3439 || (glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos),
3440 /* Can't do it in a continued line because continuation
3441 lines would change. */
3442 (glyph_row->continued_p
3443 /* Can't use this method if the line overlaps others or is
3444 overlapped by others because these other lines would
3445 have to be redisplayed. */
3446 || glyph_row->overlapping_p
3447 || glyph_row->overlapped_p))
3448 /* Can't do it for partial width windows on terminal frames
3449 because we can't clear to eol in such a window. */
3450 || (!window_redisplay_p && !WINDOW_FULL_WIDTH_P (w)))
3451 return 0;
3452
3453 /* If we can't insert glyphs, we can use this method only
3454 at the end of a line. */
3455 if (!char_ins_del_ok)
3456 if (PT != ZV && FETCH_BYTE (PT_BYTE) != '\n')
3457 return 0;
3458
3459 /* Set up a display iterator structure for W. Glyphs will be
3460 produced in scratch_glyph_row. Current position is W's cursor
3461 position. */
3462 clear_glyph_row (&scratch_glyph_row);
3463 SET_TEXT_POS (pos, PT, PT_BYTE);
3464 DEC_TEXT_POS (pos, !NILP (current_buffer->enable_multibyte_characters));
3465 init_iterator (&it, w, CHARPOS (pos), BYTEPOS (pos), &scratch_glyph_row,
3466 DEFAULT_FACE_ID);
3467
3468 glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
3469 if (glyph_row->mouse_face_p)
3470 return 0;
3471
3472 /* Give up if highlighting trailing whitespace and we have trailing
3473 whitespace in glyph_row. We would have to remove the trailing
3474 whitespace face in that case. */
3475 if (!NILP (Vshow_trailing_whitespace)
3476 && glyph_row->used[TEXT_AREA])
3477 {
3478 struct glyph *last;
3479
3480 last = glyph_row->glyphs[TEXT_AREA] + glyph_row->used[TEXT_AREA] - 1;
3481 if (last->type == STRETCH_GLYPH
3482 || (last->type == CHAR_GLYPH
3483 && last->u.ch == ' '))
3484 return 0;
3485 }
3486
3487 /* Give up if there are overlay strings at pos. This would fail
3488 if the overlay string has newlines in it. */
3489 if (STRINGP (it.string))
3490 return 0;
3491
3492 it.hpos = w->cursor.hpos;
3493 it.vpos = w->cursor.vpos;
3494 it.current_x = w->cursor.x + it.first_visible_x;
3495 it.current_y = w->cursor.y;
3496 it.end_charpos = PT;
3497 it.stop_charpos = min (PT, it.stop_charpos);
3498 it.stop_charpos = max (IT_CHARPOS (it), it.stop_charpos);
3499
3500 /* More than one display element may be returned for PT - 1 if
3501 (i) it's a control character which is translated into `\003' or
3502 `^C', or (ii) it has a display table entry, or (iii) it's a
3503 combination of both. */
3504 delta = delta_bytes = 0;
3505 while (get_next_display_element (&it))
3506 {
3507 PRODUCE_GLYPHS (&it);
3508
3509 /* Give up if glyph doesn't fit completely on the line. */
3510 if (it.current_x >= it.last_visible_x)
3511 return 0;
3512
3513 /* Give up if new glyph has different ascent or descent than
3514 the original row, or if it is not a character glyph. */
3515 if (glyph_row->ascent != it.ascent
3516 || glyph_row->height != it.ascent + it.descent
3517 || glyph_row->phys_ascent != it.phys_ascent
3518 || glyph_row->phys_height != it.phys_ascent + it.phys_descent
3519 || it.what != IT_CHARACTER)
3520 return 0;
3521
3522 delta += 1;
3523 delta_bytes += it.len;
3524 set_iterator_to_next (&it, 1);
3525 }
3526
3527 /* Give up if we hit the right edge of the window. We would have
3528 to insert truncation or continuation glyphs. */
3529 added_width = it.current_x - (w->cursor.x + it.first_visible_x);
3530 if (glyph_row->pixel_width + added_width >= it.last_visible_x)
3531 return 0;
3532
3533 /* Give up if there is a \t following in the line. */
3534 it2 = it;
3535 it2.end_charpos = ZV;
3536 it2.stop_charpos = min (it2.stop_charpos, ZV);
3537 while (get_next_display_element (&it2)
3538 && !ITERATOR_AT_END_OF_LINE_P (&it2))
3539 {
3540 if (it2.c == '\t')
3541 return 0;
3542 set_iterator_to_next (&it2, 1);
3543 }
3544
3545 /* Number of new glyphs produced. */
3546 n = it.glyph_row->used[TEXT_AREA];
3547
3548 /* Start and end of glyphs in original row. */
3549 glyphs = glyph_row->glyphs[TEXT_AREA] + w->cursor.hpos;
3550 end = glyph_row->glyphs[1 + TEXT_AREA];
3551
3552 /* Make room for new glyphs, then insert them. */
3553 xassert (end - glyphs - n >= 0);
3554 safe_bcopy ((char *) glyphs, (char *) (glyphs + n),
3555 (end - glyphs - n) * sizeof (*end));
3556 bcopy (it.glyph_row->glyphs[TEXT_AREA], glyphs, n * sizeof *glyphs);
3557 glyph_row->used[TEXT_AREA] = min (glyph_row->used[TEXT_AREA] + n,
3558 end - glyph_row->glyphs[TEXT_AREA]);
3559
3560 /* Compute new line width. */
3561 glyph = glyph_row->glyphs[TEXT_AREA];
3562 end = glyph + glyph_row->used[TEXT_AREA];
3563 glyph_row->pixel_width = glyph_row->x;
3564 while (glyph < end)
3565 {
3566 glyph_row->pixel_width += glyph->pixel_width;
3567 ++glyph;
3568 }
3569
3570 /* Increment buffer positions for glyphs following the newly
3571 inserted ones. */
3572 for (glyph = glyphs + n; glyph < end; ++glyph)
3573 if (glyph->charpos > 0 && BUFFERP (glyph->object))
3574 glyph->charpos += delta;
3575
3576 if (MATRIX_ROW_END_CHARPOS (glyph_row) > 0)
3577 {
3578 MATRIX_ROW_END_CHARPOS (glyph_row) += delta;
3579 MATRIX_ROW_END_BYTEPOS (glyph_row) += delta_bytes;
3580 }
3581
3582 /* Adjust positions in lines following the one we are in. */
3583 increment_matrix_positions (w->current_matrix,
3584 w->cursor.vpos + 1,
3585 w->current_matrix->nrows,
3586 delta, delta_bytes);
3587
3588 glyph_row->contains_overlapping_glyphs_p
3589 |= it.glyph_row->contains_overlapping_glyphs_p;
3590
3591 glyph_row->displays_text_p = 1;
3592 w->window_end_vpos = make_number (max (w->cursor.vpos,
3593 XFASTINT (w->window_end_vpos)));
3594
3595 if (!NILP (Vshow_trailing_whitespace))
3596 highlight_trailing_whitespace (it.f, glyph_row);
3597
3598 /* Write glyphs. If at end of row, we can simply call write_glyphs.
3599 In the middle, we have to insert glyphs. Note that this is now
3600 implemented for X frames. The implementation uses updated_window
3601 and updated_row. */
3602 updated_row = glyph_row;
3603 updated_area = TEXT_AREA;
3604 update_begin (f);
3605 if (rif)
3606 {
3607 rif->update_window_begin_hook (w);
3608
3609 if (glyphs == end - n
3610 /* In front of a space added by append_space. */
3611 || (glyphs == end - n - 1
3612 && (end - n)->charpos <= 0))
3613 rif->write_glyphs (glyphs, n);
3614 else
3615 rif->insert_glyphs (glyphs, n);
3616 }
3617 else
3618 {
3619 if (glyphs == end - n)
3620 write_glyphs (glyphs, n);
3621 else
3622 insert_glyphs (glyphs, n);
3623 }
3624
3625 w->cursor.hpos += n;
3626 w->cursor.x = it.current_x - it.first_visible_x;
3627 xassert (w->cursor.hpos >= 0
3628 && w->cursor.hpos < w->desired_matrix->matrix_w);
3629
3630 /* How to set the cursor differs depending on whether we are
3631 using a frame matrix or a window matrix. Note that when
3632 a frame matrix is used, cursor_to expects frame coordinates,
3633 and the X and Y parameters are not used. */
3634 if (window_redisplay_p)
3635 rif->cursor_to (w->cursor.vpos, w->cursor.hpos,
3636 w->cursor.y, w->cursor.x);
3637 else
3638 {
3639 int x, y;
3640 x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
3641 + (INTEGERP (w->left_margin_width)
3642 ? XFASTINT (w->left_margin_width)
3643 : 0));
3644 y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
3645 cursor_to (y, x);
3646 }
3647
3648 if (rif)
3649 rif->update_window_end_hook (w, 1, 0);
3650 update_end (f);
3651 updated_row = NULL;
3652 fflush (stdout);
3653
3654 TRACE ((stderr, "direct output for insert\n"));
3655
3656 UNCHANGED_MODIFIED = MODIFF;
3657 BEG_UNCHANGED = GPT - BEG;
3658 XSETFASTINT (w->last_point, PT);
3659 w->last_cursor = w->cursor;
3660 XSETFASTINT (w->last_modified, MODIFF);
3661 XSETFASTINT (w->last_overlay_modified, OVERLAY_MODIFF);
3662
3663 redisplay_performed_directly_p = 1;
3664 return 1;
3665 }
3666
3667
3668 /* Perform a direct display update for moving PT by N positions
3669 left or right. N < 0 means a movement backwards. This function
3670 is currently only called for N == 1 or N == -1. */
3671
3672 int
3673 direct_output_forward_char (n)
3674 int n;
3675 {
3676 struct frame *f = SELECTED_FRAME ();
3677 struct window *w = XWINDOW (selected_window);
3678 struct glyph_row *row;
3679
3680 /* Give up if point moved out of or into a composition. */
3681 if (check_point_in_composition (current_buffer, XINT (w->last_point),
3682 current_buffer, PT))
3683 return 0;
3684
3685 /* Give up if face attributes have been changed. */
3686 if (face_change_count)
3687 return 0;
3688
3689 /* Give up if current matrix is not up to date or we are
3690 displaying a message. */
3691 if (!display_completed || cursor_in_echo_area)
3692 return 0;
3693
3694 /* Give up if the buffer's direction is reversed. */
3695 if (!NILP (XBUFFER (w->buffer)->direction_reversed))
3696 return 0;
3697
3698 /* Can't use direct output if highlighting a region. */
3699 if (!NILP (Vtransient_mark_mode) && !NILP (current_buffer->mark_active))
3700 return 0;
3701
3702 /* Can't use direct output if highlighting trailing whitespace. */
3703 if (!NILP (Vshow_trailing_whitespace))
3704 return 0;
3705
3706 /* Give up if we are showing a message or just cleared the message
3707 because we might need to resize the echo area window. */
3708 if (!NILP (echo_area_buffer[0]) || !NILP (echo_area_buffer[1]))
3709 return 0;
3710
3711 /* Give up if currently displaying a message instead of the
3712 minibuffer contents. */
3713 if (XWINDOW (minibuf_window) == w
3714 && EQ (minibuf_window, echo_area_window))
3715 return 0;
3716
3717 /* Give up if we don't know where the cursor is. */
3718 if (w->cursor.vpos < 0)
3719 return 0;
3720
3721 row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
3722
3723 /* Give up if PT is outside of the last known cursor row. */
3724 if (PT <= MATRIX_ROW_START_BYTEPOS (row)
3725 || PT >= MATRIX_ROW_END_BYTEPOS (row))
3726 return 0;
3727
3728 set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
3729
3730 w->last_cursor = w->cursor;
3731 XSETFASTINT (w->last_point, PT);
3732
3733 xassert (w->cursor.hpos >= 0
3734 && w->cursor.hpos < w->desired_matrix->matrix_w);
3735
3736 if (FRAME_WINDOW_P (f))
3737 rif->cursor_to (w->cursor.vpos, w->cursor.hpos,
3738 w->cursor.y, w->cursor.x);
3739 else
3740 {
3741 int x, y;
3742 x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
3743 + (INTEGERP (w->left_margin_width)
3744 ? XFASTINT (w->left_margin_width)
3745 : 0));
3746 y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
3747 cursor_to (y, x);
3748 }
3749
3750 fflush (stdout);
3751 redisplay_performed_directly_p = 1;
3752 return 1;
3753 }
3754
3755
3756 \f
3757 /***********************************************************************
3758 Frame Update
3759 ***********************************************************************/
3760
3761 /* Update frame F based on the data in desired matrices.
3762
3763 If FORCE_P is non-zero, don't let redisplay be stopped by detecting
3764 pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
3765 scrolling.
3766
3767 Value is non-zero if redisplay was stopped due to pending input. */
3768
3769 int
3770 update_frame (f, force_p, inhibit_hairy_id_p)
3771 struct frame *f;
3772 int force_p;
3773 int inhibit_hairy_id_p;
3774 {
3775 /* 1 means display has been paused because of pending input. */
3776 int paused_p;
3777 struct window *root_window = XWINDOW (f->root_window);
3778
3779 if (FRAME_WINDOW_P (f))
3780 {
3781 /* We are working on window matrix basis. All windows whose
3782 flag must_be_updated_p is set have to be updated. */
3783
3784 /* Record that we are not working on frame matrices. */
3785 set_frame_matrix_frame (NULL);
3786
3787 /* Update all windows in the window tree of F, maybe stopping
3788 when pending input is detected. */
3789 update_begin (f);
3790
3791 /* Update the menu bar on X frames that don't have toolkit
3792 support. */
3793 if (WINDOWP (f->menu_bar_window))
3794 update_window (XWINDOW (f->menu_bar_window), 1);
3795
3796 /* Update the tool-bar window, if present. */
3797 if (WINDOWP (f->tool_bar_window))
3798 {
3799 Lisp_Object tem;
3800 struct window *w = XWINDOW (f->tool_bar_window);
3801
3802 /* Update tool-bar window. */
3803 if (w->must_be_updated_p)
3804 {
3805 update_window (w, 1);
3806 w->must_be_updated_p = 0;
3807
3808 /* Swap tool-bar strings. We swap because we want to
3809 reuse strings. */
3810 tem = f->current_tool_bar_string;
3811 f->current_tool_bar_string = f->desired_tool_bar_string;
3812 f->desired_tool_bar_string = tem;
3813 }
3814 }
3815
3816
3817 /* Update windows. */
3818 paused_p = update_window_tree (root_window, force_p);
3819 update_end (f);
3820
3821 #if 0 /* This flush is a performance bottleneck under X,
3822 and it doesn't seem to be necessary anyway. */
3823 rif->flush_display (f);
3824 #endif
3825 }
3826 else
3827 {
3828 /* We are working on frame matrix basis. Set the frame on whose
3829 frame matrix we operate. */
3830 set_frame_matrix_frame (f);
3831
3832 /* Build F's desired matrix from window matrices. */
3833 build_frame_matrix (f);
3834
3835 /* Update the display */
3836 update_begin (f);
3837 paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
3838 update_end (f);
3839
3840 if (termscript)
3841 fflush (termscript);
3842 fflush (stdout);
3843
3844 /* Check window matrices for lost pointers. */
3845 #if GLYPH_DEBUG
3846 check_window_matrix_pointers (root_window);
3847 add_frame_display_history (f, paused_p);
3848 #endif
3849 }
3850
3851 /* Reset flags indicating that a window should be updated. */
3852 set_window_update_flags (root_window, 0);
3853
3854 display_completed = !paused_p;
3855 return paused_p;
3856 }
3857
3858
3859 \f
3860 /************************************************************************
3861 Window-based updates
3862 ************************************************************************/
3863
3864 /* Perform updates in window tree rooted at W. FORCE_P non-zero means
3865 don't stop updating when input is pending. */
3866
3867 static int
3868 update_window_tree (w, force_p)
3869 struct window *w;
3870 int force_p;
3871 {
3872 int paused_p = 0;
3873
3874 while (w && !paused_p)
3875 {
3876 if (!NILP (w->hchild))
3877 paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
3878 else if (!NILP (w->vchild))
3879 paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
3880 else if (w->must_be_updated_p)
3881 paused_p |= update_window (w, force_p);
3882
3883 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3884 }
3885
3886 return paused_p;
3887 }
3888
3889
3890 /* Update window W if its flag must_be_updated_p is non-zero. If
3891 FORCE_P is non-zero, don't stop updating if input is pending. */
3892
3893 void
3894 update_single_window (w, force_p)
3895 struct window *w;
3896 int force_p;
3897 {
3898 if (w->must_be_updated_p)
3899 {
3900 struct frame *f = XFRAME (WINDOW_FRAME (w));
3901
3902 /* Record that this is not a frame-based redisplay. */
3903 set_frame_matrix_frame (NULL);
3904
3905 /* Update W. */
3906 update_begin (f);
3907 update_window (w, force_p);
3908 update_end (f);
3909
3910 /* Reset flag in W. */
3911 w->must_be_updated_p = 0;
3912 }
3913 }
3914
3915
3916 /* Redraw lines from the current matrix of window W that are
3917 overlapped by other rows. YB is bottom-most y-position in W. */
3918
3919 static void
3920 redraw_overlapped_rows (w, yb)
3921 struct window *w;
3922 int yb;
3923 {
3924 int i;
3925
3926 /* If rows overlapping others have been changed, the rows being
3927 overlapped have to be redrawn. This won't draw lines that have
3928 already been drawn in update_window_line because overlapped_p in
3929 desired rows is 0, so after row assignment overlapped_p in
3930 current rows is 0. */
3931 for (i = 0; i < w->current_matrix->nrows; ++i)
3932 {
3933 struct glyph_row *row = w->current_matrix->rows + i;
3934
3935 if (!row->enabled_p)
3936 break;
3937 else if (row->mode_line_p)
3938 continue;
3939
3940 if (row->overlapped_p)
3941 {
3942 enum glyph_row_area area;
3943
3944 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3945 {
3946 updated_row = row;
3947 updated_area = area;
3948 rif->cursor_to (i, 0, row->y, area == TEXT_AREA ? row->x : 0);
3949 if (row->used[area])
3950 rif->write_glyphs (row->glyphs[area], row->used[area]);
3951 rif->clear_end_of_line (-1);
3952 }
3953
3954 row->overlapped_p = 0;
3955 }
3956
3957 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3958 break;
3959 }
3960 }
3961
3962
3963 /* Redraw lines from the current matrix of window W that overlap
3964 others. YB is bottom-most y-position in W. */
3965
3966 static void
3967 redraw_overlapping_rows (w, yb)
3968 struct window *w;
3969 int yb;
3970 {
3971 int i, bottom_y;
3972 struct glyph_row *row;
3973
3974 for (i = 0; i < w->current_matrix->nrows; ++i)
3975 {
3976 row = w->current_matrix->rows + i;
3977
3978 if (!row->enabled_p)
3979 break;
3980 else if (row->mode_line_p)
3981 continue;
3982
3983 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3984
3985 if (row->overlapping_p && i > 0 && bottom_y < yb)
3986 {
3987 if (row->used[LEFT_MARGIN_AREA])
3988 rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA);
3989
3990 if (row->used[TEXT_AREA])
3991 rif->fix_overlapping_area (w, row, TEXT_AREA);
3992
3993 if (row->used[RIGHT_MARGIN_AREA])
3994 rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA);
3995
3996 /* Record in neighbor rows that ROW overwrites part of their
3997 display. */
3998 if (row->phys_ascent > row->ascent && i > 0)
3999 MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
4000 if ((row->phys_height - row->phys_ascent
4001 > row->height - row->ascent)
4002 && bottom_y < yb)
4003 MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
4004 }
4005
4006 if (bottom_y >= yb)
4007 break;
4008 }
4009 }
4010
4011
4012 #ifdef GLYPH_DEBUG
4013
4014 /* Check that no row in the current matrix of window W is enabled
4015 which is below what's displayed in the window. */
4016
4017 void
4018 check_current_matrix_flags (w)
4019 struct window *w;
4020 {
4021 int last_seen_p = 0;
4022 int i, yb = window_text_bottom_y (w);
4023
4024 for (i = 0; i < w->current_matrix->nrows - 1; ++i)
4025 {
4026 struct glyph_row *row = MATRIX_ROW (w->current_matrix, i);
4027 if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb)
4028 last_seen_p = 1;
4029 else if (last_seen_p && row->enabled_p)
4030 abort ();
4031 }
4032 }
4033
4034 #endif /* GLYPH_DEBUG */
4035
4036
4037 /* Update display of window W. FORCE_P non-zero means that we should
4038 not stop when detecting pending input. */
4039
4040 static int
4041 update_window (w, force_p)
4042 struct window *w;
4043 int force_p;
4044 {
4045 struct glyph_matrix *desired_matrix = w->desired_matrix;
4046 int paused_p;
4047 int preempt_count = baud_rate / 2400 + 1;
4048 extern int input_pending;
4049 extern Lisp_Object do_mouse_tracking;
4050 #if GLYPH_DEBUG
4051 struct frame *f = XFRAME (WINDOW_FRAME (w));
4052 extern struct frame *updating_frame;
4053 #endif
4054
4055 /* Check that W's frame doesn't have glyph matrices. */
4056 xassert (FRAME_WINDOW_P (f));
4057 xassert (updating_frame != NULL);
4058
4059 /* Check pending input the first time so that we can quickly return. */
4060 if (redisplay_dont_pause)
4061 force_p = 1;
4062 else
4063 detect_input_pending ();
4064
4065 /* If forced to complete the update, or if no input is pending, do
4066 the update. */
4067 if (force_p || !input_pending || !NILP (do_mouse_tracking))
4068 {
4069 struct glyph_row *row, *end;
4070 struct glyph_row *mode_line_row;
4071 struct glyph_row *header_line_row;
4072 int yb, changed_p = 0, mouse_face_overwritten_p = 0, n_updated;
4073
4074 rif->update_window_begin_hook (w);
4075 yb = window_text_bottom_y (w);
4076
4077 /* If window has a top line, update it before everything else.
4078 Adjust y-positions of other rows by the top line height. */
4079 row = desired_matrix->rows;
4080 end = row + desired_matrix->nrows - 1;
4081
4082 if (row->mode_line_p)
4083 {
4084 header_line_row = row;
4085 ++row;
4086 }
4087 else
4088 header_line_row = NULL;
4089
4090 /* Update the mode line, if necessary. */
4091 mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
4092 if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
4093 {
4094 mode_line_row->y = yb;
4095 update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
4096 desired_matrix),
4097 &mouse_face_overwritten_p);
4098 changed_p = 1;
4099 }
4100
4101 /* Find first enabled row. Optimizations in redisplay_internal
4102 may lead to an update with only one row enabled. There may
4103 be also completely empty matrices. */
4104 while (row < end && !row->enabled_p)
4105 ++row;
4106
4107 /* Try reusing part of the display by copying. */
4108 if (row < end && !desired_matrix->no_scrolling_p)
4109 {
4110 int rc = scrolling_window (w, header_line_row != NULL);
4111 if (rc < 0)
4112 {
4113 /* All rows were found to be equal. */
4114 paused_p = 0;
4115 goto set_cursor;
4116 }
4117 else if (rc > 0)
4118 /* We've scrolled the display. */
4119 force_p = 1;
4120 changed_p = 1;
4121 }
4122
4123 /* Update the top mode line after scrolling because a new top
4124 line would otherwise overwrite lines at the top of the window
4125 that can be scrolled. */
4126 if (header_line_row && header_line_row->enabled_p)
4127 {
4128 header_line_row->y = 0;
4129 update_window_line (w, 0, &mouse_face_overwritten_p);
4130 changed_p = 1;
4131 }
4132
4133 /* Update the rest of the lines. */
4134 for (n_updated = 0; row < end && (force_p || !input_pending); ++row)
4135 if (row->enabled_p)
4136 {
4137 int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
4138 int i;
4139
4140 /* We'll Have to play a little bit with when to
4141 detect_input_pending. If it's done too often,
4142 scrolling large windows with repeated scroll-up
4143 commands will too quickly pause redisplay. */
4144 if (!force_p && ++n_updated % preempt_count == 0)
4145 detect_input_pending ();
4146
4147 changed_p |= update_window_line (w, vpos,
4148 &mouse_face_overwritten_p);
4149
4150 /* Mark all rows below the last visible one in the current
4151 matrix as invalid. This is necessary because of
4152 variable line heights. Consider the case of three
4153 successive redisplays, where the first displays 5
4154 lines, the second 3 lines, and the third 5 lines again.
4155 If the second redisplay wouldn't mark rows in the
4156 current matrix invalid, the third redisplay might be
4157 tempted to optimize redisplay based on lines displayed
4158 in the first redisplay. */
4159 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
4160 for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
4161 MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
4162 }
4163
4164 /* Was display preempted? */
4165 paused_p = row < end;
4166
4167 set_cursor:
4168
4169 /* Fix the appearance of overlapping(overlapped rows. */
4170 if (!paused_p && !w->pseudo_window_p)
4171 {
4172 if (changed_p && rif->fix_overlapping_area)
4173 {
4174 redraw_overlapped_rows (w, yb);
4175 redraw_overlapping_rows (w, yb);
4176 }
4177
4178 /* Make cursor visible at cursor position of W. */
4179 set_window_cursor_after_update (w);
4180
4181 #if 0 /* Check that current matrix invariants are satisfied. This is
4182 for debugging only. See the comment of check_matrix_invariants. */
4183 IF_DEBUG (check_matrix_invariants (w));
4184 #endif
4185 }
4186
4187 #if GLYPH_DEBUG
4188 /* Remember the redisplay method used to display the matrix. */
4189 strcpy (w->current_matrix->method, w->desired_matrix->method);
4190 #endif
4191
4192 /* End the update of window W. Don't set the cursor if we
4193 paused updating the display because in this case,
4194 set_window_cursor_after_update hasn't been called, and
4195 output_cursor doesn't contain the cursor location. */
4196 rif->update_window_end_hook (w, !paused_p, mouse_face_overwritten_p);
4197 }
4198 else
4199 paused_p = 1;
4200
4201 #if GLYPH_DEBUG
4202 /* check_current_matrix_flags (w); */
4203 add_window_display_history (w, w->current_matrix->method, paused_p);
4204 #endif
4205
4206 clear_glyph_matrix (desired_matrix);
4207
4208 return paused_p;
4209 }
4210
4211
4212 /* Update the display of area AREA in window W, row number VPOS.
4213 AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
4214
4215 static void
4216 update_marginal_area (w, area, vpos)
4217 struct window *w;
4218 int area, vpos;
4219 {
4220 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4221
4222 /* Let functions in xterm.c know what area subsequent X positions
4223 will be relative to. */
4224 updated_area = area;
4225
4226 /* Set cursor to start of glyphs, write them, and clear to the end
4227 of the area. I don't think that something more sophisticated is
4228 necessary here, since marginal areas will not be the default. */
4229 rif->cursor_to (vpos, 0, desired_row->y, 0);
4230 if (desired_row->used[area])
4231 rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
4232 rif->clear_end_of_line (-1);
4233 }
4234
4235
4236 /* Update the display of the text area of row VPOS in window W.
4237 Value is non-zero if display has changed. */
4238
4239 static int
4240 update_text_area (w, vpos)
4241 struct window *w;
4242 int vpos;
4243 {
4244 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
4245 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4246 int changed_p = 0;
4247
4248 /* Let functions in xterm.c know what area subsequent X positions
4249 will be relative to. */
4250 updated_area = TEXT_AREA;
4251
4252 /* If rows are at different X or Y, or rows have different height,
4253 or the current row is marked invalid, write the entire line. */
4254 if (!current_row->enabled_p
4255 || desired_row->y != current_row->y
4256 || desired_row->ascent != current_row->ascent
4257 || desired_row->phys_ascent != current_row->phys_ascent
4258 || desired_row->phys_height != current_row->phys_height
4259 || desired_row->visible_height != current_row->visible_height
4260 || current_row->overlapped_p
4261 || current_row->mouse_face_p
4262 || current_row->x != desired_row->x)
4263 {
4264 rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
4265
4266 if (desired_row->used[TEXT_AREA])
4267 rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
4268 desired_row->used[TEXT_AREA]);
4269
4270 /* Clear to end of window. */
4271 rif->clear_end_of_line (-1);
4272 changed_p = 1;
4273 }
4274 else
4275 {
4276 int stop, i, x;
4277 struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
4278 struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
4279 int overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p;
4280 int desired_stop_pos = desired_row->used[TEXT_AREA];
4281
4282 /* If the desired row extends its face to the text area end,
4283 make sure we write at least one glyph, so that the face
4284 extension actually takes place. */
4285 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
4286 --desired_stop_pos;
4287
4288 stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
4289 i = 0;
4290 x = desired_row->x;
4291
4292 /* Loop over glyphs that current and desired row may have
4293 in common. */
4294 while (i < stop)
4295 {
4296 int can_skip_p = 1;
4297
4298 /* Skip over glyphs that both rows have in common. These
4299 don't have to be written. We can't skip if the last
4300 current glyph overlaps the glyph to its right. For
4301 example, consider a current row of `if ' with the `f' in
4302 Courier bold so that it overlaps the ` ' to its right.
4303 If the desired row is ` ', we would skip over the space
4304 after the `if' and there would remain a pixel from the
4305 `f' on the screen. */
4306 if (overlapping_glyphs_p && i > 0)
4307 {
4308 struct glyph *glyph = &current_row->glyphs[TEXT_AREA][i - 1];
4309 int left, right;
4310
4311 rif->get_glyph_overhangs (glyph, XFRAME (w->frame),
4312 &left, &right);
4313 can_skip_p = right == 0;
4314 }
4315
4316 if (can_skip_p)
4317 {
4318 while (i < stop
4319 && GLYPH_EQUAL_P (desired_glyph, current_glyph))
4320 {
4321 x += desired_glyph->pixel_width;
4322 ++desired_glyph, ++current_glyph, ++i;
4323 }
4324
4325 /* Consider the case that the current row contains "xxx
4326 ppp ggg" in italic Courier font, and the desired row
4327 is "xxx ggg". The character `p' has lbearing, `g'
4328 has not. The loop above will stop in front of the
4329 first `p' in the current row. If we would start
4330 writing glyphs there, we wouldn't erase the lbearing
4331 of the `p'. The rest of the lbearing problem is then
4332 taken care of by x_draw_glyphs. */
4333 if (overlapping_glyphs_p
4334 && i > 0
4335 && i < current_row->used[TEXT_AREA]
4336 && (current_row->used[TEXT_AREA]
4337 != desired_row->used[TEXT_AREA]))
4338 {
4339 int left, right;
4340
4341 rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
4342 &left, &right);
4343 while (left > 0 && i > 0)
4344 {
4345 --i, --desired_glyph, --current_glyph;
4346 x -= desired_glyph->pixel_width;
4347 left -= desired_glyph->pixel_width;
4348 }
4349 }
4350 }
4351
4352 /* Try to avoid writing the entire rest of the desired row
4353 by looking for a resync point. This mainly prevents
4354 mode line flickering in the case the mode line is in
4355 fixed-pitch font, which it usually will be. */
4356 if (i < desired_row->used[TEXT_AREA])
4357 {
4358 int start_x = x, start_hpos = i;
4359 struct glyph *start = desired_glyph;
4360 int current_x = x;
4361 int skip_first_p = !can_skip_p;
4362
4363 /* Find the next glyph that's equal again. */
4364 while (i < stop
4365 && (skip_first_p
4366 || !GLYPH_EQUAL_P (desired_glyph, current_glyph))
4367 && x == current_x)
4368 {
4369 x += desired_glyph->pixel_width;
4370 current_x += current_glyph->pixel_width;
4371 ++desired_glyph, ++current_glyph, ++i;
4372 skip_first_p = 0;
4373 }
4374
4375 if (i == start_hpos || x != current_x)
4376 {
4377 i = start_hpos;
4378 x = start_x;
4379 desired_glyph = start;
4380 break;
4381 }
4382
4383 rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
4384 rif->write_glyphs (start, i - start_hpos);
4385 changed_p = 1;
4386 }
4387 }
4388
4389 /* Write the rest. */
4390 if (i < desired_row->used[TEXT_AREA])
4391 {
4392 rif->cursor_to (vpos, i, desired_row->y, x);
4393 rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
4394 changed_p = 1;
4395 }
4396
4397 /* Maybe clear to end of line. */
4398 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
4399 {
4400 /* If new row extends to the end of the text area, nothing
4401 has to be cleared, if and only if we did a write_glyphs
4402 above. This is made sure by setting desired_stop_pos
4403 appropriately above. */
4404 xassert (i < desired_row->used[TEXT_AREA]);
4405 }
4406 else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
4407 {
4408 /* If old row extends to the end of the text area, clear. */
4409 if (i >= desired_row->used[TEXT_AREA])
4410 rif->cursor_to (vpos, i, desired_row->y,
4411 desired_row->x + desired_row->pixel_width);
4412 rif->clear_end_of_line (-1);
4413 changed_p = 1;
4414 }
4415 else if (desired_row->pixel_width < current_row->pixel_width)
4416 {
4417 /* Otherwise clear to the end of the old row. Everything
4418 after that position should be clear already. */
4419 int x;
4420
4421 if (i >= desired_row->used[TEXT_AREA])
4422 rif->cursor_to (vpos, i, desired_row->y,
4423 desired_row->x + desired_row->pixel_width);
4424
4425 /* If cursor is displayed at the end of the line, make sure
4426 it's cleared. Nowadays we don't have a phys_cursor_glyph
4427 with which to erase the cursor (because this method
4428 doesn't work with lbearing/rbearing), so we must do it
4429 this way. */
4430 if (vpos == w->phys_cursor.vpos
4431 && w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])
4432 {
4433 w->phys_cursor_on_p = 0;
4434 x = -1;
4435 }
4436 else
4437 x = current_row->x + current_row->pixel_width;
4438 rif->clear_end_of_line (x);
4439 changed_p = 1;
4440 }
4441 }
4442
4443 return changed_p;
4444 }
4445
4446
4447 /* Update row VPOS in window W. Value is non-zero if display has been
4448 changed. */
4449
4450 static int
4451 update_window_line (w, vpos, mouse_face_overwritten_p)
4452 struct window *w;
4453 int vpos, *mouse_face_overwritten_p;
4454 {
4455 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
4456 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4457 int changed_p = 0;
4458
4459 /* Set the row being updated. This is important to let xterm.c
4460 know what line height values are in effect. */
4461 updated_row = desired_row;
4462
4463 /* A row can be completely invisible in case a desired matrix was
4464 built with a vscroll and then make_cursor_line_fully_visible shifts
4465 the matrix. Make sure to make such rows current anyway, since
4466 we need the correct y-position, for example, in the current matrix. */
4467 if (desired_row->mode_line_p
4468 || desired_row->visible_height > 0)
4469 {
4470 xassert (desired_row->enabled_p);
4471
4472 /* Update display of the left margin area, if there is one. */
4473 if (!desired_row->full_width_p
4474 && !NILP (w->left_margin_width))
4475 {
4476 changed_p = 1;
4477 update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
4478 }
4479
4480 /* Update the display of the text area. */
4481 if (update_text_area (w, vpos))
4482 {
4483 changed_p = 1;
4484 if (current_row->mouse_face_p)
4485 *mouse_face_overwritten_p = 1;
4486 }
4487
4488 /* Update display of the right margin area, if there is one. */
4489 if (!desired_row->full_width_p
4490 && !NILP (w->right_margin_width))
4491 {
4492 changed_p = 1;
4493 update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
4494 }
4495
4496 /* Draw truncation marks etc. */
4497 if (!current_row->enabled_p
4498 || desired_row->y != current_row->y
4499 || desired_row->visible_height != current_row->visible_height
4500 || desired_row->overlay_arrow_p != current_row->overlay_arrow_p
4501 || desired_row->truncated_on_left_p != current_row->truncated_on_left_p
4502 || desired_row->truncated_on_right_p != current_row->truncated_on_right_p
4503 || desired_row->continued_p != current_row->continued_p
4504 || desired_row->mode_line_p != current_row->mode_line_p
4505 || (desired_row->indicate_empty_line_p
4506 != current_row->indicate_empty_line_p)
4507 || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
4508 != MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
4509 rif->after_update_window_line_hook (desired_row);
4510 }
4511
4512 /* Update current_row from desired_row. */
4513 make_current (w->desired_matrix, w->current_matrix, vpos);
4514 updated_row = NULL;
4515 return changed_p;
4516 }
4517
4518
4519 /* Set the cursor after an update of window W. This function may only
4520 be called from update_window. */
4521
4522 static void
4523 set_window_cursor_after_update (w)
4524 struct window *w;
4525 {
4526 struct frame *f = XFRAME (w->frame);
4527 int cx, cy, vpos, hpos;
4528
4529 /* Not intended for frame matrix updates. */
4530 xassert (FRAME_WINDOW_P (f));
4531
4532 if (cursor_in_echo_area
4533 && !NILP (echo_area_buffer[0])
4534 /* If we are showing a message instead of the mini-buffer,
4535 show the cursor for the message instead. */
4536 && XWINDOW (minibuf_window) == w
4537 && EQ (minibuf_window, echo_area_window)
4538 /* These cases apply only to the frame that contains
4539 the active mini-buffer window. */
4540 && FRAME_HAS_MINIBUF_P (f)
4541 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4542 {
4543 cx = cy = vpos = hpos = 0;
4544
4545 if (cursor_in_echo_area >= 0)
4546 {
4547 /* If the mini-buffer is several lines high, find the last
4548 line that has any text on it. Note: either all lines
4549 are enabled or none. Otherwise we wouldn't be able to
4550 determine Y. */
4551 struct glyph_row *row, *last_row;
4552 struct glyph *glyph;
4553 int yb = window_text_bottom_y (w);
4554
4555 last_row = NULL;
4556 row = w->current_matrix->rows;
4557 while (row->enabled_p
4558 && (last_row == NULL
4559 || MATRIX_ROW_BOTTOM_Y (row) <= yb))
4560 {
4561 if (row->used[TEXT_AREA]
4562 && row->glyphs[TEXT_AREA][0].charpos >= 0)
4563 last_row = row;
4564 ++row;
4565 }
4566
4567 if (last_row)
4568 {
4569 struct glyph *start = last_row->glyphs[TEXT_AREA];
4570 struct glyph *last = start + last_row->used[TEXT_AREA] - 1;
4571
4572 while (last > start && last->charpos < 0)
4573 --last;
4574
4575 for (glyph = start; glyph < last; ++glyph)
4576 {
4577 cx += glyph->pixel_width;
4578 ++hpos;
4579 }
4580
4581 cy = last_row->y;
4582 vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
4583 }
4584 }
4585 }
4586 else
4587 {
4588 cx = w->cursor.x;
4589 cy = w->cursor.y;
4590 hpos = w->cursor.hpos;
4591 vpos = w->cursor.vpos;
4592 }
4593
4594 /* Window cursor can be out of sync for horizontally split windows. */
4595 hpos = max (0, hpos);
4596 hpos = min (w->current_matrix->matrix_w - 1, hpos);
4597 vpos = max (0, vpos);
4598 vpos = min (w->current_matrix->nrows - 1, vpos);
4599 rif->cursor_to (vpos, hpos, cy, cx);
4600 }
4601
4602
4603 /* Set WINDOW->must_be_updated_p to ON_P for all windows in the window
4604 tree rooted at W. */
4605
4606 void
4607 set_window_update_flags (w, on_p)
4608 struct window *w;
4609 int on_p;
4610 {
4611 while (w)
4612 {
4613 if (!NILP (w->hchild))
4614 set_window_update_flags (XWINDOW (w->hchild), on_p);
4615 else if (!NILP (w->vchild))
4616 set_window_update_flags (XWINDOW (w->vchild), on_p);
4617 else
4618 w->must_be_updated_p = on_p;
4619
4620 w = NILP (w->next) ? 0 : XWINDOW (w->next);
4621 }
4622 }
4623
4624
4625 \f
4626 /***********************************************************************
4627 Window-Based Scrolling
4628 ***********************************************************************/
4629
4630 /* Structure describing rows in scrolling_window. */
4631
4632 struct row_entry
4633 {
4634 /* Number of occurrences of this row in desired and current matrix. */
4635 int old_uses, new_uses;
4636
4637 /* Vpos of row in new matrix. */
4638 int new_line_number;
4639
4640 /* Bucket index of this row_entry in the hash table row_table. */
4641 int bucket;
4642
4643 /* The row described by this entry. */
4644 struct glyph_row *row;
4645
4646 /* Hash collision chain. */
4647 struct row_entry *next;
4648 };
4649
4650 /* A pool to allocate row_entry structures from, and the size of the
4651 pool. The pool is reallocated in scrolling_window when we find
4652 that we need a larger one. */
4653
4654 static struct row_entry *row_entry_pool;
4655 static int row_entry_pool_size;
4656
4657 /* Index of next free entry in row_entry_pool. */
4658
4659 static int row_entry_idx;
4660
4661 /* The hash table used during scrolling, and the table's size. This
4662 table is used to quickly identify equal rows in the desired and
4663 current matrix. */
4664
4665 static struct row_entry **row_table;
4666 static int row_table_size;
4667
4668 /* Vectors of pointers to row_entry structures belonging to the
4669 current and desired matrix, and the size of the vectors. */
4670
4671 static struct row_entry **old_lines, **new_lines;
4672 static int old_lines_size, new_lines_size;
4673
4674 /* A pool to allocate run structures from, and its size. */
4675
4676 static struct run *run_pool;
4677 static int runs_size;
4678
4679 /* A vector of runs of lines found during scrolling. */
4680
4681 static struct run **runs;
4682
4683 static struct row_entry *add_row_entry P_ ((struct window *,
4684 struct glyph_row *));
4685
4686
4687 /* Add glyph row ROW to the scrolling hash table during the scrolling
4688 of window W. */
4689
4690 static INLINE struct row_entry *
4691 add_row_entry (w, row)
4692 struct window *w;
4693 struct glyph_row *row;
4694 {
4695 struct row_entry *entry;
4696 int i = row->hash % row_table_size;
4697
4698 entry = row_table[i];
4699 while (entry && !row_equal_p (w, entry->row, row, 1))
4700 entry = entry->next;
4701
4702 if (entry == NULL)
4703 {
4704 entry = row_entry_pool + row_entry_idx++;
4705 entry->row = row;
4706 entry->old_uses = entry->new_uses = 0;
4707 entry->new_line_number = 0;
4708 entry->bucket = i;
4709 entry->next = row_table[i];
4710 row_table[i] = entry;
4711 }
4712
4713 return entry;
4714 }
4715
4716
4717 /* Try to reuse part of the current display of W by scrolling lines.
4718 HEADER_LINE_P non-zero means W has a top mode line.
4719
4720 The algorithm is taken from Communications of the ACM, Apr78 "A
4721 Technique for Isolating Differences Between Files." It should take
4722 O(N) time.
4723
4724 A short outline of the steps of the algorithm
4725
4726 1. Skip lines equal at the start and end of both matrices.
4727
4728 2. Enter rows in the current and desired matrix into a symbol
4729 table, counting how often they appear in both matrices.
4730
4731 3. Rows that appear exactly once in both matrices serve as anchors,
4732 i.e. we assume that such lines are likely to have been moved.
4733
4734 4. Starting from anchor lines, extend regions to be scrolled both
4735 forward and backward.
4736
4737 Value is
4738
4739 -1 if all rows were found to be equal.
4740 0 to indicate that we did not scroll the display, or
4741 1 if we did scroll. */
4742
4743 static int
4744 scrolling_window (w, header_line_p)
4745 struct window *w;
4746 int header_line_p;
4747 {
4748 struct glyph_matrix *desired_matrix = w->desired_matrix;
4749 struct glyph_matrix *current_matrix = w->current_matrix;
4750 int yb = window_text_bottom_y (w);
4751 int i, j, first_old, first_new, last_old, last_new;
4752 int nruns, nbytes, n, run_idx;
4753 struct row_entry *entry;
4754
4755 /* Skip over rows equal at the start. */
4756 for (i = header_line_p ? 1 : 0; i < current_matrix->nrows - 1; ++i)
4757 {
4758 struct glyph_row *d = MATRIX_ROW (desired_matrix, i);
4759 struct glyph_row *c = MATRIX_ROW (current_matrix, i);
4760
4761 if (c->enabled_p
4762 && d->enabled_p
4763 && c->y == d->y
4764 && MATRIX_ROW_BOTTOM_Y (c) <= yb
4765 && MATRIX_ROW_BOTTOM_Y (d) <= yb
4766 && row_equal_p (w, c, d, 1))
4767 {
4768 assign_row (c, d);
4769 d->enabled_p = 0;
4770 }
4771 else
4772 break;
4773 }
4774
4775 /* Give up if some rows in the desired matrix are not enabled. */
4776 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4777 return -1;
4778
4779 first_old = first_new = i;
4780
4781 /* Set last_new to the index + 1 of the last enabled row in the
4782 desired matrix. */
4783 i = first_new + 1;
4784 while (i < desired_matrix->nrows - 1
4785 && MATRIX_ROW (desired_matrix, i)->enabled_p
4786 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) <= yb)
4787 ++i;
4788
4789 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4790 return 0;
4791
4792 last_new = i;
4793
4794 /* Set last_old to the index + 1 of the last enabled row in the
4795 current matrix. We don't look at the enabled flag here because
4796 we plan to reuse part of the display even if other parts are
4797 disabled. */
4798 i = first_old + 1;
4799 while (i < current_matrix->nrows - 1)
4800 {
4801 int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i));
4802 if (bottom <= yb)
4803 ++i;
4804 if (bottom >= yb)
4805 break;
4806 }
4807
4808 last_old = i;
4809
4810 /* Skip over rows equal at the bottom. */
4811 i = last_new;
4812 j = last_old;
4813 while (i - 1 > first_new
4814 && j - 1 > first_old
4815 && MATRIX_ROW (current_matrix, i - 1)->enabled_p
4816 && (MATRIX_ROW (current_matrix, i - 1)->y
4817 == MATRIX_ROW (desired_matrix, j - 1)->y)
4818 && row_equal_p (w,
4819 MATRIX_ROW (desired_matrix, i - 1),
4820 MATRIX_ROW (current_matrix, j - 1), 1))
4821 --i, --j;
4822 last_new = i;
4823 last_old = j;
4824
4825 /* Nothing to do if all rows are equal. */
4826 if (last_new == first_new)
4827 return 0;
4828
4829 /* Reallocate vectors, tables etc. if necessary. */
4830
4831 if (current_matrix->nrows > old_lines_size)
4832 {
4833 old_lines_size = current_matrix->nrows;
4834 nbytes = old_lines_size * sizeof *old_lines;
4835 old_lines = (struct row_entry **) xrealloc (old_lines, nbytes);
4836 }
4837
4838 if (desired_matrix->nrows > new_lines_size)
4839 {
4840 new_lines_size = desired_matrix->nrows;
4841 nbytes = new_lines_size * sizeof *new_lines;
4842 new_lines = (struct row_entry **) xrealloc (new_lines, nbytes);
4843 }
4844
4845 n = desired_matrix->nrows + current_matrix->nrows;
4846 if (3 * n > row_table_size)
4847 {
4848 row_table_size = next_almost_prime (3 * n);
4849 nbytes = row_table_size * sizeof *row_table;
4850 row_table = (struct row_entry **) xrealloc (row_table, nbytes);
4851 bzero (row_table, nbytes);
4852 }
4853
4854 if (n > row_entry_pool_size)
4855 {
4856 row_entry_pool_size = n;
4857 nbytes = row_entry_pool_size * sizeof *row_entry_pool;
4858 row_entry_pool = (struct row_entry *) xrealloc (row_entry_pool, nbytes);
4859 }
4860
4861 if (desired_matrix->nrows > runs_size)
4862 {
4863 runs_size = desired_matrix->nrows;
4864 nbytes = runs_size * sizeof *runs;
4865 runs = (struct run **) xrealloc (runs, nbytes);
4866 nbytes = runs_size * sizeof *run_pool;
4867 run_pool = (struct run *) xrealloc (run_pool, nbytes);
4868 }
4869
4870 nruns = run_idx = 0;
4871 row_entry_idx = 0;
4872
4873 /* Add rows from the current and desired matrix to the hash table
4874 row_hash_table to be able to find equal ones quickly. */
4875
4876 for (i = first_old; i < last_old; ++i)
4877 {
4878 if (MATRIX_ROW (current_matrix, i)->enabled_p)
4879 {
4880 entry = add_row_entry (w, MATRIX_ROW (current_matrix, i));
4881 old_lines[i] = entry;
4882 ++entry->old_uses;
4883 }
4884 else
4885 old_lines[i] = NULL;
4886 }
4887
4888 for (i = first_new; i < last_new; ++i)
4889 {
4890 xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
4891 entry = add_row_entry (w, MATRIX_ROW (desired_matrix, i));
4892 ++entry->new_uses;
4893 entry->new_line_number = i;
4894 new_lines[i] = entry;
4895 }
4896
4897 /* Identify moves based on lines that are unique and equal
4898 in both matrices. */
4899 for (i = first_old; i < last_old;)
4900 if (old_lines[i]
4901 && old_lines[i]->old_uses == 1
4902 && old_lines[i]->new_uses == 1)
4903 {
4904 int j, k;
4905 int new_line = old_lines[i]->new_line_number;
4906 struct run *run = run_pool + run_idx++;
4907
4908 /* Record move. */
4909 run->current_vpos = i;
4910 run->current_y = MATRIX_ROW (current_matrix, i)->y;
4911 run->desired_vpos = new_line;
4912 run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
4913 run->nrows = 1;
4914 run->height = MATRIX_ROW (current_matrix, i)->height;
4915
4916 /* Extend backward. */
4917 j = i - 1;
4918 k = new_line - 1;
4919 while (j > first_old
4920 && k > first_new
4921 && old_lines[j] == new_lines[k])
4922 {
4923 int h = MATRIX_ROW (current_matrix, j)->height;
4924 --run->current_vpos;
4925 --run->desired_vpos;
4926 ++run->nrows;
4927 run->height += h;
4928 run->desired_y -= h;
4929 run->current_y -= h;
4930 --j, --k;
4931 }
4932
4933 /* Extend forward. */
4934 j = i + 1;
4935 k = new_line + 1;
4936 while (j < last_old
4937 && k < last_new
4938 && old_lines[j] == new_lines[k])
4939 {
4940 int h = MATRIX_ROW (current_matrix, j)->height;
4941 ++run->nrows;
4942 run->height += h;
4943 ++j, ++k;
4944 }
4945
4946 /* Insert run into list of all runs. Order runs by copied
4947 pixel lines. Note that we record runs that don't have to
4948 be copied because they are already in place. This is done
4949 because we can avoid calling update_window_line in this
4950 case. */
4951 for (j = 0; j < nruns && runs[j]->height > run->height; ++j)
4952 ;
4953 for (k = nruns; k > j; --k)
4954 runs[k] = runs[k - 1];
4955 runs[j] = run;
4956 ++nruns;
4957
4958 i += run->nrows;
4959 }
4960 else
4961 ++i;
4962
4963 /* Do the moves. Do it in a way that we don't overwrite something
4964 we want to copy later on. This is not solvable in general
4965 because there is only one display and we don't have a way to
4966 exchange areas on this display. Example:
4967
4968 +-----------+ +-----------+
4969 | A | | B |
4970 +-----------+ --> +-----------+
4971 | B | | A |
4972 +-----------+ +-----------+
4973
4974 Instead, prefer bigger moves, and invalidate moves that would
4975 copy from where we copied to. */
4976
4977 for (i = 0; i < nruns; ++i)
4978 if (runs[i]->nrows > 0)
4979 {
4980 struct run *r = runs[i];
4981
4982 /* Copy on the display. */
4983 if (r->current_y != r->desired_y)
4984 {
4985 rif->scroll_run_hook (w, r);
4986
4987 /* Invalidate runs that copy from where we copied to. */
4988 for (j = i + 1; j < nruns; ++j)
4989 {
4990 struct run *p = runs[j];
4991
4992 if ((p->current_y >= r->desired_y
4993 && p->current_y < r->desired_y + r->height)
4994 || (p->current_y + p->height >= r->desired_y
4995 && (p->current_y + p->height
4996 < r->desired_y + r->height)))
4997 p->nrows = 0;
4998 }
4999 }
5000
5001 /* Assign matrix rows. */
5002 for (j = 0; j < r->nrows; ++j)
5003 {
5004 struct glyph_row *from, *to;
5005 int to_overlapped_p;
5006
5007 to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
5008 from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
5009 to_overlapped_p = to->overlapped_p;
5010 assign_row (to, from);
5011 to->enabled_p = 1, from->enabled_p = 0;
5012 to->overlapped_p = to_overlapped_p;
5013 }
5014 }
5015
5016 /* Clear the hash table, for the next time. */
5017 for (i = 0; i < row_entry_idx; ++i)
5018 row_table[row_entry_pool[i].bucket] = NULL;
5019
5020 /* Value is non-zero to indicate that we scrolled the display. */
5021 return 1;
5022 }
5023
5024
5025 \f
5026 /************************************************************************
5027 Frame-Based Updates
5028 ************************************************************************/
5029
5030 /* Update the desired frame matrix of frame F.
5031
5032 FORCE_P non-zero means that the update should not be stopped by
5033 pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
5034 should not be tried.
5035
5036 Value is non-zero if update was stopped due to pending input. */
5037
5038 static int
5039 update_frame_1 (f, force_p, inhibit_id_p)
5040 struct frame *f;
5041 int force_p;
5042 int inhibit_id_p;
5043 {
5044 /* Frame matrices to work on. */
5045 struct glyph_matrix *current_matrix = f->current_matrix;
5046 struct glyph_matrix *desired_matrix = f->desired_matrix;
5047 int i;
5048 int pause;
5049 int preempt_count = baud_rate / 2400 + 1;
5050 extern int input_pending;
5051
5052 xassert (current_matrix && desired_matrix);
5053
5054 if (baud_rate != FRAME_COST_BAUD_RATE (f))
5055 calculate_costs (f);
5056
5057 if (preempt_count <= 0)
5058 preempt_count = 1;
5059
5060 if (redisplay_dont_pause)
5061 force_p = 1;
5062 else if (!force_p && detect_input_pending ())
5063 {
5064 pause = 1;
5065 goto do_pause;
5066 }
5067
5068 /* If we cannot insert/delete lines, it's no use trying it. */
5069 if (!line_ins_del_ok)
5070 inhibit_id_p = 1;
5071
5072 /* See if any of the desired lines are enabled; don't compute for
5073 i/d line if just want cursor motion. */
5074 for (i = 0; i < desired_matrix->nrows; i++)
5075 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
5076 break;
5077
5078 /* Try doing i/d line, if not yet inhibited. */
5079 if (!inhibit_id_p && i < desired_matrix->nrows)
5080 force_p |= scrolling (f);
5081
5082 /* Update the individual lines as needed. Do bottom line first. */
5083 if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
5084 update_frame_line (f, desired_matrix->nrows - 1);
5085
5086 /* Now update the rest of the lines. */
5087 for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
5088 {
5089 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
5090 {
5091 if (FRAME_TERMCAP_P (f))
5092 {
5093 /* Flush out every so many lines.
5094 Also flush out if likely to have more than 1k buffered
5095 otherwise. I'm told that some telnet connections get
5096 really screwed by more than 1k output at once. */
5097 int outq = PENDING_OUTPUT_COUNT (stdout);
5098 if (outq > 900
5099 || (outq > 20 && ((i - 1) % preempt_count == 0)))
5100 {
5101 fflush (stdout);
5102 if (preempt_count == 1)
5103 {
5104 #ifdef EMACS_OUTQSIZE
5105 if (EMACS_OUTQSIZE (0, &outq) < 0)
5106 /* Probably not a tty. Ignore the error and reset
5107 * the outq count. */
5108 outq = PENDING_OUTPUT_COUNT (stdout);
5109 #endif
5110 outq *= 10;
5111 if (baud_rate <= outq && baud_rate > 0)
5112 sleep (outq / baud_rate);
5113 }
5114 }
5115 }
5116
5117 if ((i - 1) % preempt_count == 0)
5118 detect_input_pending ();
5119
5120 update_frame_line (f, i);
5121 }
5122 }
5123
5124 pause = (i < FRAME_HEIGHT (f) - 1) ? i : 0;
5125
5126 /* Now just clean up termcap drivers and set cursor, etc. */
5127 if (!pause)
5128 {
5129 if ((cursor_in_echo_area
5130 /* If we are showing a message instead of the mini-buffer,
5131 show the cursor for the message instead of for the
5132 (now hidden) mini-buffer contents. */
5133 || (EQ (minibuf_window, selected_window)
5134 && EQ (minibuf_window, echo_area_window)
5135 && !NILP (echo_area_buffer[0])))
5136 /* These cases apply only to the frame that contains
5137 the active mini-buffer window. */
5138 && FRAME_HAS_MINIBUF_P (f)
5139 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
5140 {
5141 int top = XINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top);
5142 int row, col;
5143
5144 if (cursor_in_echo_area < 0)
5145 {
5146 /* Negative value of cursor_in_echo_area means put
5147 cursor at beginning of line. */
5148 row = top;
5149 col = 0;
5150 }
5151 else
5152 {
5153 /* Positive value of cursor_in_echo_area means put
5154 cursor at the end of the prompt. If the mini-buffer
5155 is several lines high, find the last line that has
5156 any text on it. */
5157 row = FRAME_HEIGHT (f);
5158 do
5159 {
5160 --row;
5161 col = 0;
5162
5163 if (MATRIX_ROW_ENABLED_P (current_matrix, row))
5164 {
5165 /* Frame rows are filled up with spaces that
5166 must be ignored here. */
5167 struct glyph_row *r = MATRIX_ROW (current_matrix,
5168 row);
5169 struct glyph *start = r->glyphs[TEXT_AREA];
5170 struct glyph *last = start + r->used[TEXT_AREA];
5171
5172 while (last > start
5173 && (last - 1)->charpos < 0)
5174 --last;
5175
5176 col = last - start;
5177 }
5178 }
5179 while (row > top && col == 0);
5180
5181 /* Make sure COL is not out of range. */
5182 if (col >= FRAME_CURSOR_X_LIMIT (f))
5183 {
5184 /* If we have another row, advance cursor into it. */
5185 if (row < FRAME_HEIGHT (f) - 1)
5186 {
5187 col = FRAME_LEFT_SCROLL_BAR_WIDTH (f);
5188 row++;
5189 }
5190 /* Otherwise move it back in range. */
5191 else
5192 col = FRAME_CURSOR_X_LIMIT (f) - 1;
5193 }
5194 }
5195
5196 cursor_to (row, col);
5197 }
5198 else
5199 {
5200 /* We have only one cursor on terminal frames. Use it to
5201 display the cursor of the selected window. */
5202 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5203 if (w->cursor.vpos >= 0
5204 /* The cursor vpos may be temporarily out of bounds
5205 in the following situation: There is one window,
5206 with the cursor in the lower half of it. The window
5207 is split, and a message causes a redisplay before
5208 a new cursor position has been computed. */
5209 && w->cursor.vpos < XFASTINT (w->height))
5210 {
5211 int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
5212 int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
5213
5214 if (INTEGERP (w->left_margin_width))
5215 x += XFASTINT (w->left_margin_width);
5216
5217 /* x = max (min (x, FRAME_WINDOW_WIDTH (f) - 1), 0); */
5218 cursor_to (y, x);
5219 }
5220 }
5221 }
5222
5223 do_pause:
5224
5225 clear_desired_matrices (f);
5226 return pause;
5227 }
5228
5229
5230 /* Do line insertions/deletions on frame F for frame-based redisplay. */
5231
5232 int
5233 scrolling (frame)
5234 struct frame *frame;
5235 {
5236 int unchanged_at_top, unchanged_at_bottom;
5237 int window_size;
5238 int changed_lines;
5239 int *old_hash = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
5240 int *new_hash = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
5241 int *draw_cost = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
5242 int *old_draw_cost = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
5243 register int i;
5244 int free_at_end_vpos = FRAME_HEIGHT (frame);
5245 struct glyph_matrix *current_matrix = frame->current_matrix;
5246 struct glyph_matrix *desired_matrix = frame->desired_matrix;
5247
5248 if (!current_matrix)
5249 abort ();
5250
5251 /* Compute hash codes of all the lines. Also calculate number of
5252 changed lines, number of unchanged lines at the beginning, and
5253 number of unchanged lines at the end. */
5254 changed_lines = 0;
5255 unchanged_at_top = 0;
5256 unchanged_at_bottom = FRAME_HEIGHT (frame);
5257 for (i = 0; i < FRAME_HEIGHT (frame); i++)
5258 {
5259 /* Give up on this scrolling if some old lines are not enabled. */
5260 if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
5261 return 0;
5262 old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
5263 if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
5264 {
5265 /* This line cannot be redrawn, so don't let scrolling mess it. */
5266 new_hash[i] = old_hash[i];
5267 #define INFINITY 1000000 /* Taken from scroll.c */
5268 draw_cost[i] = INFINITY;
5269 }
5270 else
5271 {
5272 new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
5273 draw_cost[i] = line_draw_cost (desired_matrix, i);
5274 }
5275
5276 if (old_hash[i] != new_hash[i])
5277 {
5278 changed_lines++;
5279 unchanged_at_bottom = FRAME_HEIGHT (frame) - i - 1;
5280 }
5281 else if (i == unchanged_at_top)
5282 unchanged_at_top++;
5283 old_draw_cost[i] = line_draw_cost (current_matrix, i);
5284 }
5285
5286 /* If changed lines are few, don't allow preemption, don't scroll. */
5287 if ((!scroll_region_ok && changed_lines < baud_rate / 2400)
5288 || unchanged_at_bottom == FRAME_HEIGHT (frame))
5289 return 1;
5290
5291 window_size = (FRAME_HEIGHT (frame) - unchanged_at_top
5292 - unchanged_at_bottom);
5293
5294 if (scroll_region_ok)
5295 free_at_end_vpos -= unchanged_at_bottom;
5296 else if (memory_below_frame)
5297 free_at_end_vpos = -1;
5298
5299 /* If large window, fast terminal and few lines in common between
5300 current frame and desired frame, don't bother with i/d calc. */
5301 if (!scroll_region_ok && window_size >= 18 && baud_rate > 2400
5302 && (window_size >=
5303 10 * scrolling_max_lines_saved (unchanged_at_top,
5304 FRAME_HEIGHT (frame) - unchanged_at_bottom,
5305 old_hash, new_hash, draw_cost)))
5306 return 0;
5307
5308 if (window_size < 2)
5309 return 0;
5310
5311 scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
5312 draw_cost + unchanged_at_top - 1,
5313 old_draw_cost + unchanged_at_top - 1,
5314 old_hash + unchanged_at_top - 1,
5315 new_hash + unchanged_at_top - 1,
5316 free_at_end_vpos - unchanged_at_top);
5317
5318 return 0;
5319 }
5320
5321
5322 /* Count the number of blanks at the start of the vector of glyphs R
5323 which is LEN glyphs long. */
5324
5325 static int
5326 count_blanks (r, len)
5327 struct glyph *r;
5328 int len;
5329 {
5330 int i;
5331
5332 for (i = 0; i < len; ++i)
5333 if (!CHAR_GLYPH_SPACE_P (r[i]))
5334 break;
5335
5336 return i;
5337 }
5338
5339
5340 /* Count the number of glyphs in common at the start of the glyph
5341 vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
5342 of STR2. Value is the number of equal glyphs equal at the start. */
5343
5344 static int
5345 count_match (str1, end1, str2, end2)
5346 struct glyph *str1, *end1, *str2, *end2;
5347 {
5348 struct glyph *p1 = str1;
5349 struct glyph *p2 = str2;
5350
5351 while (p1 < end1
5352 && p2 < end2
5353 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2))
5354 ++p1, ++p2;
5355
5356 return p1 - str1;
5357 }
5358
5359
5360 /* Char insertion/deletion cost vector, from term.c */
5361
5362 extern int *char_ins_del_vector;
5363 #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_WINDOW_WIDTH((f))])
5364
5365
5366 /* Perform a frame-based update on line VPOS in frame FRAME. */
5367
5368 static void
5369 update_frame_line (f, vpos)
5370 struct frame *f;
5371 int vpos;
5372 {
5373 struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
5374 int tem;
5375 int osp, nsp, begmatch, endmatch, olen, nlen;
5376 struct glyph_matrix *current_matrix = f->current_matrix;
5377 struct glyph_matrix *desired_matrix = f->desired_matrix;
5378 struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
5379 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
5380 int must_write_whole_line_p;
5381 int write_spaces_p = must_write_spaces;
5382 int colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background
5383 != FACE_TTY_DEFAULT_BG_COLOR);
5384
5385 if (colored_spaces_p)
5386 write_spaces_p = 1;
5387
5388 /* Current row not enabled means it has unknown contents. We must
5389 write the whole desired line in that case. */
5390 must_write_whole_line_p = !current_row->enabled_p;
5391 if (must_write_whole_line_p)
5392 {
5393 obody = 0;
5394 olen = 0;
5395 }
5396 else
5397 {
5398 obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
5399 olen = current_row->used[TEXT_AREA];
5400
5401 /* Ignore trailing spaces, if we can. */
5402 if (!write_spaces_p)
5403 while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
5404 olen--;
5405 }
5406
5407 current_row->enabled_p = 1;
5408 current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
5409
5410 /* If desired line is empty, just clear the line. */
5411 if (!desired_row->enabled_p)
5412 {
5413 nlen = 0;
5414 goto just_erase;
5415 }
5416
5417 nbody = desired_row->glyphs[TEXT_AREA];
5418 nlen = desired_row->used[TEXT_AREA];
5419 nend = nbody + nlen;
5420
5421 /* If display line has unknown contents, write the whole line. */
5422 if (must_write_whole_line_p)
5423 {
5424 /* Ignore spaces at the end, if we can. */
5425 if (!write_spaces_p)
5426 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5427 --nlen;
5428
5429 /* Write the contents of the desired line. */
5430 if (nlen)
5431 {
5432 cursor_to (vpos, 0);
5433 write_glyphs (nbody, nlen);
5434 }
5435
5436 /* Don't call clear_end_of_line if we already wrote the whole
5437 line. The cursor will not be at the right margin in that
5438 case but in the line below. */
5439 if (nlen < FRAME_WINDOW_WIDTH (f))
5440 {
5441 cursor_to (vpos, nlen);
5442 clear_end_of_line (FRAME_WINDOW_WIDTH (f));
5443 }
5444 else
5445 /* Make sure we are in the right row, otherwise cursor movement
5446 with cmgoto might use `ch' in the wrong row. */
5447 cursor_to (vpos, 0);
5448
5449 make_current (desired_matrix, current_matrix, vpos);
5450 return;
5451 }
5452
5453 /* Pretend trailing spaces are not there at all,
5454 unless for one reason or another we must write all spaces. */
5455 if (!write_spaces_p)
5456 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5457 nlen--;
5458
5459 /* If there's no i/d char, quickly do the best we can without it. */
5460 if (!char_ins_del_ok)
5461 {
5462 int i, j;
5463
5464 /* Find the first glyph in desired row that doesn't agree with
5465 a glyph in the current row, and write the rest from there on. */
5466 for (i = 0; i < nlen; i++)
5467 {
5468 if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
5469 {
5470 /* Find the end of the run of different glyphs. */
5471 j = i + 1;
5472 while (j < nlen
5473 && (j >= olen
5474 || !GLYPH_EQUAL_P (nbody + j, obody + j)
5475 || CHAR_GLYPH_PADDING_P (nbody[j])))
5476 ++j;
5477
5478 /* Output this run of non-matching chars. */
5479 cursor_to (vpos, i);
5480 write_glyphs (nbody + i, j - i);
5481 i = j - 1;
5482
5483 /* Now find the next non-match. */
5484 }
5485 }
5486
5487 /* Clear the rest of the line, or the non-clear part of it. */
5488 if (olen > nlen)
5489 {
5490 cursor_to (vpos, nlen);
5491 clear_end_of_line (olen);
5492 }
5493
5494 /* Make current row = desired row. */
5495 make_current (desired_matrix, current_matrix, vpos);
5496 return;
5497 }
5498
5499 /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
5500 characters in a row. */
5501
5502 if (!olen)
5503 {
5504 /* If current line is blank, skip over initial spaces, if
5505 possible, and write the rest. */
5506 if (write_spaces_p)
5507 nsp = 0;
5508 else
5509 nsp = count_blanks (nbody, nlen);
5510
5511 if (nlen > nsp)
5512 {
5513 cursor_to (vpos, nsp);
5514 write_glyphs (nbody + nsp, nlen - nsp);
5515 }
5516
5517 /* Exchange contents between current_frame and new_frame. */
5518 make_current (desired_matrix, current_matrix, vpos);
5519 return;
5520 }
5521
5522 /* Compute number of leading blanks in old and new contents. */
5523 osp = count_blanks (obody, olen);
5524 nsp = (colored_spaces_p ? 0 : count_blanks (nbody, nlen));
5525
5526 /* Compute number of matching chars starting with first non-blank. */
5527 begmatch = count_match (obody + osp, obody + olen,
5528 nbody + nsp, nbody + nlen);
5529
5530 /* Spaces in new match implicit space past the end of old. */
5531 /* A bug causing this to be a no-op was fixed in 18.29. */
5532 if (!write_spaces_p && osp + begmatch == olen)
5533 {
5534 np1 = nbody + nsp;
5535 while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
5536 ++begmatch;
5537 }
5538
5539 /* Avoid doing insert/delete char
5540 just cause number of leading spaces differs
5541 when the following text does not match. */
5542 if (begmatch == 0 && osp != nsp)
5543 osp = nsp = min (osp, nsp);
5544
5545 /* Find matching characters at end of line */
5546 op1 = obody + olen;
5547 np1 = nbody + nlen;
5548 op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
5549 while (op1 > op2
5550 && GLYPH_EQUAL_P (op1 - 1, np1 - 1))
5551 {
5552 op1--;
5553 np1--;
5554 }
5555 endmatch = obody + olen - op1;
5556
5557 /* tem gets the distance to insert or delete.
5558 endmatch is how many characters we save by doing so.
5559 Is it worth it? */
5560
5561 tem = (nlen - nsp) - (olen - osp);
5562 if (endmatch && tem
5563 && (!char_ins_del_ok || endmatch <= char_ins_del_cost (f)[tem]))
5564 endmatch = 0;
5565
5566 /* nsp - osp is the distance to insert or delete.
5567 If that is nonzero, begmatch is known to be nonzero also.
5568 begmatch + endmatch is how much we save by doing the ins/del.
5569 Is it worth it? */
5570
5571 if (nsp != osp
5572 && (!char_ins_del_ok
5573 || begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp]))
5574 {
5575 begmatch = 0;
5576 endmatch = 0;
5577 osp = nsp = min (osp, nsp);
5578 }
5579
5580 /* Now go through the line, inserting, writing and
5581 deleting as appropriate. */
5582
5583 if (osp > nsp)
5584 {
5585 cursor_to (vpos, nsp);
5586 delete_glyphs (osp - nsp);
5587 }
5588 else if (nsp > osp)
5589 {
5590 /* If going to delete chars later in line
5591 and insert earlier in the line,
5592 must delete first to avoid losing data in the insert */
5593 if (endmatch && nlen < olen + nsp - osp)
5594 {
5595 cursor_to (vpos, nlen - endmatch + osp - nsp);
5596 delete_glyphs (olen + nsp - osp - nlen);
5597 olen = nlen - (nsp - osp);
5598 }
5599 cursor_to (vpos, osp);
5600 insert_glyphs (0, nsp - osp);
5601 }
5602 olen += nsp - osp;
5603
5604 tem = nsp + begmatch + endmatch;
5605 if (nlen != tem || olen != tem)
5606 {
5607 if (!endmatch || nlen == olen)
5608 {
5609 /* If new text being written reaches right margin, there is
5610 no need to do clear-to-eol at the end of this function
5611 (and it would not be safe, since cursor is not going to
5612 be "at the margin" after the text is done). */
5613 if (nlen == FRAME_WINDOW_WIDTH (f))
5614 olen = 0;
5615
5616 /* Function write_glyphs is prepared to do nothing
5617 if passed a length <= 0. Check it here to avoid
5618 unnecessary cursor movement. */
5619 if (nlen - tem > 0)
5620 {
5621 cursor_to (vpos, nsp + begmatch);
5622 write_glyphs (nbody + nsp + begmatch, nlen - tem);
5623 }
5624 }
5625 else if (nlen > olen)
5626 {
5627 /* Here, we used to have the following simple code:
5628 ----------------------------------------
5629 write_glyphs (nbody + nsp + begmatch, olen - tem);
5630 insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
5631 ----------------------------------------
5632 but it doesn't work if nbody[nsp + begmatch + olen - tem]
5633 is a padding glyph. */
5634 int out = olen - tem; /* Columns to be overwritten originally. */
5635 int del;
5636
5637 cursor_to (vpos, nsp + begmatch);
5638
5639 /* Calculate columns we can actually overwrite. */
5640 while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out]))
5641 out--;
5642 write_glyphs (nbody + nsp + begmatch, out);
5643
5644 /* If we left columns to be overwritten, we must delete them. */
5645 del = olen - tem - out;
5646 if (del > 0)
5647 delete_glyphs (del);
5648
5649 /* At last, we insert columns not yet written out. */
5650 insert_glyphs (nbody + nsp + begmatch + out, nlen - olen + del);
5651 olen = nlen;
5652 }
5653 else if (olen > nlen)
5654 {
5655 cursor_to (vpos, nsp + begmatch);
5656 write_glyphs (nbody + nsp + begmatch, nlen - tem);
5657 delete_glyphs (olen - nlen);
5658 olen = nlen;
5659 }
5660 }
5661
5662 just_erase:
5663 /* If any unerased characters remain after the new line, erase them. */
5664 if (olen > nlen)
5665 {
5666 cursor_to (vpos, nlen);
5667 clear_end_of_line (olen);
5668 }
5669
5670 /* Exchange contents between current_frame and new_frame. */
5671 make_current (desired_matrix, current_matrix, vpos);
5672 }
5673
5674
5675 \f
5676 /***********************************************************************
5677 X/Y Position -> Buffer Position
5678 ***********************************************************************/
5679
5680 /* Determine what's under window-relative pixel position (*X, *Y).
5681 Return in *OBJECT the object (string or buffer) that's there.
5682 Return in *POS the position in that object. Adjust *X and *Y
5683 to character boundaries. */
5684
5685 void
5686 buffer_posn_from_coords (w, x, y, object, pos)
5687 struct window *w;
5688 int *x, *y;
5689 Lisp_Object *object;
5690 struct display_pos *pos;
5691 {
5692 struct it it;
5693 struct buffer *old_current_buffer = current_buffer;
5694 struct text_pos startp;
5695 int left_area_width;
5696
5697 current_buffer = XBUFFER (w->buffer);
5698 SET_TEXT_POS_FROM_MARKER (startp, w->start);
5699 CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
5700 BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
5701 start_display (&it, w, startp);
5702
5703 left_area_width = WINDOW_DISPLAY_LEFT_AREA_PIXEL_WIDTH (w);
5704 move_it_to (&it, -1, *x + it.first_visible_x - left_area_width, *y, -1,
5705 MOVE_TO_X | MOVE_TO_Y);
5706
5707 *x = it.current_x - it.first_visible_x + left_area_width;
5708 *y = it.current_y;
5709 current_buffer = old_current_buffer;
5710
5711 *object = STRINGP (it.string) ? it.string : w->buffer;
5712 *pos = it.current;
5713 }
5714
5715
5716 /* Value is the string under window-relative coordinates X/Y in the
5717 mode or top line of window W, or nil if none. MODE_LINE_P non-zero
5718 means look at the mode line. *CHARPOS is set to the position in
5719 the string returned. */
5720
5721 Lisp_Object
5722 mode_line_string (w, x, y, mode_line_p, charpos)
5723 struct window *w;
5724 int x, y, mode_line_p;
5725 int *charpos;
5726 {
5727 struct glyph_row *row;
5728 struct glyph *glyph, *end;
5729 struct frame *f = XFRAME (w->frame);
5730 int x0;
5731 Lisp_Object string = Qnil;
5732
5733 if (mode_line_p)
5734 row = MATRIX_MODE_LINE_ROW (w->current_matrix);
5735 else
5736 row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
5737
5738 if (row->mode_line_p && row->enabled_p)
5739 {
5740 /* The mode lines are displayed over scroll bars and bitmap
5741 areas, and X is window-relative. Correct X by the scroll bar
5742 and bitmap area width. */
5743 if (FRAME_HAS_VERTICAL_SCROLL_BARS_ON_LEFT (f))
5744 x += FRAME_SCROLL_BAR_COLS (f) * CANON_X_UNIT (f);
5745 x += FRAME_LEFT_FLAGS_AREA_WIDTH (f);
5746
5747 /* Find the glyph under X. If we find one with a string object,
5748 it's the one we were looking for. */
5749 glyph = row->glyphs[TEXT_AREA];
5750 end = glyph + row->used[TEXT_AREA];
5751 for (x0 = 0; glyph < end; x0 += glyph->pixel_width, ++glyph)
5752 if (x >= x0 && x < x0 + glyph->pixel_width)
5753 {
5754 string = glyph->object;
5755 *charpos = glyph->charpos;
5756 break;
5757 }
5758 }
5759
5760 return string;
5761 }
5762
5763
5764 /***********************************************************************
5765 Changing Frame Sizes
5766 ***********************************************************************/
5767
5768 #ifdef SIGWINCH
5769
5770 SIGTYPE
5771 window_change_signal (signalnum) /* If we don't have an argument, */
5772 int signalnum; /* some compilers complain in signal calls. */
5773 {
5774 int width, height;
5775 #ifndef USE_CRT_DLL
5776 extern int errno;
5777 #endif
5778 int old_errno = errno;
5779
5780 get_frame_size (&width, &height);
5781
5782 /* The frame size change obviously applies to a termcap-controlled
5783 frame. Find such a frame in the list, and assume it's the only
5784 one (since the redisplay code always writes to stdout, not a
5785 FILE * specified in the frame structure). Record the new size,
5786 but don't reallocate the data structures now. Let that be done
5787 later outside of the signal handler. */
5788
5789 {
5790 Lisp_Object tail, frame;
5791
5792 FOR_EACH_FRAME (tail, frame)
5793 {
5794 if (FRAME_TERMCAP_P (XFRAME (frame)))
5795 {
5796 change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
5797 break;
5798 }
5799 }
5800 }
5801
5802 signal (SIGWINCH, window_change_signal);
5803 errno = old_errno;
5804 }
5805 #endif /* SIGWINCH */
5806
5807
5808 /* Do any change in frame size that was requested by a signal. SAFE
5809 non-zero means this function is called from a place where it is
5810 safe to change frame sizes while a redisplay is in progress. */
5811
5812 void
5813 do_pending_window_change (safe)
5814 int safe;
5815 {
5816 /* If window_change_signal should have run before, run it now. */
5817 if (redisplaying_p && !safe)
5818 return;
5819
5820 while (delayed_size_change)
5821 {
5822 Lisp_Object tail, frame;
5823
5824 delayed_size_change = 0;
5825
5826 FOR_EACH_FRAME (tail, frame)
5827 {
5828 struct frame *f = XFRAME (frame);
5829
5830 int height = FRAME_NEW_HEIGHT (f);
5831 int width = FRAME_NEW_WIDTH (f);
5832
5833 if (height != 0 || width != 0)
5834 change_frame_size (f, height, width, 0, 0, safe);
5835 }
5836 }
5837 }
5838
5839
5840 /* Change the frame height and/or width. Values may be given as zero to
5841 indicate no change is to take place.
5842
5843 If DELAY is non-zero, then assume we're being called from a signal
5844 handler, and queue the change for later - perhaps the next
5845 redisplay. Since this tries to resize windows, we can't call it
5846 from a signal handler.
5847
5848 SAFE non-zero means this function is called from a place where it's
5849 safe to change frame sizes while a redisplay is in progress. */
5850
5851 void
5852 change_frame_size (f, newheight, newwidth, pretend, delay, safe)
5853 register struct frame *f;
5854 int newheight, newwidth, pretend, delay, safe;
5855 {
5856 Lisp_Object tail, frame;
5857
5858 if (! FRAME_WINDOW_P (f))
5859 {
5860 /* When using termcap, or on MS-DOS, all frames use
5861 the same screen, so a change in size affects all frames. */
5862 FOR_EACH_FRAME (tail, frame)
5863 if (! FRAME_WINDOW_P (XFRAME (frame)))
5864 change_frame_size_1 (XFRAME (frame), newheight, newwidth,
5865 pretend, delay, safe);
5866 }
5867 else
5868 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
5869 }
5870
5871 static void
5872 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe)
5873 register struct frame *f;
5874 int newheight, newwidth, pretend, delay, safe;
5875 {
5876 int new_frame_window_width;
5877 int count = specpdl_ptr - specpdl;
5878
5879 /* If we can't deal with the change now, queue it for later. */
5880 if (delay || (redisplaying_p && !safe))
5881 {
5882 FRAME_NEW_HEIGHT (f) = newheight;
5883 FRAME_NEW_WIDTH (f) = newwidth;
5884 delayed_size_change = 1;
5885 return;
5886 }
5887
5888 /* This size-change overrides any pending one for this frame. */
5889 FRAME_NEW_HEIGHT (f) = 0;
5890 FRAME_NEW_WIDTH (f) = 0;
5891
5892 /* If an argument is zero, set it to the current value. */
5893 if (newheight == 0)
5894 newheight = FRAME_HEIGHT (f);
5895 if (newwidth == 0)
5896 newwidth = FRAME_WIDTH (f);
5897
5898 /* Compute width of windows in F.
5899 This is the width of the frame without vertical scroll bars. */
5900 new_frame_window_width = FRAME_WINDOW_WIDTH_ARG (f, newwidth);
5901
5902 /* Round up to the smallest acceptable size. */
5903 check_frame_size (f, &newheight, &newwidth);
5904
5905 /* If we're not changing the frame size, quit now. */
5906 if (newheight == FRAME_HEIGHT (f)
5907 && new_frame_window_width == FRAME_WINDOW_WIDTH (f))
5908 return;
5909
5910 BLOCK_INPUT;
5911
5912 #ifdef MSDOS
5913 /* We only can set screen dimensions to certain values supported
5914 by our video hardware. Try to find the smallest size greater
5915 or equal to the requested dimensions. */
5916 dos_set_window_size (&newheight, &newwidth);
5917 #endif
5918
5919 if (newheight != FRAME_HEIGHT (f))
5920 {
5921 if (FRAME_HAS_MINIBUF_P (f) && !FRAME_MINIBUF_ONLY_P (f))
5922 {
5923 /* Frame has both root and mini-buffer. */
5924 XSETFASTINT (XWINDOW (FRAME_ROOT_WINDOW (f))->top,
5925 FRAME_TOP_MARGIN (f));
5926 set_window_height (FRAME_ROOT_WINDOW (f),
5927 (newheight
5928 - 1
5929 - FRAME_TOP_MARGIN (f)),
5930 0);
5931 XSETFASTINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top,
5932 newheight - 1);
5933 set_window_height (FRAME_MINIBUF_WINDOW (f), 1, 0);
5934 }
5935 else
5936 /* Frame has just one top-level window. */
5937 set_window_height (FRAME_ROOT_WINDOW (f),
5938 newheight - FRAME_TOP_MARGIN (f), 0);
5939
5940 if (FRAME_TERMCAP_P (f) && !pretend)
5941 FrameRows = newheight;
5942 }
5943
5944 if (new_frame_window_width != FRAME_WINDOW_WIDTH (f))
5945 {
5946 set_window_width (FRAME_ROOT_WINDOW (f), new_frame_window_width, 0);
5947 if (FRAME_HAS_MINIBUF_P (f))
5948 set_window_width (FRAME_MINIBUF_WINDOW (f), new_frame_window_width, 0);
5949
5950 if (FRAME_TERMCAP_P (f) && !pretend)
5951 FrameCols = newwidth;
5952
5953 if (WINDOWP (f->tool_bar_window))
5954 XSETFASTINT (XWINDOW (f->tool_bar_window)->width, newwidth);
5955 }
5956
5957 FRAME_HEIGHT (f) = newheight;
5958 SET_FRAME_WIDTH (f, newwidth);
5959
5960 {
5961 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5962 int text_area_x, text_area_y, text_area_width, text_area_height;
5963
5964 window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
5965 &text_area_height);
5966 if (w->cursor.x >= text_area_x + text_area_width)
5967 w->cursor.hpos = w->cursor.x = 0;
5968 if (w->cursor.y >= text_area_y + text_area_height)
5969 w->cursor.vpos = w->cursor.y = 0;
5970 }
5971
5972 adjust_glyphs (f);
5973 SET_FRAME_GARBAGED (f);
5974 calculate_costs (f);
5975
5976 UNBLOCK_INPUT;
5977
5978 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5979
5980 /* This isn't quite a no-op: it runs window-configuration-change-hook. */
5981 Fset_window_buffer (FRAME_SELECTED_WINDOW (f),
5982 XWINDOW (FRAME_SELECTED_WINDOW (f))->buffer);
5983
5984 unbind_to (count, Qnil);
5985 }
5986
5987
5988 \f
5989 /***********************************************************************
5990 Terminal Related Lisp Functions
5991 ***********************************************************************/
5992
5993 DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
5994 1, 1, "FOpen termscript file: ",
5995 doc: /* Start writing all terminal output to FILE as well as the terminal.
5996 FILE = nil means just close any termscript file currently open. */)
5997 (file)
5998 Lisp_Object file;
5999 {
6000 if (termscript != 0) fclose (termscript);
6001 termscript = 0;
6002
6003 if (! NILP (file))
6004 {
6005 file = Fexpand_file_name (file, Qnil);
6006 termscript = fopen (XSTRING (file)->data, "w");
6007 if (termscript == 0)
6008 report_file_error ("Opening termscript", Fcons (file, Qnil));
6009 }
6010 return Qnil;
6011 }
6012
6013
6014 DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
6015 Ssend_string_to_terminal, 1, 1, 0,
6016 doc: /* Send STRING to the terminal without alteration.
6017 Control characters in STRING will have terminal-dependent effects. */)
6018 (string)
6019 Lisp_Object string;
6020 {
6021 /* ??? Perhaps we should do something special for multibyte strings here. */
6022 CHECK_STRING (string, 0);
6023 fwrite (XSTRING (string)->data, 1, STRING_BYTES (XSTRING (string)), stdout);
6024 fflush (stdout);
6025 if (termscript)
6026 {
6027 fwrite (XSTRING (string)->data, 1, STRING_BYTES (XSTRING (string)),
6028 termscript);
6029 fflush (termscript);
6030 }
6031 return Qnil;
6032 }
6033
6034
6035 DEFUN ("ding", Fding, Sding, 0, 1, 0,
6036 doc: /* Beep, or flash the screen.
6037 Also, unless an argument is given,
6038 terminate any keyboard macro currently executing. */)
6039 (arg)
6040 Lisp_Object arg;
6041 {
6042 if (!NILP (arg))
6043 {
6044 if (noninteractive)
6045 putchar (07);
6046 else
6047 ring_bell ();
6048 fflush (stdout);
6049 }
6050 else
6051 bitch_at_user ();
6052
6053 return Qnil;
6054 }
6055
6056 void
6057 bitch_at_user ()
6058 {
6059 if (noninteractive)
6060 putchar (07);
6061 else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
6062 error ("Keyboard macro terminated by a command ringing the bell");
6063 else
6064 ring_bell ();
6065 fflush (stdout);
6066 }
6067
6068
6069 \f
6070 /***********************************************************************
6071 Sleeping, Waiting
6072 ***********************************************************************/
6073
6074 DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
6075 doc: /* Pause, without updating display, for SECONDS seconds.
6076 SECONDS may be a floating-point value, meaning that you can wait for a
6077 fraction of a second. Optional second arg MILLISECONDS specifies an
6078 additional wait period, in milliseconds; this may be useful if your
6079 Emacs was built without floating point support.
6080 \(Not all operating systems support waiting for a fraction of a second.) */)
6081 (seconds, milliseconds)
6082 Lisp_Object seconds, milliseconds;
6083 {
6084 int sec, usec;
6085
6086 if (NILP (milliseconds))
6087 XSETINT (milliseconds, 0);
6088 else
6089 CHECK_NUMBER (milliseconds, 1);
6090 usec = XINT (milliseconds) * 1000;
6091
6092 {
6093 double duration = extract_float (seconds);
6094 sec = (int) duration;
6095 usec += (duration - sec) * 1000000;
6096 }
6097
6098 #ifndef EMACS_HAS_USECS
6099 if (sec == 0 && usec != 0)
6100 error ("millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
6101 #endif
6102
6103 /* Assure that 0 <= usec < 1000000. */
6104 if (usec < 0)
6105 {
6106 /* We can't rely on the rounding being correct if user is negative. */
6107 if (-1000000 < usec)
6108 sec--, usec += 1000000;
6109 else
6110 sec -= -usec / 1000000, usec = 1000000 - (-usec % 1000000);
6111 }
6112 else
6113 sec += usec / 1000000, usec %= 1000000;
6114
6115 if (sec < 0 || (sec == 0 && usec == 0))
6116 return Qnil;
6117
6118 {
6119 Lisp_Object zero;
6120
6121 XSETFASTINT (zero, 0);
6122 wait_reading_process_input (sec, usec, zero, 0);
6123 }
6124
6125 /* We should always have wait_reading_process_input; we have a dummy
6126 implementation for systems which don't support subprocesses. */
6127 #if 0
6128 /* No wait_reading_process_input */
6129 immediate_quit = 1;
6130 QUIT;
6131
6132 #ifdef VMS
6133 sys_sleep (sec);
6134 #else /* not VMS */
6135 /* The reason this is done this way
6136 (rather than defined (H_S) && defined (H_T))
6137 is because the VMS preprocessor doesn't grok `defined' */
6138 #ifdef HAVE_SELECT
6139 EMACS_GET_TIME (end_time);
6140 EMACS_SET_SECS_USECS (timeout, sec, usec);
6141 EMACS_ADD_TIME (end_time, end_time, timeout);
6142
6143 while (1)
6144 {
6145 EMACS_GET_TIME (timeout);
6146 EMACS_SUB_TIME (timeout, end_time, timeout);
6147 if (EMACS_TIME_NEG_P (timeout)
6148 || !select (1, 0, 0, 0, &timeout))
6149 break;
6150 }
6151 #else /* not HAVE_SELECT */
6152 sleep (sec);
6153 #endif /* HAVE_SELECT */
6154 #endif /* not VMS */
6155
6156 immediate_quit = 0;
6157 #endif /* no subprocesses */
6158
6159 return Qnil;
6160 }
6161
6162
6163 /* This is just like wait_reading_process_input, except that
6164 it does the redisplay.
6165
6166 It's also much like Fsit_for, except that it can be used for
6167 waiting for input as well. */
6168
6169 Lisp_Object
6170 sit_for (sec, usec, reading, display, initial_display)
6171 int sec, usec, reading, display, initial_display;
6172 {
6173 Lisp_Object read_kbd;
6174
6175 swallow_events (display);
6176
6177 if (detect_input_pending_run_timers (display))
6178 return Qnil;
6179
6180 if (initial_display)
6181 redisplay_preserve_echo_area (2);
6182
6183 if (sec == 0 && usec == 0)
6184 return Qt;
6185
6186 #ifdef SIGIO
6187 gobble_input (0);
6188 #endif
6189
6190 XSETINT (read_kbd, reading ? -1 : 1);
6191 wait_reading_process_input (sec, usec, read_kbd, display);
6192
6193 return detect_input_pending () ? Qnil : Qt;
6194 }
6195
6196
6197 DEFUN ("sit-for", Fsit_for, Ssit_for, 1, 3, 0,
6198 doc: /* Perform redisplay, then wait for SECONDS seconds or until input is available.
6199 SECONDS may be a floating-point value, meaning that you can wait for a
6200 fraction of a second. Optional second arg MILLISECONDS specifies an
6201 additional wait period, in milliseconds; this may be useful if your
6202 Emacs was built without floating point support.
6203 \(Not all operating systems support waiting for a fraction of a second.)
6204 Optional third arg NODISP non-nil means don't redisplay, just wait for input.
6205 Redisplay is preempted as always if input arrives, and does not happen
6206 if input is available before it starts.
6207 Value is t if waited the full time with no input arriving. */)
6208 (seconds, milliseconds, nodisp)
6209 Lisp_Object seconds, milliseconds, nodisp;
6210 {
6211 int sec, usec;
6212
6213 if (NILP (milliseconds))
6214 XSETINT (milliseconds, 0);
6215 else
6216 CHECK_NUMBER (milliseconds, 1);
6217 usec = XINT (milliseconds) * 1000;
6218
6219 {
6220 double duration = extract_float (seconds);
6221 sec = (int) duration;
6222 usec += (duration - sec) * 1000000;
6223 }
6224
6225 #ifndef EMACS_HAS_USECS
6226 if (usec != 0 && sec == 0)
6227 error ("millisecond `sit-for' not supported on %s", SYSTEM_TYPE);
6228 #endif
6229
6230 return sit_for (sec, usec, 0, NILP (nodisp), NILP (nodisp));
6231 }
6232
6233
6234 \f
6235 /***********************************************************************
6236 Other Lisp Functions
6237 ***********************************************************************/
6238
6239 /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
6240 session's frames, frame names, buffers, buffer-read-only flags, and
6241 buffer-modified-flags, and a trailing sentinel (so we don't need to
6242 add length checks). */
6243
6244 static Lisp_Object frame_and_buffer_state;
6245
6246
6247 DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
6248 Sframe_or_buffer_changed_p, 0, 0, 0,
6249 doc: /* Return non-nil if the frame and buffer state appears to have changed.
6250 The state variable is an internal vector containing all frames and buffers,
6251 aside from buffers whose names start with space,
6252 along with the buffers' read-only and modified flags, which allows a fast
6253 check to see whether the menu bars might need to be recomputed.
6254 If this function returns non-nil, it updates the internal vector to reflect
6255 the current state. */)
6256 ()
6257 {
6258 Lisp_Object tail, frame, buf;
6259 Lisp_Object *vecp;
6260 int n;
6261
6262 vecp = XVECTOR (frame_and_buffer_state)->contents;
6263 FOR_EACH_FRAME (tail, frame)
6264 {
6265 if (!EQ (*vecp++, frame))
6266 goto changed;
6267 if (!EQ (*vecp++, XFRAME (frame)->name))
6268 goto changed;
6269 }
6270 /* Check that the buffer info matches.
6271 No need to test for the end of the vector
6272 because the last element of the vector is lambda
6273 and that will always cause a mismatch. */
6274 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6275 {
6276 buf = XCDR (XCAR (tail));
6277 /* Ignore buffers that aren't included in buffer lists. */
6278 if (XSTRING (XBUFFER (buf)->name)->data[0] == ' ')
6279 continue;
6280 if (!EQ (*vecp++, buf))
6281 goto changed;
6282 if (!EQ (*vecp++, XBUFFER (buf)->read_only))
6283 goto changed;
6284 if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
6285 goto changed;
6286 }
6287 /* Detect deletion of a buffer at the end of the list. */
6288 if (EQ (*vecp, Qlambda))
6289 return Qnil;
6290 changed:
6291 /* Start with 1 so there is room for at least one lambda at the end. */
6292 n = 1;
6293 FOR_EACH_FRAME (tail, frame)
6294 n += 2;
6295 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6296 n += 3;
6297 /* Reallocate the vector if it's grown, or if it's shrunk a lot. */
6298 if (n > XVECTOR (frame_and_buffer_state)->size
6299 || n + 20 < XVECTOR (frame_and_buffer_state)->size / 2)
6300 /* Add 20 extra so we grow it less often. */
6301 frame_and_buffer_state = Fmake_vector (make_number (n + 20), Qlambda);
6302 vecp = XVECTOR (frame_and_buffer_state)->contents;
6303 FOR_EACH_FRAME (tail, frame)
6304 {
6305 *vecp++ = frame;
6306 *vecp++ = XFRAME (frame)->name;
6307 }
6308 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6309 {
6310 buf = XCDR (XCAR (tail));
6311 /* Ignore buffers that aren't included in buffer lists. */
6312 if (XSTRING (XBUFFER (buf)->name)->data[0] == ' ')
6313 continue;
6314 *vecp++ = buf;
6315 *vecp++ = XBUFFER (buf)->read_only;
6316 *vecp++ = Fbuffer_modified_p (buf);
6317 }
6318 /* Fill up the vector with lambdas (always at least one). */
6319 *vecp++ = Qlambda;
6320 while (vecp - XVECTOR (frame_and_buffer_state)->contents
6321 < XVECTOR (frame_and_buffer_state)->size)
6322 *vecp++ = Qlambda;
6323 /* Make sure we didn't overflow the vector. */
6324 if (vecp - XVECTOR (frame_and_buffer_state)->contents
6325 > XVECTOR (frame_and_buffer_state)->size)
6326 abort ();
6327 return Qt;
6328 }
6329
6330
6331 \f
6332 /***********************************************************************
6333 Initialization
6334 ***********************************************************************/
6335
6336 char *terminal_type;
6337
6338 /* Initialization done when Emacs fork is started, before doing stty.
6339 Determine terminal type and set terminal_driver. Then invoke its
6340 decoding routine to set up variables in the terminal package. */
6341
6342 void
6343 init_display ()
6344 {
6345 #ifdef HAVE_X_WINDOWS
6346 extern int display_arg;
6347 #endif
6348
6349 /* Construct the space glyph. */
6350 space_glyph.type = CHAR_GLYPH;
6351 SET_CHAR_GLYPH_FROM_GLYPH (space_glyph, ' ');
6352 space_glyph.charpos = -1;
6353
6354 meta_key = 0;
6355 inverse_video = 0;
6356 cursor_in_echo_area = 0;
6357 terminal_type = (char *) 0;
6358
6359 /* Now is the time to initialize this; it's used by init_sys_modes
6360 during startup. */
6361 Vwindow_system = Qnil;
6362
6363 /* If the user wants to use a window system, we shouldn't bother
6364 initializing the terminal. This is especially important when the
6365 terminal is so dumb that emacs gives up before and doesn't bother
6366 using the window system.
6367
6368 If the DISPLAY environment variable is set and nonempty,
6369 try to use X, and die with an error message if that doesn't work. */
6370
6371 #ifdef HAVE_X_WINDOWS
6372 if (! display_arg)
6373 {
6374 char *display;
6375 #ifdef VMS
6376 display = getenv ("DECW$DISPLAY");
6377 #else
6378 display = getenv ("DISPLAY");
6379 #endif
6380
6381 display_arg = (display != 0 && *display != 0);
6382 }
6383
6384 if (!inhibit_window_system && display_arg
6385 #ifndef CANNOT_DUMP
6386 && initialized
6387 #endif
6388 )
6389 {
6390 Vwindow_system = intern ("x");
6391 #ifdef HAVE_X11
6392 Vwindow_system_version = make_number (11);
6393 #else
6394 Vwindow_system_version = make_number (10);
6395 #endif
6396 #if defined (LINUX) && defined (HAVE_LIBNCURSES)
6397 /* In some versions of ncurses,
6398 tputs crashes if we have not called tgetent.
6399 So call tgetent. */
6400 { char b[2044]; tgetent (b, "xterm");}
6401 #endif
6402 adjust_frame_glyphs_initially ();
6403 return;
6404 }
6405 #endif /* HAVE_X_WINDOWS */
6406
6407 #ifdef HAVE_NTGUI
6408 if (!inhibit_window_system)
6409 {
6410 Vwindow_system = intern ("w32");
6411 Vwindow_system_version = make_number (1);
6412 adjust_frame_glyphs_initially ();
6413 return;
6414 }
6415 #endif /* HAVE_NTGUI */
6416
6417 #ifdef macintosh
6418 if (!inhibit_window_system)
6419 {
6420 Vwindow_system = intern ("mac");
6421 Vwindow_system_version = make_number (1);
6422 adjust_frame_glyphs_initially ();
6423 return;
6424 }
6425 #endif /* macintosh */
6426
6427 /* If no window system has been specified, try to use the terminal. */
6428 if (! isatty (0))
6429 {
6430 fatal ("standard input is not a tty");
6431 exit (1);
6432 }
6433
6434 /* Look at the TERM variable */
6435 terminal_type = (char *) getenv ("TERM");
6436 if (!terminal_type)
6437 {
6438 #ifdef VMS
6439 fprintf (stderr, "Please specify your terminal type.\n\
6440 For types defined in VMS, use set term /device=TYPE.\n\
6441 For types not defined in VMS, use define emacs_term \"TYPE\".\n\
6442 \(The quotation marks are necessary since terminal types are lower case.)\n");
6443 #else
6444 fprintf (stderr, "Please set the environment variable TERM; see tset(1).\n");
6445 #endif
6446 exit (1);
6447 }
6448
6449 #ifdef VMS
6450 /* VMS DCL tends to up-case things, so down-case term type.
6451 Hardly any uppercase letters in terminal types; should be none. */
6452 {
6453 char *new = (char *) xmalloc (strlen (terminal_type) + 1);
6454 char *p;
6455
6456 strcpy (new, terminal_type);
6457
6458 for (p = new; *p; p++)
6459 if (isupper (*p))
6460 *p = tolower (*p);
6461
6462 terminal_type = new;
6463 }
6464 #endif /* VMS */
6465
6466 term_init (terminal_type);
6467
6468 {
6469 struct frame *sf = SELECTED_FRAME ();
6470 int width = FRAME_WINDOW_WIDTH (sf);
6471 int height = FRAME_HEIGHT (sf);
6472
6473 unsigned int total_glyphs = height * (width + 2) * sizeof (struct glyph);
6474
6475 /* If these sizes are so big they cause overflow, just ignore the
6476 change. It's not clear what better we could do. */
6477 if (total_glyphs / sizeof (struct glyph) / height != width + 2)
6478 fatal ("screen size %dx%d too big", width, height);
6479 }
6480
6481 adjust_frame_glyphs_initially ();
6482 calculate_costs (XFRAME (selected_frame));
6483
6484 #ifdef SIGWINCH
6485 #ifndef CANNOT_DUMP
6486 if (initialized)
6487 #endif /* CANNOT_DUMP */
6488 signal (SIGWINCH, window_change_signal);
6489 #endif /* SIGWINCH */
6490
6491 /* Set up faces of the initial terminal frame of a dumped Emacs. */
6492 if (initialized
6493 && !noninteractive
6494 #ifdef MSDOS
6495 /* The MSDOS terminal turns on its ``window system'' relatively
6496 late into the startup, so we cannot do the frame faces'
6497 initialization just yet. It will be done later by pc-win.el
6498 and internal_terminal_init. */
6499 && (strcmp (terminal_type, "internal") != 0 || inhibit_window_system)
6500 #endif
6501 && NILP (Vwindow_system))
6502 {
6503 /* For the initial frame, we don't have any way of knowing what
6504 are the foreground and background colors of the terminal. */
6505 struct frame *sf = SELECTED_FRAME();
6506
6507 FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR;
6508 FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR;
6509 call0 (intern ("tty-set-up-initial-frame-faces"));
6510 }
6511 }
6512
6513
6514 \f
6515 /***********************************************************************
6516 Blinking cursor
6517 ***********************************************************************/
6518
6519 DEFUN ("internal-show-cursor", Finternal_show_cursor,
6520 Sinternal_show_cursor, 2, 2, 0,
6521 doc: /* Set the cursor-visibility flag of WINDOW to SHOW.
6522 WINDOW nil means use the selected window. SHOW non-nil means
6523 show a cursor in WINDOW in the next redisplay. SHOW nil means
6524 don't show a cursor. */)
6525 (window, show)
6526 Lisp_Object window, show;
6527 {
6528 /* Don't change cursor state while redisplaying. This could confuse
6529 output routines. */
6530 if (!redisplaying_p)
6531 {
6532 if (NILP (window))
6533 window = selected_window;
6534 else
6535 CHECK_WINDOW (window, 2);
6536
6537 XWINDOW (window)->cursor_off_p = NILP (show);
6538 }
6539
6540 return Qnil;
6541 }
6542
6543
6544 DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p,
6545 Sinternal_show_cursor_p, 0, 1, 0,
6546 doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW.
6547 WINDOW nil or omitted means report on the selected window. */)
6548 (window)
6549 Lisp_Object window;
6550 {
6551 struct window *w;
6552
6553 if (NILP (window))
6554 window = selected_window;
6555 else
6556 CHECK_WINDOW (window, 2);
6557
6558 w = XWINDOW (window);
6559 return w->cursor_off_p ? Qnil : Qt;
6560 }
6561
6562 \f
6563 /***********************************************************************
6564 Initialization
6565 ***********************************************************************/
6566
6567 void
6568 syms_of_display ()
6569 {
6570 defsubr (&Sredraw_frame);
6571 defsubr (&Sredraw_display);
6572 defsubr (&Sframe_or_buffer_changed_p);
6573 defsubr (&Sopen_termscript);
6574 defsubr (&Sding);
6575 defsubr (&Ssit_for);
6576 defsubr (&Ssleep_for);
6577 defsubr (&Ssend_string_to_terminal);
6578 defsubr (&Sinternal_show_cursor);
6579 defsubr (&Sinternal_show_cursor_p);
6580
6581 #if GLYPH_DEBUG
6582 defsubr (&Sdump_redisplay_history);
6583 #endif
6584
6585 frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
6586 staticpro (&frame_and_buffer_state);
6587
6588 Qdisplay_table = intern ("display-table");
6589 staticpro (&Qdisplay_table);
6590 Qredisplay_dont_pause = intern ("redisplay-dont-pause");
6591 staticpro (&Qredisplay_dont_pause);
6592
6593 DEFVAR_INT ("baud-rate", &baud_rate,
6594 doc: /* *The output baud rate of the terminal.
6595 On most systems, changing this value will affect the amount of padding
6596 and the other strategic decisions made during redisplay. */);
6597
6598 DEFVAR_BOOL ("inverse-video", &inverse_video,
6599 doc: /* *Non-nil means invert the entire frame display.
6600 This means everything is in inverse video which otherwise would not be. */);
6601
6602 DEFVAR_BOOL ("visible-bell", &visible_bell,
6603 doc: /* *Non-nil means try to flash the frame to represent a bell. */);
6604
6605 DEFVAR_BOOL ("no-redraw-on-reenter", &no_redraw_on_reenter,
6606 doc: /* *Non-nil means no need to redraw entire frame after suspending.
6607 A non-nil value is useful if the terminal can automatically preserve
6608 Emacs's frame display when you reenter Emacs.
6609 It is up to you to set this variable if your terminal can do that. */);
6610
6611 DEFVAR_LISP ("window-system", &Vwindow_system,
6612 doc: /* A symbol naming the window-system under which Emacs is running
6613 \(such as `x'), or nil if emacs is running on an ordinary terminal. */);
6614
6615 DEFVAR_LISP ("window-system-version", &Vwindow_system_version,
6616 doc: /* The version number of the window system in use.
6617 For X windows, this is 10 or 11. */);
6618
6619 DEFVAR_BOOL ("cursor-in-echo-area", &cursor_in_echo_area,
6620 doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */);
6621
6622 DEFVAR_LISP ("glyph-table", &Vglyph_table,
6623 doc: /* Table defining how to output a glyph code to the frame.
6624 If not nil, this is a vector indexed by glyph code to define the glyph.
6625 Each element can be:
6626 integer: a glyph code which this glyph is an alias for.
6627 string: output this glyph using that string (not impl. in X windows).
6628 nil: this glyph mod 524288 is the code of a character to output,
6629 and this glyph / 524288 is the face number (see `face-id') to use
6630 while outputting it. */);
6631 Vglyph_table = Qnil;
6632
6633 DEFVAR_LISP ("standard-display-table", &Vstandard_display_table,
6634 doc: /* Display table to use for buffers that specify none.
6635 See `buffer-display-table' for more information. */);
6636 Vstandard_display_table = Qnil;
6637
6638 DEFVAR_BOOL ("redisplay-dont-pause", &redisplay_dont_pause,
6639 doc: /* *Non-nil means update isn't paused when input is detected. */);
6640 redisplay_dont_pause = 0;
6641
6642 /* Initialize `window-system', unless init_display already decided it. */
6643 #ifdef CANNOT_DUMP
6644 if (noninteractive)
6645 #endif
6646 {
6647 Vwindow_system = Qnil;
6648 Vwindow_system_version = Qnil;
6649 }
6650 }